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Abstract. On the necessary CPU time to solve a problem of heat transfer, one verifies the effect caused by: coarsening 
ratio (r); number of nodes (N) and grids (L); number of inner iterations (ITI); and correction (CS) and full 
approximation schemes (FAS) of a geometric multigrid method with V-cycle. The considered problem involves a two-
dimensional linear problem, Laplace’s equation, with Dirichlet boundary conditions. The finite difference method is 
used to discretizate the differential equation with central difference scheme scheme for uniform grids. The systems of 
algebraic equations are solved with MSI solver. It was verified that the minor CPU time in general occurs with: a) FAS 
scheme and r =3, that it results approximately in 25% of the CPU  time occurring with CS scheme and r = 2; b) for 
FAS scheme, ITI = 3 or 4 with r = 2 or 3; and c) using the maximum number of grids. 
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1. INTRODUCTION  
 

Mathematical models in the computational fluid dynamics occur in physical phenomena that involve fluids in 
movement, with or without heat transfer (Fortuna, 2000; Maliska, 2004). These mathematical models, in general, do not 
have known analytical solutions. Then one searches numerical solutions transforming the continuous model into a 
discrete model. The discretization method used here is the finite difference method (Tannehill et al., 1997), where the 
domain {  is partitioned in a number of nodes (N), given by  }1,0:),( 2 ≤≤ℜ∈ yxyx

 
yx NNN =                                                                                                                                                              (1) 

  
where  and  are the number of nodes in coordinate directions x and y of a grid , respectively, with its 
coordinates given by  
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where ,  and  and  are the lengths of each element in the coordinate directions. xNi ,...,1= yNj ,...,1= xh yh

The discretization of these mathematical models leads to large systems of algebraic equations of the type  
 

fT
rr

=A                                                                                                                                                                   (3) 
 
where A is a square matrix with N x N dimension, f

r
 is the independent vector and T

r
 is the variable vector.  

Several numerical techniques have been studied to solve the system given by Eq. (3) with the accuracy solution and 
minor CPU time (Trottenberg et al., 2001). This requires a high and impracticable computational cost because of the 
large number of equations to be solved in each iterative step. The resolution by direct methods is not recommendable 
because of the large size of coefficients matrix and its high cost for inversion (Golub and Van Loan, 1989). For large 
scale problems, the iterative methods are recommended (Burden and Faires, 1997). 

The multigrid method, studied originally by Fedorenko (1964), speeds up the resolution of the systems of equations 
given by Eq. (3). The basic idea of the method is to use a set of grids and to execute iterations in each level of grid, in 
order to approximate the solutions of this equation in coarser grids (Briggs et al., 2000). Operators to transfer 
information (residue or solution) from the fine grid to the coarse grid (restriction) and vice-versa (prolongation) are 
used. The system of equations is solved with an iterative method (called here solver) in each grid. To get a good 
performance of multigrid, several grids must be used (Tannehill et al., 1997). Pinto et al. (2005) recommend the use of 
the maximum possible number of level grids.  



Two schemes can be used in multigrid (Briggs et al., 2000): the Correction (CS) and the Full Approximation 
Schemes (FAS). In CS scheme, the Eq. (3) is solved only in the finest grid; in the coarser grids, it is solved the residual 
equation (Briggs et al., 2000), given by   

 
TfR
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In FAS scheme, Eq. (3) is solved in all grids. CS scheme is generally used for linear problems and FAS scheme for 

nonlinear problems (Brandt, 1977). However Yan and Thiele (1998) and Mesquita and de-Lemos (2004) used a variant 
of the CS scheme for the resolution of the Navier-Stokes equation (nonlinear problem) and Souza et al. (2006) used 
FAS scheme for the resolution of the Poisson equation (linear problem). 

The coarsening ratio (r), for two-dimensional problems, considering yx hhh == , is defined by  
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2

h
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where  represents the size of the elements of the fine grid 1h hΩ  and  the size of the elements of the immediately 
coarser grid . Brandt (1977) recommends the use of the coarsening ratio 

2h
HΩ 2=r , by being around to the optimum 

one. Briggs et al. (2000) worked with the coarsening ratio 2=r , affirming that it is a universal practice and 2≠r does 
not any bring advantage. 

