JOURNAL. OF SPACECRAFT AND ROCKETS
Vol. 33, No. 1, January-February 1996

Code Validation for High-Speed Flow Simulation Over
Satellite Launch Vehicle

J. L. E. Azevedo® and P. Moraes Jr.
Instituto de Aerondutica e Espaco, Sao José dos Campos, SP 12228-904, Brazil
and
C. R. Maliska,* C. H. Marchi,? and A. F. C. Silval
Universidade Federal de Santa Catarina, Florianopolis, SC 88040-900, Brazil

The development of an all-speed Euler and/or Navier-Stokes flow simulation code that uses a segregated finite

volume algorithm for three-dimensional body-conforming curvilinear coordinates with a collocated variable ar-
rangement is described. The efforts towards the physical validation of this code are the major contribution of the
present work. The details of an experimental wind-tunnel investigation for pressure distribution and force mea-
surements for the Brazilian Satellite Launch Vehicle (VLS) are also described. The computational results obtained
for subsonic and supersonic flow conditions are in very good agreement with the experimental data. Transonic
calculations, however, show poorer agreement with the available data for equivalent and even more refined meshes.
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currently being used in the VLS design process.

produced by the present codes are already supplying acrodynamic information that is

Nomenclature € = explicit-side artificial dissipation
A B C = inviscid flux Jacobian matrices in parameter
generalized coordinates €1 = implicit-side artificial dissipation
Cp = specific heat at constant pressure parameter
Cp = pressure coefficient M = vlscosn_y coefficient
E.F.G = flux vectors in generalized curvilincar £.0.¢ = generalized curvilinear coordinates
coordinales £ &y, | P L = melric lerms
e = total energy per unit ol volume P - d_cnsny ‘ N
e = specific internal energy T = lime (_genemllzed curvilinear
J = Jacobian of the coordinate coordinate system)
transformation ¢ = generic variable in the segregated
Lg, Ly.ilg = left-hand-side operators for the all-speed scheme
. central-difference scheme ¥ = model roll angle
M = Mach number
n = temporal index Iniiodectica
r ;g:::::z—gmdienl i HE first Brazilian Satellite Launch Vehicle (VLS) is of the
E segregated all-speed scheme cluster type w_ilh four strap-on boosters arol_jr!d tl:le central
0 & vectotaf conserved variablesin core, us_shcuwn in Fig. l The _hammcrhcad-typc famng‘ls of non-
generalized curvilinear coordinates conventional shape, but its use is @Mer common on satellite launch-
Re = Reynolds number ers o accommodate spac_ec'raﬁ with a diameter larger _lhan the last
Ry, Ry, R; = right-hand-side operators for the pufjstlllg slage. Thc prediction of lh; erJca]‘ aerodynan}lc character-
central-difference schieme istics pf such a tnlrm_g, fqr shape optimization and design purposes,
5 = viscous source terms in the segregated is typically mad_e primarily through wmq-lunnel tests. These tests,
all-speed scheme lyowcvcr. have high cost ar_ld usually require a long tymarlound time
; = time (Cartesian coordinate system) for the clumplclu cyclt_:. which encompasses lest specification, modt_tl
u,v.w = contravariant velocity components production, the test itself, and data reducuon‘_Therefore, l:here is
u, v, w = Cartesian velocity components great interest in, and much effort has been put into developing, the
X, ¥.2 = Cartesian coordinates L‘il[):’lhl]]ly Ulf simulating such ae!'odynamEc flowfields. Of particu-
a = angle of attack lar interest is acpl_.lralely computing the high-speed flow about the
L e, ..., Q33 = metric coefficients in the segregated hamr_’nerhead fairing. Thus far only steady-state cases have been
all-speed scheme considered. .
Y = ratio of specific heats A wind-tunnel test program was established and performed both
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for actual design and for code validation purposes. This program
has covered a wide range of test parameters such as Mach number,
Reynolds number, and angle of incidence. The test program has at-
tempted to cover the relevant aerodynamic regimes for the complete
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expected flight trajectory of the vehicle. Moreover, the test program
was organized in such a way that the experimental data could be read-
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ily used for computational fluid dynamics code development and
validation studies. In particular, although the configuration tested
was inherently complex, care was exercised to avoid booster at-
tachment details and body external protuberances, which would be
extremely difficult to simulate numerically without severely penal-
izing the size of the computational grids.
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Fig. 1 General configuration of the VLS.

