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Abstract. Two-dimensional mathematical models for LOX-LH2 reactive flow are solved for two geometries – a conical 
and a parabolical ones. Five different physical models are considered: two one-species ones (which include a single-
specie gas with constant or with variable properties) and three mixture of gases ones (frozen, equilibrium and non-
equilibrium flows). Associated to these three models, different chemical reaction schemes are studied, in order to 
provide the influence of the number of species and the number of chemical reaction equations on results. Therefore, 
numerical solutions are obtained for different grid sizes, so as to afford the numerical error estimate, by GCI error 
estimator. At the mathematical model, temperature is used as unknown at energy equation and velocity is obtained for 
all speed flows, from almost null values (at the flow starting-point) to supersonic ones. For all the analysis, a non-
orthogonal finite volume program, called Mach2D 6.0 and written in Fortran 95 language, was implemented, taking 
into account second order scheme for variables and co-located grid arrangement. For the conical geometry, both 
pressure and two-dimensional discharge coefficient values for one-species flow were compared to experimental values 
and the analytical solution, respectively, showing good concordance. For the parabolical geometry, first and second 
order schemes were compared for grids as refined as 360x96 volumes and the GCI estimates were obtained, showing 
differences as high as four-orders of magnitude for global variables of interest. 
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1. INTRODUCTION 
 

The effort to increase reliability in rocket engines should span the entire program spectrum from conceptual design 
through production. The reliability effort can basically be split into three parts: prevention of failures, process 
assessment and control, and monitoring of performance (Huzel and Huang, 1992). One possible reason for wall material 
failure is its high temperatures and this is the explanation for studying the heat transfer overall the rocket engine nozzle. 
Heat is transmitted to all internal hardware surfaces exposed to hot gases, namely the injector face, the chamber and 
nozzle walls. Only 0.5 to 5% of the total energy generated in the gas is transferred as heat to the chamber walls (Sutton 
and Biblarz, 2001). To study the heat transfer from hot reaction gas products to the rocket walls, however, firstly it is 
necessary to define the reaction gas products flow features. Because of this, the focus of this work is the reaction gas 
products flow, in order to provide a deeper knowledge of the influence of both chemical and physical reaction schemes 
on the reaction gas products for a non-viscous two-dimensional flow. 

Different physical and chemical schemes are used. Five two-dimensional physical models are compared in this 
work: one-species gas with constant properties, one-species gas with variable properties, frozen, equilibrium and non-
equilibrium flows. Otherwise, for frozen, equilibrium and non-equilibrium flows, which include multi-species flows, 
chemical schemes are also considered. Differently from commonly used, the energy equation is based on temperature 
and the velocity is obtained for the whole flow (from subsonic to supersonic regimes). Nine different chemical reaction 
schemes for reaction gas products flow are presented, for frozen and equilibrium flows; these chemical reaction 
schemes are the same ones presented by Marchi et al. (2005) and Araki and Marchi (2006), including from 3 to 8 
chemical species and from 0 to 18 chemical reaction equations. 

All the models have been implemented using Compaq Visual Fortran 6.6.0. The implemented code, called Mach2D 
6.0, was run at a PC Pentium IV, 3400 MHz, with 4.0 GB RAM. Pressure results for air flow are compared to those 
ones obtained by Back et al. (1965), in order to validate the code. For a second geometry, a parabolic one, numerical 
error estimates, related to all results and based on GCI estimative (Roache, 1994), using the methodology presented by 
Marchi (2001), are also made. 
 
2. MATHEMATICAL MODEL 
 

The basic principles involved in rocket propulsion science are essentially those ones of mechanics, thermodynamics 
and chemistry (Sutton and Biblarz, 2001). In regeneratively cooled rocket engines, the whole thrust mechanism can be 
divided up into three different (but coupled) problems, for which there are independent mathematical (and numerical) 
models (Fröhlich et al., 1993; Habiballah et al., 1998; Marchi et al., 2004): (1) the reaction gas products (combustion 
gases mixture) flow through the thrust chamber; (2) the heat conduction from hot gases to the coolant; and (3) the 



coolant flow through the regenerative cooling system. The focus of this work is, however, the reaction gas products 
flow, which is modelled by the following equations: mass conservation equation, two-dimensional Euler ones (for axial 
and radial directions), energy equation, and a state relation: 
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where: ρ, u, v, P e T are the five dependent variables, which correspond to density, axial velocity, radial velocity, 
pressure and temperature, respectively; z and r are related to the axial and the radial directions, in this order; cp is the 
frozen specific heat; R is the gas mixture constant; V

r
is the velocity vector; and Seq/tf is the chemical source term, which 

is evaluated by: 
 

( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

−
∂
∂

−= ∑∑
==

N

i
ii

N

i
ii

p
tfeq Yvr

rr
hYu

z
h

c
S

11
/    1  1 ρρ  (6a) 

 
for local equilibrium flow model; and by 
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for non-equilibrium flow model, in which: N is the total number of chemical species; Yi, hi and iw&  are, in this order, the 
mass fraction, the enthalpy and the generation rate for a given chemical species i. It must be noted that for the other 
physical models (one-species gas and frozen flow ones), this term is null. Considering the non-equilibrium flow, 
another equation must be taken into account: the species continuity equation, 
 

( ) ( ) iii wYvr
rr

Yu
z

&    1  =
∂
∂

+
∂
∂ ρρ  (7) 

 
Chemical reactions schemes used in this work for frozen and local equilibrium flows are summarized in Tab. 1. For 

non-equilibrium one, only six and eight reaction scheme models were considered, being the frozen/equilibrium 
chemical model 3 split into two: models 31 and 32, which differs from each other by forward reaction constants). These 
are the same chemical reaction schemes used before by Marchi et al. (2005) and Araki and Marchi (2006), which 
present, in this order, the thermochemical properties for oxygen/hydrogen reaction schemes and the complete one-
dimensional problem. 
 
3. NUMERICAL MODEL 

 
The presented mathematical model for reaction gas products is discretized using finite volume method, appropriated 

for non-orthogonal geometries (Maliska, 1995). The domain is divided in Nx control volumes in axial direction z and in 
Ny volumes in radial direction r, in which the differential equations are integrated. A co-located grid arrangement, 
appropriated for all speed flows is used (Marchi and Maliska, 1994), associated with a second-order discretization 
scheme (CDS), with deferred correction (Ferziger and Perić, 2001). The systems of algebraic equations obtained are 
solved by MSI (Modified Strong Implicit) method (Schneider and Zedan, 1981). 

Pressure and velocity are coupled by SIMPLEC algorithm (Van Doormaal and Raithby, 1984), in order to convert 
the mass equation in a pressure (or better, in a pressure-correction) one. So, the mass conservation equation, Eq. (1), is 
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used for determination of a pressure-correction ( 'P ). The axial and radial velocity components, (u) and (v), are obtained 
from the Euler equations, Eqs. (2) and (3), and the energy equation, Eq. (4), is taken for temperature (T) determination. 
Density (ρ) is gotten from the state equation, Eq. (5), while Eq. (7) is also needed for non-equilibrium flow. It must be 
noted that axial velocity (u) is evaluated from very reduced values (near null values) until supersonic ones, and not only 
for supersonic values, as commonly found in literature. 

An algorithm for the reactive two-dimensional reaction gas products flow is presented in the following. 
 

Table 1. Chemical reaction schemes implemented in Mach2D 6.0 code. 
 

Model L N Species Observations 
0 0 3 H2O, O2, H2 Ideal model 
1 1 3 H2O, O2, H2 – 
2 2 4 H2O, O2, H2, OH – 
3 4 6 H2O, O2, H2, OH, O, H 4 reactions with 3rd body – Barros et al. (1990) and Smith et al. (1987) 
4 4 6 H2O, O2, H2, OH, O, H 4 reactions – Svehla (1964) 
5 8 6 H2O, O2, H2, OH, O, H 8 reactions (4 with 3rd body) – Barros et al. (1990) 
7 8 6 H2O, O2, H2, OH, O, H 8 reactions (4 with 3rd body) – Smith et al. (1987) 
10 6 8 H2O, O2, H2, OH, O, H, HO2, H2O2 4 reactions from model 3 and 2 from Kee et al. (1990) – all the reactions including 3rd body 
9 18 8 H2O, O2, H2, OH, O, H, HO2, H2O2 18 reactions (5 with 3rd body) – Kee et al. (1990) 

 
Algorithm: 

