
 

Capítulo 20. Exemplos: sistemas de equações 

 

1 

 

Capítulo 20. Exemplos: SISTEMAS de EQUAÇÕES 

11 Nov 2024 

OBJETIVOS DO CAPÍTULO 

 Aplicar, em um único programa, diversos recursos e comandos do FORTRAN vistos nos capítulos anteriores. 

 Resolver sistemas de equações lineares com métodos diretos e iterativo. 

 

20.1 projeto programa20 

 

1) Objetivo do programa: resolver um problema de condução de calor unidimensional permanente através de 

simulação numérica com o método de diferenças finitas. A solução do sistema de equações lineares do 

problema é obtida com métodos diretos e iterativo. 

2) No Fortran, criar um projeto com o nome projeto20 

3) No Fortran, criar e inserir no projeto o programa-fonte variaveis.f90 e copiar da Tabela 20.1. 

4) No Fortran, criar e inserir no projeto o programa-fonte Solvers_1D.f90 e copiar da Tabela 20.2. 

5) No Fortran, criar e inserir no projeto o programa-fonte dados.f90 e copiar da Tabela 20.3. 

6) No Fortran, criar e inserir no projeto o programa-fonte coeficientes.f90 e copiar da Tabela 20.4. 

7) No Fortran, criar e inserir no projeto o programa-fonte resultados.f90 e copiar da Tabela 20.5. 

8) No Fortran, criar e inserir no projeto o programa-fonte programa20.f90 e copiar da Tabela 20.6. 

9) Comentários sobre o programa: 

(a) O projeto programa20 é composto pelo programa-principal e cinco módulos, editados em seis 

programas-fonte diferentes. 

(b) No módulo VARIAVEIS, contido no programa-fonte variaveis.f90, são definidas as variáveis globais 

do programa. Este módulo não contém nenhuma sub-rotina. 

(c) O módulo SOLVERS_1D, contido no programa-fonte solvers_1D.f90, é dedicado à solução de sistemas 

de equações lineares do tipo 

 

BAT                                  (20.1) 

 

originados de problemas unidimensionais. A é a matriz de coeficientes, T é o vetor incógnita e B é o 

vetor dos termos independentes. A dimensão de A é NxN, e de T e B, Nx1, onde N é o número de 

incógnitas (T) do problema. Este módulo contém quatro sub-rotinas. Três delas são métodos para 

resolver sistemas de equações. O método de eliminação de Gauss resolve uma matriz A do tipo cheia de 

forma direta. O método de Gauss-Seidel resolve uma matriz A do tipo cheia mas de forma iterativa. 

Neste programa-exemplo, os métodos eliminação de Gauss e Gauss-Seidel estão adaptados para resolver 

uma matriz A do tipo tridiagonal, isto é, apenas três diagonais da matriz A têm valores não-nulos. 



 

Capítulo 20. Exemplos: sistemas de equações 

 

2 

Finalmente o método TDMA (Tri-Diagonal Matrix Algorithm) resolve uma matriz A do tipo tridiagonal 

de forma direta. Além disso, existe uma rotina que calcula a norma l1 média do resíduo das equações do 

sistema, definido por 

 

ATBR                                 (20.2) 

 

O valor da norma é usado para comparar com uma tolerância especificada pelo usuário visando 

interromper o processo iterativo do método de Gauss-Seidel. 

(d) O módulo DADOS, contido no programa-fonte dados.f90, tem duas sub-rotinas. Uma é usada para ler 

os dados do programa, do arquivo programa20.ent mostrado na Figura 20.1. A outra é usada para 

escrever os dados lidos no arquivo de saída de nome genérico. 

(e) O módulo COEFICIENTES, contido no programa-fonte coeficientes.f90, tem duas sub-rotinas. Uma é 

usada para definir os valores dos coeficientes da matriz A e do termo independente B do sistema de 

equações das N variáveis T. São definidos os valores dos coeficientes apenas em três diagonais da matriz 

A. Isso ocorre porque estes coeficientes são originados da discretização de uma equação diferencial que 

modela a condução de calor unidimensional em regime permanente; e a aproximação usada, do método 

de diferenças finitas, é a diferença central de 2ª ordem, CDS-2, vista no capítulo 19. O valor de B depende 

da definição do usuário no arquivo de dados, gerando valores nulos ou não nulos. A outra sub-rotina é 

usada para escrever os valores dos coeficientes e do termo independente num arquivo de saída de nome 

genérico. 

