

Capítulo 15. Inicialização, tempo de CPU e DOS

1

Capítulo 15. Inicialização, tempo de CPU e DOS

29 Out 2024

OBJETIVOS DO CAPÍTULO

 Inicializar variáveis e constantes junto com suas definições

 Comando do FORTRAN: PARAMETER

 Medição do tempo de CPU

 Versões DEBUG e RELEASE de um programa-executável

 Vários comandos do DOS

15.1 programa15a.f90

1) Objetivos do programa:

(a) usar o novo comando do FORTRAN: PARAMETER; e

(b) ao definir variáveis e constantes, inicializar seus valores

2) No Fortran, criar um projeto com o nome programa15a

3) No Fortran, criar e inserir no projeto o programa-fonte programa15a.f90

4) No Fortran, copiar exatamente o texto em vermelho mostrado na Tabela 15.1.

5) Comentários sobre o programa:

(a) Na linha INTEGER :: UNIT = 20 está sendo definida a variável UNIT como sendo do tipo inteiro e ela

está sendo inicializada com o valor 20.

(b) Na linha REAL*8, PARAMETER :: Pi = 3.141592653589793d+0 está sendo definida a constante Pi,

através do comando PARAMETER, como sendo do tipo real de precisão dupla e ela está sendo

inicializada com seu valor.

(c) Variáveis inicializadas podem ser alteradas dentro do programa.

(d) Constantes definidas com o comando PARAMETER, e inicializadas com um valor, não podem ter este

valor alterado dentro do programa. Isso gera erro de compilação.

(e) Diversas variáveis podem ser inicializadas em uma mesma linha de programa. Basta separá-las por

vírgula.

6) Executar Build, Compile para compilar o programa.

7) Gerar o programa-executável fazendo Build, Build.

8) Antes de executar o programa, é necessário criar o arquivo de dados e inserir nele os respectivos dados. No

caso do programa15a.f90, é necessário criar o arquivo “DADOS.TXT” e inserir um dado que

corresponde à variável SAIDA. Usar, por exemplo, o dado mostrado na Figura 15.1.

9) Executar o programa através de Build, Execute. O resultado deve ser o mostrado na Figura 15.2.

10) Executar novamente o programa com outro dado e analisar os novos resultados.

Capítulo 15. Inicialização, tempo de CPU e DOS

2

Tabela 15.1 Programa15a.f90

USE PORTLIB

IMPLICIT NONE

INTEGER VER

CHARACTER(50) SAIDA, TEXTO

INTEGER :: UNIT = 20

REAL*8, PARAMETER :: Pi = 3.141592653589793d+0

VER = SYSTEM("Notepad DADOS.TXT")

OPEN(1, file = "DADOS.TXT")

READ(1,*) SAIDA

CLOSE(1)

OPEN(UNIT, file = SAIDA)

WRITE(UNIT,10) UNIT, Pi

10 FORMAT(/, 5X, "UNIT = ", I4, &

 2/, 5X, "Pi = ", 1PE25.15)

CLOSE(UNIT)

TEXTO = "Notepad " // SAIDA

VER = SYSTEM(TEXTO)

END

Figura 15.1 Exemplo de arquivo de dados para o programa15a.f90.

Capítulo 15. Inicialização, tempo de CPU e DOS

3

Figura 15.2 Resultado do programa15a.f90 para os dados da Figura 15.1.

15.2 programa15b.f90

1) Objetivos do programa:

(a) Medir o tempo de CPU usado na execução do programa; e

(b) mostrar a diferença, em termos de tempo de CPU, das versões DEBUG e RELEASE de um programa-

executável.

2) No Fortran, criar um projeto com o nome programa15b

3) No Fortran, criar e inserir no projeto o programa-fonte programa15b.f90

4) No Fortran, copiar exatamente o texto em vermelho mostrado na Tabela 15.2.

