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Abstract: The present work evaluates the discretization error estimator named Grid Convergence Index (GCI), which 
is based on the Richardson Extrapolation, taking into account: (1) a two-dimensional laminar flow inside a square 
cavity that has a known analytical solution; (2) unstructured meshes to discretize the problem domain; (3) The Element 
based Finite Volume Method (EbFVM); (4) The CFX CFD code to get the numerical solutions; and (5) two variables 
of interest, the mass flux in the cavity and the force applied by the top boundary on the fluid in the cavity. The error 
estimates obtained with GCI are reliable for all meshes and both variables but their accuracy can be considered 
satisfactory.   
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1. Introduction 
 
The numerical error is defined as the difference between the exact analytical solution (�) of a variable of interest 

and its numerical solution (�) (Ferziger and Peric, 2001): 
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The numerical error can be composed by four distinct parts (Marchi, 2001): 
a) Truncation error is defined as a residual that comes from the substitution of the exact analytical solution of a variable 

on the discretized equation of the mathematical model; 
b) Iteration error is the difference between the exact and the iterative solutions of the discretized equations; 
c) Round-off error is due the finite representation of the real numbers used in computer calculations; and 
d) Programming errors are caused by people in the implementation and use of a code. 
Moreover, accordingly to Ferziger and Peric (2001), the discretization error (E) can be defined as the numerical error 
due only truncation error, i.e., when all other three parts of the error (round-off, programming and iteration) are zero or 
negligible. 

When the analytical solution of a desired problem is not known, the numerical error can not be calculated. In this 
case, it is used an estimative of the analytical solution (�

�
) that give only an estimative of the error or uncertainty (U) of 

the numerical solution (Marchi, 2001), i.e., 
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The present work has as goal to evaluate the discretization error estimator named Grid Convergence Index – GCI 

(Roache, 1994), which is based on the Richardson Extrapolation, taking into account:  
1) a two-dimensional laminar flow inside a square cavity that has a known analytical solution;  
2) unstructured meshes to discretize the problem domain;  
3) the Element based Finite Volume Method – EbFVM (Maliska, 2004);  
4) the CFX (Ansys, 2004) CFD code to get the numerical solutions; and  



Proceedings of COBEM 2005 18th International Congress of Mechanical Engineering 
Copyright © 2005 by ABCM November 6-11, 2005, Ouro Preto, MG 
 

5) two variables of interest, the mass flux in the cavity and the force applied by the top boundary on the fluid in the 
cavity. 

 This work was motivated by the fact that has few studies about the effects of the use of unstructured meshes on the 
numerical errors and on the performance of the error estimators (Marchi, 2001). More than that, it was found few 
studies about the numerical uncertainty for codes based on EbFVM. For example, the results of Souza (2000) do not 
bring any study about numerical uncertainty, even showing results on more than one mesh for the square cavity problem 
(Ghia et. al., 1982). This work is focused on iteration errors. The present authors found only the works of Roache 
(1994) and Celik and Karatekin (1997) treating of error estimatives on unstructured meshes. These works show the 
effect of the use of two-dimensional meshes on error estimatives, however, only for the traditional form of the finite 
volume method, on a code created by the authors. 

The present work is divided in the following way: in section 2 the mathematical and numerical models are 
presented; in section 3 it is presented the GCI error estimator; in section 4 it is defined the physical problem; and in 
sections 5 and 6, respectively, the results and the conclusion of the work are shown. 

 
2. Mathematical and numerical models 

 
2.1 Governing equations 

 
Considering that the problems to be solved are two-dimensional, laminar, steady flows with negligible gravitational 

effects, incompressible fluid with constant properties, the mass and momentum equations are 
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where Ui are the velocity components in i direction (for two-dimensional problems i represents u and v), xi is the 
Cartesian coordinate in i direction (x and y, in this case), P is the pressure, � is the fluid density, � is the viscosity and 
SUi is a source term associated with the velocity Ui. 

 
2.2 Problem domain discretization 

 
In EbFVM the elements are created by joining points distributed on the domain, the nodes, and the control volumes 

are created surrounding these points with contributions of vary elements (Souza, 2000). In Fig. 1 is shown a triangular 
mesh with elements 123, 134, 145, 156, 167, 178 and 182, and also the volumes A and B. The nodes are identified by 
the black circles and the volumes by the hatched areas. A triangular element, for example the element 123, can be 
mapped on a triangular element on the reference plane (�,η) using interpolation functions N(�,η) (Fig. 2). 