(f) O módulo RESULTADOS, contido no programa-fonte resultados.f90, também tem duas sub-rotinas. A 

primeira é usada para: (1) chamar a sub-rotina de cálculo de coeficientes e termos independentes; (2) 

escrever os coeficientes; (3) resolver a Eq. (20.1) com um dos três métodos disponíveis, de acordo com 

a escolha do usuário no arquivo de dados; (4) cronometrar o tempo de CPU; (5) chamar a segunda sub-

rotina do módulo; e (6) escrever o tempo de CPU no arquivo de saída de nome genérico. A segunda sub-

rotina deste módulo é usada para: (1) criar o arquivo T.dat; (2) escrever neste arquivo a solução analítica 

e numérica de T, e seu erro; (3) escrever um título no arquivo comandos20.gnu; e (4) chamar o aplicativo 

Wgnuplot para fazer o gráfico de T com os comandos mostrados na Figura 20.2. 

(g) O programa-principal: (1) apresenta comentários descrevendo um resumo das características do 

programa; (2) obtém a data e a hora do sistema operacional; (3) chama a sub-rotina de leitura dos dados 

do programa; (4) cria o arquivo de saída de nome genérico; (5) escreve nele o título da simulação, a data 

e hora; (6) faz a alocação de memória; (7) calcula a coordenada X correspondente a T em N pontos; (8) 

chama a sub-rotina que escreve os dados; (9) chama a sub-rotina que resolve a Eq. (20.1); (10) com o 

aplicativo Notepad, mostra o conteúdo do arquivo de saída. 

(h) Os campos de coeficientes, T e gráfico são escritos com uma freqüência (w) definida pelo usuário. 

 

 



 

Capítulo 20. Exemplos: sistemas de equações 

 

3 

Tabela 20.1 Variaveis.f90 

module variáveis 

 

use portlib 

 

implicit none 

 

integer :: N        ! número total de nós 

 

integer :: i        ! número do nó 

                    ! i = 1, nó no contorno esquerdo 

                    ! i = N, nó no contorno direito 

                    ! 2 <= i <= N-1, nós internos 

 

integer :: matriz   ! tipo de matriz: 1 = fonte nulo; 2 = fonte não nulo 

 

integer :: solver   ! tipo de solver: 1 = Eliminação de Gauss (EG) 

                    !                 2 = Gauss-Seidel (GS) 

                    !                 3 = TDMA 

 

integer :: iteracao ! número de iterações para o GS 

 

integer :: w        ! frequência de escrita de resultados 

 

real*8  :: Tol      ! tolerância sobre resíduo para o GS 

 

real*8  :: tcpu     ! tempo de CPU em segundos 

 

integer :: ver      ! auxílio do comando System 

 

real*8,dimension(:),allocatable :: T  ! solução numérica 

 

real*8,dimension(:),allocatable :: x  ! coordenada espacial nodal 

 

real*8,dimension(:),allocatable :: aP ! coeficiente central de T 

real*8,dimension(:),allocatable :: aW ! coeficiente esquerdo de T 

real*8,dimension(:),allocatable :: aE ! coeficiente direito de T 

 

real*8,dimension(:),allocatable :: bP ! termo fonte de T 

 

character*20 :: caso      ! nome do arquivo de saída 

 

character*50 :: title     ! título do gráfico 

character*62 :: head      ! título do gráfico + dia 

 



 

Capítulo 20. Exemplos: sistemas de equações 

 

4 

character*12 :: dia       ! data da simulação 

character*8  :: hora      ! horário da simulação 

integer*4    :: var(8)    ! data e hora 

character*20 :: vardate   ! data e hora 

character*20 :: vartime   ! data e hora 

character*20 :: varzone   ! data e hora 

character*70 :: note_caso ! notepad + caso 

character*2  :: aux1,aux2 

character*4  :: aux3 

character*50 :: aux 

 

end 

 

Tabela 20.2 Solvers_1D.f90 

module solvers_1D 

 

! objetivo: resolver sistema linear de equações algébricas 

!           originado de problemas unidimensionais 

 

use variaveis 

 

implicit none 

 

contains 

 

!------------------------------------------------- 

 

  ! Método direto eliminação de Gauss 

 

  subroutine EG (N,ap,b,c,d,T) 

