

Proceedings of the XXVII Iberian Latin American Congress on Computational Methods in Engineering September 3 to 6, 2006 - Belém, Pará - BRAZIL.

EFEITO DO TIPO DE REFINO DE MALHAS NÃO-UNIFORMES DE VOLUMES FINITOS SOBRE A ORDEM EFETIVA DO ERRO DE DISCRETIZAÇÃO

Fábio Alencar Schneider

schneider@unicenp.edu.br Curso de Engenharia Mecânica, Centro Universitário Positivo (UNICENP) Curitiba, PR, Brasil **Carlos Henrique Marchi** *marchi@demec.ufpr.br* Departamento de Engenharia Mecânica, Universidade Federal do Paraná (UFPR) Curitiba, PR, Brasil

Resumo. Atualmente, para os métodos de diferenças finitas e volumes finitos, o principal estimador do erro de discretização é o GCI, que se baseia na extrapolação de Richardson. Para cada variável de interesse, este estimador usa soluções numéricas obtidas em duas ou mais malhas. Um parâmetro importante deste estimador é a ordem do erro de discretização, que em malhas não-uniformes é afetada pelo tipo de refino de malha adotado. No método dos volumes finitos, um volume de controle pode ser construído de duas formas: com os nós centrados entre as faces do volume (VNC - volume de nó centrado) ou com as faces centradas entre os nós (VFC - volume de face centrada). O objetivo deste trabalho é analisar, a partir de malhas com VNC e VFC, que tipos de refino de malhas podem ser realizados, como estes refinos devem ser feitos, e qual a relação entre o tipo de refino escolhido e a ordem do erro de discretização. Para cinco tipos de refino de malha, verifica-se se a ordem efetiva (p_E) do erro de discretização converge para a ordem assintótica (p_L) das aproximações numéricas usadas na discretização do modelo matemático. O modelo matemático usado é a advecção-difusão unidimensional de um escalar, resolvido através do método dos volumes finitos com malhas uniformes e não-uniformes, e esquemas de 1^a e 2^a ordens de acurácia. Concluiu-se que as estimativas do erro de discretização devem ser feitas com malhas refinadas uniforme e sucessivamente a partir de uma malha base, usando-se três tipos de refino definidos no trabalho.

Palavras-chave: Ordem efetiva, extrapolação de Richardson, GCI, erro numérico, CFD.

1. INTRODUÇÃO

Algumas fontes da literatura afirmam que quando se empregam malhas não-uniformes com o esquema de diferença central, a ordem do erro de truncamento degenera do valor dois para a unidade (Ferziger e Peric, 2001). Isso difere do que se observa através de experimentos numéricos, nos quais a ordem permanece igual a dois, como mostram outros trabalhos da literatura (Tannehill et. al., 1997). No presente trabalho, mostra-se que a diferença entre a análise teórica e a verificação prática está ligada à definição da razão de refino (q) de malha (Schneider e Marchi, 2004). O valor de q afeta diretamente a estimativa do erro de discretização feita pelos estimadores baseados na extrapolação de Richardson, que envolve mais de uma malha.

Para compreender como a razão de refino de malha afeta a estimativa do erro de discretização, é necessário entender o que é o erro numérico e como são empregados os estimadores de erro, como por exemplo o estimador de Richardson, GCI (Roache, 1998) e outros. Para uma variável de interesse, o erro numérico verdadeiro (*E*) é a diferença entre a sua solução analítica exata (Φ) e a sua solução numérica (ϕ). O valor do erro numérico verdadeiro independe de experimentos e só pode ser obtido quando a solução analítica do modelo matemático é conhecida, isto é, (Marchi e Silva, 2002)

$$E(\phi) = \Phi - \phi \tag{1}$$

Quando a solução analítica é desconhecida, pode-se obter o erro numérico estimado (U), que é avaliado pela diferença entre a solução analítica estimada (ϕ_{∞}) e a solução numérica (ϕ) , ou seja,