 
 

SVC1 

SVC2 SVC3 

 
 
 
 
 
 
 
 
 
 

Figure 1. Control volumes on a triangular element 
unstructured mesh; adapted from Maliska (2004) 

Figure 2. Mapped triangular element on (�,η) plane; 
adapted from Maliska (2004) 

 
The properties balance on the control volume A are made by the sum of the elements 123, 134, 145, 156, 167, 178 

and 182 contributions for each property. The discretization of the equations is quite similar to Finite Volume Method 
(Maliska, 2004; Ferziger and Peric, 2001). The difference is that the integrations are not made on the volume’s central 
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nodes, nor on the volume’s boundary, but on the integration points, PI (Fig. 2), that are put on the middle of the median 
that forms the control volume. In Morais (2004) can be found a complete description of the calculus of a scalar property 
�, and these derivatives, for a triangular element as well the interpolation functions for this element. 

 
2.3 The CFX 

 
The CFX-5 is a Computational Fluid Dynamics (CFD) code for general use. It combines a solver with pre and post-

processing tool that allow the user to define, solve and analyze results of simulations with a very high degree of 
geometrical and physical complexity.  

In CFX, the advection terms of the conservation equations are discretized accordingly to the following interpolation 
scheme (Ansys, 2004): 

 
rβ+= mpi ������           (5) 

 
where �m is the value of the variable of interest � that is upwind the integration point pi; � is the blend factor. When � = 
0, Eq. (5) gives a first order interpolation scheme (Ferziger and Peric, 2001), with its great robustness and numerical 
diffusion. But, with � = 1, Eq. (5) gives a second order scheme with its better accuracy, however with its numerical 
dispersion. In CFX is possible to choose � values between 0 and 1, but in this work only the schemes with blend factor 
equal one and zero were used for a better comparison between the results. 

The CFX-5 has another discretization scheme, named Upwind. This scheme is also a first order scheme and gives 
identical results to scheme � = 0. So, in this work only the schemes blend factor = 1 and Upwind were used. 
 
3. Discretization error estimators 

 
The function of an error estimator is to calculate the uncertainty defined by Eq. (2), i.e., to estimate the numerical 

error’s value, defined in Eq. (1). The Richardson and GCI estimators are examples of a posteriori error estimator, i.e., 
estimators that calculate the uncertainty based on the numerical solutions obtained with one or more meshes. 

The Richardson estimator estimates the value of the analytical solution (�
�
) by the generalized Richardson 

extrapolation (Roache, 1994), given by 
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where �1 and �2 are, respectively, the numerical solutions obtained with fine and coarse meshes, pL is the asymptotic 
order of the discretization error (Marchi, 2001) and qef is the effective mesh refinement ratio, defined as (Roache, 1994) 
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being N1 and N2 the number of elements on the fine and coarse meshes, respectively, and D is the dimensionality of the 
problem. In this work, D = 2. 

Introducing Eq. (6) into Eq. (2), the numerical uncertainty of the solution obtained with fine mesh is given by 
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When the asymptotic order (pL) is unknown, the apparent order (pU) can be calculated. This order is obtained with 
numerical solutions on three different meshes: fine (�1), coarse (�2) and supercoarse (�3), with N1 > N2 > N3 elements, 
respectively. Considering that any effective mesh refinement ratio between the pairs of meshes 1-2 and 2-3, defined in 
Eq. (7), it is possible to demonstrate that (Marchi, 2001) 
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So, the Richardson estimator based on the apparent order (pU) results in 

 

1)(
)(

)(
21

21
1

�

�

�

U

U
p
ef

p
Ri

q
U

��
�            (10) 

 
The GCI estimator (Roache, 1994) is an extension of Richardson estimator. It is obtained with the application of a 

safety factor (FS) and considering an interval where the true error is statistically hoped to be found. Mathematically, one 
gets 
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where p represents pL or pU. In this work, Fs = 3 as recommended by Roache (1994). 
 
4. Problem definition 
 

As proposed by Shih et al. (1989), the fluid inside a square cavity is moved circularly due a boundary condition of 
velocity, u(x,1), prescribed on superior boundary (see Fig. 3 for more details). The mathematical description of these 
boundary conditions and the source term B(x,y,Re) can be found in Shih et al. (1989), as well as the analytical solution 
of the problem for u, v and P. The circulation center is at x = 0.5 m and y = cos 45� � 0.707 m. 

