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ESTIMATE OF ITERATION ERRORS IN COMPUTATIONAL
FLUID DYNAMICS

M�aarcio André Martins1 and Carlos Henrique Marchi2
1Departamento de Matem�aatica, Universidade Estadual do Centro
Oeste—UNICENTRO, Guarapuava, Brazil
2Department of Mechanical Engineering, Federal University of Paran�aa—UFPR,
Curitiba, Brazil

In this work an empirical estimator is used to estimate the iteration error based on the con-

vergence rate of the variable of interest. Problems of heat transfer and of fluid mechanics

are solved by the finite-difference and finite-volume methods using various iteration meth-

ods. In the initial iterations the accuracy of the empirical estimator is usually low; when the

number of iterations is high, round-off errors predominate over iteration errors, but even so,

the accuracy is relatively good; and in the interval between these two extremes, the accuracy

tends to improve as the number of iterations increases.

INTRODUCTION

According to [1–6], numerical errors are caused by a variety of sources: trunc-
ation errors (ET), round-off errors (Ep), programming errors (Ep), and iteration errors
(En). Symbolically, one has

Eð/Þ ¼ EðET ; Ep; Ep; EnÞ ð1Þ

where / is the variable of interest, which may be local or global, primary or second-
ary. These four sources of error can have different magnitudes and signs, which may
result in partial or total cancellations between these errors. The definition, effect, and
origin of each of these four sources of error are discussed in [7].

The literature [1, 3, 6, 8, 9] reports several criteria for interrupting iterative
processes. Two very common ones [9] are based on (1) the difference of the variable
between two successive iterations and (2) the residue of the discretized equations.
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However, they do not estimate the true iteration error. With these criteria, an iterat-
ive process can be interrupted very prematurely [8] or very belatedly in relation to the
value of the desired error.

Two procedures to estimate the true iteration error effectively are given in [1, 8].
However, Ferziger and Peric [1] apply their estimator only to norms of field-depen-
dent variables, while Roy and Blottner [8] apply their estimator to a local variable
but do not compare the estimated error and the true error.

The purpose of the present work is to test an iteration error estimator on the
local and global variables of three heat transfer and fluid mechanics problems. The
error estimates are compared with the true error. With this work, we intend to
expand the application and understanding of type [1] estimators.

The importance of a reliable and accurate iteration error lies in interrupting the
iterative process when one reaches the desired level of error for the variable of inter-
est. This saves CPU time because the iterative process is not interrupted belatedly. In
addition, by interrupting the iterative process prematurely, one avoids having a high
level of iteration error that affects the numerical error and the modeling error.

In the following sections, the iteration error is characterized and a procedure is
presented to estimate the iteration error using an empirical estimator. Examples of
application are given involving one-dimensional and two-dimensional heat diffusion
in a steady-state and two-dimensional isothermal flow of incompressible fluid. The
numerical solutions to these problems are obtained by the finite-difference and
finite-volume methods. The article ends with our conclusion about this work.

ITERATION ERROR

References [1, 3, 6, 8, 9] are examples of studies that discuss iteration errors.
According to [1], considering a given variable of interest (/), the iteration error
(E) is the difference between the exact solution (U) of the discretized equations

NOMENCLATURE

E numerical or iteration error

L length of the problem domain, m

n iteration

N number of nodes

p pressure, Pa

pL asymptotic order of the iteration

error

pU apparent order of the iteration error

u component of the velocity vector in the

x direction, m=s

U uncertainty or estimate of the

numerical or iteration error

v component of the velocity vector in the

y direction, m=s

x Cartesian spatial coordinate in the

horizontal direction, m

y Cartesian spatial coordinate in the

vertical direction, m

K dependent variable

h effectiveness

m mass flow rate, kg=s

/ numerical solution of the variable of

interest

U exact analytical solution of the variable

of interest

w convergence rate

Subscripts

n iteration

1 iteration n� 2

2 iteration n� 1

3 iteration n

1 estimate of the exact solution

ESTIMATE OF ITERATION ERRORS IN CFD 235
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8 and the numerical solution in a given iteration (/n); in other words,

Eð/nÞ ¼ U� /n ð2Þ

where the discretized equations result in the application of a numerical method on a
mathematical model; and n represents the number of the current iteration in the pro-
cess of solution of the system of algebraic equations obtained from the discretized
equations of the mathematical model.

