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a b s t r a c t 

The foredrag coefficient resulting from the supersonic and hypersonic flow of air over a 

cone was calculated numerically using a finite volume approach based on the compress- 

ible Euler and Navier-Stokes equations with constant and variable thermophysical prop- 

erties. No turbulence model was considered. Simulations were carried out for a cone of 

fineness ratio 3 under the free-stream Mach numbers 2.73, 3.50, 4.00, 5.05 and 6.28 (the 

Reynolds number, based on cone length, is within 0.45 and 2.85 million). Up to six grids 

were employed for numerical calculations, with 60 × 60 to 1920 × 1920 volumes. The nu- 

merical error was estimated to be less than 0.01% of the numerical solution for all models. 

Comparisons of the numerical foredrag coefficients of the three models with the experi- 

mental data showed that the Navier–Stokes model with variable thermophysical properties 

agreed better with the experimental foredrag for the entire Mach number interval studied, 

taking into account the validation standard uncertainty. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

Increased computer power in the past decades has led to a widespread use of numerical methods to solve fluid dynam-

ics problems, followed by an increased interest of the scientific community on the accuracy and reliability of numerical

solutions. There are several papers (see, for instance, Ref. [1-4] ) and entire books [5–7] addressing this issue. 

According to Roache [7] , the estimation/quantification of errors/uncertainties in Computational Fluid Dynamics (CFD)

are performed through verification and validation. Verification estimates/quantifies the error/uncertainty caused by solving

approximately a mathematical model, while validation estimates/quantifies the error/uncertainty caused by the modeling

itself. Verification can be divided into code verification and solution verification. Code verification aims to eliminate or, at

least, minimize the chance of coding mistakes (bugs), while solution verification aims to estimate/quantify the numerical

errors/uncertainties related to the approximations applied to solve the mathematical model. 
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Despite the above mentioned progress in CFD and error quantification, based on the authors’ experience, verified and

tabulated numerical solutions for the flow over basic geometries, such as the conical one, are still not widely found in the

open literature. This type of data is especially useful when comparing mathematical models or checking the results of a new

software in its early development stage, for instance. 

Accordingly, the aim of this work is to numerically determine the foredrag coefficient of the classical conical flow prob-

lem [8] and its numerical uncertainty for three mathematical models: (i) Euler equations, (ii) Navier–Stokes equations with

constant thermophysical properties (NS-C) and (iii) Navier–Stokes equations with variable thermophysical properties (NS-V). 

No turbulence model is considered. Additionally, this work aims to estimate the modeling error, and associated uncertainty,

of the investigated models by comparing the numerical solutions with the experimental data of Eggers et al. [9] . 

The calculations are limited to a cone of fineness ratio f = 3 (length/base diameter) and to the free-stream Mach numbers

2.73, 3.50, 4.00, 5.05 and 6.28 1 . The free-stream Reynolds number, based on the cone length, vary from 4.5 × 10 5 to 2.85

× 10 6 . The cone geometry was chosen because the solutions of the Taylor–Maccoll equation [11] (a specialization of the

Euler equations for the conical flow) can be obtained so accurately with nowadays computers, that they can be treated

as analytical. Moreover, the Mach numbers, Reynolds number and cone aspect ratio were chosen because of the available

experimental data of Eggers et al. [9] , which are used in the validation. 

Verification and validation procedures are applied here based on the recommendations of ASME V&V 20–2009 Standard

[12] . During this process, the convergent estimator [13,14] is applied to obtain higher order solutions from the numerical

one and some difficulties related to the validation are exposed. 

2. Methodology 

2.1. Flow simulation 

Flow is modeled by the time dependent, axisymmetric, compressible Euler and Navier–Stokes equations [15] . The Euler

model is obtained from the Navier–Stokes one by neglecting all terms depending on the viscosity and thermal conductivity.

This work focuses on the steady state solution. Time dependence is applied to make the solution algorithm stable. 

