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Abstract. This paper presents a deduction of the truncation error for the Simpson’s 1/3 Rule as a series that can be used 

to code verification. Instead of using the classical approach of integration of interpolating polynomials, it uses the 

integration of the function expanded in Taylor Series. As result, the series is truncated after some terms. In this paper, it 

is deduced up to the third term. As well known, the Simpson’s 1/3 Rule has asymptotic order four, and the deduction 

presented here allows to conclude that the true orders constitute the arithmetic progression: 4, 6, 8, … By using Repeated 

Richardson Extrapolation, the apparent orders of the truncation error are confirmed a posteriori by testing polynomials 

and exponential functions. In addition, the deduced equation is able to calculate the truncation error exactly for all tested 

functions that has a finite number of non-null derivatives. 
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1. INTRODUCTION 
 

As the memory and processing speed of computers increase over time, the computational sciences develop as well as 

the complexity of the solved mathematical models (Oberkampf and Roy, 2010). As computer codes became complex and 

large, it becomes difficult to ensure that the code is error free (Knupp and Salari, 2002). Thus, a very important question 

arises: what is the confidence that a numerical solution correctly represents the solution of the mathematical model chosen 

to describe a specific phenomenon, equipment or physical process? This question is asked by a person responsible for 

writing the mathematical model in a computer code and solving it. 

Knupp and Salari (2002) details a procedure that convincingly demonstrate through grid refinement that, for the 

problem of interest, the numerical solution produced by the code converges at the correct rate to the exact solution. The 

authors call this procedure Order Verification via the Manufactured Solution Procedure (OVMSP). 

One step in the OVMSP is the determination of the theoretical order-of-accuracy. Ideally, the predicted and observed 

order-of-accuracy must agree. If not, one suspects the occurrence of a code mistake or error of implementation. 

Some very important classes of problems deal with numerical integration, for example, neutron transport and radiative 

heat transfer. Furthermore, as the numerical integration is often used to compute post-processing variables (e.g. overall 

heat transfer rate, drag force over a solid surface), then the order-of-accuracy of those variables also need to be accounted 

for the verification of that part of the code (Knupp and Salari, 2002). 

The present work uses Taylor Series Expansion to provide the asymptotic and following orders that appears when 

deducing the Simpson’s 1/3 Rule with the Finite Difference Method. This procedure is similar to that presented in 

(Leonard, 1994, 1995) for the well-known Upwind Differencing Scheme (UDS), Central Differencing Scheme (CDS) 

and Quadratic Upwind Differencing Scheme (QUICK). The motivation behind this study is the possible use of the post-

processing procedure called Repeated Richardson Extrapolation (RRE) in the OVMSP, as pointed out by Roache (2009). 
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The truncation error reported in this work is especially useful when approximations of different orders are mixed (Roache, 

2009). 

In the Finite Difference Method, the domain is subdivided in 𝑁 elements, separated by 𝑁 + 1 grid points where the 

dependent variable 𝐹 is available. For a uniform grid (i.e. all discrete elements have same length), as shown in Fig. 1, 

some internal points are represented: 𝑗 − 1, 𝑗 and 𝑗 + 1, with respective positions 𝑥𝑗−1, 𝑥𝑗  and 𝑥𝑗+1. 

 

 
 

Figure 1. Unidimensional domain discretized by a finite difference grid of uniform spacing 

 

The smallest portion of a discrete domain where it is possible to applicate the Simpson’s 1/3 Rule consists of two 

discrete elements [𝑥𝑗−1, 𝑥𝑗] and [𝑥𝑗 , 𝑥𝑗+1], both with length ℎ as shown in Fig. 1. The integral 𝐼 of a function 𝐹(𝑥) over 

these two elements is called single application of the Simpson’s 1/3 Rule (Burden and Faires, 2011, Chapra and Canale, 

2015): 

 

𝐼[𝑥𝑗−1,𝑥𝑗+1]
𝑆𝑖𝑚𝑝𝑠𝑜𝑛

=
(𝐹𝑗−1+4𝐹𝑗+𝐹𝑗+1)ℎ

3
 ,          (1) 

 

with truncation error 𝜀: 

 

𝜀[𝑥𝑗−1,𝑥𝑗+1]
𝑆𝑖𝑚𝑝𝑠𝑜𝑛

= −
1

90
𝐹(𝜉)
𝑖𝑣 ℎ5,        𝑥𝑗−1 < 𝜉 < 𝑥𝑗+1 ,        (2) 

 

where 𝐹𝑗−1, 𝐹𝑗 and 𝐹𝑗+1 are discrete values of the function 𝐹(𝑥) to be integrated. They are assumed to be known at the 

nodal points 𝑥𝑗−1, 𝑥𝑗  and 𝑥𝑗+1, respectively. The sub-indexes 𝑗 − 1 and 𝑗 + 1 means the adjacent points related to some 

generic point 𝑗 on the uniformly spaced grid, as commonly named in the Finite Difference Method (FDM). In Eq. (2) 𝐹(𝜉)
𝑖𝑣  

represents the fourth derivative of the function 𝐹 at some point 𝜉 somewhere in the open interval ]𝑥𝑗−1, 𝑥𝑗+1[. If the fourth-

order derivative 𝐹(𝜉)
𝑖𝑣  is a function that varies with 𝑥, then the truncation error can only be estimated. 

 

2. DEDUCTION OF THE TRUNCATION ERROR FOR A SINGLE APPLICATION OF THE SIMPSON’S 

1/3 RULE 

 

In the present work, the truncation equation is based on expansions in Taylor Series, instead of Interpolating 

Polynomials. Because of this, the truncation term will not be a single term calculated in an unknown position 𝜉, but a 

series where all terms are evaluated at the nodal point 𝑥𝑗. By truncating the number of terms of the series, it is possible to 

obtain the numerical error within a rounding error limit that can be known a priori, that is, calculated before conducting 

any numerical experiments. 

