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SUMMARY

The numerical solution of the three dimensional flow over the Brazilian Satellite Launch Vehicle
(VLS) is realized in this work. The solution is carried out for the inviscid flow with Mach number of 0.50,
0.90 and 3.0, covering the subsonic, transonic and supersonic regime. A numerical model which uses
co-located variables and is suitable for the solution of all speed flows is employed. The numerical results
are compared with the available experimental ones, and good agreement is observed.

INTRODUCTION

Due to the fast development of high speed computers and
of the numerical techniques for the solution of partial differential
equations, the use of computational codes for the aerodynamic
design of aerospace vehicles has increased considerably. The
association of selected experiments in wind tunnels with numerical
experiments in computers, permits a better design with much lower
costs. With both techniques the aim is to obtain the pressure center,
drag and normal coefficients, and the pressure coefficient, used in
the prediction of the vehicle trajectory, its performance and its
structural design.

In the present work the numerical model of Marchi et al
(1990) is employed for the solution of the three dimensional
inviscid flow over the VLS, whose geometry is depicted in Fig. 1.
The main features of the model are the use of co-located variables
in a boundary-fitted framework and the versatility of solving all
speed flows. The solution is obtained for Mach number of 0.50,
0.90 and 3.0 with an angle of attack of six degrees. The VLS is
under development at the Instituto de Aeronautica e Espago (IAE)
and it is supposed to launch artificial satellites which are being
developed by the Instituto Nacional de Pesquisas Espaciais (INPE).

It is demonstrated that the model employed here is a useful
tool in the design of aerospace vehicles and, due to its generality,
it can be also employed in the aerodynamic design of automotive
vehicles and in the determination of the forces acting upon building
structures due to the wind action.
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Figure 1. Full configuration of the VLS vehicle.
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THE MATHEMATICAL AND Tl MERICAL METHOD

The mathematical model employed considers the inviscid
flow of a perfect gas. The governing equations written in a natural
coordinate system (£,n,y) are given by

39 gy wl +Dovp) + 2 B
T3P g (PUN) oV +- (W) +F°-0 (1)

9% dn

where J, t and p, are the jacobian of the transformation, time and
density, (U,V,W), the contravariant velocity components, and P* an
appropriate source term. When the scalar ¢ is set equal to 1, u, v,
w and T, Eq.(1) recovers the mass conservation equation, the three
components of the momentum equations (Euler equations in this
case), and the energy equation, where u, v and w are the cartesian
velocity components and T the temperature. The closure of the
mathematical model is achieved using the constitutive relation
given by the state equation as
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where p is the thermodynamic pressure and R the gas constant.

The numerical methodology used employs the finite volume
approach (Patankar, 1980) based in a boundary-fitted framework
(Thompson et al., 1974), with a co-located scheme for the
dependent variables, as described in Marchi et al. (1989) and the all
speed methodology developed by Silva and Maliska (1988). The
use of co-located variables in three-dimensional numerical schemes
using boundary-fitted grids is extremely convenient since it
simplifies the cumbersome procedure needed when staggered grids
are employed.

The equations recovered by Eq.(1) are solved implicitly in
a segregated way, with the Euler equations used for calculating u,
v and w, the mass conservation relation for finding pressure and the
energy equation for determining temperature. Density is obtained
through the state equation. The SIMPLEC method of Van
Doormaal and Raithby (1984) is employed for treating the
pressure-velocity coupling. The same idea embodied in the
SIMPLEC procedure was employed earlier by Rushmore and
Taulbee (1978). The five systems of algebraic equations are solved
by an ADI procedure as described in Silva et al. (1991).




PROBLEM DEFINITION

Computational Domain. The flow domain under
investigation covers only the forepart the VLS, about 25% of its
full length L, as shown in Fig. 1, because beyond this region the
flow is affected by the rocket boosters. To solve the booster region
it requires a very large computational grnid, which 1s, at the
moment, beyond our computational capabilities. Fig. 2 shows the
type of discretization used for the numerical solution. The grid was
generated algebraicaly using an nonuniform spacing normal to the
rocket surface with ratio 1,20. The full computational domain has,
therefore, dimensions of 4L in the upstream direction and 8L
normal to the surface, where L is the full length of the vehicle.
Such a large domain, in the upstream and normal directions, is
necessary due to the elliptic nature of the subsonic and the
transonic calculations. Additionaly, as seen in Fig. 2, the
computational domain covers only 180° in the azimuthal direction
because the yaw angle of the flow”is zero and, therefore, the three
dimensionality of the flow is admited to result only from the angle
of attack of the vehicle.

