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ABSTRACT 
The aim of this study is to extend the use of repeated Richardson 
extrapolation to one-dimensional (1D) and two-dimensional (2D) fields in 
computational fluid dynamics (CFD). The following two methods are tested: 
completed Richardson extrapolation (CRE), a method that has been used 
previously in the literature, and full Richardson extrapolation (FRE), a new 
method developed in this study. The Poisson’s, advection–diffusion, 
Laplace’s, and Burgers’ equations are solved using the finite difference 
method. The CRE and FRE methods were found to significantly reduce the 
discretization error of the numerical solutions for all nodes of the grid. 
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Introduction 

The completed Richardson extrapolation (CRE) method [1] can be used to reduce the discretization 
error in temperature fields and increase the order of accuracy (p0) of numerical solutions without 
extrapolation. In the CRE method, one Richardson extrapolation [2] is applied to the solutions 
obtained on two grids, one fine and one coarse, during the post-processing phase. For example, 
the coarse grid may consist of 41 � 41 nodes, whereas the fine grid consists of 81 � 81 nodes. The 
numerical solutions for the two grids are initially of order p0 ¼ 2; after applying CRE, the order of 
accuracy is pf ¼ 4 for all nodes of the fine grid, where pf is the order of accuracy of numerical solution 
with extrapolation. In Roache and Knupp [1], the finite difference method was augmented with CRE 
in solving the one-dimensional (1D) Poisson’s and advection–diffusion equations and the two- 
dimensional (2D) Poisson’s equation. Using various methods based on one Richardson extrapolation, 
the order of accuracy of the temperature field obtained using finite differences was increased from 
p0 ¼ 4 to pf ¼ 6 for the 1D and 2D advection–diffusion equations in Sun and Zhang [3], the 2D 
Poisson’s equation in Wang and Zhang [4], and the 3D advection–diffusion equation in Ma and 
Ge [5] and Zhai et al. [6]. The problems were solved in the steady state in all of these studies. In 
Richards [7], the CRE method was extended to the 1D transient advection–diffusion equation. 

Values of pf above 10 have been achieved for the 1D advection–diffusion equation [8] and 2D 
Laplace’s equation [9–11] using repeated Richardson extrapolation (RRE) with the finite difference 
and finite volume methods on uniform square and triangular grids; in some cases, values as high 
as pf ¼ 19 have been reached from initial orders of p0 ¼ 1, 2, or 3. In these three studies, RRE was 
applied to global and local variables, such as the average temperature of the entire field, heat transfer 
rates at boundaries, and temperature at specific nodes of the grid. The RRE method is a post- 
processing method for solutions obtained on several grids. For cases with a higher number of grids, 
a larger number of REs can be performed, and a higher pf value can, in principle, be achieved. 
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The primary aim of this study is to apply RRE to fields in CFD, for the first time to our knowledge. 
The characteristics of the CRE and RRE methods are combined in a new method known as full 
Richardson extrapolation (FRE). This new algorithm is also a post-processing method for solutions 
obtained on several grids. The specific aims of this study are the following: (1) to test the FRE method 
on the 1D Poisson’s, advection–diffusion, and Burgers’ equations as well as the 2D Laplace’s and 
Burgers’ equations; (2) to determine whether the repeated application of CRE can be used to increase 
pf for these equations; and (3) to apply FRE and CRE to numerical solutions of order p0 ¼ 1, 2 and 4. 
To the best of our knowledge, these aims have not yet been achieved in the previous literature. The 
importance of this work lies in obtaining numerical solutions with a high order of accuracy over 
entire fields during the post-processing phase. Further details on this study are presented in 
Giacomini [12]. 

