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Abstract. The present work performs the verification of the numerical solution of the internal flow through a de Laval 

nozzle obtained with the SU2 code and the validation of Euler's mathematical model. The flow was solved numerically 

in several meshes, where the finest one had 2048x1024 volumes. The discharge coefficient is the variable of interest, a 

coefficient that characterizes the flow and pressure losses. Comparisons of the numerical discharge coefficient with 

analytical and experimental results showed relative differences of 0.0257% and 0.379%, respectively, for the most 

refined simulated mesh. Comparisons also were made with the numerical solution of another computational code, finding 

relative differences of 0.000185%. Estimates of the numerical error were calculated based on error estimators. 

According to the GCI estimator, the numerical uncertainty does not exceed 0.001% of the numerical solution in the finest 

simulated mesh. Extrapolated solutions with Repeated Richardson Extrapolation and the convergent solution are also 

presented. 
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1. INTRODUCTION 
 

Verification and validation (V&V) are procedures that make it possible to assess the accuracy and reliability of a 

numerical solution. The first is the process that quantifies the numerical error and the second is the process that quantifies 

the modeling error caused by the limitations of the mathematical models to represent the real phenomenon (Roache, 

2009). 

This work aims to verify the solution of Euler's numerical model implemented in the SU2 code (Economon et al., 

2016) and to validate Euler's mathematical model in the solution of fluid flow through a de Laval nozzle. A conical nozzle 

with angles of 45º in the convergent section and 15º in the divergent section will be considered. This nozzle has 

experimental data published by Back et al. (1965). The variable of interest in this study will be the discharge coefficient, 

a coefficient that characterizes the flow and pressure losses. 

According to the ASME V&V 20-2009 standard, the verification of the solution must be preceded by code verification. 

That is why Van der Weide and Economon (2019) applied the method of manufactured solutions to perform the code 

verification of SU2 (version 7.0.0) and concluded that the code is error-free. The process of verifying numerical solutions 

and validating models obtained/implemented by the SU2 code was addressed by other authors (Palacios et al., 2013; 

Economon et al., 2016; Gori et al., 2017; Becker and Granzoto, 2018; Mishra et al., 2019; Castro, 2019). However, V&V 

of the SU2 code is usually performed for the Navier-Stokes mathematical model or turbulence models and the errors or 

numerical error estimates of the solutions obtained are generally not presented. Of the studies cited, only in the works of 

Mishra et al. (2019) and Castro (2019) the numerical error or its estimate were presented. Even though the SU2 code 

shows certain accuracy for a particular application, it does not mean that the same accuracy will be achieved in another 

application. Thus, a numerical simulation code must be evaluated in the largest possible number of applications. 
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In the present work, the estimated numerical uncertainty for the variable of interest will be calculated using the GCI 

(Grid Convergence Index) estimator (Roache, 1994), using the convergent estimator (Marchi and Silva, 2002) and with 

the estimator based on the Repeated Richardson Extrapolation (RRE) (Martins, 2013). In addition, the numerical solutions 

will be extrapolated with RRE and with the convergent estimator (Marchi et al., 2013). 

In the following section, the flow simulation method and a definition of the variable of interest are presented. The 

procedures used for mesh generation and verification and validation are also shown. Section 3 presents the main results. 

Finally, a conclusion to this work is presented. 

 

2. METHODOLOGY 

 

2.1 Flow simulation 

 

The flow is considered inviscid, non-reactive, axisymmetric and modeled by Euler's equations, which can be 

represented by (Hirsch, 2007) 

 
∂U

∂t
 + ∇∙Fc(U) = 0 (1) 

 

where U is the vector of conservative variables and Fc is the advective flux, given by 

 

U = {

ρ

ρv

ρE
} ,  Fc = {

ρv

ρv⊗v + I̅p

ρEv + pv

} (2) 

 

In Eq. (1) t is time and in Eq. (2) ρ is the density, v is the velocity vector, E is the total energy per unit mass and p is 

the pressure. Furthermore, I̅ is a 2x2 identity matrix and ⊗ represents the tensor product. In Euler's system of equations, 

the equations represent the conservation of mass, the conservation of momentum and the conservation of total energy. 

