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SUMMARY

Segregated finite volume methods have become quite an attractive tool for the aolution of complex
fluid flow problems. For large, three dimensional CFD problems, a very significant portion of the total
computational time ia spent in the BOlution of linear systems. The present work studies the effect of
vectorization on the efficiency of a few linear system solvers typically used in the context of these segregated
finite volume flow computations. The resulta here obtained indicate that strongly implicit procedures, which
are typically the most efficient in acalar mode, can be lesa efficient than fully explicit algorithms when
vectorization ia taken into account. The influence of the size of the problem on the gains obtained from
vectorization ia alao investigated and diacussed.

INTRODUCTION

PROBLEM STATEMENT AND SOLUTION METHOD

The general form given in Eq. (1), with the appropriate source
term S-P, can recover the continuity equation, the threP. momentum
equations, and the energy equation. For that, r/> must be chosen as

The inviscid, three dimensional, supersonic flow of a perfect
gas over the nose fairing of the VLS vehicle is used as the physical
test problem for the present work. The flow is, then, assumed to
be governed by the Euler equations, which can be written for a
general curvilinear coordinate system (~, 1/,() as

1, u, v, w, and T, respectively. J is the Jacobian of the coordinate
transformation, and U, V and W are the contravariant velocity
components. The system of 5 partial differential equations repre­
sented by Eq. (1), plus an equation of state, form a closed set of 6
equations for the 6 unknowns (p, u, v, w, p, and T).

Since we are considering low enough angles of attack, the flow­
field is symmetric aOOut the pitch plane. Therefore, the computa­
tional solution domain spans only 1800 in the circumferential direc­
tion around the vehicle, going from the leeward to the windward
plane. Flow symmetry conditions are, then, imposed at OOth lee­
and windward planes. At the OOdy surface, a flow tangency condi­
tion is enforced and the wall is assumed to be adiabatic. Freestream

conditions are prescribed at the computational entrance surface. At
the exit plane, since we are considering supersonic flow cases, alI
properties are obtained by extrapolation of interior information.
At the upstream stagnation line, it turns out that no numerical
boundary conditions are a.ctually required. Freestream conditions
are used as initial conditions for the simulations performed here.

Eq. (1) is discretized using a control volume method (Patankar,
1980). The mass conservation equation is linearized in such a way
that maintains both density and velocity as unknowns (van Door­
mall, 1985), therefore allowing the solution ofincompressible as well
as compressible flows. Through the use of the SIMPLEC method
(van Doormall and Raithby, 1984) for the pressure-velocity cou­
pling, the continuity equation is used for the calculation ofpressure,
the equation of state is used to obtain the density, and the three
momentum equations plus the energy equation are used in order to
obtain the other quantities (u, v, w and T). A colocated variable
arrangement is employed in thel present work. FUrther details of
the numerical methodology used here can be seen in Marchi et al.
(1989, 1990).

Once initial values for the six state variables are known, the
solution procedure adopted in the present work takes the following
steps. 1. Estimate of the u, v, w, p, T and p fields at instant
t + ilt. 2. Computation of the coefficients for the three momentum
equations. 3. Computation of the coefficients for the continuity
equation. 4. Computation of the S-P source terms for u, v and
w. 5. Solution of the momentum equations. This step determines
new velocity components u·, v· and w· which do not necessarily
conserve the mass. 6. Evaluation of the contravariant velocity
components U·, V· and W·. 7. The error, or the residue, in the
continuity equation is computed using the available contravariant
velocity components and density field. 8. A correction to the pres­
sure field is determined using the coefficients evaluated in step (3)
and the residues determined in step (7). 9. Velocity components
and densities are corrected by the new pressure field. The result­
ing fields conserve mass. 10. Computation of the coefficients and
source term for the energy equation. 11. Calculation of a new
temperature field. 12. Computation of the density as function of
pressure and temperature. 13. Return to step (1) and iterate until
the steady state is rea.ched.