The institutions represented in this paper have been actively in-
volved in the development of high-speed flow simulation codes for
several years now. It is hoped that these codes will help to ease the
burden presently put on the experimental investigations for the VLS
aerodynamic design. However, before these codes can be used in a
design environment, they must be thoroughly validated. Moreover,
although this requirement is more subjective, project engineers have
to develop confidence in the use of the codes for their analysis and
design work. Two distinctive lines of work have been pursued. The
first one was based on the methods typically used in aerodynamics,
in which the governing equations are solved simultaneously with
local linearization based on Jacobian matrices. The other was based
on segregated solution methods, which were originally developed
for low-speed flows and heat-transfer problems. The emphasis in
this paper will be on the second class of methods, since a novel
methodology for flow simulation at all speeds has been recently
developed by some of the present authors.!?

It would be appropriate at this point to discuss some of the mo-
tivations for pursuing the all-speed method. A first aspect con-
cerns the need for simulating all phases of flight of a launch ve-
hicle in the lower atmosphere. These vehicles are typically fly-
ing at a high speed during most of their atmospheric flight, but
there are a few situations in which the flowfield over the vehicle
is nearly incompressible. For instance, a vehicle on the launch-
ing pad is subjected to lateral winds, and the vortical flow struc-
ture created by the vehicle in this situation can be very impor-
tant for its dynamical stability. Standard compressible-flow codes
most certainly would have difficulties in simulating such flowfields.
If one considers the effort and the time involved in the develop-
ment and validation of these flow simulation codes, it is worth-
while investing in the development of a code that would be ca-
pable of performing all the required simulations. Moreover, at the
time that the development work described in this paper was initi-
ated, there was a fairly large amount of expertise in the Brazilian
scientific community on flow simulation methods for low-speed
flows, but not for high-speed compressible flows. VLS program
managers at the time decided that it was worthwhile investing in a
few groups that had demonstrated such expertise, and charging them
with the objective of extending their flow simulation methodologies
to higher-speed flow regimes. This extension could assume various
forms, and one of them is the all-speed method described in this
paper.

The present work will briefly describe the experimental investiga-
tion and code development. This paper will concentrate on the phys-
ical validation of the results produced by the new code against the
experimental data. Code-to-code comparisons are also performed,
using independent computational results generated by a central-
difference, implicit, approximate factorization algorithm, which has
been previously tested for similar configurations.** Further details
of the experimental test program are reported in Ref. 6. More details
of the numerical formulation in the new segregated, finite-volume
code are described in Refs. 1-3 and 7.

Experimental Test Program

The general wind-tunnel test program comprised three different
test series, although only the first two are included in the present
work. These tests considered the acquisition of global and local ve-
hicle characteristics through the measurement of forces, moments,
and local pressures along the vehicle. The third test series consid-
ered the simulation of liftoff conditions in a low-speed wind tunnel.
The computational simulation of liftoff conditions has not been at-
tempted yet, and therefore the results of this third test series will be
of no concern for the present work. The major interest in the present
case will be the local pressure measurements reported in Ref. 8.

Pressure measurement tests were performed both in a continuous-
type transonic wind tunnel and in a blowdown supersonic tun-
nel. The continuous transonic tunnel has a test-section size of
1.75 x 1.77 m, and it uses perforated walls for tests in the tran-
sonic speed regime. Tests were conducted in this tunnel for the
Mach-number range from 0.5 up to 2.5. Tests in the Mach number
range 2.5 = M, = 3.75 were performed in the blowdown tunnel. A
1:15-scale smooth model with nonattached boosters was used. The
model had approximately 320 pressure taps distributed along the
surface of the vehicle's central core and boosters. The model was
mounted in the test section using a five-sting support system, which
allowed the simulation of the strap-on separation in a static man-
ner. A sketch of the five-sting support system is indicated in Fig. 2.
To increase the amount of azimuthal-pressure information without
exceeding the available internal space of the model, pressure taps
were distributed along various azimuthal positions on both the core
and boosters, and the model was tested at two different roll angles,
¢ = 0 and 90 deg. This is indicated in Fig. 3, where a front view
of the model is sketched. Since all tests were performed for posi-
tive and negative angles of attack, this distribution of pressure-tap
lines allowed measurements every 30 deg in the azimuthal direction,
from leeward to windward, for all bodies involved. For each Mach
number tests were performed from —6 to +6 deg in angle of attack
at 2-deg intervals.