Euler’s equations have as dependent variables ρ, v, p and E; one can close the system of equations by assuming a 

constitutive relationship or state equation for the fluid, for example 

 

p = (γ - 1)ρ[E - 0.5(v ∙ v)] (3) 

 

where γ is the ratio of specific heats. In the SU2 code, the discretization of the Euler’s equation is performed through the 

Finite Volume Method in a vertex-based mesh (Economon et al., 2016). The advective fluxes are evaluated at the midpoint 

of the edges. 

The discharge coefficient (Cd), which is the variable of interest in this work, characterizes the flow and pressure losses 

and it is defined as the ratio between the actual mass flow rate (ṁ) and the ideal mass flow rate (ṁideal) (Anderson Junior, 

2003) of the combustion gases. The equations of the ideal mass flow rate and the actual mass flow rate are shown in Eq. 

(4) and Eq. (5), respectively. 

 

ṁideal = p
0
At

√ γ

RT0
(

2

γ + 1
)

γ + 1
γ - 1

 (4) 

 

ṁ = ∫ ρudA
A

 (5) 

 

In Eq. (4), γ is the ratio of specific heats, R is the gas constant and At is the throat area. T0 and p
0
 are the temperature and 

pressure of stagnation. In Eq. (5), u is the axial component of the velocity vector, ρ is the density and A is the nozzle exit 

area. The integral present in Eq. (5) was numerically approximated using the Trapezoidal Rule. 

In the simulations, the physical and geometric parameters of the Back et al. (1965) experiment with the nozzle 

BGM45-15 were considered, whose profile is illustrated in Fig. 1. Table 1 presents the flow parameters. 

 

Table 1. Flow parameters. 

 

Parameter Value 

Temperature of stagnation 833.333 K (1500 °R) 

Pressure of stagnation 1725.068 kPa (250.2 psia) 

External pressure 0 Pa 

Ratio of specific heats 1.4 

Gas constant 287.058 J/kg.K 
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Figure 1. BGM45-15 nozzle profile with dimensions in millimeters. 

 

The boundary conditions on the nozzle's wall is of adiabacity and impermeability, e.g. 

 

n∙v = 0,  
∂p

∂n
 = 0,  

∂T

∂n
 = 0 (6) 

 

where T is the temperature and n is the normal vector. The first equation represents the fluid slipping condition, since the 

inviscid flow will be considered. 

On the symmetry line, the radial velocity v is zero and adiabaticity and impermeability conditions are also considered 

for this boundary. 

On the inlet of the nozzle, it is assumed that 

 
∂

2
u

∂x2
 = 0,  v = 0 (7) 

 

where x is the axial direction. It is also considered that the inlet temperature and the inlet pressure are functions of the 

stagnation properties T0 and p
0
 presented in Tab. 1. These functions are given by (Sutton and Biblarz, 2016) 

 

T = T0[1 + 
1

2
(γ - 1)M2]-1 (8) 

 

p = p
0
[1 + 

1

2
(γ - 1)M2]

-γ

 γ -1 (9) 

 

where M is the Mach number and γ is the ratio of specific heats. 

On the nozzle's outlet boundary, no boundary conditions are necessary, as the flow is supersonic, a situation in which 

the flow depends only on the upstream characteristics of the flow. However, numerically, a boundary condition is 

required, and the condition used is the extrapolation of the properties of the interior of the domain to the exit boundary. 

For the simulations, the version 7.0.6 of the SU2 code with multiprocessing support for the Linux operating system 

was used. The simulations were performed in a computer with a processor Intel Core i5-9600K of 4.60 GHz and 16 GB 

of RAM memory. 

 

2.2 Mesh generation 

 

Non-orthogonal structured meshes were used in the simulations, which were generated using constant and 

simultaneous refinement ratio in the radial and axial directions. For the mesh generation, the code GMSH version 4.5.6 

(Geuzaine and Remacle, 2009) for Linux was used. 