It is employed 12 volumes in the azimuthal and 70 in the
normal directions, with 96 volumes in the streamwise direction for
the supersonic calculatins and 192 for the remaining cases. This
represent grids wich ranges from 80,000 to 160,000 elemental
volumes.
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Figure 2. Grid close to the VLS vehicle.

Boundary Conditions. At the downstream region, that is, the
plane normal to the vehicle axis shown in Fig. 2, locally parabolic

flow is assumed. In the azimuthal planes of 0° and 180° symmetry
boundary conditions are employed, while at the body surface slip
flow with zero normal velocity component is used for the Euler
equations and adiabatic conditions for the energy equation. Finally,
the free-stream conditions precribed are shown in Tab. 1.
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Table 1. Free-stream conditions.

M, 0.50 0.90 3.0

a [degrees] 6.0 6.0 6.1

p. [kPa] 2109 106.4 10.90

T. [K] 277.1 260.3 144.8
NUMERICAL RESULTS

In Figs. 3 to 5, the pressure coefficients are reported for
Mach numbers of 0.50, 0.90 and 3.0. Solid and dotted lines denote
the numerical results obtained in the present work and the symbols
represents the exprimental results of Moraes Jr. (1991). The angle
0 is defined in Fig. 2 and o is the vehicle angle of attack. Recall
that L is the full length of the VLS. The pressure coefficient plotted
in the above mentioned figures is defined by

(p, - P.)
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where p, is the pressure at the vehicle surface. Additional
informations with respect to the experimental data used in Figs. 3
to 5 can be found in Moraes Jr. and Neto (1990).
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Figure 3. Cp for M_ = 0.50 and a = 6.0°.

As can be seen in Fig. 3 and 5, where the results for the
subsonic and supersonic cases are shown, the agreement between
the numerical and experimental results are very good. The
agreement observed for the different © values, which corresponds
to very distinct physical situations, demonstrated that the
three-dimensional flow is being correctly solved.

For the transonic case, where elliptic and hyperbolic effects
take place simultaneously, it is well known that the capture of the
flow details requires high grid resolution. In the present work the
grid was refined up to the computational capabilities available.
Even though, the numerical results do not fit the experimental ones
in two regions. These regions are the expansions occuring when the
flow leaves the cone and when the diameter of the launcher starts
to decrease. In the first expansion the pressures calculated



numerically are higher than the experimental ones. The filling is
that a even more refined grid can improve the quality of the results.
In the second region the experimental results do not show the
existence of a expansion for 8 = 0°. For other 0 values the
experimental results do show an expansion with the numerical ones
agreeing reasonably well. It seems that a best fitting can be
achieved between numerical and experimental results in the first
expansion if higher grid resolution is employed, since this was the
trend observed in Maliska et al. (1991), when the grid resolution
study was carried out. In the second region one can see that near
the kink of the vehicle there is no enough experimental points for
0 = 0°. It may be possible that if a intermediate pressure point were
used, the expansion could have been captured. One can also
speculate that the secondary flow caused by the angle of attack may
influence the flow expansion in the leeside of the vehicle, that is at
0 = 0°. The numerical results, although not fitting exactly the
numerical ones, clearly demonstrate that the flow charactristics are
well captured. Additional nGmerical computations of transonic
flows over the VLS can be found in Maliska et al. (1991).

A global view of the results can be seen in Figs. 6 to 8,
where the Mach number contours are shown for the region close to
the vehicle. Fig. 6 and 7 show the ellyptic character of the flow
with the isolines demonstrating the influence of the launcher
upstream. The non-symmetry flow due to the angle of attack is also
clearly pictured in these figures. By its turn, Fig. 8 depicts a typical
hyperbolic flow with a attached shock close to the launcher nose.
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Figure 4. Cp for M_, = 0.90 and a = 6.0°,

CONCLUDING REMARKS

The computation of subsonic, transonic and supersonic flows
over the VLS was realized with great versatility using the all speed
flow methodology. The present results, in conjuction with several
others obtained by the authors, render to the method confidence for
the solution of general aerodynamic problems. It is already
implemented in the model the multiblock facility which will permit
the solution of the flow over the complete geometry of the VLS
including the four boosters. This is of fundamental importance for
predicting the stages separation in order to avoid collision between
them. In a companion activity the viscous terms and a turbulence
model are being included in the model, such that viscous heating
problems can also be considered.
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Figure 5. Cp for M, = 3.0 and a = 6.1".

Figure 6. Mach number contours for M, = 0.50.



Figure 7. Mach number contours for M, = 0.90.

Figure 8. Mach number contours for M, = 3.0.
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