$$U(\phi) = \phi_{\infty} - \phi \tag{2}$$

Segundo Marchi e Silva (2002), o erro numérico é causado por quatro fontes de erro: truncamento, iteração, arredondamento e programação. A primeira fonte origina-se das aproximações numéricas empregadas na discretização de um modelo matemático (Tannehill et al., 1997; Ferziger e Peric, 2001; Roache, 1998). A segunda é a diferença entre a solução exata das equações discretizadas e a solução numérica em uma determinada iteração (Ferziger e Peric, 2001). A terceira ocorre principalmente devido à representação finita dos números reais nas computações. E a quarta inclui os erros causados por pessoas na implementação e no uso de um programa computacional. Este trabalho considera apenas os efeitos do erro de truncamento sobre as soluções numéricas. Nesse caso, o erro numérico calculado através da Eq. (1) passa a ser denominado de "erro de discretização" (Ferziger e Peric, 2001). Considera-se no presente trabalho que as outras fontes de erro são inexistentes ou muito pequenas em relação ao erro de truncamento.

Para se obter uma estimativa do erro de discretização, pode-se empregar o estimador de Richardson (Roache, 1994; Marchi e Silva, 2002)

$$U_{Ri}(\phi_f) = \frac{(\phi_f - \phi_g)}{(q^p - 1)}$$
(3)

onde ϕ_f e ϕ_g são soluções numéricas obtidas em duas malhas com número diferente de volumes de controle, e cada uma destas malhas pode ser representada pelo tamanho dos seus volumes (*h*), isto é, h_f = malha fina e h_g = malha grossa; *p* representa a ordem assintótica ou formal (*p*_L) do erro de discretização (Roache, 1994); e *q* é a razão de refino entre as duas

malhas. Outra forma de estimar o erro de discretização de soluções numéricas é através do estimador GCI (Grid Convergence Index) (Roache, 1994).

A Eq. (3) mostra que a estimativa do erro de discretização depende da razão de refino de malha, que é definida usualmente em malhas irregulares (não-uniformes, não-ortogonais e não-estruturadas) como (Roache, 1994; Celik, 2004)

$$q = \left(\frac{N_f}{N_g}\right)^{1/D} \tag{4}$$

onde $N_f e N_g$ representam, respectivamente, o número de volumes de controle das malhas fina e grossa, e D é a dimensão espacial do problema. No caso de malhas unidimensionais a equação acima se reduz a

$$q = \frac{N_f}{N_g} \tag{5}$$

Para um experimento numérico de solução analítica conhecida, pode-se obter (Marchi e Silva, 2000)

$$p_E = \frac{\log\left(\frac{\Phi - \phi_g}{\Phi - \phi_f}\right)}{\log(q)} \tag{6}$$

onde p_E é a ordem efetiva do erro de discretização, que pode comprovar experimentalmente a ordem assintótica ou formal (p_L). Ou seja, quando $h \rightarrow 0$, espera-se que $p_E \rightarrow p_L$, caso a análise seja correta.

No método dos volumes finitos, um volume de controle unidimensional pode ser construído de duas formas (Patankar, 1980): com os nós centrados entre as faces do volume (VNC – volume de nó centrado) ou com as faces centradas entre os nós (VFC – volume de face centrada). A Fig. 1 ilustra as malhas do tipo uniforme e não-uniforme com VNC e VFC que são empregadas no presente trabalho.

Figura 1- Volumes de controle unidimensionais: (a) uniformes, (b) não-uniformes de nó centrado, e (c) não-uniformes de face centrada.

No caso da malha não-uniforme, o primeiro caso (VNC), Fig. 1b, parece ser mais natural, pois, é mais fácil admitir que no centro do volume esteja armazenado o valor da variável de interesse, seja por uma questão de simetria ou simplesmente porque este valor deve ser representativo para todo o volume. Quando observamos as posições das faces, o segundo caso

(VFC), Fig. 1c, pode ser mais atraente do ponto de vista numérico, pois, as faces sempre estão no ponto médio do segmento que une dois nós vizinhos, o que facilita a aplicação de algumas aproximações numéricas. O objetivo principal deste trabalho é entender como o refino destas malhas afeta a ordem do erro de discretização e verificar quais são os tipos de refino adequados para estimar corretamente o erro numérico.

Este trabalho apresenta na seção 2 a metodologia empregada na obtenção das soluções numéricas, seguida dos tipos de refino de malha analisados. Na seção 3 são apresentados e discutidos os resultados. Na seção 4 apresenta-se a conclusão.