Among others, some factors that generate iteration errors are

1. The use of iterative methods to solve the system of algebraic equations
2. The use of segregated methods to obtain the solution for mathematical models

constituted of more than one differential equation
3. The existence of nonlinearities in the mathematical model

The principal characteristic of iteration errors involved in iterative processes
that present a monotonic convergence rate is that, when one increases the number
of iterations, their value generally decreases on a logarithmic scale and tends toward
a constant inclination. This is illustrated in Figure 1, which shows the iteration error
resulting from the solution of a quadratic equation (x2 � 5xþ 6 ¼ 0) by the fixed-
point iteration method [10], with an initial condition of x0 ¼ 0. Hence,

Eð/nÞ ¼ C10�npL ð3Þ

where C is a constant and pL is the asymptotic order representing the inclination
toward which the curve of the error tends when n!1. The greater this inclination
in relation to the axis of the abscissas (Figure 1), the greater is the reduction rate of
the iteration error (E) with the increase of n. Moreover, for the same number of itera-
tions, the error is smaller.

Figure 1. Behavior presented by iteration errors.

236 M. A. MARTINS AND C. H. MARCHI
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8 The value of the iteration error can only be calculated with Eq. (2) when one
knows the exact solution of the system of equations resulting from the discretization
of the mathematical model. But this is not usually the case in practical terms. There-
fore, it is necessary to estimate the value of the exact solution. To this end, a
procedure is presented in the next section.

AN EMPIRICAL ESTIMATOR

The uncertainty (U) of the numerical solution for a variable of interest (/) is
calculated by the difference between the estimate of the exact solution (/1) of the
system of equations and its numerical solution in an n iteration (/n), that is,

Uð/nÞ ¼ /1 � /n ð4Þ

where the uncertainty is also called estimated iteration error. By analogy to Eq. (3),
one admits that

Uð/nÞ ¼ k10�npU ð5Þ

where k is a constant and pU is the apparent order of the uncertainty. The exponent
pU represents the local inclination of the uncertainty curve (U) versus the number of
iterations (n) on a graph such as the one shown in Figure 1. Considering the
iterations n1, n2, and n3, with n1 < n2 < n3, and Eqs. (4) and (5), one has

/1 � /n1
¼ k10�n1pU

/1 � /n2
¼ k10�n2pU

/1 � /n3
¼ k10�n3pU

8<
: ð6Þ

In the system of Eq. (6), the unknows are /1; k, and pU. Solving it for /1; one has

/1 ¼ /n3
þ
ð/n3
� /n2

Þ
ðw� 1Þ ð7Þ

where

w ¼
/n2
� /n1

/n3
� /n2

ð8Þ

and the expression for the apparent order (pU) can be seen in [11]. Substituting this result
in Eq. (4), one reaches

Uð/n3
Þ ¼
ð/n3
� /n2

Þ
ðw� 1Þ ð9Þ

which constitutes an empirical estimator for iteration errors.
In [12] it is demonstrated that estimates of error based on equations similar to

Eq. (9) are valid only for w > 1 or w <�1. Reference [11] demonstrates that the esti-
mators of [1] and [8] are equivalent to the empirical estimator of the present work.

ESTIMATE OF ITERATION ERRORS IN CFD 237
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8 Criteria for Measuring the Performance of an Error Estimate

The quality of an error estimate can be evaluated by its effectiveness (h), which
is defined by the ratio of its uncertainty (U) and error (E) [13], that is,

h ¼ U

E
ð10Þ

An ideal error estimate is one whose effectiveness is equal to the unit (h ¼ 1), that is,
when the uncertainty is equal to the error (U ¼ E). When the magnitude of the
uncertainty is greater than the magnitude of the iteration error and both have the
same sign, one can state that the error estimate is reliable [7], that is,

h � 1 ð11Þ

If the magnitude of the uncertainty is approximately equal to that of the iter-
ation error, the error estimate is called accurate [14], that is,

h � 1 ð12Þ

The quantitative definition of what an accurate error estimate is depends on how
close to the unit the effectiveness should be, which is a function of each case.