Ferziger and Peric (1999) affirm that manipulations in the values of the parameters that can be selected in multigrid 
improve the convergence rate of the method by a factor around 2 between the worst and the best combination of these 
parameters. Tannehill et al. (1997) solve the 2D Laplace’s equation with 129x129=N  and affirm that the use of 5 or 6 
levels of grids results in almost the same performance of 7 grids. Hirsch (1988) recommends to use 4 or 5 grids. 
However, for the two schemes (CS and FAS), Pinto et al. (2005) and Oliveira et al. (2006) recommend to use the 
maximum number of grids for one-dimensional linear problems and coarsening ratios 2=r , 3, 4 and 5. In Oliveira et 
al. (2006) is made a study to find the optimum values of some parameters of the multigrid method, to minimize the 
CPU time for one-dimensional linear and nonlinear problems.  

Several works (Montero et al., 2001; Nishida and Satofuka, 1992; Sathyamurthy and Patankar, 1994) about 
multigrid method presented good numerical results with respect to convergence rate, for fluid dynamic problems. The 
ideal (theoretical) convergence rate of multigrid is independent of the number of nodes of the finest grid (Hirsch, 1988; 
Ferziger and Peric, 1999). The efficiency of the multigrid method has not been totally reached in realistic applications 
of engineering in computational fluid dynamics. This motivates to study the properties of the geometric multigrid 
method in problems modeled by simple equations. This also makes one to be able to elaborate efficient algorithms for 
including large class of problems, as advection-diffusion and two-dimensional termoelasticity problems and Poisson 
equation involved in the resolution of the cycle of the mass for the Navier-Stokes equation (Larsson et al. 2005; Souza 
et al., 2006).  

The purpose of this work is to find optimum values of some parameters of the multigrid method, in order to 
minimize the CPU time, for a two-dimensional linear problem of heat conduction, governed by Laplace’s equation, with 
Dirichlet boundary conditions. One also intends to verify if the results found for the one-dimensional case (Pinto et al., 
2005; Oliveira et al., 2006) are extensive for the two-dimensional case. The following parameters are studied: 
coarsening ratio (r), number of variable (N), number of inner iterations (number of iterations of the iterative method, 
ITI), number of grids (level number of visited grids, L) and correction (CS) and full approximation schemes (FAS), both 
with V-cycle (Wesseling, 1992) without the use of Full Multigrid (FMG), that is, it is used the standard multigrid 
method that initiates the solution in the finest grid. The results are compared to the obtained ones in the bibliography. 
Operators of restriction by injection and bilinear interpolation for prolongation (Briggs et al., 2000; Trottenberg et al., 
2001) are employed as commonly used. By good smooth properties (Pinto et al., 2006), the MSI solver (Schneider and 
Zedan, 1981) is used in this work.  

This paper is organized as follows: in the section 2, the mathematical and numerical models are presented. In section 
3, the numerical experiments and its results are described. The conclusion of this work is presented in section 4.  
  
2. MATHEMATICAL AND NUMERICAL MODELS  

 
The two-dimensional linear problem of heat conduction (Laplace’s equation) in steady state with Dirichlet boundary 

conditions, in Cartesian coordinates, considered in this work is (Maliska, 2004) 
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where T is the unknown and represents the temperature. The analytical solution of the problem is  

  

( ) ( ) ( )
( )π
ππ

sinh
sinhsin, yxyxT =                                                                                                                                     (7)  

 
The discretization of the domain is made using uniform grids whose nodes are given by the Eq. (2). For each one of 

the ( ) ( )2  x2 −− yx NN  interior nodes of the grid, Eq. (6) is discretizated with the finite difference method with central 
difference scheme (CDS) (Tannehill et al., 1997), resulting in  
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where  is the numerical solution in each node jiT , ( )ji yx , . Rearranging the terms of the Eq. (8), it is obtained  
 

PjiePjiwPjisPjinPjiPP bTaTaTaTaTa =++++ +−−+ ,1,,1,1,,1,,,,                                                                                      (9)  
 

where the coefficients are given by 22
, 22 yxPP hha += , =nPa ,

2
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 is the independent vector 
composed by the terms , then the system of Eq. (9) can be represented by a system of algebraic equations of the type 
given by Eq. (3), where  is a pentadiagonal, symmetrical and positive-definite matrix N times N, (Briggs et al., 
2000). 

Pb
A

Equation (3) is solved with multigrid method using CS and FAS schemes. The systems of equations of the type of 
Eq. (3) are solved with MSI solver, because this solver has obtained good smooth properties (Pinto and Marchi, 2006). 
In this work, it is adopted the geometric multigrid (Wesseling and Oosterlee, 2001).  