One of the major thrusts for the specification of the five-sting sup-
port was the need for good experimental data for code 'validation.
Since it is very difficult to model computationally all the details of
actual booster attachments, it was decided to perform experimen-
tal tests without these attachments to provide the computational
specialists with clean data with which to compare their results.
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Fig. 2 Sketch of the wind-tunnel model with the five-sting support
system.
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Fig. 3 Front view of the pressure-tap locations: r-, presure orifices; B,
hooster; CC, central body; and —, pressure orifice line,
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Fig. 4 Reynolds-number effects on vehicle longitudinal pressure cocf-
ficient distribution.

Moreover, it is fairly clear that in a code validation effort one should
not unnecessarily complicate the geometry, because the grid, and the
corresponding computational time, can become very large. The so-
lution to this problem was to support each individual body with its
own sting. Certainly, the same system can be used 1o test the vehicle
while simulating the condition of strap-on separation.

Finally, it is worth observing that the wind-tunnel tests have also
contemplated the problem of Reynolds-number influence in the flow
topology, i.e., the effect of separation and reattachment points in the
flowfield. In particular, experimental results have beenable to clearly
indicate the effect of the Reynolds number in the llow scparated
region in the boattail. This result is shown in Fig. 4 for M, = 3
and zero angle of attack, at Reynolds numbers (based on the model
length) of 9.3 x 10° and 29.0 x 10% A very important effect is
seen, because flow separation in the boattail can adversely affect
the buffeting behavior of the vehicle.

Central-Difference Algorithm

The compressible Euler equations” can be wrilten in strong

conservation-law form for general three-dimensional, body-

conforming, curvilinear coordinates'” as
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In the preceding equations, the usual nomenclature is being used:
pisthedensity, 4, v, and w are the Cartesian components of velocity,
and ¢ is the total energy per unit of volume. The equations have been
nondimensionalized following the work in Refs. 10 and 11.

The pressure p can be obtained from the equation of state for
perfect gases:

p=(y—Dpe;=(y = Dle— 1o +* +w)] (6

The contravariant velocity components are defined as

U=¢§&+Eu+Ev+Ew (7a)
Vi=un +nu+nv+nw (7b)
W=+ Lu+v+ Lw (7c)

Throughout this work, the curvilinear coordinate system is de-
fined so that & is the longitudinal direction, 5 is the normal direc-
tion, and ¢ is the circumferential direction. This coordinate system
is obtained from the transformation of variables

T =1 (8a)
§=£(x,y.2,1) (8b)
n=nlx,yz1t) (8c)
{=0xy.z.0) (8d)

The Jacobian of the transformation J can be expressed as
: : : . : -1
I o= (e 2o Hxy Ve 2e + X Ye2y — Xe Yo 2y — Xy Ve — X Yo 2e) T (9)

Expressions for the various metric relations can be found in Refs.
10 and 11, among other references.

In the present case, the above governing equations were imple-
mented through the use of finite difference methods. The implicit
Euler method was used for the time march, and the spatial deriva-
tives were approximated by three-point, second-order central dif-
ferences. The Beam—Warming implicit approximate factorization
scheme'*"* was used for the solution of the resulting finite differ-
ence equations (o obtain a cost-efficient algorithm. The resulting
scheme is sccond-order accurate in space, as mentioned, but it is
only first-order accurate in time, because of the use of the implicit
Euler method.

