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GOVERNING EQUATIONS

The Euler equations written for a general

coordinate system «(,~,y) for a generic scalar , are

The Jacobian of the transforcation and :h~

contravariant ve10city components appear1ng 1n f~.\11

The , variable represents the mass cOnservation
equation. the three cartesian velocity components and
the energy equation, being equal to I, 1.1, v, w and T,
respectively. A state equation, as below, c10ses the
system of equations which governs the three­
dirnensional f10w of an inviscid fluido

(2)

O (1)

p = pRT

velocity/density. This d1fficulty can be removed
taking càre in numerically approx1mat1ng the pressure
gradients.

Successful app11cations of finite volume methods

for 2D problems using nonorthogonal gr1ds with co­
located variabl.es can be seen 1n [6,7] for
1ncompressible flows, in [8], among others, for
cartes1an gr1ds and 2D incompressible f1ows. in [3]
for 2D compressible flows in cartesian grids and in
[4,5,9] for 2D compressible flows 1n general
curvilinear coordinates.

The very good results obta1ned in [3,4,5,9]
encouraged the authors the deve10pment of a numer1cal
scheme using co-located variables for the solut10n of
3D flows. The method can solve compressible flow with
presence of strong shocks as well as incompress1ble
fluid flow problems, due to the special linearization
performed for the mass flux in the mass conservat10n
equation.

The development of such a method is the main
purpose of the present paper. The model advances the
state of the art in the solut10n of 3D alI speed flows
us1ng co-located var1ablesin the cont'ext of Unite
volume methods. Preliminary results, which
demonstrates the aplicability of the method are also
presented. It is belived that the development here in
presented 15 1n the direction of obtaining powerful,
easy to implement and general numerical methods for
the solution of alI speed flows.

1 a a a a ~~
~ 8t(P~) + aç(p~) + 8~(pV~) + a~(pW~) + p

INTRODUCTION

The majority of the existing numerical methods

and computer codes for solving high speed compressible
fluid flow problems belongs to the class of methods
which employs the state equation for the pressure
determination and the mass conservation equation for
density calculation. lt is well reported, however,
that for low Mach number flows these method~ are no

longer suitable [1]. The other class of methods is the
one where the density is determined from the state
equation and pressure i5 found through an special
equation derived using the mass conservation
constraint. These' methods are suitable for solving
incompressible fluid flow problems or problems where
the density is a function of temperature only. It is
known that the development of the former class of
methods occured among the 'aerospace numerical analysts
while the latter class develop among the analysts
involved with incompressible flow. It is illustrat1ve
to report some important d1fferences between these two
classes of methods. The former class of methods employ

.higher order finite-d1fference schemes using co­
located variables, while the methods in the latter

class employ the staggered grid arrangement, to cope
with the pressure-velocity coupling, and derive the
algebraic equations involving the conservation
principIes at .control volume leveI, being called
finite volume mêthods.

Very recently, extens10ns of the methodologies
employed for incompressible flows have been applied
with success 1n the solution of compress1ble flu1d
jlow problems in cartesian [2,3] and general
coordinate systems [4,5]. These methods form an
equation for pressure, replacing, in thé mass
conservation eql,Jation,dens1ty by a linearized form of
the state equat10n and velocity components by the1r
respective momentum equations. The drawback of these
methods 15 that they require the use of staggered
variables in order to prov1de the adequa te coupling
between pressure and velocity/dens1ty. As a
consequence of the staggered arrangement the computer
code implementation becomes cumbersome, specially if
variable gr1d spacing is used in three dimensions,
because the different control volume locations and the

corresponding'metr1c storag1ng.
The alternative to this problem is to keep alI

variables stored at the same point. that is. alI of
them share the same elemental control volume. The use

of co-located variab1es simplifies considerab1y the
coeffi.:ients calcu1ation and storaging, and
geometrica1 data storaging. The difficulty associated
with the use of co-1ocated variables is the poor
coup1ing it provides between pressure and
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are given by

-1
- X V Z - X Y-Z - X V Z ]I; ., 'li '111;., ., 'li I; (3)

taken eciual to unity. ln Eq. (12) Mp and Mp represent
the mass inside the contraI volume in the time t+At

and t, respeétively. M is the mass flux at the

interface indicated by the subscript. L[p~]
represents the numerical approximation of the term 11~.
ln this 'paper p~ is approximated by the Central

DifferenciYlg Scheme (CDS) [10]. To illustrate L['$U] is

giv.en by ..

