

Capítulo 17. Módulos

1

Capítulo 17. MÓDULOS

2 Nov 2024

OBJETIVOS DO CAPÍTULO

 Utilizar módulos

 Comandos novos do FORTRAN: MODULE, END MODULE, PRIVATE, PUBLIC

17.1 projeto programa17a

1) Objetivos do programa:

(a) exemplificar o uso e as características básicas de módulos em FORTRAN; e

(b) usar dois novos comandos do FORTRAN: MODULE, END MODULE.

2) No Fortran, criar um projeto com o nome programa17a

3) No Fortran, criar e inserir no projeto o programa-fonte dados.f90

4) No Fortran, copiar exatamente o texto em vermelho mostrado na Tabela 17.1.

Tabela 17.1 Programa-fonte dados.f90 do projeto programa17a

MODULE DADOS

 IMPLICIT NONE

 REAL*8 I, J

CONTAINS

 SUBROUTINE LE_DADOS

 WRITE(*,*) "Entre com o valor de I"

 READ(*,*) I

 WRITE(*,*) "Entre com o valor de J"

 READ(*,*) J

 END SUBROUTINE LE_DADOS

END MODULE DADOS

5) No Fortran, criar e inserir no projeto o programa-fonte saida.f90

6) No Fortran, copiar exatamente o texto em vermelho mostrado na Tabela 17.2.

7) No Fortran, criar e inserir no projeto o programa-fonte principal.f90

Capítulo 17. Módulos

2

8) No Fortran, copiar exatamente o texto em vermelho mostrado na Tabela 17.3.

Tabela 17.2 Programa-fonte saida.f90 do projeto programa17a

MODULE SAIDA

 USE DADOS

 IMPLICIT NONE

 REAL*8 K

CONTAINS

 SUBROUTINE CALCULOS

 K = I + J

 END SUBROUTINE CALCULOS

 SUBROUTINE RESULTADOS

 USE PORTLIB

 INTEGER VER

 INTEGER C

 CHARACTER(20) B

 B = "teste de FORTRAN"

 C = 7

 OPEN(1, file = "SAIDA.TXT")

 WRITE(1,3) I, J, K

 3 FORMAT(2/, "sub-rotina RESULTADOS", &

 2/, "I = ", 1PE10.3, &

 2/, "J = ", 1PE10.3, &

 2/, "K = ", 1PE10.3)

 WRITE(1,4) B, C

 4 FORMAT(1/, 5X, A, "= B", &

 2/, 5X, I5, "= C")

 CLOSE(1)

Capítulo 17. Módulos

3

 VER = SYSTEM("Notepad SAIDA.TXT")

 END SUBROUTINE RESULTADOS

END MODULE SAIDA

Tabela 17.3 Programa-fonte principal.f90 do projeto programa17a

PROGRAM PROGRAMA17A

 USE SAIDA

 IMPLICIT NONE

 CALL LE_DADOS

 CALL CALCULOS

 CALL RESULTADOS

 WRITE(*,*) "MAIN: I, J, K = ", I, J, K

END PROGRAM PROGRAMA17A

9) Comentários sobre o programa:

(a) Um módulo é praticamente igual a um programa-principal. A maior diferença é que em um módulo não

se pode ter comandos executáveis antes do comando CONTAINS, ao contrário do que ocorre no

programa-principal.

(b) A definição de módulo em FORTRAN deve seguir a sintaxe mostrada na Tabela 17.4. O nome do

módulo segue as regras válidas para variáveis em FORTRAN, não podendo ser igual a nenhum outro

nome de módulo, variável ou sub-rotina do programa. No caso de não haver sub-rotinas no módulo, o

comando CONTAINS não deve ser usado; um exemplo disso é um módulo usado para definir as

variáveis globais do programa.

(c) O uso de módulos facilita muito a estruturação de programas próprios de grande porte.

(d) Para não haver problemas com definição de variáveis, deve-se usar o comando IMPLICIT NONE dentro

de cada módulo.

(e) Um módulo pode ser usado dentro de uma sub-rotina, de outro módulo ou dentro de um programa-

principal através do comando USE seguido do nome do módulo.

(f) Dentro de um módulo, as variáveis definidas antes do comando CONTAINS são reconhecidas por todas

as sub-rotinas do módulo, ou seja, elas são variáveis globais do módulo onde estão definidas.

(g) Um programa-fonte pode conter um ou vários módulos em sequência, porém eles não podem depender

um do outro.

Capítulo 17. Módulos

4

(h) A primeira compilação dos programas-fonte que contêm módulos deve ser feita na seguinte ordem: (1)

os módulos que não dependem de outros; (2) os módulos que dependem de outros que já foram

compilados; e (3) o programa-principal.