The convergence criterion for the external iterations (ITE) (number of necessary V-cycles) is based on the ratio 
between a and b, where: a is the norm of the residue  (Ferziger and Peric, 1999) in determined iteration; and b is the 
norm of the residue of the initial estimate. The average residue of each node is calculated by Eq. (4). In this work one 
adopts  and zero vector T

1L

710−=ε
r

 for the tolerance and the initial estimate, respectively. 
The algorithms have been implemented in FORTRAN 95 language with the use of the Visual Compaq Fortran 6.6 

using double precision. The simulations have been carried out in a microcomputer with processor Intel Pentium 4 2.66 
GHz with 1 GB of RAM. 

The focus of this work is the minimization of the CPU time which is understood as the time spent to generate grids, 
to attribute the initial estimate, to calculate the coefficients and to solve the linear system of Eq. (3). This time is 
measured using the TIMEF function of PORTLIB library of FORTRAN 95. Through carried out tests, it was verified 
that the uncertainty of this function is approximately 05.0±  s. 
 
3. RESULTS  

 
About 400 simulations have been carried out. Most representative results are presented in the sequence.  

 
3.1. Inner iterations (ITI)  

 
Figure 1a shows the influence of the number of inner iterations (ITI) on the CPU time for three different grids (N), 
2=r , MSI solver and CS scheme with . For maximumLL = 513x513=N  nodes, for example, , that is, using  

coarsening ratio r = 2 to solve the finest grid of 513 x 513 nodes (on level 1, the level of the finest grid, that is, 
9=maximumL

hΩ ), 
using also the following grids: 257x257 (level 2, the level of the immediately coarser grid, that is, ), 129x129 (level 
3, that is, ), 65x65 (level 4, ), 33x33 (level 5, 

h2Ω
h4Ω h8Ω h16Ω ), 17x17 (level 6, h32Ω ), 9x9 (level 7, ), 5x5 (level 8, h64Ω



h128Ω ) and 3x3 (level 9, the level of the coarsest grid with only one inner node, that is, h256Ω ). It was verified that, for 
each finest grid, the minor CPU time occurs with the minor value of ITI, that is, the unit. Therefore,  = 1, where 

 is the value of ITI that results in the minor CPU time. Increasing the value of ITI, the CPU time also increases. 
optimumITI

optimumITI
Figure 1b shows the influence of ITI for FAS scheme with . It was verified that, for both 257x257 and 

513x513 grids,  = 4 and, for the 1025x1025 grid,  = 3. Diminishing or increasing the value of ITI, in 
relation to the optimum one, implies in a significant CPU time increment.   

maximumLL =

optimumITI optimumITI
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b) FAS scheme 
 

Figure 1. CPU time versus number of inner iterations (ITI) with MSI solver and 2=r . 
 
Table 1 shows  for the several values of N and for CS and FAS schemes for the several coarsening ratios optimumITI
2=r , 3, 4 and 5. For FAS scheme, in the finest grid, one has  = 3, 4 and 4, respectively for r = 3, 4 and 5. In 

the CS scheme case,  does not vary with N. Therefore, the coarsening ratio r has a small influence on the 
 value, that is more affected by the type of used scheme, CS or FAS. 

optimumITI

optimumITI

optimumITI
 

Table 1. Optimum number of inner iterations ( ) to MSI solver. optimumITI
 

 N  
optimumITI  

r minimumN  maximumN  CS FAS 
2 257x257 1025x1025 1 3 or 4 
3 163x163 1459x1459 2 3 or 4 
4 129x129 2049x2049 2 4, 5 or 6 
5 251x251 1251x1251 2 4 or 5 

                                  
3.2. Number of grids (L) 

 
Figure 2 shows the influence of the number of grids, or number of levels (L), on the CPU time with 2=r , MSI 

solver, for CS and FAS schemes with  nodes. For this grid, the maximum number of grids is .  513x513=N 9=maximumL
For CS scheme it was verified that for  = 1, the optimum number of grids is  = = 

, where  is the L that results in the minor CPU time. Diminishing the value of L, in relation to , 
generally implies in a significant CPU time increment.  

optimumITI maximumoptimum LL = 1−maximumL
2−maximumL optimumL optimumL

For FAS scheme it was verified that for  =  4 the optimum number of grids is , but with 
small difference in the CPU time for . Like in the CS scheme, diminishing the value of L, in relation to .  

