XXV CILAMCE

CONGRESSO IBERO LATINO-AMERICANO DE MÉTODOS COMPUTACIONAIS EM ENGENHARIA

RECIFE, 2004

SOLUÇÃO NUMÉRICA DA CONVECÇÃO FORÇADA EM TROCADOR DE CALOR DE TUBOS CIRCULARES

Maykel Alexandre Hobmeir Carlos Henrique Marchi

marchi@demec.ufpr.br

Departamento de Engenharia Mecânica, Universidade Federal do Paraná Caixa postal 19040, 81531-980, Curitiba - PR – Brazil

Resumo. O objetivo deste trabalho é mostrar a importância de se estimar adequadamente o erro numérico intrínseco ao resultado de qualquer simulação. O problema em consideração é a convecção forçada num trocador de calor de tubos circulares desencontrados. O problema é resolvido para analisar o efeito da distância entre os tubos visando otimizar a configuração geométrica do trocador de calor em dois números de Reynolds (50 e 100). Este problema pode ser modelado matematicamente pelas equações de conservação da massa, da quantidade de movimento linear e da energia. Para tanto, considera-se: fluido newtoniano e incompressível; escoamento laminar, bidimensional, em regime permanente; dissipação viscosa nula; e propriedades constantes. O problema foi resolvido com um código computacional que emprega o método dos volumes finitos em malhas não-estruturadas. Os termos advectivos do modelo matemático foram discretizados com esquemas de 1^a e 2^a ordem de acurácia. Foram empregadas diversas malhas com até aproximadamente 100 mil elementos para permitir avaliar os erros numéricos. O presente trabalho não conseguiu confirmar a existência de um ponto ótimo geométrico para o funcionamento de trocadores de calor de tubos circulares desencontrados, reivindicado por um trabalho numérico disponível na literatura.

Palavras-chave: Erro numérico, CFD, GCI, Volumes finitos, CFX

1. INTRODUÇÃO

Com relação às estimativas dos erros numéricos envolvidos nos resultados de simulações numéricas, atualmente os trabalhos encontrados na literatura podem ser classificados em quatro conjuntos: (1) nenhuma estimativa é realizada e a solução numérica é obtida sobre uma única malha; (2) nenhuma estimativa é realizada mas são apresentadas soluções numéricas obtidas sobre duas ou mais malhas, geralmente fazendo-se comparações gráficas de perfis de variáveis de campo nas diversas malhas; (3) são feitas estimativas mas com base em estimadores de erro pouco confiáveis ou inadequados, como o estimador delta; e (4) são feitas estimativas com base no estado-da-arte, isto é, com os melhores estimadores de erro disponíveis, como o estimador GCI.

O objetivo deste trabalho é mostrar, através do estudo de um caso, a importância de se estimar adequadamente o erro numérico envolvido no resultado de uma simulação. Principalmente quando se deseja otimizar o funcionamento de um sistema. O problema em consideração é a otimização geométrica da convecção forçada de calor num banco de tubos circulares com a restrição de volume fixo do trocador de calor.

As duas principais metas em dinâmica dos fluidos computacional são obter soluções numéricas acuradas e confiáveis (Shyy *et al.*, 2002). Ambas dependem da estimativa do erro numérico. A magnitude aceitável para o erro numérico é função, entre outros fatores, da finalidade da solução numérica, dos recursos financeiros envolvidos, do tempo permitido ou disponível para realizar as simulações e dos recursos computacionais existentes. Sabendo-se que as soluções numéricas contêm erros, entre outros motivos, é importante estimá-los porque quando o erro é maior do que o aceitável compromete-se a confiabilidade do uso da solução numérica.

Pode-se dividir em três os tipos de métodos empregados na solução de um problema de engenharia: experimentais, analíticos e numéricos (Maliska, 2004; Tannehill *et al.*, 1997). Na Fig. 1 são apresentados os tipos de erros envolvidos nestes métodos, que são os erros experimental, de modelagem e numérico. Erro experimental é a diferença entre o valor verdadeiro de uma variável de interesse e o seu resultado experimental (ISO, 1993; ABNT, 1997). Em geral, o valor verdadeiro é desconhecido e, portanto, consegue-se apenas estimar o valor do erro experimental. Este valor estimado é denominado de incerteza, e o processo que o quantifica, análise de incerteza. Formas de quantificar a incerteza de resultados experimentais podem ser vistas nas normas ISO (1993), ABNT (1997) e AIAA (1995), assim como nos textos de Coleman e Steele (1999) e Holman (1994).