The factored finite difference equations can be written in the delta
form as

L,L LA, Q" =R+ R, + R, (10)
The various operators are defined as

Le =1+ At8;A" —¢; At J 7'V Ay J (11a)
L,=1+At5,B" — ¢, A117'V,A,J) (11b)
Li=1+015C" —¢ AtI7'V AL (11c)

Re = —At 8 E" — g At 17" (Ve A2 Q" (11d)

R, =—At8,F" —eg At J'(V,A,)2 10" (11e)

R, = —A18,G" —ex A1 (VA Q" (tn

In the above, &, 4,, and §; are central-difference operators; Vg, V,,
and V; are backward-difference operators; and Ag, A, and A, are
forward-difference operators in the &, n, and ¢ directions, respec-
tively. As an example,

8¢ Q?.;J.- = %(in B _:'-l,,_k) (12a)
Ve QZ‘.;_;- = Q:j,k - _?—4,;‘.; (12b)
Ag (-:l;x = T);r+-t.;.1 = Q:I._:.x (12c)
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Finally, 4, is a forward-difference operator in time given by
A;Q":Q””'_Q“ (13)

Artificial dissipation terms have been introduced in the operators
described by Eq. (11) to maintain the stability of the numerical solu-
tion process. Fourth-order numerical dissipation terms were added
to the right-hand-side operators, and second-order terms were used
in the left-hand-side operators. From an accuracy standpoint, one
would like to also use fourth-order artificial dissipation in the im-
plicit operators. However, computational elficiency constraints pre-
vent such use. The Jacobian matrices A", B", and " are described
in detail elsewhere in the literature (see, for instance, Ref. |1).

Segregated All-Speed Scheme
Preliminary Considerations

Most of the available algorithms for the solution of the Euler,
or the Navier-Stokes, equations are only suitable for either com-
pressible or incompressible flows. Although there is no universal
agreement as to the cause of this behavior, there are several authors
who believe that the key point is associated with the form in which
density is treated in the mass conservation equation. In the present
work, a numerical method for the solution of three-dimensional,
viscous or inviscid, all-speed flows of a perfect gas is considered.
The method is developed in the framework of a boundary-fitted,
structured, finite-volume spatial diseretization, and uses a fully im-
plicit time march procedure. The system of equations is solved in
a segregated manner in which one of the dependent variables is as-
sumed to be active in each of the governing equations. All other
variables in that equation assume a passive role in the linearization
process. Primitive variables are used as dependent variables. More-
over, a collocated variable arrangement is employed which renders
the method compact and provides considerable savings in the stor-
age of geometric information concerning the grid system.

The method is derived from the well-known approach used for
incompressible flows,'* whereby the mass conservation equation is
transformed into an equation to find the pressure. In this equation,
density and velocity components are replaced by relations involving
pressure obtained from the equation of state and from approximate
forms of the momentum equations, respectively. This allows both
velocity and density to remain active in the continuity equation'
and therefore enables the method to treat both compressible and
incompressible flow problems. It should be pointed out that a simi-
lar approach has been presented in Ref. 15. In this paper, however,
the procedure developed in Refs. 1-3 is employed. Moreover, the
present version of the code has incorporated the ability of consid-
ering multiple-block grids. The difficulty in discretizing complex
computational domains such as the flowfield about the VLS vehicle
has indicated the need for such procedure.

Formulation of the Method

The segregated all-speed finite volume scheme as applied to the
Navier-Stokes equations will be described in this section. For its
application to the Euler cquations, one simply has to neglect the
viscous terms and make obvious changes on the wall boundary con-
ditions. In the nomenclature that is usually used with segregated
finite volume schemes, the Navier—Stokes equations can be written
for general, body-conforming, curvilinear coordinates as'®
J
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The general form given in Eq. (14). with the appropriate vari-
ous source terms, can recover the continnity equation, the three

momentum equations, and the energy equation. For that, ¢ must
be chosen as 1, u, v, w, and T, respectively. Density and velocity
must remain active in the continuity equation'” to solve both incom-
pressible and compressible flows. Through the use of the SIMPLEC
method ' for the pressure-velocity coupling, the continuity equation
is used for the calculation of pressure, the equation of state is used
to obtain the density, and the three momentum equations plus the
energy equation are used to obtain the other quantities (u, v, w, and
T). A collocated variable arrangement is employed in the present
work. Further details of the numerical methodology used here can
he seenin Refs, 2 and 3,