RESULTS

This section describes and presents numerical results for three problems, which
are used to illustrate the application of the empirical estimator to iteration errors
through examples of calculation. Many other results can be seen in [11].

One-Dimensional Poisson Equation

Problem 1 consists of one-dimensional heat diffusion, in a steady state, with
heat absorption [15], which results in Poisson’s equation, given by

d2K
dx2
¼ 12x2 ð13Þ

with Dirichlet-type boundary conditions on the two boundaries: Kð0Þ ¼ 0 and
KðLÞ ¼ 1; with L ¼ 1. The numerical model is constituted of the finite-difference
method [4], with second-order numerical approximations by means of a central
difference and a uniform grid.

In this problem, four variables of interest (/) were defined, namely, the numeri-
cal results at three specific nodes of the grid, that is, KðL=2Þ;Kð9L=10Þ and KðL=5Þ,
and the arithmetic mean of the numerical results obtained at all the nodes of the grid.
Each variable of interest was subjected to an analysis of its iteration error (E), the
estimate of the iteration error (U), the convergence rate ðwÞ, the apparent order
(pU), and the effectiveness ðhÞ.

238 M. A. MARTINS AND C. H. MARCHI
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Numerical solutions were obtained for grids with N ¼ 11; 101; and 201 nodes.
The system of equations resulting from the discretization of the mathematical model
was solved with the Gauss-Seidel iteration method [10], using three types of initial
conditions: null, unitary, and linear with x. A minimum drop of five orders of
magnitude in the iteration error for all the variables of interest was considered the
convergence criterion for the iterative process.

Table 1 presents the results for KðL=2Þ, as a function of the number of nodes of
the grid, for the null condition, in the iteration in which the convergence criterion is
met. As can be seen in this table, the error estimates show a high accuracy (h � 1).
Analogous behavior was obtained for the other variables of interest, in every case.
With the variation of the initial conditions described earlier, and the number of
nodes of the grid, nine cases were considered and are described in Table 2. This table
shows that the convergence rate ðwÞ and the apparent order (pU) vary only with the
number of nodes in the grid. Therefore, they are not altered by changes in the initial
conditions or the variable of interest.

The results of Problem 1 revealed two types of behavior. In the initial itera-
tions, the error estimates are generally inaccurate and unreliable. After these initial
iterations, however, the estimates become increasingly accurate. As can be seen in
Figure 2, for example, there is discordance between uncertainty and error only in
the initial iterations. It was found that, in these iterations, the convergence rate pre-
sents values lower than one (w < 1), which renders the application of the empirical
estimator inadequate, according to [12].

Two-Dimensional Laplace Equation

Problem 2 consists of two-dimensional heat diffusion, in a steady state, without
heat generation and with constant thermal conductivity [15], which results in
Laplace’s equation, given by