2. METODOLOGIA

O método numérico empregado neste trabalho é o método dos volumes finitos (*MVF*) (Ferziger e Peric, 2001). Nesta seção é apresentada a equação governante do problema, as aproximações numéricas empregadas, a obtenção das equações aproximadas e os tipos de refino de malha que são aplicados às malhas da Fig. 1. As soluções numéricas (ϕ) obtidas nas malhas grossa (h_g) e refinada (h_f) são usadas na Eq. (6) para o cálculo da ordem efetiva (p_E) e comprovação da ordem teórica das aproximações numéricas usadas.

2.1 Modelo matemático

A equação governante do problema advectivo/difusivo unidimensional de um escalar (ϕ) é

$$Pe\frac{d\phi}{dx} = \frac{d^2\phi}{dx^2} \tag{7}$$

onde *Pe* é o número de Peclet (Patankar, 1980) e *x* é a coordenada espacial. O domínio de cálculo é unitário e as condições de contorno do problema são do tipo de Dirichlet, isto é, ϕ prescrito nos contornos: $\phi(0) = 0$ e $\phi(1) = 1$. A solução analítica do problema é dada por (Ferziger e Peric, 2001)

$$\phi = \frac{e^{xPe} - 1}{e^{Pe} - 1} \tag{8}$$

2.2 Modelo numérico

O princípio do método dos volumes finitos (*MVF*) (Ferziger e Peric, 2001) é integrar a equação governante sobre cada volume de controle e aproximar os termos resultantes da integração através de funções de interpolação. Assim, integrando-se a Eq. (7) sobre o volume de controle P da Fig. 1 e usando-se o teorema da divergência de Gauss (Kreyszig, 1999), obtém-se

$$Pe(\phi_e - \phi_w) = \left(\phi_e^i - \phi_w^i\right) \tag{9}$$

onde $\phi_e e \phi_w$ representam a incógnita ϕ avaliada nas faces leste (*e*) e oeste (*w*) do volume de controle P da Fig. 1, $e \phi_e^i e \phi_w^i$, a derivada de primeira ordem de ϕ nas faces leste e oeste. Para

se obter a equação aproximada de ϕ em cada volume de controle, é necessário introduzir na Eq. (9) aproximações de ϕ e de sua derivada primeira (ϕ^i) nas faces do volume de controle.

2.3 Previsão da ordem assintótica (p_L)

Usando-se a série de Taylor, a aproximação numérica com esquema de diferença central (CDS), para a derivada de primeira ordem ϕ^i na face (*e*) da malha não-uniforme, Fig. 1, é dada por (Marchi e Silva, 2000)

$$\left(\phi_{CDS}^{i}\right)_{e} = \frac{\left(\phi_{E} - \phi_{P}\right)}{\left(x_{e} - x_{P}\right) + \left(x_{E} - x_{e}\right)} = \frac{\left(\phi_{E} - \phi_{P}\right)}{h_{Pe} + h_{eE}} = \frac{\left(\phi_{E} - \phi_{P}\right)}{h_{PE}}$$
(10)

onde h é a distância entre nós ou a distância entre face e nó, conforme os subíndices. Pode-se definir uma relação entre h_{Pe} e h_{PE} da seguinte forma

$$F_e = \frac{(x_e - x_P)}{(x_E - x_P)} = \frac{h_{Pe}}{h_{PE}}$$
(11)

Assim, o erro de truncamento (ε) desta aproximação é (Marchi e Silva, 2000)

$$\varepsilon \left(\phi_{CDS}^{i} \right)_{e} = \phi_{e}^{ii} \left(2F_{e} - 1 \right) \frac{h_{PE}}{2} - \phi_{e}^{iii} \left[F_{e}^{3} + \left(1 - F_{e} \right)^{3} \right] \frac{h_{PE}^{2}}{6} + \dots$$
(12)

Observando-se a Eq. (12), pode-se perceber que em uma malha uniforme ou nãouniforme com $F_e = \frac{1}{2}$, ou seja, quando o volume é de face centrada (*VFC*), a ordem assintótica da aproximação dada pela Eq. (10) é dois. E quando $F_e \neq \frac{1}{2}$, correspondendo a volume de nó centrado (VNC), a ordem da aproximação é unitária.