The single application of the Simpson’s 1/3 Rule requires the integration be made in two discrete intervals: [𝑥𝑗−1, 𝑥𝑗] 

and [𝑥𝑗 , 𝑥𝑗+1]. Also the expansion points need to be at the midpoint of each interval, conversely the integration formula 

is not attained. It began calculating the integral over both intervals and summing then to attain the integral of the overall 

interval: 

 

𝐼[𝑗−1,𝑗+1]
𝑒𝑥𝑎𝑐𝑡 = 𝐼[𝑗−1,𝑗]

𝑒𝑥𝑎𝑐𝑡 + 𝐼[𝑗,𝑗+1]
𝑒𝑥𝑎𝑐𝑡  .           (3) 

 

2.1 Integration of 𝑭(𝒙) Expanded in Taylor Series Around 𝒙𝒋−𝟏/𝟐 and 𝒙𝒋+𝟏/𝟐 
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The dependent variable 𝐹(𝑥) is expanded in Taylor Series around the intermediary point 𝑥𝑗−1/2 as shown in Fig. 1 

and the exact integral in the [𝑗 − 1, 𝑗] interval is given by: 

 

𝐼[𝑗−1,𝑗]
𝑒𝑥𝑎𝑐𝑡 = 𝐹𝑗−1/2ℎ +

2𝐹𝑗−1/2
𝑖𝑖

48
ℎ3 +

2𝐹𝑗−1/2
𝑖𝑣

3840
ℎ5 +

2𝐹𝑗−1/2
𝑣𝑖

645120
ℎ7 +

2𝐹𝑗−1/2
𝑣𝑖𝑖𝑖

185794560
ℎ9 +⋯     (4) 

 

Calculating the exact integral in the [𝑗, 𝑗 + 1] interval by an expansion around the midpoint 𝑥𝑗+1/2 one can find: 

 

𝐼[𝑗,𝑗+1]
𝑒𝑥𝑎𝑐𝑡 = 𝐹𝑗+1/2ℎ +

2𝐹𝑗+1/2
𝑖𝑖

48
ℎ3 +

2𝐹𝑗+1/2
𝑖𝑣

3840
ℎ5 +

2𝐹𝑗+1/2
𝑣𝑖

645120
ℎ7 +

2𝐹𝑗+1/2
𝑣𝑖𝑖𝑖

185794560
ℎ9 +⋯     (5) 

 

As stated by Eq. (3), the exact integral in the interval [𝑥𝑗−1, 𝑥𝑗+1] is the sum of Eq. (4) and Eq. (5), that is: 

 

𝐼[𝑗−1,𝑗+1]
𝑒𝑥𝑎𝑐𝑡 = (𝐹𝑗−1/2 + 𝐹𝑗+1/2)ℎ +

2

48
(𝐹𝑗−1/2

𝑖𝑖 + 𝐹𝑗+1/2
𝑖𝑖 )ℎ3 +

2

3840
(𝐹𝑗−1/2

𝑖𝑣 + 𝐹𝑗+1/2
𝑖𝑣 )ℎ5 +

2

645120
(𝐹𝑗−1/2

𝑣𝑖 +

𝐹𝑗+1/2
𝑣𝑖 )ℎ7 +

2

185794560
(𝐹𝑗−1/2

𝑣𝑖𝑖𝑖 + 𝐹𝑗+1/2
𝑣𝑖𝑖𝑖 )ℎ9 +⋯        (6) 

 

For now, Eq. (6) has only terms evaluated at the midpoints 𝑥𝑗−1/2 and 𝑥𝑗+1/2. The next step is calculating 𝐹𝑗−1/2, 

𝐹𝑗+1/2 based on the function evaluated at the nodal points 𝑥𝑗−1, 𝑥𝑗  and 𝑥𝑗+1. 

 

2.2 Calculation of 𝑰 Based on the Function Evaluated at Nodal Points 

 

The function 𝐹𝑗−1/2 can be obtained by expanding the adjacent nodal points 𝐹𝑗−1 and 𝐹𝑗 around the point 𝑥𝑗−1/2. In 

the case of 𝐹𝑗−1, then 𝑥𝑗−1 − 𝑥𝑗−1/2 = −ℎ/2, so one have: 

 

𝐹𝑗−1 = 𝐹𝑗−1/2 −
𝐹𝑗−1/2
𝑖

2
ℎ +

𝐹𝑗−1/2
𝑖𝑖

8
ℎ2 −

𝐹𝑗−1/2
𝑖𝑖𝑖

48
ℎ3 +

𝐹𝑗−1/2
𝑖𝑣

384
ℎ4 −

𝐹𝑗−1/2
𝑣

3840
ℎ5 +

𝐹𝑗−1/2
𝑣𝑖

46080
ℎ6 −

𝐹𝑗−1/2
𝑣𝑖𝑖

645120
ℎ7 +

𝐹𝑗−1/2
𝑣𝑖𝑖𝑖

10321920
ℎ8 −

𝐹𝑗−1/2
𝑖𝑥

185794560
ℎ9 +⋯            (7) 

 

In the case of 𝐹𝑗, considering 𝑥𝑗 − 𝑥𝑗−1/2 = ℎ/2, one can find: 

 

𝐹𝑗 = 𝐹𝑗−1/2 +
𝐹𝑗−1/2
𝑖

2
ℎ +

𝐹𝑗−1/2
𝑖𝑖

8
ℎ2 +

𝐹𝑗−1/2
𝑖𝑖𝑖

48
ℎ3 +

𝐹𝑗−1/2
𝑖𝑣

384
ℎ4 +

𝐹𝑗−1/2
𝑣

3840
ℎ5 +

𝐹𝑗−1/2
𝑣𝑖

46080
ℎ6 +

𝐹𝑗−1/2
𝑣𝑖𝑖

645120
ℎ7 +

𝐹𝑗−1/2
𝑣𝑖𝑖𝑖

10321920
ℎ8 +

𝐹𝑗−1/2
𝑖𝑥

185794560
ℎ9 +⋯            (8) 

