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The use of the segregated finite-volume method requires special procedures for handling the
pressure—velocity coupling. It is a normal practice to employ staggered grids to promote the
adequate coupling between pressure and velocity. However, this alternative becomes
unfeasible for three-dimensional problems, especially if boundary-fitted grids are employed.
In this work a numerical model employing co-located variables is developed. The model uses
nonorthogonal boundary-fitted meshes and is therefore suitable for the solution of all speed
[flows, considering the extra coupling between pressure and density. Results are obtained for
selected test cases, including incompressible as well as supersonic flows, which are compared
with experimental ones.

INTRODUCTION

The prediction of the fluid flow motion and the heat transfer rates involved in
many important engineering devices requires the solution of a coupled set of
nonlinear partial differential equations representing conservation of mass, momen-
tum, and energy. General methods for the solution of these equations are still a
challenging task for fluid dynamics theoreticians. In recent years there has been a
formidable amount of work in developing numerical models for the solution of
fluid flow problems in complex geometries. Boundary-fitted nonorthogonal meth-
ods, after the pioneering works of Chu [1], Winslow [2], and Thompson et al. [3, 4],
have become a widely used technique for handling arbitrary geometries. In the
aerospace engineering branch, dealing mostly with the solution of transonic and
supersonic flows, boundary-fitted methods are used extensively in conjunction with
finite-difference-based methods. In thermal engineering, dealing mostly with in-
compressible flows, boundary-fitted nonorthogonal methods are also widely em-
ployed, using the finite-volume concept, and generally adopting the staggered grid
concept of Harlow and Welch [5] for promoting an adequate coupling between
velocity and pressure.
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294 C. H. MARCHI AND C. R. MALISKA
NOMENCLATURE
a coefficients in the momentum and u,v contravariant components of the

energy equations velocity vector

A coefficients for the pressure X1 X3 coordinates in the Cartesian/
correction equation cylindrical coordinate system

b source term for the momentum @, p coefficients in the WUDS scheme
and energy equations a, B,y components of the metric tensor

B source term for the pressure ¥ coefficient in the UDS scheme
correction equation r diffusion coefficient

<, specific heat at constant pressure At time step

d coefficient in the velocity N viscosity
correction equation & coordinates in the general

J Jacobian of the transformation curvilinear coordinate system

k thermal conductivity p density

M mass inside the control volume ¢ scalar field

M mass flux

P pressure

P pressure correction Subscripts

P* pressure source term in the
equation for ¢ e,w,n,s denotes control volume interfaces

p transformed pressure source P,E,W, denotes the center of the control
term in the equation for ¢ N, S, volumes

R gas constant NE, SE,

s* source term in the equation for ¢ NW, SW

s* transformed source term in the X partial derivatives of first order
equation for ¢

t time . Superscripts

T temperature

u,v Cartesian components of the = denotes quantity evaluated at the
velocity vector previous time level

The staggered grid, in spite of producing an adequate coupling, introduces an
extremely cumbersome computer code implementation, especially for three-dimen-
sional problems. The need for staggered control volumes requires the calculation
of different flow areas for computing the convective and diffusive fluxes, implying
additional storage for the geometric information. In addition, boundary conditions
applications are also more difficult and more elaborate if the control volumes are
not coincident. These drawbacks have motivated recent research work in the
development of co-located methods by Rhie [6], Hsu [7], Reggio and Camarero [8],
Peric et al. [9], and Majundar [10], among others. The co-located techniques are
starting to become a currently used tool, as in Melaaen [11] and Chen and Pletcher
[12]. These methods, however, have been applied mainly to incompressible flows,
where the important coupling is between pressure and velocity.

This article presents a numerical model, designed in the framework of a
boundary-fitted coordinate system, using co-located variables, for the solution of
incompressible as well as compressible flows. The co-location technique follows the
idea presented in Marchi et al. [13]. In the case of compressible flows, the coupling
is now between velocity /density and pressure, and the approach for handling all
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speed flows follows the idea presented in Patankar [14] and in Harlow and Amsden
[15], and further explored in Van Doormaal [16] for one- and two-dimensional
flows in Cartesian coordinates, in Silva and Maliska [17], Maliska and Silva [18],
and Karki and Patankar [19] for two-dimensional nonorthogonal boundary-fitted
grids, and in Marchi et al. [20] for three-dimensional flows.

