

Capítulo 16. Memória e sub-rotinas 2

1

Capítulo 16. Memória e sub-rotinas 2

30 Out 2024

OBJETIVOS DO CAPÍTULO

 Estimar e verificar a memória computacional necessária para executar um programa

 Utilizar sub-rotina recursiva

 Controlar o fluxo de informações para dentro e para fora de sub-rotinas

 Comandos novos do FORTRAN: DEALLOCATE, RECURSIVE, INTENT(IN,OUT,INOUT)

16.1 programa16a.f90

1) Objetivos do programa:

(a) mostrar como estimar a memória computacional necessária para executar um programa; e

(b) usar um novo comando do FORTRAN: DEALLOCATE.

2) No Fortran, criar um projeto com o nome programa16a

3) No Fortran, criar e inserir no projeto o programa-fonte programa16a.f90

4) No Fortran, copiar exatamente o texto em vermelho mostrado na Tabela 16.1.

5) Comentários sobre o programa:

(a) O comando DEALLOCATE é usado para eliminar da memória do computador variáveis para as quais

foi reservado memória por meio do comando ALLOCATE. Para usá-lo basta a palavra DEALLOCATE

e, dentro de parênteses, as diversas variáveis separadas por vírgula. Não é necessário indicar novamente

o tamanho das variáveis, pois isso já é conhecido do comando ALLOCATE. O comando

DEALLOCATE só pode ser usado com variáveis cuja memória já foi alocada com o comando

ALLOCATE.

(b) Na linha DEALLOCATE (A) a variável A, do tipo inteiro, com N elementos, está sendo eliminada da

memória do computador.

(c) A estimativa da memória necessária para as variáveis, em MegaBytes (MB), para executar um programa

pode ser obtida através da seguinte equação:

𝑀𝑒𝑚ó𝑟𝑖𝑎 (𝑀𝐵) =
4 ∗ (𝑁𝑖 + 𝑁𝑟𝑠) + 8 ∗ 𝑁𝑟𝑑 + 1 ∗ 𝐿 ∗ 𝑁𝑐

1024 ∗ 1024

onde Ni, Nrs e Nrd representam o número total de variáveis simples, de elementos de conjuntos e

matrizes do tipo inteiro, real simples e real dupla, respectivamente; Nc representa o número total de

variáveis simples e de elementos do tipo caracter que têm comprimento ou número de caracteres igual a

L; também devem ser incluídos os produtos L*Nc de outras variáveis do tipo caracter com outros

Capítulo 16. Memória e sub-rotinas 2

2

comprimentos. Os valores 4, 8 e 1 representam o número de bytes que cada um dos tipos de variáveis

ocupa de memória para um único elemento. O valor 1024*1024 é um fator usado para converter o

número de bytes em MegaBytes (MB). A estimativa da equação deve ser somada à memória necessária

para executar o programa mesmo que ele não tenha qualquer variável.

Tabela 16.1 Programa16a.f90

USE PORTLIB

IMPLICIT NONE

INTEGER VER, N

INTEGER, ALLOCATABLE, DIMENSION(:) :: A

REAL*8, ALLOCATABLE, DIMENSION(:) :: B

CHARACTER(10), ALLOCATABLE, DIMENSION(:) :: C

CHARACTER(50) SAIDA, TEXTO

REAL*8 M1, M2, M3, M4

INTEGER :: UNIT = 20

WRITE(*,*) "Ver memoria em uso no primeiro comando; depois clique Enter"

READ(*,*)

VER = SYSTEM("Notepad DADOS.TXT")

WRITE(*,*) "Ver memoria em uso apos SYSTEM-DADOS.TXT"

READ(*,*)

OPEN(1, file = "DADOS.TXT")

READ(1,*) N

READ(1,*) SAIDA

CLOSE(1)

WRITE(*,*) "Ver memoria antes do ALLOCATE para A, B e C"

READ(*,*)

ALLOCATE (A(N), B(N), C(N))

WRITE(*,*) "Ver memoria apos ALLOCATE para A, B e C"

READ(*,*)

A = 1

B = 1.0D0

C = "caracteres"

Capítulo 16. Memória e sub-rotinas 2

3

WRITE(*,*) "Ver memoria apos atribuicao de valores para A, B e C"

READ(*,*)

M1 = N*4.0 / (1024*1024)

M2 = N*8.0 / (1024*1024)