Da mesma forma, usando-se a série de Taylor, a aproximação para o valor de ϕ na face (e) da malha não-uniforme, Fig. 1, é dada por (Marchi e Silva, 2000)

$$\left(\phi_{CDS}\right)_{e} = \left(1 - F_{e}\right)\phi_{P} + F_{e}\phi_{E} \tag{13}$$

e o seu erro de truncamento (ε) é (Marchi e Silva, 2000)

$$\varepsilon(\phi_{CDS})_e = -\phi_e^{ii}F_e(1-F_e)\frac{h_{PE}^2}{2} + \phi_e^{iii}F_e(1-F_e)(2F_e-1)\frac{h_{PE}^3}{6} - \dots$$
(14)

Da Eq. (14), pode-se perceber que para qualquer valor de $F_e \neq 0$, a ordem da aproximação dada pela Eq. (13) é dois. Isto é, tanto para o volume de face centrada (*VFC*) como para o volume de nó centrado (*VNC*) a aproximação será de segunda ordem, seja a malha uniforme ou não-uniforme.

A aproximação do valor de ϕ na face (e) com um ponto à montante (UDS) resulta em

$$\left(\phi_{UDS}\right)_e = \phi_P \tag{15}$$

cujo erro de truncamento (ε) é

$$\varepsilon(\phi_{UDS})_e = \phi_e^i h_{Pe} - \phi_e^{ii} \frac{h_{Pe}^2}{2} + \dots$$
(16)

Através da Eq. (16), pode-se perceber que para qualquer tipo de malha a aproximação é de primeira ordem. Assim, para a aproximação ϕ_{UDS} não há dúvidas que ela sempre apresenta ordem unitária para qualquer tipo de malha: uniforme ou não-uniforme.

2.4 Tipos de refino de malhas não-uniformes

Esta seção apresenta cinco tipos de refino de malha que são empregados neste trabalho para obter as soluções numéricas e calcular a ordem efetiva. Em todos os casos a razão de refino é sempre a mesma, ou seja, tem valor (q). Cada refino é acompanhado de uma figura que apresenta em detalhes como estes refinos são feitos para uma malha não-uniforme, com razão de refino igual a dois e três.

Refino uniforme (**RU**). Este refino consiste em dividir o volume de controle em q volumes de igual tamanho independentemente da posição que se encontra o nó do volume. A razão de refino de malha (q) é dada pela Eq. (5), onde N_f é o número de volumes da malha fina e N_g é o número de volumes da malha grossa, conforme a Fig. 2.

Refino semi-uniforme (RSU). Este refino consiste em dividir a primeira e a segunda metade do volume de controle, em q partes, sendo a primeira metade a distância da face esquerda até o nó e a segunda metade a distância do nó até a face direita. A razão de refino continua sendo dada pela Eq. (5), conforme a Fig. 3.

Figura 2 – Refinos uniformes (*RU*).

Refino entre centros (RC). Este refino consiste em dividir as distâncias entre os nós dos volumes em q partes iguais de modo que surgirão q-1 novos volumes entre dois nós consecutivos, conforme a Fig. 4. Este tipo de refino divide as distâncias usadas nas aproximações numéricas por q e assemelha-se ao refino de malha uniforme usado no método de diferenças finitas (Tannehill et al., 1997). Neste caso a razão de refino é dada por

$$q = \frac{N_f + 1}{N_g + 1} \tag{17}$$

Quando $h \rightarrow 0$, o valor de q dado pela Eq. (17) tende ao valor de q dado pela Eq. (5).

Refino entre centros com F_e **constante (RCF).** Este refino é semelhante ao anterior, porém, para as faces dos volumes da malha fina, é mantida a relação F_e definida na malha

grossa por a/b. Assim, se mantém na malha grossa e fina a relação $F_e = a/b = c/d = e/f$, conforme a Fig. 5. Neste caso a razão de refino também é dada pela Eq. (17).

Figura 3 – Refinos semi-uniformes (RSU).

Figura 5 – Refinos entre centros com F_e constante (*RCF*).

Refino aleatório (RA). Este refino consiste em obter uma malha fina com um número de volumes q vezes maior que o número de volumes da malha grossa, sem que haja uma regra de construção dos volumes. A razão de refino é dada pela Eq. (5).

