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SUMMARY o

The solution of three dimensional compressible ffow probfems defined . in
anbitrany geometries nequines the use of generalized coordinates 4in oader 2o have

flexibility 4in

methods neqiines special procedure 1o deal with zthe pressure-veloed
fon promoting &sinenght 2o e coupling,

invelvdng,

in genenal, staggered grids ght
Unfontunately the use of staggered grids introduces several difficuliies

handling compfex geometnies. The use of segregated ginite-volume

coupling,
in the

computer code implementation. In this work a 30 numenicaf model s devefoped employing
co-Located variables fon the solulion of all speed §Lows.

INTRODUCTION

The majority of the existing numerical methods
and computer codes for solving high speed compressible
fluid flow problems belongs to the class of methods
which employs the state equation for the pressure
determination and the mass conservation equation for
density calculation. It is well reported, however,
that for low Mach number flows these methods are no
longer suitable [1]. The other class of methods is the
one where the density is determined from the state
equation and pressure is found through an special
equation derived wusing the mass conservation
constraint, These methods are suitable for solving
incompressible fluid flow problems or problems where
the density is a function of temperature only. It is
known that the development of the former class of
methods occured among the aerospace numerical analysts
while the latter class develop among the analysts
involved with incompressible flow. It is illustrative
to report some important differences between these two
classes of methods. The former class of methods employ

. higher order finite-difference schemes wusing co-
located variables, while the methods 1in the latter
class employ the staggered grid arrangement, to cope
with the pressure-velocity coupling, and derive the
algebraic equations involving the conservation
principles at control volume level, being called
finite volume methods.

Very recently, extensions of the methodologies
employed for incompressible flows have been applied
with success in the solution of compressible fluid
flow problems in cartesian [2,3] and general
coordinate systems [4,5]. These methods form an
equation for pressure, replacing, in the mass
conservation equation, density by a linearized form of
the state equation and velocity components by their
respective momentum equations. The drawback of these
methods is that they require the use of staggered
variables in order to provide the adequate coupling
between pressure and velocity/density. As a
consequence of the staggered arrangement the computer
code implementation becomes cumbersome, specially if
variable grid spacing is wused in three dimensions,
because the different control volume locations and the
corresponding metric storaging.

The alternative to this problem is to keep all
variables stored at the same point, that is, all of
them share the same elemental control volume. The use
of co-located variables simplifies considerably the
coefficients calculation and storaging, and
geometrical data storaging. The difficulty associated
with the use of co-located variables is the poor
coupling it provides between pressure and

velocity/density. This difficulty can be removed
taking care in numerically approximating the pressure
gradients.

Successful applications of finite volume methods
for 2D problems using nonorthogonal grids with co-
located variables can be seen in [6,7] for
incompressible flows, in [8], among others, for
cartesian grids and 2D incompressible flows, in [3]
for 2D compressible flows in cartesian grids and in
[4,5,9] for 2D compressible flows in general
curvilinear coordinates.

The very good results obtained 4in [3,4,5,9]
encouraged the authors the development of a numerical
scheme wusing co-located variables for the solution of
3D flows. The method can solve compressible flow with
presence of strong shocks as well as incompressible
fluid flow problems, due to the special linearization
performed for the mass flux in the mass conservation
equation.

The development of such a method is the main
purpose of the present paper. The model advances the
state of the art in the solution of 3D all speed flows
using co-located variables in the context of finite
volume methods. Preliminary results, which
demonstrates the aplicability of the method are also
presented. It is belived that the development here in
presented 1is in the direction of obtaining powerful,
easy to implement and general numerical methods for
the solution of all speed flows.

GOVERNING EQUATIONS

The Euler equations written for a general
coordinate system (£,n,y) for a generic scalar ¢ are
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The ¢ wvariable represents the mass cdnservation
equation, the three cartesian velocity components and
the energy equation, being equal to l, u, v, wand T,
respectively. A state equation, as below, closes the
system of equations which governs the three-
dimensional flow of an inviscid fluid.

P = pRT (2)

The Jacobian of the transformation and the
contravariant velocity components appearing in fo.(li
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DISCRETIZATION OF THE MOMENTUM AND ENERGY EQUATIONS

The algebraic equations are obtained employing
 the finite-volume method, that is, by integration of

Eq. (1) over the elemental control volume shown in
Fig.l and integration in r.!.nc. The resulting equation
has the form
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The subscripts e, w, n, s, d and f, appearing in
the equations indicate the interface of the control
volume of Fig. 1, while the subscripts E, W, N, §, D
and F indicate the P neighbouring control volumes., For
simplicity the dimensions of the elemental control
volume in the transformed space, Af, 4&n and Ay are

taken equal to unity. In Eq.(12) Mp and HP represent
the mass inside the control volume in the time t+4t
and t, respectively. is the mass flux at the
interface indicated by the subscript. L[} %]

represents the numerical approximation of the term B%,

In this 'paper ﬁ" is approximated by the Central
Differencing Scheme (CDS) [10). To illustrate L[fU] is
given by : ]
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Fig. 1 Elemental control volume for P.

