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Multi-dimensional Discretization Error 
Estimation for Convergent Apparent 
Order 
This work presents procedures for estimating the error of numerical solutions of multi-
dimensional problems. It is considered that: the numerical error is caused only by 
truncation errors; error estimations are based on the Richardson extrapolation; and 
numerical approximations are one-dimensional over uniform grids in each dimension. Two 
cases are analyzed: when grids are simultaneously refined in all four dimensions (x,y,z,t); 
and when grid refinement in each dimension is separate from the remaining ones. 
Examples of uses are presented for problems involving heat transfer and fluid mechanics, 
which are solved by the finite difference and finite volume methods. It was found that, for 
the situation in which the apparent order of the estimated error is a monotone convergent 
one, two values of estimated error can be calculated, which bound the true error.  
Keywords: Discretization error, truncation error, CFD, numerical error, fluid flows 
 
 
 

Introduction 

It is still common to find in the relevant literature (Jameson and 
Martinelli, 1998) works in which the magnitude of the discretization 
error (Roache, 1998) is assessed only by presenting the numerical 
results obtained with two or three different grids. Nevertheless, it is 
already quite common to use Richardson extrapolation (Richardson, 
1910) to estimate discretization errors, as, for example, in Roy and 
Blottner (2001). A variant of the Richardson extrapolation has also 
been used, the GCI estimator (Roache, 1994), for example, in 
Cadafalch et al. (2002). 

For each variable of interest, the error estimation made through 
Richardson extrapolation uses numerical solutions obtained from 
two or more different grids, i.e., grids with a different number of 
volumes, points or elements. Therefore, in a two-dimensional 
problem, for example, the grids can be refined either simultaneously 
or separately in both directions (x and y).1 

The purpose of this work is to present procedures for estimating 
the error of numerical solutions of multi-dimensional problems 
when the apparent order (De Vahl Davis, 1983) of the estimated 
error is a monotone convergent one (Marchi and Silva, 2002). By 
doing so, one can define the lower and upper limits for the true 
error. Examples of uses are presented for problems involving heat 
transfer and fluid mechanics, which are solved by the finite 
difference and finite volume methods. Furthermore, we have 
developed our work taking into account the following factors: 

1) The theory and the definitions adopted by Marchi and 
Silva (2002), which deals only with one-dimensional problems. 

2) That the numerical error is caused only by truncation 
errors, i.e., it is either assumed that there are no errors related to 
iterations, round-off and due to programming (Marchi and Silva, 
2002), or, rather, that these errors are very small when compared 
with truncation errors. In this case, the numerical error is called a 
discretization error. 

3) Estimates of discretization errors are of an a posteriori 
type and are based on Richardson extrapolation (Richardson, 
1910; Roache, 1994; Blottner, 1990; Oberkampf and Trucano, 
2002), which uses multiple grids. 

4) That up to three spatial dimensions (x,y,z) and one 
temporal (t) dimension are used. 
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5) That the numerical approximations used for discretizing 
the mathematical models are one-dimensional (Ferziger and Peric, 
1999; Tannehill et al., 1997).  

6) That the grids are uniform in each dimension. 
7) Estimations of the discretization error can be applied to 

the dependent variables of the mathematical model or to any 
variable obtained from them through differentiation, integration or 
any other mathematical operation. 

8) The exact analytical solutions are known for the variables 
of interest for the problems used as examples in this work. One 
can therefore compare the estimated error to the true error. 

9) The numerical method works in all the grids. 
In the next sections a definition of multi-dimensional 

discretization error and a summary of the significant results from 
Marchi and Silva (2002) are presented. The procedures used for 
estimating the true discretization error are shown for grids that are 
simultaneously refined in all dimensions and for when the 
refinement is separate in each dimension. Next, examples are 
presented that include two-dimensional steady-state heat 
conduction, one-dimensional transient heat conduction and two-
dimensional incompressible Navier-Stokes flow. The numerical 
solutions to such problems are obtained by finite difference and 
finite volume methods. Finally, a conclusion to this work is 
presented. 