Figura 6 – Refinos aleatórios (RA).

3. RESULTADOS

Conforme descrito anteriormente, para um experimento numérico em que se conhece a solução analítica, pode-se extrair a ordem efetiva (p_E), definida pela Eq. (6), com soluções numéricas obtidas em duas malhas de tamanhos diferentes. Caso a análise seja correta, esperase que $p_E \rightarrow p_L$ quando $h \rightarrow 0$, onde p_L é a ordem assintótica ou formal, observada *a priori* e de acordo com a aproximação numérica empregada.

Pode-se analisar experimentalmente o comportamento de p_E no limite de $h \rightarrow 0$ através de duas formas comumente empregadas na literatura. A primeira é obter soluções numéricas com pares de malhas não-uniformes que tenham valores de h cada vez mais reduzidos; por exemplo, pares de malhas com 27 e 81 volumes, 81 e 243, 243 e 729, e assim por diante, onde as malhas com 81 volumes dos dois pares não tem relação alguma. A segunda forma é partir de uma malha base não-uniforme e refiná-la sucessivamente com a mesma regra de refino, reduzindo assim o valor de h; por exemplo, malhas com 15, 45, 135, 405 volumes, e assim por diante. Estas duas análises foram feitas considerando a malha grossa para os três casos mostrados na Fig. 1: malha grossa uniforme, não-uniforme VNC e não-uniforme VFC.

O modelo matemático, Eq. (7), foi resolvido para Pe = 10. Para o termo advectivo da Eq. (7) foram usadas as aproximações UDS e CDS, dadas pelas Eqs. (13) e (15). E para o termo difusivo da Eq. (7) foi usada a aproximação CDS, dada pela Eq. (10). As condições de contorno foram aplicadas de duas formas: volume inteiro ou ½ volume na face. Em todos os gráficos, no eixo das abscissas tem-se \overline{h} , que, para o domínio unitário, foi obtido como o inverso do número de volumes da malha grossa. E no eixo das ordenadas, tem-se o valor da ordem efetiva (p_E) do erro de ϕ em $x = \frac{1}{2}$ calculada com a Eq. (6); para isso, usou-se q = 3.

3.1 Malha grossa uniforme

Os resultados a seguir foram obtidos sempre com a malha grossa do tipo uniforme, conforme a Fig. 1a e aproximações numéricas de segunda ordem nos termos advectivo e difusivo. A condição de contorno foi aplicada com volumes inteiros nos contornos.

A Tabela 1 e a Fig. 7 mostram os resultados obtidos para a ordem efetiva (p_E) com os cinco tipos de refino (RU, RSU, RC, RCF e RA) apresentados na seção 2.4 e com diversos pares de malhas. Verifica-se que refinos do tipo RU, RSU, RC e RCF apresentam ordem 2 quando $h \rightarrow 0$. Isto é, os refinos realizados estão em conformidade, uma vez que a ordem teórica é atingida quando $h \rightarrow 0$. Para o refino do tipo RA, p_E oscila e, em alguns casos, não pôde ser calculada devido a argumento negativo na função logarítmica da Eq. (6); isto indica

que este tipo de refino não é recomendado para estimativas de erro de discretização de soluções numéricas.

pares de	ordem efetiva p_E em x=1/2						
malhas	RU	RSU	RC	RCF	RA		
27 e 81	1,900764	1,900764	1,902660	1,902660	1,165006		
81 e 243	1,965510	1,965510	1,965703	1,965703	2,945374		
243 e 729	1,988440	1,988440	1,988455	1,988455	3,385236		
729 e 2187	1,996143	1,996143	1,996148	1,996148	-		
2187 e 6561	1,998806	1,998806	1,998802	1,998802	1,443602		
6561 e 19683	1,999568	1,999580	2,005136	2,005136	0,831322		

Figura 7 – Ordem efetiva para malha grossa uniforme de diferentes tamanhos.

Uma seqüência de refinos sucessivos foi feita para os tamanhos de malha uniforme 15, 45, 135, 405, 1215 e 3645 de acordo com os cinco tipos de refino apresentados. A Tabela 2 e a Fig. 8 apresentam os resultados obtidos, que estão em conformidade com os resultados da Fig. 7 e também indicam que o refino do tipo RA não é recomendado para estimar o erro de discretização de soluções numéricas.

