

Proceedings of the XXVII Iberian Latin American Congress on Computational Methods in Engineering September 3 to 6, 2006 - Belém, Pará - BRAZIL.

ESCOAMENTO NA CAVIDADE COM TAMPA MÓVEL: SOLUÇÕES NUMÉRICAS COM MALHA 1024x1024 E ESTIMATIVA DO ERRO DE DISCRETIZAÇÃO

Carlos Henrique Marchi

Roberta Suero

marchi@demec.ufpr.br
robertasuero@yahoo.com.br
Departamento de Engenharia Mecânica, Universidade Federal do Paraná (UFPR)
Programa de Pós-Graduação em Métodos Numéricos em Engenharia, UFPR
Curitiba, PR, Brasil
Fábio Alencar Schneider
schneider@unicenp.edu.br
Curso de Engenharia Mecânica, Centro Universitário Positivo (UNICENP)
Curitiba, PR, Brasil

Resumo. Neste trabalho aborda-se o escoamento dentro de uma cavidade quadrada cuja tampa tem velocidade constante ou variável. O modelo numérico caracteriza-se pelo emprego do método de Volumes Finitos com arranjo co-localizado de variáveis, solver MSI, esquema CDS, método SIMPLEC e malhas uniformes. O objetivo principal do trabalho é obter soluções numéricas altamente acuradas com estimativa do erro de discretização. As variáveis de interesse são: o fluxo de massa que escoa na cavidade, o valor mínimo da função de corrente, a força que a tampa exerce sobre o fluido e as componentes do vetor velocidade no centro do domínio de cálculo. O estimador de erro usado é o GCI baseado nas ordens assintótica e aparente do erro. São apresentados resultados obtidos com malha de 1024x1024 volumes, seus erros verdadeiros e estimados, bem como comparações com treze fontes da literatura.

Palavras-chave: Navier-Stokes, GCI, CFD, erro numérico, volumes finitos.

1. INTRODUÇÃO

Este trabalho aborda o problema clássico (Burggraf, 1996; Ghia *et al.*, 1982) do escoamento laminar no interior de uma cavidade quadrada cuja tampa move-se a uma velocidade constante, Fig. 1 com u=f(x)=1. Este problema é muito usado para avaliar métodos numéricos e validar códigos que resolvem as equações de Navier-Stokes (Botella e Peyret, 1998). Diversos métodos numéricos já foram usados: diferenças finitas (Burggraf, 1996; Ghia *et al.*, 1982; Zhang, 2003; Gupta e Kalita, 2005; Bruneau e Saad, 2006); volumes finitos (Hayase *et al.*, 1992); rede de Boltzmann (Hou *et al.*, 1995); e espectral (Botella e Peyret, 1998). Também, diversas formulações matemáticas foram empregadas: função de corrente e vorticidade (Burggraf, 1996; Ghia *et al.*, 1982; Nishida e Satofuka, 1992; Zhang, 2003); função de corrente e velocidade (Gupta e Kalita, 2005); e equações de Navier-Stokes (Hayase *et al.*, 1992).

Figura 1 - O problema da cavidade quadrada com tampa móvel.

As duas principais metas em dinâmica dos fluidos computacional são obter soluções numéricas acuradas e confiáveis (Shyy *et al.*, 2002). Ambas dependem da estimativa do erro numérico. Embora exista esta extensa literatura sobre esse problema, até hoje parece que nenhum trabalho foi desenvolvido para estimar o erro numérico envolvido em sua solução.

No presente trabalho, são resolvidas as equações de Navier-Stokes através do método dos volumes finitos, com malhas uniformes e aproximações numéricas de 2^a ordem de acurácia. Os objetivos são: (1) verificar (Roache, 1998) as soluções numéricas para uma situação cuja solução analítica é conhecida (Shih *et al.*, 1989); (2) obter soluções numéricas altamente acuradas para número de Reynolds Re = 100 e 1000 com malhas de até 1024x1024 volumes; (3) utilizar uma variante do estimador *GCI* (Grid Convergence Index) (Roache, 1994) para estimar o erro de discretização das variáveis de interesse; (4) avaliar o desempenho do estimador *GCI* para o caso em que a solução analítica é conhecida; (5) comprovar a ordem de acurácia das soluções numéricas; e (6) comparar os resultados com treze fontes da literatura. Somente o trabalho de Bruneau e Saad (2006) traz soluções em malhas tão finas quanto o presente, mas apenas para Re = 1000. Além disso, no presente trabalho, o processo iterativo é levado até atingir o erro de máquina; o que parece que os demais autores não fizeram.

O trabalho está assim dividido: nas seções 2 e 3 são apresentados os modelos matemático e numérico; na seção 4 apresenta-se o estimador de erro *GCI*; na seção 5 são apresentados os resultados do problema com solução analítica; na seção 6, os resultados do problema clássico para Re = 100 e 1000; e na seção 7, a conclusão do trabalho.

2. MODELO MATEMÁTICO

O modelo matemático do problema é composto pelos princípios de conservação da massa e da quantidade de movimento linear (equações de Navier-Stokes). As simplificações consideradas sobre ele são: regime permanente, escoamento bidimensional nas direções x e y, fluido incompressível, massa específica (ρ) e viscosidade dinâmica (μ) do fluido constantes e sem outros efeitos. Assim, o modelo matemático resultante é

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{1}$$

$$\rho \frac{\partial (u^2)}{\partial x} + \rho \frac{\partial (uv)}{\partial y} = \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - \frac{\partial p}{\partial x}$$
(2)

$$\rho \frac{\partial (uv)}{\partial x} + \rho \frac{\partial (v^2)}{\partial y} = \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) - \frac{\partial p}{\partial y} + S$$
(3)

onde u é a velocidade na direção x, v é a velocidade na direção y, p é a pressão e S é um termo fonte.

As variáveis de interesse do problema envolvem as próprias variáveis primitivas ($u \in v$) e suas integrações. São elas: $u \in v$ no centro do domínio, que é considerado um quadrado de lado unitário com a origem do sistema de coordenadas da Fig. 1; perfil de $u \text{ em } x = \frac{1}{2}$; perfil de $v \text{ em } y = \frac{1}{2}$; valor mínimo da função de corrente (ψ_{min}); e o fluxo de massa (M) e a força (F) definidos a seguir.