Mathematical models 

1D models 

Three 1D mathematical models are used in the tests of the CRE and FRE methods: the Poisson’s, 
advection–diffusion, and Burgers’ equations, which can be expressed as follows: 

d2u
dx2 ¼ S1; Pe

du
dx
¼

d2u
dx2 ; Re u

du
dx
¼

d2u
dx2 þ S2 ð1Þ

Here, u represents the dependent variable, x is the spatial coordinate, Pe is the Peclet number, Re is 
the Reynolds number, and S1 ¼ � π2sin(πx) and S2 ¼ ex[Re(ex � 1) � e þ 1]/(e � 1)2 are the source 
terms. The Dirichlet boundary conditions are u(0) ¼ u(1) ¼ 0 for the Poisson’s equation and u 
(0) ¼ 0 and u(1) ¼ 1 for the advection–diffusion and Burgers’ equations. The analytical solutions 
are u ¼ sin(πx) for the Poisson’s equation and u ¼ (exb � 1)/(eb � 1) for the advection–diffusion 
and Burgers’ equations, where b ¼ Pe for the advection–diffusion equation and b ¼ Re for the 
Burgers’ equation. 

2D models 

The first 2D mathematical model used to test the CRE and FRE methods is the Laplace’s equation, 
which can be expressed as follows: 

q2u
qx2 þ

q2u
qy2 ¼ 0 ð2Þ

Nomenclature 

C Richardson correction 
CDS-2 second-order central differencing scheme 
CDS-4 fourth-order central differencing scheme 
E discretization error in the numerical 

solution 
g number of a grid 
G number of grids 
h distance between two consecutive nodes in 

each grid 
k weighting factor 
L1, L2 and Li L1-norm, L2-norm, and L1-norm 
m number of Richardson extrapolations 
N total number of nodes in grid 

Ng total number of nodes in grid g 
p pressure (Pa) 
P, W, E spatial position of the node in the grid 
pE effective order 
Pe Peclet number 
pf order of accuracy of numerical solution 
pm true orders 
p0 theoretical order of accuracy 
r grid refinement ratio 
Re Reynolds number 
u, v dependent variables 
UDS-1 first-order upwind differencing scheme 
x, y spatial coordinates   
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where y is the second spatial coordinate. The boundary conditions are u(x, 1) ¼ sin(πx) and 
u(0, y)¼ u(1, y) ¼ u(x, 0) ¼ 0. The analytical solution to the equation is given by u ¼ sin(πx)sinh 
(πy)/sinh(π). 

The Burgers’ equations comprise the second 2D mathematical model which is used to test the CRE 
and FRE methods. These equations can be expressed as follows: 

u qu
qx þ v qu

qy ¼ �
qp
qx þ

1
Re

q2u
qx2 þ

q2u
qy2

� �

u qv
qxþ v qv

qy ¼ �
qp
qy þ

1
Re

q2v
qx2 þ

q2v
qy2

� �
� Sðx; y;ReÞ

8
<

:
ð3Þ

where v represents the second dependent variable, p is the pressure (determined analytically), and S is 
the source term. The variables p and S are given in Shih et al. [13]. The boundary conditions 
are as follows: u(x, 1) ¼ 16(x4 � 2x3 þ x2), u(0, y) ¼ u(1, y) ¼ u(x, 0) ¼ 0, and v(0, y) ¼ v(1, y) ¼ v 
(x, 0) ¼ v(x, 1) ¼ 0. The analytical solutions [13] are u ¼ 8(x4 � 2x3 þ x2)(4y3 � 2y) and v ¼ � 8(4x3  

� 6x2 þ 2x)(y4 � y2). 

Numerical models 

Numerical solution without extrapolation 

The 1D Poisson’s equation was solved using the finite difference method on uniform grids, with 
a second-order central differencing scheme (CDS-2) [14] or fourth-order standard compact central 
differencing scheme (CDS-4) [15] that is used to approximate the second-order derivative in 
Eq. (1). The tridiagonal matrix algorithm [14, 16] was used to solve the system of equations, and 
the computational program was implemented in the FORTRAN 95 language (version Intel 
11.1.065) with quadruple precision. The theoretical order of accuracy (p0) of the numerical solution 
for u is 2 with CDS-2 and 4 with CDS-4. 