The method is tested by solving fluid flow problems in the incompressible
limit as well as truly compressible flows with strong shocks. These problems are
chosen with the aim of comparing the performance of the co-located and the
staggered arrangements.

GOVERNING EQUATIONS

The governing equations for laminar compressible flow with constant physical
properties can be written for a general scalar ¢ in the Cartesian and cylindrical
coordinate systems as [17]

T R LI S A (0
Eptﬁ +3;Pu¢+x—£6—xszév¢

d [ dd r* o ( . d¢
=T*—|— |+ — —|xji— | -P*+5* (D
ax, \ dx, x4 dx, ax,

where ¢, I'*, P%, and S? are shown in Table 1. Planar and axisymmetric flows can
be handled by putting j = 0 and j = 1, respectively, in Eq. (1). The ¢ variable
represents the mass conservation equation, the two Cartesian /cylindrical velocity
components, and the energy equation, being equal to 1, u, v, and T, respectively.

Equation (1) can be transformed to the general curvilinear coordinate system
by employing the chain rule. After some algebraic manipulations in order to put

Table 1. Expressions for P# and §¢
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the equation in the conservative form, Eq. (1) reads

s —a-(qu) + 4. i(px{Uq&) A i(pxé’Vqﬁ)
J ot x} of x} dn
YOy %’ %(réali—? —x;ﬁlj—:)
where

U= (x)u — (x)y0 3)
V=_(x)ev — (x;)u (4)
o= (x)h+ (x,)] )
y= ()} + ()} ()
B = (x)e(x)), + (x)¢(x2), @
T = [(x)eCxy)y = Cey(a)] ™ (8)

The expressions for P¢ and §¢ are presented in Table 2. As can be seen, the
Cartesian velocity components are kept as dependent variables [21].

Table 2. Expressions for P# and §¢
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@ all variables located at the ~
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DISCRETIZED EQUATIONS

Momentum and Energy Equations

To obtain the discretized equations using the finite-volume concept, Eq. (1) is
integrated over the irregular elemental control volume, Figure la, or Eq. (2) is
integrated over the regular elemental volume in the (&,m) domain, Figure 1b.
Since one is dealing with structured grids, the latter strategy is simpler and,

therefore, preferred. Integration in space and in time results in

M, dp — Mp b3 : : 2 ;
_Pzﬁpp +Me¢e = de’w + Mn¢n - M,

= —L[P*1p AV + L[$*]p AV + | D 9% +D ¢
’ ’ Yog T T am |,

a
_..[D _¢+D26_¢:| +[D3i¢i+l)4i? —[D_-’ff'f'
an |, an an

9 |,

where M, and M,, D, and D,, for example, are given by

M, = (x} pU), An

d
D, —ég] 9)

(10)
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M, = (xjpV), A (11)
D, =T*xjaJAn (12)
D, =T%xjyJA¢ (13)

and the notation L[ ] means the numerical approximation of the term inside the
brackets.

The values of ¢ and its derivatives at the control volume interfaces are
evaluated, as a function of the nodal points, using the WUDS [22] scheme. As is
well known, the WUDS scheme weights the diffusion and convection fluxes along
one coordinate direction in order to establish the value of ¢ at the interfaces. For
orthogonal grids the total flux of the property leaving, or entering, the surface
control volume can be represented by derivatives in only one direction, since the
normals to the control volume surfaces are coincident with the coordinate lines.
For nonorthogonal grids the flux crossing the control volume faces involves
derivatives in both coordinate directions. Since the WUDS procedure is a one-
dimensional weighting between convection and diffusion, it is necessary to consider
only the part of the diffusive flux along the coordinate line where interpolation is
being done. Then, the one-dimensional problem to be solved to obtain the
interpolation function is

d d dp
o - T i
ag(pUd)) r 6§(aj c?.f) (14)