O fluxo de massa (*M*) é aquele que escoa através da linha $y = \frac{1}{2}$ entre $x = 0 e^{\frac{1}{2}}$, isto é,

$$M = \int_{0}^{\frac{1}{2}} \rho v_{y=\frac{1}{2}} z \, dx \tag{4}$$

onde z é a profundidade da cavidade, que é considerada unitária.

A força (F) é aquela que a tampa da cavidade exerce sobre o fluido, calculada por

$$F = \int_{0}^{1} \mu \left(\frac{\partial u}{\partial y}\right)_{y=1} z \, dx \tag{5}$$

3. MODELO NUMÉRICO

Em resumo, o modelo numérico adotado para resolver o modelo matemático descrito pelas Eqs. (1) a (3) tem as seguintes características: (1) método dos volumes finitos (Ferziger e Peric, 1999; Maliska, 2004); (2) diferença central (CDS) (Tannehill *et al.*, 1997) para os termos difusivos; (3) diferença central (CDS) com correção adiada (Khosla e Rubin, 1974) para os termos advectivos; (4) as Eqs. (1) a (3) são resolvidas seqüencialmente com o método *MSI* (Modified Strongly Implicit) (Schneider e Zedan, 1981); (5) método SIMPLEC (Van Doormaal e Raithby, 1984) para tratar o acoplamento pressão-velocidade; (6) malhas uniformes; (7) as condições de contorno para $u \, e \, v$, Fig. 1, são aplicadas por meio de volumes fictícios (Maliska, 2004); (8) as Eqs. (1) a (3) são escritas para regime transiente visando usar

o tempo como parâmetro de relaxação no processo iterativo de solução do modelo matemático discretizado; e (9) usa-se o arranjo co-localizado de variáveis conforme Marchi e Maliska (1994). A solução numérica das variáveis de interesse é obtida conforme segue.

A solução numérica do perfil de $u \text{ em } x = \frac{1}{2}$ é obtida através de média aritmética de u armazenado na face leste dos dois volumes vizinhos a cada coordenada y desejada; esta u na face leste de cada volume de controle é aquela do arranjo co-localizado de variáveis de Marchi e Maliska (1994). Isso é necessário porque o número de volumes usado em cada direção coordenada é par, o que faz com que nenhum centro de volume de controle coincida com a linha $x = \frac{1}{2}$. A solução numérica do perfil de v em $y = \frac{1}{2}$ é obtida de forma análoga ao perfil de u, através de média aritmética de v armazenado na face norte dos dois volumes vizinhos a cada coordenada x desejada. A solução numérica das componentes do vetor velocidade ($u \in v$) no centro do domínio, denotadas por $u_c \in v_c$, e extraída diretamente dos perfis de $u \in v$.

Para cada linha vertical, a solução numérica do campo da função de corrente (ψ) é obtida através da integração do produto de u, armazenado na face leste de cada volume de controle, pela altura de cada volume de controle (Δy), a partir da parede inferior, em y = 0. As linhas verticais coincidem com as coordenadas x das faces de cada volume de controle. A integração usada é do tipo retângulo (Kreyszig, 1999). O valor mínimo da função de corrente (ψ_{min}) é obtido diretamente do campo de ψ .

A solução numérica do fluxo de massa (M), definido pela Eq. (4), é obtida por integração do tipo retângulo através de

$$M = z \rho \Delta x \sum_{i=1}^{N_{x}/2} v_{n,i,y=\frac{1}{2}}$$
(6)

onde *i* representa o número do volume de controle na direção *x*; *i* = 1 é o volume de controle real junto à parede esquerda da cavidade; N_X é o número total de volumes de controle reais na direção *x*; Δx é a largura de cada volume de controle; e v_n é *v* na face norte de cada volume de controle.

A solução numérica da força (F) que a tampa da cavidade exerce sobre o fluido, definida pela Eq. (5), é obtida através de dois tipos de aproximação: com um ponto a montante (UDS) e dois pontos a montante (UDS-2). Além disso, a integração usada é do tipo retângulo, o que resulta em

$$F_{UDS} = \frac{2 z \mu \Delta x}{\Delta y} \sum_{i=1}^{N_x} (u_{T,i} - u_{i,N_y})$$
(7)

$$F_{UDS-2} = \frac{z \,\mu \,\Delta x}{3 \,\Delta y} \sum_{i=1}^{N_x} (8 \,u_{T,i} - 9 \,u_{i,N_Y} + u_{i,N_Y-1}) \tag{8}$$

onde $u_{T,i}$ é a velocidade da tampa da cavidade na coordenada *x* do centro de cada volume de controle *i*; u_{i,N_Y} é a velocidade nodal *u* no centro de cada volume de controle real *i*, cuja face norte do volume coincide com a tampa da cavidade; u_{i,N_Y-1} é a velocidade nodal *u* no centro de cada volume de controle *i*, imediatamente abaixo do volume de u_{i,N_Y} .

O algoritmo utilizado na implementação do código computacional é o seguinte:

- 1) Ler os dados do problema.
- 2) Inicializar as variáveis.

- Calcular os coeficientes e fontes do sistema de equações que resulta da discretização da Eq. (2), tendo *u* nodal como incógnita.
- 4) Resolver com o método MSI o sistema do item 3, obtendo a solução de u nodal.
- 5) Calcular os coeficientes e fontes do sistema de equações que resulta da discretização da Eq. (3), tendo *v* nodal como incógnita.
- 6) Resolver com o método MSI o sistema do item 5, obtendo a solução de v nodal.
- 7) Calcular *u* na face leste de cada volume de controle (u_e) e *v* na face norte de cada volume de controle (v_n) .
- Calcular os coeficientes e fontes do sistema de equações que resulta da discretização da Eq. (1), tendo p' como incógnita, onde p' é uma correção de p.
- 9) Resolver com o método MSI o sistema do item 8, obtendo a solução de p'.
- 10) Com p', corrigir os campos de u nodal, v nodal, u_e , $v_n \in p$.
- 11) Voltar ao item 3 até que o erro de máquina seja atingido. Isso é verificado através do monitoramento da norma *L*1 (Kreyszig, 1999), ao longo das iterações, da soma do resíduo dos três sistemas resolvidos nos itens 4, 6 e 9.
- 12) Calcular a solução numérica das variáveis de interesse.

O código computacional foi implementado com a linguagem FORTRAN 95, com o software Compaq Visual Fortran 6.6 e precisão dupla. Os fontes e executáveis deste código, bem como todos os resultados obtidos, se encontram disponíveis no seguinte endereço: ftp://ftp.demec.ufpr.br/cfd/monografias/2006_ROBERTA_SUERO_MESTRADO.