Tabela 17.4 Sintaxe de módulos em FORTRAN.

MODULE NOME

 comandos USE e EXTERNAL

 definições de variáveis

CONTAINS

 sub-rotinas

END MODULE NOME

10) Executar Build, Compile para compilar o programa-fonte dados.f90. Repetir para saida.f90 e principal.f90,

nesta ordem.

11) Gerar o programa-executável fazendo Build, Build.

12) Executar o programa através de Build, Execute. Usar, por exemplo, os valores 1 e 2 para as variáveis I e

J, respectivamente. Neste caso, os resultados da execução devem ser os mostrados nas Figuras 17.1 e 17.2.

Figura 17.1 Arquivo com resultados do programa17a.exe.

Figura 17.2 Janela DOS após a execução do programa17a.exe.

Capítulo 17. Módulos

5

13) Analisar os resultados mostrados nas Figuras 17.1 e 17.2 considerando os três programas-fonte e os

comentários do item 9, acima, bem como o seguinte:

(a) Notar que as variáveis I e J, que foram definidas e seus valores lidos dentro do módulo DADOS, também

são reconhecidas dentro do módulo SAIDA. Isso ocorre porque o módulo DADOS foi incluído no módulo

SAIDA.

(b) Além disso, notar que as variáveis I e J e seus valores também são reconhecidos dentro do programa-

principal. Isso ocorre porque o módulo SAIDA foi incluído no programa-principal.

17.2 projeto programa17b

1) Objetivo do programa: entender o uso de módulos em programa composto por quatro módulos.

2) No Fortran, criar um projeto com o nome programa17b

3) No Fortran, criar e inserir no projeto o programa-fonte variaveis.f90 e copiar da Tabela 17.5.

4) No Fortran, criar e inserir no projeto o programa-fonte dados.f90 e copiar da Tabela 17.6.

5) No Fortran, criar e inserir no projeto o programa-fonte calculos.f90 e copiar da Tabela 17.7.

6) No Fortran, criar e inserir no projeto o programa-fonte resultados.f90 e copiar da Tabela 17.8.

7) No Fortran, criar e inserir no projeto o programa-fonte modulo.f90 e copiar da Tabela 17.9.

8) Comentários sobre o programa:

(a) Ele é composto por quatro módulos, sendo cada um editado em programa-fonte diferente.

(b) O módulo VARIAVEIS é usado para definir todas as variáveis usadas no programa.

(c) O programa-principal incorpora apenas o módulo RESULTADOS. Mas este, tem incorporado dentro de

si o módulo CALCULOS, que incorpora o módulo DADOS, que finalmente incorpora o módulo

VARIAVEIS. Assim, todos os módulos estão também implicitamente inseridos dentro do programa-

principal.

9) Estudar os quatro módulos e o programa-principal considerando os comentários do item 8 desta seção e

o item 9 da seção anterior.

10) Criar o arquivo dados.txt de acordo com a Figura 17.3.

11) Executar Build, Compile para compilar o programa-fonte variaveis.f90. Repetir para dados.f90,

calculos.f90, resultados.f90 e modulo.f90, nesta ordem.

12) Gerar o programa-executável fazendo Build, Build.

13) Executar o programa através de Build, Execute.

14) Analisar os resultados mostrados na Figura 17.4.

15) Executar novamente o programa usando tipo_de_calculo = 2 e analisar os novos resultados.

16) Executar novamente o programa usando tipo_de_calculo = 3 e analisar os novos resultados.

17) Executar novamente o programa usando tipo_de_calculo = 0 e analisar os novos resultados.

Capítulo 17. Módulos

6

Tabela 17.5 Programa-fonte variaveis.f90 do projeto programa17b

module VARIAVEIS

! inclusão de módulos do Fortran90

USE PORTLIB ! para usar o comando SYSTEM

! ---

! definição das variáveis globais do programa

implicit none

integer :: n ! número de elementos dos vetores

integer :: i ! número do elemento dos vetores

integer :: tipo_de_calculo ! a realizar

integer :: dos ! acessa prompt dos

integer :: local_maximo(1) ! posição do valor máximo do vetor b

integer :: local_minimo(1) ! posição do valor mínimo do vetor b

real*8 :: soma ! soma dos valores do vetor b

real*8 :: maximo ! valor máximo do vetor b

real*8 :: minimo ! valor mínimo do vetor b

! vetores com dimensão aberta e alocáveis

real*8,dimension(:),allocatable :: a, b

end module VARIAVEIS

Tabela 17.6 Programa-fonte dados.f90 do projeto programa17b

module DADOS

use VARIAVEIS

implicit none

contains

subroutine le_dados

 ! *** leitura dos dados ***

 ! mostra o conteúdo do arquivo "dados.txt" com o programa NOTEPAD

Capítulo 17. Módulos

7

 dos = system('notepad dados.txt')