 

    implicit none 

 

    integer :: i      ! número do nó 

    integer :: ii, j 

    real*8  :: mji, S 

 

    integer,intent(in) :: N ! número de nós 

 

    real*8,dimension(:,:),allocatable :: A ! matriz de coeficientes 

 

    real*8,intent(in), dimension(N) :: ap ! coeficiente aP 

    real*8,intent(in), dimension(N) :: b  ! coeficiente aW 

    real*8,intent(in), dimension(N) :: c  ! coeficiente aE 



 

Capítulo 20. Exemplos: sistemas de equações 

 

5 

    real*8,intent(in), dimension(N) :: d  ! termo fonte bP 

 

    real*8,intent(out),dimension(N) :: T  ! incógnita 

 

    allocate ( A(N,N+1) ) 

  

    A = 0.0d0 

 

    ! gera a matriz de coeficientes A com o termo independente 

 

    do i = 1,N 

 

       if (i > 1) A(i,i-1) = -b(i) 

 

       A(i,i) = ap(i) 

 

       if (i < N) A(i,i+1) = -c(i) 

 

       A(i,N+1) = d(i) 

 

    end do 

 

 ! Escalonamento 

 

 do i = 1,N-1 

  

  do ii = i+1,N  

   

   mji= A(ii,i) / A(i,i) 

 

   do j = i,N+1 

 

    A(ii,j) = A(ii,j) - mji*A(i,j) 

    

   end do 

 

  end do 

 

 end do  

 

 !Substituicao retroativa 

 

 T(N) = A(N,N+1) / A(N,N) 

 

 do i = N-1,1,-1 



 

Capítulo 20. Exemplos: sistemas de equações 

 

6 

 

  S = 0 

   

  do j = i+1,N 

 

   S = S + A(i,j)*T(j)  

 

  end do 

 

  T(i) = (A(i,N+1) - S) / A(i,i) 

 

 end do  

 

    deallocate ( A ) 

 

end subroutine EG 

 

!------------------------------------------------- 

 

  ! método iterativo de Gauss-Seidel 

 

  subroutine GS (N,ite,tol,a,b,c,d,T) 

 

    implicit none 

 

    integer :: i   ! número do nó 

    integer :: it  ! número da iteração 

    integer :: ite ! número de iterações 

 

    integer,intent(in) :: N   ! número de nós 

 

    real*8, intent(in) :: Tol ! tolerância sobre R 

 

    real*8,intent(in), dimension(N) :: a ! coeficiente aP 

    real*8,intent(in), dimension(N) :: b ! coeficiente aW 

    real*8,intent(in), dimension(N) :: c ! coeficiente aE 

    real*8,intent(in), dimension(N) :: d ! termo fonte bP 

 

    real*8,intent(out),dimension(N) :: T ! incógnita 

 

    real*8 :: R ! norma l1 média dos resíduos 

 

    T = 0.0d0 

 

    do it = 1, ite 



 

Capítulo 20. Exemplos: sistemas de equações 

 

7 

 

       T(1) = ( c(1)*T(2) + d(1) ) / a(1) 

 

       do i = 2, N-1 

 

          T(i) = ( b(i)*T(i-1) + c(i)*T(i+1) + d(i) ) / a(i) 

 

       end do 

 

       T(N) = ( b(N)*T(N-1) + d(N) ) / a(N) 

 

       call norma (N,a,b,c,d,T,R) 

 

       if ( R <= Tol ) then 

          write(10,1) it, Tol, R 

          1 format(//, 'O processo iterativo convergiu em', I8, ' iterações', & 

                    /, 'para a tolerância de', 1pe10.2, & 

                    /, 'A norma l1 média dos resíduos é', 1pe10.2, /) 

          exit 

       end if 

 

    end do 

 

    if ( R > Tol ) then 

       write(10,2) ite, Tol, R 

       2 format(//, 'O processo iterativo NÃO convergiu em', I8, ' iterações', & 

                 /, 'para a tolerância de', 1pe10.2, & 

                 /, 'A norma l1 média dos resíduos é', 1pe10.2, /) 

    end if 

 

  end subroutine GS 

 

!------------------------------------------------- 

 

  ! calcula a norma l1 média do resíduo das equações 

 

  subroutine norma (N,a,b,c,d,T,R) 

 

    implicit none 

 

    integer :: i ! número do nó 

 

    integer,intent(in) :: N ! número de nós 

 

    real*8,intent(in), dimension(N) :: a ! coeficiente aP 



 