q2K
qx2
þ q2K

qy2
¼ 0 ð14Þ

Table 1. Numerical results for KðL=2Þ, Problem 1

Grid (nodes) n (iterations) /n Eð/nÞ
Uð/nÞ
Eð/nÞ

11 150 6.49999E�02 8.17368E�08 9.99999E�01

101 15,933 6.25249E�02 2.78104E�08 1.00030Eþ00

201 63,688 6.25062E�02 2.72793E�08 9.97596E�01

Table 2. Convergence rate ðwÞ and apparent order ðpU Þ for Problem 1

Grid (nodes) Cases w pU

11 1, 2, 3 1.10557 0.04358

101 4, 5, 6 1.00098 0.00042

201 7, 8, 9 1.00024 0.00010

ESTIMATE OF ITERATION ERRORS IN CFD 239
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with Dirichlet boundary conditions given by Kð0; yÞ ¼ Kðx; 0Þ ¼ 0, KðL; yÞ ¼ y,
Kðx;LÞ ¼ x; and a square domain of unitary sides ðL ¼ 1Þ. The numerical model
consists of the finite-difference method [4], with second-order numerical approxima-
tions through a central difference and uniform grids. In this case there is no discre-
tization error [16], which facilitates the analysis of the iteration errors. In this
problem, the variables of interest are the temperature at the center of the domain,
that is, KðL=2;L=2Þ; and the mean temperature in the domain ðKmÞ.

The numerical solutions were obtained for three different grids, as indicated in
Table 3. The system of equations resulting from the discretization of the mathemat-
ical model was solved by the Gauss-Seidel iteration method. A multigrid method for
linear problems was also used, whose algorithm is described on pages 169 and 170 of
[4]. The null condition was used in all the cases. The convergence criterion adopted
was a minimum drop of seven orders of magnitude in the iteration error for the two
variables of interest.

Table 3 presents some numerical solutions for Problem 2, Eq. (14), calculated
for the temperature in the center of the domain, whose exact solution is U ¼ 1=4, in
the iteration in which the convergence criterion is satisfied in each case. Without the
use of the multigrid, a behavior similar to that presented in Problem 1 occurred, that
is, discordance between uncertainty and error only in the initial iterations, as shown
in Figure 3. This figure also shows the behavior presented by other iteration error

Figure 2. Error (E) and uncertainty (U) for KðL=2Þ, Problem 1, grid with 11 nodes.

Table 3. Numerical results for KðL=2;L=2Þ, Problem 2

Grid (nodes) Method n (iterations) /n Eð/nÞ
Uð/nÞ
Eð/nÞ

17� 17 Without multigrid 397 2.49999E�01 9.80008E�08 1.00000Eþ00

33� 33 Without multigrid 1,596 2.49999E�01 9.92262E�08 1.00002Eþ00

65� 65 Without multigrid 6,331 2.49999E�01 9.98782E�08 1.00135Eþ00

17� 17 With multigrid 22 2.50000E�01 �5.34994E�08 1.71884Eþ00

33� 33 With multigrid 29 2.50000E�01 �7.68770E�08 2.77543Eþ00

65� 65 With multigrid 35 2.49999E�01 2.70002E�08 1.54320Eþ01

240 M. A. MARTINS AND C. H. MARCHI
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estimators available in the literature, Ferziger and Peric’s [1] and Roy and Blottner’s
[8] estimators. All the estimators presented similar results. After these initial
iterations, the estimates become increasingly accurate.

With the use of the multigrid method, it was found that the iteration error does
not present monotonic behavior. As a result, the empirical estimator becomes
inefficient in any iteration, presenting low accuracy and proving unreliable. This is
illustrated in Figure 4, which also shows the behavior presented by the other estima-
tors. All are inadequate when the multigrid method is used.

Note, in Table 4, that the convergence rate ðwÞ and the apparent order (pU)
vary with the number of nodes in the grid. For a finer grid ð65� 65Þ there is a slight

Figure 3. Error (E) and uncertainty (U) for KðL=2;L=2Þ, Problem 2, grid of 65� 65 nodes, without

multigrid.

Figure 4. Error (E) and uncertainty (U) for KðL=2;L=2Þ, Problem 2, grid of 65� 65 nodes, with multigrid.

ESTIMATE OF ITERATION ERRORS IN CFD 241
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difference between the convergence rate of KðL=2;L=2Þ and Km, probably due to the
effect of the round-off errors, although, according to [3], different variables involved
in the same iterative process may present different convergence rates.

Two-Dimensional Navier-Stokes Equations

The mathematical model of the Problem 3 consists of the conservation of mass
law and the conservation of momentum law (Navier-Stokes equations). The simpli-
fications considered for the problem are steady state; two-dimensional flow in the x
and y directions; incompressible fluid; density and viscosity of the fluid are constant;
and without other effects.