Nomenclature 

c = coefficients in the truncation error equation 
C = coefficients in the discretization error equation 
E = true discretization error of the numerical solution 
h = grid spacing or distance between two successive grid points 
K = coefficients in the numerical solution uncertainty equation  
pL = asymptotic order of the discretization error 
pU  = apparent order of the uncertainty 
r = grid refinement ratio 
t = time 
U = uncertainty or estimated error of the numerical solution 
UC  = uncertainty of the numerical solution by the convergent 

estimator 
URi = uncertainty of the numerical solution by the Richardson 

estimator 
x, y, z   = spatial coordinates 

Greek Symbols 

ε  = truncation error 
φ  = numerical solution of the variable of interest 
Φ  = exact analytical solution of the variable of interest 
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φC = convergent numerical solution 
φ∞  = estimated analytical solution 
Λ  = dependent variable 

Subscripts 

1   fine grid 
2   coarse grid 
3   supercoarse grid 
b   base grid 
d   dimension (1=x, 2=y, 3=z, 4=t) 

Multi-Dimensional Discretization Error 

Let us consider the two-dimensional equation of Laplace 
(Incropera and DeWitt, 1996):  
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where x and y are the independent variables and Λ is the dependent 
variable. This equation can be discretized with a central difference 
scheme (Ferziger and Peric, 1999) for each one of its terms, i.e.,  
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In Eqs. from (2) to (5), the subscripts refer to Fig. 1, in which P 
represents a generic node in the grid on which numerical 
approximations are made, and W, E, S and N represent its 
neighboring nodes. Other numerical approximations can be found in 
Ferziger and Peric (1999) and Tannehill, Anderson and Pletcher 
(1997). 

Using a Taylor series (Kreyszig, 1999), one can verify that the 
truncation errors (ε) (Tannehill, Anderson and Pletcher, 1997) of the 
numerical approximations given in Eqs. (2) and (3) are, 
respectively, 
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Introducing Eqs. (2) and (3) into Eq. (1), one can obtain 
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In this case, the truncation error of Eq. (8) results in the sum of the 
values of Eqs. (6) and (7). Thus, generalizing, for a four-

dimensional differential equation (x,y,z,t) that has many terms in 
each dimension, with derivatives of several different orders, the 
truncation error of the discretized differential equation (DDE), in 
each P node of the grid, results in 
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where d = 1, 2, 3 and 4 represents, respectively, the dimensions x, y, 
z and t; hd represents the distance between two consecutive nodes of 
the grid in each d dimension; i represents each one of the terms of 
the infinite series, as in Eqs. (6) and (7); ci,d represents coefficients 
that depend on the derivatives of Λ in each node of the grid, but do 
not depend on hd; finally, pi,d are the true orders (Marchi and Silva, 
2002) of the truncation error, which are integer and positive 
numbers. Comments on the different nature of spatial and temporal 
terms of Eq. (9) and about the own Eq. (9) can be seen in Roache 
(1998), mainly on pages 125 and 126 and Roache (1994). 

 

 
Figure 1. A two-dimensional grid, uniform in each d irection. 

 
In analogy (Roache, 1998; Ferziger and Peric, 1999) to the 

truncation error equation (ε) of Eq. (9), it is possible to assume that 
the true discretization error (E) of any variable of interest (φ) is 
given by  
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in which φ can be the numerical solution of the dependent variable 
(Λ) in the differential equation, at a specific coordinate, its average 
of the whole field, or any other variable obtained from Λ; and the 
coefficients Ci,d and the exponents pi,d may or may not be equal to 
the coefficients ci,d and pi,d of Eq. (9), depending on φ. The true 
discretization error of the numerical solution (φ) can also be defined 
by 
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Determining the true discretization error through Eq. (10) or 

(11) requires knowing the exact analytical solution (Φ). 
Unfortunately, in practical problems, Φ is unknown. In such cases, 
the concept of estimated error (U) is adopted, which is defined by  
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where φ∞ represents an estimation of Φ. To do so, one can use a 
simplification of Eq. (10), retaining only the first term of each 
dimension, i.e., the term that prevails over the remaining ones as hd 
→ 0. Thus, one obtains  
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in which the coefficients Kd are assumed as constant, i.e., they do 
not depend on hd; and px, py, pz and pt are the asymptotic orders 
(Marchi and Silva, 2002) of the true discretization error of each 
dimension. Generally speaking, the value of the estimated error (U) 
is different from the true error (E) due to the simplification made 
while moving from  Eq. (10) to Eq. (13). 

Obtaining φ∞  and U in multi-dimensional problems is dealt in 
this work but first, in the next section, the significant results of 
Marchi and Silva (2002) are presented because they are the base for 
the present multi-dimensional problems. 

One-Dimensional Discretization Error Estimation for 
Convergent Apparent Order 

The Richardson Error Estimator for One-Dimension 

For one-dimension, Eq. (13) reduces to 
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where KL is a constant, hL is the grid spacing and pL is the 
asymptotic order of the true discretization error. In Eq. (14), instead 
of using pL, one can also use the concept of apparent order (pU) (De 
Vahl Davis, 1983), i.e., 
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where KU is a constant and 
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for a constant grid refinement ratio (r), defined by 
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where φ1, φ2 and φ3 are the numerical solutions obtained, 
respectively, with the fine grid (hL,1), coarse grid (hL,2) and 
supercoarse grid (hL,3). 