The thermophysical properties, i.e. , viscosity μ, thermal conductivity κ and specific heats at constant pressure c p and

volume c v , may be considered constant and equal to their free-stream values or they may be functions of the local temper-

ature T . In this study, the fluid (air) is a mixture of Ar, O 2 and N 2 in the mole fractions of X 1 = 1 %, X 2 = 21 % and X 3 = 78 %,

respectively. In order to calculate c p , μ and κ of the gas mixture, the corresponding thermophysical properties ( c p ) i , μi and

κ i of each chemical specie i are first calculated according to the interpolation formulas of McBride et al. [16] as 

( c p ) i = ( R g ) i 
[
A i + B i T + C i T 

2 + D i T 
3 + E i T 

4 
]
, (1) 

μi = exp 

(
A 

′ 
i ln 

(
T 

K 

)
+ 

B 

′ 
i 

T 
+ 

C ′ 
i 

T 2 
+ D 

′ 
i 

)
· 10 

−7 Pa s , (2) 

and 

κi = exp 

(
A 

′′ 
i ln 

(
T 

K 

)
+ 

B 

′′ 
i 

T 
+ 

C ′′ 
i 

T 2 
+ D 

′′ 
i 

)
· 10 

−4 W m 

−1 K 

−1 , (3) 

where the gas constant of each specie ( R g ) i and the coefficients A i to D 

′′ 
i 

are given by McBride et al. 

The thermophysical properties for the gas mixture are calculated according to Refs. [15] and [17] as 

c p = 

3 ∑ 

i =1 

X i M i ( c p ) i 

/ 3 ∑ 

i =1 

X i M i , (4) 

μ = 

3 ∑ 

i =1 

X i μi ∑ 3 
j=1 X j �

μ
i j 

, (5) 

κ = 

3 ∑ 

i =1 

X i κi ∑ 3 
j=1 X j �

κ
i j 

, (6) 

where 

�ψ 

i j 
= 

1 √ 

8 

(
1 + 

M i 

M j 

)−1 / 2 
[ 

1 + 

(
ψ i 

ψ j 

)1 / 2 (
M j 

M i 

)1 / 4 
] 2 

, ψ ∈ { μ, κ} (7) 
1 Some preliminary results were presented in CMAC-SE conference [10] . 
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and M i is the molecular mass of chemical specie i . 

The ideal gas state equation is used for the coupling among pressure p , density ρ and temperature T, i.e. , 

p = ρR g T , (8)

where R g is the gas constant. 

In order to simplify the procedure of obtaining the numerical solution, the governing equations are transformed [18] from

the cylindrical coordinate system ( x, r ) to a curvilinear coordinate system ( ξ , η), in such a way that the physical domain is

mapped into a rectangular domain (computational domain). These equations are summarized as follow 

C φ
[

1 

J 

∂(ρφ) 

∂t 
+ 

1 

r 

∂(ρrUφ) 

∂ξ
+ 

1 

r 

∂(ρrV φ) 

∂η

]
= 

1 

r 

∂ 

∂ξ

[

φrJ 

(
ˆ α
∂φ

∂ξ
− ˆ β

∂φ

∂η

)]

+ 

1 

r 

∂ 

∂η

[

φrJ 

(
ˆ γ
∂φ

∂η
− ˆ β

∂φ

∂ξ

)]
+ P φ + S φ, (9)

where φ is a generic variable that represents 1, u, v or T, u and v are the components of the velocity vector u in the

directions of x and r , respectively, and t is the time. Depending on the choice of φ, Eq. (9) represents: the mass conservation

equation ( φ = 1 ), the momentum conservation equation in the x direction ( φ = u ), the momentum conservation equation in

the r direction ( φ = v ) or the thermal energy conservation equation ( φ = T ). The remaining symbols of Eq. (9) are U and V ,

the contravariant components of the velocity vector, 

U = ur η − v x η, V = v x ξ − ur ξ , (10)

the Jacobian of the coordinate transformation J , 

J = 

[
x ξ r η − x ηr ξ

]−1 
, (11)

the components of the metric tensor ˆ α, ˆ β and ˆ γ , 

ˆ α = x 2 η + r 2 η, ˆ β = x ξ x η + r ξ r η, ˆ γ = x 2 ξ + r 2 ξ , (12)

where the sub-indexes ξ and η mean partial derivatives, i.e. , 

x ξ = 

∂x 

∂ξ
, x η = 

∂x 

∂η
, r ξ = 

∂r 

∂ξ
, r η = 

∂r 

∂η
. (13)

The symbols C φ , 
φ and P φ are given in Table 1 , while S φ is presented in Table 1 or in Eqs. (14) –(16) : 

S u = 

1 

3 

∂ 

∂ξ

[
Jμ

(
r 2 η

∂u 

∂ξ
− r ξ r η

∂u 

∂η

)]
+ 

1 

3 

∂ 

∂η

[
Jμ

(
r 2 ξ

∂u 

∂η
− r ξ r η

∂u 

∂ξ

)]