The solution process, as presented aOOve, does not involve any
iteration cycle within each time intervalo However, due to the type

(1)
Ia a a a .

J ôt (pr/» + a~ (pUr/» + a1/(pVr/» + a( (pWr/» = S-P

Computational Fluid Dynamics has typically been an area of
work which has taken advantage of alI recent progresses in com­
puter architecture and hardware in a continuous search for im­
proved computational performance. One aspect of the problem is
the use of vectorization. It is possible to show that for large, com­
plex, three-dimensional CFD problems, a very significant portion
of the total computational time is spent in the solution of linear
systems. Therefore, the use of linear system solvers that can benefit
from vectorization can have a substantial impa.ct on the computa­
tional cost of these CFD solutions. This has motivated the authors
to study the effects of vectorization on the performance of a few
methods used for the solution of the linear systems that arise in
the computational treatment of fluid flow problems.

The physical problems considered here concern the three dimen­
sional, supersonic, flow over the first Brazilian satellite launcher,
the VLS. A segregated finite volume technique in generalized coor­
dinates is used to discretize the governing equations. In the three
dimensional case, this leads to the need of "inverting" heptadiag­
onal matrices with non-adja.cent diagonals. Three methods were
used in the present work for the solution of these linear systems.
These were the modified strongly implicit (MSI) procedure (Zedan
and Schneider, 1983), the alternating direction implicit (ADI) al­
gorithm, and the point Ja.cobi scheme. The MSI algorithm is char­
a.cterized by strongly recursive procedures, therefore allowing very
little vectorization. The ADI algorithm cannot be vectorized in the
direction being swept, but it can always be vectorized in the other
two directions. The Jacobi scheme is fully vectorizable since it is a
completely explicit method.

The concept of efficiency used in the present work is associated
with the computational time necessary in order to obtain the solu­
tion of a given problem to a desired a.ccura.cy. Among the fa.ctors
investigated, we included the size of the problem, Le., the number
of computational volumes considered, and its effect on the relative
efficiency of the various methods. Moreover, the allowable range of
time-steps that ea.ch method could stand was also considered.
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(2)

The form of the [AI matrix is shown in Fig. 3. It is clear, there­
fore, that the [AI matrix assumes a heptadiagonal structure with a
bandwidth equal to 2 x N I J + 1. Its solution by direct, i.e., non­
iterative, methods is typically unfeasible for "reallife" plOblems.

where the subscripts E (for "east"), N (for "north") and F (fOI
"forward") indicate the neighboring volumes in the positive €, IJ

and (-directions, respectively. lu a similar fashion, the subscripts
W, S and D indicate the corresponding volumes in the negative €,
IJ and (-directions. Eq. (3), when applied to the N I J K volumes,
can be written in matrix notation as

(5)

(4)[AI {</>} = {b}

The Jacobi Scheme. The Jacobi method is a point iteration
scheme in the sense that the new values of the variables for a given
P volume are explicitly calculated using the values of the 6 neigh­
boring volumes at the previous iteration leveI. Using Eq. (3), we
can obtain that a generic variable </> at volume P can be computed
flOm the following expression

< TOLP
Pmaz - Pmin -

for ali volumes in the computational domain. Here, P is the pres­

sure at the present time instant, po is the pressure at the previous
instant, Pmaz and Pmin are, respectively, the maximum and min­
imum values of pressure throughout the field, and TOLP is the
specified tolerance. Two values of TOLP were used in the present
work. For the tests using a computational mesh with 7200 volumes,
we adopted TOLP = 10-5• The"convergence criterion was relaxed
to 2 x 10-5 for the cases involving meshes with 28800 volumes.

of linearization adopted and due to the coupling scheme imple­
mented, some steps must be executed more than once within each
time step. ln the present work, the computations associated with
steps (3) thlOugh (9) were usually executed twice for each time in­
terval. We shall refer to this situation stating that IT M = 2, i.e.,
two evaluations, or two iterations, of the continuity equation coef­
ficients for each time intervalo This inner iteration cycle, which has
no meaning for incompressible plOblems, allows the use of larger
time steps. Finally, we must emphasize that steps (5), (8) and (11)
involve the solution of linear systems.