Capítulo 20. Exemplos: sistemas de equações 

 

8 

    real*8,intent(in), dimension(N) :: b ! coeficiente aW 

    real*8,intent(in), dimension(N) :: c ! coeficiente aE 

    real*8,intent(in), dimension(N) :: d ! termo fonte bP 

 

    real*8,intent(out),dimension(N) :: T ! incógnita 

 

    real*8,intent(inout) :: R ! norma l1 média dos resíduos 

 

    R = 0.0d0 

 

    R = R + dabs ( c(1)*T(2) + d(1) - T(1)*a(1) ) 

 

    do i = 2, N-1 

 

       R = R + dabs ( b(i)*T(i-1) + c(i)*T(i+1) + d(i) - T(i)*a(i) ) 

 

    end do 

 

    R = R + dabs ( b(N)*T(N-1) + d(N) - T(N)*a(N) ) 

 

    R = R / N 

 

  end subroutine norma 

 

!------------------------------------------------- 

 

  ! método direto Tri-Diagonal Matrix Algorithm (TDMA) 

 

  subroutine TDMA (N,a,b,c,d,T) 

 

    implicit none 

 

    integer :: i   ! número do nó 

    real*8  :: div ! variável auxiliar 

 

    integer,intent(in) :: N ! número de nós 

 

    real*8,dimension(:),allocatable :: P ! coeficiente do tdma 

    real*8,dimension(:),allocatable :: Q ! coeficiente do tdma 

 

    real*8,intent(in), dimension(N) :: a ! coeficiente aP 

    real*8,intent(in), dimension(N) :: b ! coeficiente aW 

    real*8,intent(in), dimension(N) :: c ! coeficiente aE 

    real*8,intent(in), dimension(N) :: d ! termo fonte bP 

 



 

Capítulo 20. Exemplos: sistemas de equações 

 

9 

    real*8,intent(out),dimension(N) :: T ! incógnita 

 

    allocate(P(N),Q(N)) 

 

    P(1) = c(1) / a(1) 

    Q(1) = d(1) / a(1) 

 

    do i = 2, N 

      div  = a(i) - b(i)*P(i-1) 

      P(i) = c(i) / div 

      Q(i) = (d(i) + b(i)*Q(i-1))/div 

    end do 

 

    T(N) = Q(N) 

 

    do i = N-1, 1, -1 

      T(i) = P(i)*T(i+1) + Q(i) 

    end do 

 

    deallocate(P,Q) 

 

  end subroutine tdma 

 

!------------------------------------------------- 

 

end module solvers_1D 

 

Tabela 20.3 Dados.f90 

module dados 

 

! objetivo: ler e escrever os dados 

 

use variaveis 

 

!------------------------------------------------- 

 

implicit none 

 

contains 

 

!------------------------------------------------- 

 

  subroutine le_dados 

 



 

Capítulo 20. Exemplos: sistemas de equações 

 

10 

    ver = system('notepad programa20.ent') ! lista dados 

 

    open(7,file='programa20.ent') 

 

    read(7,*) caso 

    read(7,*) N 

    read(7,*) matriz 

    read(7,*) solver 

    read(7,*) iteracao 

    read(7,*) Tol 

    read(7,*) w 

    read(7,*) title 

 

    close(7) 

 

  end subroutine le_dados 

 

!------------------------------------------------- 

 

  subroutine mostra_dados 

 

    write(10,1) trim(adjustl(caso)), N, matriz, solver, iteracao, Tol 

 

    1 format(/,5x,'DADOS',//,  & 

               a,' = caso',/, & 

              i6,' = número de nós',/, & 

              i6,' = tipo de matriz: 1 = fonte nulo; 2 = fonte não nulo',/,  & 

              i6,' = tipo de solver: 1=El.Gauss; 2=GS; 3=TDMA',/, & 

              i6,' = número de iterações para o GS',/, & 

         1pe10.2,' = tolerância sobre o resíduo para o GS') 

 

  end subroutine mostra_dados 

 

!------------------------------------------------- 

 

end module dados 

 

Tabela 20.4 Coeficientes.f90 

module coeficientes 

   

! objetivo: calcular os coeficientes e termos fontes 

!           das equações discretizadas 

   

use dados 



 

Capítulo 20. Exemplos: sistemas de equações 

 