 

W
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where � = 1 kg/m3,
of Eqs. (12) and (13
 
 
 
 
 

Figure 3. Problem domain and boundary conditions; adapted from Shih et al. (1989)
 interest of this problem are the mass flux (FM) inside the cavity and the force (FP) applied by the 
luid, defined by 

),5.0( dyWy            (12) 
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 � = 1 Pa.s and W is the cavity deepness in z direction that is equal to 1 m. The analytical solutions 
) are: FM = 1/8 = 0.125 kg/s; e FP = 8/3 � 2.6667 N. 
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5. Results 
 
5.1 Meshes 
 

The domain’s discretization was done in way to get meshes with elements distributed as more uniformly as possible, 
i.e., with small differences on element size and volume, as recommended by Celik (2005). The number of divisions on 
the domain sides (boundaries) indicates, to mesh generator, the number of nodes that must be put between the points 
that generate this side of the mesh. 

All meshes were generated using tetrahedrical elements, because CFX-5 always uses three-dimensional meshes. To 
get a two-dimensional flow simulation, symmetry boundary conditions were applied at the domain faces, as indicated 
by Ansys (2004). The number of elements on the face was got to calculate the grid refinement ratio with Eq. (7). These 
elements were generated using only the nodes on domain face. 

For the six meshes used at the simulations, the following variables are presented in Tab. 1: the number of divisions 
used on each domain side; the number of elements used to discretize the two-dimensional domain shown in Fig. 3 (the 
face elements explained above); the average size of elements (it will be defined ahead); and the effective mesh 
refinement ratio calculated with Eq. (7). The lines of this column in Tab. 1 are not aligned to other lines to show that the 
grid refinement ratio, qef, are between meshes A-B; B-C; C-D; D-E and E-F. 
 

Table 1. Meshes used in this work. 
 

Mesh # Divisions of each 
boundary # Elements of 2D domain h  qef 

A 5 50 1.414 x 10-1 
qef (AB) = 2.2000 

B 10 242 6.428 x 10-2 
qef (BC) = 1.9091 

C 20 882 3.367 x 10-2 
qef (CD) = 2.0443 

D 40 3686 1.647 x 10-2 
qef (DE) = 1.9779 

E 80 14420 8.328 x 10-3 

F 160 57021 4.188 x 10-3 
qef (EF) = 1.9885 

 
 
5.2 Numerical solutions 
 

To calculate the variables of interest (FM and FP) were got two lines on domain. The first one, to calculate FM, is 
vertical (constant x) at the middle of the cavity (x = 0.5 m) and with y-coordinate varying between 0.707 m (cos 45º) 
and the upper boundary (y = 1 m). The beginning of the line was got at the theoretical center of the rotational flow just 
for facility, because the CFX post processor gives results at any point of the domains using interpolation of nodal 
results. 

The second line, used to calculate FP, is horizontal (y constant) at y = 0.99375 m and with the x-coordinate varying 
between 0 and 1 m. This y value is equal to 1-1/160 m, where 160 is the number of the divisions on each boundary of 
the finest grid. The number of points used to get the results at each line is equal to the number of the divisions on the 
boundary side that this line intersects. 

To calculate FP, the second line and the upper boundary velocities are used. Moreover, to calculate the y-direction 
velocity gradient is mandatory (see Eq. 13). The approximation of this derivative is done by the difference between two 
consecutive points of the simulation results: 
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With the approximation used in Eq. (14), the asymptotic order (pL) of FP is one and it is not dependent of the 

discretization scheme used for advection terms, because this is the smallest order of all used approximations. For the 
variable FM, the asymptotic order is 2 and 1 for, respectively, blend factor = 1 and Upwind schemes. The necessary 
integrations on both variables, see Eqs. (12) and (13), were made using the trapezoidal rule (Kreyszig, 1999). The 
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results obtained for both variables of interest are shown in Tab. 2. These results should be compared to those analytical 
ones shown above. 

 
Table 2. Numerical results for mass flux (FM) and force of plate (FP). 