5) Comentários sobre o programa:

(a) A função TIMEF faz parte da biblioteca PORTLIB. Ela é usada para medir o tempo de processamento

ou tempo de CPU do programa entre dois pontos desejados. O tempo de CPU é o tempo efetivamente

gasto pelo processador do computador executando um programa ou parte de um programa.

(b) A função TIMEF mede o tempo de CPU em segundos.

(c) A função TIMEF é usada como na linha T1 = TIMEF() do programa, onde T1 deve ser uma variável

do tipo real dupla.

(d) Dentro de um programa, a primeira chamada da função TIMEF zera a contagem de tempo. As chamadas

sucessivas irão registrar o tempo total transcorrido entre a zeragem e um ponto específico do programa.

Desta forma, o tempo de processamento entre dois pontos é igual à diferença entre os tempos registrados

nestes dois pontos.

(e) Como se poderá perceber nos exemplos, a função TIMEF não tem precisão muito elevada. A repetição

da execução de um programa geralmente resulta em diferenças de até  0.05 segundo em relação a um

valor médio.

(f) Um procedimento que ajuda a melhorar a precisão da medida do tempo de CPU é repetir, a execução da

parte de interesse do programa, por um determinado número de vezes, de tal forma que o tempo total de

CPU aumente e minimize a imprecisão de sua medida. Isto é feito com o ciclo j no programa15b.f90.

Capítulo 15. Inicialização, tempo de CPU e DOS

4

Tabela 15.2 Programa15b.f90

USE PORTLIB

IMPLICIT NONE

INTEGER VER, PASSOS, I, repeticoes, j

CHARACTER(50) SAIDA

CHARACTER(10) t1b,t2b

INTEGER :: UNIT = 20

REAL*8 T1, T2, SOMA

VER = SYSTEM("Notepad DADOS.TXT")

OPEN(1, file = "DADOS.TXT")

READ(1,*) repeticoes

READ(1,*) PASSOS

READ(1,*) SAIDA

CLOSE(1)

T1 = TIMEF()

CALL DATE_AND_TIME(TIME = t1b)

do j = 1, repeticoes

 SOMA = 0.0D0

 DO I = 1, PASSOS

 SOMA = SOMA + I

 END DO

end do

T2 = TIMEF()

CALL DATE_AND_TIME(TIME = t2b)

OPEN(UNIT, file = SAIDA)

write(*,*) "t1b = ", t1b

write(*,*) "t2b = ", t2b

WRITE(UNIT,11) repeticoes, PASSOS, SOMA, T1, T2, T2-T1, (t2-t1)/repeticoes

11 FORMAT(1/, "*** PRIMEIRA SOMA ***", &

 1/, 5X, "repetições = ", I6, &

 1/, 5X, "PASSOS = ", I12, &

Capítulo 15. Inicialização, tempo de CPU e DOS

5

 1/, 5X, "SOMA = ", 1PE25.10E3, &

 1/, 5X, "T1 (segundos) = ", 1PE25.10E3, &

 1/, 5X, "T2 (segundos)= ", 1PE25.10E3, &

 1/, 5X, "Tempo de CPU total = T2 - T1 (segundos)= ", 1PE25.10E3, &

 1/, 5X, "Tempo de CPU médio por repetição (segundos) = ", 1PE25.10E3)

T1 = TIMEF()

CALL DATE_AND_TIME(TIME = t1b)

do j = 1, repeticoes

 SOMA = 0.0D0

 DO I = 1, PASSOS

 SOMA = SOMA + I

 END DO

end do

T2 = TIMEF()

CALL DATE_AND_TIME(TIME = t2b)

write(*,*) "t1b = ", t1b

write(*,*) "t2b = ", t2b

WRITE(UNIT,12) repeticoes, PASSOS, SOMA, T1, T2, T2-T1, (t2-t1)/repeticoes

12 FORMAT(1/, "*** SEGUNDA SOMA ***", &

 1/, 5X, "repetições = ", I6, &

 1/, 5X, "PASSOS = ", I12, &

 1/, 5X, "SOMA = ", 1PE25.10E3, &

 1/, 5X, "T1 (segundos) = ", 1PE25.10E3, &

 1/, 5X, "T2 (segundos)= ", 1PE25.10E3, &

 1/, 5X, "Tempo de CPU total = T2 - T1 (segundos)= ", 1PE25.10E3, &

 1/, 5X, "Tempo de CPU médio por repetição (segundos) = ", 1PE25.10E3)