(4)

(5)

(6)

where
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DlSCRETlZATION DF THE MDMENTUM AND ENERGY EQUATIONS
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Fig.' 1 Elemental contraI volume for P.

As the problem under consideration does not

involve diffusive terms, evaluating the convective
fluxes at the control volume interfaces 'through the

Upstream Differencing Scheme (UDS) [10J, the final

discretized form of Eq.(1) is

this case involving only
the three momentum

for the energy equation
mass conservstion, of

.,V"'ZçX'II- Z'IIXI;

The source term, p~, in
the pressure field, for

conservstion equations and

are given below. For the

course, p~ is equal to zero •

The algebraic equations are obtained employing
the finite-volume method, that is, by integration of

Eq.(l) over the elemental control volume shown in

Fig.1 and integration in time. the resulting equation
has the form ,

(14)

where

(ML~p - ~~~)/At + M ~ - M ~ + M ~-~ -~ e e w w n n

(12)

o
';> = tip/At + Eanb

The subscripts e, w, n, 5, d and f, appearing in

the equations indicate the interface of the control

volume of Fig. 1, while the subscripts E, W, N, S, D

and F indicate the P neighbouring contraI volumes. For

simplicity the dimensions of the elemental contraI

volume in the transformed space, AC, Ao and Ay are
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for the special case of the fluid being a perfect gas.

Velocity Components as a Function of. P'. The
expressions for the contravariant velocity"components
as a function at p' are obtained" from the momentum
conservation equations. Consider that if a correct
pressure field is introduced in the conservation
equarions 1t gives rise to correct u, v and w

cartesian veloc;ty components, and if a guessed
pressure field p is introduced it gives rise to a
est1mared, u*, v* and w* velocities." Subtracting the

equations" one obtains, for exemple, for the ue
cartesian velocity compo~ent

a "'- (1/2 "- <X )M
a ~ (1/2 + ; )M

(15)

e e e

"w w w

a - - (1/2 - ; )M

a • (112 + ; )M
n n n

s s s
"a = - (112 - ; )M

ar'· (1/2 + ;r)Hrd d d

Of course, for the Euler equations, the
parameter ã àssumes the value +1/2 and -1/2
dependending 00 the signal of the velocity at thé
interface under consideration. Since the implicit
formulation is adopted, Eq.(14) originates a linear
system for each dependent variable u, v, w and T.
Recall that the.coefficents of Eq.(14) are identical"
for u, v, w and T since the co-located arrangement of
variables is employed.

where

1/RT
(20)

DISCRETIZATIONOF THE MASS'~ONSERVATION EQUATION (21)

The method used in this work for

pressure is an extension of the methodologies
the solution of incompressible flows", that
mass conservation equation is transformed
"equationfor'C"pressc:-eor pressure correction.

In the solution of compressible flows p and
velocity are expressed in terms at pressure and
substituted into the mass conservation' equation
forciog' both density and velocity be active in this
equation [2,10,11,12).

The discretized form of the mass conservation
equation is obtained integrating this equation over
space and time, giving

finding
used in
i"s, the

in an

(22)Ue

-u
The paramerer dp changes according to the

pressure/velociry coupling merhod used. Csing the
above velocity componenrs the expression for the
conrravariant componenr can be obtained as

Similar equations can be written for the other
five components" which enters the mass conservation
equation," ln order to avoid a 19-point equation for
p' rhe pressure gradients in thedirection orher rhan
that of the velocity in considerarion are neglecred.
For the SIMPLEC [13) method used here the expression

for the a~ is

(16)o

where Me' for example is expressed by

He
(17)

(23)

where

lt is seen by Eq.(17) that the velocity
componentes which enters the mass conservation
equation are the contravariant ones.
" The "keyquestion now is to replace the mass
fluxes as a function of pressure. S1nce 1n the mass
flux calculation p and veloc1ty are involved, both p
'and veiocity need to be wr1tten as a funct10n •.f
pressure. Following the SIMPLEC [13) procedurt to
handle the pressure/veloc1ty/density coupling the
velocity and density are written as

Since the above equaricn 1s "a
correction equation its form J~es ~ot
converged results. Differenr equarions
only the convergence rare but not rhe final

(24)

velocH"
alter the
influences
results.

where the corrections in p*and V* must be such that

mass is conse~ed. The equation for V transforms in
three scalar equations for the' U, V and W
contravariant velo~ity components. The star
represents values from the previous iteration leveI,

and the prime v~lues need to be related t~ apressure
correctionp' related to pressure by p • p + p'.