 
1. Data reading, grid generation and evaluation of metrics. 
2. Estimation of all variables in an instant t+∆t (time, however, is used only as a relaxation parameter). 
3. Estimation of the inlet pressure and the inlet temperature. 
4. Definition of the constant-pressure specific heat. 
5. Coefficients calculation for the algebraic system (by discretization) of the axial momentum equation and 

solution of this system by MSI for the velocity u. 
6. Coefficients calculation for the algebraic system (by discretization) of the axial momentum equation and 

solution of this system by MSI for the velocity v. 
7. Coefficients calculation for the algebraic system (by discretization) of the energy equation and solution by MSI 

for temperature T. 
8. Calculation of density (both, inside the control volumes and at their faces). 
9. Calculation of SIMPLEC coefficients. 
10. Estimation of face velocities. 
11. Coefficients calculation for the algebraic system (by discretization) of the mass equation and solution by MSI 

for pressure correction ' P . 
12. Correction of nodal pressures, face and nodal densities and face and nodal velocities by pressure correction 'P . 
13. Return to item 11 until the achievement of the desired number of iterations. 
14. In case of non-equilibrium flow model, the mass fractions Yi should be obtained by the solution of an algebraic 

system using the MSI method. 
15. Return to item 2, until the achievement of the desired number of iterations or until the satisfaction of a certain 

criterion. 
16. Post-processing. 

 
4. DEFINITION OF THE PROBLEM 
 

The boundary conditions adopted for the combustion gases flow, shown in Fig. 1, are: 
• Entrance conditions: Temperature (T) and pressure (P) are functions of stagnation parameters; the chemical 

mixture composition, given by mass fractions (Yi), is obtained from local data (temperature and pressure); this 
is not necessary for one-species models. The entrance axial velocity (u) is obtained from a linear extrapolation 
from the values obtained for internal flow. The radial velocity (v) is taken as null. 

• Nozzle walls: Adiabatic. 
• Exit conditions: For supersonic flows in nozzles, no exit boundary conditions are required; for the 

implementation of a numerical model, however, exit boundary conditions are needed. Because of this, 
temperature (T), axial and radial velocities (u and v), pressure (P) and mass fractions (Yi) are obtained by linear 
extrapolation from internal control volumes. 

• Line symmetry: Symmetry conditions for all variables; null radial velocity. 
For all the simulations made, two different geometries were chosen: the first one is presented by Back et al. (1965); 

the second one is a parabolic nozzle. Both nozzles are presented in Fig. 2. 



 
 

Figure 1. Boundary conditions for the reaction gas products flow. 
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Figure 2. Rocket engine profiles: (a) Geometry from Back et al. (1965). (b) Parabolic geometry. 

 
The nozzle discharge coefficient (Cd) is defined as the ratio between experimental mass flux and the theoretical one, 

given by 
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where the mass flux ( m& ) is obtained by the product of density, local velocity (u) and  transversal section area (S): 
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Another parameters of interest are the thrust (F), for vacuum conditions, and the thrust-chamber specific impulse 

(Is), defined as: 
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where g is the gravity acceleration, pm& is the propellant mass flux and tq is the burn-out time. 
 
5. NUMERICAL RESULTS AND DISCUSSION 

 
For all physical models, the simulations were made for at least three different grids, to allow the determination of 

apparent convergence order (Marchi, 2001; Marchi and Silva, 2005). Numerical error estimates, also, based on GCI 
estimator (Roache, 1994), were taken for all physical and chemical models. Some pieces of information about 
numerical errors and error estimators can be found in Tannehill et al. (1997), Marchi (2001), and Ferziger and Perić 
(2001). Error estimates are very important for evaluating if two different physical (or chemical) models have the same 
results or the differences can be assigned to numerical errors.  

The GCI estimator is evaluated by  
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where: ϕ1 and ϕ2 are, respectively, the numerical solutions for the fine (h1) and coarse (h2) grids; q is the grid refinement 
ratio ( 12 / hhq = ); h is the grid spacing or distance between two successive grid points; and p is related to the 
asymptotic (pL) or apparent (pU) order (the lowest value between these two ones). Asymptotic error order depends on 
the chosen discretization model, while apparent order, for constant refinement ratio, is evaluated by 
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in which Uψ  is the numerical solution convergence ratio for analytical one, defined by 
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where ϕ3 corresponds to the numerical solution for a supercoarse grid. 

Another error estimators presented in this work are the Richardson estimators, based on asymptotic and on apparent 
orders (pL and pU, respectively), which are defined by the relations: 
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In the first simulation made, in order to validate the implemented code, constant and variable property models were 

run for Back et al. (1965) nozzle geometry. This flow consists on air flow (gas constant, R, equal to 287.0 J/kgּK and 
ratio between specific heats, γ, equal to 1.35), with stagnation pressure of 1,725 MPa and stagnation temperature of 
833,33 K; for this simulation, CDS-deferred scheme was used, as well as 90x10, 180x20, 360x40 and 720x80 control 
volume grids (the first value corresponds to axial direction discretization and the second one, to radial direction). 
Besides the constant air properties flow, also variable properties ones were studied and both results (constant and 
variable properties), for a 720x80 control volumes grid, are exposed in Fig. 3. Comparing numerical and experimental 
data, it is seen a good agreement between both results, validating Mach2D code. 