Erro de modelagem é a diferença entre o valor verdadeiro de uma variável de interesse e a sua solução analítica (Ferziger e Peric, 2001). Novamente, em geral, o valor verdadeiro é desconhecido e, portanto, consegue-se apenas estimar o valor do erro de modelagem $[U_{mod}(Q_{num})]$. Isso é feito através da comparação das soluções analíticas e numéricas (Q_{num}) com resultados experimentais (Q_{exp}) :

$$U_{\rm mod}(Q_{num}) = Q_{\rm exp} - Q_{num} \tag{1}$$

O erro de modelagem é causado pelas simplificações feitas sobre o fenômeno real na concepção dos modelos matemáticos. O processo que quantifica este tipo de erro tem sido denominado recentemente de validação (Roache, 1998; AIAA, 1998) ou validação física (Maliska, 2004). O objetivo da validação é determinar em que medida um modelo matemático representa um determinado fenômeno real. O processo de validação é tratado, por exemplo, por Stern *et al.* (2001), Roache (1998) e Aeschliman e Oberkampf (1998).

Erro numérico de uma variável de interesse é a diferença entre a sua solução analítica exata e a sua solução numérica (Ferziger e Peric, 2001). Portanto, a solução numérica ideal é

igual à solução analítica exata do problema, ou seja, é aquela em que o erro numérico é nulo. Exemplos de variáveis de interesse em dinâmica dos fluidos são: velocidade, temperatura, pressão, massa específica, vazão, fluxo de massa, fluxo de calor e força. O processo que quantifica o erro numérico tem sido denominado recentemente de verificação (Roache, 1998; AIAA, 1998) ou validação numérica (Maliska, 2004). O objetivo da verificação é determinar em que medida um modelo matemático é resolvido adequadamente através de um método numérico.

Figura 1 - Erros envolvidos nos métodos de solução de problemas de engenharia.

O valor do erro numérico verdadeiro independe de resultados experimentais mas só pode ser obtido quando a solução analítica do modelo matemático é conhecida. Porém, em termos práticos, isto é, para soluções numéricas de modelos matemáticos cuja solução analítica é desconhecida, não é possível obter o erro numérico. Nestes casos é necessário estimar o valor da solução analítica. Assim, em vez do erro numérico verdadeiro calcula-se o erro numérico estimado [$U_{num}(Q_{num})$], que é avaliado pela diferença entre a solução analítica estimada (Q_{∞}) e a solução numérica (Q_{num}), ou seja,

$$U_{num}(Q_{num}) = Q_{\infty} - Q_{num}$$
⁽²⁾

Pode-se considerar que o erro numérico é causado pelas seguintes fontes (Ferziger e Peric, 2001; Roache, 1998, 1994; AIAA, 1998; Tannehill *et al.*, 1997):

- Erro de truncamento: origina-se das aproximações numéricas empregadas na discretização de um modelo matemático (Tannehill *et al.*, 1997; Ferziger e Peric, 2001; Roache, 1998). Em geral, este erro se reduz com a diminuição do tamanho dos elementos da malha, isto é, com a diminuição da distância entre dois nós consecutivos da malha.
- 2) Erro de iteração: é a diferença entre a solução exata das equações discretizadas e a solução numérica em uma determinada iteração (Ferziger e Peric, 2001). As equações discretizadas resultam das aproximações numéricas feitas sobre um modelo matemático. De forma geral, o erro de iteração se reduz com o aumento do número de iterações.
- 3) Erro de arredondamento: ocorre principalmente devido à representação finita dos números reais nas computações. Ele aumenta com a redução do tamanho dos elementos da malha, isto é, com o aumento do número de nós, elementos ou volumes da malha.

4) Erro de programação: inclui os erros causados por pessoas na implementação e no uso de um programa computacional.

O trabalho está organizado da seguinte forma: na seção 2 é definido o problema físico em consideração e o seu modelo matemático correspondente; na seção 3 são apresentados os resultados numéricos de Matos *et al.* (2001) e deste trabalho; na seção 4 são apresentadas as estimativas dos erros numéricos feitas com base no estimador GCI (*Grid Convergence Index*) de Roache (1994); na seção 5, as estimativas dos erros de modelagem são apresentadas; e na seção 6, a conclusão deste trabalho.