4. ERRO DE DISCRETIZAÇÃO

Erro numérico (*E*) é a diferença entre a solução analítica exata (Φ) de uma variável de interesse e a sua solução numérica (ϕ), isto é, (Marchi e Silva, 2002)

$$E(\phi) = \Phi - \phi \tag{9}$$

onde E é causado por quatro fontes de erros: truncamento, iteração, arredondamento e programação. Quando as outras fontes são inexistentes ou muito pequenas em relação aos erros de truncamento, E também pode ser denominado de erro de discretização.

Em situações práticas, uma solução numérica é obtida porque a solução analítica é desconhecida. Por conseqüência, o valor verdadeiro do erro numérico também é desconhecido. Portanto, o erro numérico tem que ser estimado. Pelo número de citações e amplo uso que vem sendo feito dele, e segundo a experiência de um dos autores deste trabalho, o *GCI (Grid Convergence Index)* de Roache (1994) pode ser considerado o mais confiável dos estimadores atuais para erros de discretização. Segundo o *GCI*, o erro de discretização estimado (U) é dado por

$$U_{GCI}(\phi_1) = F_s \frac{|\phi_1 - \phi_2|}{(r^p - 1)}$$
(10)

onde

$$p = Min(p_L, p_U > 0) \tag{11}$$

$$p_U = \frac{\log\left(\frac{\phi_2 - \phi_3}{\phi_1 - \phi_2}\right)}{\log(r)} \tag{12}$$

$$r = \frac{h_3}{h_2} = \frac{h_2}{h_1}$$
(13)

 ϕ_1 , ϕ_2 e ϕ_3 = soluções numéricas obtidas respectivamente com malhas fina (h_1), grossa (h_2) e supergrossa (h_3), h = tamanho dos volumes de controle (neste trabalho, $h = \Delta x = \Delta y$), r = razão de refino de malha, Min = valor mínimo entre os argumentos, F_s = fator de segurança (três, neste trabalho), p_L = ordem assintótica (Roache, 1998) do erro prevista para cada variável de interesse, p_U = ordem aparente (De Vahl Davis, 1983; Marchi e Silva, 2002) do erro calculada para cada variável de interesse.

A Eq. (10) resulta dos trabalhos de Roache (1994) e Marchi e Silva (2002). O cálculo da ordem *p* do erro, segundo a Eq. (11), aumenta a confiabilidade do erro estimado pela Eq. (10). Se $p_U \le 0$ ou indefinido, a Eq. (10) não deve ser aplicada (Marchi, 2001).

Considerando-se o modelo numérico descrito na seção anterior, a ordem assintótica prevista é: $p_L = 1$ para F_{UDS} e $p_L = 2$ para as demais variáveis de interesse. Teoricamente (Marchi, 2001), espera-se que p_E e $p_U \rightarrow p_L$ para $h \rightarrow 0$. Isto é, espera-se que as ordens práticas (p_E e p_U), que são calculadas com as soluções numéricas de cada variável de interesse, tendam à ordem teórica (p_L), prevista *a priori*, quando o tamanho dos volumes de controle (*h*) tende a zero. A ordem efetiva (p_E) do erro verdadeiro é definida por (Marchi, 2001)

$$p_E = \frac{\log\left[\frac{E(\phi_2)}{E(\phi_1)}\right]}{\log(r)}$$
(14)

Conforme a Eq. (14), a ordem efetiva (p_E) é função do erro verdadeiro da variável de interesse. Assim, para os problemas cuja solução analítica é conhecida, ela pode ser usada para verificar *a posteriori* se, à medida que $h \rightarrow 0$, obtém-se p_L .

5. PROBLEMA COM SOLUÇÃO ANALÍTICA CONHECIDA

Existe uma variante do problema clássico de Ghia *et al.* (1982) cuja solução analítica é conhecida (Shih *et al.*, 1989). Neste caso, o termo fonte (*S*) da Eq. (3) é diferente de zero, e apresentado em Shih *et al.* (1989), e a velocidade da tampa varia com x de acordo com

$$u(x,1) = 16(x^4 - 2x^3 + x^2)$$
(15)

As demais condições de contorno são mostradas na Fig. 1. A solução analítica de *u* e *v* é (Shih *et al.* 1989)

$$u(x,y) = 8(x^4 - 2x^3 + x^2)(4y^3 - 2y)$$
(16)

$$v(x, y) = -8(4x^{3} - 6x^{2} + 2x)(y^{4} - y^{2})$$
(17)

Na Tabela 1 é apresentada a solução analítica das variáveis de interesse.

Variável de interesse	Solução analítica (Φ)
u(1/2,1/2)	- 0.25 m/s
v(1/2, 1/2)	0 m/s
ψ_{min}	$-\frac{1}{8} = -0.125 \ m^2/s$
Μ	$\frac{3}{32} = 0.09375 \ kg/s$
F	$\frac{8}{3} \approx 2.666667 N$

Tabela 1. Solução analítica do problema de Shih et al. (1989).

Todas as soluções numéricas deste trabalho foram obtidas com dez malhas diferentes: 2x2, 4x4, 8x8 e assim por diante até 1024x1024 volumes de controle reais. O microcomputador utilizado em todas as simulações deste trabalho tem processador Intel Pentium 4 de 3.4 GHz e memória RAM de 4 GB. No caso dos resultados desta seção, o tempo de CPU variou de 0.06 segundo, para a malha 2x2, até 5 dias e 20 horas para a malha 1024x1024. Para esta malha, a norma *L*1 da soma do resíduo dos três sistemas resolvidos, adimensionalizada com base na condição inicial, atingiu valor aproximado de $2.0x10^{-10}$; para as malhas mais grossas, este valor foi inferior, chegando a $2.9x10^{-14}$ para a malha 2x2. O processo iterativo convergiu para pelo menos 13 algarismos significativos para todas as variáveis de interesse e todas as malhas. Isso foi verificado através do monitoramento das variáveis de interesse ao longo das iterações. Portanto, a solução numérica de cada variável de interesse tem 13 algarismos significativos sem erros de iteração e de arredondamento. O número de iterações externas, itens 3 a 11 do algoritmo da seção 3, foi de 10^3 a 10^5 respectivamente para as malhas 2x2 a 1024x1024.