CLOSE(UNIT)

VER = SYSTEM("Notepad " // SAIDA)

END

(g) No FORTRAN, a medição do tempo de processamento de um programa também pode ser feita com as

funções DTIME e ETIME, e a sub-rotina DATE_AND_TIME (que é usada no programa15b.f90), entre

outras.

(h) Por default, quando se compila e se gera o executável de um programa, obtém-se a chamada versão

DEBUG. Ela é útil para se encontrar erros de edição ou de uso dos comandos do FORTRAN, isto é,

erros de sintaxe ou erros de compilação. Mas, em termos de tempo de processamento, a versão DEBUG

Capítulo 15. Inicialização, tempo de CPU e DOS

6

é mais lenta do que a versão RELEASE, que geralmente usa entre 1/3 a ½ do tempo de CPU da versão

DEBUG. Além disso, a versão DEBUG geralmente resulta em um programa-executável cujo arquivo

precisa de mais memória em disco do que a versão RELEASE.

(i) Para definir o tipo de versão do programa, no menu principal do Fortran, deve-se executar “Build, Set

Default Configuration...”, escolher a opção desejada e clicar no botão OK. Depois, deve-se compilar e

gerar o executável do programa.

6) Executar Build, Compile para compilar o programa.

7) Gerar o programa-executável fazendo Build, Build.

8) Antes de executar o programa, é necessário criar o arquivo de dados e inserir nele os respectivos dados. No

caso do programa15b.f90, é necessário criar o arquivo “DADOS.TXT” e inserir os três dados que

correspondem às variáveis repeticoes, PASSOS e SAIDA. Usar, por exemplo, os dados mostrados na

Figura 15.3, onde PASSOS é igual a 100 milhões.

Figura 15.3 Exemplo de arquivo de dados para o programa15b.f90.

9) Executar o programa através de Build, Execute. O resultado é mostrado na Figura 15.4 para a função TIMEF.

Os tempos de processamento se referem à execução do programa em notebook Samsung com processador

Intel i3, e a sua precisão é de milésimos de segundo. Analisando-se o programa, deve-se perceber que os dois

tempos de CPU deveriam ter exatamente o mesmo valor, mas na Figura 15.4 nota-se que há uma diferença

entre eles de 0.026 s. A cada execução do programa, tanto os valores do tempo de CPU quanto suas diferenças

podem variar dentro da precisão geralmente esperada de 0.05 s.

10) Na Figura 15.5 são mostrados os resultados obtidos com a sub-rotina DATE_AND_TIME. Os valores

representam hora, minuto, segundo e milésimos de segundo. A primeira diferença entre t2b e t1b é de 0.584

s e a segunda é de 0.561 s. Estas diferenças devem ser comparadas aos dois valores da Figura 15.4. Portanto,

a diferença entre os dois resultados de DATE_AND_TIME é de 0.023 s

11) Executar novamente o programa com 10 repeticoes. Notar que agora os resultados mostrados nas Figuras

15.6 e 15.7 têm precisão de décimos de milésimos de segundo. A diferença entre os dois resultados do TIMEF

é de 0.0091 s. Na Figura 15.7, a primeira diferença entre t2b e t1b é de 0.4410 s por repetição, e a segunda é

de 0.4324 s. Estas diferenças devem ser comparadas aos dois valores da Figura 15.6. Portanto, a diferença

entre os dois resultados de DATE_AND_TIME é de 0.0086 s. Esta precisão pode continuar a ser aumentada

ao se aumentar o número de repetições dos cálculos.