(18)
Equation for p'. lnrroiucing Eq.(19) and Eq.(22)

for alI densities and v•.locities which enter mass
conservation"in Eq.(16) with their roass flux terms
linearized by Eq.(17), the resulting equation 1s an
equation for p' in the forro

(25)

where

Deosity as a Function of p'. To obtain the
relation between density and p' the state equation is
linearized as

p = p + cP. p' (19)
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(30)

•• 00 00
[E(anbuNB)P + E(anb~)E + (HP~ + ME~)/Al]

[(B-pJp + (B-pJE)

-.u (p~ - p;) - (p~ + P~E - P~ - ps~) -

L[p ]e = Ai; (i;X)e + 4A'I) ('I)X)e•

.•.
(PD + PDE - Pr - PFE) -

(31 )
+ 4A1 (lX)e

•
ue'

'. o o• [E(anb~B)p,+ HP~/Al]-
ài;A'I)A1'L[~·u]

(28)
up

~
(~)p (B-p)p p

and for the E control volume
[E!anb~B)E + ~{;Al]

_ '6i;A'I)A1.L[~·u]

(29)~~ (B.p>E (B-p)E E

The velocity u· at the east face using ;he PVF;A
approach is obtained through the average of up and uE'
with exception of the pressure tenn., resulting in

The cartesian velocity components v· and w· at

the same interface are obtained in the same manner.

Knoving u:, v: and'w: the U: contravariant component
can' be calculated. The calculation of the remaining

contravariant components follows the same procedure.

Velocitv Corrections Using p'. The contravariant

components are corrected using Eq.(22), for 'U, and

using similar equations for V and~. These corrected
veloc~ties viii be used for computing the coefficients

for the next iteration levei. The cartesian velocitv

components are corrected using the' p' field by .

The L[p·U]e appearing in Eq.(30) is the

numerical approximation of pu as if the control volume
were centered in "e". The expression for L[p·U]e is

. j

components u. v and v. Since one is uslng co-located

variables the u, v and w velocities are alI stored at

the center of the control volumes •.In order to obtain

an adequa te coupling between pressure and velocily the
correction equations which enters the mass

conservation equation need to be written. using
velocities at the interfaces. However, there is no

velocities stored at the interfaces. It isnecessary •.
th~n to compute the star contravariant velocities at
the interfaces as a function of the star cartesian

velocities located in the center of the control

volumes.

The PVF-A procedure to compute U·, V· and W· at
the interfaces is discribed in I)) for cartesian grids

and in [4] for general curvilinear .grids and is akin

to Peric'a [8] procedure for incompressible flovs.

Taking as an exampl& the calculation of U at the

east face, • ~ne recognizes that .u·/ v· and w· are
needed at the .east face. Writing Eq.(14) for the
variable u for the control volume P for an estimated

pressure field p., one gets
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(27)

in the

velocity

\'ariables

cartesian
the dependent

are the

AePE + AJPW + AnPN + ASPS + AdPO + ArPr

(26)

Pcf. + u-:u

A ~ - mPd:. - m~ct )me E medp(ct11)e
w wW w llw

Pr!. V-:V

P~ V-V
mn N + mndp(ct22)n

A ~ - m 5 - m dS(ct22)s s s· s

\r.\I

p p \t:\J' .
mddp(ct33)d

Ar : - mrCr - mfdr(ct33)f

à~à~A1 P • P • P •

JpAl - mppp - mePE - m~W

P • P • p. ,p.
mnPN.- msPS - mdPD - mrPr

- [(1/2 + ~srp; + (1/2 - ~sJp;)6i;A:r

- 2- 2 - 2
(~X) + (~y) + (~z)

- 2 - 2- 2

~ ('I)X)+ ('I)y)+ •('I)z)

-2 -2 -2

(lX) + (ly) + (lZ)

V
m

S

mP = (1/2 - ~ IU·à'l)A1 mP = - (1/2 + ~ JU·A'I)A1
e e e ;.

w w w

mP: (1/2 - ~ JV·A~Al

mP = - (1/2 + ~ JV·A~A1
n . n n

"'~s S 5

•
m~ = - (1/2 + ~f)W;A~A'I)(1/2 - I3d)WdA~AI)

As is kno ..•.n

!-.;,,- cor u=. C'tu~H tons

whcrc the i cocfficicnts ~re evaluatcd in the same vay

as the ~ coefficicnts of Eq.(15).