It was analyzed the estimate of discretization errors for the 
situation where the apparent order (pU) converges monotonically 
toward the asymptotic order (pL) as hL → 0. This happens in two 
ways that are defined as subconvergent and superconvergent 
intervals of the apparent order (pU) or simply denoted as 
“convergent apparent order”. Within the subconvergent interval, pU 
converges monotonically to pL with smaller values than pL as hL → 
0. Within the superconvergent interval, pU converges monotonically 
to pL with larger values than pL as hL → 0. 

If the apparent order (pU) is monotone convergent, then the 
exact analytical solution (Φ) will be bound between φ∞(pL) and 
φ∞(pU), with 
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Equations (18) and (19) are the generalized Richardson 
extrapolations (Roache, 1994). Replacing them in Eq. (12), one 
obtains 
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which represent the estimated errors of the numerical solution φ1 
according to the Richardson error estimator (URi). It was 
demonstrated that 
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in which pa and pb represent the asymptotic order (pL) or the 
apparent order (pU), depending on whether pU is subconvergent or 
superconvergent. Within the convergent interval of pU, this relation 
worked for all cases and variables of interest: eight linear and non-
linear differential equations in fluid dynamics discretized by the 
finite difference method with uniform one-dimensional grids and 
with six types of numerical approximations. Outside convergent 
interval of pU, this relation can or not works. One has not found a 
procedure to estimate a priori the beginning of the convergent 
interval of pU. 

An estimated error (U) may be defined as reliable when the ratio 
between estimated error (U) and true error (E) is larger or equal to 
unity. According to Eq. (22), the true discretization error of the 
numerical solution φ1, E(φ1), is bound by the estimated errors 
URi(φ1,pL) and URi(φ1,pU). Therefore, if the objective is to obtain a 
reliable estimated error, the numerical solution of the variable of 
interest (φ) should be presented or reported by 
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where 
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with sg(φ1-φ2) representing the sign of the difference between φ1 and 
φ2, and Max{}, the maximum between the modules of URi(φ1,pL) and 
URi(φ1,pU). 

The Convergent Error Estimator for One-Dimension 

With the same numerical solutions (φ1, φ2 and φ3) used to obtain 
the estimated errors provided in Eqs. (20) and (21), it is possible to 
reduce the true discretization error of the numerical solution, E(φ1), 
through “The Convergent Numerical Solution” (φC), defined by 
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where φ∞(pL) and φ∞(pU) are obtained by the Richardson 
extrapolation, Eqs. (18) and (19). For φC, the numerical solution of 
the variable of interest (φ) should be presented or reported by 

 
)( CCC U φφφ ±=  (26) 

 
in which the estimated error of φC, UC(φC), is equal to the modulus 
of half of the interval between φ∞(pL) and φ∞(pU), that is,     
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Hereafter, UC is called “The Convergent Error Estimator”. 

Within the convergent interval of pU, it is advisable to use the 
convergent numerical solution (φC) instead of the calculated 
numerical solution (φ1) because the true discretization error of φC, 
E(φC), is smaller than the true discretization error of φ1, E(φ1). 

Simultaneous Refinement of a Grid in All Dimensions 

Refinement is characterized as simultaneous refinement when 
the number of nodes, elements or control volumes of all four 
dimensions (x, y, z, t) vary among the grids used to estimate the 
discretization error. In a three-dimensional problem, for example, 
this is done by refining of a grid from 10*10*10 to 15*20*30 
control volumes. In the next section, describes the case in which 
grid refinement in each dimension is separate from that of the 
remaining ones. Next, two situations will be examined: when the 
grid refinement ratio is variable in each dimension; and when it is 
the same. 

Variable Grid Refinement Ratio 

With Eqs. (12) and (13) designed for five different grids, i.e. 
with a different number of nodes, elements or control volumes 
among them in each dimension, indicated by hd,1, hd,2, hd,3, hd,4 and 
hd,5, and whose numerical solutions are, respectively, φ1, φ2, φ3, φ4 
and φ5, one can obtain 

 



















+++=−

+++=−

+++=−

+++=−

+++=−

∞

∞

∞

∞

∞

tp
tt

zp
zz

yp
yy

xp
xx

tp
tt

zp
zz

yp
yy

xp
xx

tp
tt

zp
zz

yp
yy

xp
xx

tp
tt

zp
zz

yp
yy

xp
xx

tp
tt

zp
zz

yp
yy

xp
xx

hKhKhKhK

hKhKhKhK

hKhKhKhK

hKhKhKhK

hKhKhKhK

5,5,5,5,5

4,4,4,4,4

3,3,3,3,3

2,2,2,2,2

1,1,1,1,1

φφ

φφ

φφ

φφ

φφ

 (28) 