The iterative procedure is performed until

where

The ADI Scheme. The alternating direction implicit method
consists in the cyclic alternate application of the tridiagonal matrix
algorithm (Patankar, 1980) in the three spatial directions. When
applied in the €-direction, Eq. (3) should be written as

2: anb</>NB = a.</>Ê + aw</>w + an</>N + a'</>$ + ad</>'b + a f</>} (6)

The Jacobi method is easy to implement and it requires only one
additional auxiliary array with dimension N I J K, which is used to
store the property value at the previous iteration, i.e., </>n. Since it
is fully explicit, the Jacobi scheme allows for total vectorization.

METHODS FOR LINEAR SYSTEM SOLUTION

Before describing the different methods which will be used for
the solution of the linear systems, it is convenient to discuss the
structure of these system coefficient matrices. We can start by
observing that the solution domain assumes the form of a paral­
lelepiped in computational space. ln this transformed space, the so­
lution domain is discretized into N I volumes in the €-direction, N J
volumes in the ftdirection and N K volumes in the (-direction. The
total number of computational volumes is N I J K = N IxN JxN K.
Volumes are numbered as indicated in Figs. 1 and 2, where the
K = 1 and K = 2 planes are shown.

The process of discretization of the governing equations, when
applied to a volume cen tered at point P, yields ap</>p + a.</>E + aw</>w = dp (7)

~
1

Figure 1: Plane K = 1 in computational space.

Thus, </>N1 is equal to QN 1 and the other values of </> are calculated
as

(9)

(10)

-a.
Pp = ap + awPw '

where
dp = -an</>N - a.</>s - ad</>v - af</>F + b (8)

The right-hand side of Eq. (8) must be evaluated using the available
values of </>. The solution of Eq. (7) involves initially the evaluation
of arrays P and Q defined as
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Figure 2: Plane K = 2 in computational space.

[A]

Figure 3: Linear system matrix with 7 coefficients.
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[A + B] {tP}n+l = [A + B] {tP}n - {[A] {tPr - {b}} (12)

The MSI Procedure. The [A] coefficient matrix, in the modi·
fied strongly implicit procedure (Zedan and Schneider, 1983), uno
dergoes an approximate LU decomposition such that

Matrix [B] has 12 non-zero diagonals adjacent to the diagonals of
the matrix of coefficients [A]. Since the decomposition process is
an approximate one, the solution of Eq. (3) involves an iterative
process which recurrence relation is given by

the problem in order to fully characterize the relative efficiency of
the various methods. To that end, test with two different meshes
were performed. The smaller one uses a total of 7200 volumes
(N I = 30, N J = 24 and N K = 10), and the other mesh requires
28800 volumes (N 1= 60, N J = 24 and N K = 20). A longitudinal
plane of the larger mesh is shown in Fig. 4.

For all test cases considered in the present work, we assumed
Moo = 3.75, Too = 168 K and Poo = 0.3175 kgfm3. For the cases
with the 7200 volume mesh, we assume a = 0°. The cases using
the 28800 volume mesh, the angle of attack was set at 5°. Fig. 5
presents the performance curves otained for the tests with the mesh
with 7200 volumes. The overall behavior of these curves is in good
agreement with what one should expect. For very small DT's,
a large number of iterations is required in order to reach steady
state. Therefore, cru time is large. The computational effort has
a minimum and, afterwards, it raises again with increasing DT.