2. DEFINIÇÃO DO PROBLEMA

A convecção forçada num trocador de calor formado por um conjunto de tubos circulares foi estudada experimentalmente por Stanescu *et al.* (1996). A Fig. 2 mostra um esquema do problema físico. Nesta figura, D = diâmetro dos tubos; S = espaçamento entre os tubos cujos centros ficam nos vértices de um triângulo equilátero; U_∞ = velocidade da corrente-livre; L, H e W = tamanho do trocador de calor, respectivamente, nas direções *x*, *y* e *z*. Os tubos estão dispostos em colunas num arranjo do tipo desencontrado ou desalinhado. Seus eixos longitudinais são perpendiculares ao escoamento do refrigerante (ar). O fluido (água) a ser refrigerado escoa por dentro dos tubos circulares.

Figura 2 - Esquema do problema físico.

Este problema pode ser modelado matematicamente pelas equações de conservação da massa, da quantidade de movimento linear e da energia (Tannehill *et al.*, 1997):

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{3}$$

$$\frac{\partial(\rho u^2)}{\partial x} + \frac{\partial(\rho u v)}{\partial y} = - \frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)$$
(4)

$$\frac{\partial(\rho u v)}{\partial x} + \frac{\partial(\rho v^2)}{\partial y} = - \frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right)$$
(5)

$$\frac{\partial(\rho u c_p T)}{\partial x} + \frac{\partial(\rho v c_p T)}{\partial y} = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$$
(6)

onde x e y = coordenadas espaciais, T = temperatura, u e v = componentes do vetor velocidade nas direções x e y, $\rho =$ massa específica, p = pressão, $\mu =$ viscosidade absoluta, k =condutividade térmica e $c_p =$ calor específico à pressão constante. Este modelo matemático pode ser obtido considerando-se: fluido newtoniano e incompressível; escoamento laminar, bidimensional, em regime permanente; dissipação viscosa nula; e propriedades constantes.

O trocador de calor é constituído pelos 12 tubos mostrados na Fig. 2. Devido a simetria do problema, cujo canal elementar indicado na Fig. 2 se repete, o domínio de cálculo considerado é mostrado na Fig. 3. Discussões sobre o motivo de se usar um comprimento L antes e depois dos tubos podem ser vistas nos trabalhos de Stanescu *et al.* (1996) e Matos *et al.* (2001). As condições de contorno indicadas na Fig. 4 são:

(A)
$$u = U_{\infty}, \quad v = 0, \quad T = T_{\infty}$$
 (7)

(B)
$$\frac{\partial u}{\partial y} = 0, \quad v = 0, \quad \frac{\partial T}{\partial y} = 0$$
 (8)

(C)
$$u = 0, \quad v = 0, \quad T = T_w$$
 (9)

(D)
$$\frac{\partial u}{\partial x} = 0, \qquad \frac{\partial v}{\partial x} = 0, \qquad \frac{\partial T}{\partial x} = 0$$
 (10)

onde T_{∞} = temperatura da corrente-livre e T_{w} = temperatura na parede dos tubos.

Figura 3 - Domínio de cálculo.

A variável de interesse do problema é a condutância térmica global adimensional (Q) do trocador de calor, definida por (Matos *et al.*, 2001)

$$Q = \frac{qD^2}{kLHW(T_w - T_{\infty})}$$
(11)

onde q = taxa de transferência de calor total do trocador de calor e LHW = volume total do trocador de calor.

Figura 4 - Condições de contorno.

3. RESULTADOS NUMÉRICOS

3.1 De Matos et al. (2001)

Matos *et al.* (2001) resolveram o problema empregando uma versão alterada do código FEAP (*Finite Element Analysis Program*), que foi originalmente escrito por Zienkiewicz e Taylor (1989) e emprega o método dos elementos finitos. Os termos advectivos do modelo matemático foram discretizados com um esquema *upwind* (Hughes, 1978). Detalhes sobre a metodologia numérica podem ser vistos no próprio trabalho de Matos *et al.* (2001) e Matos (2000).

O objetivo do trabalho era determinar o espaçamento (S) ótimo do trocador de calor, isto é, o valor de S que resulta em Q máximo para cada número de Reynolds (Re), mantendo-se fixos os 12 tubos e o volume (LHW) do trocador de calor. Para tubos circulares, foram obtidos resultados numéricos para S/D de 0,1 a 1,25 e Re de 50 a 775, onde

$$Re = \frac{\rho U_{\infty} D}{\mu}$$
(12)

Além disso, foram obtidos resultados numéricos para tubos elípticos com diversas excentricidades, S/D e Re. Nas Tabelas 1 e 2 são apresentados alguns resultados numéricos de Matos *et al.* (2001), para tubos circulares, e as malhas empregadas. Na Tabela 1, verifica-se que o valor máximo de Q é 3,55 em S/D = 1,0 para Re = 50, e 5,71 em S/D = 0,5 para Re = 100.