 
In this system of equations, all values of hd, pd, φ1, φ2, φ3, φ4 and φ5 

are known. The unknown values are the four constants Kd and φ∞. 
After the solution of this system for φ∞ is obtained, one can 
determine with Eq. (12) the estimated error of each one of the five 
numerical solutions used in Eq. (28). Only four or three numerical 
solutions are necessary, respectively, to obtain φ∞ and to calculate 
the estimated errors in steady-state three-dimensional and two-
dimensional problems. In the one-dimensional case, with only two 
numerical solutions one can obtain φ∞ and U, as has been 
demonstrated by Roache (1998, 1994), Marchi and Silva (2002) and 
Blottner (1990). 

In the system of Eqs. (28), it is assumed that the asymptotic 
orders px, py, pz and pt are known based on the numerical 
approximations used in the discretization of the differential 

equation. However, they can be left free, i.e., they can be obtained 
through the concept of apparent order (De Vahl Davis, 1983). 
Hence, in the four-dimensional case, there will be four other 
unknown ones and nine numerical solutions will be needed to obtain 
φ∞. The one-dimensional case has been shown in Marchi and Silva 
(2002). 

Same Grid Refinement Ratio in All Dimensions 

Let us consider two different grids, the first, a fine one, 
characterized by hx,1, hy,1, hz,1 and ht,1, and the second, a coarse one, 
characterized by hx,2, hy,2, hz,2 and ht,2. In a particular case of the grid 
refinement ratio (r) being the same for all dimensions, i.e. 
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where r can take on real values greater than the unit value, it is 
possible to demonstrate that Eq. (13) results in  
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where 
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and that ax, ay, az and at are constants; pL represents the minimum 
value among the asymptotic orders of the four dimensions, 
according to Eq. (31); and hL is the dimension of the grid related to 
pL. For hL → 0, Eq. (30) is reduced to Eq. (14), which together with 
Eq. (15) represent precisely the one-dimensional case of the 
previous section. Hence, Eqs. (14) to (27) can be used to obtain the 
estimated error of numerical solutions in multi-dimensional 
problems, as long as the grid refinement ratio (r) remains the same 
in all the dimensions.  

Separate Refinement of a Grid in Each Dimension 

Refinement is characterized as separate refinement when each 
(spatial and temporal) dimension is separately refined from the 
others, with asymptotic orders (pL) and grid refinement ratios (r) 
being equal or different from each other in each dimension. The 
main reason that justifies using separate refinement is the possibility 
of obtaining error estimations with smaller grids than those required 
to carry out simultaneous refinement.  

Separate refinement is also important because it provides 
information on the contribution of each dimension to the 
discretization error. This information can help to determine if the 
appropriate number of grid points have been used in each 
dimension. One wants the contribution to the discretization error 
from each dimension to be nearly the same. 

In multi-dimensional problems, there are several possible ways 
of carrying out separate refinement to estimate the discretization 
error of a numerical solution, as can be seen in Fig. 2 for a two-
dimensional problem. In this figure, x3, x2 and x1 represent, 
respectively, the number of nodes, elements or control volumes in 
the direction x, of the supercoarse, coarse and fine grids. The same 
applies to y3, y2 and y1 in the direction y. The arrows indicate the 
extrapolation process that allows one to obtain numerical solutions 
in the x∞ and y∞ grids. 

The example shown in Fig. 2 relates, as will seen later on, to the 
case in which the apparent order (pU) of each dimension is 
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calculated, in which case three grids are necessary in each 
dimension, according to Eqs. (16), (19) and (21). But in the case of 
using the concept of asymptotic order (pL), only two grids are 
necessary in each dimension, according to Eqs. (18) and (20).  

In Fig. 2, the simultaneous refinement, described in the previous 
section, is characterized by the diagonal line that links the grids 
(x3,y3), (x2,y2) and (x1,y1), which represent, respectively, the 
numerical solutions φ3, φ2 and φ1. Using these numerical solutions 
and the Richardson extrapolation, Eq. (19), φ∞ can be determined, 
which is represented by the grid (x∞,y∞). 

 

 

Figure 2. Possibilities for separate refinement in a two-dimensional 
problem. 

The Richardson Error Estimator for Multi-Dimensions 

Holding Eq. (13) to be valid and taking the theory of Marchi and 
Silva (2002) for one-dimensional problems into consideration, the 
discretization error estimation of the numerical solution can be 
found for a multi-dimensional problem by using (Roache, 1994) 
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where φb represents the numerical solution obtained using the grid 
defined as “the base grid”. This grid should be the same one 
involved in the refinements carried out in all the dimensions. To the 
example of Fig. 2, if the refinement in the x direction involves the 
grids (x3,y2), (x2,y2) and (x1,y2), and the refinement in the y 
direction involves the grids (x2,y3), (x2,y2) and (x2,y1), the base 
grid is (x2,y2).  

