AVALIAÇÃO DE ESQUEMAS NUMÉRICOS PARA PROBLEMAS DIFUSIVOS 2D RESOLVIDOS COM VOLUMES FINITOS

Neil Franco de Carvalho

<u>neil@up.edu.br</u> Universidade Positivo (UP) Curitiba, PR, Brasil

Carlos Henrique Marchi

marchi@ufpr.br Universidade Federal do Paraná (UFPR) Departamento de Engenharia Mecânica (DEMEC) Curitiba, PR, Brasil

Resumo. O objetivo principal deste trabalho é avaliar o desempenho de alguns esquemas numéricos para resolver problemas difusivos bidimensionais com o método de volumes finitos. Para aproximar a integral da derivada da variável dependente nas faces dos volume de controle, os esquemas usados são: diferença central (CDS) com integração numérica obtida pelas regras do retângulo, trapézio e Simpson; e função biquadrática com integral analítica. Para aproximar a variável dependente nas faces dos volume de controle, os esquemas usados são: CDS; diferença para trás (UDS); e função biquadrática com integral analítica. Os problemas resolvidos são definidos pelas equações bidimensionais de Laplace e advecção-difusão, com número de Peclet quatro. São apresentados resultados do erro numérico e sua ordem efetiva versus tamanho dos volumes de controle para malhas com 2x2 a 512x512 volumes e três variáveis de interesse. Entre os esquemas avaliados e para uma mesma malha, a função biquadrática resulta no menor erro numérico para todas as variáveis de interesse testadas.

Palavras-chave: verificação, aproximação numérica, função de interpolação, equação de Laplace, equação de advecção-difusão.

1 INTRODUÇÃO

No âmbito do Método de Volumes Finitos (MVF) (Patankar, 1980; Maliska, 2004), podese definir função de interpolação como o meio utilizado para se calcular o valor da incógnita do problema, e de sua derivada normal, nas faces dos volumes de controle que são utilizados para discretizar o domínio de cálculo (Marchi, 1993). O tipo de função de interpolação pode ser considerado como uma das principais características de um modelo numérico pois determina o nível do erro da solução numérica obtida. Neste trabalho, função de interpolação é considerada sinônimo de esquema numérico e aproximação numérica.

Os problemas resolvidos neste trabalho são definidos pelas equações bidimensionais de Laplace e advecção-difusão. No caso da equação de Laplace, para obter a integral da derivada da variável dependente em cada face de um volume de controle, os esquemas avaliados são: esquema de diferença central (CDS) (Patankar, 1980) com integração numérica obtida pelas regras do retângulo, trapézio e Simpson; e função biquadrática (Becker et al.,1981; Bathe, 1995) com integral analítica. No caso da equação de advecção-difusão, além da função biquadrática, o problema é resolvido com os esquemas CDS e UDS (Courant et al.,1952; Patankar,1980). A Fig. 1 apresenta o domínio de cálculo e as condições de contorno para o problema da advecção-difusão bidimensional em estudo. Nesta figura, o símbolo *Pe* representa o número de Péclet, Λ é a variável dependente ou primária, x e y são as direções coordendas, e S é um termo fonte.

Figura 1 – Domínio de cálculo e condições de contorno para o problema da advecçãodifusão

Os objetivos deste trabalho são: (*i*) avaliar o erro numérico da solução para problemas puramente difusivos (Péclet nulo) quando se utilizam diferentes técnicas de integração nas faces dos volumes de controle, considerando-se variáveis primárias e secundárias; (*ii*) ainda, para os problemas puramente difusivos, determinar uma relação para o esforço computacional entre as diferentes formas de integração numérica estabelecendo uma comparação com o esforço computacional da função biquadrática para a cobertura do domínio de cálculo; (*iii*) avaliar o erro numérico da solução das variáveis primárias e secundárias em problemas de advecção-difusão, comparando os esquemas UDS, CDS e a função biquadrática; (*iv*) para o problema de advecção-difusão, determinar a relação para o esforço computacional entre os esquemas de interpolação, e; (*v*) para os problemas apresentados e variáveis avaliadas, determinar a ordem efetiva da aproximação.