Using the usual procedure to establish boundary conditions for the above
equation, the values of ¢ and its derivatives, for example, for the east face are
given by

1 1
¢e=(5+ac)¢l’+(5_ac]¢£ (15)
(M" - ((f’ﬁ"bp)
(%), -3 =

where expressions for @ and B can be found in [23]. Introducing Egs. (15)-(16),
and the corresponding ones for the remaining faces of the control volume, in Eq.
(9), one gets

M; dp

apdp = 2 (@ dnplp + L[S*1p AV — LIP*lp AV + ¥

a7n

where
Z(anb¢NB)P =a,pp +a,dy ta,Py+ a, g

+ Ape ¢NE b ased’SE, i Apw ¢NW + Ay ¢SW (18)
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where, for example, the a, coefficient is given by

1 . e It :
ae - 7(3 o aC)Me + r¢( Bxéaj)e T T[(xi B")n o (xi 'BJ)S] (19)

The expressions for the remaining coefficients of Eq. (17) are given in the
Appendix. The pressure term, L[ P*],, for the u-momentum equation is given by

(pe —pw) (px — ps)

L[P“]p = V¥ B AT Y v

Crge); (20)

As can be seen in the above equation, a central differencing scheme is used
for the pressure gradient in the momentum equations due to the co-located
arrangement of the variables. At this point it is important to mention that the way
the pressure gradient is evaluated in the momentum equation is not the key
question for promoting strong coupling between pressure and velocity. Rather, of
utmost importance is the way it is evaluated in the velocity-correction equations. In
these equations it is imperative that a consistent pressure gradient be employed.

Mass Conservation Equation

The discretized form of the mass conservation equation can be obtained from
Eq. (9), putting ¢ = 1 and the pressure and source terms equal to zero. The
resulting equation reads

(M, —Mp) / £ . 2
T+MC—MW+M,‘—MS=O (21)

In the incompressible formulation, or when p is a function of temperature
only, the mass conservation equation can no longer be used as an equation for
density. In these cases the mass conservation equation is transformed into an
equation for pressure, with the density constant or calculated through a state
equation as a function of temperature. This approach requires the well-known
treatment of the pressure/velocity coupling when segregated solutions are em-
ployed [24, 25]. For high-Mach-number flows the above-mentioned procedure can
no longer be used, since density now needs to be kept active in the mass
conservation equation. The approach of using the mass conservation equation as
an equation for density, encountered largely in the solution of supersonic flows,
also does not suffice, since it cannot be applied for low-Mach-number flows.

It seems, therefore, that both density and velocity must be kept active [14-17]
in the mass conservation equation in order to have a methodology able to solve all
speed flows. In this work the method described in [17, 18] is employed. Density and
velocity are kept active in the mass conservation equation through a special
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linearization in the mass fluxes [16). Taking M, as example, the linearization has
the form

M, = (x§),(pU* + p*U — p*U*). An (22)

where p* and U* are best estimated values, and p and U are unknowns.

An analysis of Eq. (22) reveals that when velocity plays no important role in
the mass conservation equation, such that it could be put into the coefficients, the
second and third terms on the right-hand side cancel out, leaving the first term,
representing the linearization used when high-Mach-number flows are solved.
When density plays no important role, the first and third terms cancel out,
recovering the linearization for low-Mach-number flows.

Introducing Eq. (22) and its counterparts for the other faces of the control
volume into Eq. (21), one gets

(Mp — Mp)
At
+[(xhpV ), = (xh pV ), + (xf p*V), — (2} p*V),] AE

+ [(xd pU*), — (x} pU*), + (2] p*U), — (x§ p*U), | An

- [(x{ p*U*), — (x4 p*U‘)w] An — [(x{ p*V*), — (x§ p*V')s] Aé=0
(23)

Equation (23) now needs to be converted into an equation for pres-
sure. Therefore, p, U, and V need to be replaced by functions of pressure.
The substitution of U and V by functions of pressure gives rise to the velocity-
correction equations, characterizing the velocity—pressure coupling. The replace-
ment of density as function of pressure gives rise to the density-correction
equation, introducing a new coupling. The full coupling can be now called veloc-
ity /density—pressure coupling, since now pressure dictates the changing of velocity
and density in the mass conservation equation.