Os perfis de velocidade nas duas direções, no centro da cavidade, são mostrados na Fig. 2. A concordância entre a solução analítica de Shih *et al.* (1989) e a solução numérica do presente trabalho, com a malha 1024x1024 volumes reais, pode ser considerada muito boa.

Figura 2 - Perfil de velocidade $u \text{ em } x = \frac{1}{2} m \text{ e } v \text{ em } y = \frac{1}{2} m$.

Com as Eqs. (12) e (14) e as soluções numéricas, foram calculadas as ordens efetiva (p_E) e aparente (p_U) de cada variável de interesse. Os resultados são mostrados na Fig. 3, na qual pode-se observar o seguinte:

- 1) Nas malhas mais grossas, como era esperado (Marchi, 2001), os valores das ordens efetiva e aparente podem ser significativamente diferentes da ordem assintótica (p_L) , apresentando valores negativos ou sendo até indefinidos.
- 2) À medida que a malha é refinada, os valores das ordens efetiva e aparente tendem ao valor teórico da ordem assintótica (2) para todas as variáveis, exceto a força.
- 3) À medida que a malha é refinada, os valores das ordens efetiva e aparente de F_{UDS} parece que tendem a 2. Este valor será considerado como a ordem assintótica prática de F_{UDS} . Lembra-se que o valor teórico da ordem assintótica previsto para F_{UDS} é 1.
- 4) À medida que a malha é refinada, os valores das ordens efetiva e aparente de F_{UDS-2} tendem nitidamente a 1. Este valor será considerado como a ordem assintótica prática de F_{UDS-2} . Lembra-se que o valor teórico da ordem assintótica previsto para F_{UDS-2} é 2.

Figura 3 - Ordem efetiva (p_E) e aparente (p_U) das variáveis de interesse do problema de Shih *et al.* (1989).

Para cada variável de interesse, na Fig. 4 é mostrado o módulo do erro (E) de discretização, calculado com a Eq. (9), e a sua estimativa (U), calculada com a Eq. (10). Podese observar o seguinte nesta figura:

- 1) A estimativa do erro (U_{GCI}) só não é confiável em apenas quatro dos 64 pontos em que se compara U com E. E esses pontos ocorrem nas malhas mais grossas. Confiável, aqui, significa que a razão U/E é maior ou igual à unidade.
- 2) A acurácia de *U* pode ser medida pela proximidade da unidade que está a razão U/E. Nas malhas grossas, ela é relativamente ruim, tendo valores da ordem de dezenas. À medida que a malha é refinada, a acurácia tende a 3, ou seja, ao valor do fator (F_s) de segurança (três, neste trabalho) usado no estimador *GCI*, Eq. (10), conforme previsto por Marchi (2001).
- 3) Na Fig. 4a pode-se notar que o módulo de $E(F_{UDS})$ é significativamente menor do que $E(F_{UDS-2})$. Isso é coerente com os valores para os quais p_E e p_U tendem quando $h \rightarrow 0$.

a) Força da placa (F) com p_L teórico.

b) Força da placa (F) com p_L prático.

Figura 4 - Módulo do erro (E) e de sua estimativa (U) para as variáveis de interesse do problema de Shih *et al.* (1989).

A Tabela 2 mostra a solução numérica de cada variável de interesse, obtida com a malha 1024x1024, bem como a estimativa do seu erro (*U*), calculada com a Eq. (10), e as ordens assintótica prática (p_L), efetiva (p_E) e aparente (p_U). Nesta malha, para todas as variáveis, o estimador *GCI* é confiável. Isto é, a solução analítica dada na Tabela 1 está contida no intervalo compreendido pela solução numérica (ϕ) ± U_{GCI} . O p_L prático é obtido da tendência que p_E e p_U apresentam quando $h \rightarrow 0$.

Variável de interesse	p_L	p_E	p_U	Solução numérica (ϕ) e seu U_{GCI}
u(1/2, 1/2)	2	1.999965	1.999804	$-0.2499984 \pm 4.9 \mathrm{x10}^{-6}$
v(1/2, 1/2)	2	1.999762	1.998815	$0.000000028~\pm~8.5 {\rm x10^{-8}}$
ψ_{min}	2	1.956996	1.999054	$-0.12499985 \pm 4.3 \mathrm{x10}^{-7}$
M	2	2.000252	2.001008	$0.09375007 ~\pm~ 2.1 {\rm x10^{-7}}$
F_{UDS}	2	1.638635	1.461888	$2.66672 \pm 1.1 \mathrm{x10}^{-4}$
F_{UDS-2}	1	1.023066	1.036219	$2.6688 \pm 6.7 \mathrm{x10^{-3}}$

Tabela 2. Solução numérica com malha 1024x1024 do problema de Shih et al. (1989).

6. PROBLEMA CLÁSSICO, SEM SOLUÇÃO ANALÍTICA CONHECIDA

No problema de Ghia *et al.* (1982), a velocidade da tampa (U_T) é constante e tem valor unitário. As demais condições de contorno são mostradas na Fig. 1. O termo fonte (*S*) da Eq. (3) é nulo. O número de Reynolds (*Re*) é definido por

$$Re = \rho U_T \frac{L}{\mu} \tag{18}$$

onde L = 1 m, dimensão do lado da cavidade quadrada; $\rho = 1 kg/m^3$, massa específica; e $\mu =$ viscosidade absoluta em *Pa.s*, obtida da Eq. (18) para um dado *Re*.

6.1 Número de Reynolds 100

Para as soluções numéricas obtidas com número de Reynolds (*Re*) 100, o tempo de CPU variou de 0.03 segundo, para a malha 2x2, até 4 dias e 20 horas para a malha 1024x1024. Para esta malha, a norma *L*1 da soma do resíduo dos três sistemas resolvidos, adimensionalizada com base na condição inicial, atingiu valor aproximado de 7.5×10^{-15} ; para as malhas mais grossas, este valor foi inferior, chegando a 1.8×10^{-16} para a malha 2x2. O processo iterativo convergiu para pelo menos 13 algarismos significativos para todas as variáveis de interesse e todas as malhas. O número de iterações externas foi de 5×10^2 a 8.5×10^4 respectivamente para as malhas 2x2 a 1024×1024 .

Os perfis de velocidade nas duas direções, no centro da cavidade, são mostrados na Fig. 5. A concordância entre a solução numérica de Ghia *et al.* (1982), com malha 128x128 elementos, e a solução numérica do presente trabalho, com a malha 1024x1024 volumes reais, pode ser considerada boa.