As the problem under consideration does not
involve diffusive terms, evaluating the convective
fluxes at the control volume interfaces "through the
Upstream Differencing Scheme (UD5) [10], the final

discretized form of Eq.(l) is
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the Euler equations, the
parameter G assumes the value +1/2 and =1/2
dependending on the signal of the wvelocity at the
interface under consideration. Since the implicit
formulation is adopted, Eq.(l4) originates a linear
system for each dependent variable u, v, w and T.
Recall that the coefficents of Eq.(l4) are didentical
for u, v, w and T since the co-located arrangement of
variables is employed.

0f course, for

DISCRETIZATION OF THE MASS “CONSERVATION EQUATION

The method used in this work for finding
pressure 1is an extension of the methodologies used in
the solution of incompressible flows, that is, the
mass conservation equation is transformed in an
‘equation for pressvre or pressure correction.

In the solution of compressible flows p and
velocity are expressed in terms at pressure and
substituted into the mass conservation ' equation

forcing both density and velocity be active in this
equation [2,10,11,12].

: The discretized form of the mass conservation
equation is obtained integrating this equatiun over

space and time, giving

(np-n;)/uoue—uu+un-ns4nd-af-o as)
where ie' for example is expressed by
- - L
= - (17)
“e (ane iy peue peue”““

;i It is seen by Eq.(17) that the wvelocity
‘componentes which enters the mass conservation
cqultion are the contravariant ones.

The key question now 1is to replace the mass

fluxes as a function of pressure. Since in the mass

flux calculation p and velocity are involved, both p
-and velocity need to be written as a function of
pressure. Following the SIMPLEC [13] procedure to
handle the pressure/velocity/density coupling the
velocity and density are written as
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where the corrections in p*and V* must be such that
mass 1is conserved. The equation for V transforms in
three scalar equations for the” U, V and W
contravariant veloﬁity components. The star
represents values from the previous iteration level,
and the prime values need to be related to a pressure
correction p' related to pressure by p =p + p'.

Density as a Function of p'. To obtain the
relation between density and p' the state equation is
linearized as

L]
p=p +p (19)
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where

c® = 1/RT 20)

for the special case of the fluid being a perfect gas.

Velocity Components as a Function of p'. The
expressions for the contravariant velocity components
as a function at p' are obtained from the momentum

conservation equations. Consider that if a correct
pressure field 1is introduced i1in the conservation
equations it gives rise to correct u, v and w
cartesian velocity components, and if a guessed

pressure field p is introduced it gives rise to a
estimated, u”, v" and w velocities. Subtracting the
equations one obtains, for exemple, for the u

cartesian velocity component a
o, A

- dp. Lip’ 1,86 (21)
The parameter Eg changes according to the
pressure/velocity coupling method used. Using the
above velocity components the expression for the

contravariant component can be obtained as
T i Tt S (22)

U =Y e~ pp(Rygdy

Similar equations can be written for the other
five components which enters the mass conservation
equation. In order to avoid a 19-point equation for

p' the pressure gradients in the direction other than
that of the velocity in consideration are neglected.
For the_ SIMPLEC [13] method used here the expression
for the dp is

vy (23
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Since the above equaticn is a veloecity
correction equation its form Jdoes not alter the
converged results. Different equations influences

only the convergence rate but not the final results.

Equation for p'. Introiucing Eq.(19) and Eq.(22)
for all densities and wvelocities which enter mass
conservation in Eq.(16) withk their mass flux terms
linearized by Eq.(17), the resulting equation is an
equation for p' in the form
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wvhere the & coefficients are evaluated in the same way
as the & coefficients of Eq.(l5).

THE STAR CONTRAVARIANT VELOCITIES AT THE INTERFACES
As is known the dependent variables in the
pazentus: . eguations’ are the cartesian velocity
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components u, Vv and w. Since one {s using co-located
variables the u, v and w velocities are all stored at
the center of the control volumes. In order to obtain
an adequate coupling between pressure and velocity the

correction equations which enters the mass
conservation equation need to be writtem . using
velocities at the interfaces. However, there is no

velocities stored at the interfaces. It is necessary,
then to compute the star contravariant velocities at
the interfaces as a function of the star cartesian
velocities located in the center of the control
volumes. g

The PVF-A procedure to compute U*. v* and W* ac
the interfaces is discribed in [3] for cartesian grids
and  in [4] for general curvilinear grids and is akin
to Peric's [8] procedure for incompressible flows.