A importância deste trabalho está na verificação do efeito das diferentes formas de integração numérica nas faces dos volumes de controle em comparação com o esquema de interpolação mais utilizado (integração retângulo). O trabalho apresenta também a formulação de uma função biquadrática para a cobertura do volume de controle como um esquema que

permite avaliar com menor erro as variáveis secundárias, por permitir a derivação e integração analíticas dessa função.

2 MODELOS MATEMÁTICO E NUMÉRICO

2.1 Definição do problema e sua discretização

A equação de advecção-difusão bidimensional considerada neste trabalho é

$$p\frac{\partial\Lambda}{\partial x} + k\frac{\partial\Lambda}{\partial y} = \frac{\partial^2\Lambda}{\partial x^2} + \frac{\partial^2\Lambda}{\partial y^2} + S, \quad 0 < x, y < 1,$$
(1)

onde $p \in k$ são os números de Péclet nas direções $x \in y$, respectivamente. A Tabela 1 apresenta as condições de contorno usadas e a solução analítica de cada problema.

Péclet	Termo fonte	Condições de contorno	Solução analítica
Nulo	<i>S=0</i>	$\Lambda(x,0) = \Lambda(0, y) = \Lambda(1, y) = 0$ $\Lambda(x,1) = sen(\pi x)$	$\Lambda(x, y) = sen(\pi x) \frac{senh(\pi y)}{senh(\pi)}$
Não-nulo	$S=S^*$	$\Lambda(x,0) = \Lambda(0, y) = \Lambda(1, y) = 0$ $\Lambda(x,1) = sen(\pi x) \frac{(e^{px} - 1)}{(e^p - 1)}$	$\Lambda(x, y) = sen(\pi x) \frac{(e^{px} - 1)(e^{ky} - 1)}{(e^p - 1)(e^k - 1)}$

Tabela 1 – Definição das condições de contorno

Os dois problemas abordados neste trabalho se diferem pelo número de Péclet e o termo fonte utilizado. No caso dos números de Péclet (p = k = 0) e termo fonte nulos, a Eq. (1) se reduz a de Laplace, que apresenta apenas os termos difusivos. O outro problema leva em consideração valores não-nulos para os números de Péclet e o termo fonte dado por (Schneider, 2007)

$$S^* = \frac{\pi \left[(sen(\pi x)\pi - p\cos(\pi x))(e^{px} - 1) - 2p\cos(\pi x) \right] (e^{ky} - 1)}{(e^p - 1)(e^k - 1)}.$$
 (2)

A discretização do domínio de cálculo é feita utilizando-se malhas uniformes. O número total de volumes (*NV*) é calculado por $NV=N_xN_y$, sendo N_x e N_y o número de volumes nas direções x e y, respectivamente.

2.2 Funções de interpolação

A integração da Eq. (1) sobre o volume de controle P (Fig. 2), delimitado pelas faces oeste (w), leste (e), norte (n) e sul (s), resulta em

$$p \int_{y} (A_{e} - A_{w}) dy + k \int_{x} (A_{n} - A_{s}) dx = \int_{y} \left[\left(\frac{\partial A}{\partial x} \right)_{e} - \left(\frac{\partial A}{\partial x} \right)_{w} \right] dy + \int_{x} \left[\left(\frac{\partial A}{\partial y} \right)_{n} - \left(\frac{\partial A}{\partial y} \right)_{s} \right] dx + \int_{A} S \, dx dy$$

$$(3)$$

Figura 2 – Volume de controle elementar P e suas faces

A integração da Eq. (3) pode ser feita com diversos tipos de função de interpolação para expressar o valor da incógnita Λ , e de sua derivada normal, nas faces dos volumes de controle. Essas funções de interpolação são utilizadas para se obter a solução aproximada do problema. Assim, para caracterizar que a solução é aproximada, a incógnita Λ (representação da solução analítica) será substituída pela incógnita λ (representação da solução aproximada).