A ordem aparente (p_U) de cada variável de interesse é mostrada na Fig. 6, na qual pode-se observar o seguinte:

- 1) Nas malhas mais grossas, como era esperado (Marchi, 2001), os valores de p_U podem ser significativamente diferentes da ordem assintótica (p_L), apresentando valores negativos ou sendo até indefinidos.
- 2) À medida que a malha é refinada, os valores de p_U tendem ao valor teórico da ordem assintótica (2) para todas as variáveis, exceto a força.
- 3) Para F_{UDS} e F_{UDS-2} , $p_U \rightarrow 0$ quando $h \rightarrow 0$. Isso indica que há algo errado. Nie *et al.* (2006) mostraram que F não pode ser obtido apenas com a mecânica do contínuo, isto é, com as equações de Navier-Stokes. É necessário considerar também o movimento na escala microscópica. Esse problema ocorre devido à descontinuidade existente na condição de contorno de u, nas quinas da tampa: 0 de um lado e 1 de outro.

Figura 5 - Perfil de velocidade $u \text{ em } x = \frac{1}{2} m \text{ e } v \text{ em } y = \frac{1}{2} m \text{ pare } Re = 100.$

Figura 6 - Ordem aparente (p_U) das variáveis de interesse para Re = 100 do problema de Ghia *et al.* (1982).

Para cada variável de interesse, na Fig. 7 é mostrada a estimativa do erro de discretização. Para F_{UDS} e F_{UDS-2} , não se apresenta U porque a Eq. (10) não se aplica quando $p_U < 0$ (Marchi, 2001), que é o caso aqui. Isso também ocorre na Tabela 3. Nesta tabela, para as demais variáveis, apresenta-se a solução numérica obtida com a malha 1024x1024, a estimativa do seu erro (U) e as ordens assintótica prática (p_L) e aparente (p_U). O p_L prático é obtido da tendência que p_U apresenta quando $h \rightarrow 0$.

Na Tabela 4 apresenta-se a solução numérica obtida com a malha 1024x1024 em 15 pontos selecionados do perfil de velocidade u no centro da cavidade, e na Tabela 5, o perfil de v. Também apresenta-se a estimativa do erro (U) e a ordem aparente (p_U). Pode-se perceber que em quase todos os pontos $p_U \approx 2$, valor da ordem assintótica (p_L) teórica.

Nas Tabelas 6 e 7 são mostrados resultados deste trabalho e de diversos outros autores para as variáveis de interesse. Também apresenta-se a malha usada e o valor da ordem assintótica (p_L) teórica prevista por cada autor. Em geral, as diferenças estão na terceira casa decimal, exceto no caso da força F. O valor para F do presente trabalho, mostrado na Tabela 6, é a média dos dois valores da Tabela 3. A solução de F deste trabalho concorda bem com a de Nie *et al.* (2006), e ambas têm grande diferença para a solução de Hou *et al.* (1995).

Figura 7 - Estimativa (U) do erro de discretização para Re = 100 do problema de Ghia *et al.* (1982).

Tabela 3. Solução numérica com malha 1024x1024 para Re = 100 do problema de Ghia *et al.* (1982).

Variável de interesse	p_L	p_U	Solução numérica (ϕ) e seu U_{GCI}
u(1/2, 1/2)	2	2.000935	$-0.209143 \pm 1.9 \mathrm{x10}^{-5}$
v(1/2, 1/2)	2	1.759938	$0.05753673~\pm~6.1 \mathrm{x10^{-7}}$
ψ_{min}	2	1.831320	$-0.1035193 \pm 6.5 \mathrm{x10}^{-6}$
М	2	1.996948	$0.0665461~\pm~3.7 {\rm x10^{-6}}$
F_{UDS}	0	-0.000350	$0.310 \pm ?$
F_{UDS-2}	0	- 0.003940	$0.332 \pm ?$

6.2 Número de Reynolds 1000

Para as soluções numéricas obtidas com número de Reynolds (*Re*) 1000, o tempo de CPU variou de 0.02 segundo, para a malha 2x2, até 5 dias e 15 horas para a malha 1024x1024. Para esta malha, a norma *L*1 da soma do resíduo dos três sistemas resolvidos, adimensionalizada com base na condição inicial, atingiu valor aproximado de 1.6×10^{-15} ; para as malhas mais grossas, este valor foi inferior, chegando a 4.7×10^{-15} para a malha 2x2. O processo iterativo convergiu para pelo menos 13 algarismos significativos para todas as variáveis de interesse e todas as malhas. O número de iterações externas foi de 5×10^2 a 9×10^4 respectivamente para as malhas 2x2 a 1024×1024 .

Os perfis de velocidade nas duas direções, no centro da cavidade, são mostrados na Fig. 8. A concordância entre a solução numérica de Ghia *et al.* (1982), com malha 128x128 elementos, e a solução numérica do presente trabalho, com a malha 1024x1024 volumes reais, pode ser considerada boa.

Variável de interesse	p_U	Solução numérica (ϕ) e seu U_{GCI}
u(0.5, 0.0625)	2.147456	$-0.04197507 \pm 2.4 \mathrm{x10}^{-7}$
u(0.5, 0.125)	1.868924	$-0.07712525 \pm 4.8 \mathrm{x} 10^{-7}$
u(0.5, 0.1875)	1.978974	$-0.1098154 \pm 2.7 \mathrm{x10^{-6}}$
u(0.5, 0.25)	1.993379	$-0.1419279 \pm 6.5 x 10^{-6}$
u(0.5, 0.3125)	1.998071	$-0.172709 \pm 1.2 \mathrm{x10}^{-5}$
u(0.5, 0.375)	2.000054	$-0.198465 \pm 1.7 \mathrm{x10}^{-5}$
u(0.5, 0.4375)	2.000902	$-0.212956 \pm 2.0 \mathrm{x10}^{-5}$
u(0.5,0.5)	2.000935	$-0.209143 \pm 1.9 \mathrm{x10}^{-5}$
u(0.5, 0.5625)	1.999763	$-0.182076 \pm 1.5 \mathrm{x10}^{-5}$
u(0.5, 0.625)	1.995031	$-\ 0.1312539\ \pm\ 7.2 x 10^{-6}$
u(0.5, 0.6875)	2.085979	$-0.06024579 \pm 5.9 \mathrm{x10}^{-7}$
u(0.5, 0.75)	2.004496	$0.0278722~\pm~6.9 {\rm x10^{-6}}$
u(0.5, 0.8125)	1.996234	$0.140422 \pm 1.1 \mathrm{x10^{-5}}$
u(0.5, 0.875)	1.986320	$0.310554 \pm 1.1 \mathrm{x10^{-5}}$
u(0.5,0.9375)	1.986999	$0.597463 \pm 1.2 \mathrm{x10}^{-5}$

Tabela 4. Solução numérica do perfil de velocidade u com malha 1024x1024 para Re = 100 do problema de Ghia *et al.* (1982).