11 

   

implicit none 

   

contains 

 

!------------------------------------------------- 

 

  subroutine lista_coeficientes 

 

    write(10,4) 

    4 format(/,5x,'COEFICIENTES E FONTES',//,  & 

             t6,'nó',t16,'X',t36,'oeste',t56,'central', & 

                     t76,'leste',t96,'fonte',/) 

    do i = 1, N 

       if ( i==1 .or. i==n .or. mod(i,w)==0 ) & 

          write(10,2) i, X(i), aw(i), aP(i), ae(i), bP(i) 

    end do 

 

    2 format(i6,4x,5(1pe20.9)) 

 

  end subroutine lista_coeficientes 

 

!------------------------------------------------- 

 

  subroutine coeficientes_e_fontes 

 

    ! pontos internos 

    do i = 2, N-1 

       aw(i) = 1.0d0 

       ae(i) = 1.0d0 

       aP(i) = aw(i) + ae(i) 

    end do 

 

    select case ( matriz ) 

       case ( 1 ) ! fonte nulo 

          bP = 0.0d0 

       case ( 2 ) ! fonte não nulo 

          bP = - 2.0d0 / ( (N-1)**2 )  

    end select 

 

    ! contorno esquerdo 

    aw(1) = 0.0d0 

    ae(1) = 0.0d0 

    aP(1) = 1.0d0 

    bP(1) = 0.0d0 



 

Capítulo 20. Exemplos: sistemas de equações 

 

12 

 

    ! contorno direito 

    aw(N) = 0.0d0 

    ae(N) = 0.0d0 

    aP(N) = 1.0d0 

    bP(N) = 1.0d0 

 

  end subroutine coeficientes_e_fontes 

 

!------------------------------------------------- 

 

end module coeficientes 

 

Tabela 20.5 Resultados.f90 

module resultados 

 

! objetivo: calcular solução numérica e 

!           apresentar gráficos dos resultados 

 

!------------------------------------------------- 

 

use coeficientes 

use solvers_1D 

 

implicit none 

 

contains 

 

! ----------------------------------------------- 

 

  subroutine solucao_numerica 

 

    ! cálculo dos coeficientes e termos fontes 

 call coeficientes_e_fontes 

 

    ! escrita dos coeficientes e termos fontes  

 call lista_coeficientes 

 

    tcpu = timef() ! zera cronômetro 

 

    ! solução do sistema de equações 

 

    select case ( solver ) 

 



 

Capítulo 20. Exemplos: sistemas de equações 

 

13 

       case ( 1 ) ! Eliminação de Gauss 

 

          call EG (N,aP,aw,ae,bP,T) 

 

       case ( 2 ) ! Gauss-Seidel 

 

          call GS (N,iteracao,Tol,aP,aw,ae,bP,T) 

 

       case ( 3 ) ! TDMA 

 

          call tdma (N,aP,aw,ae,bP,T) 

 

    end select 

 

    tcpu = timef() 

 

    ! escrita da variável primária e sua visualização 

    call escreve_T 

 

    write(10,1) tcpu 

    1 format(/, f14.3, ' = tempo de CPU (segundos)') 

 

  end subroutine solucao_numerica 

 

!------------------------------------------------- 

 

  subroutine escreve_T 

 

    real*8  :: T_exato ! auxiliar 

    integer :: j       ! auxiliar 

 

    ! abertura de arquivo para gravar resultados de T (analítico e numérico) 

    open(7,file='T.dat') 

 

    write(10,1) 

    1 format(/,t4,'X',t28,'T (analítico)',t52,'T (numérico)',t76,'erro',/) 

 

    do i = 1, N 

 

       select case ( matriz ) 

          case ( 1 ) ! fonte nulo 

       T_exato = (i-1.0d0) / (N-1) 

          case ( 2 ) ! fonte não nulo 

       T_exato = ( (i-1.0d0) / (N-1) ) ** 2 

       end select 



 

Capítulo 20. Exemplos: sistemas de equações 

 

14 

 

       if ( i==1 .or. i==n .or. mod(i,w)==0 ) then 

          write( 7,2) X(i), T_exato, T(i), T_exato - T(i) 

          write(10,2) X(i), T_exato, T(i), T_exato - T(i) 

          2 format(4(1pe24.15)) 

       end if 

 

    end do 

 

    close(7) 

 