We can observe that all 6 curves have a very similar shape.
This is an indication that the other phases of the problem solution
process are not sensitive to the differences in the linear system so­
lutions. We can also observe from Fig. 5 that, in scalar mode, MSI
is by far the cheapest method, and Jacobi is the most expensive
one. The reasons for this behavior are very well understood, and
usually can be explained in terms of the fact that information in
the Jacobi method propagates at a rate of one volume per iteration.
Hence, even though one Jacobi iteration is much faster than one
MSI iteration, the implicitness ofthe MSI procedure allows conver·
gence in a much smaller number of iterations. The efficiency of the
three methods becomes m\lch more comparable in vector processo
ing mode. Now, Jacobi is the most efficient method. Although the

(11)

(13)

[L] lU] = [A] + [B]

We observe that those are very recursive relations, which implies
that the direction being swept cannot vectorize. It is possible,
however, to vectorize along the plane normal to the sweep direction,
i.e., in the other two coordinate direction. In terms of memory
usage, 4 additional arrays of dimension N I J K are required, one
for P, another for Q and two others to aid in the vectorization
processo

Here, n simply denotes the iterat.ion levei, and it is not the time
step counter. When the process converges, {tP}n+l = {tPr, and Eq.
(12) then yields ([A]{tPr - {b}} = O. Therefore, if the iteration
process described by Eq. (12) converges, it will converge for the
solution of Eq. (3).

In order to actually apply Eq. (12), it must be rewritten in a
more appropriate formo If we define a correction to the tP field as
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Figure 4: Longitudinal plane for mesh with 28800 volumes.
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Figure 5: Behavior of the various methods for the mesh with 7200
volumes.
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(17)DT = 1),/' RfUoo

{Rr = [A] {tPr - {b}

with the help of Eq. (11), we could finally obtain

and a residue, or error, as

For the cases considered here, ali three methods were iterated until
the Euclidean normal dropped to 0.005 of its initial value.

Since the [L] and [U] matrices are lower and upper triangular matri·
ces, the solution of the above equation can be obtained by a forward
sweep followed by a backward sweep. The method, as implemented
here, requires 4 arrays with dimension 6 x N I J K, 4 arrays with
dimension 7 x N I J K and 5 arrays with dimension N I J K.

Stora c Requirements and Conver ence Criterion. A good es·
ti mate o t e amount o core memory t at a co e requires to run can
be obtained by considering the large arrays it needs. If we do not
consider the arrays used by the linear system solution method, the
code here implemented requires 68 arrays with dimension N I J K
and 4 arrays with dimension 7 x N I J K. This gives, thercfore, a
total of 96 arrays of dimension N I J h', where we recall that N I J K
is the total number of interior computational volumes in the prob­
lemo From the foregoing discussion, we can see that the Jacobi
scheme requires one additional array with dimension N I J K. The
ADI scheme requires 15 additional arrays with the same dimension,
and the MSI procedure nceds 57 of these additional arrays .

The Euclidean norm of the residues is defined as

CPU usage curves, representing the time required to achieve
steady state, were constructed for ali cases analyzed here as a func­
tion of the dimensionless time step. This nondimensional time step,
DT, is defined as

Here, 1),/' is the dimensional time step, R the radius of the cylin·
drical forebody region, and Uoo is the freestream velocity. Since we
are only interested in steady state problems, the objective would
be to make DT as large as possible, because this typically leads to
faster convergence. Since how much one gains in performance by
going from scalar to vector mode is typically dependent on the size
of vectors used, it is important to consider the effect of the size of
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authors must admit that they did not expect such behavior, this
result is not entirely surprising since the Jacobi procedure is fully
vectorizable while the amount of veetorization possible with MSI
is very limited.