The solution procedure that will be described next assumes a
single grid block. The necessary modifications in this procedure to
accommodate a multiblock strategy will be discussed in the next
section. Once initial values for the six state variables are known, the
solution procedure adopted in the present work takes the follow-
ing steps: 1) estimation of the u, v, w, p, T, and p fields at instant
t + At; 2) computation of the coefficients for the three momentum
equations, 3) computation of the coefficients for the continuity equa-
tion, 4) computation for the source terms for u, v, and w, 5) solution
of the momentum equations (this step determines new velocity com-
ponents ue*, v*, and w*, which do not necessarily conserve the mass),
6) evaluation of the contravariant velocity components U*, V*, and
W* . 7) computation of the error, or the residue, in the continuity
equation using the available contravariant velocity components and
density field, 8) evaluation of a correction to the pressure field, us-
ing the coefficients in step 3 and the residues determined in step
7. 9) correction of velocity components and densities by the new
pressure field (the resulting fields conserve mass), 10) computation
ol the coellicients and source terms for the energy equations, 11)
calculation of a new temperature field, 12) computation of the den-
sity as function of pressure and temperature, and 13) return to step
I and iteration until the steady state is reached. !

The solution process, as presented above, does not involve any
iteration cycle within each time interval. However, because of the
type of linearization adopted and because of the coupling scheme
implemented. some steps must be executed more' than once within
each time step. Inthe present work. the computations associated with
steps 3 through 9 were usually executed twice for each time interval.
This inner iteration cycle, which has no meaning for incompressible
problems, allows the use of larger time steps. Finally, it should be
emphasized that steps 5, 8, and 11 involve the solution of linear
systems.

Multiblock Technique Implementation

The multiblock implementation used in the present work was ac-
tually developed in two phases. The initial phase assumed that there
would be a perfect match of the boundary control volumes on two
adjacent grid blocks. Later, this was extended to the general case in
which the sizes of the control volumes in two adjacent blocks do not
have any specilic relation between them. Moreover, it is important
to emphasize that the present approach assumes no overlap of adja-
cent grid blocks. In other words, adjacent grid blocks simply touch
cach other at their common interface. Discussibn of the simpler
case is presented first, because it is instrumental in understanding
the procedure adopted for the general case. It should also be empha-
sized that the important point to be discussed is the transferring of
information from one grid block to its neighbor, since within each
grid block the solution process is as previously described.

The present finite volume approach uses fictitious, or slave, con-
trol volumes to implement boundary conditions in each grid block.
These control volumes are located outside the computational do-
main of interest (for each block) and serve the sole purpose of im-
plementing boundary conditions. Hence, the previous statement that
grid blocks do not overlap needs some additional explanation. The
actual control volumes do not overlap, but the fictitious volumes of
one grid block do overlap a few actual volumes of the adjacent grid
block. Thus, when solving for a given grid block, the information on
its fictitious volumes at an internal grid-block boundary comes from
this overlapping. Moreover, this explains the distinction previously
made between the two phases of the work reported in this paper.
In the initial phase, there is o perlect mateh between the fictitious
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volumes of one grid block with the actual boundary volumes of the
adjacent one. In the general case, such nice coincidence does not
occur, and one must use some form of interpolation to obtain the
properties of the fictitious control volume from those of the actual
control volumes in the adjacent block that have some overlap with
the fictitious volume.

The procedure for information transfer in the case of a perfect
match between adjacent control volumes (initial phase) is based
solely on the direction of the flow at the interface. If the contravari-
ant velocity component at the interface is positive (that is, the flow
is leaving the grid block being currently solved at that interface),
property values at the interface are set equal to their values at the
center of the interior volume. Therefore, in this case, the solution in
the current grid block is independent of the solution in the adjacent
grid block. However, since the numerical method being used needs
equations for the calculation of the fictitious volume, the properties
of the fictitious volume are simply set equal to those of the inte-
rior volume. The opposite situation occurs when the contravariant
velocity component at the interface is negative. In this case, the
interface is an entrance boundary in which all flow variables are
prescribed. The difference between this boundary and, for example,
a freestream boundary is that the properties do not receive constant
values. However, their values are determined from the correspond-
ing current values of the properties in the control volume of the
adjacent grid block. Hence, u, v, w, T, p, and p of the fictitious
volume corresponding to the grid block being solved are set equal
to their respective values in the control volume of the adjacent block.
Moreover, properties at the interface itself are also calculated using
the values of the control volume at the adjacent block, and of course,
the metric terms of the interface.