Após a integração da Eq. (3) para uma dada função de interpolação, obtém-se

$$A_P \lambda_P = A_e \lambda_E + A_w \lambda_W + A_n \lambda_N + A_s \lambda_S + b_P .$$
⁽⁴⁾

A Eq. (4) representa cada uma das equações de um sistema linear, cuja matriz dos coeficientes (A) é pentadiagonal (5 nós envolvidos nas interpolações) e b_P é o vetor dos termos independentes (Patankar, 1980).

Esquema UDS. O esquema de diferenças à montante (*Upwind Difference Scheme* ou UDS), desenvolvido por Courant et al. (1952), aplicado ao termo advectivo da Eq. (3) na face leste (e) do volume P (Fig. 2), resulta em

$$\lambda_e = \lambda_P \qquad u \ge 0 \tag{5}$$
$$\lambda_e = \lambda_E \qquad u < 0$$

onde *u* é a componente do vetor velocidade na direção *x*.

Esquema CDS. O esquema de diferenças centrais (*Central Difference Scheme* ou CDS) (Patankar, 1980), aplicado aos termos advectivo e difusivo da Eq. (3) na face leste (*e*) do volume P (Fig. 2), resulta em

$$\lambda_{e1=e} = \frac{\lambda_E + \lambda_P}{2}$$

$$\left(\frac{\partial \lambda}{\partial x}\right)_{e1=e} = \frac{\lambda_E - \lambda_P}{\delta x_e}$$
(6)

O esquema apresentado leva em consideração 5 nós: central (P), leste (E), oeste (W), norte (N) e sul (S). Ou seja, os valores interpolados são considerados constantes em cada face, conforme se observa nas Eqs. (5) e (6) para a face leste.

Esquemas de 9 nós. Podem ser usadas outras formas de integração numérica e, assim, incluir mais pontos na aproximação da solução. Por exemplo, podem ser incluídos os nós SW, SE, NW e NE, da Fig. 2, resultando em um esquema com 9 nós para cada volume de controle P. A Fig. 2 apresenta os pontos "e1", "e2" e "e3", pertencentes à face leste. No esquema bidimensional de 9 nós para MVF, utilizando-se o esquema CDS, para a face leste na posição "e2", mostrada na Fig. 2, tem-se

$$\lambda_{e2} = \frac{\lambda_E + \lambda_N + \lambda_{NE} + \lambda_P}{4}$$

$$\left(\frac{\partial \lambda}{\partial x}\right)_{e2} = \frac{\lambda_E - \lambda_N + \lambda_{NE} - \lambda_P}{2\delta x_e}$$
(7)

e, para a face leste na posição "e3",

$$\lambda_{e3} = \frac{\lambda_E + \lambda_S + \lambda_{SE} + \lambda_P}{4}$$

$$\left(\frac{\partial \lambda}{\partial x}\right)_{e3} = \frac{\lambda_E - \lambda_S + \lambda_{SE} - \lambda_P}{2\delta x_e}$$
(8)

Tendo-se valores diferentes para a variável e sua derivada na face leste, Eqs. (6) a (8), deve-se definir como considerá-las. Neste trabalho, a integração numérica em cada face é feita de três formas: (*i*) regra do retângulo; (*ii*) regra do trapézio e, (*iii*) regra de Simpson (Burden e Faires, 2003).

Aproximações em cada face. A integral de todas as superfícies do volume de controle é igual à soma das integrais em cada uma das faces, assim

$$F = \oint_{S} \mathbf{f} \cdot \mathbf{n} \, dS = \sum_{i} \int_{S_{i}} \mathbf{f} \cdot \mathbf{n} \, dS \,, \tag{9}$$

na qual o índice *i* representa cada uma das faces do volume de controle, **f** representa a variável ou a sua derivada em cada uma das faces, e **n** é o vetor normal à cada face.