Tabela 1.	Alguns	resultados	de Q	de l	Matos	et al.	(2001)
	U		~				` '

S/D	Re = 50	Re = 100
0,10	2,79	5,52
0,50	3,43	5,71
0,75	3,50	5,49
1,00	3,55	5,29
1,25	3,52	

O erro de discretização da solução numérica de Q foi avaliado através do estimador delta relativo, definido por (Demirdzic *et al.*, 1992)

$$U_{num}^{\Delta}(Q_{1}) = \frac{|Q_{1} - Q_{2}|}{|Q_{1}|}$$
(13)

onde os subíndices 1 e 2 referem-se à Tabela 2, indicando malhas fina e grossa, respectivamente. Segundo Matos *et al.* (2001), o erro de discretização máximo estimado para as soluções numéricas da Tabela 1, e calculado com a Eq. (13), é de 1%.

Malha	N = Número de elementos
1	5380
2	5180
3	2508

Tabela 2. Malhas empregadas por Matos et al. (2001)

3.2 Deste trabalho

Neste trabalho, o problema foi resolvido com a versão 5.6 do código computacional CFX (CFX Ltd., 2003), que emprega o método dos volumes finitos em malhas não-estruturadas. Os termos advectivos do modelo matemático foram discretizados com dois esquemas (Ferziger e Peric, 2001): UDS (*Upstream Differencing Scheme*) e CDS (*Central Differencing Scheme*), que são respectivamente esquemas de 1^a e 2^a ordem de acurácia.

Os dados empregados nas simulações foram:

D = 6,35 mm;	L = 39,2 mm;	H = 35,2 mm;	W = 134 mm;
$T_{\infty} = 298,15$ K;	$T_w = 310,85$ K;	$\mu = 184,6 \times 10^{-7} \text{ N.s/m}^2;$	$c_p = 1007 \text{ J/kg.K};$
$\rho = 1,1614 \text{ kg/m}^3;$	Pr = 0,72;	$k = 26,3 \times 10^{-3} \text{ W/m.K};$	
$U_{\infty} = 0,125 \text{ m/s para}$	Re = 50;	$U_{\infty} = 0,250 \text{ m/s para Re} = 10$	0;
onde Pr é o número d	le Prandtl.	_	

Nas Tabelas 3 e 4 são apresentados os resultados numéricos deste trabalho e as malhas empregadas. A Fig. 5 mostra a malha 5 na região de um tubo para S/D = 0,50. As Figs. 6 e 7 mostram o campo de temperaturas do domínio inteiro e na região dos tubos para a malha 1, S/D = 0,50, Re = 50 e CDS.

S/D	Re = 50 (UDS)	Re = 50 (CDS)	Re = 100 (UDS)
0,50	4,29	4,15	7,70
0,75	4,52	4,30	7,75
1,00	4,75	4,37	8,10

Tabela 3. Resultados deste trabalho para Q obtidos com a malha mais fina

Considerando as diversas malhas empregadas, os dois valores do número de Reynolds e os três valores de S/D, foram realizadas 42 simulações numéricas neste trabalho. Em todas elas o critério de convergência empregado foi a queda de 8 ordens de grandeza do resíduo adimensionalizado para cada uma das quatro equações diferenciais envolvidas na solução. Empregou-se precisão dupla em todas as simulações. Com o esquema CDS, o tempo de computação médio foi de 22 min e 24 h 30 min para as malhas mais grossas e mais finas, respectivamente. No caso do esquema UDS, o tempo de computação médio foi de

aproximadamente metade do esquema CDS. As simulações foram realizadas num microcomputador com processador AMD ATHLON XP 2100+ e 512 MB de memória RAM.

Malha	S/D = 0,50	S/D = 0,75	S/D = 1,00
1	98679	100318	49926
2	49870	51200	24624
3	25060	24720	12359
4	12085	12534	6396
5	6138	6224	

Tabela 4. Número de elementos (N) das malhas empregadas neste trabalho

Figura 5 - Malha 5 na região de um tubo (S/D = 0,50).