Problem 3 consists of the two-dimensional flow inside a square cavity, with
unitary sides, whose lid moves. A source term is added in order to obtain an anal-
ytical solution [17] for the three unknowns: two velocity components (u, v) and
the pressure (p).

The numerical solution for this problem is obtained by the finite-volume
method [1] with second-order numerical approximations through a central differ-
ence, uniform grid, and co-located arrangement of variables. The MSI iteration
method [18] was used to solve the systems of equations resulting from the discretiza-
tion of the mathematical model. In this case there is discretization error. Therefore,
analytical solutions are not considered to analyze the iteration errors. So, one con-
siders the ‘‘exact’’ iteration solution at the limit of ‘‘machine error,’’ that is, the
numerical solution obtained along the iterative process when there are no more
iteration errors and only round-off errors remain.

To analyze the performance of the empirical estimator, four variables of inter-
est were considered: the numerical results of u, v, and p at the center of the domain,
that is, uð1=2; 1=2Þ; vð1=2; 1=2Þ; pð1=2; 1=2Þ; and the mass flow circulating in the

Table 4 Convergence rate ðwÞ and apparent order (pU) for Problem 2

Grid (nodes) Variable w pU

17� 17 Kð1=2; 1=2Þ 1.03956 0.01685

17� 17 Km 1.03956 0.01685

33� 33 Kð1=2; 1=2Þ 1.00970 0.00419

33� 33 Km 1.00970 0.00419

65� 65 Kð1=2; 1=2Þ 1.00241 0.00104

65� 65 Km 1.00238 0.00103

Table 5. Numerical results for uð1=2; 1=2Þ and pð1=2; 1=2Þ, Problem 3

Variable Grid (nodes) n (iterations) /n Eð/nÞ Uð/nÞ
Eð/nÞ

u 16� 16 728 �2.43644E�01 �9.36800E�11 1.00418Eþ00

u 32� 32 1,171 �2.48363E�01 �1.11803E�09 1.00027Eþ00

u 64� 64 2,160 �2.49587E�01 �2.18090E�10 1.04103Eþ00

p 16� 16 728 1.54559Eþ00 �7.18439E�10 1.01397Eþ00

p 32� 32 1,171 1.54543Eþ00 2.13074E�09 1.02625Eþ00

p 64� 64 2,160 1.54533Eþ00 1.08271E�09 1.09693Eþ00

242 M. A. MARTINS AND C. H. MARCHI



D
ow

nl
oa

de
d 

B
y:

 [M
ar

ch
i, 

C
ar

lo
s 

H
en

riq
ue

] A
t: 

11
:1

4 
18

 J
an

ua
ry

 2
00

8 

cavity ðmÞ. The numerical solutions were obtained for grids with 16� 16, 32� 32 and
64� 64 control volumes. Analogously to Problems 1 and 2, the iteration error (E),
the estimate of the iteration error (U), the convergence rate ðwÞ, the apparent order
(pU), and the effectiveness ðhÞ were analyzed for all the grids and each variable of
interest. Table 5 presents the number of iterations (n) that were required to satisfy
the convergence criterion adopted: minimum drop of seven orders of magnitude in
the nondimensionalized residue ðR�Þ of the discretized equations [9].

In Table 5, note that in all the grids considered for the variables
uð1=2; 1=2Þ and pð1=2; 1=2Þ, the empirical estimator presented reliable, that is,
h > 1, and accurate results at the end of the iterative process. Figure 5 illustrates
the behavior obtained for the numerical error and for the uncertainty of the mass
flow circulating in the cavity ðmÞ and grid of 64� 64 control volumes. The behavior
is similar for the other variables and cases. Note, in Table 6, that the convergence

Figure 5. Error (E) and uncertainty (U) for m, Problem 3, 64� 64 grid.