+ 

1 

r 

∂ 

∂ξ

[
Jrμx η

(
r ξ

∂v 
∂η

− r η
∂v 
∂ξ

)]
+ 

1 

r 

∂ 

∂η

[
Jrμx ξ

(
r η

∂v 
∂ξ

− r ξ
∂v 
∂η

)]

−2 

3 

∂ 

∂ξ

[
J 
μ

r 
r η

(
x ξ

∂(rv ) 
∂η

− x η
∂(rv ) 
∂ξ

)]

−2 

3 

∂ 

∂η

[
J 
μ

r 
r ξ

(
x η

∂(rv ) 
∂ξ

− x ξ
∂(rv ) 
∂η

)]
, (14)

S v = 

1 

3 r 

∂ 

∂ξ

[
Jμr 

(
x 2 η

∂v 
∂ξ

− x ξ x η
∂v 
∂η

)]
+ 

1 

3 r 

∂ 

∂η

[
Jμr 

(
x 2 ξ

∂v 
∂η

− x ξ x η
∂v 
∂ξ

)]

+ 

∂ 

∂ξ

[
Jμr η

(
x ξ

∂u 

∂η
− x η

∂u 

∂ξ

)]
+ 

∂ 

∂η

[
Jμr ξ

(
x η

∂u 

∂ξ
− x ξ

∂u 

∂η

)]
Table 1 

Symbols C φ , 
φ , P φ and S φ of Eq. (9). 

φ C φ 
φ P φ S φ

1 1 0 0 0 

u 1 μ
∂(pr ξ ) 

∂η
− ∂(pr η ) 

∂ξ
Eq. (14) 

v 1 μ
∂(px η ) 

∂ξ
− ∂(px ξ ) 

∂η
Eq. (15) 

T c p κ
1 

J 

∂ p 

∂t 
Eq. (16) 
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−2 

3 

∂ 

∂ξ

[
Jμx η

(
r ξ

∂u 

∂η
− r η

∂u 

∂ξ

)]
− 2 

3 

∂ 

∂η

[
Jμx ξ

(
r η

∂u 

∂ξ
− r ξ

∂u 

∂η

)]

−4 

3 

μv 
r 2 J 

− 2 v 
3 r 

[
∂ 

∂η

(
x ξμ

)
− ∂ 

∂ξ

(
x ημ

)]
, (15) 

S T = −1 

r 

[
1 

J 

∂(ρrK) 

∂t 
+ 

∂(ρrUK) 

∂ξ
+ 

∂(ρrV K) 

∂η

]

+ 

1 

r 

∂ 

∂ξ

{
r 
[
( v σxr + uσxx ) r η − ( v σrr + uσxr ) x η

]}
+ 

1 

r 

∂ 

∂η

{
r 
[
( v σrr + uσxr ) x ξ − ( v σxr + uσxx ) r ξ

]}
, (16) 

where 

K = 

u 

2 + v 2 

2 

, (17) 

σ xx , σ xr and σ rr are the components of the viscous stress tensor, i.e. , 

σxx = 2 μ
∂u 

∂x 
− 2 

3 

μ∇ · u , (18) 

σrr = 2 μ
∂v 
∂r 

− 2 

3 

μ∇ · u , (19) 

σxr = μ

(
∂v 
∂x 

+ 

∂u 

∂r 

)
(20) 

and 

∇ · u = 

∂u 

∂x 
+ 

∂v 
∂r 

+ 

v 
r 
. (21) 

The derivatives of u and v with respect to x and r are given by 

∂φ

∂x 
= J 

(
r η

∂φ

∂ξ
− r ξ

∂φ

∂η

)
, φ ∈ { u, v } (22) 

and 

∂φ

∂r 
= J 

(
x ξ

∂φ

∂η
− x η

∂φ

∂ξ

)
, φ ∈ { u, v } . (23) 

In the case of inviscid flow with constant thermophysical properties, the stationary temperature field T is obtained from

the conservation of total enthalpy: 

T = 

1 

( c p ) ∞ 

[
( c p ) ∞ 

T ∞ 

+ 

u 

2 
∞ 

− u 

2 − v 2 

2 

]
, (24) 

where the index ∞ means the free-stream value of the variable. 