 open(10,file='dados.txt') ! abre o arquivo "dados.txt"

 read(10,*) tipo_de_calculo

 read(10,*) n

 ! aloca memória para os vetores a, b

 allocate (a(n), b(n))

 read(10,*) (a(i),i=1,n)

 close(10)

end subroutine le_dados

end module dados

Tabela 17.7 Programa-fonte calculos.f90 do projeto programa17b

module CALCULOS

use DADOS

implicit none

contains

subroutine opera_vetores

 ! *** realiza cálculos conforme tipo_de_calculo escolhido nos dados

 select case (tipo_de_calculo)

 case (1)

 b = a + 1

 case (2)

 b = a * 2

 case (3)

 b = a ** 2

 case default

 b = 1

Capítulo 17. Módulos

8

 end select

 ! ---

 ! *** emprega comandos usados com vetores e matrizes ***

 maximo = maxval(b) ! valor máximo do array

 local_maximo = maxloc(b) ! posição do valor máximo do vetor b

 minimo = minval(b) ! valor mínimo do array

 local_minimo = minloc(b) ! posição do valor mínimo do vetor b

 soma = sum(b)

 ! ---

end subroutine opera_vetores

end module CALCULOS

Tabela 17.8 Programa-fonte resultados.f90 do projeto programa17b

module RESULTADOS

use CALCULOS

implicit none

contains

subroutine escreve

 ! *** escreve o vetor b em arquivo ***

 open(20,file='saida.txt') ! abre o arquivo "saida.txt"

 do i = 1, n

 write(20,30) i, b(i)

 end do

 write(20,31) maximo, local_maximo, minimo, local_minimo, soma

Capítulo 17. Módulos

9

 close(20)

 30 format (i4, 5x, 1pe10.3)

 31 format (/,'Valor máximo = ',1pe12.3,/, &

 'Posição = ',i4,//, &

 'Valor mínimo = ',1pe12.3,/, &

 'Posição = ',i4,//, &

 'Soma = ',1pe12.3)

 ! ---

 ! *** mostra o conteúdo do arquivo "saida.txt" ***

 dos = system('notepad saida.txt')

 ! ---

end subroutine escreve

end module RESULTADOS

Tabela 17.9 Programa-fonte principal modulo.f90 do projeto programa17b

program PROGRAMA17B

use RESULTADOS

implicit none

! ---

 call le_dados

 call opera_vetores

 call escreve

! ---

end program PROGRAMA17B

Capítulo 17. Módulos

10

Figura 17.3 Arquivo de dados do programa17b.exe.

Figura 17.4 Arquivo de resultados do programa17b.exe.

17.3 projeto programa17c

1) Objetivos do programa:

(a) definir variáveis públicas e privadas em módulos;

(b) usar dois novos comandos do FORTRAN: PUBLIC e PRIVATE; e

(c) entender o uso de módulos com variáveis públicas e privadas através de um programa-exemplo.

2) No Fortran, criar um projeto com o nome programa17c

3) No Fortran, criar e inserir no projeto o programa-fonte base.f90 e copiar da Tabela 17.10.

4) No Fortran, criar e inserir no projeto o programa-fonte base2.f90 e copiar da Tabela 17.11.

5) No Fortran, criar e inserir no projeto o programa-fonte main.f90 e copiar da Tabela 17.12.

Capítulo 17. Módulos

11

Tabela 17.10 Programa-fonte base.f90 do projeto programa17c

module PRIMEIRO

 implicit none

 integer,parameter,private :: R = 11

 integer,private :: N

 integer,public :: K

 integer :: L

contains

 subroutine UM

 N = 12

 K = 13

 L = 14

 write (10,*) 'rotina UM, modulo PRIMEIRO, R =', R

 write (10,*) 'rotina UM, modulo PRIMEIRO, N =', N

 write (10,*) 'rotina UM, modulo PRIMEIRO, K =', K

 write (10,*) 'rotina UM, modulo PRIMEIRO, L =', L

 end subroutine UM

end module PRIMEIRO

6) Comentários sobre o programa:

(a) Dois novos comandos do FORTRAN, associados ao uso de módulos, são utilizados neste programa:

PUBLIC e PRIVATE.

