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Abstract. The verification of the numerical solution of Euler's mathematical model present in the SU2 code and the 

validation of this mathematical model for an external flow problem are objectives of this work. The problem of a cone, 

with fineness ratio three, subject to a supersonic flow with Mach number 3.50 was addressed. Simulations were 

performed using up to eight meshes, with 20x20 to 2560x2560 volumes. The drag coefficients obtained from the 

simulations and ones calculated using extrapolated wall pressure distribution were compared with the numerical 

solution of the Taylor-Maccoll flow, with the numerical solution of another computational code and with experimental 

results. Furthermore, this work presents estimates of the numerical error and extrapolated numerical solutions with the 

Repeated Richardson Extrapolation method and the convergent solution. The GCI estimator presented the most 

conservative estimate, indicating that the estimated numerical error range of the numerical solution of the finest 

simulated mesh is 0.002% of its value. The validation indicated that using Euler's mathematical model to represent the 

phenomenon results in a modeling error estimate in the range of -9.16% to -4.47% of the experimental result. 
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1. INTRODUCTION 
 

Verification and validation are procedures used to measure with which level of fidelity a numerical solution represents 

a physical phenomenon. These are important procedures for the evaluation of numerical flow simulation codes, since, in 

general, due to the complex mathematical models it is only possible to obtain numerical results for fluid dynamics 

problems. 

This work performes the verification of the numerical solution of Euler's mathematical model implemented in the SU2 

code (Economon et al., 2016) for the problem of supersonic air flow over a cone and the validation of this mathematical 

model according to the procedure defined by the ASME V&V 20-2009 standard. The variable of interest is the drag 

coefficient. For this variable of interest, it will be presented estimates of numerical error and solutions extrapolated with 

Repeated Richardson Extrapolation (RRE) (Marchi et al., 2013) and the convergent solution (Marchi and Silva, 2002). It 

will also be presented the use of a method of extrapolating properties to reduce the difference of the drag coefficient with 

the reference values. 

Other authors have already submitted proposals for verification and validation of the SU2 code, but these have focused 

on the mathematical models of Navier-Stokes (Van der Weide and Economon, 2019) and turbulence models (Castro, 

2019; Mishra et al., 2019; Becker and Granzoto, 2018; Keep et al., 2017; Palacios et al., 2014). However, the numerical 

error was not estimated by most of these authors. Generally, these works present studies of convergence of the solution 

with the refinement of the mesh (Castro, 2019; Becker and Granzoto, 2018) and comparisons, usually graphical, with 

experimental results or other consolidated codes (Castro, 2019; Mishra et al., 2019; Becker and Granzoto, 2018; Keep et 

al., 2017; Palacios et al., 2014). Only two research were found that studied the effective order or the apparent order of the 

numerical error (Van der Weide and Economon, 2019; Castro, 2019) and two that presented estimates of numerical error 

(Castro, 2019; Mishra et al., 2019). 
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2. METHODOLOGY 

 

The methodology used in the verification and validation consists in the simulation of the supersonic flow over a cone 

in different meshes and subsequent analysis of errors, making error estimates and comparing the numerical solution of 

the variable of interest with the results by other methods. This section presents the definition of the problem and the 

verification and validation procedure. 

 

2.1 Definition of the problem 

 

The fluid dynamics problem that will be addressed in this work consists of supersonic flow of air over a cone, as 

illustrated in Fig. 1, where L is the length of the cone, rb is its base radius, M is the Mach number of the flow and the 

arrows parallel to the x axis indicate the flow direction. The flow properties and the geometric characteristics of the cone 

are based on the experimental study by Eggers Junior et al. (1957). Table 1 shows the data used for the free-stream Mach 

number M∞, temperature T∞, the ratio of specific heats 𝛾∞ and pressure p
∞

, along with the length L and base radius rb of 

the cone. The fineness ratio is the ratio between the length and the base diameter of the cone. 

 

 
 

Figure 1. Illustration of the problem. 

 

Table 1. Geometric and flow properties. 