The quantity of interest is the foredrag coefficient C Df , given by 

C Df = 

2 

q ∞ 

r 2 
b 

∫ ξ f 

ξi 

[
( p − p ∞ 

) r ξ + σxr x ξ − σxx r ξ
]
r d ξ , (25) 

where r b is the cone base radius, ξ i and ξ f are the initial and final values of ξ along the cone surface. 

The domain of calculation, Fig 1 a, is simplified due to the axial symmetry. Over the north boundary N (a quarter of

ellipse), the flow is non-perturbed and equal to the free-stream, where the Mach number M ∞ 

, Reynolds number Re ∞ 

(based

on the cone length l r ) and temperature T ∞ 

are prescribed. On the west boundary W, the symmetry conditions are applied.

Over the south boundary S, the normal pressure and temperature gradient are zero, while the non-slip condition, u = v = 0 ,

is applied to the velocity field in the case of the Navier–Stokes model and the slip condition, ˆ n · u = 0 , is applied to the

Euler model, where ˆ n is the unitary vector normal to the body surface. Finally, the variables φ ∈ { u, v, T, p } on the east

boundary E (outflow) are approximated with 

∂φ

∂ξ
= 0 , (26) 
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Fig. 1. Schematic illustration of the (a) domain of calculation and (b) its discretization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for the Navier–Stokes model and with 

r · ∇φ = 0 ⇒ 

(
xr η − rx η

)∂φ

∂ξ
+ 

(
rx ξ − xr ξ

)∂φ

∂η
= 0 , (27)

for the Euler model, where r is the position vector. Eq. (27) provides an outflow boundary condition consistent with the

Taylor–Maccoll equation. 

The physical domain is algebraically discretized with nodes concentrated near the cone surface and the cone tip ( Fig. 1 b).

The x coordinate of the south and north boundaries ( η lines) is discretized according to a power law distribution with

exponent α. The lines connecting the north and south boundaries ( ξ lines) are discretized in such a way that the partition

widths form a geometric progression. The width of the partition close to the cone surface is a multiple c bl of the estimated

boundary layer width δ, which is given by 

δ = 

√ 

μ∞ 

l r 

ρ∞ 

u ∞ 

, (28)

where μ∞ 

, ρ∞ 

and u ∞ 

are, respectively, the free-stream viscosity, density and speed. The transformed Navier–Stokes equa-

tions are then integrated on each volume of the uniformly discretized computational domain using a co-located grid ar-

rangement. The variables over the volumes’ faces are interpolated from the center of each volume in the computational

domain using a first order accurate scheme (upstream differencing scheme) for the advective terms and a second order ac-

curate scheme (central differencing scheme) for the diffusive terms [19] . Time derivatives are approximated with the fully

implicit scheme (first order backward scheme) [19] . After that, four systems of coupled linearized equations are obtained

representing the mass, momentum ( x and r components) and thermal energy conservation. The discretized mass equation

is transformed into an equation for the pressure correction based on the SIMPLEC algorithm [20] . The pressure correction

equation takes into account the effects of compressibility as well as pressure-velocity coupling, in agreement with Ferziger

and Peric [21] . For initial conditions, all fields are set to their corresponding free-stream values. At each instant of the dis-

cretized time line, the coupled linear systems, whose dependent variables are pressure deviation, the components of the

velocity vector ( u, v ) and temperature T , are solved sequentially [21] (segregated approach) and iteratively with the Modified

Strongly Implicit method (MSI) [22] . At this step, the iteration error is not reduced to the machine error, because the tran-

sient solution is not the focus here. Thus, a “false transient” is followed until a stationary solution is reached, within the

machine error precision. 

2.2. Verification 

2.2.1. Code verification 

The correctness of the code implementation will be evaluated through the Method of Manufactured Solutions (MMS)

[7] . According to it, a solution is proposed and the differential equation and boundary conditions are adjusted through the

addition of source terms, in such a way that the modified equations and boundary conditions satisfy the proposed solution.

Since MMS provides an analytical solution �, it is possible to evaluate the numerical error E and the order of convergence

of the numerical solution p E in a grid convergence study. The error E i of a numerical solution φi is defined by 

E i = φi − � (29)

and the order of convergence is given by 

p E = log 

(
φ2 − �

φ1 − �

)/
log 

(
h 2 

h 1 

)
, (30)
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Table 2 

Parameters of the manufactured solution. 