 

Summing Eq. (7) and Eq. (8) and isolating 𝐹𝑗−1/2: 

 

𝐹𝑗−1/2 =
𝐹𝑗−1+𝐹𝑗

2
−

𝐹𝑗−1/2
𝑖𝑖

8
ℎ2 −

𝐹𝑗−1/2
𝑖𝑣

384
ℎ4 −

𝐹𝑗−1/2
𝑣𝑖

46080
ℎ6 −

𝐹𝑗−1/2
𝑣𝑖𝑖𝑖

10321920
ℎ8 −⋯     (9) 

 

To calculate 𝐹𝑗+1/2 a similar procedure is applied, but this time the Taylor Series expansion is around the midpoint 

𝐹𝑗+1/2 and the functions to be expanded are 𝐹𝑗 and 𝐹𝑗+1. This gives: 

 

𝐹𝑗+1/2 =
𝐹𝑗+𝐹𝑗+1

2
−

𝐹𝑗+1/2
𝑖𝑖

8
ℎ2 −

𝐹𝑗+1/2
𝑖𝑣

384
ℎ4 −

𝐹𝑗+1/2
𝑣𝑖

46080
ℎ6 −

𝐹𝑗+1/2
𝑣𝑖𝑖𝑖

10321920
ℎ8 −⋯     (10) 

 

Substituting Eq. (9) and Eq. (10) in Eq. (6) removes the midpoint information in the term dependent of ℎ: 

 

𝐼[𝑗−1,𝑗+1]
𝑒𝑥𝑎𝑐𝑡 =

(𝐹𝑗−1+2𝐹𝑗+𝐹𝑗+1)

2
ℎ −

4

48
(𝐹𝑗−1/2

𝑖𝑖 + 𝐹𝑗+1/2
𝑖𝑖 )ℎ3 −

8

3840
(𝐹𝑗−1/2

𝑖𝑣 + 𝐹𝑗+1/2
𝑖𝑣 )ℎ5 −

12

645120
(𝐹𝑗−1/2

𝑣𝑖 + 𝐹𝑗+1/2
𝑣𝑖 )ℎ7 +

16

185794560
(𝐹𝑗−1/2

𝑣𝑖𝑖𝑖 + 𝐹𝑗+1/2
𝑣𝑖𝑖𝑖 )ℎ9 −⋯          (11) 

 

The next step is substituting the second order derivatives that appear in Eq. (11) by expressions of the function 

evaluated at the nodal points 𝑥𝑗−1, 𝑥𝑗 and 𝑥𝑗+1. 

 

2.3 Calculation of the Second Derivatives 𝑭𝒋−𝟏/𝟐
𝒊𝒊  and 𝑭𝒋+𝟏/𝟐

𝒊𝒊  Based on Values at the Nodal Points 
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In order to obtain 𝐹𝑗−1/2
𝑖𝑖  based on function values at the nodal points, it is necessary to obtain 𝐹𝑗+1 expanded around 

the midpoint 𝑥𝑗−1/2. Looking at Fig. 1, one can see that 𝑥𝑗+1 − 𝑥𝑗−1/2 = 3ℎ/2. This produces: 

 

𝐹𝑗+1 = 𝐹𝑗−1/2 +
3𝐹𝑗−1/2

𝑖

2
ℎ +

9𝐹𝑗−1/2
𝑖𝑖

8
ℎ2 +

27𝐹𝑗−1/2
𝑖𝑖𝑖

48
ℎ3 +

81𝐹𝑗−1/2
𝑖𝑣

384
ℎ4 +

243𝐹𝑗−1/2
𝑣

3840
ℎ5 +

729𝐹𝑗−1/2
𝑣𝑖

46080
ℎ6 +

2187𝐹𝑗−1/2
𝑣𝑖𝑖

645120
ℎ7 +

6561𝐹𝑗−1/2
𝑣𝑖𝑖𝑖

10321920
ℎ8 +⋯            (12) 

 

Grouping Eq. (7), Eq. (8) and Eq. (12) gives the following linear system: 

 

{
 
 

 
 𝐹𝑗−1 = 𝐹𝑗−1/2 −

𝐹𝑗−1/2
𝑖

2
ℎ +

𝐹𝑗−1/2
𝑖𝑖

8
ℎ2 −

𝐹𝑗−1/2
𝑖𝑖𝑖

48
ℎ3 +

𝐹𝑗−1/2
𝑖𝑣

384
ℎ4 −

𝐹𝑗−1/2
𝑣

3840
ℎ5 +

𝐹𝑗−1/2
𝑣𝑖

46080
ℎ6 −⋯                       

𝐹𝑗 = 𝐹𝑗−1/2 +
𝐹𝑗−1/2
𝑖

2
ℎ +

𝐹𝑗−1/2
𝑖𝑖

8
ℎ2 +

𝐹𝑗−1/2
𝑖𝑖𝑖

48
ℎ3 +

𝐹𝑗−1/2
𝑖𝑣

384
ℎ4 +

𝐹𝑗−1/2
𝑣

3840
ℎ5 +

𝐹𝑗−1/2
𝑣𝑖

46080
ℎ6 +⋯                   

𝐹𝑗+1 = 𝐹𝑗−1/2 +
3𝐹𝑗−1/2

𝑖

2
ℎ +

9𝐹𝑗−1/2
𝑖𝑖

8
ℎ2 +

27𝐹𝑗−1/2
𝑖𝑖𝑖

48
ℎ3 +

81𝐹𝑗−1/2
𝑖𝑣

384
ℎ4 +

243𝐹𝑗−1/2
𝑣

3840
ℎ5 +

729𝐹𝑗−1/2
𝑣𝑖

46080
ℎ6 +⋯

  (13) 

 

Despite only terms of order lower or equal than six are shown in the Eq. (13), all terms until order eight are expanded 

and considered when solving the linear system for 𝐹𝑗−1/2
𝑖𝑖 . The result is an equation where terms up to order six are deduced 

(note the division by ℎ2 to isolate 𝐹𝑗−1/2
𝑖𝑖 ). When 𝐹𝑗−1/2

𝑖𝑖  is isolated and substituted in Eq. (11) it produces an equation that 

shows terms up to order nine, therefore compatible with it. Obviously, the number of considered terms are choice of 

someone that intents to make a priori analysis. In this deduction, the authors choose to represent the truncation error with 

three terms. 