Figura 6 - Campo de temperaturas do domínio inteiro (malha 1, S/D = 0.50, Re = 50 e CDS).

Figura 7 - Campo de temperaturas na região dos tubos (malha 1, S/D = 0.50, Re = 50 e CDS).

4. ESTIMATIVA DOS ERROS NUMÉRICOS

Pelas citações e amplo uso que vem sendo feito dele, e segundo a experiência de um dos autores deste trabalho, o GCI (*Grid Convergence Index*) de Roache (1994) pode ser considerado o mais confiável dos estimadores atuais para erros de discretização. De acordo com o GCI, a estimativa do erro de discretização da solução numérica obtida numa malha fina (Q_1) é

$$U_{num}^{GCI}(Q_1) = F_s \frac{|Q_1 - Q_2|}{(r^{p_L} - 1)}$$
(14)

onde F_s é um fator de segurança, com valor igual a três para aplicações em geral; p_L é a ordem assintótica das equações discretizadas; os subíndices 1 e 2 referem-se às Tabelas 2 e 4, indicando soluções numéricas de Q obtidas com malhas fina e grossa, respectivamente; e r é a razão de refino entre as malhas fina e grossa, que para malhas não-estruturadas bidimensionais é calculada através de (Roache, 1994)

$$r = \sqrt{\frac{N_1}{N_2}} \tag{15}$$

onde N_1 e N_2 representam, respectivamente, o número de elementos das malhas fina e grossa. O GCI fornece estimativas de erro ainda mais confiáveis quando é utilizado com a ordem aparente (p_U) (Marchi, 2001).

4.1 Dos resultados de Matos et al. (2001)

Considerando o erro de discretização máximo estimado para as soluções numéricas da Tabela 1, de 1%, $p_L = 1$, $F_s = 3$ e r = 1,019 para as malhas 1 e 2 da Tabela 2, pode-se deduzir a partir das Eqs. (13) e (14) que

$$U_{num}^{GCI}(Q_1) = 1,58|Q_1|$$
(16)

Assim, com a Eq. (16) e os resultados da Tabela 1, é possível obter estimativas mais confiáveis para os erros de discretização das soluções numéricas de Matos *et al.* (2001), que são mostrados na Tabela 5 e na Fig. 8. A estimativa de erro de 1% do estimador delta, segundo a Eq. (13), feita por Matos *et al.* (2001), transforma-se em 158% com o estimador GCI, Eq. (16). Nas Figs. 8 a 12, são empregadas as mesmas escalas para permitir uma comparação visual, qualitativa, entre os diversos resultados numéricos e experimentais e suas respectivas estimativas de erro.

Os dois principais problemas do estimador delta, Eq. (13), usado por Matos *et al.* (2001), são: (i) ele não considera a ordem do erro, seja a assintótica (p_L) ou a aparente (p_U) ; e (ii) ele não considera a razão de refino de malha (r), o que permite tornar a estimativa de erro arbitrariamente pequena ao se fazer $r \rightarrow 1$.

Os resultados de Matos *et al.* (2001), mostrados na Tabela 1, indicam que o ponto ótimo do trocador de calor, isto é, o valor máximo de Q é 3,55 em S/D = 1,0 para Re = 50. No intervalo de S/D = 0,1 a 1,25, a variação de Q foi de 2,79 a 3,55, ou seja, 0,76. Mas na Tabela 5, observa-se que a estimativa do erro numérico varia de 4,41 a 5,61 para Re = 50. Portanto, a expectativa é que o erro numérico seja muito superior ao efeito geométrico (S/D) de otimização do trocador de calor. A situação é ainda pior para Re = 100. O valor máximo de Q é 5,71 em S/D = 0,50. No intervalo de S/D = 0,1 a 1,0, a variação de Q foi de 5,29 a 5,71, ou seja, 0,42. Mas na Tabela 5, observa-se que a estimativa do erro numérico varia de 8,36 a 9,02. Isso pode ser observado graficamente na Fig. 8. Com o nível de erro numérico envolvido nas soluções de Matos *et al.* (2001) não é possível avaliar confiavelmente a otimização geométrica (S/D) do trocador de calor nem tampouco do efeito do número de Reynolds (Re).