Following the SIMPLEC [26] procedure, the corrections for the u and v
velocity components at the control volume interface are given by

u, =u* —d,L[P") A& (24)
=} —d L[P"le A& (25)
where p' =p — p*.

Using the relation between the contravariant and Cartesian velocity compo-
nents, one gets

Pty N A
U =U d,(a % ﬁA"ﬂ)eAf (26)

= Apl Apl
U, =U, —dw(aff——ﬁA—n)wA.f (27)

300



ALL SPEED FLOWS USING CO-LOCATED VARIABLES 301
Apl AP‘
V,=V*—d|y—-B—]| A 28
i n(w - B Y )n n (28)
Ap’ Ap'
V.=V*—-d -B—| A 29
A . S(T A B AE )S n (29)

Since we are using co-located variables, neither U nor V is stored at the
control volume interfaces. The way these velocities are calculated is discussed later.

To obtain an expression for density, the linearized state equation must be
used. Following [16, 17, the density correction equation is

p=p*+CPp' (30)

Equation (23) requires p at the interfaces of the control volume for mass
conservation. It should then be interpolated using the nodal values. The interpola-
tion is done using an equation similar to Eq. (15) with the weighting parameter ()
equal to +0.5 (if U or ¥ > 0) or —0.5 (if U or ¥ < 0) [16]. This assures positive
coefficients for the mass conservation equation. In this manner an upstream
scheme is used for density, that is,

1 1 _

ﬂ==(§+i)9p+(5*i)pe (31)
N i

pn=(5+7n)pp+(5—vn)pn (32)

with similar equations for the remaining faces of the control volume. In Egs.
(31)—(32), pp, pg, and py are obtained from Eq. (30). Introducing Egs. (26)-(29)
and Egs. (31)-(32) and their analogs into Eq. (23), one obtains the equation for
pressure correction in the following form:

Appp = X (A, pys) + B (33)
where
E(Aan’NB) =A.pg +A,pw + A, PN + A ps (34)

where the expression for the coefficients and for By can be seen in the Appendix.
Solving Eq. (33) for pressure correction, the density and velocity fields can be
corrected such that mass is conserved. It is to be noted that the pressure-correction
equation, Eq. (33), is of the five-point form, since only the principal pressure
gradient terms were retained in the velocity correction equations, Egs. (26)-(29).
This makes the computational code considerably simpler, especially in three
dimensions. Furthermore, neglecting the transversal pressure gradient terms in the
velocity-correction equations can affect only the convergence rate. Studies under-
taken in solving three-dimensional all-speed flows [20] demonstrated that the
convergence rate was not altered when the terms were neglected.
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Determination of U* and V* at the Interfaces

Since we are using co-located variables, and U* and V'* are required at the
interfaces of the control volumes, interpolation needs to be used to find these
velocities. The easiest way of finding U*, for example, would be through a linear
interpolation between u} and uf, and vj and vf (see Figure 2). This is not
recommended because it provides a poor coupling between velocity and pressure.
Instead, it is wise to create a pseudo-momentum equation for the Cartesian
velocities at the interfaces, through an average of the momentum equations at the
nearest nodal points. In this work is proposed a scheme akin to the one described
in [9] but with better convergence characteristics. Rewriting the momentum equa-
tion, Eq. (17), for the u velocity at the P and E control volumes, one gets

o ©
pUp

(ap)putt = Y (apputip)p + LIS* 1o AV + ~L[P*}p AV  (35)

0 o
EUE

(ap)gut = ¥ (apubp)e + LIS*Je AV + — LIP*“)e AV (36)

where (a,)p and (a,); represent the central coefficients for the velocities at P and
E, respectively. Interpolating linearly Eqs. (35)-(36), except for the two last terms
of each equation, one obtains

wt = [ L anutinle + L (@uutp)p + LIS*Ie AV + LIS* e AV

+(M; + M3)us /At — 2LIB**1e AV | /[(ap)p + (ap)g] (37)
Observe that the pressure gradient in Eq. (37) is evaluated at the interface, and so
a consistent pressure gradient can be obtained. The evaluation of u, through Eq.