 

Parameter Value 

Cone length 0.0762 m (3 in) 

Base radius 0.0127 m (0.5 in) 

Fineness ratio 3 

Mach number 3.50 

Axial velocity 1215.3 m/s 

Temperature 300 K 

Ratio of specific heats 1.40 

Gas constant 287.058 J/kg.K 

Pressure 607950 Pa 

 

The flow was considered as inviscid, compressible, adiabatic and axisymmetric. Thereby it is mathematically modeled 

by Euler's equations in its two-dimensional axisymmetric form. Euler equations can be represented by (Hirsch, 2007) 

 
∂U

∂t
 + ∇∙Fc(U) = 0 (1) 

 

where t is time, U is the vector of conservative variables and Fc is the advective flux, represented by 

 

U = {

ρ

ρv

ρE
} ,  Fc = {

ρv

ρv⊗v + I̅p
ρEv + pv

} (2) 

 

where ρ means the density of the fluid, v is the velocity vector with components axial u and radial v, and E is the total 

energy per unit mass. Moreover, p is the pressure, I̅ is a 2x2 identity matrix and ⊗ represents the tensor product. 

The Euler’s system of equations express the conservation of mass, the conservation of momentum and the 

conservation of total energy. In order to close the system of equations, the polytropic gas equation (Hughes et al., 1986) 

is used and the ideal gas equation of state is employed in order to obtain the temperature. 

The domain of calculation and its boundaries are illustrated schematically in Fig. 2, taking into account the axial 

symmetry of the problem. In the north boundary, the fluid properties are the same as the free-stream flow properties, 
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which were presented in Tab. 1. The west boundary is located on the symmetry line, so impermeability conditions are 

taken, that is, there is no flow of heat or fluid in the normal directions n to the contour. These conditions imply in 

 
∂u

∂n
 = 0,  v = 0,  

∂p

∂n
 = 0,  

∂T

∂n
 = 0 (3) 

 

where T is the temperature. In the south boundary, slip condition and an adiabatic wall (without heat exchange) condition 

are taken, because in this work the flow is treated as inviscid, thus 

 

n∙v = 0,  
∂p

∂n
 = 0,  

∂T

∂n
 = 0 (4) 

 

where the first term indicates that the velocity vector v is perpendicular to the normal vector n, that is, it is parallel to the 

cone surface. Finally, for the east boundary, which represents the outflow, the conditions are extrapolated from the 

upstream properties, because in supersonic flows the properties do not propagate in the opposite direction to the flow. In 

this way, it can be used 

 
∂u

∂x
 = 0,  

∂v

∂x
 = 0,  

∂p

∂x
 = 0,  

∂T

∂x
 = 0 (5) 

 

where x represents the axial direction. 

 

 
 

Figure 2. Illustration of the calculation domain and its boundaries. 

 

The variable of interest used in this work is the drag coefficient (CD), which is a dimensionless number used to quantify 

the drag on an object due to fluid flow. This coefficient is mathematically expressed for inviscid flows as 

 

CD = 
1

0.5 ρ∞u∞
2 AT

∫ (p - p
∞

)cos θn dA
S

 (6) 

 

where ρ
∞

 is the density of the fluid, u∞ and p
∞

 are its velocity and pressure, respectively. These properties are from the 

free-stream flow. AT is the area of the body transverse to the flow direction, p indicates the pressure along its surface S 

and 𝜃n is the angle between the normal of a surface area element and the flow direction. The drag coefficient is calculated 

numerically by approximating the integral of Eq. (6) using the Trapezoidal Rule. 

Furthermore, a quadratic polynomial extrapolation method will be applied in an attempt to improve the pressure 

distribution on the cone surface and, hence, the drag coefficient. For the extrapolations, the Lagrange polynomial reads 

as 

 

p
W

 = 
(0-d2)(0-d3)

(d1-d2)(d1-d3)
p

1
 + 

(0-d1)(0-d3)

(d2-d1)(d2-d3)
p

2
 + 

(0-d1)(0-d2)

(d3-d1)(d3-d2)
p

3
 (7) 

 

where the wall pressure p
W

 is calculated using the pressures p
1
, p

2
 and p

3
. Points 1, 2, and 3 are the neighboring points 

inside the domain, where d is the distance of each point from the vertex of the surface control volume. 