S/D	Re = 50	Re = 100
0,10	4,41	8,72
0,50	5,42	9,02
0,75	5,53	8,67
1,00	5,61	8,36
1,25	5,56	

Tabela 5. Erro numérico estimado de Q para alguns resultados de Matos et al. (2001)

4.2 Deste trabalho

Com as Eqs. (14) e (15), $F_s = 3$ e os dados da Tabela 4, é possível obter estimativas para os erros de discretização das soluções numéricas deste trabalho, que são mostrados na Tabela 6 e na Fig. 9. Considerou-se $p_L = 1$ e 2, respectivamente, para as soluções numéricas obtidas com os esquemas UDS e CDS. Em todos os casos, a razão de refino de malha (*r*) fica em torno de 1,4. Pode-se observar que: (i) o nível dos erros numéricos estimados são menores do que o efeito da variação do número de Reynolds (Re) de 50 para 100; e (ii) dentro das margens de erro estimadas, as soluções numéricas obtidas com os esquemas UDS e CDS são coerentes (Marchi e Silva, 1999) para Re = 50, isto é, a margem de erro do UDS envolve a do CDS.

Figura 8 - Resultados de Q de Matos *et al.* (2001) e a estimativa de seus erros.

Com as Tabelas 3 e 6, verifica-se que o efeito geométrico (S/D) faz Q variar 0,46 e 0,22, respectivamente, para as soluções numéricas obtidas com os esquemas UDS e CDS para Re = 50. Enquanto que o máximo erro numérico estimado é de 0,85 (UDS) e 0,061 (CDS). Para Re = 100, o efeito geométrico (S/D) faz Q variar 0,40 para as soluções numéricas obtidas com o esquema UDS, e o máximo erro numérico estimado é de 2,32. Só as soluções numéricas obtidas com o esquema CDS permitem realmente otimizar geometricamente o trocador de calor, já que o nível do erro numérico estimado é menor do que o efeito geométrico.

S/D	Re = 50 (UDS)	Re = 50 (CDS)	Re = 100 (UDS)
0,50	0,32	0,0076	1,45
0,75	0,53	0,015	1,84
1,00	0,85	0,061	2,32

Tabela 6. Erro numérico estimado de Q para os resultados deste trabalho

5. CÁLCULO DOS ERROS DE MODELAGEM

Uma correlação empírica do problema em consideração neste trabalho pode ser obtida em Bejan (1996) para o número de Nusselt. A partir dele, pode-se obter a taxa de transferência de calor e, finalmente, Q com a Eq. (11) para os dados mencionados na seção 3.2. Os resultados experimentais são mostrados na Tabela 7 e na Fig.10 com a incerteza experimental, que é de $\pm 15\%$.

O erro de modelagem estimado para os resultados de Q de Matos *et al.* (2001), calculado através da Eq. (1), é mostrado na Tabela 8. Na Fig. 11 são apresentados os resultados experimentais de Q, obtidos a partir de Bejan (1996), e os resultados numéricos de Matos *et*

al. (2001), bem como suas respectivas incerteza experimental e erro numérico estimado. Os erros de modelagem estimados para os resultados numéricos de Matos *et al.* (2001) variam de 2,02 a 11,87 para Re = 50. Já o efeito geométrico (S/D) faz Q variar 0,76. Para Re = 100, os erros de modelagem estimados variam de 2,33 a 15,67, e o efeito geométrico (S/D) faz Q variar 0,42. Além disso, o comportamento qualitativo entre os resultados numéricos e experimentais é diferente: os experimentais tendem a diminuir monotonicamente com o aumento de S/D; já os numéricos apresentam um máximo no intervalo de S/D considerado. Com o nível do erro de modelagem envolvido nas soluções numéricas de Matos *et al.* (2001), não é possível avaliar confiavelmente a otimização geométrica (S/D) do trocador de calor.

Figura 9 - Resultados de Q deste trabalho e a estimativa de seus erros.

 S/D	Re = 50	Re = 100
 0,10	14,66	21,19
0,50	6,80	8,97
0,75	6,15	8,11
1,00	5,78	7,62
1.25	5.54	7.31

Tabela 7. Resultados experimentais de Q obtidos a partir de Bejan (1996)

O erro de modelagem estimado para os resultados de Q deste trabalho, calculado através da Eq. (1), é mostrado na Tabela 9. Na Fig. 12 são apresentados os resultados experimentais de Q, obtidos a partir de Bejan (1996), e os resultados numéricos deste trabalho, bem como suas respectivas incerteza experimental e erro numérico estimado. Os erros de modelagem estimados para os resultados numéricos (UDS) deste trabalho variam de 1,03 a 2,51 para Re = 50. Já o efeito geométrico (S/D) faz Q variar 0,46. Para Re = 100, os erros de modelagem estimados variam de -0,48 a 1,27, e o efeito geométrico (S/D) faz Q variar 0,40. Com o nível do erro de modelagem envolvido nas soluções numéricas deste trabalho, também não é possível avaliar confiavelmente a otimização geométrica (S/D) do trocador de calor.