optimumITI 2−= maximumoptimum LL

maximumL optimumL
For both schemes (CS and FAS) and the other coarsening ratios, it was verified that . This result is 

the same found by Pinto et al. (2005) in one-dimensional linear problems and coarsening ratios 
maximumoptimum LL ≈

2=r , 3, 4 and 5 with 
Gauss-Seidel (GS) solver and the same multigrid method. This result contradicts Hirsch (1988) who recommends the 
use of  = 4 or 5 grids. It is noticed by Fig. 2 (CS and FAS), that when adopting  = 4, the CPU time increases L L
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approximately between 8 and 20 times, respectively. It also contradicts Ferziger and Peric (1999), who affirm that 
manipulations in the values of the parameters of multigrid improve its performance in a factor around 2. However, 

 confirms the result of Tannehill et al. (1997) for the 2D Laplace’s equation and , where 
 = 7; in this case, Tannehill et al. (1997) affirm that the use of L = 5 or 6 obtain almost the same L = 7 

performance. 

maximumoptimum LL ≈ 129x129=N

maximumL

Summarizing, it was verified that . This means that the CPU time with  is practically the same 
that with . This result is general, based on results of literature and the authors of this themselves and other works, 
it was verified that it is valid for one or two dimensions, linear and nonlinear equations, CS and FAS schemes, 
coarsening ratios 

maximumoptimum LL ≈ optimumL

maximumL

2=r , 3, 4 and 5, any size of grid (N) and GS and MSI solvers.  
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Figure 2. CPU time versus number of grids (L) for N = 513 x 513 with MSI solver and 2=r . 
 
3.3. Coarsening ratio (r) and number of variables (N) 

 
Figure 3 shows the influence of the number of variables (N) and of the coarsening ratio ( 2=r , 3, 4 and 5) on the 

CPU time. Each point in this figure is an independent simulation that use the  of each N, r and . 
Results are also shown using only one grid (finest grid), called singlegrid (SG), with MSI solver. The used grids are: 
5x5, 9x9,… until 513x513 (SG) or 2049x2049 (MG) nodes. In this figure, only points whose CPU time is not 
influenced by the uncertainty of its measurement are shown.  

optimumITI maximumLL =

It was verified that the CPU time of the multigrid method (CS and FAS), with N > 104 and any coarsening ratio, is 
significantly lesser than singlegrid method. For example, for the CS scheme with r = 2 and grid 513x513 nodes, the 
CPU time for CS MG and SG are, respectively, 13.3 s and 7,006 s, that is, the CPU time of SG is 527 times CS MG 
one. For this same grid and r, the CPU time for FAS MG is 3.8 s; therefore, the CPU time of SG is 1,844 times FAS 
MG one. When N increases, the differences between MG and SG increase even more, because the inclinations of the 
curves with MG are lesser than SG. 

It was verified that  
 

)()5()4()3()2( SGtrtrtrtrt CPUCPUCPUCPUCPU <=<=<=<=   (CS scheme)                       (10) 
 
This result ratifies the results of Brandt (1977). Also it was verified that  

 
)()5()2()4()3( SGtrtrtrtrt CPUCPUCPUCPUCPU <=<=<=<=   (FAS scheme)                     (11) 

 
This result of the Eq. (11) shows that the standard coarsening ratio 2=r  is not the fastest in the FAS scheme, even for 
a linear equation. It must be noticed that the difference among the CPU times for the coarsening ratios 2=r , 3 and 4 in 
CS scheme is bigger than the ones of the FAS scheme, where these differences are small. 
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b) FAS scheme 
 

Figure 3. CPU time versus number of variables (N) versus r. 
 

For the points of Fig. 3, Tab. 2 presents the c coefficient and p inclination of the curves, obtained by geometric least 
square fitting method considering the following function  

 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

p
CPU Nct =                                                                                                                                           (12) 

 
The ideal multigrid method is that one whose p = 1, that is, that one whose CPU time increases linearly with the 

number of variables N. Therefore, for each numerical model, nearer p to unit, better the performance will be. Table 2 
shows that p order is more affected by the adopted method, for singlegrid or multigrid, than by the coarsening ratio or 
the scheme (CS or FAS). For CS scheme, among the tested coarsening ratios, 4=r  is the ratio that results in a minor p 
order, equal to 1.12; and for FAS scheme, 2=r  for the same p.  

 
Table 2. Coefficients (c) and order (p) of the Eq. (12). 