 

2.2 Verification and validation 

 

Verification is a procedure used to assess the accuracy of a numerical simulation, indicating how close the numerical 

solution is to the analytical solution of the model. Validation is a procedure to assess the accuracy of the model compared 



D. A. Iorio, G. Bertoldo and C. H. Marchi 
Simulation of Supersonic Flow over a Cone with the SU2 Code: Verification and Validation 

 

to the result of the real phenomenon. The difference between the numerical solution ϕ and the exact analytical solution Φ 

is the numerical error En (Ferziger et al., 2020) 

 

En(ϕ) = Φ - ϕ (8) 

 

The numerical error is mainly caused by the truncation errors Eh, iteration errors Ei and round-off errors E𝜋 (Roache, 

2009). In this work, iteration errors were minimized by maintaining iterative processes until they reached twice the 

number of iterations required for the residue of the system of mass conservation equations to be less than or equal to 

1∙10-14. Round-off errors were minimized by using double precision in the calculations. 

The procedure for quantifying the numerical error is called Verification and it measures the numerical accuracy of a 

numerical solution, or, in other words, how well the mathematical model is solved numerically. Generally, the exact 

analytical solution of most real fluid dynamics problems is not known. Thus, an estimate Un of the numerical error is 

performed using an estimate of the exact analytical solution ϕ
∞

 

 

Un = ϕ
∞

 - ϕ (9) 

 

As in this work the round-off and iteration errors were minimized and, therefore, negligible, it is possible to obtain an 

estimate of the numerical error with posteriori procedures, which are performed after obtaining the numerical solution of 

the problem. This work will use the GCI estimator proposed by Roache (1994), the convergent estimator and convergent 

solution developed by Marchi (2001), and the RRE-based estimator and the solution extrapolated with RRE described by 

Martins (2013). For verification, the ASME V&V 20-2009 standard also recommends checking whether the apparent 

order (p
U

), Eq. (10), converges to the theoretically expected value of the asymptotic order (p
0
) of the discretization error. 

The standard recommends using at least four levels of mesh refinement for this analysis. The expected asymptotic order 

is two. 

The apparent order is calculated using the numerical solutions ϕ of a fine mesh (ϕ
F
), a coarse mesh (ϕ

C
) and a 

supercoarse mesh (ϕ
SC

), with constant refinement ratio r between them and equal to two, as follows 

 

p
U

 = 
log(|

ϕC - ϕSC
ϕF - ϕC

|)

log(r)
 (10) 

 

Validation is the term used for the procedure of quantifying the modeling error (Emodel) and it measures how well the 

mathematical model represents the physical phenomenon. The ASME V&V 20-2009 standard defines two metrics for the 

estimation of the modeling error: the comparison error (E) and the validation standard uncertainty (Uval), related to the 

modeling error by 

 

E - Uval ≤  Emodel ≤ E + Uval (11) 

 

Therefore, the modeling error is contained in the range of uncertainty given by E ± Uval. The comparison error E is 

calculated by the difference between the numerical solution (ϕ) and the experimental result (X) of the problem, i.e. 

 

E = ϕ - X (12) 

 

The metric Uval is calculated by 

 

Uval = √Unum
2  + Uinput

2  + Uexp
2  (13) 

 

where Unum is the standard numerical uncertainty, Uinput is the standard uncertainty of the simulation input data and Uexp 

is the standard uncertainty of the experimental error. Unum is calculated, according to the ASME V&V 20-2009 standard, 

using the numerical error uncertainty UGCI of the GCI estimator (Roache, 1994) as follows 

 

Unum = 
UGCI

k
, 1.1 ≤ k ≤ 1.15 (14) 

 

where k is called an expansion factor. In Eq. (13), it is considered that the uncertainties are independent of each other, but 

the ASME V&V 20-2009 standard also presents the procedure in case they are dependent. In addition, the standard 

presents the procedure for calculating the uncertainty Uinput. 