The first and second terms in the right side of Eq. (13) are those need to be canceled in order to produce a series of 

order ℴ(ℎ). One can find real numbers 𝑋, 𝑌 and 𝑍 that multiplies, respectively, the first, second and third equation in the 

system (13): 

 

[

1 1 1
−1

2⁄
1
2⁄

3
2⁄

1
8⁄

1
8⁄

9
8⁄

] [
𝑋
𝑌
𝑍
] = [

0
0
𝐶
] ,      𝐶 ≠ 0 .        (14) 

 

Solving Eq. (14) for 𝐶 = 1, gives: 𝑋 = 1, 𝑌 = −2 and 𝑍 = 1. Multiplying each equation in system (13) for its 

respective constant and summing them, the second derivative 𝐹𝑗−1/2
𝑖𝑖  is found: 

 

𝐹𝑗−1/2
𝑖𝑖 =

𝐹𝑗−1−2𝐹𝑗+𝐹𝑗+1

ℎ2
−

24𝐹𝑗−1/2
𝑖𝑖𝑖

48
ℎ −

80𝐹𝑗−1/2
𝑖𝑣

384
ℎ2 −

240𝐹𝑗−1/2
𝑣

3840
ℎ3 −

728𝐹𝑗−1/2
𝑣𝑖

46080
ℎ4 −

2184𝐹𝑗−1/2
𝑣𝑖𝑖

645120
ℎ5 −

6560𝐹𝑗−1/2
𝑣𝑖𝑖𝑖

10321920
ℎ6 −⋯

             (15) 

 

In order to obtain 𝐹𝑗+1/2
𝑖𝑖 , a similar development is required. It gives: 

 

𝐹𝑗+1/2
𝑖𝑖 =

𝐹𝑗−1−2𝐹𝑗+𝐹𝑗+1

ℎ2
+

24𝐹𝑗+1/2
𝑖𝑖𝑖

48
ℎ −

80𝐹𝑗+1/2
𝑖𝑣

384
ℎ2 +

240𝐹𝑗+1/2
𝑣

3840
ℎ3 −

728𝐹𝑗+1/2
𝑣𝑖

46080
ℎ4 +

2184𝐹𝑗+1/2
𝑣𝑖𝑖

645120
ℎ5 −

6560𝐹𝑗+1/2
𝑣𝑖𝑖𝑖

10321920
ℎ6 +⋯

             (16) 

 

Substituting Eq. (15) and Eq. (16) in the Eq. (11) gives: 

 

𝐼[𝑗−1,𝑗+1]
𝑒𝑥𝑎𝑐𝑡 =

(𝐹𝑗−1+4𝐹𝑗+𝐹𝑗+1)

3
ℎ +

(𝐹𝑗−1/2
𝑖𝑖𝑖 −𝐹𝑗+1/2

𝑖𝑖𝑖 )

24
ℎ4 +

11(𝐹𝑗−1/2
𝑖𝑣 +𝐹𝑗+1/2

𝑖𝑣 )

720
ℎ5 +

(𝐹𝑗−1/2
𝑣 −𝐹𝑗+1/2

𝑣 )

192
ℎ6 +

157(𝐹𝑗−1/2
𝑣𝑖 +𝐹𝑗+1/2

𝑣𝑖 )

120960
ℎ7 +

13(𝐹𝑗−1/2
𝑣𝑖𝑖 −𝐹𝑗+1/2

𝑣𝑖𝑖 )

46080
ℎ8 +

307(𝐹𝑗−1/2
𝑣𝑖𝑖𝑖 +𝐹𝑗+1/2

𝑣𝑖𝑖𝑖 )

5806080
ℎ9 +⋯        (17) 

 

One can see the first term in the right side of Eq. (17) is the approximation called Simpson’s 1/3 Rule, but the next 

terms needs to be written in the nodal point 𝑥𝑗 for the equation to be useful. The last step is the expansion of all derivatives 

around the nodal point 𝑥𝑗. 

 

2.4 Expansion of the Derivatives Around the Central Nodal Point 𝒙𝒋 
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Beginning with derivatives of order three 𝐹𝑗−1/2
𝑖𝑖𝑖  and 𝐹𝑗+1/2

𝑖𝑖𝑖 , they can be expanded around the nodal point 𝑥𝑗. Note that 

there is no need to expand the series beyond order five to result in terms of order nine when replacing them in the Eq. 