Other simulations were made, taking the following values for the parameters: the stagnation pressure and 
temperature are equal to, respectively, 3,420.33 K and 2.0 MPa; oxidant-fuel mass ratio (OF) is 7.936682739 
(stoichoimetrical composition for oxygen and hydrogen reaction); the gas constant (R) is taken as 526.97 J/kgּK; the 
ratio between specific heats (γ) is equal to 1,1956 (used for constant properties one-species flow). Both interpolation 
schemes, UDS and CDS with deferred correction, were used, in order to evaluate the apparent order (and the GCI and 
the Richardson error estimates). 

Two-dimensional flow effects are evident by comparing any property distribution at line symmetry and near the 
walls, as can be seen at Fig. 4 (a), which corresponds to simulations using the Back et al. (1965) geometry. It can be 
seen, also, that differences among near-to-wall results are much smaller than the ones obtained for line symmetry, with 
the grid refinement. Although Fig. 4 (a) shows only this effect for temperature distribution, other local variables of 



interest (such as pressure, Mach number and density distributions) exhibit a similar behaviour. These effects, otherwise, 
are not observed for global parameters, such as thrust, Fig. 4 (b); for such variables, the differences obtained with the 
grid refinement are quite small and all the property distributions are nearly coincident. The effects of different physical 
models (one-species with variable properties, frozen, local equilibrium and non-equilibrium flows) on thrust can be 
observed in Fig. 5. The frozen and the local equilibrium model results occupy the lowest and the highest limits, 
respectively. In absolute values, this difference achieves 126,41 N (or nearly 3%, in relative values). 
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Figure 3. Pressure distribution through the nozzle for air flow (720x80 control volumes). 
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Figure 4. (a) Temperature distribution and (b) thrust through the nozzle engine (for vacuum conditions), for different 

grid refinements (frozen flow, chemical model 3, CDS deferred correction interpolation scheme). 
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Figure 5. Thrust distribution along the divergent section of the engine, for different chemical models – 90x10 
control volumes, geometry of Back et al. (1965). 
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The second geometry used for simulations was the parabolic one, presented in Fig. 2 (b). In order to evaluate the 
apparent order and the error estimates (by GCI and Richardson estimators), at least 6 different grids were used, for each 
physical and chemical models studied. To evaluate the influence of the chosen interpolation scheme on the error 
estimate, both UDS and CDS with deferred correction schemes were employed. For all the simulations, the number of 
iterations used was enough to assure the achievement of round-off error. For frozen flow and local equilibrium flow 
models, the tolerances associated to chemical reactions were posed as 10-12, in order to guarantee the convergence for 
these reaction equations. Apparent order behaviour, for global variables of interest, is shown in Fig. 6, while error 
estimate, for specific impulse (IS) is placed in Fig. 7. Both results refer to chemical model 4, for frozen flow and 10x3, 
20x6, 40x12, 80x24, 160x48, 320x96 and 640x192 control volume grids. 
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Figure 6. Apparent order obtained for (a) UDS and (b) CDS with deferred correction for model 4, frozen flow. 

 

10-3 10-2

100

101

102

 

 

Er
ro

r e
st

im
at

e

Control volume axial size [m]

 URI(pL)
 U

RI
(p

U
)

 UGCI(pU)

10-3 10-2

10-3

10-2

10-1

100

 

Er
ro

r e
st

im
at

e

Control volume axial size [m]

 URI(pL)
 URI(pU)
 UGCI(pU)

 
(a) (b) 

 
Figure 7. Error estimate for (a) UDS and (b) CDS with deferred correction for IS (model 4, frozen flow). 

 
Figure 6 shows that the apparent error tends to the asymptotic one when UDS interpolation scheme is employed. For 

the same grids, however, when CDS scheme is used, this tendency is unclear yet – a greater grid refinement should be 
needed. Similar behaviour was observed for all the global variables of interest, for the frozen flow model. For local 
variables of interest (such as exit temperature, exit axial velocity and exit pressure, all of them at line symmetry), the 
apparent error tendency is unclear, even for UDS scheme. Because of this, more refined grid solutions should be 
necessary for a correct evaluation of this tendency. 