The 1D advection–diffusion equation was solved using the same numerical model as for the 1D 
Poisson’s equation, except that CDS-2 or the first-order upwind differencing scheme (UDS-1) [14] 
was used to approximate the first-order derivative in Eq. (1), and only CDS-2 was used to approxi-
mate the second-order derivative in Eq. (1). The theoretical order of accuracy (p0) of the numerical 
solution for u is therefore 1 with UDS-1/CDS-2 and 2 with CDS-2/CDS-2. 

The 1D Burgers’ equation was solved using the same numerical model as for the 1D Poisson’s 
equation, with the following modifications. First, CDS-2 was used to approximate the first- and 
second-order derivatives in Eq. (1). In addition, a sufficient number of iterations were performed 
to reach the machine round-off error, thereby eliminating the iteration error in the solution. The 
theoretical order of accuracy (p0) of the numerical solution for u is 2. 

The 2D Laplace’s equation was also solved using the finite difference method on uniform grids. 
The CDS-2 method was used to approximate the two second-order derivatives in Eq. (2), and the 
modified strongly implicit method [17] was used to solve the system of equations associated with 
the geometric multigrid correction scheme (CS) [18]. The computational program was implemented 
in the FORTRAN 95 language (version Intel 11.1.065) with quadruple precision. A sufficient number 
of iterations were performed to reach the machine round-off error, thereby eliminating the iteration 
error in the solution. The theoretical order of accuracy (p0) of the numerical solution for u is 2. 

The 2D Burgers’ equations were solved using the same numerical model as for the 2D Laplace’s 
equation, with the following modifications. The CDS-2 or UDS-1 method was used to approximate 
the first-order derivatives in Eq. (3), and a geometric multigrid full-approximation scheme (FAS) [18] 
was used in place of the CS. The theoretical order of accuracy (p0) of the numerical solutions for u 
and v is 1 with UDS-1/CDS-2 and 2 with CDS-2/CDS-2. 
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Numerical solution with multiple extrapolations 

For 1D problems, the FRE method computes the extrapolated solution in two steps. The first step 
considers those nodes that have the same coordinates in the fine and coarse grids, represented by 
the circles in Figure 1 (W and E). For each node in the fine grid with a corresponding node in the 
coarse grid, the Richardson correction, C, was calculated as follows: 

Cm
g;P ¼

um� 1
g;P � um� 1

g� 1;P

rpm� 1 � 1
ð4Þ

where P is the spatial position of the node in the grid (W or E in Figure 1); pm represents the true orders 
[9, 11, 19] of the discretization error; g ¼ [1, G], where g ¼ 1 corresponds to the coarser grid (with the 
greatest h) and g ¼G corresponds to the finer grid (with the smallest h); h is the distance between two 
consecutive nodes in each grid g; r ¼ hg� 1/hg is the grid refinement ratio; and m is the number of 
Richardson extrapolations. Here, m ¼ 0 represents no extrapolation (the solution obtained using the 
methods described in ‘Numerical solution without extrapolation’), m ¼ 1 represents one standard 
Richardson extrapolation, and m > 1 represents RRE. Equation (4) is valid for g ¼ [2, G] and 
m ¼ [1, g � 1] and was motivated by the works in Roache and Knupp [1] and Marchi et al. [9, 11]. 

The second step considers the nodes in the fine grid that do not have counterparts in the coarse 
grid, represented by the diamond in Figure 1 (P). For these nodes, the Richardson correction is 
calculated as follows: 

Cm
g;P ¼ Cm

g;W þ k1
g;PðC

m
g;E � Cm

g;WÞ ð5Þ

where nodes W and E lie to the left and the right of node P (Figure 1), respectively, and the 
Richardson corrections for W and E are calculated using Eq. (4). The weighting factor k is given by 

k1
g;P ¼

um� 1
g;P � um� 1

g;W

um� 1
g;E � um� 1

g;W
ð6Þ

Finally, the extrapolated solution is obtained for all of the nodes in the fine grid using the following 
equation: 

um
g;P ¼ um� 1

g;P þ Cm
g;P ð7Þ

The FRE algorithm for 1D fields is as follows:  
1. Obtain the solution um¼0

g;P without extrapolation for each node P of each grid g, that is, for P ¼ [1, Ng] 
and g ¼ [1, G], where Ng represents the total number of nodes in grid g.  