When the control volumes on both sides of the interface do not
have the same dimensions, it is necessary to determine which real
control volumes of the adjacent block surround the centroid of the
fictitious volume of the grid block currently being solved. Once this
has been done, the procedure is similar to what we have described
for the case with coincident volumes. The difference, now, is that
properties at the centroid of the fictitious volume must be determined
by an appropriate interpolation of the values associated with the
centroids of the control volumes of the adjacent block that have some
overlap with the fictitious volume considered. If the contravariant
velocity component at the interface is positive, interface properties
are set equal to their corresponding values at the interior volume,
If the contravariant velocity component at the interface is negative,
one must first perform the interpolation previously discussed, and
then determine the interface values following a similar procedure as
discussed for the case ol coincident volumes.

It is important to observe that, in the three-dimensional case and
considering the general case discussed, typically there are eight
control volumes involved in this interpolation process. Hence, the

~ computational time involved in finding the control volumes that
surround the centroid of the fictitious volume and performing the
trilinear interpolation described can be signilicant. Therefore, an
approximate procedure for transferring information was also imple-
mented in which the property values at the centroid of the fictitious
volume are taken to be equal to their corresponding values at the
actual volume of the adjacent block whosc centroid is the closest to
the centroid of the fictitious volume. This is clearly introducing an
approximation, which, however, becomes less serious as the mesh
is refined. Tests performed comparing the correct treatment of the
interface and the approximate one here described have indicated
that, in most cases, the results are extremely similar. Obviously, the
approximate treatment has a lower computational cost.

The algorithm for the numerical solution of the problem with the
multiblock implementation is actually quite similar to the one that
has been previously described. The difference is that the advance
of the iteration scheme in time is done by performing a few itera-
tions in each block, transferring the information on this block to its
neighbors, and then moving on to the next block until the complete
computational domain is advanced the same number of iterations.
Then we return to the first block and repeat the whole procedure
until a convergence criterion is satisfied for all blocks. It was found
that three to five iterations in each block, before transterring the

information to the adjacent blocks, seems to be a good compromise.
It is worth mentioning that this multiblock approach is extremely
useful not only for the case of very complex configurations, but also
for the case in which the available computational resources do not
have enough central memory to accommodate the complete grid
(or all the grid blocks) in core. Hence, only the grid block can be
worked on in central memory. Therefore, from a computational effi-
ciency point of view, it can be extremely helpful to perform several
iterations on one grid block before having to write this block’s in-
formation on disk and reading in the next block’s information. Of
course, this can only be done if this procedure does not seriously
deteriorate the overall convergence rate of the algorithm. Finally, the
authors refer the interested reader to the work in Ref. 7 for further
details of the present implementation of the multiblock technique.

Comparison of Computational Performance

The results to be reported in the present paper were all fully
converged to engineering accuracy. However, the convergence cri-
terion varied between the two codes discussed. The quantity mon-
itored in the central-difference code to determine convergence is
the maximum density residue. Experience has shown that a four-
order-of-magnitude drop in the maximum density residue is enough
for convergence to plotting accuracy, and this has been the criterion
adopted for the central-difference code calculations. Typically, some
2500-3000 iterations are required to achieve convergence with this
code for a transonic case. The convergence criterion adopted for the
segregated finite volume code monitors the normalized maximum
pressure variation in the field between two consecutive iterations.
Typically, one requires this variation to be less than 10~* before
accepting convergence. Transonic calculations usually need of the
order of 300 iterations to achieve convergence according to the above
criterion.