The base mesh used in the simulations has 32 control volumes in the axial direction and 16 volumes in the radial 

direction. Figure 2 shows this base mesh. From this mesh, using a refinement ratio of two, six other meshes were 

generated. Thus, the following meshes were created: 32x16, 64x32, 128x64, 256x128, 512x256, 1024x512 and 

2048x1024 volumes. 

 

2.3 Errors and estimated errors 

 

Numerical errors are always present in the flow solutions obtained through computational fluid dynamics (CFD). The 

main sources of these errors are: truncation errors Eh, round-off errors E𝜋 and iteration errors Ei (Roache, 2009). In 

general, the numerical error En, present in the numerical solution of a generic variable of interest ϕ, can be symbolically 

represented by 
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En(ϕ) = f(Eh, Eπ, Ei) (10) 

 

 
 

Figure 2. Base mesh with 32x16 volumes. 

 

The numerical error can also be defined as the difference between the numerical solution ϕ and the exact analytical 

solution Φ of a variable of interest (Ferziger et al., 2020), i.e., 

 

En(ϕ) = Φ - ϕ (11) 

 

In this work, care was taken to minimize round-off and iteration errors so that these errors could be considered 

negligible. Round-off errors were minimized by using double precision variables. Iteration errors were minimized by 

defining as a stop criterion of the iterative process as twice the number of iterations required for the residue of the mass 

conservation equation to be less than or equal to the tolerance of 10-14. Hence, the numerical error of the numerical 

solution is represented only by the truncation error, that is, 

 

Eh(ϕ) = En(ϕ) = Φ - ϕ (12) 

 

In this condition, the numerical error is denominated discretization error. Note that in practice, Φ is not known, so the 

numerical error must be estimated (Un). Thereby, 

 

Un = ϕ
∞

 - ϕ (13) 

 

where ϕ
∞

 is an estimate of the exact solution. 

The discretization error can be effectively estimated after obtaining the numerical solution. Some of the discretization 

error/uncertainty estimators are the GCI estimator (Roache, 1994), convergent estimator (Marchi and Silva, 2002) and 

RRE-based estimator (Martins, 2013). These estimators are used in this work. 

In the verification process, the ASME V&V 20-2009 standard recommends performing the apparent order 

convergence analysis. As the mesh is refined, the apparent order p
U

 is expected to tend to the asymptotic order p
0
 of the 

discretization error of the equations that model the problem. Divergences may indicate that other error sources are being 

generated by the code, inappropriate boundary conditions or incorrect initial conditions. In this study, it is expected that 

p
U

 converges to two. p
U

 is calculated with Eq. (14), where ϕ
SC

 is the solution obtained in a supercoarse mesh, ϕ
C

 is the 

solution obtained in a coarse mesh and ϕ
F
 is the solution obtained in a fine mesh and r is the refinement ratio. 

 

p
U

 = 
log(|

ϕC - ϕSC
ϕF - ϕC

|)

log(r)
 (14) 

 

According to the ASME V&V 20-2009 standard, in addition to the numerical error En, a numerical solution ϕ is also 

subject to the modeling errors Emodel and errors due to the uncertainty of the input data of the simulation (Einput). The 

modeling error is expected to be contained in the range given by 

 

(E ± Uval) (15) 

 

in other words, 

 

Emodel ∈ [E - Uval, E + Uval] (16) 
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In Eq. (15) and Eq. (16), the symbols E and Uval are defined by the ASME V&V 20-2009 standard as validation 

metrics. The former is denominated comparison error and it is given by the difference between the numerical solution ϕ 

and the experimental result X. Uval, the validation standard uncertainty, can be calculated as 

 

Uval = √Unum
2  + Uinput

2  + Uexp
2  (17) 

 

where Unum, Uinput and Uexp are estimates of the standard numerical uncertainty, the standard uncertainty of the simulation 

input data and the standard uncertainty of the experimental error, respectively. Equation (17) is valid for cases where 

uncertainties are independent. The methodology for calculating Uinput is presented in the ASME V&V 20-2009 standard. 