2. Set m ¼ 1.  
3. Set g ¼m þ 1.  
4. Using Eq. (4), calculate the Richardson correction for each node of the fine grid (g) that coincides 

with a node in the coarse grid (g � 1), represented by the circles in Figure 1.  
5. Using Eqs. (5) and (6), calculate the Richardson correction for each node of the fine grid (g) that 

does not coincide with a node in the coarse grid (g � 1), represented by the diamond in Figure 1.  
6. Using Eq. (7), calculate the solution with m extrapolations for all of the nodes of the fine grid.  
7. Set g ¼ g þ 1. 

Figure 1. Types of nodes for extrapolation in 1D problems.  
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8. Return to step 4 if g �G.  
9. Set m ¼m þ 1. 

10. Return to step 3 if m �G � 1. 
The FRE algorithm for 2D fields is as follows:  

1. Obtain the solution um¼0
g;P without extrapolation for each node P of each grid g, that is, for P ¼ [1, Ng] 

and g ¼ [1, G].  
2. Set m ¼ 1.  
3. Set g ¼m þ 1.  
4. Using Eq. (4), calculate the Richardson correction for each node of the fine grid (g) that coincides 

with a node in the coarse grid (g � 1) (such that the nodes in the fine and coarse grids have the 
same coordinates), represented by the circles in Figure 2.  

5. For the nodes of the fine grid (g) whose vertical coordinates correspond to a row of the coarse 
grid (g � 1) but whose horizontal coordinates do not coincide with a node in the coarse grid, 
represented by the diamonds in Figure 2, calculate the Richardson correction using Eqs. (5) 
and (6), as in the 1D case.  

6. For the nodes of the fine grid (g) whose horizontal coordinates correspond to a column of the 
coarse grid (g � 1) but whose vertical coordinates do not coincide with a node in the coarse grid, 
represented by the triangles in Figure 2, calculate the Richardson correction as follows: 

Cm
g;P ¼ Cm

g;S þ k2
g;PðC

m
g;N � Cm

g;SÞ ð8Þ

where 

k2
g;P ¼

um� 1
g;P � um� 1

g;S

um� 1
g;N � um� 1

g;S
ð9Þ

7. For the nodes in the fine grid (g) that do not coincide with the coarse grid (g � 1) in either the 
horizontal or vertical direction, represented by the square in Figure 2, calculate the Richardson 
correction using Eqs. (5) and (6), where the square node in Figure 2 becomes node P in Eqs. (5) 
and (6).  

8. Using Eq. (7), calculate the solution with m extrapolations for all nodes of the fine grid (g). 

Figure 2. Types of nodes for extrapolation in 2D problems.  
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9. Set g ¼ g þ 1. 
10. Return to step 4 if g �G. 
11. Set m ¼m þ 1. 
12. Return to step 3 if m �G � 1.  

The CRE method, developed by Roache and Knupp [1], was applied to both 1D and 2D problems 
using the two algorithms mentioned above, but only for m ¼ 1 with weighting factors k ¼ 1

2 for the 
1D case and k ¼ 1

2 and 1
4 for the 2D case. That is, the last two steps of each algorithm were not 

executed. In this study, the RRE method is combined with the CRE method, that is, the above two 
algorithms are executed in their entirety. 

Performance analysis of the CRE and FRE methods 

Three types of criteria [20, 21] were used to analyze the performance of CRE and FRE in reducing the 
discretization error for all of the nodes in the grid: 
1. The average discretization error: 

L1 ¼

PN

i¼1
Eij j

N
ð10Þ

2. The root-mean-square discretization error: 

L2 ¼

PN

i¼1
ðEiÞ

2

N

2

6
6
4

3

7
7
5

1=2

ð11Þ

3. The maximum discretization error: 

Li ¼ max
1�i�N

Eij j ð12Þ

where max refers to the maximum value of Ei among the N values.  