In order to perform the numerical error estimates, it is necessary to solve the same problem in meshes with different 

levels of refinement. For this, eight non-orthogonal meshes were generated with constant refinement equal to two and 
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simultaneous in each direction of the mesh. Figure 3 shows the initial mesh, which contains 20 control volumes in the 

main flow direction and 20 in the perpendicular direction. The meshes were generated using the GMSH code version 

4.5.6 (Geuzaine and Remacle, 2009) and each of them was simulated in the SU2 code version 7.0.6 with multiprocessing 

support for the conditions of inviscid and axisymmetric flow. A computer with a processor Intel Core i7-6700 of 4.0 GHz, 

32 GB of RAM and Debian operational system was employed for the simulations. 

 

 
 

Figure 3. Initial mesh with 20x20 control volumes. 

 

The drag coefficients obtained numerically were compared with the drag coefficient calculated from the numerical 

solution, with quadruple precision, of the Taylor-Maccoll irrotational flow (Taylor and Maccoll, 1933), which for the 

flow properties presented in Tab. 1 has the value of 

 

CD = 0.0754798301 (15) 

 

Besides the analysis of the apparent order, the ASME V&V 20-2009 standard recommends the comparison of the 

numerical solutions with those obtained by other authors. Therefore, the values of the drag coefficients obtained were 

compared with that of Bertoldo and Marchi (2017), who solved the same problem using the mathematical model of Euler 

in another computational code and the obtained value was 

 

CD = 0.075481 ± 0.000006 (16) 

 

The estimated numerical error presented in Eq. (16) was calculated using the convergent estimator (Marchi and Silva, 

2002). The numerical solution obtained by these authors went through verification procedures and the mathematical 

model by validation (Bertoldo and Marchi, 2017). 

In order to validate the Euler's mathematical model, comparisons were made with the experimental result by Eggers 

Junior et al. (1957). As the authors only presented this experimental result graphically, the code WebPlotDigitizer 4.2 

(Marin et al., 2017) was used to obtain the value of the drag coefficient from the graph. Hence, the value of the drag 

coefficient with uncertainty estimate considering the uncertainty due to the reading of the values in the graph (Uread) and 

the experimental uncertainty (Uexp) is 

 

CD = 0.0810 ± 0.0019 (17) 

 

3. RESULTS AND DISCUSSION 

 

This section presents the results and discussions of the results obtained. In the first subsection, the results of the 

verification and validation are presented. In the second subsection, the drag coefficients’ results using extrapolated wall 

pressures are presented and comparisons with reference values are performed. 

 

3.1 Verification and validation 

 

The general results of the simulations performed with the SU2 code are presented in Tab. 2. This table contains the 

nomenclature of the meshes, as well as the number of volumes in each direction of the mesh, where Nx corresponds to the 

number of volumes along the main flow direction and Ny is the number of volumes in the direction perpendicular to the 

main flow direction. “Iterations” indicates the number of iterations required to complete the simulation, “Time” means 
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the simulation elapsed time, “RAM” is peak RAM memory usage of each simulation and CD is the calculated drag 

coefficient. The apparent order p
U

 presented in Tab. 2 was calculated using Eq. (10), which uses the result of three meshes 

for its calculation. Figure 4 shows the Mach number field for the mesh m8. The p
U

 values are close to two for the coarser 

meshes, which is the expected value of the asymptotic order and a decreasing behavior of the value of the apparent order 

is observed with the refinement of the mesh. The differences between the asymptotic order and the tendency of the 

apparent order may be, among other reasons, due to the high gradient of properties at the cone tip and also due to the 

shock wave formed, as can be seen in Fig. 4. The shock wave causes the order of accuracy downstream of the shock wave 

to reduce to the first order of accuracy in finer meshes (Roy, 2005; Carpenter and Casper, 1999). 

 

Table 2. Simulation results. 