    ! adapta arquivo de comandos para fazer gráfico 

    open(7,file='comandos20.gnu') 

      do j = 1, 8 

         read(7,*) 

      end do 

      write(7,3) head 

      3 format("set title '",a62,/,"replot") 

    close(7) 

 

    ! mostra o gráfico de T 

    ver = system('wgnuplot comandos20.gnu') 

 

  end subroutine escreve_T 

 

!------------------------------------------------- 

 

end module resultados 

 

Tabela 20.6 Programa20.f90 

 

program programa20a 

 

!     Difusão de calor unidimensional permanente 

 

!     Versão original 1.0 (25 Mai 07) 

!     Versão atual    1.0 (25 Mai 07) 

!     última alteração =   10 Nov 24 

 

!     autor: Carlos Henrique Marchi (Curitiba, DEMEC/UFPR) 

 

!     MODELO MATEMÁTICO (resumo) 

!       Equação diferencial: d2T/dx2 = S 

!       Condição de contorno de Dirichlet em x = 0: T(0) = 0 



 

Capítulo 20. Exemplos: sistemas de equações 

 

15 

!       Condição de contorno de Dirichlet em x = 1: T(1) = 1 

!       x  = coordenada espacial (variável independente) 

!       T  = temperatura (variável dependente) 

!       S  = termo fonte 

!       Solução analítica conhecida da equação diferencial 

!       Solução analítica conhecida da equação discretizada 

 

!     MODELO NUMÉRICO (resumo) 

!       Incógnita (variável primária, dependente): T 

!       Método numérico: diferenças finitas 

!       Função de interpolação: CDS (variável primária T) 

!       As condições de contorno são aplicadas forçando os 

!          coeficientes e fontes a satisfazer a C.C. 

!       Malha uniforme 

!       Solvers: Eliminação de Gauss, Gauss-Seidel e TDMA 

!       Precisão: dupla 

!       Linguagem FORTRAN 95 

!       Aplicativo usado: Fortran 4.0 Microsoft 

!       Tipo de projeto: Console 

!       Expressão genérica do sistema de equações discretizado: 

!          aP(i)*T(i) = aw(i)*T(i-1) + ae(i)*T(i+1) + bP(i)  

!              onde i = 1, 2, ... N (número de nós) 

 

!     ARQUIVOS envolvidos no programa: 

!       programa20.f90   = programa principal 

!       coeficientes.f90 = calcula coeficientes e fontes do sistema linear 

!       dados.f90        = lê e lista os dados do programa 

!       resultados.f90   = resolve equações e gera listagens dos resultados 

!       solvers_1D.f9    = Solvers Eliminação de Gauss, Gauss-Seidel e TDMA 

!       variaveis.f90    = define todas as variáveis globais do programa 

!       programa20.ent   = arquivo de dados do programa 

!       "caso"           = listagem dos resultados 

!       T.dat            = arquivo de dados para fazer gráfico 

!       comandos20.gnu   = arquivo de comandos para gerar gráfico 

!       notepad.exe      = aplicativo editor dos arquivos tipo texto 

!       Wgnuplot.exe     = aplicativo gerador de gráfico 

 

! ----------------------------------------------- 

 

use dados 

 

use resultados 

 

! ----------------------------------------------- 

 



 

Capítulo 20. Exemplos: sistemas de equações 

 

16 

implicit none 

 

!------------------------------------------------- 

 

  call date_and_time(vardate,vartime,varzone,var) 

 

  write(aux,*) var(3) 

  aux1 = trim(adjustl(aux)) 

  write(aux,*) var(2) 

  aux2 = trim(adjustl(aux)) 

  write(aux,*) var(1) 

  aux3 = trim(adjustl(aux)) 

  dia = '('//trim(aux1)//'/'//trim(aux2)//'/'//aux3//')' 

 

  write(aux,*) var(5) 

  aux1 = trim(adjustl(aux)) 

  write(aux,*) var(6) 

  aux2 = trim(adjustl(aux)) 

  write(aux,*) var(7) 

  aux3 = trim(adjustl(aux)) 

  hora = trim(aux1)//':'//trim(aux2)//':'//aux3 

 

  call le_dados 

 

  head = trim(title)//" "//trim(dia)//"'" 

 

  open(10,file=caso) 

 

  write(10,18) trim(adjustl(title)), dia, hora 

  18 format(/,'Título = ', a, & 

            //,5x,'Dia = ',a12,5x,'Hora = ',a8) 