In Eq. (32), Ub(φb) represents the estimated error of the 
numerical solution φb. The parameters that appear in Eq. (32) have 
been calculated through  
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with d = 1, 2, 3 and 4 representing, respectively, the dimensions x, y, 
z and t; φ3,d, φ2,d and φ1,d are the numerical solutions obtained, 
respectively, using a supercoarse grid (h3,d), a coarse grid (h2,d) and a 
fine grid (h1,d) in each dimension, which are related through the grid 
refinement ratio rd, in Eq. (37); pL,d and pU,d  represent the 
asymptotic and apparent orders of each d dimension. 

Let us suppose the apparent order of each dimension (pU,d) is 
convergent, according to the definition of Marchi and Silva (2002), 
then the true discretization error for the numerical solution φb, which 
is E(φb), will be bound by Ub(φb), that is, 
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where Ul(φb) can be obtained through Eq. (32) by substituting Max 
for Min in Eq. (33), that is, by reaching the sum of the minimum 
value of the estimated error in each dimension. In this case, the 
numerical solution of the variable of interest (φ) must be presented 
or reported by 
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The Convergent Error Estimator for Multi-Dimensions 

For simultaneous refinement, carried out through Eqs. from (25) 
to (27), it has been shown that it is possible to reduce the true 
discretization error (E) using the same set of numerical solutions 
used to calculate the estimated error (U). This can also be done for 
separate refinement when Eq. (38) holds true. In this case, adopting 
the same numerical solutions which are used to calculate Ub(φb), that 
is, φ3,d, φ2,d and φ1,d, it is possible to reduce the value of the true 
discretization error of the numerical solution, E(φb), through  

 

∑
=
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d
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where (φM) and (UM) are called, respectively, “The Convergent 
Numerical Solution” and “The Convergent Error Estimator” for 
multi-dimensional problems, and 
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in which φ∞,d(pL,d) and φ∞,d(pU,d) are provided by Eqs. (34) and (35). 
Equations (40) and (41) are equivalent, respectively, to Eqs. (25) 

and (27) used in simultaneous refinement. For φM, the numerical 
solution of the variable of interest (φ) should be presented or 
reported by 

 
)( MMM U φφφ ±=  (44) 

 
The techniques adopted for simultaneous refinement and 

separate refinement can be used together in the so-called mixed 
refinement. In a transient two-dimensional problem (x,y,t), for 
example, simultaneous refinement may be adopted in the x and y 
directions, while separate refinement is taken up between (x,y) and 
the time (t). 

Results 

In this section, numerical results to three problems are shown 
and described to illustrate how the theory explained in previous 
sections is applied.  

Definition of the Problems 

Problem 1 consists of a two-dimensional steady-state heat 
conduction (Incropera and DeWitt, 1996), described by the Laplace 
equation (Kreyszig, 1999), Eq. (1). The boundary conditions are of 
the Dirichlet type at the four sides of a square domain having one 
unit side, with Λ(x,1) = sin(πx) and Λ = 0 in the other three 
contours. The analytical solution is 

 

)(

)(
)(),(

π
ππ

sinh

ysinh
xsinyx =Λ  (45) 

 
Problem 2 consists of a transient one-dimensional heat 

conduction (Incropera and DeWitt, 1996), as defined by the 
equation 

 

 
2

2

xt ∂
Λ∂=

∂
Λ∂

 (46) 

 
The Dirichlet boundary conditions are Λ(0,t) = Λ(1,t) = 0, and the 
initial condition is given by Λ(x,0) = sin(πx). The analytical solution 
is  

 
texsintx

2

)(),( ππ −=Λ  (47) 
 

The solution to the problem is obtained for the instant in time t = 0.1 
s. 

Problem 3 consists of a two-dimensional incompressible Navier-
Stokes flow within a square cavity, having a unit side, and with a lid 
that moves, making the fluid flow along the inside of the cavity. 
This problem is modeled by the Navier-Stokes equations and 
described in section 2 of Shih, Tan and Hwang (1989). The 
mathematical model involves the mass conservation equation and 
the x- and y-momentum equations, maintaining constant values for 
viscosity and mass density. A source term is added to obtain an 
analytical solution to the problem for its three unknown values: two 
being components of velocity (u, v) and the other pressure. The 
analytical solution to this problem is provided by Shih, Tan and 
Hwang (1989). 