These three criteria were chosen because, among the metrics investigated in Marchi and Martins 
[21], they maintain the order of accuracy of the numerical solution. In Eqs. (10)–(12), N represents all 
of the nodes of the grid except the boundary nodes, and the discretization error in the numerical 
solution for each node i is defined as follows: 

Ei ¼ uanalytical
i � unumerical

i ð13Þ

The concept of the effective order of RRE [9, 11] was used to quantify the efficiency of the CRE and 
FRE methods in reducing the discretization error for all of the nodes in the grid: 

ðpEÞg;m ¼
log L1g� 1;m� 1

L1g;m

� �

logðrÞ
ð14Þ

where g ¼ [2, G] and m ¼ [1, g � 1]. Equation (14) can also be applied when m ¼ 0 and g ¼ [2, G] if 
the subindex m � 1 is taken to be equal to m in this case. A higher value of pE corresponds to a higher 
efficiency of the RRE method and a more accurate numerical solution. 

The results are presented only for L1 as the results for L2 and Li are qualitatively similar. 
The results are provided for all three criteria in Giacomini [12]. 
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Results 

For each problem, the numerical solution was obtained on 10 grids with 3, 5, 9, 17, 33, 65, 129, 257, 
513, and 1,025 nodes in each coordinate direction; therefore, r ¼ 2 and G ¼ 10. 

1D Poisson’s equation 

Figure 3 shows the results for the 1D Poisson’s equation. Figure 3(a) shows the L1 results for m ¼ 0, 
the numerical solution obtained without extrapolation using the CDS-2 method; m ¼ 1, the numerical 
solution obtained with one extrapolation; and m ¼ g � 1, the numerical solution obtained with the 
maximum possible number of extrapolations for each grid g. Each symbol along the curves in 
Figure 3(a) represents a grid of different size h. For a given grid size, the smallest error is obtained 
with m ¼ 1 for the CRE method, while the error is smallest with m ¼ g � 1 (limited to 7) for FRE. 
There is a small increase in the error for m> 1 with the CRE method. In the case of the finest grid 
(1,025 nodes and h ¼ 9.765625 � 10� 4), the errors were reduced by factors of 4.25 � 105 and 4.83 �
1024 compared to m ¼ 0 (no extrapolation) using the CRE and FRE methods, respectively; therefore, 
the FRE method reduces the error by a much greater factor compared to the CRE method. 

Figure 3. Results for the 1D Poisson equation.  
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Figure 3(c) shows the effective order (pE) of each error curve in Figure 3(a). For m ¼ 0 (no extra-
polation), the values of pE tend toward 2, which is the theoretical value expected for p0 in the numeri-
cal solution for u with CDS-2. In the CRE method, the values of pE tend toward 4 for m ≥ 1. In the 
FRE method, the values of pE increase with m for m ¼ g � 1, reaching a maximum value of approxi-
mately 18 for m ¼ 7 and 8; for m ¼ 9, the value of pE is lower than 2 due to rounding errors in L1. 

Figure 3(b) shows the L1 results obtained with CDS-4 for the 1D Poisson’s equation. These results 
are qualitatively similar to those in Figure 3(a) with CDS-2. However, comparing Figure 3(a) and 
3(b), the errors are smaller for CDS-4 compared to CDS-2 for m ¼ 0 with a given h and for CRE 
and FRE with the same m, as expected. 

Figure 3(d) shows the pE values for each error curve in Figure 3(b). As expected, the values of pE 
for m ¼ 0 tend toward 4, which is the theoretical value of p0 for the numerical solution of u with CDS- 
4. In the CRE method, the values of pE tend toward 6 for m ≥ 1. In the FRE method, the values of pE 
increase with m for m ¼ g � 1, reaching a maximum value of 20 for m ¼ 7; for m ¼ 8 and 9, the value 
of pE is lower than 4 due to rounding errors in L1. 

For both CDS-2 and CDS-4, the error decreases continuously as m increases between m ¼ 1 and 
m ¼ g � 1 (limited to 7) for the FRE method. That is, for each grid refinement, when m is increased, pf 
is also increased, and the error is significantly reduced. This is the ideal theoretical behavior of RRE, 
which was verified in [9, 11] for CDS-2, but only for global and local variables rather than for entire 
fields as in this study. Because of this behavior, the FRE method exhibits much better performance 
compared to the CRE method; for the two (CDS-2) or three (CDS-4) finest grids, the L1 values reach 
the machine round-off error of the quadruple precision that was used in the calculations. 