Table 6. Convergence rate ðwÞ and apparent order ðpU Þ for Problem 3

Grid (nodes) Variable w pU

16� 16 uð1=2; 1=2Þ 1.03612Eþ00 1.54100E�02

16� 16 vð1=2; 1=2Þ 1.01655Eþ00 7.13009E�03

16� 16 pð1=2; 1=2Þ 1.01580Eþ00 6.80914E�03

16� 16 m 1.01439Eþ00 6.20720E�03

32� 32 uð1=2; 1=2Þ 1.00881Eþ00 3.81185E�03

32� 32 vð1=2; 1=2Þ 1.00948Eþ00 4.09874E�03

32� 32 pð1=2; 1=2Þ 1.00928Eþ00 4.01360E�03

32� 32 m 1.00881Eþ00 3.81259E�03

64� 64 uð1=2; 1=2Þ 1.00459Eþ00 1.98928E�03

64� 64 vð1=2; 1=2Þ 1.00505Eþ00 2.18967E�03

64� 64 pð1=2; 1=2Þ 1.00446Eþ00 1.93694E�03

64� 64 m 1.00460Eþ00 1.99342E�03

ESTIMATE OF ITERATION ERRORS IN CFD 243
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8 rate ðwÞ and the apparent order (pU) for this problem vary with the number of
volumes of the grid, which also holds true for Problems 1 and 2.

CONCLUSION

An empirical estimator was analyzed to estimate iteration errors in numerical
simulations. The iteration error was defined as the difference between the exact
numerical solution of the system of equations and the numerical solution in a given
iteration. This estimator provides an estimate of the iteration error based on the con-
vergence rate of the variable of interest, according to the theory presented herein.

Based on the uncertainty and error ratio, the behavior of the empirical esti-
mator was analyzed with respect to its accuracy and reliability. In the tests with
Poisson’s equation, Problem 1, two types of behavior were observed. In the initial
iterations, a maximum of 13% of the total number of iterations, the error estimates
(uncertainties) are inaccurate and unreliable. After these initial iterations, the esti-
mates are increasingly accurate.

In the test involving the Laplace equation, Problem 2, without using the multi-
grid method, similar behavior was found to that obtained in Problem 1, that is, dis-
cordance between uncertainty and error occurs only in the initial iterations.
However, in these tests, the initial iterations correspond, at most, to 9% of the total
number of iterations. For the tests involving the application of the multigrid method,
the empirical estimator did not prove efficient since it presented low accuracy and
fairly unreliable results.

An analysis of the behavior of the iteration error involved in the numerical sol-
ution of the Navier-Stokes equations, Problem 3, found that the iteration error itself
presented oscillations in the initial iterations, as well as uncertainty. This had not
occurred in the two previous problems. As for the efficiency of the error estimator,
results similar to those of Problems 1 and 2 were obtained, although in Problem 3,
the initial iterations correspond at the most to 17% of the total number of iterations
involved in the calculation.

Overall, in the numerical tests performed here, the performance of the empiri-
cal estimator can be divided into three intervals: (1) in the initial iterations, the accu-
racy is generally low; (2) when the number of iterations is very high, the round-off
errors affect the accuracy, which is nonetheless good; and (3) in the interval between
these two extremes, the accuracy tends to be great as the number of iterations
increases.

The empirical estimator is not recommended for use in iterative processes that
employ the multigrid method, because the iteration error does not exhibit monotonic
behavior. However, due to their wide application in computational fluid dynamics
(CFD), it is important to improve the performance of iteration error estimators in
problems solved with the multigrid method. The present authors are working toward
this objective, as well as expanding the tests of the empirical estimator on problems
of compressible and reactive fluid and on natural and forced convection.

Equivalence was found to exist between the empirical estimator and other iter-
ation error estimators available in the literature, Ferziger and Peric’s [1] and Roy and
Blottner’s [8] estimators. The estimator of [1] and that of this work provide a more
accurate and reliable estimate of the iteration error than do the criteria based on the
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8 difference of the variable between two successive iterations or in the residue of the
discretized equations. Nonetheless, it appears that the estimators must be applied
to local and global variables and not to norms of field variables.
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