Para as soluções numéricas de Matos *et al.* (2001) no intervalo de S/D de 0,5 a 1, os valores máximos do erro numérico estimado são 5,61 e 9,02 para Re = 50 e 100, respectivamente. Já para os resultados deste trabalho, são 0,85 (UDS, Re=50), 0,061 (CDS, Re=50) e 2,32 (UDS, Re=100). Portanto, os erros numéricos deste trabalho são significativamente menores do que os de Matos *et al.* (2001). Isso era esperado devido às malhas muito mais refinadas que foram empregadas neste trabalho.

Figura 10 - Resultados experimentais de Q e suas incertezas.

Figura 11 - Resultados experimentais (Bejan, 1996) e numéricos de Matos et al. (2001).

Tabela 8. Erro de modelagem estimado de *Q* para os resultados de Matos *et al.* (2001)

S/D	Re = 50	Re = 100
0,10	11,87	15,67
0,50	3,37	3,26
0,75	2,65	2,62
1,00	2,23	2,33
1,25	2,02	

Tabela 9. Erro de modelagem estimado de Q para os resultados deste trabalho

_				
	S/D	Re = 50 (UDS)	Re = 50 (CDS)	Re = 100 (UDS)
	0,50	2,51	2,65	1,27
	0,75	1,63	1,85	0,36
	1,00	1,03	1,41	-0,48
_				

Figura 12 - Resultados experimentais (Bejan, 1996) e numéricos deste trabalho.

Para as soluções numéricas de Matos *et al.* (2001) no intervalo de S/D de 0,5 a 1, os valores máximos do erro de modelagem estimado são 3,37 e 3,26 para Re = 50 e 100, respectivamente. Já para os resultados deste trabalho, são 2,65 (Re=50) e 1,27 (Re=100). Portanto, os erros de modelagem deste trabalho são um pouco menores do que os de Matos *et al.* (2001), mas da mesma ordem e significativamente maiores do que o efeito geométrico. Portanto, tanto do ponto de vista puramente teórico (erros numéricos) quanto do ponto de vista do problema real (erros de modelagem), não se conseguiu verificar a existência de um ponto ótimo geométrico (S/D) do trocador de calor reivindicado por Matos *et al.* (2001). Essa conclusão é válida para a situação em que o volume (LHW) do trocador de calor e o número (12) de tubos são fixos, e a distância entre os tubos é variável. Existe um problema semelhante no qual o volume do trocador de calor também é fixo mas o número de tubos é variável juntamente com a distância entre os tubos. Para este outro problema existem

resultados experimentais (Stanescu *et al.*, 1996) que mostram a existência de um ponto ótimo geométrico.

6. CONCLUSÃO

O estimador delta, Eq. (13), não deve ser usado para estimar erros de discretização de soluções numéricas. Em seu lugar, para o mesmo fim, recomenda-se empregar o estimador GCI, Eq. (14).

Com base em soluções numéricas, Matos *et al.* (2001) mostraram que existe um ponto ótimo geométrico para o funcionamento de trocadores de calor de tubos circulares desencontrados, para a situação em que o volume (LHW) do trocador de calor e o número (12) de tubos são fixos e a distância entre os tubos é variável. Este efeito geométrico está relacionado à distância entre os tubos. Mas a existência real deste ponto ótimo é questionável porque:

- 1) O comportamento qualitativo entre os resultados numéricos e experimentais é diferente.
- 2) O nível do erro numérico estimado para as soluções numéricas de Matos *et al.* (2001) é uma ordem de grandeza maior do que o efeito geométrico, para malhas com aproximadamente 5 mil elementos.
- O nível do erro numérico estimado para as soluções numéricas deste trabalho é da ordem (UDS) de grandeza do efeito geométrico, ou até menor (CDS), para malhas com aproximadamente 100 mil elementos.
- 4) Mas os níveis do erro de modelagem estimado para as soluções numéricas de Matos *et al.* (2001) e deste trabalho são maiores do que o efeito geométrico.