 

Mass flux (kg/s) Force of plate (N) Mesh 
Blend Factor = 1 Upwind Blend Factor = 1 Upwind 

A 0.088731233 0.083781846 18.141249567 19.870826006 
B 0.114103463 0.112583208 4.285552285 4.888788220 
C 0.122242379 0.121814640 3.115642582 3.331372810 
D 0.124483571 0.124370775 2.609222026 2.813162603 
E 0.124905337 0.124861074 2.579033834 2.684809871 
F 0.124995705 0.124953565 2.630198032 2.654268843 

 
The computation times to get the numerical solutions of Tab. 2 are presented in Tab. 3. All computations were made 

using double precision. As convergence criteria for iterative process it was used nondimensional residual smaller than 
10-10 for all conservation equations. All simulations were done using a PC type microcomputer, with AMD Athlon 
1500+ processor and 256 MB of RAM. The operational system used was the Windows 2000 SP3. 

 

Table 3. Computational time necessary to get the numerical solutions. 

CPU time (seconds) Mesh Blend Factor = 1 Upwind 
A 13.0 12.9 
B 32.6 31.0 
C 70.7 64.4 
D 426.0 451.8 
E 1776.0 1861.0 
F 8097.0 8843.0 

 
 
5.3 Verification of the discretization error 

 
The behavior of the discretization error for the two variables of interest with the mesh size can be seen in Figs. 4 and 

5. In Figs. 4 to 7, the results are presented for a mean size of elements, shown in Tab. 1, and defined as (adapted of 
Celik, 2005): 
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where S represents the problem domain (in two-dimensional domains S is equal to domain area); N is the number of 
elements on domain and D is the dimensionality of the problem, 2 in this work. 

For the mass flux, the discretization error is reduced monotonically when h  is reduced, as shown in Fig. 4. This also 
happens for the force of plate, Fig. 5, but with an oscillation for the solutions obtained with Blend Factor = 1. This 
oscillation disables the calculus of the apparent order and, as a consequence, to apply the error estimator based on this 
order. It is observed also that the numerical results of each variable and their errors are very close between both the 
discretization schemes. 
 
5.4 Performance of the GCI estimator 

 
The apparent order (pU) for both variables of interest is presented in Tab. 4. It is observed that the values of the 

apparent order are quite different of the asymptotic order for both variables. The performance of GCI estimator is 
shown in Figs. 6 and 7 for both variables of interest. In these figures, the results are presented as a ratio between the 
GCI (Eq. 11) and the true error (Eq. 1). As demonstrated by Marchi and Silva (2002), the uncertainty must be calculated 
based on the smallest value between the asymptotic and apparent orders (since the last one exists and is positive). 
Considering this, the GCI estimator is reliable on all meshes for both variables of interest. By definition, a reliable error 
estimative is when UGCI / E � 1. The error estimative accuracy can be considered just satisfactory, because the ratio 
between UGCI  and E is fairly far from one. 



Proceedings of COBEM 2005 18th International Congress of Mechanical Engineering 
Copyright © 2005 by ABCM November 6-11, 2005, Ouro Preto, MG 
 

 

0,000001

0,00001

0,0001

0,001

0,01

0,1

0,001 0,01 0,1 1
Mean element size

D
is

cr
et

iz
at

io
n 

er
ro

r

Blend Factor=1 Upw ind

Figure 4. Absolute value of discretization error for FM 
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Figure 5. Absolute value of discretization error for FP 
 
 

Table 4. Apparent order (pU) for mass flux (FM) and force of plate (FP). 
 

Mass flux Force of plate Mesh 
Blend Factor=1 Upwind Blend Factor=1 Upwind 

C-B-A 1.289 1.290 3.065 2.792 
D-C-B 2.066 2.053 1.388 1.782 
E-D-C 2.309 2.282 3.931 1.920 
F-E-D 2.281 2.469 Inexistent 2.127 
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Figure 6. Ratio UGCI /E for FM     Figure 7. Ratio UGCI /E for FP 

 
 
6. Conclusion 

 
The present work had as main goal to analyze the performance of the GCI estimator for discretization errors of 

unstructured meshes. The numerical solutions were obtained with the CFX code that employs the Element based Finite 
Volume Method. A two-dimensional laminar flow inside a square cavity was solved. The variables of interest were the 
mass flux in the cavity and the force applied by the top boundary on the fluid in the cavity. The error estimates obtained 
with GCI are reliable for all meshes and both variables but their accuracy can be considered satisfactory. 
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