(37) guarantees that the steady-state solutions are independent of the At em-
ployed.

—# u velocity

T v velocity

| | Figure 2. u and v velocities involved in
the calculation of u«} and v}.
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Using the same procedure, v} can also be found. Knowing u?} and v, the U*
contravariant component can also be calculated. In the same manner, U, V%, and
V.* can be found and substituted into the source term for p’.

SOLUTION PROCEDURE

1. If a true transient is to be followed, all variables are known at a time
level n.

2. Calculate the coefficients and source terms for u and v. Solve the
corresponding linear systems, Eq. (17), obtaining u* and v*.

3. Interpolate u* and v* using equations like Eq. (37) to obtain U* and V'*
at the interfaces.

4. Calculate the coefficients and source term for p'. Solve Eq. (33) for p'.

5. Correct the contravariant velocity components with the Egs. (26)—(29) and
the density with Eq. (30).

6. Correct u* and v* at nodal points with expressions akin to Eqgs. (24)—(25).
At this point several alternatives are possible. If one wants to solve the u,
v, p, p coupling for a given set of coefficients, cycling back to step 2,
computing only the new source term involving pressure, is necessary. If the
nonlinearities are also taken into account, the coefficients should also be
calculated in step 2.

7. Solve for temperature. Using the state equation, calculate new densities.

8. Return to step 2 and iterate until convergence is achieved. At this point
the solution is known for the time level n + 1.

9. Repeat the procedure until steady state is reached or until the solution is
as desired.

TEST PROBLEMS

The main objective of the following tests is to compare the performance of
the numerical schemes using co-located and staggered variables. The staggered
arrangement employed for the solution of the test problems is described in [17, 18]
and was fully tested previously. Since the model can solve all speed flows, we have
included incompressible as well as compressible flows with strong shocks in the
testing procedure.

Incompressible Flow in the Entrance Region of Parallel Plates

The first test problem is the laminar incompressible flow in the entrance
region of two parallel plates. The Mach number was taken equal to 5 X 1077 in
order to have a truly incompressible flow. The Reynolds number based on the
distance between the plates was taken equal to 5. Figure 3 shows the axial velocity
profile for different locations using staggered and co-located variables. The results
are coincident. Remember that the entrance flow is a two-dimensional problem
with a nonzero v velocity, which requires the mass conservation equation to be
locally satisfied, which is in turn intimately connected with the way variables are
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02 Figure 3. Velocity profiles for different
/ axial stations for M = 5 X 10~ and Re,

(X3 23 T s .y

located on the grid. Although apparently simple, this problem serves to demon-
strate the ability of the model to solve very-low-Mach-number flows as well as the
time-step independence of the co-located algorithm. The CPU effort to obtain the
solution using both arrangements is the same. A 22 x 18 grid was used to obtain
the solution.

Compressible Flow over an Obstacle

The second test problem is the supersonic flow over an obstacle [16], as
shown in Figure 4. The constant-pressure lines for this problem are shown in
Figure 5a for both variable arrangements for a 22 x 18 mesh. It can be seen that
behind the obstacle the agreement is not good. The discrepancies, however, are not
due to a failure of any arrangement, but due to the coarseness of the mesh. Figure
5b demonstrates this, where both results agree well when a 44 x 36 grid is used.
Figure 6 shows the convergence behavior as a function of the size of the time step,
for both arrangements.

An important finding is the fact that both grid arrangements have the same
minimum CPU effort for almost the same time step, besides the fact that the
staggered arrangement offers a wider range of time steps where convergence can
still be achieved.

Compressible Flow over a Launch Vehicle

As a final test, the supersonic flow over the forebody of the Brazilian launch
vehicle (VLS) shown in Figure 7a is solved using the Euler equations for zero angle

7h!HN
v oT ﬁ
PN
air N
M= 20 aa M
T=2718K
p=103 kPx
u-v-E-O
Y & 3T ar
! "o G -
X L l"_ | Figure 4. Geometry and boundary condi-

L tions. Flow over obstacle.

