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Introduction
Accurate and reliable numerical solutions depend on the estimation 

of the numerical error (E), which can be defined as the difference 
between the exact analytical solution (Φ) of a variable of interest and its 
numerical solution (φ), i.e.,

( )   –  ϕ ϕ= ΦE 				                    (1)

Where E is caused by four sources of error [1]: truncation, iteration, 
round-off andprogramming. When the other sources do not exist or 
are very small compared to thetruncation error, E can also be called 
by discretization error. In practical situations, a numerical solution is 
obtained because the analytical solution isunknown. Hence, the true 
value of the numerical error is also unknown and must therefore 
beestimated. There are two estimators for the discretization error that 
are widely used with themethods of finite difference and finite volume, 
both of them based on Richardsonextrapolation. One of them is 
Richardson estimator, which is given by [2]
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where 1 2φ φand =numerical solutions obtained, respectively, with fine 
(h1) and coarse (h2) grids, h=grid spacing or distance between every two 
consecutive nodes of the grid (in this work, h=1/N), N+1=number of 
nodes in the grid, r=h2/h1=grid refinement ratio, pL=asymptotic order 
[3] of the error predicted for each variable of interest based on a priori 
analyses using a Taylor series [4].

The accurate estimation (Ri/E→1) of E by means of Eq. (2) is only 
possible if the correct value of pL is used, and h is sufficiently small 
(h → 0). One way of checking in practice, i.e., through numerical 
experiments, if the valuededuced a priori for pL is correct is to use the 
concept of effective order (pE) of the true error, defined by [5] as:
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As can be seen in Eq. (3), the effective order (pE) is a function of 
the true error of the variable of interest. Thus, for problems whose 
analytical solution is known, it can be used to verify a posteriori if, 
as h → 0, one obtains the asymptotic order (pL) of the discretization 

error, whichis a theoretical result obtained a priori. In problems whose 
analytical solution is unknown, the concept of apparent order [1] can 
be used to obtain a posteriori the pL of each φ.

In this work, two one-dimensional (1D) problems are solved by the 
finite difference method with uniform grids. First and second-order 
accurate numerical approximations in space, and a mixture of the two 
(hybrid), are used. The objectives of this work are: (1) based on 
numerical experiments, verify [3] the true value of the discretization 
error (E) as a function of the size (h) of the grid for four variables of 
interest (φ) in each problem; (2) deduce the value of the asymptotic order 
(pL) of the discretization error of each φ, be it primary or secondary; (3) 
also based onnumerical experiments, verify if the value of the effective 
order (pE) of the discretization error tends toward pL when h → 0; and 
(4) over the discretization error and its order, show the effect caused by 
the Peclet number, by the numerical approximation used, by the mix 
factor of hybrid schemes, and by the source term. Another objective is 
to clarify inconsistent statements found in the literature. For example, 
Celik and Zhang [6] state that the asymptotic order of a hybrid scheme 
is variable. On the other hand, Roache [2] suggests using the lower 
order between the two pure schemes. Even in onedimensional problem, 
Roy [7] considers that the error is reduced non-monotonically when 
atleast two schemes with different asymptotic orders are used.

The importance of this work lies in confirming the correct value 
of the asymptotic order (pL) of the discretization error for some 
numerical approximations that are very common in the method of 
finite difference. This will allow the Richardson estimator and its 
variants to be used correctly, since they depend directly on the value 
of pL, as can be seen in Eq. (2). The correct value of the asymptotic 
order is also important to use the repeated Richardson extrapolation 
efficiently [8]. Another contribution is to show the behavior of the 
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error with the deferred correction scheme [9-11]. In addition, we 
intend to clarify the aforementioned open questions in the literature. 
One-dimensional problems are used here for the following reasons: 
(1) the possibility of using highly refined grids in one direction up to 
an order of millions of nodes, which enables one to verify asymptotic 
behaviors and thus unequivocally prove the value of practical pL; (2) 
due to the speed in obtaining each solution, a large number of tests can 
be performed, facilitating systematic studies of several parameters; and 
(3) it is presumed that the onedimensional results are applicable to two 
and three dimensions. The work is divided as follows: sections II and III 
address two one-dimensional problems in a steady state, the advection-
diffusion and Burgers equations, and section IV reports the conclusion 
of this work.