Capítulo 15. Inicialização, tempo de CPU e DOS

7

Figura 15.4 Resultado TIMEF do programa15b.f90 para os dados da Figura 15.3, versão DEBUG.

Figura 15.5 Resultado DATE_AND_TIME do programa15b.f90 para os dados da Figura 15.3, versão DEBUG.

12) Executar novamente o programa com outros dados e analisar os novos resultados. Utilizar, por

exemplo, PASSOS = 10 milhões, 1 milhão e 1 bilhão; para cada valor de PASSOS, testar com repeticoes =

1 e 10.

13) Verificar que dentro da pasta do projeto existe uma subpasta chamada DEBUG. Notar que o tamanho

do arquivo programa15b.exe é de 193 kB.

14) Mudar a versão do programa para RELEASE. Para fazer isso, executar Build, Set Default Configuration...,

escolher a opção RELEASE, clicar no botão OK. Depois, executar Build, Compile para compilar

novamente o programa. Gerar o novo programa-executável fazendo Build, Build.

15) Verificar que, agora, dentro da pasta do projeto também existe uma subpasta chamada RELEASE, e

que o tamanho do arquivo programa15b.exe é de 136 kB, portanto, menor que a versão DEBUG.

Capítulo 15. Inicialização, tempo de CPU e DOS

8

Figura 15.6 Resultado TIMEF do programa15b.f90 para 10 repetições, versão DEBUG.

Figura 15.7 Resultado DATE_AND_TIME do programa15b.f90 para 10 repetições, versão DEBUG.

16) Executar o programa através de Build, Execute com os dados da Figura 15.3. Os resultados são mostrados

nas Figuras 15.8 e 15.9. Novamente, os dois tempos de CPU da Figura 15.8 deveriam ter exatamente o

mesmo valor, mas há uma diferença entre eles de 0.006 s. Comparando-se os tempos de processamento,

verifica-se que a versão RELEASE é cerca de 32% da versão DEBUG da Figura 15.6.

17) Na Figura 15.9, a primeira diferença entre t2b e t1b é de 0.136 s, e a segunda é de 0.143 s. Estas diferenças

devem ser comparadas aos dois valores da Figura 15.8. Portanto, a diferença entre os dois resultados de

DATE_AND_TIME é de 0.007 s.

18) Executar novamente o programa com outros dados e analisar os novos resultados. Utilizar, por

exemplo, PASSOS = 10 milhões, 1 milhão e 1 bilhão; para cada valor de PASSOS, testar com repeticoes =

1 e 10.

Capítulo 15. Inicialização, tempo de CPU e DOS

9

Figura 15.8 Resultado TIMEF do programa15b.f90 para os dados da Figura 15.3, versão RELEASE.

Figura 15.9 Resultado DATE_AND_TIME do programa15b.f90 para os dados da Figura 15.3, versão

RELEASE.

15.3 programa15c.f90

1) Objetivo do programa: utilizar comandos do DOS durante a execução do programa.

2) No Fortran, criar um projeto com o nome programa15c

3) No Fortran, criar e inserir no projeto o programa-fonte programa15c.f90

4) No Fortran, copiar exatamente o texto em vermelho mostrado na Tabela 15.3, que é o programa15c.f90.

Tabela 15.3 Programa15c.f90

USE PORTLIB

IMPLICIT NONE

INTEGER DOS

Capítulo 15. Inicialização, tempo de CPU e DOS

10

CHARACTER(50) SAIDA, COMENTARIO

INTEGER :: UNIT = 20

DOS = SYSTEM("Notepad DADOS.TXT")

OPEN(1, file = "DADOS.TXT")

READ(1,*) COMENTARIO

READ(1,*) SAIDA

CLOSE(1)

OPEN(UNIT, file = SAIDA)

WRITE(UNIT,11) COMENTARIO, SAIDA

11 FORMAT(1/, "COMENTARIO = ", A, &

 2/, "SAIDA = ", A)

CLOSE(UNIT)

! edição de comandos no arquivo EXECUTA.BAT

OPEN(UNIT, file = "EXECUTA.BAT")