 

  ! alocação de memória 

  allocate ( X(N), T(N) ) 

  allocate ( aw(N), aP(N), ae(N), bP(N) ) 

 

  do i = 1, N 

     X(i) = (i-1.0d0) / (N-1) 

  end do 

 

  call mostra_dados 

 

  call solucao_numerica 

 

  close (10) 



 

Capítulo 20. Exemplos: sistemas de equações 

 

17 

 

  note_caso = 'notepad '//caso 

  ver = system(note_caso) ! lista arquivo de resultados 

 

! ----------------------------------------------- 

End 

 

 

Figura 20.1 Arquivo programa20.ent do projeto programa20. 

 

 

Figura 20.2 Arquivo comandos20.gnu para o aplicativo Wgnuplot do projeto programa20. 

 

10) Estudar o programa-principal considerando os comentários do item 9, acima. 

11) Executar Build, Compile para compilar o programa-fonte variaveis.f90. Em seguida, executar Build, 

Compile para compilar os demais programas-fonte na seguinte ordem: solvers_1D.f90, dados.f90, 

coeficientes.f90, resultados.f90 e programa20.f90. 

12) Gerar o programa-executável fazendo Build, Build. 

13) Executar o programa através de Build, Execute. Usar os dados mostrados na Figura 20.1. 



 

Capítulo 20. Exemplos: sistemas de equações 

 

18 

14) Analisar os resultados mostrados nas Figuras 20.3 e 20.4. O erro apresentado pela solução na Figura 20.4 

deve-se aos erros de arredondamento. Notar que o tempo de CPU foi de 0.422 segundo. O computador usado 

nos cálculos tem processador i3 de 2.30 GHz e sistema operacional Windows 10. 

15) Executar novamente o programa usando os mesmos dados da Figura 20.1 mas com solver = 2 (Gauss-

Seidel) e analisar os novos resultados. Observar que o tempo de CPU foi de 4.968 segundos; isso representa 

um aumento significativo do tempo de CPU em relação ao método de Eliminação de Gauss. 

16) Executar novamente o programa usando os mesmos dados da Figura 20.1 mas com solver = 3 (TDMA) e 

analisar os novos resultados. Ver que o tempo de CPU foi de 0.000 segundo, ou seja, a execução foi tão 

rápida que não conseguiu ser medida pelo comando TIMEF. Portanto, houve uma redução significativa no 

tempo de CPU ao se usar o método TDMA em relação ao método de Eliminação de Gauss (solver = 1). 

 

 

Figura 20.3. Gráfico com resultados do programa20 para os dados da Figura 20.1. 

 

20.2 EXERCÍCIOS 

 

Exercício 20.1 

Executar novamente o programa20 usando os mesmos dados da Figura 20.1 mas com matriz = 1 e solver = 2 

(método de Gauss-Seidel). Anotar o tempo de CPU. 

 

Exercício 20.2 

Executar novamente o programa20 usando os mesmos dados da Figura 20.1 mas com matriz = 1 e solver = 1 

(método de Eliminação de Gauss). Anotar o tempo de CPU. 

 



 

Capítulo 20. Exemplos: sistemas de equações 

 

19 

 

Figura 20.4 Arquivo de resultados do programa20 para os dados da Figura 20.1. 

 

Exercício 20.3 

Executar novamente o programa20 usando os mesmos dados da Figura 20.1 mas com matriz = 1 e solver = 3 

(método TDMA). Anotar o tempo de CPU. 

 

Exercício 20.4 

Fazer uma tabela para comparar o tempo de CPU mostrado nos itens 14 a 16 da seção 20.1, acima, com aqueles 

obtidos nos Exercícios 20.1 a 20.3. Observar os efeitos da matriz (1 ou 2) e do solver (1, 2 ou 3). Deve-se perceber 

que há um grande efeito do tipo de solver usado para resolver o mesmo problema. 

 

Exercício 20.5 

Repetir os Exercícios 20.1 a 20.4 para N = 1001. Quando usar solver = 2, utilizar iteracao = 1400000. 

 



 

Capítulo 20. Exemplos: sistemas de equações 

 

20 

 

Exercício 20.6 

Executar novamente o programa20 usando os mesmos dados da Figura 20.1 mas com N = 1000001, matriz = 1, 

solver = 3 (método TDMA) e w = 10000. Verificar o tempo de CPU. 

 