The codes discussed in this paper were run on a Convex C-210
computer and on an HP-Apollo DN-1000 workstation. The CPU-
time comparisons to be presented will refer to Convex running times.
The central-difference code runs at 7.99 x 1075 s per iteration per
grid point for a Euler calculation. The segregated all-speed code,
already with the multiblock implementation, runs at 24.8 x 1075 s
per iteration per grid point for an inviscid calculation. Therefore, a
typical transonic case needs of the order of 32 min to converge with
the all-speed code running in Euler mode and using a 60 x 24 x 18
point grid. For a similar grid, the central-difference code would
nced approximately 100 min to achieve convergence. Therefore, it
is clear that the segregated all-speed code is at least 3 times faster
than the central-difference code for a comparable problem, besides
having the multiblock capability that the central difference code
does not have, Moreover, the segregated all-speed code can also be
run in Navier-Stokes mode, though its computational performance
is then somewhat degraded, as one should expect. For a mesh that
has 1.5 times more grid points than the previously cited mesh, which
is essentially a comparable mesh except with further refinement in
the wall-normal direction to capture viscous terms, the all-speed
code needs approximately 2.5 h to achieve convergence for a lam-
inar calculation. All codes were run using double precision in the
Convex.

Finally, the subject of computational accuracy must be addressed.
For finite volume codes, the order of accuracy of the solutions is
mostly associated with the form in which properties are interpo-
lated at volume interfaces for the flux calculations. The present seg-
regated all-speed code uses an adaptive expression for this interpo-
lation, which is dependent on the cell Peclet number. Therefore, this
interpolation essentially yields a second-order accurate formula in
viscous-dominated regions, whereas it reduces to a fully upwind in-
terpolation, and hence first-order accuracy, in convection-dominated
regions. For the high-speed flows considered in the present work,
the all-speed method should be first-order accurate throughout most
of the flowfield. However, it seems to produce very good results
for subsonic and supersonic flow cases, as the forthcoming re-
sults show. The central-difference code is second-order accurate in
space everywhere. Both codes are first-order accurate in time. How-
cver, since only steady-state calculations are sought, this is of no
concern.
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Some Validation Results

The calculations performed for the VLS so far have only consid-
ered the central body. Therefore, none of the computational results to
be presented here will include the effect of the boosters. When com-
paring these computations with the experimental data, precautions
were taken to avoid comparisons in regions in which the proper-
ties at the central body are affected by the presence of the boosters.
Hence, the computations are mainly concerned with the forebody
portion of the vehicle.

Figure 5 presents pressure coefficient distributions for the VLS
obtained with the centered finite difference algorithm previously
discussed. These results are presented for comparison purposes,
since the major interest in this work is to discuss results using the
segregated finite volume algorithm with the multiblock implemen-
tation in comparison with experimental data. As indicated in Fig. 5,
the freestream conditions considered in these computations were
M., = 0.5 and 3.0. The two cases assumed a 0-deg angle of attack.
The computational meshes used in these calculations were gen-
erated algebraically for one axisymmetric longitudinal plane, and
then rotated 360 deg around the body. Therefore, the finite difference
calculations use periodic boundary conditions in the circumferential
direction. This is in contrast with the finite volume calculations, to
be presented next, which use symmetry boundary conditions in the
circumferential direction. The computational meshes used for these
simulations had 63 x 34 x 26 points in the longitudinal, normal,
and circumferential directions, respectively. It is clear from Fig. 5
that both subsonic and supersonic cases are in good agreement with
the experimental data. In the subsonic case, we also observe an
overexpansion of the flow in the forward cone-cylinder intersec-
tion. Experience with axisymmetric calculations has indicated that
this has a tendency to occur with Euler simulations with the present
method, but that the overexpansion typically disappears when vis-
cous terms are included in the formulation.

Pressure distribution comparisons for the segregated finite vol-
ume algorithm were performed in the Mach-number range 0.5 <
M., < 3.0, and considering angles of attack of 0, 2, and 6 deg.
Some representative results of the calculations performed with this
code are presented in Figs. 6-8. The leeside pressures are shown
in these figures. Similar agreement is obtained for other azimuthal
planes. The computational meshes used for these calculations had
48 x 70 x 12 control volumes in the longitudinal, normal, and
circumferential directions, respectively. It should be emphasized
that the computational domain in the longitudinal direction extends
further downstream in the finite difference calculations, which jus-
tifies the difference in the number of longitudinal grid points from
that in the present calculations. On the other hand, the computations
presented in Figs. 6-8 show results for viscous simulations, which
accounts for the marked increase in the number of grid points in the
wall-normal direction. Good agreement is seen between computa-
tional and experimental results for both subsonic (M, = 0.5) and
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Fig. 5 Inviscid finite difference ealculations for subsonic and super-
sonic freestream conditions.
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supersonic (M., = 3.0) llow cases. Morcover, it is evident from

Figs. 6 and 8 that the relevant flow features are correctly captured
by the simulation.