For both CDS-2 and CDS-4, the smallest values of L2 and Li (compared to m ¼ 0) are obtained for 
m ¼ 1 and m ¼ g � 1 (limited to 7) for CRE and FRE, respectively, for a given grid size h. 

1D advection–diffusion equation 

Figure 4 shows the results for the 1D advection–diffusion equation with Pe ¼ 10. The L1 results for 
UDS-1/CDS-2 are shown in Figure 4(a). For a given grid size h, the most significant error reduction 
(compared to m ¼ 0) is achieved with m ¼ 2 for both CRE and FRE, and the smallest error occurs 
when m ¼ 3. For m> 3, there is a small increase in the error. For the finest grid with m ¼ 3, the error 
is reduced by factors of 11,981 and 15,155 (compared to m ¼ 0) using the CRE and FRE methods, 
respectively; therefore, the FRE method reduces the error by a greater factor compared to the CRE 
method. For the finest grid, the L1 ratio between m ¼ 2 and m ¼ 3 is 1.24 and 1.59 for CRE and 
FRE, respectively. For a given grid size h, the most significant reduction in L2 and Li (compared 
to m ¼ 0) is achieved with m ¼ 2 for both CRE and FRE methods. 

Figure 4(c) shows the pE values corresponding to each error curve in Figure 4(a). For m ¼ 0, the 
values of pE tend toward 1, which is the theoretically expected value for p0 in the numerical solution of 
u with UDS-1/CDS-2. In the CRE and FRE methods, the values of pE tend toward 2 for m ¼ 1 and 
toward 3 for m > 1. 

Figure 4(b) shows the L1 results for CDS-2/CDS-2. For a given grid size h, the most significant 
error reduction (compared to m ¼ 0) is achieved with m ¼ 1 for the CRE and FRE methods, and 
the smallest error occurs when m ¼ 2 for both CRE and FRE methods. For m> 2, there is a small 
increase in the error. For the finest grid with m ¼ 2, the error is reduced by factors of 32,873 and 
41,748 (compared to m ¼ 0) using the CRE and FRE methods, respectively. The FRE method there-
fore reduces the error by a greater factor compared to the CRE method. For the finest grid, the L1 
ratio between m ¼ 1 and m ¼ 2 is 1.30 and 1.11 for the CRE and FRE methods, respectively. For a 
given grid size h, the most significant reduction in L2 and Li (compared to m ¼ 0) is achieved with 
m ¼ 1 for both CRE and FRE methods. 

Figure 4(d) shows the pE values corresponding to each error curve in Figure 4(b). For m ¼ 0, the 
values of pE tend toward 2, which is the theoretically expected value for p0 in the numerical solution 
for u with CDS-2/CDS-2. For both CRE and FRE, the values of pE tend toward 4 for m ≥ 1. 
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Comparison of Figure 4(a) and 4(b) reveals that for a given grid size h, the L1 values are lower with 
CDS-2/CDS-2 compared to UDS-1/CDS-2 for m ¼ 0 and for CRE and FRE methods with any m, as 
expected. 

1D Burgers’ equation 

Figure 5 shows the results for the 1D Burgers’ equation with Re ¼ 1. The L1 results for CDS-2/CDS-2 
are shown in Figure 5(a). For a given grid size h, the most significant error reduction (compared to 
m ¼ 0) is achieved with m ¼ 1 for both CRE and FRE methods. The smallest error occurs with m ¼ 2 
for both CRE and FRE methods, and there is a small increase in the error for m> 2. For the finest 
grid with m ¼ 2, the error is reduced by factors of approximately 105,000 and 102,000 (compared to 
m ¼ 0) using the CRE and FRE methods, respectively. The CRE method therefore yields a slightly 
larger error reduction compared to the FRE method. For the finest grid, the L1 ratio between m ¼ 1 
and m ¼ 2 is 1.51 and 1.55 for the CRE and FRE methods, respectively. For a given grid size h, the 
most significant reduction in L2 and Li (compared to m ¼ 0) is achieved with m ¼ 1 for both CRE and 
FRE methods. 