For Problems 1 and 2, the two variables of interest, that is, the 
variables for which the true errors and their estimations are being 
analyzed are the temperature at the center of the solution domain 

and the average temperature of the field. In the case of Problem 3, 
the variables of interest are u and v, at the center of the domain, and 
the mass flow rate (M) that is circulating within the cavity from y = 
0 up to y = ½ at x = ½. 

The finite difference method was used for Problems 1 and 2, and 
the finite volume method (Marchi and Maliska, 1994) for Problem 
3. In the three problems, the spatial derivatives were given 
approximated values through the central difference scheme 
(Ferziger and Peric, 1999). Equation (46) was discretized through 
the implicit Euler method (Ferziger and Peric, 1999). In Problems 1 
and 3, iterations were carried out until the iteration errors reached 
round-off level to minimize their effects on the discretization errors. 
The solution to Problem 2 was obtained with one iteration of the 
TDMA method (Ferziger and Peric, 1999) at each time step.  

Same Grid Refinement Ratio in All Dimensions 

Adopting simultaneous refinement in the three multi-
dimensional problems described above, the same conclusions were 
reached as those reached in Marchi and Silva (2002) with respect to 
one-dimensional problems. Some of the results are commented as 
follows. 

Table 1 presents the numerical solutions of Λ(½,½) that were 
obtained in three different grids for Problem 1. Φ represents the 
analytical solution of the variable of interest, that is, the temperature 
at the center of the solution domain. φ3, φ2 and φ1  represent the 
numerical solutions. The use of the Richardson error estimator (URi), 
which involves Eqs. from (16) to (24), is shown in the left-hand 
column of Table 2, where the equation used to calculate each 
parameter is indicated. The true discretization error (E) is calculated 
by using Eq. (11). The use of the convergent error estimator (UC), 
which involves Eqs. from (25) to (27), is shown in the right-hand 
column of Table 2. 

 

Table 1. Numerical solutions for Problem 1, Eq. (1) , for ΛΛΛΛ(½,½). 

grid (x*y) numerical solution other data 

5 * 33 φ3 = 0.206809183 r = 2 
9 * 65 φ2 = 0.201144859 pL = 2 

17 * 129 φ1 = 0.199736958 Φ = 0.199268408 

 
Results for many different grids are presented in Fig. 3. In this 

figure, for Problem 1, the estimated errors URi(φ1) and UC(φC) and 
the true discretization errors E(φ1) and E(φC) of the temperature at 
the center of the domain are shown. The results refer to grids of 3x3 
to 1025x1025 points, where r = 2. In this figure, one can see the 
significant advantage of using φC, instead of φ1, for reducing the true 
discretization error. It can also be verified that the estimated error by 
both the Richardson estimator (URi) as well as the convergent 
estimator (UC) are reliable for any hL. 

 

Table 2. Application of the Richardson and Converge nt error estimators to 
the numerical solutions shown in Table 1. 

Richardson estimator Convergent estimator 

(Eq. 18) φ∞(pL) = 0.199267658 (Eq. 25) φC  = 0.199269462 
(Eq. 16) pU  = 2.008358693 (Eq. 27) UC(φC) = ± 0.000001804 
(Eq. 19) φ∞(pU) = 0.199271266 (Eq. 11) E(φC) = - 0.000001054 
(Eq. 24) URi(φ1) = - 0.000469300  UC(φC) / E(φC) = 1.71 
(Eq. 11) E(φ1) = - 0.000468550 UC(φC) / URi(φ1) = 0.00384 
URi(φ1) / E(φ1) = 1.0016  URi(φ1) / UC(φC) = 260 
(Eq. 23):  
φ  = 0.199736958 - 0.000469300 

(Eq. 26):  
φ = 0.199269462 ± 0.000001804 
E(φ1) / E(φC) = 445 
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Table 3 shows the numerical solutions of u(½,½) obtained from 
three different grids for Problem 3. Φ represents the exact analytical 
solution of the variable of interest, that is, the component of velocity 
in the x direction in the center of the solution domain. φ3, φ2 e φ1 
represent the numerical solutions. The use of the Richardson error 
estimator (URi), which involves Eqs. from (16) to (24), is shown in 
the left-hand column of Table 4, where the equation used to 
calculate each parameter is indicated. The true discretization error 
(E) is calculated by using Eq. (11). The use of the convergent error 
estimator (UC), which involves Eqs. from (25) to (27), is shown in 
the right-hand column of Table 4. 

 

Table 3. Numerical solutions for Problem 3 for u (½ ,½). 

grid (x*y) numerical solution other data 
4 * 4 φ3 = - 0.172578576 r = 2 
8 * 8 φ2 = - 0.226911929 pL = 2 

16 * 16 φ1 = - 0.243644223 Φ = - ¼ 
 

Table 4. Application of the Richardson and Converge nt error estimators to 
the numerical solutions shown in Table 3. 