In addition, this standard relates Unum to the numerical error estimate of the GCI estimator (UGCI) as follows 

 

Unum = 
UGCI

k
,     1.1 ≤ k ≤ 1.15 (18) 

 

Back et al. (1965) presented the experimental result (X) for the discharge coefficient (Cd). However, the experimental 

results were not tabulated in that study, being presented only in graphic form. Therefore, the code WebPlotDigitizer 4.2 

(Marin et al., 2017) was used to extract the results from the graph. Hence, the value of the discharge coefficient obtained 

is 

 

Cd = 0.9777 ± 0.0056 (19) 

 

The uncertainty presented in the value of the experimental discharge coefficient encompasses both the experimental 

uncertainties and the uncertainty of reading the values in the graph. 

Kliegel and Levine’s (1969) analytical solution for the discharge coefficient, which assumes the flow as irrotational and 

isentropic, will be used for comparison with the values of the discharge coefficient obtained from the numerical 

simulations. For the problem treated in this work, the value obtained for the discharge coefficient by the method of Kliegel 

and Levine (1969) is 

 

Cd = 0.981653876 (20) 

 

This value was calculated using quadruple precision. 

The numerical solutions obtained in this present work will also be compared with the numerical discharge coefficient 

by Araki and Marchi (2017). Araki and Marchi (2017) studied the inviscid flow through the nozzle BGM45-15 and 

obtained the solution 

 

Cd = 0.98140 ± 0.00002 (21) 

 

for the ratio of specific heats 1.4. 

 

3. RESULTS AND DISCUSSION 

 

Table 2 presents the main results of the simulations. In this table, Nx is the number of volumes in the axial direction 

and Ny is the number of volumes in the radial direction. Moreover, "Iterations" indicates the number of iterations 

performed, “Time” represents the total simulation time, “RAM" means the maximum RAM memory consumption of each 

simulation, Cd is the discharge coefficient and p
U

 is the apparent order, calculated with Eq. (14). From this table, it is 

observed that the apparent order converges to two as the mesh is refined. Figure 3 shows the Mach number field obtained 

in the mesh m7, which had a total of 2097152 volumes. 

 

Table 2. General characteristics of the simulations. 

 

Mesh Nx Ny Iterations Time RAM (MB) Cd p
U

 

m1 32 16 1436 1.49 s 113.92 1.01206217E+00 - 

m2 64 32 1844 5.56 s 120.19 9.88127628E-01 - 

m3 128 64 2538 30.73 s 148.87 9.83761632E-01 2.45 

m4 256 128 3398 4.20 min 249.24 9.82109643E-01 1.40 

m5 512 256 5354 31.06 min 635.93 9.81543049E-01 1.54 

m6 1024 512 10428 4.81 h 2176.48 9.81427137E-01 2.29 

m7 2048 1024 24535 1.91 day 8297.22 9.81401820E-01 2.19 
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Figure 3. Mach number field for the mesh with 2048x1024 volumes. 

 

The discharge coefficient is presented with nine significant figures, as this is the maximum number of figures that was 

required in the final representation of the solutions with error estimation. In Roy and Oberkampf's (2011) framework for 

verification, validation and uncertainty quantification, two significant figures are used to report the error estimate and the 

solution is reported with the corresponding number of decimal places. 

Table 3 shows comparisons between the numerical discharge coefficient and the analytical solution calculated by the 

method of Kliegel and Levine (1969). It is noticed that the absolute differences shown in Tab. 3 reduce with the mesh 

refinement, but from mesh m6, the difference increases. This may have occurred because Kliegel and Levine’s (1969) 

analytical solution does not necessarily represent the analytical solution of Euler's mathematical model since in its 

derivation the flow was considered irrotational and isentropic. 