The agreement in the transonic case, shown in Fig. 7, is much
poorer. Of special concern is the fact that near x/L = 0.15,
which is the location of the forebody cylinder—boattail intersection,
both viscous and inviscid simulations predict a local expansion of
the flow, whereas the experimental results show no indication of
such behavior. Videotapes of the wind-tunnel tests indicate that for
M, = 0.9 there is a rather strong shock wave impinging upon the
vehicle’s forebody cylindrical section. This effect is clearly indi-
cated by the experimental pressure coefficient distribution shown in
Fig. 7. Therefore, the current explanation for the difference in pres-
sure distribution behavior around x/L = 0.15 is that the present
implementation of the code is unable to capture the flow separation
that occurs at the impingement point of this transonic shock. Hence,
the computation can “see” the expansion at the forebody cylinder—
boattail intersection, whereas the actual flow is separated and does
not see the expansion.
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Fig. 9 Comparison of leeside pressure coefficient distributions with
multiblock implementation.

It should be emphasized that the present simulations consider
laminar flow, since a turbulence model has not been implemented
into the code. Moreover, the experimental tests were performed for
a Reynolds number of the order 107. Hence, there is no question
that the experiment has turbulent flow. For this reason, the valida-
tion effort in the present work has concentrated in the comparison of
the pressure distributions. As the results indicate, the implemented
capability seems to provide good agreement with the experimen-
tal data, except for the transonic flow case. The implementation of
appropriate turbulence models into the present codes is an activity
that the authors will pursue in the future to enhance the compu-
tational simulation capability for these large launchers, but that is
beyond the intended scope of the present work. Nevertheless, at the
present stage of development, the code already gives very useful
information for preliminary design studies.

Inviscid results using the multiblock technique are presented in
Fig. 9 for freestream Mach number 3.0 with 6-deg angle of attack.
Two different computational meshes were used for these simula-
tions, besides the single block grid. Each of these meshes had two
blocks: an inner block close to the body surface and an outer block.
Mesh 1 had 60 x 10 x 18 volumes in the inner block and 16 < 14 x 18
volumes in the outer block. Mesh 2 had 60 x 14 x 18 in the inner
block and 60 x 10 x 18 in the outer block. The single block grid is
formed simply by the addition of these two grid blocks in a single
mesh. The leeside pressure distributions shown in Fig. 9 indicate
that the multiblock calculations agree well with the single block
solution. The dilTerences observed in mesh | in the forebody cone
region is caused by a block interface being located in a region ol
very high gradients. As would be expected, this interface seems to
be causing a degradation in the accuracy of the information trans-
ferring from one block to the other. The experimental results shown
for comparison in Fig. 9 correspond to flow at Re = 27.0 x 10°.
However, the computational results shown in this case consider only
the Euler equations.

Concluding Remarks

The development of an all-speed Euler and/or Navier—Stokes flow
simulation code that uses a segregated finile volume algorithm for
three-dimensional body-conforming curvilinear coordinates with a
collocated variable arrangement has been described. The efforts to-
wards the physical validation of this code arc the major contribution
of the present work. The details of an experimental wind-tunnel
investigation for pressure distribution and force measurements for
the Brazilian VLS are also described. The results obtained for sub-
sonic and supersonic flow conditions are in very good agreement
with the experimental data. Transonic calculations, however, show
much poorer agreement with data for equivalent and even more re-
fined meshes. Recent calculations for transonic nozzle applications
indicate that the flow solution methodology used in the present code

needs severe refinement in the longitudinal direction to truly capture
the rapid flow gradients present in transonic flow conditions, at least
as compared to conventional central-difference type algorithms. De-
spite some of its difficulties with transonic flow, the flow simulation
capability implemented into the present code already gives very
useful information for preliminary design studies, which is actually
being used at present in the VLS design process. Moreover, efforts
are also under way 1o use the present multiblock implementation
to provide the first three-dimensional computational results on the
VLS vehicle together with its first-stage boosters.
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