A aproximação na face "e" da Fig. 2, pela regra do retângulo, é dada por

$$F_e = \int_{S_e} \mathbf{f} \cdot \mathbf{n} \, dS \approx \left(\mathbf{f} \cdot \mathbf{n}\right)_{e1} \, \Delta y \,, \tag{10}$$

pela regra do trapézio, por

$$F_{e} = \int_{S_{e}} \mathbf{f} \cdot \mathbf{n} \, dS \approx \frac{\Delta y}{2} \left[(\mathbf{f} \cdot \mathbf{n})_{e2} + (\mathbf{f} \cdot \mathbf{n})_{e3} \right],\tag{11}$$

e pela regra de Simpson, por

$$F_e = \int_{S_e} \mathbf{f} \cdot \mathbf{n} \, dS \approx \frac{\Delta y}{6} \left[(\mathbf{f} \cdot \mathbf{n})_{e2} + 4(\mathbf{f} \cdot \mathbf{n})_{e1} + (\mathbf{f} \cdot \mathbf{n})_{e3} \right]. \tag{12}$$

Função Biquadrática. A Fig. 3 apresenta o subdomínio Ω_h^P de um volume genérico P. Tomando-se o produto de um conjunto de polinômios em *x* com um conjunto de polinômios em *y*, as funções de forma para um elemento de 9 nós podem ser obtidas (Becker et al.,1981; Bathe, 1995). A cobertura Ω para o domínio real deve ser tal que

$$\Omega < \bigcup_{P=1}^{NV} \Omega_h^P \ . \tag{13}$$

A interpolação para a cobertura Ω_h^P pode ser escrita, na forma compacta, como sendo

$$\lambda_h^P(x, y) = \sum_{i=1}^9 \lambda_i \ \phi_i^P(x, y) \ , \tag{14}$$

na qual $\phi_i^P(x, y)$ são as funções de forma para cada volume genérico P.

As funções de forma definidas sobre o domínio Ω_h^P devem satisfazer

$$\phi_i^P(x_j, y_j) = \begin{cases} 1 & se \ i = j \\ & & i, j = 1, 2, \dots, 9 \\ 0 & se \ i \neq j \end{cases}$$
(15)

Na descrição apresentada para a determinação das funções de forma, ϕ_i^P , foi usado o sistema de coordenadas cartesianas locais. Para propósitos de implementação computacional o uso de um sistema de coordenadas natural é a melhor opção (Bathe, 1995). Os índices *i* e *j*, utilizados na definição das funções de forma, devem ser associados aos nós vizinhos (dados por letras – ver Fig. 3) do nó central (P). A integração nas faces dos volumes de controle pode ser resolvida analiticamente, portanto, sem aproximação por integração numérica.

Figura 3 - Elemento retangular que cobre o volume de controle P

3 RESULTADOS

Para os dois problemas da Tabela 1, foram feitas as seguintes análises:

- 1. *Péclet=0* e *S=0* (equação de Laplace):
 - CDS com integração pela regra do retângulo (forma tradicional utiliza 5 nós)
 - CDS com integração pela regra do trapézio (utiliza 9 nós)
 - CDS com integração pela regra de Simpson (utiliza 9 nós)
 - Função biquadrática
- 2. $P\acute{e}clet=4$ e $S=S^*$ (equação de advecção-difusão):
 - UDS (5 nós)
 - CDS (5 nós)
 - Função biquadrática

Em todas as análises, o *solver* Gauss-Seidel (Patankar, 1980) foi utilizado para a solução dos sistemas de equações, fazendo-se iterações até se atingir o erro de máquina. As malhas usadas foram: 2x2, 4x4, 8x8, 16x16, 32x32, 64x64, 128x128, 256x256 e 512x512 volumes. As simulações foram realizadas em um computador com processador Intel Core 2 Duo de 2,66 GHz e 3 GB de memória RAM. Em todas as figuras abaixo, $h = \Delta x = \Delta y$.

3.1 Média do erro de discretização (L)

A média do erro de discretização (L) da variável primária é calculada pela média da norma L_l do erro de discretização, definida por

$$L = \frac{L_1}{NV} = \frac{\sum_{P=1}^{NV} |\Lambda_P - \lambda_P|}{NV}.$$
(16)

A Fig. 4a apresenta a média do erro de discretização (L) para Péclet nulo. Pode-se observar que as integrações numéricas do tipo trapézio e Simpson resultam em erros maiores

do que os da integração do tipo retângulo. O uso da função biquadrática resulta no menor nível de erro.