 

Case Nx Ny Iterations Time RAM (MB) CD p
U

 

m1 20 20 368 0.44 s 25.33 0.0732024777 - 

m2 40 40 446 1.04 s 31.33 0.0748019950 - 

m3 80 80 490 4.94 s 54.89 0.0752888900 1.72 

m4 160 160 724 43.59 s 142.54 0.0754241649 1.85 

m5 320 320 1094 4.91 min 504.70 0.0754628704 1.81 

m6 640 640 1692 38.46 min 1946.25 0.0754742404 1.77 

m7 1280 1280 2700 3.95 h 7668.51 0.0754777771 1.68 

m8 2560 2560 4448 1.11 day 30560.40 0.0754789895 1.54 

 

 
 

Figure 4. Mach number field of the finest mesh simulated. 

 

The solution of the finest simulated mesh, extrapolated with RRE solution and convergent solution and their 

representations using the estimated numerical error are presented in Tab. 3. It can be noticed that the extrapolated solution 

with RRE is included in the interval given by the estimated error of the convergent solution, which is included in the 

estimated uncertainty obtained with the GCI estimator. 

 

Table 3. Extrapolated and finest mesh solutions and their estimated numerical errors. 

 

Method CD Estimated error Representation 

GCI 0.0754789895 1.515522E-06 0.0754790 ± 0.0000015 

Convergent 0.0754799119 2.899888E-07 0.07547991 ± 0.00000029 

RRE 0.0754798250 -1.717229E-08 0.075479825 – 0.000000017 

 

Table 4 presents the absolute values of the differences between the numerical solution of the Taylor-Maccoll flow and 

the solutions obtained from the simulations, which used Euler's mathematical model. The numerical solutions present 

increasing proximity to the numerical solution of the Taylor-Maccoll flow when refining the mesh. However, equality 

between the values obtained is not expected due to differences between the Euler mathematical model and the Taylor-

Maccoll mathematical model. Figure 5 shows the pressure coefficients Cp of the cone surface of the Taylor-Maccoll 

solution, the numerical solution of the finest mesh and their absolute difference. Pressure coefficients are used in 

calculating the drag coefficient. The most significant difference is found at the tip of the cone, which results from different 

pressure values obtained by the two mathematical models. The simulation using Euler's mathematical model resulted in 
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a higher pressure coefficient followed by a drop and a subsequent stabilization along the cone surface. Perhaps meshes 

more refined at the cone tip would result in values even closer to the Taylor-Maccoll model. 

 

Table 4. Comparisons of the values obtained from the simulations with the Taylor-Maccoll drag coefficient. 

 

Case CD Difference Relative difference 

m1 0.0732024777 2.28E-03 3.02% 

m2 0.0748019950 6.78E-04 0.898% 

m3 0.0752888900 1.91E-04 0.253% 

m4 0.0754241649 5.57E-05 0.0737% 

m5 0.0754628704 1.70E-05 0.0225% 

m6 0.0754742404 5.59E-06 0.00741% 

m7 0.0754777771 2.05E-06 0.00272% 

m8 0.0754789895 8.41E-07 0.00111% 

 

 
 

Figure 5. Pressure coefficients on the cone surface of the finest mesh simulated and of the Taylor-Maccoll solution. 

 

Table 5 shows the absolute values of the differences between the solutions obtained from the simulations and the 

numerical drag coefficient obtained by Bertoldo and Marchi (2017), who also used Euler's mathematical model. It is 

observed that the differences between the solutions reduce with the refinement of the mesh and that the difference between 

the solution of the finest mesh and the solution of Bertoldo and Marchi (2017) is close to the estimated numerical error 

of the GCI estimator. Besides that, the numerical solution obtained in the finest mesh, m8, is within the range of possible 

values given by the Bertoldo and Marchi’s (2017) solution. 

 

Table 5. Comparisons of the values obtained from the simulations with the numerical drag coefficient of Bertoldo and 

Marchi. 