WRITE(UNIT,*) "MKDIR C:\Windows\Temp\FORTRAN"

WRITE(UNIT,*) "COPY " // TRIM(SAIDA) // " C:\Windows\Temp\FORTRAN\" // TRIM(SAIDA)

WRITE(UNIT,*) "ERASE " // TRIM(SAIDA)

WRITE(UNIT,*) "CD C:\Windows\Temp\FORTRAN\"

WRITE(UNIT,*) "RENAME "// TRIM(SAIDA) // " NOVO.TXT"

CLOSE (UNIT)

! fim

DOS = SYSTEM ("EXECUTA.BAT")

DOS = SYSTEM("Notepad C:\Windows\Temp\FORTRAN\NOVO.TXT")

END

Capítulo 15. Inicialização, tempo de CPU e DOS

11

5) Comentários sobre o programa:

(a) O aplicativo CMD.EXE é um interpretador de comandos do Windows, que emula o antigo sistema

operacional DOS, precursor do Windows. Para ativá-lo, primeiro pesquisar no Windows por cmd.exe.

Em seguida, executá-lo.

(b) Este aplicativo pode ser útil, por exemplo, na execução automática de outros aplicativos.

(c) Usar o comando Help para ver a lista de comandos deste aplicativo. Os comandos podem ser digitados

em letras maiúsculas ou minúsculas.

(d) O comando do DOS chamado MKDIR é usado para criar uma nova pasta. Ele é usado na forma:

 MKDIR PASTA

onde PASTA é o nome da pasta a ser criada, incluindo o caminho completo desde a raiz do HD (hard

disk). Se o caminho não é especificado, a pasta é criada dentro da pasta na qual o comando é executado.

(e) O comando do DOS chamado COPY é usado para fazer cópia de um arquivo. Ele é usado na forma:

 COPY ARQ1 ARQ2

onde ARQ1 é o nome do arquivo a ser copiado em outro arquivo com o nome de ARQ2. Junto a ARQ1

e ARQ2 deve-se definir a pasta de cada arquivo, incluindo o caminho completo desde a raiz do HD (hard

disk). Se as pastas e caminhos não são especificados, ARQ1 deve existir na pasta na qual o comando é

executado, e ARQ2 é gerado na mesma pasta.

(f) O comando do DOS chamado ERASE é usado para eliminar ou deletar um arquivo. Ele é usado na

forma: ERASE ARQ

onde ARQ é o nome do arquivo a ser eliminado. Junto a ARQ deve-se definir a sua pasta, incluindo o

caminho completo desde a raiz do HD (hard disk). Se a pasta e caminho não são especificados, ARQ

deve existir na pasta na qual o comando é executado.

(g) O comando do DOS chamado CD é usado para mudar a execução do programa para outra pasta. Ele é

usado na forma: CD PASTA

onde PASTA é o nome da pasta para a qual passa a ser executado o programa, incluindo o caminho

completo desde a raiz do HD (hard disk). Subentende-se que a pasta existe dentro da pasta na qual o

comando é executado.

(h) O comando do DOS chamado RENAME é usado para mudar o nome de um arquivo. Ele é usado na

forma: RENAME ARQ1 ARQ2

onde ARQ1 é o nome do arquivo existente, e ARQ2 é o novo nome. Aqui valem os mesmos comentários

para ARQ1 e ARQ2 feitos no item (e), acima.

(i) Ao se executar um arquivo com extensão “.BAT”, são executados todos os comandos DOS dentro deste

arquivo, linha por linha, de cima para baixo.

(j) Exemplos de aplicação dos comandos acima são apresentados no programa15c.f90.

(k) Existem diversos outros comandos do DOS que podem ser empregados em função do objetivo desejado;

por exemplo: DIR, CLS, DATE, TIME, RMDIR, TYPE, HELP, EXIT, FC, GOTO, FIND, FOR, IF,

PAUSE, MOVE, PRINT, SHUTDOWN, START, TITLE, VER e VOL.