Ainda considerando-se a Fig. 4a, para dois níveis específicos de *L*, no caso $L=1\cdot10^{-3}$ (Tabela 2) e $L=3,16\cdot10^{-6}$ (Tabela 3), determinou-se a razão entre o número de nós necessário com a função biquadrática e o número de nós dos outros esquemas. Esta razão indica o nível de redução do esforço computacional (memória e tempo de CPU) ao se usar a função biquadrática em relação aos outros esquemas. O nível de erro utilizado para determinar o número de nós em cada um dos esquemas levou em consideração um erro menor ou, no máximo, 5% maior que o considerado em cada análise. A função biquadrática reduz em cerca de 60%, 78% e 89% a quantidade de nós da malha necessária para se resolver o mesmo problema com CDS e, respectivamente, integração retângulo, Simpson e trapézio.

Figura 4 - Média do erro de discretização (L)

A Fig. 4b apresenta a média do erro de discretização (*L*) para Péclet não-nulo (Pe=4; $S=S^*$) nas direções x e y. Novamente, a função biquadrática resulta em menor nível de erro. Na Fig. 4b, para dois níveis específicos de *L*, no caso $L=1\cdot10^{-3}$ (Tabela 4) e $L=3,16\cdot10^{-5}$ (Tabela 5), também se determinou a razão entre os números de nós que utiliza a função biquadrática e os esquemas UDS e CDS. Para $L=3,16\cdot10^{-5}$, a função biquadrática reduz em cerca de 78% e 99,7% a quantidade de nós da malha necessária para se resolver o mesmo problema, respectivamente, com CDS e UDS.

\mathbf{N}	Tabela 2 ·	 Redução d 	e nós de malha	(Pe=0; S=0)	para a média do	erro de 1• 10
--------------	------------	-------------------------------	----------------	----------------------	-----------------	---------------------------

interpolação	malha	L	razão entre número de nós
CDS - retângulo	11 x 11	1,03810·10 ⁻³	2,47
CDS - trapézio	22 x 22	$9,58620 \cdot 10^{-4}$	9,88
CDS - Simpson	15 x 15	$1,01442 \cdot 10^{-3}$	4,59
Função Biquadrática	7 x 7	$8,17009 \cdot 10^{-4}$	1,00

interpolação	malha	L	razão entre número de nós
CDS - retângulo	202 x 202	$3,17094 \cdot 10^{-6}$	2,49
CDS - trapézio	378 x 378	$3,16282 \cdot 10^{-6}$	8,72
CDS - Simpson	270 x 270	$3,14520 \cdot 10^{-6}$	4,45
Função Biquadrática	128 x 128	$3,13788 \cdot 10^{-6}$	1,00

Tabela 3 - Redução de nós de malha (Pe=0; S=0) para a média do erro de 3,16• 10⁻⁶

Tabela 4 - Redução de nós de malha (Pe=4; $S=S^*$) para a média do erro de 1• 10⁻³

interpolação	malha	L	razão entre número de nós
UDS	14 x 14	9,93871 · 10 ⁻⁴	4,00
CDS	10 x 10	9,49760· 10 ⁻⁴	2,04
Função Biquadrática	7 x 7	$7,77306 \cdot 10^{-4}$	1,00

1 abcia 5 = Actuação de nos de mana (1 c=7, 5=5) para a media do erro de 5,10 1 (Tabela 5 - Re	dução de nós (de malha (<i>P</i>	$Pe=4; S=S^{*}$	para a média do	erro de 3,16• 1
--	---------------	----------------	---------------------	-----------------	-----------------	-----------------

interpolação	malha	L	razão entre número de nós
UDS	498 x 498	3,15754·10 ⁻⁵	366,87
CDS	56 x 56	$3,14243 \cdot 10^{-5}$	4,64
Função Biquadrática	26 x 26	$2,91485 \cdot 10^{-5}$	1,00

3.2 Outras variáveis

Para os dois problemas da Tabela 1, também foram realizadas análises para as seguintes variáveis (secundárias), definidas matematicamente na Tabela 6:

- I =derivada em relação a y na posição (0,5;1); e
- q = integração da derivada em relação a y no contorno norte (y=1).
- A Tabela 6 apresenta o valor da solução analítica das variáveis secundárias.