Figure 7 presents the error estimate for Richardson and GCI estimators. GCI estimator always has higher values for 
error estimate, through its coefficient (which is equal to 3). Despite the unclear tendency for apparent order when CDS 
scheme is used, error estimates are, at least, three orders-of-magnitude smaller than the ones obtained for UDS scheme, 
for the 640x192 control volumes grid. Because of this, even if the CDS scheme shows no tendency to achieve the 
apparent order, its use is recommended, based on the smaller values for error estimate, for frozen flow model. 

Figures 8 and 9 refer to local equilibrium flow results. Differently from frozen flow model, apparent order shows a 
tendency, which is far from the expected value of 2. Even with the study restricted to only 6 grids (10x3, 20x6, 40x12, 
80x24, 160x48 and 320x96), both the discharge coefficient and the specific impulse present apparent order values much 
closer to the unity than to 2. All the terms of the five equations, which model the reactive local equilibrium flow, are 



discretized using options that allow the use of both UDS and CDS with deferred correction schemes, expect by the 
chemical source term, Eq. 6(a). This term is discretized using only UDS scheme and, as it can be seen by the numerical 
results, its inclusion possibly changes the convergence order of the entire model to first order, even though it is still over 
the unity value for the 320x96 grid, for thrust and specific impulse. Because of this, error estimate for both UDS and 
CDS with deferred correction present only a one-order-of-magnitude difference, in spite of 3 as verified for frozen flow 
model, as can be seen in Fig. 9. 
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Figure 8. Apparent order obtained for (a) UDS and (b) CDS with deferred correction for model 4, equilibrium flow. 
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Figure 9. Error estimate for (a) UDS and (b) CDS with deferred correction for IS (model 4, equilibrium flow). 

 
Comparisons of physical and chemical models, as well as for UDS and CDS with deferred correction interpolation 

schemes, are presented at Tables 2 and 3. For all results, GCI error estimates were obtained, except for H2O-exit-mass-
fraction for frozen models, because of the constancy of these values all over the flow. Kliegel and Levine (1969) 
provide an analytical solution for the discharge coefficient: their hypotheses include a perfect gas flow with constant 
properties – which corresponds to one-species, constant properties model. The numerical results ranges, obtained using 
the Mach2D code, for both UDS and CDS schemes, include this analytical solution. It can be noted, however, that the 
numerical error estimate associated to CDS scheme is, at least, three orders-of-magnitude lower than those ones 
obtained for UDS scheme. Similar behaviour is observed for all physical and chemical models and for all variables of 
interest. The advantage of CDS scheme is smaller only for local equilibrium flow model, for which the convergence 
order tends to the unity value. 

Differences between physical models are quite small for all global variables of interest: it corresponds only to 2.3% 
for discharge coefficient, 2.7% for thrust and 5.1% for specific impulse. For local variables, otherwise, these differences 
are more appreciable: 20.4% for exit pressure and 37.9% for exit temperature (at line symmetry). Axial exit velocity, 
otherwise, is nearly not affect by the physical model, once the difference between the extreme values is about only 
2.4%. Six and eight chemical species models have similar results, which are, for many variables, numerically identical, 
once the error estimate ranges are the same. The CPU time required, however, are different, specially for local 
equilibrium flow: while model 4 demanded 13.6 hours for 30,000 iterations, model 10 needed 21.3 hours (57.3% more), 
for the same number of iterations. 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

Table 2. Results for discharge coefficient, thrust and specific impulse, for the parabolic nozzle (320x96 grid). 
 

Model Cd [adim.] F [N] IS [s] 
UDS 

One-species, constant properties 1.01 ± 2x10-2 1.628x104 ± 8x101 3.45x102 ± 5x100 

One-species, variable properties  1.00 ± 2x10-2 1.635x104 ± 8x101 3.45x102 ± 5x100 

Frozen Flow – mod. 4 1.01 ± 2x10-2 1.621x104 ± 9x101 3.39x102 ± 5x100 
Frozen Flow – mod. 10 1.01 ± 2x10-2 1.621x104 ± 8x101 3.39x102 ± 5x100 

Equilibrium Flow – mod. 4 0.98 ± 1x10-2 1.665x104 ± 7x101 3.56x102 ± 5x100 
Equilibrium Flow – mod. 10 0.98 ± 2x10-2 1.665x104 ± 7x101 3.56x102 ± 5x100 