Tabela 5. Solução numérica do perfil de velocidade v com malha 1024x1024 para Re = 100 do problema de Ghia *et al.* (1982).

Variável de interesse	p_U	Solução numérica (ϕ) e seu U_{GCI}
v(0.0625,0.5)	1.990425	$0.0948046 \pm 9.1 \mathrm{x10^{-6}}$
v(0.125,0.5)	1.991731	$0.149239 ~\pm~ 1.4 {\rm x10^{-5}}$
v(0.1875,0.5)	1.993743	$0.174338 ~\pm~ 1.5 {\rm x10}^{-5}$
v(0.25,0.5)	1.996269	$0.179239~\pm~1.5 x 10^{-5}$
v(0.3125,0.5)	1.999362	$0.169128~\pm~1.3 x 10^{-5}$
v(0.375,0.5)	2.003797	$0.1457270~\pm~9.7x10^{-6}$
v(0.4375,0.5)	2.014244	$0.1087741~\pm~5.4 {\rm x10^{-6}}$
v(0.5,0.5)	1.759938	$0.05753673 ~\pm~ 6.1 {\rm x10^{-7}}$
v(0.5625, 0.5)	1.981704	$-0.0077459 \pm 8.0 \mathrm{x10}^{-6}$
v(0.625,0.5)	1.992687	$-\ 0.084061\ \pm\ 1.7x10^{-5}$
v(0.6875,0.5)	1.997319	$-0.163002 \pm 2.3 \mathrm{x10}^{-5}$
v(0.75,0.5)	2.000465	$-0.227819 \pm 2.4 \mathrm{x10}^{-5}$
v(0.8125,0.5)	2.003962	$-0.253764 \pm 1.5 \mathrm{x10}^{-5}$
v(0.875,0.5)	2.080131	$-0.21869058 \pm 7.2 \mathrm{x10}^{-7}$
v(0.9375,0.5)	1.988282	$-0.1233197 \pm 4.7 \mathrm{x10}^{-6}$

Variável de	Ghia <i>et al</i> .	Presente	Hou <i>et al</i> .	Nie et al.
interesse	(1982)	(1024x1024)	(1995)	(2006)
u(0.5, 0.0625)	- 0.04192	- 0.04197507		
u(0.5,0.5)	-0.20581	- 0.209143		
v(0.0625, 0.5)	0.09233	0.0948046		
v(0.5,0.5)	0.05454	0.05753673		
F		0.32	1.45	0.344

Tabela 6. Comparações de u, $v \in F$ com outros autores para Re = 100 do problema de Ghia *et al.* (1982).

Tabela 7. Comparações de ψ_{min} com outros autores para Re = 100 do problema de Ghia *et al.* (1982).

Autor	Malha	p_L	ψ_{min}
Burggraf (1966)	50 x 50	2	- 0.1022
Ghia <i>et al.</i> (1982)	128 x 128	2	- 0.103423
Schreiber et al. (1983)	140 x 140	?	- 0.1033
Vanka (1986)	320 x 320	?	-0.1034
Nishida e Satofuka (1992)	128 x 128	10	-0.103512
Hou <i>et al.</i> (1995)	256 x 256	?	- 0.1030
Zhang (2003)	128 x 128	4	- 0.103511
Gupta <i>et al</i> . (2005)	40 x 40	2	- 0.103
Presente	1024 x 1024	2	- 0.1035193

Figura 8 - Perfil de velocidade $u \text{ em } x = \frac{1}{2} m \text{ e } v \text{ em } y = \frac{1}{2} m$ pare Re = 1000.

A ordem aparente (p_U) de cada variável de interesse é mostrada na Fig. 9, para a qual valem as mesmas observações feitas para a Fig. 6. Para cada variável de interesse, na Fig. 10 é mostrada a estimativa do erro de discretização. Para F_{UDS} e F_{UDS-2} , não se apresenta U porque a Eq. (10) não se aplica quando $p_U < \text{ou} \approx 0$ e $p_L = 0$ (Marchi, 2001), que é o caso aqui. Isso também ocorre na Tabela 8. Nesta tabela, para as demais variáveis, apresenta-se a solução numérica obtida com a malha 1024x1024, a estimativa do seu erro (U) e as ordens assintótica prática (p_L) e aparente (p_U).

Figura 9 - Ordem aparente (p_U) das variáveis de interesse para Re = 1000 do problema de Ghia *et al.* (1982).

Figura 10 - Estimativa (U) do erro de discretização para Re = 1000 do problema de Ghia *et al.* (1982).

Na Tabela 9 apresenta-se a solução numérica obtida com a malha 1024x1024 em 15 pontos selecionados do perfil de velocidade u no centro da cavidade, e na Tabela 10, o perfil de v. Também apresenta-se a estimativa do erro (U) e a ordem aparente (p_U). Pode-se perceber que em quase todos os pontos $p_U \approx 2$, valor da ordem assintótica (p_L) teórica.

Nas Tabelas 11 e 12 são mostrados resultados deste trabalho e de diversos outros autores para as variáveis de interesse. Também apresenta-se a malha usada e o valor da ordem assintótica (p_L) teórica prevista por cada autor. Em geral, as diferenças estão na terceira casa decimal, exceto no caso da força F. O valor para F do presente trabalho, mostrado na Tabela 11, é a média dos dois valores da Tabela 8. A solução de F deste trabalho concorda bem com a de Nie *et al.* (2006), e ambas têm grande diferença para a solução de Hou *et al.* (1995).

Variável de interesse	p_L	p_U	Solução numérica (ϕ) e seu U_{GCI}
u(1/2, 1/2)	2	2.071716	$-0.062050 \pm 1.8 \mathrm{x10}^{-5}$
v(1/2, 1/2)	2	2.345369	$0.0258002~\pm~2.4 {\rm x10^{-6}}$
ψ_{min}	2	1.995930	$-0.118913 \pm 7.3 ext{x}10^{-5}$
M	2	2.002034	$0.116490 \pm 7.2 \mathrm{x10}^{-5}$
F_{UDS}	0	0.030551	0.045 \pm ?
F_{UDS-2}	0	-0.057985	$0.047 \pm ?$

Tabela 8. Solução numérica com malha 1024x1024 para Re = 1000 do problema de Ghia *et al.* (1982).