Pares de		ordem efetiva $p_E \text{ em } x = \frac{1}{2}$						
malhas	RU	RSU	RC	RCF	RA			
15 e 45	1,835275	1,835275	1,841447	1,841447	0,810687			
45 e 135	1,938708	1,938708	1,957577	1,957577	-			
135 e 405	1,979224	1,979224	1,986174	1,986174	1,345876			
405 e 1215	1,993061	1,993061	1,995449	1,995449	1,190957			
1215 e 3645	1,997700	1,997702	1,998491	1,998491	-			
3645 e 10935	1,999234	1,999234	1,999234	1,999234	1,231453			

Tabela 2. Ordem efetiva para malha grossa uniforme com refinos sucessivos.

Figura 8 – Ordem efetiva para malha grossa uniforme com refinos sucessivos.

3.2 Malha grossa não-uniforme de nó centrado (VNC)

As Tabelas 3 e 4 e as Figs. 9 e 10 apresentam os resultados obtidos para malha do tipo grossa não-uniforme de nó centrado (VNC), representada na Fig. 1b. Estes resultados, como no caso anterior, também foram obtidos com aproximações numéricas de segunda ordem nos termos advectivos e difusivos e condição de contorno aplicada com volumes inteiros nos contornos.

A Tabela 3 e a Fig. 9 mostram que, partindo-se de uma malha grossa não-uniforme VNC e usando-se os refinos RU, RSU, RC e RCF, p_E tem o mesmo tipo de comportamento mostrado na seção 3.1. Isto é, quando $h \rightarrow 0$, o valor de p_E tende ao valor teórico (p_L) . Novamente, o refino RA não é recomendado para estimar o erro de discretização de soluções numéricas.

	Γabela 3. Ordem efetiva	para malha grossa	a não-uniforme	VNC de	diferentes	tamanhos.
--	-------------------------	-------------------	----------------	--------	------------	-----------

Pares de	ordem efetiva $p_E \text{ em } x = \frac{1}{2}$						
malhas	RU	RSU	RC	RCF	RA		
27 e 81	1,937517	1,937517	1,964147	2,103427	1,771009		
81 e 243	1,940158	1,940158	1,949252	2,334162	1,976873		
243 e 729	1,990607	1,990607	2,026987	2,053361	1,906915		
729 e 2187	1,997667	1,997667	1,906257	1,923489	2,228274		
2187 e 6561	1,994558	1,994559	2,027104	1,990958	1,587827		
6561 e 19683	1,999051	1,998944	2,005372	2,041280	1,474546		

A fim de confirmar as tendências observadas na Fig. 9, procedeu-se com os refinos sucessivos da malha não-uniforme VNC, cujos resultados estão apresentados na Tabela 4 e na Fig. 10. Pode-se observar nesta figura que no refino do tipo RCF a ordem de p_E degenera para a unidade à medida que o tamanho da malha diminui, ou seja, quando $h \rightarrow 0$, conforme pôde ser verificado *a priori* pela Eq. (12). No refino RCF, a relação de distâncias entre o centro e a face dos volumes é mantida constante da malha grossa para a malha fina. Ou seja, partindo-se de uma malha grossa não-uniforme VNC e fazendo-se refino do tipo RCF, as faces dos volumes de controle de qualquer malha grossa ou fina, estão fora do ponto médio entre nós consecutivos, levando à degeneração da ordem. Mas esta degeneração só ocorre quando a

malha grossa é do tipo representado na Fig. 1b, isto é, as faces dos volumes não são centradas. Para o refino RA, a ordem oscila em torno do valor teórico, como nos casos anteriores.