Agradecimentos

Os autores agradecem ao Instituto de Tecnologia para o Desenvolvimento (LACTEC), de Curitiba (PR), por ter disponibilizado o código computacional CFX e os recursos computacionais usados na realização deste trabalho.

REFERÊNCIAS

- ABNT, 1997. *Guia para Expressão da Incerteza de Medição*. Associação Brasileira de Normas Técnicas.
- Aeschliman, D. P., & Oberkampf, W. L., 1998. Experimental methodology for computational fluid dynamics code validation. *AIAA Journal*, vol. 36, n. 5, pp. 733-741.
- AIAA, 1995. Assessment of Wind Tunnel Data Uncertainty, Standard, AIAA S-071-1995. American Institute of Aeronautics and Astronautics.
- AIAA, 1998. Guide for the Verification and Validation of Computational Fluid Dynamics Simulations, AIAA G-077-1998. American Institute of Aeronautics and Astronautics.

Bejan, A., 1996. Transferência de Calor. Edgard Blücher, pp. 218-221.

CFX Ltd., 2003. CFX-5 Reference Guide.

- Coleman, H. W., & Steele, W. G., 1999. *Experimentation and Uncertainty Analysis for Engineers*. 2. ed. Wiley.
- Demirdzic, I., Lilek, Z., & Peric, M., 1992. Fluid flow and heat transfer test problems for nonorthogonal grids: bench-mark solutions. *International Journal for Numerical Methods in Fluids*, vol. 15, pp. 329-354.
- Ferziger, J. H., & Peric, M., 2001. Computational Methods for Fluid Dynamics. 3. ed. Springer.
- Holman, J. P., 1994. Experimental Methods for Engineers. McGraw-Hill.
- Hughes, T. J. R., 1978. A simple scheme for developing upwind finite elements. *Int. Journal* for Numerical Methods in Engineering, vol. 12, pp. 1359-1365.
- ISO, 1993. *Guide to the Expression of Uncertainty in Measurement*. International Organization for Standardization.
- Maliska, C. R., 2004. *Transferência de Calor e Mecânica dos Fluidos Computacional*. 2. ed. LTC.
- Marchi, C. H., 2001. *Verificação de Soluções Numéricas Unidimensionais em Dinâmica dos Fluidos*. Tese de doutorado, Universidade Federal de Santa Catarina, Florianópolis.
- Marchi, C. H., & Silva, A. F. C., 1999. Procedimento para diminuir e estimar erros de discretização baseado em soluções numéricas coerentes. In XV Congresso Brasileiro de Engenharia Mecânica.
- Matos, R. S., 2000. Otimização Teórico-Numérica e Comparação de Desempenho de Trocadores de Calor de Tubos Circulares e Elípticos Não Aletados em Convecção Forçada. Dissertação de Mestrado, Universidade Federal do Paraná, Curitiba.
- Matos, R. S., Vargas, J. V. C., Laursen, T. A., & Saboya, F. E. M., 2001. Optimization study and heat transfer comparison of staggered circular and elliptic tubes in forced convection. *Int. Journal of Heat and Mass Transfer*, vol. 44, pp. 3953-3961.
- Roache, P. J., 1994. Perspective: a method for uniform reporting of grid refinement studies. *Journal of Fluids Engineering*, vol. 116, pp. 405-413.
- Roache, P. J., 1998. Verification and Validation in Computational Science and Engineering. Hermosa.
- Shyy, W., Garbey, M., Appukuttan, A., & Wu, J., 2002. Evaluation of Richardson extrapolation in computational fluid dynamics. *Numerical Heat Transfer, Part B*, vol. 41, pp. 139-164.
- Stanescu, G., Fowler, A. J., & Bejan, A., 1996. The optimal spacing of cylinders in freestream cross-flow forced convection. *Int. J. Heat and Mass Transfer*, vol. 39, pp. 311-317.

- Stern, F., Wilson, R. V., Coleman, H. W., & Paterson, E. G., 2001. Comprehensive approach to verification and validation of CFD simulations Part 1: methodology and procedures. *Journal of Fluids Engineering*, vol. 123, pp. 793-802.
- Tannehill, J. C., Anderson, D. A., & Pletcher, R. H., 1997. *Computational Fluid Mechanics and Heat Transfer*. 2. ed. Taylor & Francis.

Zienkiewicz, O. C., & Taylor, R. L., 1989. The Finite Element Method. Vol. 1. McGraw-Hill.