Figure 4. Results for the 1D advection–diffusion equation.  
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Figure 5(b) shows the pE values corresponding to each error curve in Figure 5(a). For m ¼ 0, the 
values of pE tend toward 2, which is the theoretically expected value for p0 in the numerical solution of 
u with CDS-2/CDS-2. In the CRE and FRE methods, the values of pE tend toward 4 for m ≥ 1. 

The CRE and FRE results for the 1D Burgers’ equation are qualitatively similar to those for the 1D 
advection–diffusion equation discretized using CDS-2/CDS-2. 

2D Laplace’s equation 

Figure 6 shows the results for the 2D Laplace’s equation. The L1 results for CDS-2 are shown in 
Figure 6(a). For a given grid size h, the most significant error reduction compared to m ¼ 0 is 
achieved with m ¼ 1 for both CRE and FRE methods, and the smallest error occurs with m ¼ 2 for 
both methods. For m> 2, there is a small increase in the error. For the finest grid with m ¼ 2, the 
error is reduced by factors of 1.81 � 105 and 2.72 � 105 (compared to m ¼ 0) using the CRE and 
FRE methods, respectively. The FRE method therefore reduces the error by a greater factor compared 
to the CRE method. For the finest grid, the L1 ratio between m ¼ 1 and m ¼ 2 is 1.76 and 1.88 for 

Figure 5. Results for the 1D Burgers’ equation.  
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CRE and FRE methods, respectively. For a given grid size h, the most significant reduction in L2 and 
Li (compared to m ¼ 0) is achieved with m ¼ 1 for both CRE and FRE methods. 

Figure 6(b) shows the pE values corresponding to each error curve in Figure 6(a). For m ¼ 0, the 
values of pE tend toward 2, which is the expected theoretical value of p0 in the numerical solution for 
u with CDS-2. For CRE and FRE methods, the values of pE tend toward 4 for m ≥ 1. 

Unexpectedly, the results for the 2D Laplace’s equation with FRE are quite different from those for 
the 1D Poisson’s equation discretized with CDS-2, perhaps owing to the 2D nature of the problem. 
The CRE and FRE results for the 2D Laplace’s equation are qualitatively similar to those for the 1D 
Burgers’ and advection–diffusion equations discretized with CDS-2/CDS-2. 

2D Burgers’ equations 

Figure 7 shows the results for the 2D Burgers’ equations with Re ¼ 1. The L1 results for the variable u 
obtained with UDS-1/CDS-2 are shown in Figure 7(a). For the CRE method with a given grid size h, 
the most significant error reduction relative to m ¼ 0 (no extrapolation) is obtained with m ¼ 2, and 
the smallest error occurs for m ¼ 3. For m> 3, there is a small increase in the error. For FRE with a 

Figure 6. Results for the 2D Laplace's equation.  
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given grid h, the most significant error reduction and the smallest absolute error are achieved with 
m ¼ 2. For m> 2, the error increases. For the finest grid, the error is reduced by factors of 10,691 
and 463 (relative to m ¼ 0) using the CRE and FRE methods, respectively. The CRE method therefore 
reduces the error by a much greater factor compared to the FRE method. For the finest grid, the L1 
ratio between m ¼ 2 and m ¼ 3 is 1.19 for the CRE method. For a given grid size h, the most signifi-
cant reduction in L2 and Li (relative to m ¼ 0) is achieved with m ¼ 2 for CRE and with m ¼ 1 for 
FRE. 

Figure 7(c) shows the pE values corresponding to each error curve in Figure 7(a). For m ¼ 0, the 
values of pE tend toward 1, which is the theoretically expected value of p0 for the numerical solution of 
u with UDS-1/CDS-2. For CRE, the values of pE tend toward 2 for m ¼ 1 and 3 for m > 1. For FRE, 
the values of pE also tend toward 2 for m ¼ 1, but they do not exhibit a clear trend for m > 1. 