 

Table 3. Comparisons between numerical solutions and the irrotational and isentropic analytical solution of the 

discharge coefficient. 

 

Case Cd Difference Relative difference 

m1 1.01206217E+00 3.04E-02 3.10% 

m2 9.88127628E-01 6.47E-03 0.659% 

m3 9.83761632E-01 2.11E-03 0.215% 

m4 9.82109643E-01 4.56E-04 0.0464% 

m5 9.81543049E-01 1.11E-04 0.0113% 

m6 9.81427137E-01 2.27E-04 0.0231% 

m7 9.81401820E-01 2.52E-04 0.0257% 

Convergent 9.81394063E-01 2.598E-04 0.02647% 

RRE 9.81393831E-01 2.600E-04 0.02649% 

 

The estimated numerical uncertainty/error of the numerical solution in the finest mesh obtained with the estimators 

GCI, convergent and RRE-based estimator, as well as the solutions extrapolated with the convergent solution and with 

RRE are presented in Tab. 4. Table 4 also shows the expression of the final solutions with the estimated numerical error. 

One can notice that the estimated error of the convergent solution and the solution extrapolated with RRE are, respectively, 

two and three orders of magnitude smaller than the estimated error obtained with the GCI estimator for the mesh m7. 

 

Table 4. Numerical discharge coefficient and its error/uncertainty estimation. 

 

Method Cd Estimated error Representation 

GCI 9.81401820E-01 1.05E-05 0.981402 ± 0.000010 

Convergent 9.81394063E-01 6.82E-07 0.98139406 ± 0.00000068 

RRE 9.81393831E-01 4.82E-08 0.981393831 + 0.000000048 

 

The solution obtained with the GCI method is close to that obtained by Araki and Marchi (2017) for the ratio of 

specific heats 1.4. Araki and Marchi (2017) obtained the solution 0.98140 ± 0.00002, also using a second order scheme 

and the Euler's mathematical model. They obtained this solution using a mesh with only 720x80 volumes; however, their 

numerical uncertainty is higher. Table 5 presents the comparisons between the numerical discharge coefficient obtained 

in this work and the Araki and Marchi’s (2017) numerical solution. It can be noticed that the Araki and Marchi's (2017) 

solution range includes all the numerical solutions presented in Tab. 4. ASME V&V 20-2009 standard recommends 

comparing the numerical solution with ones obtained by other codes for the solution verification process. These kind of 

comparisons are denominated code-to-code comparison. 
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Table 5. Comparisons between numerical solutions and the Araki and Marchi’s numerical solution. 

 

Case Cd Difference Relative difference 

m1 1.01206217E+00 3.07E-02 3.12% 

m2 9.88127628E-01 6.73E-03 0.686% 

m3 9.83761632E-01 2.36E-03 0.241% 

m4 9.82109643E-01 7.10E-04 0.0723% 

m5 9.81543049E-01 1.43E-04 0.0146% 

m6 9.81427137E-01 2.71E-05 0.00277% 

m7 9.81401820E-01 1.82E-06 0.000185% 

Convergent 9.81394063E-01 5.94E-06 0.000605% 

RRE 9.81393831E-01 6.17E-06 0.000629% 

 

The comparisons between the numerical discharge coefficient and the experimental result obtained by Back et al. 

(1965) are presented in Tab. 6. In this case, the difference also reduces with the refinement of the mesh. The RRE solution 

has a smaller difference than the other ones. 

 

Table 6. Comparisons between numerical solutions and the experimental result of the discharge coefficient. 