Tabela 9. Solução numérica do perfil de velocidade u com malha 1024x1024 para Re = 1000 do problema de Ghia *et al.* (1982).

Variável de interesse	p_U	Solução numérica (ϕ) e seu U_{GCI}
u(0.5, 0.0625)	1.976726	$-0.20227 \pm 1.7 \mathrm{x10}^{-4}$
u(0.5, 0.125)	1.993667	$-0.34773 \pm 3.4 \mathrm{x10}^{-4}$
u(0.5, 0.1875)	2.005013	$-0.38432 \pm 2.7 \mathrm{x10}^{-4}$
u(0.5, 0.25)	2.015676	$-\ 0.31890\ \pm\ 1.4 {\rm x10}^{-4}$
u(0.5, 0.3125)	2.014781	$-0.24566 \pm 1.1 \mathrm{x10}^{-4}$
u(0.5, 0.375)	2.017440	$-0.183703 \pm 8.9 \mathrm{x10}^{-5}$
u(0.5,0.4375)	2.027410	$-0.123393 \pm 5.4 \mathrm{x10}^{-5}$
u(0.5,0.5)	2.071716	$-0.062050 \pm 1.8 \mathrm{x10}^{-5}$
u(0.5, 0.5625)	1.932956	$0.000556 \pm 1.9 \mathrm{x10}^{-5}$
u(0.5, 0.625)	1.981615	$0.065230 \pm 5.6 \mathrm{x10^{-5}}$
u(0.5, 0.6875)	1.991411	$0.133542 \pm 9.4 \mathrm{x10^{-5}}$
u(0.5,0.75)	1.996045	$0.20787~\pm~1.4 \mathrm{x10^{-4}}$
u(0.5, 0.8125)	1.999568	$0.28838~\pm~1.9 {\rm x10^{-4}}$
u(0.5, 0.875)	2.002394	$0.36246 \pm 2.7 \mathrm{x10}^{-4}$
u(0.5, 0.9375)	2.010322	$0.42285 \pm 2.6 \mathrm{x10}^{-4}$

7. CONCLUSÃO

Para o problema de Shih *et al.* (1989), cuja solução analítica é conhecida, verificou-se que:

- À medida que a malha é refinada, os valores das ordens efetiva (p_E) e aparente (p_U) tendem ao valor (2) teórico da ordem assintótica (p_L) para as variáveis u, v, ψ_{min} e M. Para F_{UDS} parece que p_E e p_U tendem a 2 enquanto que seu p_L teórico é 1. Já para F_{UDS-2}, p_E e p_U tendem claramente a 1 enquanto que seu p_L teórico é 2.
- A estimativa do erro (U_{GCI}) só não é confiável em apenas quatro dos 64 pontos em que se compara $U \operatorname{com} E$. E esses pontos ocorrem nas malhas mais grossas.
- Para a malha 1024x1024, o estimador GCI é confiável para todas as variáveis. Isto é, a solução analítica está contida no intervalo compreendido pela solução numérica (φ) ± U_{GCI}.

• O módulo de $E(F_{UDS})$ é significativamente menor do que $E(F_{UDS-2})$. Isso é coerente com os valores para os quais p_E e p_U tendem quando $h \rightarrow 0$.

Para o problema clássico de Ghia *et al.* (1982), cuja solução analítica não é conhecida, verificou-se que:

- À medida que a malha é refinada, os valores de p_U tendem ao valor (2) teórico de p_L para as variáveis u, v, ψ_{min} e M. Para F_{UDS} e F_{UDS-2}, p_U → 0 quando h → 0. Segundo Nie et al. (2006), isso ocorre devido à descontinuidade existente na condição de contorno de u, nas quinas da tampa.
- Comparações com treze outros autores foram feitas. Em geral, as diferenças para $u, v \in \psi_{min}$ estão na terceira casa decimal. Para F, as diferenças estão na primeira ou na segunda casa decimal.
- Para as variáveis u, v, $\psi_{min} \in M$, apresentou-se a solução numérica obtida com a malha 1024x1024 e a estimativa (U) do seu erro de discretização.

Variável de interesse Solução numérica (ϕ) e seu U_{GCI} p_U $0.28062 \pm 2.6 \mathrm{x10}^{-4}$ v(0.0625, 0.5)2.005623 $0.36494 \pm 3.1 x 10^{-4}$ v(0.125, 0.5)2.004193 $0.36777 \pm 2.5 \times 10^{-4}$ v(0.1875, 0.5)2.003540 $0.30705 \pm 1.5 \times 10^{-4}$ v(0.25,0.5)2.000912 $0.23124 \pm 1.0 \times 10^{-4}$ v(0.3125,0.5)1.996139 $0.160541 \pm 7.1 \times 10^{-5}$ v(0.375, 0.5)1.991814 $0.092958 \pm 3.5 \times 10^{-5}$ v(0.4375,0.5)1.978584 $0.0258002 \pm 2.4 \times 10^{-6}$ v(0.5,0.5)2.345369 $-0.041828 \pm 3.9 \mathrm{x10}^{-5}$ v(0.5625, 0.5)2.027309 v(0.625, 0.5) $-0.110774 \pm 7.5 \times 10^{-5}$ 2.015160 v(0.6875, 0.5) $-0.18164 \pm 1.2 \times 10^{-4}$ 2.010284 v(0.75,0.5) $-0.25333 \pm 1.6 \times 10^{-4}$ 2.006818 $-0.33152 \pm 1.5 \times 10^{-4}$ v(0.8125, 0.5)2.009697 v(0.875, 0.5) $-0.46769 \pm 2.6 \times 10^{-4}$ 2.004484 $-0.45603 \pm 3.6 \times 10^{-4}$ v(0.9375, 0.5)1.987050

Tabela 10. Solução numérica do perfil de velocidade v com malha 1024x1024 para Re = 1000 do problema de Ghia *et al.* (1982).

Tabela 11. Comparações de u, $v \in F$ com outros autores para Re = 1000 do problema de Ghia *et al.* (1982).