M3 = N*1.0*10 / (1024*1024)

M4 = M1 + M2 + M3

OPEN(UNIT, file = SAIDA)

WRITE(UNIT,*) "Memoria estimada para A, inteiros (MegaBytes) = ", M1

WRITE(UNIT,*) "Memoria estimada para B, reais (MegaBytes) = ", M2

WRITE(UNIT,*) "Memoria estimada para C, caracteres (MegaBytes) = ", M3

WRITE(UNIT,*) "Memoria estimada para A, B e C (MegaBytes) = ", M4

CLOSE(UNIT)

TEXTO = "Notepad " // SAIDA

VER = SYSTEM(TEXTO)

DEALLOCATE (A)

WRITE(*,*) "Ver memoria com B e C"

READ(*,*)

DEALLOCATE (B)

WRITE(*,*) "Ver memoria com C"

READ(*,*)

DEALLOCATE (C)

WRITE(*,*) "Ver memoria sem A, B e C"

READ(*,*)

END

6) Executar Build, Compile para compilar o programa.

7) Gerar o programa-executável fazendo Build, Build.

8) Antes de executar o programa, é necessário criar o arquivo de dados e inserir nele os respectivos dados. No

caso do programa16a.f90, é necessário criar o arquivo “DADOS.TXT” e inserir os dois dados que

correspondem às variáveis N e SAIDA. Usar, por exemplo, os dados mostrados na Figura 16.1.

Capítulo 16. Memória e sub-rotinas 2

4

9) Para ver a memória efetivamente usada pelo programa, deve-se abrir o Gerenciador de Tarefas do Sistema

Operacional Windows, executando:

(a) clicar o botão do lado direito do mouse sobre a barra de tarefas do Windows

(b) clicar o botão do lado esquerdo do mouse sobre a opção “Gerenciador de Tarefas”

(c) clicar na opção “Processos” do menu principal do “Gerenciador de Tarefas”

Figura 16.1 Exemplo de arquivo de dados para o programa16a.f90.

10) Executar o programa através de Build, Execute.

11) Conforme indica a janela DOS, ver no “Gerenciador de Tarefas” qual a memória inicial que o programa

está usando. Para isso, deve-se selecionar a janela do “Gerenciador de Tarefas” e encontrar o processo

chamado programa16a.exe na coluna “Usuários”. Na linha deste processo, na coluna designada por

“Memória”, é indicada a memória em MegaBytes (MB) que o programa está usando no momento. Neste

exemplo, deve ser de 0.4 MB, como mostrado na Figura 16.2. Isso significa que, mesmo sem abrir memória

para variáveis do tipo conjunto, vetores ou matrizes com o comando ALLOCATE, a execução de um

programa requer uma determinada memória. Ela é necessária para guardar as instruções do programa.

12) Continuar a executar o programa16a.exe, mantendo a janela do “Gerenciador de Tarefas” aberta para

ver a cada etapa do programa quanto de memória ele está usando. Deve-se perceber que:

(a) ao ser aberto o arquivo de dados com o aplicativo Notepad, a memória aumenta para 0.5 MB;

(b) após a leitura dos dados e fechamento do aplicativo Notepad, a memória ainda está em 0.5 MB;

(c) antes de usar o comando ALLOCATE com as variáveis A, B e C, a memória continua em 0.5 MB;

(d) após ser usado o comando ALLOCATE com as variáveis A, B e C, a permanece em 0.5 MB; isso

significa que de fato não está ainda sendo usada a memória para estas variáveis, a não ser uma indicação

das posições de memória que serão ocupadas;

(e) após a atribuição de valores às variáveis A, B e C a memória sobe para 21.5 MB; agora, de fato, o espaço

de memória aberto com o comando ALLOCATE para as variáveis A, B e C está sendo usado;

(f) após a eliminação da variável A, ou seja, mantendo as variáveis B e C, a memória cai para 17.6 MB;

(g) após a eliminação das variáveis A e B, ou seja, mantendo apenas a variável C, a memória cai para 10.0

MB;

(h) após a eliminação das variáveis A, B e C, a memória cai para 0.5 MB;

Capítulo 16. Memória e sub-rotinas 2

5

(i) finalmente, quando surgir na janela DOS (Figura 16.3) a frase “Press any key to continue”, significa que

o programa foi encerrado e ele não ocupa mais memória alguma, como se pode ver no Gerenciador de

Tarefas.