1 iir. 51;,1( CU~TRA\''\RIAH \'ELOCITlES Aí THE H,TERFACES



~ = ~ - dp.L[~·U]p6~6~67

vp = vp - dp'L[~'V]p6~6T167

(32)

.• .•. w

wp - wp - dp L[p' ]p6~6T167

Fig. 4. where the triangles represents the
experimental results for a • O. The numerical
solutions were obtained u~ing a converRence criterion
in the pressure [4] of 10-5, and 2x10-S• for these

second, third and last test, respectively. The fully
·3D problem was not solved to a tighter convergence due
~olely to computer limitations•

Recall that the resulting expressions for L[p'~]
are the same as for L[~~] replacing p by p':

1. Domain discretization.
2. Estimative of u, v, w, T. p and p in t+6t.

3. Computation of the coefficients and sou~ce .term
o! the momentum equations. Solve for u ,v and
w usin& MSI [14J technique. Computation of the
contravariant velocities at the interfaces of
the control volumes•

. .
4. Solve for p' using ~SI. Co:pute p • p + p'.
5. Correction of u ,v and w , using Eq. (32), of

0*, v* and w* using Eq.(22) and similar
equations and correction of density using
Eq.(19).

6. Solution of T using MS1. Computation of p using
the state equation.

7. Iteration is necessary until convergence for the
time step under consideration is reached. Fig. 2 Test .of the symmetry characteristics.
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SOLUTION PROCEDURE
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CONCLUDING REMARKS

The development of a 3D numerical model for the
solution of alI speed flows using co-located variable
was described. The model incorporates two importants
features, namely, the possibility of solving flows
ranging from low speed incocpressible flows te
compressible supersonic flows, and the use of co­
located variables which introduces a trecendous
simplicity in the code implementation when cocpared
with the usual staggered grid. The model is also"
tailored to handle complex arbitrary geometries. lhe
preliminary tests deconstrated that the cethod
performs very well.

PRELIMINARY RESULTS

The preliminary tests of the numerical method
was realized solving four high speed flow problems.
The first one aimed to test the invariant

characteristic of a 2D plane flow along the axis of
the cylinder, by solving the flow problem over a
circular cylinder. ln the direction of the cylinder
axisthree cell were used, with the total grid being
26x20x3. The results (not present here) show
excellent agreement when compared with the 2D solution
using 26x20 elemental volumes.

The second problem, with the objective oi
testing the symmetry characteristics of a 2D
axisymmetric flow. was the flow over the nose tip of
the Brazilian Launch Vehicle (VLS), with angle of
attack (a) equal to zero and Mach number equal to
3.75. With a equal to zero the solution can be
compared with the 2D axisymmetric solution. In Ihis
case the number of volumes in the axisy~~etric
direction can not be smaller as enough for applying
boundary conditions. as in the 2D plane case, be;ause
the number of volumes defines the shape of the
revolution body; Two grids with 30xl4x1O and 30;'l4x20
were used.· The results are shown..in Fig. 2 where the
triangles denote the experimental solution [15], curve
1 shows the lD axisymmetric results (30x24) [5J. curve
2 the'3D solution with 30x24x10 and curve 3 the
'solution with 30x24x20 volumes. lt can be seen toat

the results with a more refined srid in the angular'
direction tends to the experimen.al results.

The third test was the solution of the VLS
vehicle. again with a • O and Mach number ).75 but
extending the computational domain up to half of the
third launching stage. Fig. 3 shows the results where
the triangles "are the experimental results [15] and
the solid iine the 3D numerical solution using
60x24x20 volumes distributed in 1800• which is
equivillentof using 60x24x40 volumes.