Variável de	Ghia et al.	Bruneau e	Botella e	Presente	Hou et	Nie et
interesse	(1982)	Saad	Peyret (1998)	(1024x1024)	al.	al.
		(2006)			(1995)	(2006)
<i>u</i> (0.5,0.0625)	- 0.20196	-0.20227	-0.2023300	-0.20227		
u(0.5, 0.5)	-0.06080	-0.06205	- 0.0620561	-0.062050		
v(0.0625, 0.5)	0.27485		0.2807056	0.28062		
v(0.5,0.5)	0.02526	0.02580	0.0257995	0.0258002		
F				0.046	0.14	0.0591

Autor	Malha	p_L	ψ_{min}
Ghia <i>et al</i> . (1982)	128 x 128	2	- 0.117929
Schreiber et al. (1983)	140 x 140	?	- 0.11603
Vanka (1986)	320 x 320	?	- 0.1173
Nishida e Satofuka (1992)	128 x 128	8	- 0.119004
Hou <i>et al.</i> (1995)	256 x 256	?	-0.1178
Goyon (1996)	128 x 128	?	-0.1157
Barragy e Carey (1997)	256 x 256	?	- 0.118930
Botella e Peyret (1998)	160	?	- 0.1189366
Zhang (2003)	128 x 128	4	- 0.118806
Gupta <i>et al</i> . (2005)	40 x 40	2	- 0.117
Bruneau e Saad (2006)	1024 x 1024	3	- 0.11892
Presente	1024 x 1024	2	- 0.118913

Tabela 12. Comparações de ψ_{min} com outros autores para Re = 1000 do problema de Ghia *et al.* (1982).

Agradecimentos

O segundo autor agradece ao suporte oferecido pelo Laboratório de Experimentação Numérica (LENA) da UFPR, à colaboração dada pelo Prof. Dr. Carlos Henrique Marchi e pelo Prof. Ms. Fábio Alencar Schneider. Agradece também à CAPES pela bolsa concedida.

REFERÊNCIAS

- Botella, O., Peyret, R., 1998. Benchmark spectral results on the lid-driven cavity flow. *Computers & Fluids*, vol. 27, pp. 421-433.
- Bruneau, C. H., Saad, M., 2006. The 2D lid-driven cavity problem revisited. *Computers & Fluids*, vol. 35, pp. 326-348.
- Burggraf, O. R., 1966. Analytical and numerical studies of the structure of steady separated flows. J. Fluid Mech., vol. 24, part 1, pp. 113-151.
- De Vahl Davis, G., 1983. Natural convection of air in a square cavity: a bench mark numerical solution. *International Journal for Numerical Methods in Fluids*, vol. 3, pp. 249-264.
- Ferziger, J. H., Peric, M., 1999. Computational methods for fluid dynamics. Springer-Verlag.
- Ghia, U., Ghia, K. N., Shin, C. T., 1982. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. *Journal of Computational Physics*, vol. 48, pp. 387-411.
- Gupta, M. M., Kalita, J. C., 2005. A new paradigm for solving Navier-Stokes equations: streamfunction-velocity formulation. *Journal of Computational Physics*, vol. 207, pp. 52-68.
- Hayase, T., Humphrey, J. A. C., Greif, R., 1992. A consistently formulated QUICK scheme for fast and stable convergence using finite-volume iterative calculation procedures. *Journal of Computational Physics*, vol. 98, pp. 108-118.
- Hou, S., Zou, Q., Chen, S., Doolen, G., Cogley, A. C., 1995. Simulation of cavity flow by lattice Boltzmann method. *Journal of Computational Physics*, vol. 118, pp. 329-347.

- Khosla, P. K., Rubin, S. G., 1974. A diagonally dominant second-order accurate implicit scheme. *Computers & Fluids*, vol. 2, pp. 207-209.
- Kreyszig, E., 1999. Advanced engineering mathematics. Wiley.
- Maliska, C. R., 2004. Transferência de calor e mecânica dos fluidos computacional. LTC.
- Marchi, C. H., 2001. Verificação de soluções numéricas unidimensionais em dinâmica dos fluidos. Florianópolis: Universidade Federal de Santa Catarina. Tese de doutorado em Engenharia Mecânica.
- Marchi, C. H., Maliska, C. R., 1994. A nonorthogonal finite-volume method for the solution of all speed flows using co-located variables. *Numerical Heat transfer, Part B*, vol. 26 pp. 293-311.
- Marchi, C. H., Silva, A. F. C., 2002. Unidimensional numerical solution error estimation for convergent apparent order. *Numerical Heat Transfer, Part B*, vol. 42, pp. 167-188.
- Nie, X., Robbins, M. O., Chen, S., 2006. Resolving singular forces in cavity flow: multiscale modeling from atomic to millimeter scales. *Physical Review Letters*, vol. 96, n. 134501, pp. 1-4.
- Nishida, H., Satofuka, N., 1992. Higher-order solutions of square driven cavity flow using a variable-order multi-grid method. *International Journal for Numerical Methods in Engineering*, vol. 34, pp. 637-653.
- Roache, P. J., 1994. Perspective: a method for uniform reporting of grid refinement studies. *ASME Journal of Fluids Engineering*, vol. 116, pp. 405-413.
- Roache, P. J., 1998. Verification and validation in computational science and engineering. Hermosa.
- Schneider, G. E., Zedan, M., 1981. A modified strongly implicit procedure for the numerical solution of field problems. *Numerical Heat transfer*, vol. 4, pp. 1-19.
- Shih, T. M., Tan, C. H., Hwang, B. C., 1989. Effects of grid staggering on numerical schemes. *International Journal for Numerical Methods in Fluids*, vol. 9, pp. 193-212.
- Shyy, W., Garbey, M., Appukuttan, A., Wu, J., 2002. Evaluation of Richardson extrapolation in computational fluid dynamics. *Numerical Heat transfer, Part B*, vol. 41 pp. 139-164.
- Tannehill, J. C., Anderson, D. A., Pletcher, R. H., 1997. Computational fluid mechanics and heat transfer. Taylor & Francis.
- Van Doormaal, J. P., Raithby, G. D., 1984. Enhancements of the SIMPLE method for predicting incompressible fluid flow. *Numerical Heat transfer*, vol. 7, pp. 147-163.
- Zhang, J., 2003. Numerical simulation of 2D square driven cavity using fourth-order compact finite difference schemes. *Computers and Mathematics with Applications*, vol. 45, pp. 43-52.