Péclet	Fonte	Derivada no contorno norte	Integração da derivada no contorno norte
Nulo	<i>S</i> =0	$I = \left(\frac{\partial \Lambda}{\partial y}\right)_{0,5;1} = 3,1533480949$	$q = \int_{0}^{1} \left(\frac{\partial \Lambda}{\partial y}\right)_{y=1} dx = 2,0074837464$
Não-nulo	$S=S^*$	$I = \left(\frac{\partial A}{\partial y}\right)_{0.5;1} = 0,2757205648$	$q = \int_{0}^{1} \left(\frac{\partial \Lambda}{\partial y} \right)_{y=1} dx = 0,2639019902$

Tabela 6 – Definição de variáveis secundárias

A solução numérica de I é obtida através da aproximação DDS (*Downstream Difference Scheme*) de 1^a ordem:

$$I = \left(\frac{\partial \lambda}{\partial y}\right)_{0.5;1} = 2\frac{\Lambda_{CN} - \lambda_P}{\Delta y} , \qquad (17)$$

onde Λ_{CN} é o valor analítico da variável principal na posição (0,5;1) e λ_P é o valor da solução numérica para a variável principal no nó que pertence ao volume adjacente ao contorno norte na posição x=0,5. No caso do número de volumes par, o valor de λ_P é calculado como a média dos dois nós vizinhos à coordenada x=0,5.

A solução numérica de q é feita levando-se em consideração o cálculo de I, em cada nó P que pertence ao volume adjacente ao contorno norte, e a sua integração numérica através da regra do retângulo.

A Fig. 5 apresenta o erro da solução numérica das duas variáveis secundárias para os dois problemas. Pode-se ver que a função biquadrática resulta no menor nível de erro nos quatro casos.

Figura 5 - Módulo dos erros de variáveis secundárias

Considerando-se a Fig. 5c, para o nível de erro $1 \cdot 10^{-5}$ de q, determinou-se a razão entre o número de nós necessário com a função biquadrática e o número de nós dos outros esquemas. Os resultados são apresentados na Tabela 7. A função biquadrática reduz em cerca de 88%, 95,9% e 96% a quantidade de nós da malha necessária para se resolver o mesmo problema com CDS e, respectivamente, integração Simpson, trapézio e retângulo.

Considerando-se a Fig. 5d, para o nível de erro $3,16 \cdot 10^4$ de q, determinou-se a razão entre o número de nós necessário com a função biquadrática e o número de nós dos outros esquemas. Os resultados são apresentados na Tabela 8. A função biquadrática reduz em cerca

de 94,9% e 98,7% a quantidade de nós da malha necessária para se resolver o mesmo problema, respectivamente, com CDS e UDS.

interpolação	malha	nível de erro	razão entre número de nós
CDS - retângulo	494 x 494	9,98975 · 10⁻ ⁶	24,90
CDS - trapézio	490 x 490	9,99231 · 10 ⁻⁶	24,50
CDS - Simpson	288 x 288	9,95284 · 10 ⁻⁶	8,46
Função Biquadrática	99 x 99	9,89580· 10⁻ ⁶	1,00

Tabela 7 - Redução de nós de malha (*Pe=0*; *S=0*) no nível de erro 1,00• 10⁻⁵ para q(x;1)

Tabela 8 - Redução de nós de malha (*Pe=4; S=S*^{*}) no nível de erro 3,16• 10⁻⁴ para q(x;1)

interpolação	malha	nível de erro	razão entre número de nós
UDS	364 x 364	$3,15668 \cdot 10^{-4}$	78,82
CDS	182 x 182	$3,15572 \cdot 10^{-4}$	19,70
Função Biquadrática	41 x 41	$3,13785 \cdot 10^{-4}$	1,00