- — —- -
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Figure 5. (a) Constant-pressure lines. Co-located and staggered
arrangements. 22 X 18 grid. (b) Constant-pressure lines. Co-
located and staggered arrangements. 44 X 36 grid.

of attack and Mach number of 3.75. The 60 X 24 grid employed is shown in Figure
7b, where all the appropriate boundary conditions used are listed. The grid was
generated algebraically considering a hyperbole as outer boundary.

Figure 8a shows the numerical results for the pressure coefficient for
co-located and staggered arrangements. The results are coincident and are repre-
sented by a unique solid line. Since the staggered arrangement is a fully tested
variable layout even in three-dimensional situations, the good agreement obtained
with the co-located arrangement encourages the implementation of the proposed
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Figure 6. Convergence behavior for the

9% =5 YA Y- ¢ ™o oo—located_ and staggered arrangements.

time step (dimensionless) 44 x 36 grid.

procedure for three-dimensional problems. A useful result, also depicted in Figure
8a, is the comparison of the numerical results with the experimental ones [27]. It
can be seen that the results are in good agreement, which serves as an overall
assessment of the full methodology. Figure 8b shows the pressure coefficient
contours for the same flow condition just described, for both arrangements. Again,

the results compare very well.

3’:’"".'1‘:‘*"".4 '
< 11 = =l
% —F

(a)

(b)
Figure 7. (a) Full configuration of the VLS vehicle. (b) 60 % 24 grid over the VLS fairing.
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Figure 8. (a) C, for M, = 3.75. (b) Pressure coefficient contours.
Co-located and staggered arrangements.

Finally, the computational effort to obtain the solution to the same level of
convergence is depicted in Figure 9. Two findings are noteworthy. The computa-
tional effort necessary for the staggered arrangement is about 60% greater than
the one required by the co-located layout in the minimum CPU effort, and the
range of time steps to achieve convergence is wider for the latter arrangement.

CONCLUDING REMARKS

The use of the staggered grid arrangement has remained as the alternative
for treating the pressure—velocity coupling in the solution of incompressible fluid
flow problems for more than two decades. For three-dimensional codes, however,
its implementation is complex and cumbersome, especially if boundary-fitted
meshes are employed, due to extra computational storage required for the geomet-
ric information about the different control volumes. Therefore, the staggered
approach needs to be replaced by co-located schemes for structured and unstruc-
tured grids.
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1500

—_
“ 1000

g

CPU effort (

-- staggered
co—located

o4 T = Figure 9. Convergence behavior for the

AT N 2.0
time step (dimensionless) co-located and staggered arrangements.

The methodology advanced in this article demonstrated that the use of
co-located variables is feasible and general, making it possible to treat compress-
ible and incompressible flows in a very stable manner. The methodology has been
extensively employed with success in many fluid flow and heat transfer problems,
as in natural convection by Vielmo et al. [28], in low-Reynolds-number turbulent
flows (k-£) by Vasconcellos [29], in nozzle flow by Marchi et al. [30], in three-
dimensional supersonic flows by Azevedo et al. [31], and in aeroelastic analysis by
Bortoli et al. [32].

APPENDIX

Coefficients for v and v Momentum and Energy

1 ) o I'? . ;

a, = —(5 B ﬁe)Me +I%(Bxiad), = [(48D, - (48]
1 : i ¥ ) :

a, = - (E = &n)Mn + 04 Briyd), - [ BD), - (x4 D), ]

1 ’ G re . :
o = (5 + @My + 0¥ Brbar), - [k, - )]

1 : i o -
a, = (5 B ES)M, + T4 Bxiyt), = (G4 8Dy — (x4 B9)c]

)
Il

e _ oo |
w= = [HABD A+ (4BD,] e =[G4 BD) + (] B]),]

8
Il

o Sy _ T nudis :
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Coefficients for Pressure (p')
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