Figura 16.2 Memória inicial usada pelo programa16a.exe.

Figura 16.3 Janela DOS após a execução do programa16a.exe.

Capítulo 16. Memória e sub-rotinas 2

6

13) A Figura 16.4 mostra a memória estimada com a equação para as variáveis A, B e C do programa16a.exe.

Na Tabela 16.2 tem-se a comparação entre a memória estimada (Figura 16.4) e a memória efetivamente

usada, que foi obtida do Gerenciador de Tarefas, nos subitens (d) a (g) do item 12, acima.

14) Executar novamente o programa com outros valores para N e analisar os novos resultados.

Figura 16.4 Memória estimada para executar o programa16a.exe.

Tabela 16.2 Comparação entre memória estimada e efetiva para as variáveis A, B e C do programa16a.f90.

Variável Memória usada (MB) Memória estimada (MB) Erro %

A 3.9 3.81 2.3

B 7.6 7.63 0.4

C 9.5 9.54 0.4

A, B e C 21.0 20.98 0.1

16.2 programa16b.f90

1) Objetivos do programa:

(a) utilizar sub-rotina recursiva; e

(b) usar um novo comando do FORTRAN: RECURSIVE

2) No Fortran, criar um projeto com o nome programa16b

3) No Fortran, criar e inserir no projeto o programa-fonte programa16b.f90

4) No Fortran, copiar exatamente o texto em vermelho mostrado na Tabela 16.3.

5) Comentários sobre o programa:

(a) Em algumas aplicações pode ser necessário que uma sub-rotina tenha que chamar ela própria. Neste

caso, na definição da sub-rotina é necessário usar o comando “RECURSIVE” antes do nome da sub-

rotina. Um exemplo é dado no programa16b.f90 na linha RECURSIVE SUBROUTINE TESTE

(b) A chamada da sub-rotina é feita da forma já descrita no capítulo 11, isto é, usando o comando CALL

seguido do nome da sub-rotina. Um exemplo é dado no programa16b.f90 na linha CALL TESTE

6) Executar Build, Compile para compilar o programa.

7) Gerar o programa-executável fazendo Build, Build.

Capítulo 16. Memória e sub-rotinas 2

7

Tabela 16.3 Programa16b.f90

PROGRAM RECURSIVO

INTEGER SOMA, K, I, MENOS

SOMA = 0

MENOS = 0

K = 0

DO I = 1, 2

 WRITE(*,*) "MAIN/ciclo: I,K,SOMA,MENOS=", I, K, SOMA, MENOS

 K = 4

 CALL TESTE

END DO

WRITE(*,*) "MAIN/fora do ciclo: K, SOMA, MENOS = ", K, SOMA, MENOS

CONTAINS

! ---

RECURSIVE SUBROUTINE TESTE

 IF (K == 1) THEN

 WRITE(*,*) "ROTINA,IF: K=1, SOMA, MENOS = ", K, SOMA, MENOS

 ELSE

 SOMA = SOMA + 1

 K = K - 1

 WRITE(*,*) "ROTINA,ELSE: K, SOMA, MENOS = ", K, SOMA, MENOS

 CALL TESTE

 MENOS = MENOS - 1

 WRITE(*,*) "ROTINA,APOS CALL: K, SOMA, MENOS = ", K, SOMA, MENOS

 END IF

END SUBROUTINE TESTE

! ---

END PROGRAM RECURSIVO

Capítulo 16. Memória e sub-rotinas 2

8

8) Algoritmo do programa:

(a) definições iniciais de variáveis e suas atribuições

(b) no programa principal, inicia-se um ciclo para a variável I

(c) dentro deste ciclo, chama-se a sub-rotina TESTE, do tipo recursiva

(d) dentro da sub-rotina TESTE, são executados uma condição e alguns comandos, e chama-se a própria

sub-rotina TESTE

(e) a sub-rotina TESTE continua a chamar ela própria até que seja satisfeita a condição

(f) em seguida, começa-se a retornar para fora da sub-rotina TESTE tantas vezes quanto ela foi chamada

por ela própria, desde a última chamada até a primeira

(g) finalmente, retorna-se ao programa principal e encerra-se a sua execução

9) Executar o programa através de Build, Execute. O resultado é mostrado na Figura 16.5. Analisar os

resultados.

10) Alterar os valores do ciclo I e de K no programa principal. Executar novamente o programa e analisar

os novos resultados.