Para a função biquadrática o cálculo de I e q foram feitos de forma específica. Como a função que faz a cobertura do volume finito possui derivada analítica conhecida, foi possível calcular o valor de I utilizando essa definição. O mesmo pode ser dito em relação à integral da derivada no contorno norte (q). O valor da integração analítica da derivada é conhecido para cada volume adjacente ao contorno norte, então, o valor da integração total é dado pelo somatório desses valores. Evidentemente, o valor analítico para as variáveis secundárias se baseia na solução numérica obtida para a variável primária.

3.3 Ordem efetiva

A ordem efetiva permite verificar *a posteriori* das soluções numéricas se a ordem assintótica dos erros de truncamento é atingida (Marchi, 2001). A ordem efetiva (p_E) é definida como a inclinação local da curva do erro de discretização (*E*) da solução numérica (λ) versus o tamanho (*h*) dos elementos da malha num gráfico logarítmico.

À medida que *h* é reduzido, a ordem do erro de discretização das soluções numéricas tende à ordem assintótica dos erros de truncamento, ordem esta que é um resultado teórico, obtido *a priori* das soluções numéricas. Conforme Marchi (2001), a ordem efetiva (p_E) é obtida a partir de

$$p_E = \frac{\log\left(\frac{\Lambda - \lambda_g}{\Lambda - \lambda_f}\right)}{r} , \qquad (18)$$

onde λ_f e λ_g são as soluções numéricas obtidas respectivamente com as malhas fina e grossa, e *r* é a razão de refino de malha, definida por

$$r = \frac{h_g}{h_f} , \qquad (19)$$

onde h_f e h_g são os tamanhos dos volumes das malhas fina e grossa, respectivamente. Para as malhas utilizadas neste trabalho, a razão de refino é igual a 2.

A Fig. 6a apresenta a ordem efetiva da média do erro para Péclet nulo. Pode-se observar que a ordem efetiva dos três esquemas CDS e da função biquadrática tendem à ordem 2 com a redução de *h*. Na Fig. 6b, para Péclet não-nulo (Pe=4; $S=S^*$), o esquema UDS tende à ordem 1 com a redução de *h*, e tanto o esquema CDS quanto a função biquadrática tendem à ordem 2.

Figura 6 – Ordem efetiva do erro de L

A Fig. 7a apresenta a ordem efetiva do erro da variável q para Péclet nulo. Observa-se que os três esquemas CDS tendem à ordem 2 com a redução de h, e a função biquadrática atinge um máximo (próximo a 2,5) e começa a se reduzir com a redução de h, mas sempre com valores maiores do que 2. Na Fig. 7b, para Péclet não-nulo (Pe=4; $S=S^*$), o comportamento da função biquadrática é análogo ao da Fig. 7a, o esquema UDS tende à ordem 1 com a redução de h, e o esquema CDS tende à ordem 2.

A seguir são apresentados alguns resultados visando mensurar o esforço computacional necessário para se resolver os problemas com as diversas aproximações numéricas já apresentadas. As Tabelas 9 e 10 apresentam resultados do número de iterações no *solver* e o tempo de CPU para obter as soluções numéricas. Nestes casos, utilizou-se como critério de convergência a média da norma 11 do resíduo das equações adimensionalizada pelo valor deste mesmo parâmetro na primeira iteração. A tolerância usada foi 1•10⁻¹⁰.

interpolação	iterações	tempo de CPU (s)	razão
CDS - retângulo	125.342	672	1,00
CDS - trapézio	65.713	684	1,02
CDS - Simpson	105.316	1.123	1,67
Função Biquadrática	114.785	1.223	1,82

Tabela 9	– Número	de iterações e 1	tempo de CPU	para <i>Pe=0, S=</i> () e malha 256 x 256
----------	----------	------------------	--------------	------------------------	---------------------

Para o problema de Peclet nulo, conforme a Tabela 9, o esquema CDS com integração numérica pela regra do retângulo foi o que apresentou o menor tempo de CPU. A coluna razão na Tabela 9 apresenta a razão entre o tempo de CPU dos outros esquemas e o que levou menos tempo. A função biquadrática foi a que levou mais tempo, 82% a mais.