(17): 

 

𝐹𝑗−1/2
𝑖𝑖𝑖 = 𝐹𝑗

𝑖𝑖𝑖𝑖 −
𝐹𝑗
𝑖𝑣

2
ℎ +

𝐹𝑗
𝑣

8
ℎ2 −

𝐹𝑗
𝑣𝑖

48
ℎ3 +

𝐹𝑗
𝑣𝑖𝑖

384
ℎ4 −

𝐹𝑗
𝑣𝑖𝑖𝑖

3840
ℎ5 +⋯      (18) 

 

𝐹𝑗+1/2
𝑖𝑖𝑖 = 𝐹𝑗

𝑖𝑖𝑖𝑖 +
𝐹𝑗
𝑖𝑣

2
ℎ +

𝐹𝑗
𝑣

8
ℎ2 +

𝐹𝑗
𝑣𝑖

48
ℎ3 +

𝐹𝑗
𝑣𝑖𝑖

384
ℎ4 +

𝐹𝑗
𝑣𝑖𝑖𝑖

3840
ℎ5 +⋯      (19) 

 

Derivatives of order four 𝐹𝑗−1/2
𝑖𝑣  and 𝐹𝑗+1/2

𝑖𝑣  up to the derivatives of order eight 𝐹𝑗−1/2
𝑣𝑖𝑖𝑖  and 𝐹𝑗+1/2

𝑣𝑖𝑖𝑖  are: 

 

𝐹𝑗−1/2
𝑖𝑣 = 𝐹𝑗

𝑖𝑣 −
𝐹𝑗
𝑣

2
ℎ +

𝐹𝑗
𝑣𝑖

8
ℎ2 −

𝐹𝑗
𝑣𝑖𝑖

48
ℎ3 +

𝐹𝑗
𝑣𝑖𝑖𝑖

384
ℎ4 −⋯       (20) 

 

𝐹𝑗+1/2
𝑖𝑣 = 𝐹𝑗

𝑖𝑣 +
𝐹𝑗
𝑣

2
ℎ +

𝐹𝑗
𝑣𝑖

8
ℎ2 +

𝐹𝑗
𝑣𝑖𝑖

48
ℎ3 +

𝐹𝑗
𝑣𝑖𝑖𝑖

384
ℎ4 +⋯       (21) 

 

𝐹𝑗−1/2
𝑣 = 𝐹𝑗

𝑣 −
𝐹𝑗
𝑣𝑖

2
ℎ +

𝐹𝑗
𝑣𝑖𝑖

8
ℎ2 −

𝐹𝑗
𝑣𝑖𝑖𝑖

48
ℎ3 +⋯        (22) 

 

𝐹𝑗+1/2
𝑣 = 𝐹𝑗

𝑣 +
𝐹𝑗
𝑣𝑖

2
ℎ +

𝐹𝑗
𝑣𝑖𝑖

8
ℎ2 +

𝐹𝑗
𝑣𝑖𝑖𝑖

48
ℎ3 +⋯        (23) 

 

𝐹𝑗−1/2
𝑣𝑖 = 𝐹𝑗

𝑣𝑖 −
𝐹𝑗
𝑣𝑖𝑖

2
ℎ +

𝐹𝑗
𝑣𝑖𝑖𝑖

8
ℎ2 −⋯         (24) 

 

𝐹𝑗+1/2
𝑣𝑖 = 𝐹𝑗

𝑣𝑖 +
𝐹𝑗
𝑣𝑖𝑖

2
ℎ +

𝐹𝑗
𝑣𝑖𝑖𝑖

8
ℎ2 +⋯         (25) 

 

𝐹𝑗−1/2
𝑣𝑖𝑖 = 𝐹𝑗

𝑣𝑖𝑖 −
𝐹𝑗
𝑣𝑖𝑖𝑖

2
ℎ + ⋯          (26) 

 

𝐹𝑗+1/2
𝑣𝑖𝑖 = 𝐹𝑗

𝑣𝑖𝑖 +
𝐹𝑗
𝑣𝑖𝑖𝑖

2
ℎ + ⋯          (27) 

 

𝐹𝑗−1/2
𝑣𝑖𝑖𝑖 = 𝐹𝑗

𝑣𝑖𝑖𝑖 −⋯           (28) 

 

𝐹𝑗+1/2
𝑣𝑖𝑖𝑖 = 𝐹𝑗

𝑣𝑖𝑖𝑖 +⋯           (29) 

 

Substituting Eq. (18) to Eq. (29) in the Eq. (17) and simplifying the terms: 

 

𝐼[𝑗−1,𝑗+1]
𝑒𝑥𝑎𝑐𝑡 =

(𝐹𝑗−1+4𝐹𝑗+𝐹𝑗+1)

3
ℎ −

1

90
𝐹𝑗
𝑖𝑣ℎ5 −

1

1890
𝐹𝑗
𝑣𝑖ℎ7 −

1

90720
𝐹𝑗
𝑣𝑖𝑖𝑖ℎ9 −⋯     (30) 

 

From Eq. (30) is extracted the single application of the Simpson’s 1/3 Rule 𝐼[𝑗−1,𝑗+1]
𝑆𝑖𝑚𝑝𝑠𝑜𝑛

: 

 

𝐼[𝑗−1,𝑗+1]
𝑆𝑖𝑚𝑝𝑠𝑜𝑛

=
(𝐹𝑗−1+4𝐹𝑗+𝐹𝑗+1)

3
ℎ .          (31) 

 

The remaining terms constitute the truncation error 𝜀[𝑗−1,𝑗+1]
𝑆𝑖𝑚𝑝𝑠𝑜𝑛

: 

 

𝜀[𝑗−1,𝑗+1]
𝑆𝑖𝑚𝑝𝑠𝑜𝑛

= −
1

90
𝐹𝑗
𝑖𝑣ℎ5 −

1

1890
𝐹𝑗
𝑣𝑖ℎ7 −

1

90720
𝐹𝑗
𝑣𝑖𝑖𝑖ℎ9 −⋯       (32) 

 

Note that the first term in the right side of Eq. (32) has the same order of accuracy and same coefficient that Eq. (2). 

The difference is that the fourth order derivative is evaluated at the nodal point 𝑥𝑗 instead of an unknown point 𝜉. Other 

difference between them is that Eq. (2) is a single term equation calculated in an unknown position while Eq. (32) 

constitutes a series calculated in a known position. 