Results for the mesh with 28800 volumes are shown in Fig. 6.
Here, the behavior of the Jacobi scheme is rather odd. The Jacobi
scheme presents performance similar to ADI up to DT = 0.2. For
0.2 ~ DT ~ 0.5, the solution does not converge in less than 20000 s
with the Jacobi scheme, even with vector processing. From DT =
0.5 up to DT = 1.5, the Jacobi method again produces converged
solutions, but with a performance much poorer than AD!. For
larger time steps, the solution diverges. Aside from this atypical
behavior of the Jacobi scheme, the results in Fig. 6 do not present
any significant differences with respect to those shown in Fig. 5.
Of course, the CPU time grows approximately proportional to the
number of volumes in the mesh.

Table I presents average values for the ratio between CPU times
for scalar and vector processing, for alI three methods and for the
two meshes considered. As expected, the MSI procedure extracts
the smallest performance improvement from vectorization. The Ja­
cobi algorithm, on the other hand, obtains the largest performance
boost from vectorization for the ~ases considered. It is interesting
to observe that the relative benefits of vector processing increased
with mesh size only for the ADI method. Since we are measuring
the overall CPU time here, other phases of the solution process are
involved besides linear system solution. Therefore, the full meaning
of this result is not completely clear.

The MSI procedure involves a process which tries to partially
compensate for the approximate decomposition errors. We have
found that the li' parameter, which controls this process, can have
a strong influence in the CPU time. Ali the results presented so far
used li' = O, which essentially turns off this compensation processo
A few tests were performed in vector mode with li' = 0.5. These
have shown up to a 50% increase in the CPU time. An analy­
sis of the MSI algorithm has indicated that this difference can be
attributed to higher vectorization potential when li' = O.

The number of iterations for the continuity equation coefficient
evaluation (ITM) was usually set to 2 in the present work. This
implies that 9 linear system solutions must be performed each time
step. The use of IT M = 1 reduces to 5 the number of linear sys­
tem solutions that are required per time step. This, however, has
a strongly detrimental effect in the performance of ali algorithms
considered here. For instance, for a 7200 volume mesh, the max­
imum allowable value of DT is reduced to approximately 0.09 for
alI methods. Such an stringent limitation on the maximum DT is
a very undesirable characteristic.

Finally, ali results previously shown use double precision. A few
tests were performed with single precision, and we have found this
to be detrimental in ali aspects. The number of time steps to obtain

Table 1: Ratio of scalar CPU time over vector CPU time.

Method Mesh Size
7200

28800

Jacobi

7.87.0
ADI

5.56.6
MSI

1.91.9

convergence to steady state is typically increased and, at most,
remains unchanged. The number of iterations in the linear system
solution increases for alI methods. Maximum allowable values of
DT for which there is convergence are reduced to very low values.
Actually, a combination of IT M = 1 and single precision makes
the use of the Jacobi scheme practically impossible.

CONCLUSIONS

The results demonstrate that strongly implicit procedures, such
as MSI, which are very efficient in scalar processing mode, can have
poorer performance than fully explicit schemes in vectorized mode.
Moreover, explicit schemes such as the Jacobi algorithm imposed
almost no additional penalty in terms of memory requirements for
linear system solution. These observations can be enough justifica­
tion to consider the replacement of strongly implicit procedures by,
apparently, older explicit linear system solver algorithms when the
possibility of vectorization is available. We further observed that
the use of li' = O makes the MSI scheme at least partially vectoriz­
able and, hence, more efficient. The use of single precision must be
avoided and, for the kind of finite volume methodologies here imple­
mented, the use of IT M = 2 is recommended. It is clear that there

are quite a few aspects of computational performance improvement
which were not addressed here. Nevertheless, the authors believe
that the present results can be relevant for those interested in the
numerical solution of complex fluid flow problems.

Moreover, the particular details of how one goes about in order
to obtain vector code were not discussed in the present work, be­
cause these could be machine dependent. Some general rules are
presented by OIson (1990). More specific details can generally be
found at the vector optimization guide of the particular installa­
tion (in the present case, "Convex Fortran ... ",1989). The authors
would like to emphasize, however, that the overall conclusions of
the present work are thought to be general and independent of
installation details.
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