Advection Diffusion Equation
Mathematical model

Starting from the thermal energy conservation equation, 
considering a steady state 1D incompressible fluid flow without heat 
generation and viscous dissipation, and consideringthat the properties 
and velocities are constant in a continuous medium, one obtains 
theadvection-diffusion equation:

2

2=
du d uPe
dx dx

				                     (4)

where Pe=the Peclet number, x=coordinate direction, and 
u=temperature. The boundary conditions are of the Dirichlet type:

(0) 0 (1) 1= ∴ =u u 				                      (5)

The variables of interest, i.e., the variables for which the numerical 
solution is obtainedand its discretization error and effective order are 
verified, are:

(a) Temperature (u) at x=½: the principal variable of the problem, 
which is obtained fromthe solution of Eq. (4). Its analytical solution is
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(b) Mean temperature (U): a global variable obtained from the 
following definition

1

0
( )= ∫U u x dx 					                    (7)

Its analytical solution is
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(c) Inclination (I): a local variable obtained from the following 
definition

1=
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Its analytical solution is
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				                                    (10)

(d) The mean of the l1 norm of the discretization error (L), defined 
mathematically by

0=
−
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∑

N
analytical numerical

i i
i

u u
L
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		                   (11)

where i represents each of the nodes of the grid. Its analytical solution 
has a null value.

Numerical model

The numerical model is characterized by the use of the finite 
difference method [4], uniform grids and the TDMA (Tri Diagonal 
Matrix Algorithm) method to solve the system ofequations. The 
programming language used is FORTRAN 95 with quadruple 
precision. The diffusive term (second-order derivative) of Eq. (4) was 
approximated with the centraldifferencing scheme (CDS). In the case 
of the advective term (first-order derivative), three approximations 
were used: (1) CDS, (2) first-order upwind differencing scheme (UDS), 
and(3) β scheme, which is a hybrid UDS and CDS scheme by means of 
the deferred correction of [10,11], i.e.,

* *( )φ β φ φΦ ≈ + −UDS CDS CDS 		                  (12)

Where Φ=exact value of the advective term, φ=numerical 
approximation in the currentiteration, φ*=numerical approximation in 
the previous iteration, and β=mix factor whosevalue varies from 0 
(UDS) to 1 (CDS). In the deferred correction scheme, all the terms that 
involve β are considered source terms, remaining in the independent 
term of the system of equations. The coefficients of the system of 
equations are the same as those of the pure UDS scheme. The matrix of 
coefficients is of the tridiagonal type. For the UDS and CDS schemes, 
the TDMA solves the system directly. In the case of the β scheme, due 
to the second term of Eq. (12), the solution is iterative; in this case, 
the initial estimation is equal to the analyticalsolution. Details about 
the above described numerical model and those of the next sections 
aregiven by [4,11]. The variable of mean temperature (U) was obtained 
through the trapezoidal rule [12,13], andthe variable of inclination (I) 
was obtained with the UDS-2 scheme, i.e., the second-order UDS [4].

Estimation of the asymptotic order (pL)

Based on the Taylor series and following the procedure of [4], the 
truncation error (ε) of the discretized differential equation (EDD) at 
each i node of the grid is

2 4 3 2

2 4 3
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By definition, the asymptotic order (pL) is the lowest exponent 
of the error, whose termprevails when h → 0. For uniform grids, it is 
known [3] that the pL of the discretization errorof the unknown of the 
differential equation, E(u), is equal to the pL of ε (EDD). Therefore, for 
u, one has

1 0 ( ) 1
2 1 ( )

β
β

≤ <
=  =

L
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P

if CDS
			                  (14)

For U, obtained by means of the trapezoidal rule, one has [11] 
pL=2. This is the sameresult as for I, obtained with the UDS-2 scheme 
[4]. But these values are valid for thesituation in which ui has no error, 
i.e., using the analytical solution in each node. In the case ofsecondary 
variables (φ), i.e., variables that depend on the primary variable (u), 
in other words, the unknown in the differential equation, due to error 
propagation, the pL of the discretizationerror (E) is given by
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{ }[ ( )] [ ( )] [ ( )]φ ε ε φ=L L Lp E Min p EDD p 		                (15)

where Min=minimum value between the two arguments, and 
ε(φ)=truncation error of a numerical approximation φ. Hence, the 
result of Eq. (14) is also valid for U, I and L.