The final test present here is the solution of
the same flow as in the third test but with a • 50,

characterizing,theflow as truly three-dimensional.
The results of pressure coefficient (Cp) over the
surface for e - 900, 1600 and 2300 are presented in

355



[10] Patankar, S.V •• "Numerical Heat Transfer and

Fluid Flow," McGraw-Hill, New York, 1980.

Van Doormaal, J.P. and Raithhy, G.D.,

"Enhancements of the simple method for predicting
inéompressible fluid flows. Numerical Heat

Transfer, Vol. 7, pp. 147-163, 1984.

[12J Silva, A.F.C. and Maliska, C.R., "Uma Formulação

Segregada, em Volumes Finitos para Escoamentos

Compressíveis e/ou Incompress{veis em Coordenadas
Generalizadas. Anais do 11 Encontro Nacional de

Ciências Iérmicas, p. 11-14, Aguas de Lindoia,
Brasil, dez/·1988.

[IIJ Harlow, F.H. and Welch, J.E •• "Numerical

Calculation of Time-Dependent Viacous

Incompressible Flow of Fluid with Free Surface",

Physics of Fluids, Vol. 8, pp. 2182-2189, 1965.

in. the Solution oí Supersonic Flows:" (in
portuguese), M.Sc. Dissertation, Federal

University of Santa Catarina, Florianópolis, SC,
Brazil, 1990.

[13J3.S0
-Oj

10x F L

-0.63 .
0.00 0.70 1.40 2. \0 2.80

-01
1.1

:0
5.00

3.872.75

a.
u ! .62

G. E., "3-D Modified
for Finite Difference

AlAA Journal, Vol.

Fig. 4 Cp for Mach 3.75 and a - [14 ] Zedan, M. and Schneider,

Strongly Implicit Procedure

Heat Conduction MOdelling,"

21, n. 2, pp. 295-306, 1983.

[ 9) Bortoll, A.L., "The Use oí Co-Located Variables

[ lJ Anderson, D.A., Tannehill, J.C. and Pletcher,

R.H., '."Computational Fluid Mechanics and Heat
Transfer," McGraw-Hill, Washington, 1984.

[ 2J Van Doormaal, J.P., "Numerical Methods for the

Solution of Incompressible andCompressible Fluid
Flows," Ph.D. Thesis, University of Waterloo,
Ontario, Canada, 1985 •.

[15J ONERA, "Essai du Lanceur Bresilien au 1/15

Soufflerie S2MA; Configuration VC - C (5 dards),
Mach 1.500, 2.502, 3.747," .France, decembre 1988.

356

by
is

provided
IAE/CTA

support

Espaciais

C.H. and Maliska, C.R., "The Use of Co­

Variables in the Solut1on of Supersonic
Submitted to Numerical Heat Transfer,

Marchi,
Located

Flows,"

1990.

[ 5J Maliska, C.R., Silva, A.F.C. and Marchi, C.H.

"Solução Numérica de' Escoamentos Compressíveilõ
Utilizando-se Variáveis Co-Localizadas em Coorde­

nadas Generalizadas," Relatório ao IAE/CTA, parte

5, Florianopolis, SI~~EC/~~C/UFSC, jun. 1990.

[ 8J Peric, ~!., Kessler, R. and Scheuerer, G.,

"Comparison of Finite-Volume Nump.rical Methods

with Staggered and Colocated Grids," Submitted to

Computers and Fluids, 1987.

[ 6J Hsu, C., "A Curvilinear-C"órdinate Method for
Momentum, Heat and Mass Transfer in Domains of

Irregular Geometry," Ph.D. Thesis, University of
Minnesota, USA, 1981.

[ 3J Marchi, C.H., Maliska, C.R. and Bortoli, A.L.,
"The Use of Co-Locat'ed Variables in the Solution

of Supersonic Flows," Proceedings of the 10th

.Brazilian Congress of Mechanical Engineering,
Vol. I, pp. 157-160, Rio de Janeiro, Brazil,
1989.

[ 7) Rhie, C.M., "A I'umerical Study of the Flow Past

an Isclated Airfoil with Separation," Ph.D.
Thesis, Cniversity oí 11linois, Urbana-Champaign,

USA, 1981 • .'

REFERENCES

ACK.'10WLEDGMEI\TS

The partial financial
Instituto de Atividades

gratefully acknowledged.