 
  MG-CS MG-FAS 

r c p c p 
2 610x90.2 −  1.22 610x90.2 −  1.12 
3 610x85.5 −  1.18 710x16.7 −  1.21 
4 510x72.1 −  1.12 610x43.2 −  1.13 
5 610x26.4 −  1.26 710x19.3 −  1.32 

SG 910x59.7 −  2.18 --- --- 
       
Summarizing, it was verified that for CS scheme, 2=r  is the coarsening ratio that results in the minor CPU time 

for one given grid with N points; and for FAS scheme, 3=r .  
 
3.4. CS versus FAS scheme 

 
Figure 4 shows a comparison between the CS (with its best coarsening ratio, 2=r ) and FAS scheme (with its best 

coarsening ratio , and the standard ratio, 3=r 2=r ) in function of several values of N. One can note that FAS scheme 
is faster than CS scheme for any N and r. For example, for , the MG-FAS (r = 3), MG-FAS (r = 2) and MG-CS 
(r = 2) CPU times are, respectively, 0.85 s, 1.16 and 3.45 s, that is, the MG-CS (r = 2) and the MG-FAS (r = 2) CPU 
times are, respectively, 4.1 and 1.4 time the MG-FAS (r = 3) CPU time. Another example: for , the MG-FAS (r 
= 3), MG-FAS (r = 2) and MG-CS (r = 2) CPU times are, respectively, 13.87 s, 15.22 s and 56.65 s, that is, the MG-CS 
(r = 2) and the MG-FAS (r = 2) CPU times are, respectively, 4.1 and 1.1 time of the MG-FAS (r = 3) CPU time. This 
verification is unexpected because the CS scheme is indicated to solve linear equations, as the equation of this work, 
and FAS scheme, for nonlinear equations (Brandt, 1977).  
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Figure 4. CPU time versus N versus scheme. 



The results of the present work differ from those of Brandt (1977). This author made theoretical and experimental 
(numerical) analyses among the coarsening ratios r = 2, 3 and 3/2 for several problems, but he has not mentioned 
necessarily the Eq. (6). Brandt shows preference of the CS in relation to FAS scheme for linear problems. According to 
Brandt, each iterative cycle of FAS has a higher computational cost compared to CS scheme due to the calculations 
demanded in FAS scheme. But it was seen in this work that the number of iterative cycles of this scheme is significantly 
lesser than CS scheme. For example, for the grid with 2049x2049 nodes, the number of external iterations (ITE) of MG-
FAS (r = 2) and MG-CS (r = 2) are 2 and 15, respectively. Another example: for the grid with 1459x1459 nodes the 
ITE of the MG-FAS (r = 3) and the MG-CS (r = 3) are 2 and 25, respectively. 

  
4. CONCLUSION 

 
In this work, the effect of several parameters on the necessary CPU time to solve a problem with the geometric 

multigrid method was verified. The considered parameters have been: coarsening ratios (r), number of nodes (N), 
number of inner iterations (ITI), number of grids (L) and correction (CS) and full approximation schemes (FAS). The 
considered mathematical model is a two-dimensional linear problem, governed by the Laplace’s equation with Dirichlet 
boundary conditions. This equation was discretizated with the finite difference method and central difference scheme.  

Based on the results of this work, it was verified that: 
1) Among the tested values of r (2, 3, 4 and 5), for a given N and CS scheme, the minor CPU time is obtained with 

2=r ; and for FAS scheme, with . 3=r
2) The FAS scheme is faster than CS scheme for any N and r. 
3) ITI can affect significantly the CPU time for CS and FAS schemes. The used scheme influences the optimum 

number of inner iterations ( ): for CS scheme,  = 1 or 2, depending on r and N; and for FAS scheme, 
 = 3 to 6. 

optimumITI optimumITI

optimumITI
4) L can affect significantly the CPU time. maximumoptimum LL ≈ , that is, the CPU time with  is practically the same 

that with . This result is valid for one and two-dimensional, linear and nonlinear equations, CS and FAS 
schemes, coarsening ratios 

optimumL

maximumL
2=r , 3, 4 and 5, any size of grid (N) and GS and MSI solvers. 

5) The CPU time with FAS scheme and  is approximately 25% of the CPU time obtained with CS scheme and 3=r
2=r . 

6) The results of the present work, for a two-dimensional problem, in general confirm the results already obtained by 
the authors themselves for one-dimensional problems. This shows the importance of studies with one-dimensional 
problems. 
According to knowledge of the authors, the above verifications are unknown in available literature, except by the 

works published by authors of the present paper.  
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