Figura 16.5 Resultado do programa16b.f90.

16.3 programa16c.f90

1) Objetivos do programa:

(a) controlar o fluxo de informações para dentro e para fora de sub-rotinas; e

(b) usar um novo comando do FORTRAN: INTENT com parâmetros IN, OUT e INOUT.

2) No Fortran, criar um projeto com o nome programa16c

3) No Fortran, criar e inserir no projeto o programa-fonte programa16c.f90

Capítulo 16. Memória e sub-rotinas 2

9

4) No Fortran, copiar exatamente o texto em vermelho mostrado na Tabela 16.4.

5) Comentários sobre o programa:

(a) O uso do comando IMPLICIT NONE no programa-principal obriga que sejam declaradas explicitamente

todas as variáveis usadas no programa-principal e em todas as sub-rotinas do mesmo programa. Caso

contrário, ocorrerá erro de compilação.

(b) Todas as variáveis definidas no programa-principal são válidas dentro das sub-rotinas do programa. Elas

são chamadas de variáveis globais. Por exemplo, as variáveis A, B, C, D, E e F do programa16c.f90,

definidas na linha INTEGER A, B, C, D, E, F, são variáveis globais do programa.

(c) As variáveis definidas dentro de uma sub-rotina são válidas somente dentro da própria sub-rotina. Elas

são chamadas de variáveis locais. Seus valores ou conteúdos podem ser passados para outras sub-rotinas

ou para o programa-principal através dos argumentos da sub-rotina. Por exemplo, as variáveis R e S do

programa16c.f90, definidas na linha INTEGER R, S, são variáveis locais da sub-rotina SOMA.

(d) Todas as atribuições feitas a variáveis globais são reconhecidas dentro das sub-rotinas do programa.

(e) Todas as atribuições feitas a variáveis locais não são reconhecidas fora das respectivas sub-rotinas.

Tabela 16.4 Programa16c.f90

PROGRAM CAPITULO_16C

 IMPLICIT NONE

 INTEGER A, B, C, D, E, F

 WRITE(*,*) "Entre com o valor de A (inteiro)"

 READ(*,*) A

 WRITE(*,*) "Entre com o valor de B (inteiro)"

 READ(*,*) B

 C = 100

 D = A

 E = B

 F = A + B

 WRITE(*,*) "no programa principal, antes da sub-rotina: C = 100 = ", C

 WRITE(*,*) "no programa principal, antes da sub-rotina: F = A+B = ", F

 CALL SOMA (A, B, C, D, E)

 WRITE(*,*) "no programa principal, depois da sub-rotina: F = 2*(A+B) = ", F

 WRITE(*,*) "no programa principal, depois da sub-rotina: C = A+B = ", C

Capítulo 16. Memória e sub-rotinas 2

10

! ---

CONTAINS

! ---

SUBROUTINE SOMA (X, Y, Z, T, R)

 INTEGER, INTENT(IN) :: X, Y

 INTEGER, INTENT(OUT) :: Z

 INTEGER, INTENT(INOUT) :: T

 INTEGER R, S

 S = 50

 WRITE(*,*) "dentro da sub-rotina: S = 50 = ", S

 WRITE(*,*) "dentro da sub-rotina: Z = C = ", Z

 Z = X + Y

 WRITE(*,*) "dentro da sub-rotina: Z = A+B = ", Z

 WRITE(*,*) "dentro da sub-rotina: T = A = ", T

 T = T + 10

 R = R + 10

 WRITE(*,*) "dentro da sub-rotina: T = A+10 = ", T

 WRITE(*,*) "dentro da sub-rotina: R = B+10 = ", R

 WRITE(*,*) "dentro da sub-rotina: F = A+B = ", F

 WRITE(*,*) "dentro da sub-rotina: A = ", A

 F = 2 * F

 WRITE(*,*) "dentro da sub-rotina: F = 2*(A+B) = ", F

END SUBROUTINE SOMA

! ---

END PROGRAM CAPITULO_16C

(f) O comando INTENT é usado para controlar o fluxo de informações para dentro e para fora das sub-

rotinas. Ele é usado quando se define cada variável empregada como argumento das sub-rotinas.

Capítulo 16. Memória e sub-rotinas 2

11

(g) O comando INTENT é utilizado com três parâmetros (IN, OUT e INOUT) que definem o sentido do

fluxo da informação.