 

Case CD Difference Relative difference 

m1 0.0732024777 2.28E-03 3.02% 

m2 0.0748019950 6.79E-04 0.900% 

m3 0.0752888900 1.92E-04 0.255% 

m4 0.0754241649 5.68E-05 0.0753% 

m5 0.0754628704 1.81E-05 0.0240% 

m6 0.0754742404 6.76E-06 0.00896% 

m7 0.0754777771 3.22E-06 0.00427% 

m8 0.0754789895 2.01E-06 0.00266% 

 

Comparisons with the experimental drag coefficient (Eggers Junior et al., 1957) are shown in Tab. 6. It can be noticed 

that the comparison error, calculated with Eq. (12), reduces as the mesh is refined, but its relative difference is still above 

6.8%. As the experimental result contains an experimental uncertainty of ± 0.0019, the experimental value ranges from 

0.0791 to 0.0829. Therefore, when comparing the simulations’ results with the lowest value of the experimental drag 
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coefficient, 0.0791, the differences are reduced. For the meshes m7 and m8, relative differences of 4.579% and 4.578% 

are obtained, respectively. It should be remembered that in the experimental result there is the presence of viscous effects, 

which add a viscous portion to the drag coefficient, and that these effects are neglected by Euler's mathematical model. 

 

Table 6. Comparisons of the values obtained from the simulations with the experimental drag coefficient. 

 

Case CD Comparison error Relative difference 

m1 0.0732024777 -7.80E-03 9.63% 

m2 0.0748019950 -6.20E-03 7.65% 

m3 0.0752888900 -5.71E-03 7.05% 

m4 0.0754241649 -5.58E-03 6.88% 

m5 0.0754628704 -5.54E-03 6.84% 

m6 0.0754742404 -5.53E-03 6.82% 

m7 0.0754777771 -5.522E-03 6.818% 

m8 0.0754789895 -5.521E-03 6.816% 

 

The standard uncertainty of the simulation input data Uinput was calculated according to the ASME V&V 20-2009 

standard, in which uncertainties were considered in the free-stream Mach number, free-stream temperature and fineness 

ratio (uncertainty due to the propagation of uncertainties of the length and diameter measures). These considerations 

resulted in Uinput equal to 0.00039. 

The validation metric Uval was calculated considering the standard numerical uncertainty given by the estimated 

numerical error of the GCI estimator of the finest mesh simulated, m8, with an expansion factor equal to 1.1, the 

experimental uncertainty presented in Eq. (17) and the standard uncertainty of the simulation input data equals to 0.00039. 

Its value corresponds to 

 

Uval = 0.0019 (18) 

 

It can be noticed that the validation standard uncertainty (Uval) was dominated by experimental uncertainty. Using the 

validation metrics Uval and E calculated for the finest mesh simulated, m8, it is possible to use the Eq. (11) to conclude 

that the modeling error is contained in the range of -7.42E-03 ≤ Emodel ≤ -3.62E-03. Comparing the magnitude of the 

validation metrics, Uval and E, it is noted that the comparison error (E) is approximately three times greater than the 

validation standard uncertainty (Uval). This indicates that the simplifications in Euler's mathematical model are the main 

sources of the modeling error. 

 

3.2 Drag coefficients using extrapolated wall pressures 

 

Table 7 presents the values of the drag coefficients calculated using extrapolated wall pressure distribution by means 

of quadratic polynomial extrapolation, Eq. (7), and the apparent orders. The apparent order has increasing value as the 

mesh is refined and it tends to a value greater than two. It is noticed the increase of the apparent order in relation to the 

values presented in Tab. 2, except for the value obtained in the mesh m3. Regarding the drag coefficient, it is noted that 

it presents a decreasing behavior with the refinement of the mesh, which contrasts with the observed behavior when 

extrapolation is not applied. 

 

Table 7. Drag coefficients using polynomial extrapolated wall pressures and apparent order. 

 

Case CD p
U

 

m1 0.0783430861 - 

m2 0.0772607284 - 

m3 0.0758726206 -0.359 

m4 0.0755604912 2.15 

m5 0.0754949108 2.25 

m6 0.0754819255 2.34 

m7 0.0754796527 2.51 

m8 0.0754794524 3.50 

 

The solution obtained from the finest simulated mesh, extrapolated with RRE solution and convergent solution and 

their representations using the estimated numerical error are presented in Tab. 8. The estimated numerical errors are lower 

than the ones obtained with the same estimators shown in Tab. 3, for the RRE, it is two orders of magnitude lower than 

the result without extrapolation of the pressure. 