Based on Eq. (32), one can find that the single application of the Simpson’s 1/3 Rule has the asymptotic term of order 

five and the following terms are of odd orders. The true orders 𝑝𝑚 are: 
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𝑝𝑚 = 5, 7, 9, …           (33) 

 

 

3. TRUNCATION ERROR FOR THE COMPOSITE APPLICATION OF THE SIMPSON’S 1/3 RULE 

 

Once the error equation is deduced for two discrete intervals, now it is extended to a large domain [𝑎, 𝑏] of length 

𝐿 = 𝑏 − 𝑎 that should be divided in an even number of intervals. Assuming a domain arbitrarily divided into 𝑁 = 6 

intervals, then the seven points are numbered as 𝑃 = 0, 1, 2, 3, 4, 5, 6 as shown in Fig. 2. 

 

 
 

Figure 2. Hypothetical domain discretized with six intervals 

 

The composite application of the Simpson’s 1/3 Rule derived based on interpolating polynomials is given by Chapra 

and Canale (2015): 

 

𝐼𝐿
𝑒𝑥𝑎𝑐𝑡 =

ℎ

3
[𝐹0 + 4∑ (𝐹𝑗)

𝑁−1
𝑗=1,3,5,… + 2∑ (𝐹𝑗)

𝑁−2
𝑗=2,4,… + 𝐹𝑁]  −

(𝑏−𝑎)

180
𝐹𝜇
𝑖𝑣ℎ4,      𝑎 < 𝜇 < 𝑏 ,   (34) 

 

where the first term in the right side is the approximation called composite Simpson’s 1/3 Rule and the second term is its 

truncation error, where the exact position of 𝜇 is not known, except by the fact it is located inside the integration interval. 

The composite Simpson’s 1/3 Rule also can be written in a more convenient way: 

 

𝐼𝐿
𝑆𝑖𝑚𝑝𝑠𝑜𝑛

= ∑ (𝐹𝑗−1 + 4𝐹𝑗 + 𝐹𝑗+1)
𝑁−1
𝑗=1,3,5,…

ℎ

3
 ,        (35) 

 

as easily seen by considering the hypothetical case shown in Fig. 2: 

 

𝐼𝐿
𝑆𝑖𝑚𝑝𝑠𝑜𝑛

= [(𝐹0 + 4𝐹1 + 𝐹2) + (𝐹2 + 4𝐹3 + 𝐹4) + (𝐹4 + 4𝐹5 + 𝐹6)]
ℎ

3
.  

 

Considering the analytical integral over the domain, one can write, based on Eq. (30) and Eq. (35): 

 

𝐼𝐿
𝑒𝑥𝑎𝑐𝑡 = ∫ 𝐹(𝑥)𝑑𝑥

𝑏

𝑎
= ∑

(𝐹𝑗−1+4𝐹𝑗+𝐹𝑗+1)

3
ℎ𝑁−1

𝑗=1,3,5,… +∑ [−
1

90
𝐹𝑗
𝑖𝑣ℎ5 −

1

1890
𝐹𝑗
𝑣𝑖ℎ7 −

1

90720
𝐹𝑗
𝑣𝑖𝑖𝑖ℎ9 −⋯ ] .𝑁−1

𝑗=1,3,5,…  (36) 

 

While the first term in the right side of Eq. (36) represents the composite application of the Simpson’s 1/3 Rule, the 

second term represents its truncation error 𝜀𝐿
𝑆𝑖𝑚𝑝𝑠𝑜𝑛

: 

 

𝜀𝐿
𝑆𝑖𝑚𝑝𝑠𝑜𝑛

= −
1

90
∑ 𝐹𝑗

𝑖𝑣𝑁−1
𝑗=1,3,5,… ℎ5 −

1

1890
∑ 𝐹𝑗

𝑣𝑖𝑁−1
𝑗=1,3,5,… ℎ7 −

1

90720
∑ 𝐹𝑗

𝑣𝑖𝑖𝑖𝑁−1
𝑗=1,3,5,… ℎ9 −⋯   (37) 

 

Defining the following averages of the derivatives of orders four, six and eight: 

 

𝐹𝑗
𝑖𝑣 =

∑ 𝐹𝑗
𝑖𝑣𝑁−1

𝑗=1,3,5,…

(𝑁 2⁄ )
 ,    𝐹𝑗

𝑣𝑖 =
∑ 𝐹𝑗

𝑣𝑖𝑁−1
𝑗=1,3,5,…

(𝑁 2⁄ )
 ,    𝐹𝑗

𝑣𝑖𝑖𝑖 =
∑ 𝐹𝑗

𝑣𝑖𝑖𝑖𝑁−1
𝑗=1,3,5,…

(𝑁 2⁄ )
 ,       (38) 

 

substituting them in the Eq. (37) and evidencing the 𝑁 and one ℎ of each term gives: 

 

𝜀𝐿
𝑆𝑖𝑚𝑝𝑠𝑜𝑛

= −𝑁ℎ (
1

180
𝐹𝑗
𝑖𝑣ℎ4 +

1

3780
𝐹𝑗
𝑣𝑖ℎ6 +

1

181440
𝐹𝑗
𝑣𝑖𝑖𝑖ℎ8 +⋯) .      (39) 

 

Knowing that ℎ = 𝐿/𝑁, then 𝐿 = 𝑁ℎ, so Eq. (39) can be rewritten as: 
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𝜀𝐿
𝑆𝑖𝑚𝑝𝑠𝑜𝑛

= −
𝐿

180
𝐹𝑗
𝑖𝑣ℎ4 −

𝐿

3780
𝐹𝑗
𝑣𝑖ℎ6 −

𝐿

181440
𝐹𝑗
𝑣𝑖𝑖𝑖ℎ8 −⋯      (40) 

 

Comparing Eq. (40) with its counterpart deduced by using the classical integration of interpolating polynomials Eq. 