Capítulo 15. Inicialização, tempo de CPU e DOS

12

6) Executar Build, Compile para compilar o programa.

7) Gerar o programa-executável fazendo Build, Build.

8) Antes de executar o programa, é necessário criar o arquivo de dados e inserir nele os respectivos dados. No

caso do programa15c.f90, é necessário criar o arquivo “DADOS.TXT” e inserir os dois dados que

correspondem às variáveis COMENTARIO e SAIDA. Usar, por exemplo, os dados mostrados na

Figura 15.10.

Figura 15.10 Exemplo de arquivo de dados para o programa15c.f90.

9) Algoritmo do programa:

(a) ocorre a abertura do arquivo “DADOS.TXT”

(b) são lidos os dois dados

(c) cria-se o arquivo de saída; escreve-se nele os dois dados lidos; e fecha-se este arquivo

(d) cria-se o arquivo “EXECUTA.BAT”; dentro dele, são escritas diversas instruções do DOS; fecha-se este

arquivo

(e) acessa-se o DOS para executar as instruções contidas no arquivo “EXECUTA.BAT”

(f) acessa-se o DOS para abrir, com o aplicativo Notepad, o arquivo “NOVO.TXT” localizado em

“C:\Windows\Temp\FORTRAN\”

10) Executar o programa através de Build, Execute. Analisar os resultados. A Figura 15.11 mostra o conteúdo

do arquivo “EXECUTA.BAT”, gerado pelo programa15c.f90; verificar sua existência na pasta do

projeto. A Figura 15.12 mostra os comandos que foram executados no DOS, como resultado da execução

do arquivo “EXECUTA.BAT”. A Figura 15.13 mostra o conteúdo do arquivo de resultado do

programa15c.f90; deve-se notar que seu nome é “NOVO.TXT” e que ele se localiza na pasta

“C:\Windows\Temp\FORTRAN\”; verificar sua existência; além disso, o arquivo de saída foi eliminado da

pasta do projeto.

Capítulo 15. Inicialização, tempo de CPU e DOS

13

Figura 15.11 Conteúdo do arquivo “EXECUTA.BAT” gerado pelo programa15c.f90.

Figura 15.12 Janela DOS resultante da execução do programa15c.f90.

Figura 15.13 Resultado da execução do programa15c.f90.

Capítulo 15. Inicialização, tempo de CPU e DOS

14

15.4 EXERCÍCIOS

Exercício 15.1

Adaptar o programa15a.f90, Tabela 15.1, para:

(a) inicializar uma variável do tipo caracter;

(b) inicializar uma constante do tipo caracter;

(c) inicializar duas variáveis do tipo inteiro na mesma linha do programa;

(d) inicializar duas constantes do tipo inteiro na mesma linha do programa; e

(e) escrever em arquivo os conteúdos das variáveis e constantes dos itens (a) a (d).

Exercício 15.2

Adaptar o programa15b.f90, Tabela 15.2, para usar a função DTIME junto com TIMEF e comparar o tempo de

CPU medido por cada função.

Exercício 15.3

Adaptar o programa15b.f90, Tabela 15.2, para que a variável SOMA seja do tipo inteiro. Notar a redução do

tempo de CPU que ocorre.

Exercício 15.4

Adaptar o programa15b.f90, Tabela 15.2, para obter e escrever o tempo de CPU gasto entre a primeira e a última

chamada da função TIMEF.

Exercício 15.5

Adaptar o programa15b.f90, Tabela 15.2, para incluir, antes da última chamada da função TIMEF, as instruções:

WRITE(*,*) “Espere alguns segundos e pressione a tecla ENTER”

READ(*,*)

Analisar o efeito da instrução READ vazia sobre o tempo de CPU.

Exercício 15.6

Adaptar o programa15c.f90, Tabela 15.3, visando generalizar o nome da pasta

“C:\Windows\Temp\FORTRAN\”

para qualquer nome que o usuário defina através do arquivo de dados.