Figura 9 – Ordem efetiva para malha grossa não-uniforme VNC de diferentes tamanhos.

pares de	ordem efetiva $p_E \text{ em } x = \frac{1}{2}$					
malhas	RU	RSU	RC	RCF	RA	
15 e 45	1,931901	1,931901	1,560282	1,665217	1,946866	
45 e 135	1,985062	1,985062	1,916558	1,467985	1,679765	
135 e 405	1,995931	1,995931	1,972019	1,237563	2,167846	
405 e 1215	1,998749	1,998749	1,990710	1,096043	2,275804	
1215 e 3645	1,999596	1,999596	1,996914	1,034489	1,557377	
3645 e 10935	1,999912	1,999942	1,998843	1,014587	2,052621	

3.3 Malha grossa não-uniforme de face centrada (VFC)

As Tabelas 5 e 6 e as Figs. 11 e 12 apresentam os resultados obtidos para malha do tipo grossa não-uniforme de face centrada (VFC), representada na Fig. 1c. Estes resultados, como nos casos anteriores, também foram obtidos com aproximações numéricas de segunda ordem

nos termos advectivos e difusivos e condição de contorno aplicada com volumes inteiros nos contornos.

Pares de	ordem efetiva $p_E \text{ em } x = \frac{1}{2}$						
malhas	RU	RSU	RC	RCF	RA		
27 e 81	1,967012	1,944720	1,945922	1,945922	1,907300		
81 e 243	2,198413	1,956397	1,956981	1,956981	2,243695		
243 e 729	2,018960	1,980824	1,980897	1,980897	2,269605		
729 e 2187	1,980668	2,026769	1,996771	1,996771	1,847123		
2187 e 6561	2,051483	1,997586	1,997586	1,997586	2,3870780		
6561 e 19683	1,990567	1,999928	1,999926	1,999926	2,043214		

Tabela 5. Ordem efetiva para malha grossa não-uniforme VFC de diferentes tamanhos.

Figura 11 – Ordem efetiva para malha grossa não-uniforme VFC de diferentes tamanhos.

Observa-se na Fig. 11 que existe uma oscilação de p_E em torno do valor teórico para os refinos do tipo RU, RSU e RA. Esta tendência de oscilação se confirma para todos os refinos (RU, RSU, RC, RCF e RA) quando é feita uma análise com maior número de casos ou valores de *h* médio. A oscilação de p_E em torno do valor teórico nos casos RU, RSU, RC e RCF, tem amplitude menor do que a oscilação de p_E para o caso RA. O refino RA apresentou alguns casos onde o valor de p_E não pôde ser obtido devido a argumento negativo na função logarítmica da Eq. (6).

A Tabela 6 e a Fig. 12 apresentam os resultados obtidos no caso da malha não-uniforme VFC ser submetida a refinos sucessivos. Observa-se que em todos os tipos de refinos, exceto RA, o valor de p_E tende ao valor teórico para $h \rightarrow 0$.

3.4 Aproximação de primeira ordem no termo advectivo

Também foram obtidas soluções numéricas da Eq. (7) com as aproximações dadas pelas Eqs. (10) e (15), ou seja, aproximação de primeira ordem para o termo advectivo e de segunda ordem para o termo difusivo. Neste caso, quando $h \rightarrow 0$, o valor de p_E tende sempre ao valor teórico da aproximação de mais baixa ordem, ou seja, à unidade. Isto ocorre para qualquer tipo de malha grossa refinada nos casos RU, RSU, RC, RCF e RA. As Tabelas 7 e 8 e Figs. 13 e 14 apresentam alguns destes resultados.

Pares de	ordem efetiva $p_E \text{ em } x = \frac{1}{2}$						
malhas	RU	RSU	RC	RCF	RA		
15 e 45	1,917449	1,887576	1,891256	1,891256	1,609406		
45 e 135	1,963215	1,953731	1,967957	1,967957	1,888220		
135 e 405	1,987923	1,984330	1,989605	1,989605	1,879672		
405 e 1215	1,996010	1,994771	1,996586	1,996586	2,245715		
1215 e 3645	1,998675	1,998259	1,998870	1,998870	1,948956		
3645 e 10935	1,999853	1,999764	1,999692	1,999692	1,929694		

Tabela 6. Ordem efetiva para malha grossa não-uniforme VFC com refinos sucessivos.

Figura 12 – Ordem efetiva para malha grossa não-uniforme VFC com refinos sucessivos.

Tabela 7. Ordem efetiva para malha grossa não-uniforme VNC com refinos sucessivos e aproximação UDS nos termos advectivos.