Figure 7(b) shows the L1 results for the variable u obtained with CDS-2/CDS-2. For the CRE 
method with a given grid size h, the most significant error reduction relative to m ¼ 0 is achieved with 
m ¼ 1, and the smallest error occurs with m ¼ 2. For m> 2, there is a small increase in the error. For 
FRE with a given grid size h, the most significant error reduction and the smallest absolute error are 
achieved with m ¼ 1. For m> 1, there is a small increase in the error. For the finest grid, the error is 
reduced by factors of 74,422 and 18,793 (relative to m ¼ 0) using the CRE and FRE methods, respect-
ively. The CRE method therefore yields a greater error reduction compared to the FRE method. For 
the finest grid, the L1 ratio between m ¼ 1 and m ¼ 2 is 1.60 for the CRE method. For a given grid size 

Figure 7. Results for the 2D Burgers’ equations.  

NUMERICAL HEAT TRANSFER, PART B 351 



h, the most significant reduction in L2 and Li (relative to m ¼ 0) is achieved with m ¼ 1 for both CRE 
and FRE methods. 

Figure 7(d) shows the pE values corresponding to each error curve in Figure 7(b). For m ¼ 0, the 
values of pE tend toward 2, which is the theoretically expected value for p0 in the numerical solution of 
u with CDS-2/CDS-2. For the CRE method, the values of pE tend toward 4 for m ≥ 1. For FRE, the 
values of pE do not exhibit a clear trend for m ≥ 1, but they oscillate around 4. 

Comparison of Figure 7(a) and 7(b) reveals that for each grid size h, the L1 values are smaller for 
CDS-2/CDS-2 compared to UDS-1/CDS-2 both for m ¼ 0 and for CRE and FRE methods with any m, 
as expected. 

The results for the variable v are qualitatively similar to those shown above for the variable u. 

Conclusion 

The results of this study can be summarized as follows: 
1. Through extrapolations performed during post-processing, the CRE and FRE methods signifi-

cantly reduce the discretization error in the numerical solutions for all nodes of the grid. The 
more refined the grid, the greater the error reduction. 

2. For all nodes of the grid, the ideal theoretical performance of RRE was only obtained using FRE 
for the numerical solution of the 1D Poisson’s equation. The FRE method can increase the order 
of accuracy (p0) by up to 16 units for numerical solutions with p0 ¼ 2 or p0 ¼ 4. 

3. The CRE method increases the value of p0 by 2 units for numerical solutions with p0 ¼ 1, 2, or 4 
for all nodes of the grid. This conclusion holds for the five problems addressed in this study, 
namely the 1D Poisson’s, advection–diffusion and Burgers’ equations, and the 2D Laplace’s 
and Burgers’ equations. This result is also valid for the FRE method, except in the cases of the 
1D Poisson’s and 2D Burgers’ equations. 

4. The FRE method yields a greater reduction in the field discretization error compared to the CRE 
method for the 1D Poisson’s and advection–diffusion equations and the 2D Laplace’s equation. 
For the 1D Poisson’s equation with p0 ¼ 2 or p0 ¼ 4, the smallest L1 value is obtained with the 
greatest possible number of extrapolations, that is, m ¼ g � 1. For the 1D advection–diffusion 
equation with p0 ¼ 1, the smallest L1 value is obtained with m ¼ 3. For the 1D advection– 
diffusion and 2D Laplace’s equations with p0 ¼ 2, the smallest L1 value is obtained with m ¼ 2. 

5. The CRE method produces a greater reduction in the field discretization error compared to the 
FRE method for the 1D and 2D Burgers’ equations. For the 2D Burgers’ equation with p0 ¼ 1, the 
smallest L1 value is obtained with m ¼ 3. For the 1D and 2D Burgers’ equations with p0 ¼ 2, 
the smallest L1 value is obtained with m ¼ 2. 

6. In general, the results for L2 and Li are qualitatively similar to those for L1.  
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