Richardson estimator Convergent estimator 

(Eq. 18) φ∞(pL) = - 0.249221654 (Eq. 25) φC = - 0.250155835 
(Eq. 16) pU = 1.699202828 (Eq. 27) UC(φC) = ± 0.000934181 
(Eq. 19) φ∞(pU) = - 0.251090015 (Eq. 11) E(φC) = 0.000155835 
(Eq. 24) URi(φ1) = - 0.007445792  UC(φC) / E(φC) = 5.995 
(Eq. 11) E(φ1) = - 0.006355777 UC(φC) / URi(φ1) = 0.125 
URi(φ1) / E(φ1) = 1.171 URi(φ1) / UC(φC) = 7.97 

(Eq. 23):  
φ = - 0.243644223 - 0.007445792 

(Eq. 26): 
φ  = - 0.250155835 ± 0.000934181 
E(φ1) / E(φC) = - 40.8 

 
In Tables 2 and 4 one can see the key information: (i) the 

estimated error by the Richardson estimator (URi) is reliable, seeing 
as URi(φ1)/E(φ1) > 1, and it is accurate because URi(φ1)/E(φ1) ≈ 1; (ii) 
the relationship of Eq. (22) is met once φ∞(pL) and φ∞(pU) bound Φ; 
and (iii) both the estimated error as well as the true error of the 
convergent numerical solution (φC) are much smaller than the 
calculated numerical solution (φ1) since UC(φC)/URi(φ1) and  
E(φC)/E(φ1) << 1. 
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Figure 3. Modules of the estimated error (U) and of  the true error (E) for 
ΛΛΛΛ(½,½) in Problem 1. 

 
Table 5 displays the values obtained for apparent order (pU) of 

the variables of interest in Problems 1, 2 and 3, using simultaneous 
refinement and the grid refinement ratio r = 2. The expected 

asymptotic order (pL) is also shown, which is obtained from the 
truncation error inferred with the Taylor expansion series on the 
discretized mathematical model, as shown in Eqs. (6) and (7). The 
size of the grids displayed in Table 5 refer to finest grids. Hence, to 
calculate the apparent order (pU), through Eq. (16), two coarser grids 
were used in each case. For example, for Problem 3 the grids 
256*256, 128*128 and 64*64 were used. 

Separate Refinement of a Grid in Each Dimension 

The numerical solutions of Problem 2, Eq. (46), are shown in 
Table 6, for the temperature in the center of the domain. In this case, 
seeing as it is a two-dimensional problem, the calculation of the 
estimated error (Ub) involves numerical solutions obtained in five 
different grids. In this example, the grid 65*750 was chosen as the 
grid common to both dimensions, that is, it is the base grid, hence, 
φb = φ2,x = φ2,t.  

 

Table 5. Apparent orders ( pU), for r = 2, and asymptotic orders ( pL) for 
simultaneous refinement. 

Problem variable grid pU pL 

1 central Λ 1025 * 1025 1.999984 2 
1 average Λ 1025 * 1025 1.999903 2 
2 central Λ 4097 * 2048 1.000004 1 
2 average Λ 4097 * 2048 0.999109 1 
3 central u 256 * 256 1.996552 2 
3 central v 256 * 256 1.982185 2 
3 mass flow rate 256 * 256 2.012358 2 

 
Through analyzing the truncation errors of the numerical 

approximations used to discretize Eq. (46), it was determined that 
their asymptotic orders are pL,x = 2 and pL,t = 1. In this example, the 
refinement ratio of the grid in the x dimension (rx = 2) is different 
from the t dimension (rt = 1.5). Through Eqs. from (33) to (36), pL,x, 
pL,t and with the numerical solutions given in Table 6, one can reach 
the results presented in Table 7. With these results, in turn, one can 
use the Richardson error estimator (Ub), through Eqs. from (32) to 
(37) and (39), to find the results shown on the left-hand column of 
Table 8. It should be noted that Ub(φb)/E(φb) > 1, in other words, the 
estimated error Ub(φb) is reliable for it overestimates the true error 
E(φb), and it is quite accurate, seeing as Ub(φb)/E(φb) ≈ 1. 

 

Table 6. Numerical solutions for Problem 2, Eq. (46 ), for ΛΛΛΛ in x = ½ and t = 
0.1. 

refinement in x 
 (rx = 2) 

refinement in t  
(rt = 1.5) 

other data 

grid 33*750: 
φ3,x = 0.373245017 

grid 65*500: 
φ3,t = 0.373144380 

pL,x = 2 

grid 65*750: 
φ2,x = 0.373023555 

grid 65*750: 
φ2,t = 0.373023555 

pL,t = 1 

grid 129*750: 
φ1,x = 0.372968193 

grid 65*1125: 
φ1,t = 0.372942967 

Φ = 0.372707839 

 

Table 7. Calculation of the components of the estim ated error for separate 
refinement in Problem 2. 