Pares de	ordem efetiva p_E em $x = \frac{1}{2}$						
malhas	RU	RSU	RC	RCF	RA		
15 e 45	1,110744	1,110744	1,137432	1,139181	1,138968		
45 e 135	1,054688	1,054688	1,061729	1,063281	0,992530		
135 e 405	1,020859	1,020859	1,022829	1,023505	1,065850		
405 e 1215	1,007277	1,007277	1,007889	1,008127	0,994360		
1215 e 3645	1,002463	1,002463	1,002658	1,002743	1,003042		
3645 e 10935	1,001045	1,001045	1,001237	1,001338	0,996748		

3.5 Meio volume nos contornos

Também foi avaliado o comportamento do valor de p_E no caso de existir meio volume de controle nos contornos do domínio. Isso altera a forma da aplicação da condição de contorno. Nenhum comportamento diferente do exposto nas seções 3.1 a 3.4 foi observado.

4. CONCLUSÃO

Para estimar erros de discretização, recomenda-se usar refinos sucessivos do tipo RU, RSU e RC a partir de uma malha base. Esta recomendação é indicada para estimadores de erro baseados na extrapolação de Richardson, que empregam duas ou mais malhas, e soluções numéricas obtidas com o método de volumes finitos. Especula-se que esta recomendação também se aplica ao refino de malhas irregulares multidimensionais (não-ortogonais, não-uniformes e não-estruturadas) usadas com o método de volumes finitos.

Figura 13 – Ordem efetiva para malha grossa não-uniforme VNC com refinos sucessivos e aproximação UDS nos termos advectivos.

Tabela 8. Ordem efetiva para malha grossa não-uniforme VFC com refinos sucessivos e aproximação UDS nos termos advectivos.

Pares de	ordem efetiva p_E em $x = \frac{1}{2}$						
malhas	RU	RSU	RC	RCF	RA		
15 e 45	1,218166	1,107062	1,122227	1,122227	1,168448		
45 e 135	1,052418	1,055443	1,057596	1,057596	1,045381		
135 e 405	1,020358	1,021485	1,021738	1,021738	1,014101		
405 e 1215	1,007143	1,007536	1,007562	1,007562	1,013484		
1215 e 3645	1,002422	1,002555	1,002557	1,002557	1,006204		
3645 e 10935	1,000759	1,000843	1,000908	1,000908	1,010892		

Figura 14 – Ordem efetiva para malha grossa não-uniforme VFC com refinos sucessivos e aproximação UDS nos termos advectivos.

REFERÊNCIAS

- Celik, I. B., 2004. Procedure for estimation and reporting of discretization error in CFD aaplications. *ASME Journal of Fluids Engineering*. Disponível em: www.asme.org/pubs/journals/fluideng/JFENumAccuracy.pdf>. Acesso em 1 June 2004.
- Ferziger, J. H., & Peric, M., 2001. Computational Methods for Fluid Dynamics. 3. ed. Springer.
- Kreyszig, E., 1999. Advanced Engineering Mathematics. 8th ed. Wiley.
- Marchi, C. H., Silva, A. F. C., 2000. Previsão de erros de truncamento de modelos numéricos em malhas não-uniformes. In: IV SIMPÓSIO MINEIRO DE MECÂNICA COMPUTACIONAL. Anais... Uberlândia, v. 1, 2000, p. 481-488.
- Marchi, C. H., Silva, A. F. C., 2002. Unidimensional numerical solution error estimation for convergent apparent order. *Numerical Heat Transfer, Part B*, vol. 42, pp. 167-188.
- Patankar, S.V., 1980. Numerical Heat Transfer and Fluid Flow, Hemisphere.
- Roache, P. J., 1994. Perspective: a method for uniform reporting of grid refinement studies. *Journal of Fluids Engineering*, vol. 116, pp. 405-413.
- Roache, P. J., 1998. Verification and Validation in Computational Science and Engineering. Hermosa.
- Schneider, F.A., Marchi, C. H., 2004. Sobre a definição da razão de refino de malhas unidimensionais não-uniformes. In: XXV Congresso Ibero Latino-Americano de Métodos Computacionais em Engenharia. Anais... Recife, 2004. Paper CIL18-024.
- Tannehill, J. C., Anderson, D. A., & Pletcher, R. H., 1997. *Computational Fluid Mechanics and Heat Transfer*. 2. ed. Taylor & Francis.