Taking as an exampler the calculation of U at the
east face, 'qné recognizes that u’, v and are
needed at the .east face. Writing Eq.(14) for the

variable u for the control volume P for an estimated
pressure field p”, one gets
s 0
o [Blauglp * Mpup/at]  yeun, sy i
w = P gp ), (28)
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and for the E control volume
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The velocity u* at the east face using the PVF-A
approach is obtained through the average of up and ug,
with exception of the pressure term, resulting in
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numerical approximation of " as if the control volume
were centered in "e". The expression for L[p “]e is
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The cartesian velocity components v* and w* at

the same interface are obtained in the same manner.
Knowing ug, Ve and we the Ug contravariant component
can be calculated. The calculation of the remaining

contravariant components follows the same procedure.

Velocity Corrections Using p'. The contravariant
components are corrected using EqQ.(22), for U, and
using similar equations for V and W. These corrected
veloclities will be used for computing the coefficients
for the next iteration level. The cartesian velocity
components are corrected using the p' field by
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Recall that the resulting expressiana for L[P'?)
are the same as for L[B®] replacing p by p'.

SOLUTION PROCEDURE

The significant solution

procedure now follow:

steps during the

1. Domain discretization. ;

2. Estimative of u, v, w, T, p and p in t+At.

3. Computation of the coefficients and source term
o£ the momentum equations. Solve for u*, v* and
w using MSI [14] technique. Computation of the
contravariant velocities at the interfaces of
the control volumes.

4. Solve for p' using MSI. Compute p = p* + p'.

5, Correction of u®, v* and » using Eq. (32), of

5 N and W using Eq.(22) and similar

equations and correction of density wusing
Eq.(19).

6. Solution of T using MSI. Computation of p using
the state equation. i

7. Iteration is necessary until convergence for the

time step under consideration is reached.

PRELIMINARY RESULTS

The preliminary tests of the numerical method
was realized solving four high speed flow problems.
The first one aimed to test the imnvariant
characteristic of a 2D plane flow along the axis of
the cylinder, by solving the flow problem over a
circular cylinder. In the direction of the cylinder
axis three cell were used, with the total grid being
26x20x3, The results (not present here) show
excellent agreement when compared with the 2D solution
using 26x20 elemental volumes.

The second problem, with the objective
testing the symmetry characteristics of a
axisymmetric flow, was the flow over the nose tip
the Brazilian Launch Vehicle (VLS), with angle
attack (a) equal to zero and Mach number equal to
3.75. With a equal to zero the solution can be
compared with the 2D axisymmetric solution. In this
case the number of wvolumes in the axisymmetric
direction can not be smaller as enough for applying
boundary conditions, as in the 2D plane case, be:ause
the number of volumes defines the shape of the
revolution body. Two grids with 30x24x10 and 30:24x20
were used.. The results are shown in Fig. 2 where the
triangles denote the experimental solution [15], curve
1 shows the 2D axisymmetric results (30x24) [5], curve

of
2D
of
of

2 the 3D solution with 30x24x10 and curve 3 the
‘solution with 30x24x20 volumes. It can be seen that
the results with a more refined grid in the angular
direction tends to the experimen:al results.

The third test was the solution of the VLS
vehicle, again with ¢ = 0 and Mach number 3.75 but
extending the computational domain up to half of the

third launching stage. Fig. 3 shows the results where
the triangles are the experimental results [15] and
the solid 1line the 3D numerical solution wusing
60x24x20 volumes distributed in 180°, which is
equivalent of using 60x24x40 volumes.

The final test present here is the solution of
the same flow as in the third test but with a = 59,
characterizing the flow as
The results of pressure coefficient
surface for & = 900, 160° and 230° are

(Cp) over the
presented in

truly three-dimensional.
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Fig. 4, where the triangles represents the
experimental results for a 0. The numerical
solutions were obtained using a convergence criterion
in the pressure [4] of 1075, and 2x10~°, for these
second, third and last test, respectively. The fully
3D problem was not solved to a tighter convergence due
solely to computer limitationms.
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Fig. 2 Test of the symmetry characteristics.
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Fig. 3 Cp for Mach 3.75 and a = (O,

CONCLUDING REMARKS

The development of a 3D numerical model for the
solution of all speed flows using co-located variable
was described. The model incorporates two importants
features, namely, the possibility of solving flows
ranging from low speed incompressible flows te
compressible supersonic flows, and the use of «co-
located variables which introduces a tremendous
simplicity in the code implementation when compared

with the usual staggered grid. The model is also
tailored to handle complex arbitrary geometries. The
preliminary tests demonstrated that the method

performs very well.
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