 

Case Cd Comparison error Relative difference 

m1 1.01206217E+00 3.44E-02 3.51% 

m2 9.88127628E-01 1.04E-02 1.07% 

m3 9.83761632E-01 6.06E-03 0.620% 

m4 9.82109643E-01 4.41E-03 0.451% 

m5 9.81543049E-01 3.84E-03 0.393% 

m6 9.81427137E-01 3.73E-03 0.381% 

m7 9.81401820E-01 3.70E-03 0.379% 

Convergent 9.81394063E-01 3.6941E-03 0.37783% 

RRE 9.81393831E-01 3.6938E-03 0.37781% 

 

From Table 6, the validation metric E for the mesh m7 is 0.0037. The validation standard uncertainty Uval for the most 

refined simulated mesh was calculated as 

 

Uval = √(
UGCI

k
)

2

 + Uinput
2  + Uexp

2  = 0.0056 (22) 

 

where k equal to 1.1 was used and the UGCI estimated numerical error for the mesh m7 is shown in Tab. 4. Uinput was 

calculated according to the methodology presented in ASME V&V 20-2009. The effects of temperature and pressure of 

stagnation were considered, and it resulted in Uinput = 5.00E-16, indicating a low sensitivity of the discharge coefficient 

about these input parameters. It is noted that the predominant uncertainty in the validation standard uncertainty is the 

experimental uncertainty. As |E| < Uval, the combination of numerical, experimental and input data uncertainties is at the 

same order as the modeling error, i.e., the modeling error is within the noise level of the uncertainties, not allowing to 

evaluate whether the difference between the numerical solution and the experimental result is caused by the modeling 

error or other sources of error. 

Figure 4 shows the pressure ratio distribution on the nozzle wall and at the symmetry line of the numerical solution 

of the mesh m7. This figure also presents the pressure ratio distribution from the experimental wall pressures results of 

Back et al. (1965), which were presented only in graphic form by the authors, but whose values were extracted and 

tabulated by Radtke et al. (2013). As noted in Fig. 4, the numerical results of the wall pressure ratio are qualitatively 

similar to the experimental results, where the most significant differences are in the throat area. 

The Mach number distribution on the nozzle wall and at the symmetry line are shown in Fig. 5. One can see an abrupt 

change in the Mach number in the symmetry line at position x = 0.1476. This is the position in which the shock wave 

meets the symmetry line, as seen in Fig. 3. The shock wave formed in this nozzle has experimental evidence given by 

Back and Cuffel (1966). According to the graph of pressure ratio distribution at the symmetry line presented by Back and 

Cuffel (1966), the position that the shock wave reaches the line of symmetry was calculated as x = 0.1461 ± 0.0017, where 

the uncertainty considers the experimental pressure uncertainty and the uncertainty of reading the values in the graph. 

The abrupt change also happens for the other flow properties, as can be seen in Fig. 4 for the pressure ratio at the symmetry 

line and in Fig. 6 for the pressure field obtained in the mesh m7. The temperature and density distributions are not shown 

in this work, as they have the same behavior as the pressure ratio. 
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Figure 4. Comparison between the experimental and numerical results of the pressure ratio. 

 

 
 

Figure 5. Numerical results of the Mach number on the nozzle wall and at the symmetry line. 

 

 
 

Figure 6. Pressure field for the mesh with 2048x1024 volumes. 
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4. CONCLUSION 

 

Comparisons between numerical discharge coefficients and analytical and experimental results were presented in this 

work and the differences showed reductions with mesh refinement. The relative differences for the most refined mesh 

simulated were 0.0257% in relation to the analytical result and 0.379% to the experimental result. The numerical solutions 

of the discharge coefficient also were compared to the numerical solution obtained by another computational code using 

the same mathematical model. In this case, the relative difference for the finest simulated mesh was 0.000185%. There 

was also a convergence of the apparent order to the asymptotic order, which is one of the code verification requirements 

proposed by the ASME V&V 20-2009 standard. It is estimated that the exact numerical solution for the discharge 

coefficient is contained in the range given by 0.981402 ± 0.000010. As for the modeling error, it is expected to be 

contained in the interval given by 0.38% ± 0.57% of the experimental result, where the first term is the comparison error 

and the second is the validation standard uncertainty, both divided by the experimental result of the discharge coefficient. 

In this case, the validation standard uncertainty is greater than the comparison error, indicating that the modeling error is 

within the noise level of the experimental, input and numerical uncertainties. 
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