CDS with deferred correction 
One-species, constant properties 0.999876 ± 2x10-6 1.62516x104 ± 4x10-1 3.41743x102 ± 8x10-3 
One-species, variable properties  0.991678 ± 4x10-6 1.632442x104 ± 8x10-2 3.46111x102 ± 3x10-3 

Frozen Flow – mod. 4 1.000962 ± 2x10-6 1.61859x104 ± 4x10-1 3.39993x102 ± 8x10-3 
Frozen Flow – mod. 10 1.000970 ± 2x10-6 1.61860x104 ± 4x10-1 3.39991x102 ± 8x10-3 

Equilibrium Flow – mod. 4 0.9785 ± 4x10-4 1.6625x104 ± 1x100 3.572x102 ± 2x10-1 
Equilibrium Flow – mod. 10 0.9785 ± 4x10-4 1.6625x104 ± 1x100 3.572x102 ± 2x10-1 
Kliegel and Levine (1969) – 

analytical solution 2D 0.999877 --- --- 

 
Table 3. Results for exit pressure, exit temperature, exit axial velocity and exit H2O mass fraction (all of them for 

line symmetry), for the parabolic nozzle (320x96 grid). 
 

Model Pex [Pa] Tex [K] uex [m/s] Y(H2O)ex [adim.] 
UDS 

One-species, constant properties 7.2x104 ± 7x103 1.99x103 ± 4x101 3.03x103 ± 5x101 --- 

One-species, variable properties  7x104 ± 1x104 2.09x103 ± 4x101 3.06x103 ± 6x101 --- 

Frozen Flow – mod. 4 6.9x104 ± 3x103 1.92x103 ± 3x101 3.03x103 ± 5x101 0.783686 
Frozen Flow – mod. 10 6.9x104 ± 2x103 1.92x103 ± 3x101 3.03x103 ± 4x101 0.783539 

Equilibrium Flow – mod. 4 8.3x104 ± 3x103 2.64x103 ± 1x101 3.10x103 ± 5x101 0.902 ± 2x10-3 
Equilibrium Flow – mod. 10 8.3x104 ± 2x103 2.64x103 ± 1x101 3.10x103 ± 5x101 0.902 ± 2x10-3 

CDS with deferred correction 
One-species, constant properties 7.14x104 ± 9x102 1.98x103 ± 1x101 3.04x103 ± 2x101 --- 
One-species, variable properties  7.34x104 ± 9x102 2.083x103 ± 7x100 3.07x103 ± 1x101 --- 

Frozen Flow – mod. 4 6.90x104 ± 9x102 1.91x103 ± 2x101 3.04x103 ± 5x101 0.783686 
Frozen Flow – mod. 10 6.90x104 ± 9x102 1.91x103 ± 2x101 3.04x103 ± 5x101 0.783539 

Equilibrium Flow – mod. 4 8.31x104 ± 8x102 2.6345x103 ± 1x10-1 3.113x103 ± 5x100 0.9028 ± 7x10-4 
Equilibrium Flow – mod. 10 8.31x104 ± 8x102 2.6347x103 ± 1x10-1 3.113x103 ± 5x100 0.9027 ± 9x10-4 

 
 

6. CONCLUSION 
 
A two-dimensional code, for chemical reaction flows where implemented, using Fortran 95 language and Visual 

Compaq 6.6.0 compiler. Five physical models were studied: a one-species flow (with constant or with variable 
properties); and the other three for reaction gas products (frozen, local equilibrium and non-equilibrium flows). For 
frozen and equilibrium models, nine different chemical reaction schemes were implemented – the same chemical 
reaction schemes discussed by Marchi et al. (2005) –, but only two were studied. Two nozzle geometries were used – 
one presented in the work of Back et al. (1965) and the other is a parabolic one. Numerical solutions for air flow were 
compared to the ones presented in the first work, with good agreement. Two-dimensional discharge coefficient values 
for one-species flow were compared to the two-dimensional analytical solution provided by Kliegel and Levine (1969), 
also showing good concordance. 

Apparent convergence order, as well as Richardson and GCI estimators were obtained for the parabolic geometry 
simulations. Both UDS and CDS with deferred correction schemes were employed, and their results (including error 
estimates) were compared. Because of the discretization of the chemical source-term in energy equation by UDS 
scheme, the whole local equilibrium model seems to be of first order of convergence, even when CDS scheme is used. 
Because of this, also, the difference between UDS and CDS for the error estimate order of magnitude is lower for local 
equilibrium model. While this difference can be as high as four orders of magnitude for other physical models (for 
global variables of interest), it achieves only two orders of magnitude for local equilibrium models. 
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