(34) (last term in the right side), one can see they are similar, except by the fact Eq. (34) has its derivative evaluated at 

some point 𝜇 of unknown position inside the domain and Eq. (40) has all its derivatives evaluated at every odd nodal 

point. In addition, it has many terms as its number of non-null derivatives. Comparing Eq. (40) with Eq. (32) it is obvious 

the order reduction. All orders reduce one unity, thus the integral over the entire domain when using the Simpson’s 1/3 

Rule produces the true orders: 

 

𝑝𝑚 = 4, 6, 8, …           (41) 

 

Equation (32), Eq. (33), Eq. (40) and Eq. (41) constitute the main results of this work. 

 

4. DEFINITION OF THE TEST PROBLEMS 

 

A way to demonstrate the correctness of Eq. (40) and Eq. (41) is by measuring the numerical error resulting from the 

integration of polynomials. As higher is the order of the polynomial, more terms of Eq. (40) are non-null. The test 

problems chosen are: 

 

𝐼 = ∫ 𝑥𝑛 𝑑𝑥
5

2
 ,           (42) 

 

where 𝑛 = 3, 4, 5, 6, 7, 8, 9. The limits of integration are arbitrarily chosen, avoiding the classical 𝐿 = 1 interval of 

integration (in fact, the authors recommend that in verification studies, none of the variables assume values 0 or 1, because 

they are neutral elements for addition and multiplication, respectively). To test a problem for which the number of terms 

in Eq. (40) is infinite, the authors include the integral of the exponential function over the same interval: 

 

𝐼 = ∫ 𝑒𝑥 𝑑𝑥
5

2
 .           (43) 

 

The problems are labeled in Tab. 1 and classified according to the null and non-null average derivatives appearing in 

Eq. (40). Based in Eq. (40), Tab. 1 shows that the integration of a cubic function by the 1/3 Simpson’s Rule is exact, as 

well known. As the degree of the polynomial increases, more terms are added as non-null contributions to the truncation 

error. Polynomials of degrees 4 and 5 have only the first non-null term in Eq. (40), polynomials of degree 6 and 7 has the 

first and second terms, and so on. Note that Eq. (40) presents exact value for the truncation error of polynomials up to 

degree 9. The integration of polynomials of higher degrees are not exact, but as the grid element size tends to zero, the 

calculated value tends to zero with order-of-accuracy 10. 

 

Table 1. Average derivatives that appear in Eq. (40) for each test problem 

 

𝑝𝑟𝑜𝑏𝑙𝑒𝑚 ∫( )𝑑𝑥 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 ≠ 0 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 = 0 

𝐴 𝑥3  𝐹𝑖𝑣̅̅ ̅̅ , 𝐹𝑣𝑖̅̅ ̅̅ , 𝐹𝑣𝑖𝑖𝑖̅̅ ̅̅ ̅̅  

𝐵 𝑥4 𝐹𝑖𝑣̅̅ ̅̅  𝐹𝑣𝑖̅̅ ̅̅ , 𝐹𝑣𝑖𝑖𝑖̅̅ ̅̅ ̅̅  

𝐶 𝑥5 𝐹𝑖𝑣̅̅ ̅̅  𝐹𝑣𝑖̅̅ ̅̅ , 𝐹𝑣𝑖𝑖𝑖̅̅ ̅̅ ̅̅  

𝐷 𝑥6 𝐹𝑖𝑣̅̅ ̅̅ , 𝐹𝑣𝑖̅̅ ̅̅  𝐹𝑣𝑖𝑖𝑖̅̅ ̅̅ ̅̅  

𝐸 𝑥7 𝐹𝑖𝑣̅̅ ̅̅ , 𝐹𝑣𝑖̅̅ ̅̅  𝐹𝑣𝑖𝑖𝑖̅̅ ̅̅ ̅̅  

𝐹 𝑥8 𝐹𝑖𝑣̅̅ ̅̅ , 𝐹𝑣𝑖̅̅ ̅̅ , 𝐹𝑣𝑖𝑖𝑖̅̅ ̅̅ ̅̅   

𝐺 𝑥9 𝐹𝑖𝑣̅̅ ̅̅ , 𝐹𝑣𝑖̅̅ ̅̅ , 𝐹𝑣𝑖𝑖𝑖̅̅ ̅̅ ̅̅   

𝐻 𝑒𝑥 𝐹𝑖𝑣̅̅ ̅̅ , 𝐹𝑣𝑖̅̅ ̅̅ , 𝐹𝑣𝑖𝑖𝑖̅̅ ̅̅ ̅̅ , …  

 

5. RESULTS 

 

All results presented in this work come from a program written in FORTRAN95 language. It makes all computations 

using real-type variables and constants as quadruple precision. However, the analytical solutions of Eq. (40), Eq. (42) and 
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Eq. (43) are calculated with 50 significant digits with the software MAPLE 17. The first 34 are directly written in the 

FORTRAN program to guarantee analytical solutions 𝐼𝐿
𝑒𝑥𝑎𝑐𝑡  more accurate than the numerical solutions 𝐼𝐿

𝑆𝑖𝑚𝑝𝑠𝑜𝑛
. 

All problems are solved in 14 grids with 𝑛 from 2 to 16,384 elements. Table 2 presents the comparison between 

analytical and numerical results for all problems in the 1,024 grid, which is considered a sufficiently fine grid. Analytical 

values are presented with few decimal digits if they have a finite number of decimal digits. 

The last two columns in Tab. 2 represent the truncation error 𝜀𝐿
𝑆𝑖𝑚𝑝𝑠𝑜𝑛

 predicted by Eq. (40) and its relative value 

𝐸(%), defined by Eq. (44). As the 𝜀𝐿
𝑆𝑖𝑚𝑝𝑠𝑜𝑛

 values are rounded-off with two significant digits, then 𝐼𝐿
𝑒𝑥𝑎𝑐𝑡  and 𝐼𝐿

𝑆𝑖𝑚𝑝𝑠𝑜𝑛
 

are rounded-off accordingly. 