Numerical results

The numerical solution of the four variables of interest was obtained 
with grids of 3, 5, …up to 67,108,865 nodes, which correspond to h=½, 
¼, ... down to ≈ 1.49×10-8 m. In thesolution of Eq. (4), the schemes 
UDS, CDS and β=0.999 were used for Pe=1 and 10. Acomputer program 
was implemented in FORTRAN 95 language, version 9.1 of Intel, 
usingquadruple precision (Real*16). The simulations were performed 
on a microcomputerequipped with an Intel processor (Xeon Quad Core 
X5355 2.66 GHz), 16 GB RAM andWindows XP 64 bits operational 
system. The maximum CPU time was 9 minutes for the β scheme with 
eight iterations, a sufficient number to reach the machine round-off 
error. Figure 1 shows the modulus of the discretization error (E) of the 
four variables as a function of the h grid used. Considering the modulus 
of E, one can see that for a relativelylarge h, in general |E(β)| ≈ |E(CDS)| 
< |E(UDS)|. And for h → 0, |E(CDS)| < |E(β)| < |E(UDS)|. Moreover, for 
the same scheme, in general |E(Pe=1)| < |E(Pe=10)|. Figure 2 shows the 

effetive order (pE) of the error of the four variables as a function ofthe 
h grid used. All the results of pE presented in this work were obtained 
with Eq. (3) and a refinement ratio (r) equal to 2. Note, in Figure 2, that:

1) In the coarser grids, as expected [5], the values of the effective 
order (pE) can besignificantly different from those of the asymptotic 
order (pL), presenting negative or evenundefined values.

2) For h → 0, pE→ pL as predicted by Eq. (14) for the three schemes 
(UDS, CDS and β) and the four variables of interest, even for β scheme 
with its value equal to 0.999.

3) For temperature and L, in the case of β scheme, pE≈ pL(CDS) in 
the coarser grids. Uponreducing h, there is an interval in which pE is 
undefined. And lastly, for h → 0, pE→ pL(UDS).

4) For the inclination, in the case of β scheme, pE≈ pL(CDS) in the 
coarser grids. Uponreducing h, there is an interval in which pE varies 
monotonically down to h → 0, pE→pL(UDS).

5) For mean temperature, in the case of β scheme, pE ≈ pL(UDS) in 
almost all the gridsexcept in the coarsest ones.

6) Although for β scheme, pE → pL(UDS) for h → 0, its error may be 

Figure 1: Advection-diffusion equation: modulus of the error (E).
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Figure 2: Advection-diffusion equation: effective order (pE) of the error.

significantly smallerthan that of the UDS, depending on the value of β 
(Figure 1).

The literature contains the following inconsistent statements 
concerning the numerical solution of the advection-diffusion equation: 
(i) Celik and Zhang [6] state that the asymptotic order of a hybrid scheme 
is variable; (ii) Roache [2] suggests using the lower order between the 
two pure schemes; and (iii) even in one-dimensional problems, Roy 
[7] considered that the error is reduced non-monotonically when at 
least two schemes with different asymptotic orders are used. Therefore, 
based on the theoretical and numerical results presented in this section, 
the statement of Roache [2] is correct, that of Celik et al. [6] is incorrect, 
and that of Roy [7] is correct depending on the variable of interest.

Burgers Equation
Mathematical model

Starting from the equation of conservation of the momentum, 
considering a continuous medium of incompressible fluid with constant 

properties and steady state 1D laminar flow, one obtains the Burgers 
equation with a source term given by

2

2 2Re Re ( 1) 1
( 1)

 = + − − + −

x
xdu d u eu e e

dx dx e
(16)

where Re=Reynolds number, x=coordinate direction, and u=velocity. 
The boundaryconditions are of the Dirichlet type, given by Eq. (5).