Para o problema de Peclet não-nulo, conforme a Tabela 10, o esquema CDS foi o que apresentou o menor tempo de CPU. A coluna razão na Tabela 10 apresenta a razão entre o tempo de CPU dos outros esquemas e o que levou menos tempo. A função biquadrática foi a que levou mais tempo, 88% a mais.

interpolação	iterações	tempo de CPU (s)	razão
UDS	87.290	510	1,06
CDS	86.895	480	1,00
Função Biquadrática	79.545	900	1,88

Tabela 10 – Número de iterações e tempo de CPU para *Pe=4*, *S=S*^{*} e malha 256 x 256

Figura 7 - Ordem efetiva do erro de q

4 CONCLUSÃO

A solução numérica das equações de Laplace e advecção-difusão bidimensionais, com condições de contorno de Dirichlet e Método de Volumes Finitos foi obtida com várias funções de interpolação. Além dos esquemas UDS e CDS, esquemas de 9 nós baseados na interpolação linear do CDS e uma função biquadrática foram testados.

Com base nos resultados obtidos, verificou-se que:

- O erro de discretização da solução numérica obtida com a função biquadrática é menor do que a de todos os outros esquemas testados, tanto na solução da equação de Laplace quanto na solução da equação de advecção-difusão, e para as três variáveis testadas.
- 2) A média do erro de discretização (L) do esquema (regra do retângulo) de 5 nós é menor do que a dos esquemas (regras do trapézio e Simpson) de 9 nós na solução da equação de Laplace.
- 3) Para o mesmo nível de erro de L, a função biquadrática reduz em cerca de 60% a quantidade de nós da malha necessária para se resolver a equação de Laplace em relação ao esquema com CDS e integração retângulo. Esta redução pode chegar a 78% no caso da solução da equação de advecção-difusão.
- 4) Em relação ao esquema que converge no menor tempo de CPU e para uma mesma malha, a função biquadrática gasta 82% a mais de tempo de CPU para atingir o mesmo critério de

convergência no caso da equação de Laplace, e 88% a mais no caso da equação de advecção-difusão.

Agradecimentos

O segundo autor é bolsista do CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, do Brasil).

REFERÊNCIAS

Bathe, K. J. Finite Element Procedures. 2. ed. New Jersey: Prentice Hall, 1995.

- Becker, E. B.; Cary, G. F.; & Oden, J. T. Finite Elements: An Introduction. Englewood Cliffs, NJ: Prentice-Hall, 1981.
- Burden, R. L.; Faires, J. D. Análise Numérica. São Paulo: Pioneira Thomson Learning, 2003.
- Courant, R.; Isaacson, E.; & Rees, M. On the solution of nonlinear hyperbolic differential equations by finite differences. Communications on Pure and Applied Mathematics, v. 5, p.243–255, 1952.
- Maliska, C. R. Transferência de Calor e Mecânica dos Fluidos Computacional. 2. ed. Rio de Janeiro RJ: LTC Livros Técnicos e Científicos Editora S.A., 2004.
- Marchi, C. H. Esquemas de alta ordem para a solução de escoamentos de fluidos sem dispersão numérica. RBCM, XV, n. 3, p. 231–249, 1993.
- Marchi, C. H. Verificação de Soluções Numéricas Unidimensionais em Dinâmica dos Fluidos. Tese (Doutorado Programa de Pós-Graduação em Engenharia Mecânica) UFSC, Florianópolis, 2001.
- Patankar, S. V. Numerical Heat Transfer and Fluid Flow. Washington D. C.: Hemisphere Publishing Corporation, 1980.
- Schneider, F. A. Verificação de soluções numéricas em problemas difusivos e advectivos com malhas não-uniformes. Tese (Doutorado - Programa de Pós-Graduação em Métodos Numéricos em Engenharia) — UFPR, Curitiba, 2007.