 

𝐸(%) = 100
𝜀𝐿
𝑆𝑖𝑚𝑝𝑠𝑜𝑛

𝐼𝐿
𝑒𝑥𝑎𝑐𝑡  .           (44) 

 

One can observe in Tab. 2 that the analytical solution of the problems from 𝐴 to 𝐺 is obtained when the numerical 

solution 𝐼𝐿
𝑆𝑖𝑚𝑝𝑠𝑜𝑛

 is summed to its respective predicted error 𝜀𝐿
𝑆𝑖𝑚𝑝𝑠𝑜𝑛

. This behavior is not verified only in problem 𝐻, 

because the exponential function has infinite derivatives, and only three terms are deduced in Eq. (40). 

 

Table 2. Comparison between calculated and measured relative error for the 1,024 grid 

 

𝑃𝑟𝑜𝑏𝑙𝑒𝑚 𝐼𝐿
𝑒𝑥𝑎𝑐𝑡 𝐼𝐿

𝑆𝑖𝑚𝑝𝑠𝑜𝑛
 𝜀𝐿

𝑆𝑖𝑚𝑝𝑠𝑜𝑛
 𝐸(%) 

𝐴 152.25 152.25 0.0E+00 0.0E+00 

𝐵 618.6 618.600000000029 -2.9E-11 -4.8E-14 

𝐶 2,593.5 2,593.50000000052 -5.2E-10 -2.0E-13 

𝐷 11,142.4285714286 11,142.4285714343 -5.7E-09 -5.2E-13 

𝐸 48,796.125 48,796.125000052 -5.2E-08 -1.1E-12 

𝐹 216,957.0 216,957.00000043 -4.3E-07 -2.0E-10 

𝐺 976,460.1 976,460.1000032 -3.2E-06 -3.3E-10 

𝐻 141.024103003644… 141.024103003704 -5.8E-11 -4.1E-11 

 

The difference between the error calculated with the three terms of Eq. (40) and the error measured are shown in Tab. 

3 for all problems. It is interesting to note that the magnitude of the errors difference 𝛥𝜀 for problem 𝐻 is about the same 

magnitude as other problems, at least for the grid of 1,024 elements. 

The results presented from Tab. 1 up to Tab. 3 are without employing error-improving techniques, as Repeated 

Richardson Extrapolation (RRE). When RRE is used, the truncation error can be greatly reduced, attaining a more 

accurate numerical solution (Roache, 2009, Roache and Knupp, 1993, Marchi et al., 2013). The technique is applied in 

this work not with the objective of improving accuracy, but as a way to demonstrate the correctness of Eq. (41), by 

showing through numerical experiments that the orders predicted by Eq. (41) are attained as the extrapolations are carry 

out. 

 

Table 3. Comparison between calculated and measured error for the 1,024 grid 

 

𝑃𝑟𝑜𝑏𝑙𝑒𝑚 𝜀 a priori (Eq. 40) 𝜀 a posteriori 𝛥𝜀 

𝐴 0.0E+00 0.0E+00 0.0E+00 

𝐵 -2.9E-11 -2.9E-11 -2.0E-32 

𝐶 -5.2E-10 -5.2E-10 0.0E+00 

𝐷 -5.7E-09 -5.7E-09 6.8E-31 

𝐸 -5.2E-08 -5.2E-08 0.0E+00 

𝐹 -4.3E-07 -4.3E-07 0.0E+00 

𝐺 -3.2E-06 -3.2E-06 1.2E-28 

𝐻 -5.8E-11 -5.8E-11 2.8E-31 
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Figure 3 shows the typical behavior of the application of the RRE based on the apparent order (Marchi et al., 2013) 

for the integral of the exponential function. The data set named “0” means the numerical error results are obtained in the 

14 grids without RRE. This set reaches errors in the order of 10−15 in the finest grid and has fourth order-of-accuracy, as 

can be noted by the inclination of the results in the log versus log scale. After one Richardson Extrapolation, the order 

increases to 6, as observed in the second data set, and so on. In the lower portion of the Fig. 3, the tenth and twelfth orders 

suffer the influence of the round-off error as expected, because the magnitude of the error is near the limit of the quadruple 

precision computation. The extrapolation level “5” is completely polluted with round-off error. 

The apparent or observed order (Roache, 2009) is the measurement of how much the error reduces as the grid element 

size is reduced. Details of its calculation when using RRE are found in Marchi et al. (2013). In graphical form, it is 

represented in Fig. 4, where one can see that the orders predicted by a priori analysis (Eq. (41)) are confirmed by a 

posteriori experiments for all grids without round-off error influence. 

The results for the polynomial functions are similar to those presented for the integral of the exponential function, but 

as they have a finite number of non-null derivatives, after a sufficient number of extrapolations, the analytical solution is 

attained numerically, thus the next extrapolated solutions do not change, and the observed order concept loses validity. 

 

 
 

Figure 3. Module of the truncation error for the integral of 𝑒𝑥 as function of the grid element size 
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Figure 4. Observed Orders for the integration of 𝑒𝑥 as function of the element grid size 

 

6. CONCLUSION 

 

This paper presents a deduction of the truncation error for the Simpson’s 1/3 Rule integration formula. Represented 

by Eq. (40), the truncation error equation is based on Taylor Series expansions evaluated at nodal points of a grid of Finite 

Differences. The representation has infinite terms, and the predicted true orders are 4, 6, 8, …, thus the asymptotic order 

is 4 and the subsequent orders present difference of 2 orders between them. 

Although the deduction is not formally proved, a posteriori procedure is conducted to shown the correctness of the 

error equation. The most convincing test is the comparison between the calculated and measured errors, where all 

polynomials reach the analytical result when numerically calculated (with some round-off error consistent with the 

precision of the real-type variables). 

Despite the use of Eq. (40) is not so practical, the procedure of observing the apparent orders as stated by Eq. (41) is 

relevant to code and solution verification activities, especially when RRE is also used. 
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