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ABSTRACT 

In this article the resolution and numeric results of the liquid adsorption problem in fixed-bed are shown. They 

were obtained through two numeric models, both using the Finite Elements Method (FEM) on space 

discretization and for time domain one used the Crank-Nicolson Method (CNFEM) and the other used the 4th 

Order Runge-Kutta Method (RKFEM). The mathematical model treated in this paper is uni-dimensional, 

composed by partial differential equations that describe the diffusive-convective transport. The adsorption 

equilibrium is described by Langmuir’s non-linear isotherm. With this approach it was possible to study some 

of the unavoidable errors from any numeric solution. The methods implementation was done with MAPLE VI 

software, and the results obtained were qualitatively analysed and compared with experimental data. 

 

 

1. INTRODUCTION 

 
The application of Finite Elements Methods (FEM) on a great variety of complex problems has been studied by 

many sciences at the present. As examples, the geotechnical [1] and environmental engineering [7, 8, 9] studies 

of ground solutes transport, and the gases adsorption calculation done by chemical engineers [3]. 

 In this work the FEM was applied to allow space discretization, considering a specific mono-

component liquid adsorption model as referred in the papers of Buso et al [3] and Scheer [11]. For time 

discretization it was used the Crank-Nicolson Method (CNFEM) or the 4th Order Runge-Kutta Method 

(RKFEM). 

 Adsorption is the process where a selective concentration of one or more components of a gas as well as 

liquid are adsorbed on the surface of a micro porous solid. The mathematical equation that describes the 

adsorption equilibrium is the Langmuir’s equation, where fluid concentration and adsorbate concentration are 

related [13]. 

 With the recent developments on numeric computation and the need of more effectiveness simulation 

techniques, powerful softwares of dynamic chemical processes simulation have been designed mainly to 
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distillation process in petrochemical industry, some others concerns absorption and extraction, but an important 

process as the adsorption remains in second plan. 

 This work proposes the use of  FEM on adsorption problems. The developed mathematical models were 

implemented with MAPLE VI software, and the results obtained were qualitatively analysed and compared with 

experimental data. The mathematical model, the FEM formulation and the CNFEM and RKFEM formulation 

are shown on section 2. Section 3 shows the results and on section 4 the discussion and some final comments 

are presented. 

 

 

2. MATHEMATICAL MODEL 

 
The diffusion on porous was the mathematical model used for the adsorption, where two mass transfer process 

are considered: 

- the external mass transfer from the bulk liquid phase to the solid surface; 

- the internal diffusion inside the particle’s porous. 

The liquid adsorption problem is described by mathematical model given by the following differential 

equations [3,11]: 
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Considering these initial and boundary conditions: 
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where ce is the concentration in the external liquid phase, cp is the concentration of the liquid solution in the 

pore of the adsorbent particle, t is time and z is the vertical space coordinate. 

Equation (3) is given by Langmuir’s non-linear isotherm 
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where q is the adsorbate concentration, qm  is the maximum adsorbate concentration in the adsorbent, and a is a 

constant.  

For variational form, considering weighted residuals, the equation (1) is written as: Find Ce(z,t) such as 
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(6) 

where the function  h is defined by the conditions on (4) as h(0,t)=0 [2]. 

The constants were grouped as follows: 
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2.1. Numeric Models 
The FEM has been under evaluation together with some integration techniques used to solve problems on time 

domain. Some examples can be found on a variety of problems involving hyperbolic and/or parabolic 

equations with studies and discussions about parameters variations [4, 7, 8, 9,12]. 

In the model presented, the FEM was applied to equation (1) and will be demonstrated in the next sections. 

Equations (2) and (3) were modified to adapt to the CNFEM and RKFEM methods, resulting in the time 

dependent non-linear differential equation: 
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2.2. The Finite Elements Method applied to the adsortion column 

The approximated solutions for equation (1) in its variational formulation, given by equation (6), are then built 

in the finite dimensional subspace of admissible functions, which satisfy the homogeneous boundaries 

conditions and are smooth enough to well define the integrals in a variational problem, also allowing the first 

derivatives to become square-integrable. 

A partition is introduced in the (0,L) interval resulting in n sub-intervals, where one Finite Element 

involving two nods, i and j, is built to solve this problem by using piecewise linear functions for the 

interpolation inside the k element. 