18th Brazilian Congress of Thermal Sciences and Engineering 
November 16-20, 2020 (Online) 

Table 8. Extrapolated and finest mesh solutions and their estimated numerical errors for the case where extrapolated 

wall pressures are used. 

 

Method CD Estimated error Representation 

GCI 0.0754794524 2.502900E-07 0.07547945 ± 0.00000025 

Convergent 0.0754793427 9.044405E-08 0.075479343 ± 0.000000090 

RRE 0.07547982564 -2.017986E-10 0.07547982564 – 0.00000000020 

 

Table 9 shows comparisons to the Taylor-Maccoll drag coefficient and to the drag coefficient of Bertoldo and Marchi 

(2017). Regarding the comparisons with the Taylor-Maccoll solution, one can notice that the differences in the last four 

meshes are lower than the ones obtained without extrapolation of the wall pressure distribution, presented in Tab. 4. The 

same behavior occurred in the comparisons with the result of Bertoldo and Marchi (2017). No significant difference was 

observed in the comparisons in relation to the experimental value. 

 

Table 9. Comparisons of the drag coefficients using polynomial extrapolated wall pressure distribution with the drag 

coefficients of Taylor-Maccoll and Bertoldo and Marchi. 

 

Case CD 
Difference Taylor-

Maccoll 

Relative difference 

Taylor-Maccoll 

Difference Bertoldo 

and Marchi 

Relative difference 

Bertoldo and Marchi 

m1 0.0783430861 2.86E-03 3.79% 2.86E-03 3.79% 

m2 0.0772607284 1.78E-03 2.36% 1.78E-03 2.36% 

m3 0.0758726206 3.93E-04 0.520% 3.92E-04 0.519% 

m4 0.0755604912 8.07E-05 0.107% 7.95E-05 0.105% 

m5 0.0754949108 1.51E-05 0.0200% 1.39E-05 0.0184% 

m6 0.0754819255 2.10E-06 0.00278% 9.26E-07 0.00123% 

m7 0.0754796527 1.77E-07 0.000235% 1.35E-06 0.00178% 

m8 0.0754794524 3.78E-07 0.000500% 1.55E-06 0.00205% 

 

4. CONCLUSION 

 

The study concluded that the comparison of numerical solutions with reference values is not enough to make 

statements about the quality of a mathematical model or a numerical model, being necessary to know quantitatively the 

estimated numerical error of a numerical solution. In this work, the drag coefficients calculated numerically were 

compared with the drag coefficient calculated according to the Taylor-Maccoll mathematical model, with the drag 

coefficient calculated with the same mathematical model by another computational code already verified and with an 

experimental result. The results indicate the proximity of the numerical solutions to the reference values with the 

refinement of the mesh. For the most refined simulated mesh, relative differences of 0.00111% were obtained in relation 

to the drag coefficient of the Taylor-Maccoll mathematical model and 0.00266% to the result obtained with the same 

mathematical model by another computational code. With the GCI estimator, it was obtained that the numerical error of 

the drag coefficient of the finest simulated mesh does not exceed 0.002% of its value. The smallest estimate was given 

by the RRE-based estimator, which corresponds to a range of 0.00002% of the RRE extrapolated solution. Finally, it was 

calculated that the modeling error due to the use of Euler's mathematical model to represent the physical phenomenon is 

contained in the range of -9.16% to -4.47% of the experimental result. About the drag coefficients calculated using 

extrapolated wall pressures by means of quadratic polynomial extrapolation, it was observed an increase in the apparent 

order and a reduction in the estimated numerical errors given by the error estimators, reaching a decrease of two orders 

of magnitude in the RRE-based estimator. Furthermore, the differences in relation to reference values became smaller 

when using extrapolated wall pressure distribution. 
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