(b) O comando PRIVATE é empregado para definir uma variável como privativa do módulo no qual ela é

definida. Ou seja, ela só é reconhecida pelas sub-rotinas definidas dentro do próprio módulo. Ela não é

reconhecida como variável dentro de outros módulos ou do programa-principal que utilizem o módulo

no qual ela está definida. Um exemplo é dado na linha integer,private :: N do módulo PRIMEIRO:

a variável N só é reconhecida como tal dentro do módulo PRIMEIRO; o mesmo ocorre com a variável

Capítulo 17. Módulos

12

R. As variáveis R e N do módulo SEGUNDO são diferentes das variáveis R e N do módulo PRIMEIRO,

embora tenham os mesmos nomes.

(c) O comando PUBLIC é empregado para definir uma variável como global. Isto é, ela é reconhecida pelas

sub-rotinas definidas dentro do próprio módulo, e também dentro de outros módulos ou do programa-

principal que utilizem o módulo no qual ela está definida. Um exemplo é dado na linha

integer,public :: K do módulo PRIMEIRO: a variável K é reconhecida como tal dentro dos módulos

PRIMEIRO e SEGUNDO, e do programa-principal.

Tabela 17.11 Programa-fonte base2.f90 do projeto programa17c

module SEGUNDO

 USE PRIMEIRO

 implicit none

 integer,parameter,private :: R = 22

 integer,private :: N

contains

 subroutine DOIS

 write (10,*) 'rotina DOIS, modulo SEGUNDO, R =', R

 write (10,*) 'rotina DOIS, modulo SEGUNDO, N =', N

 write (10,*) 'rotina DOIS, modulo SEGUNDO, K =', K

 write (10,*) 'rotina DOIS, modulo SEGUNDO, L =', L

 end subroutine DOIS

 subroutine TRES

 N = 23

 write (10,*) 'rotina TRES, modulo SEGUNDO, N =', N

 end subroutine TRES

end module SEGUNDO

Capítulo 17. Módulos

13

(d) Todas as variáveis definidas no módulo, antes do comando CONTAINS, são assumidas como PUBLIC,

a menos que sejam explicitamente definidas como PRIVATE. Um exemplo é dado na linha

integer :: L do módulo PRIMEIRO: a variável L é entendida como PUBLIC.

(e) Mas todas as variáveis definidas em sub-rotinas são assumidas como PRIVATE.

Tabela 17.12 Programa-fonte principal main.f90 do projeto programa17c

program PROGRAMA17C

 use SEGUNDO

 use portlib

 implicit none

 integer dos

 integer,parameter :: R = 33

 integer :: N

 open (10, file = 'saida.txt')

 call executa

 close (10)

 dos = system ('notepad saida.txt')

contains

 subroutine executa

 call UM

 call DOIS

 call TRES

 call QUATRO

 N = 34

 write (10,*) 'rotina EXECUTA, PRINCIPAL, N =', N

 end subroutine executa

 subroutine QUATRO

Capítulo 17. Módulos

14

 write (10,*) 'rotina QUATRO, PRINCIPAL, R =', R

 write (10,*) 'rotina QUATRO, PRINCIPAL, N =', N

 write (10,*) 'rotina QUATRO, PRINCIPAL, K =', K

 write (10,*) 'rotina QUATRO, PRINCIPAL, L =', L

 end subroutine QUATRO

end program PROGRAMA17C

7) Estudar os dois módulos e o programa-principal considerando os comentários do item 6 desta seção e da

seção 17.1.

8) Executar Build, Compile para compilar o programa-fonte base.f90. Repetir para base2.f90 e main.f90, nesta

ordem.

9) Gerar o programa-executável fazendo Build, Build.

10) Executar o programa através de Build, Execute. O resultado deve ser o mostrado na Figura 17.5.

11) Analisar os resultados.

Figura 17.5 Arquivo com resultados do programa17c.exe.

Capítulo 17. Módulos

15

17.4 EXERCÍCIOS

Exercício 17.1

(a) Transformar o programa11d.f90 em um módulo.

(b) Fazer o mesmo para o programa16c.f90.

(c) Criar um programa-principal para executar as rotinas destes dois módulos.

Exercício 17.2

Adaptar o programa17a para que os dados de I, J, B e C são fornecidos através de arquivo de dados.

Exercício 17.3

Adaptar o programa17b para incluir as opções 4 e 5 no tipo de cálculo, onde:

4: b = ea

5: b = ln(|a + 1|)

Exercício 17.4

Adaptar o programa17c para que todos os comandos WRITE sejam usados apenas no programa-principal, mas

escrevendo todas as variáveis da versão original.