The following interpolations are proposed for ce(z,t) concentrations and for h(z,T) "virtual concentrations": 
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where 
- n is the number of elements at the t moment; 
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- ce(z,t) are scalar functions obtained from the solution of a system of ordinary differential equations 

(1) and (4), with ce unknown functions; 

- Ce

i, Hi and Ni (z) are bulk phase concentration vector, "virtual concentrations" and constituted 

interpolation operator components, respectively. Replacing this relations into (6): 
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(11) 

as equality must be satisfied for every Hi  component, then: 
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for i = 1,...,n. 
Considering 
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equation (12) can be written as 
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or 
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where Mk, Kk, Ce

k and Fk are matrix and vectors formed by the components mij, kij and fi, with values varying 

between 1 and n for i and j for k element. 

For the final construction of the global matrix, a boolean matrix Lk representing the incidence relation of 

element k was used, as follows: 
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where nel is the number of elements. 

From (16) is obtained the global system of differential equations: 
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2.3. Formulation using CNFEM and RKFEM methods 

Many integration techniques can be used to solve time domain problems. For the CNFEM application on this 

model, expression (17) is assumed as: 
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In this study, the matrix are calculated once for each t moment, obtaining Ce(t). Then cp is calculated with 

CNFEM in equations (8) and (9) for each t moment. After that, the calculation follows an iterative process. For 

the RKFEM application, the same process was used, but the matrix were calculated at each RKFEM phase. 

 
 

3. RESULTS 

 

The study of packed bed adsorption columns is based on the analyse of time X bulk phase concentration curves, 

which are influenced by column  geometry, operational conditions and equilibrium data. This curves, referred 

as Breakthrough Curves, result from the concentration output monitoring of a fluid that passes through a 

packed bed. After some time the bed becomes saturated, and the output concentration approaches the input 

concentration. The area behind the breakthrough curve represents the quantity of adsorbate retained in the 

column. This corresponds to a point on the equilibrium isotherm [11]. 

The numeric results presented in this section are based on the comparison with Santacesaria experimental 

results [10] for the m-xylene component. The following parameters were considered for this specific problem: 
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The results generated by CNFEM are shown in Figure 1, as those by RKFEM are in Figure 2. Each 

graphic represents the space discretization refinement for a stipulated time increment. For the CNFEM, time 

increments of 200, 100, 50, 25 and 12.5 seconds were studied and space refinements were obtained for 10, 20, 

40 and 80 elements. For the RKFEM, time increments of 100, 50, 25, 12.5 and 6.25 seconds were studied and 

space refinements were obtained for 10, 20 and 40 elements. 
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It can be noted that time increments of 200s and 100s for CNFEM and 100s for RKFEM are those that better 

fit with experimental data. According to Ferziger and Péric [5], special care must be taken when interpreting 

these results, considering that different kinds of mistakes can be hidden by results that appear to converge to 

experimental data. Although, with mesh refinement, the curves tend to displacement from experimental data, 

but all of them converge to the same solution, for both methods. 
This fact, however, can also indicate a modelling error due to the chosen parameters. It can also be 

noted that the oscillations tend to disappear while mesh refinement is improved, what means that this method 

can be adjusted depending on the refinements, allowing further studies on the parameters set. 

 In the last graphic of each figure it is presented the mesh simultaneous refinement, aiming to detect 

possible numeric errors. 

 

 

4.  DISCUSSION AND FINAL COMMENTS 
At first sight, the model manipulation was adequate to methods application, considering some simplifications 

as the boundaries conditions. The numeric model, still under study, showed good accordance with experimental 

data, but it has some factors that must be better analysed. In this case, the concepts of Ferziger and Péric [5] have 

been used as a tool for results analyses, knowing that errors are unavoidable in numeric solution. 

 With meshes refinement it is believed that errors were minimised, as good convergence was obtained. 

Both models showed the same behaviour, but trying to reach an acceptable error level for the problem, the 

analyses indicate that CNFEM was more appropriate than RKFEM considering the oscillations presented. When 

refinement is used on both variables, the results are free from oscillations and there is no need to use others 

artefacts commonly utilised in this kind of analyses. The curve displacement, comparing with experimental 

data, must be better studied.  

 The FEM shows great advantages from the computational point of view, allowing the use of more 

refined Finite Elements meshes, and it has, also, enough conditions to support studies on binary or multi-

components adsorption. 
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Figure 1: Breakthrough curve simulated by  CNFEM  for a) Ät = 200s,  b) Ät = 100s,  c) Ät = 50s,  d) Ät = 

25s,  e) Ät = 12.5s   and  f) Simultaneous refinement (space and time). 
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Figure 2: Breaktrhough Curve simulated by RKFEM  for  a) Ät = 100s,  b) Ät = 50s,  c) Ät = 25s,  d) Ät = 

12.5s,  e) Ät = 6.25s  and f) Simultaneous refinement (space and time). 
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