Equation refinement in x refinement in t 
Eq. (34) φ∞,x(pL,x) = 0.372949739 φ∞,t(pL,t) = 0.372862379 
Eq. (36) pU,x = 2.000091205  pU,t =   0.998836779 
Eq. (35) φ∞,x(pU,x) = 0.372949741 φ∞,t(pU,t) = 0.372781563 
Eq. (33) Ux(φb) = - 0.000073816 Ut(φb) = - 0.000241992 

 
The use of the convergent error estimator (UM) is shown in the 

right-hand column of Table 8. To do so, Eqs. from (40) to (44) were 
used based on the same numerical solutions of Problem 2 given in 
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Table 6 and adopting the parameters provided in Table 7. One can 
see in Table 8 that UM(φM)/E(φM) = 1.00228, that is, the estimated 
error UM(φM) is reliable for it overestimates the value of the true 
error E(φM). Moreover, there have been significant reductions in 
both the estimated error as well as the true error of the convergent 
numerical solution (φM) with respect to the calculated numerical 
solution (φb) seeing as UM(φM)/Ub(φb) and E(φM)/E(φb) << 1. 

 

Table 8. Application of the Richardson and Converge nt error estimators to 
the numerical solutions shown in Table 6. 

Richardson estimator Convergent estimator 

(Eq. 32):  
Ub(φb) = - 0.000315808  

(Eq. 42) φC,x = 0.372949740 

(Eq. 39) φ  = 0.373023555  
- 0.000315808 

(Eq. 43) UC,x = ± 0.000000001 

(Eq. 11):  
E(φb) = - 0.000315716 

(Eq. 42) φC,t = 0.372821971 

Ub(φb) / E(φb) =  1.00029 (Eq. 43) UC,t  = ± 0.000040408 
 (Eq. 40) φM  = 0.372748156 
 (Eq. 41) UM(φM) = ± 0.000040409 
 (Eq. 44):  

φ = 0.372748156 ± 0.000040409 
 (Eq. 11) E(φM) = - 0.000040317 
 UM(φM) / E(φM) = 1.00228 
 UM(φM) / Ub(φb) = 0.128 
 Ub(φb) / UM(φM) = 7.82 

E(φb) / E(φM) = 7.83 

Conclusion 

Two procedures were presented to estimate the error of 
numerical solutions in multi-dimensional problems. Both of the 
procedures are based on Richardson extrapolation which makes use 
of multiple grids. In the first procedure, the number of nodes, 
elements or control volumes of all four dimensions (x, y, z, t) vary 
among the grids used to estimate the discretization error. In the 
second procedure, each (spatial and temporal) dimension is 
separately refined from the others, with asymptotic orders (pL) and 
grid refinement ratios (r) being equal or different from each other in 
each dimension.  

These two procedures have been named, respectively, 
simultaneous refinement and separate refinement. They have been 
proven to work successfully in the tests carried out, which involved 
three different problems: two-dimensional steady-state heat 
conduction, one-dimensional transient heat conduction and two-
dimensional incompressible Navier-Stokes flow. The problems were 
solved by finite difference and finite volume methods for three types 
of variables of interest: the dependent variables (Λ,u,v), the averages 
of the dependent variables in the whole field (average Λ) and the 
integration of a dependent variable (M). 

It was shown that the use of simultaneous refinement in multi-
dimensional problems is the same as for one-dimensional problems. 
This occurs if the same grid refinement ratio is used in all 
dimensions and if the apparent order (pU) of the estimated error is of 
the monotone convergent type. In this case, all of the conclusions of 
Marchi and Silva (2002) prove valid, among which the following 
are worthy of note: the true discretization error (E) is bound by the 
estimated values of error found by the Richardson error estimator 
(URi), which are calculated based on the asymptotic (pL) and 
apparent (pU) orders; the true error and the estimated error of the 
numerical solution can be reduced in a reliable manner by adopting 

the convergent numerical solution (φC) and its respective convergent 
error estimator (UC); and, outside of the convergent interval of the 
apparent order (pU) there is no guarantee as to validity of the two 
previous conclusions.  

The conclusions reached for simultaneous refinement also hold 
true for separate refinement provided: the apparent order (pU) of 
each dimension is of the monotone convergent type and that there is 
one grid (a base grid) common to all of the refinements carried out 
in all of the dimensions.  
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