The variables of interest, i.e., the variables for which the numerical 
solution is obtained and its discretization error and effective order are 
verified, are:

(a) Velocity (u) at x=½: obtained from the solution of Eq. (16). Its 
analytical solution is given by Eq. (6) with Pe=1.

(b) Mean velocity (U): defined by Eq. (7). Its analytical solution is 
given by Eq. (8) with Pe=1

(c) Inclination (I): defined by Eq. (9). Its analytical solution is given 
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by Eq. (10) with Pe=1.

(d) The mean of the l1 norm of the discretization error (L), defined 
by Eq. (11). Its analytical solution has a null value.

Numerical model

The numerical model is the same as the one adopted for the 
advection-diffusion equation. The only difference is that the u that 
multiplies the advective term is incorporated into the coefficients of the 
system of equations to linearize the nonlinear differential equation. In 
this case, the solution of the system of equations is iterative with TDMA 
for the three schemes used in the advective term: UDS, CDS and β.

Estimation of the asymptotic order (pL)

Based on the Taylor series and following the procedure of [4], the 
truncation error (ε) of the discretized differential equation (EDD) at 
each i node of the grid is

2 4 3 2

2 4 3

1( ) (1 ) Re Re ...
2 2 6

ε β
      

= − + +      
       

i i i
i i i

d u h d u d u hEDD u u
dx dx dx   (17)

Therefore, the same result of Eq. (14) applies to u, U, I and L.

Numerical results

The numerical solution of the four variables of interest was obtained 
with grids of 3, 5, ... up to 33,554,433 nodes, which correspond to h=½, 
¼, ... down to ≈2.98×10-8 m. In the solution of Eq. (16), the schemes 
UDS, CDS and β=0.99 were used for Re=5. The CPU time was at most 
1 h 12 min for β scheme with 100 iterations, a sufficient number to 
reach the machine round-off error. Figure 3 shows the modulus of the 
discretization error (E) of the four variables as a function of the h grid 
used. Considering the modulus of E, one can see that for a relatively 
large h, in general |E(β)| ≈ |E(CDS)| < |E(UDS)|, and for h → 0, |E(CDS)| 
< |E(β)| < |E(UDS)|. Figure 4 shows the effective order (pE) of the error 
of the four variables of interest as a function of the h grid used. In this 
figure, note that:

1) In the coarser grids, as expected [5], the values of the effective 
order (pE) can differsignificantly from those of the asymptotic order 
(pL), presenting negative or evenundefined values.

2) For h → 0, pE→ pL, as predicted by Eq. (14) for the three schemes 
(UDS, CDS and β) and the four variables of interest, even for β scheme 
with its value of 0.99.

Figure 3: Burgers equation: modulus of the error (E).
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3) For velocity and L, in the case of β scheme, pE≈ pL(CDS) in the 
coarsest grids. Uponreducing h, there is an interval in which pE is 
undefined. And lastly, for h → 0, pE→pL(UDS).

4) For the mean velocity and the inclination, in the case of β scheme, 
pE≈ pL(CDS) in thecoarsest grids. Upon reducing h, there is an interval 
in which pE varies monotonicallydown to h → 0, pE → pL(UDS).

5) Although for β scheme, pE→ pL(UDS) for h → 0, its error may be 
significantly smallerthan that of the UDS, depending on the value of β 
(Figure 3).

The same comments made in the last paragraph of the section about 
the advectiondiffusionequation also apply to the results of the problem 
in this section with respect toBurgers equation.

Conclusion
This work found principally that:

1) For h → 0, in all the cases, pE→ pL, as predicted by Eq. (14), and 
monotonically for asufficiently small h.

 Figure 4: Burgers equation: effective order (pE) of the error.

2) The pL of a hybrid scheme is equal to the pL of the pure scheme 
of the lowest order.

3) For hybrid schemes, the value of the error modulus falls within 
those of the pure schemes,except in very coarse grids. The proximity 
of the value of the error modulus between thehybrid scheme and the 
scheme of the highest order depends on the value employed for the β 
factor.

4) The value of the parameters Pe and β can affect the value of the 
error significantly.
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