(h) O comando INTENT(IN) permite que a variável apenas receba informação de fora da sub-rotina. Um

exemplo é dado no programa16c.f90 na linha INTEGER, INTENT(IN) :: X, Y. As variáveis X e Y só

podem receber informação de fora da sub-rotina SOMA. A tentativa de atribuir valor a elas dentro da

sub-rotina gerará erro de compilação. Mas elas podem ser empregadas em expressões dentro da sub-

rotina, como na linha Z = X + Y

(i) O comando INTENT(OUT) deveria apenas permitir que a variável enviasse informação para fora da

sub-rotina. Porém, como será visto, de fato, a variável também recebe informação. Um exemplo é dado

no programa16c.f90 na linha INTEGER, INTENT(OUT) :: Z. A variável Z só deveria enviar informação

para fora da sub-rotina SOMA, mas como é mostrado na Figura 16.6, ela também recebe o valor da

variável C do programa-principal.

(j) O comando INTENT(INOUT) permite que a variável receba informação de fora da sub-rotina e também

que ela envie informação para fora da sub-rotina. Um exemplo é dado no programa16c.f90 na linha

INTEGER, INTENT(INOUT) :: T. A variável T pode receber e enviar informação na sub-rotina SOMA.

(k) Quando não se usa o comando INTENT, por default, assume-se implicitamente que ela foi definida

como INTENT(INOUT). Um exemplo é dado no programa16c.f90 na linha INTEGER R, S, mas apenas

para a variável R, uma vez que a variável S não é argumento da sub-rotina SOMA.

(l) Recomenda-se o uso do comando INTENT. Ele evita erros de lógica, principalmente em programas

grandes com muitas variáveis.

(m) Recomenda-se usar como variáveis globais apenas aquelas que são efetivamente usadas no programa-

principal. Variáveis utilizadas em sub-rotinas devem ser definidas apenas nas próprias sub-rotinas.

6) Executar Build, Compile para compilar o programa.

7) Gerar o programa-executável fazendo Build, Build.

8) Executar o programa através de Build, Execute, usando por exemplo A = 1 e B = 2. O resultado é mostrado

na Figura 16.6. Analisar os resultados considerando os comentários do item 5.

9) Executar novamente o programa com outros valores para A e B, e analisar os novos resultados.

16.4 EXERCÍCIOS

Exercício 16.1

Estimar e verificar a memória computacional necessária para usar uma matriz bidimensional cujos elementos são

do tipo inteiro, com X1 por Y1 elementos.

Capítulo 16. Memória e sub-rotinas 2

12

Figura 16.6 Resultado do programa16c.f90.

Exercício 16.2

Adaptar o programa16a.f90 para estimar a memória computacional necessária para uma matriz bidimensional

cujos elementos são do tipo real de precisão dupla, com X2 por Y2 elementos. Verificar a memória efetivamente

usada.

Usar X2 = 10 mil e Y2 = 1 mil

Resultado esperado: memória  76.3 MB

Exercício 16.3

Estimar e verificar a memória computacional necessária para usar uma matriz bidimensional cujos elementos são

do tipo caracter, cada um com 100 caracteres, com X3 por Y3 elementos.

Exercício 16.4

Juntar as matrizes dos exercícios 16.1 a 16.3 em um único programa para estimar e verificar a memória

computacional total que é necessária para as três matrizes.

Exercício 16.5

Adaptar a sub-rotina FATORIAL, da Tabela 11.4, do capítulo 11, para ser uma sub-rotina do tipo recursiva. E

implementar um programa-principal para ela.

Capítulo 16. Memória e sub-rotinas 2

13

Exercício 16.6

Adaptar o programa11d, Tabela 11.7, do capítulo 11, para:

(a) usar onde pertinente o comando INTENT com IN, OUT e INOUT;

(b) usar o comando IMPLICIT NONE no programa-principal;

(c) ter uma sub-rotina com a finalidade de ler os dados de um arquivo;

(d) ter uma sub-rotina com a finalidade de escrever os resultados em um arquivo; e

(e) ter uma sub-rotina com a finalidade de abrir os arquivos de dados e de saída com o aplicativo Notepad.

Exercício 16.7

Adaptar o programa16c.f90, Tabela 16.4, deste capítulo, para ter como argumentos da sub-rotina SOMA variáveis

do tipo real de precisão dupla, caracteres e um conjunto unidimensional (vetor) com elementos do tipo inteiro.