Par. Value Par. Value 

a x 2 m ρ∞ ( λ = 1 ) 1 kg/m 

3 

a r 1 m ρ∞ ( λ = 0 ) 2 . 6727783 × 10 −7 kg / m 

3 

ϕ i π T ∞ 300 K 

ϕf π /2 R g 2.8700669 × 10 2 J/kg · K 

ϱi 0.5 m ( c p ) ∞ 1.0044040 × 10 3 J/kg · K 

ϱf 2 m μ∞ 1 . 8559827 × 10 −5 Pa · s 

A 0.1 κ∞ 2 . 5730324 × 10 −2 W/m · K 

L 8 m u ∞ 6 . 9440203 × 10 2 m/s 

 

 

 

where φ1 and φ2 are numerical solutions obtained in grids with partitions h 1 and h 2 ( h 2 / h 1 > 1), respectively. 

In the manufactured solution of this work, the physical domain ( x, r ) and computational domain ( ξ , η) are related

through 

x = a x � cos (ϕ) , r = a r � sin (ϕ) (31) 

and 

ϕ = ϕ i + (ϕ f − ϕ i ) 
ξ

N 

, � = � i + (� f − � i ) 
η

N 

, 0 ≤ ξ , η ≤ N, (32)

where the parameters a x , a r , ϕi , ϕf , ϱi , ϱf are given in Table 2 and N means the number of volumes in each coordinate

direction. 

The manufactured solutions for ρ , T, c p , μ, κ , u and v are given bellow: 

ρ(x, r) = ρ∞ 

[
1 + 

A 

2 

(
sin 

(
2 π

L 
x 

)
+ cos 

(
2 π

L 
r 

))]
, (33) 

T (x, r) = T ∞ 

{
1 + λ

u 

2 
∞ 

− u 

2 − v 2 

2 ( c p ) ∞ 

T ∞ 

+ ( 1 − λ) 
A 

2 

[ 
sin 

(
2 π

L 
x 

)
+ cos 

(
2 π

L 
r 

)] }
, (34) 

c p (x, r) = (c p ) ∞ 

(
T (x, r) 

T ∞ 

)m 

, (35) 

μ(x, r) = μ∞ 

(
T (x, r) 

T ∞ 

)m 

( 1 − λ) , (36) 

κ(x, r) = κ∞ 

(
T (x, r) 

T ∞ 

)2 m 

( 1 − λ) , (37) 

u (x, r) = −ρ∞ 

u ∞ 

ρ

1 

r 

∂(r g(x, r )) 

∂r 
, (38) 

v (x, r) = 

ρ∞ 

u ∞ 

ρ

∂g(x, r) 

∂x 
, (39) 

where 

g(x, r) = − r 

2 

{
λ

[
1 + 

A 

2 

(
− sin 

(
2 π

L 
x 

)
+ cos 

(
2 π

L 
r 

))]

+ ( 1 − λ) sin 

( 

2 π

L 

[
�(x, y ) − � i 

� f − � i 

]2 
) } 

(40) 

and 

� (x, r ) = 

√ (
x 

a x 

)2 

+ 

(
r 

a r 

)2 

. (41) 

The gas pressure p is given by the state equation Eq. (8) . 
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The parameters appearing in Eqs. (33) –(41) are presented in Table 2 , except m and λ, which are used for selecting the

solutions. By choosing (m, λ) = (0 , 1) , (m, λ) = (0 , 0) or (m, λ) = (1 , 0) , the manufactured solution for the Euler, NS-C or

NS-V models can be provided, respectively. 

Observe that Table 2 presents a value of ρ∞ 

for Euler model ( λ = 1 ) and another one for Navier–Stokes model ( λ = 0 ).

The last one was chosen in such a way that the Reynolds by length ( ρ∞ 

u ∞ 

/ μ∞ 

) is 10 m 

−1 . As pointed by Roy [23] , “when

verifying a Navier–Stokes code, the manufactured solution should be chosen to give Reynolds numbers near unity so that

convective and diffusive terms are of the same order of magnitude.”

Replacing the manufactured solutions (33) –(39) into Eq. (9) results in source terms for φ ∈ { u, v, T }, which were ob-

tained with the open source symbolic manipulation software Maxima [24] . The same applies to the boundary conditions. By

inserting the manufactured solutions into Eq. (25) with r b = 0 . 5 m and η = 0 , it is possible to obtain the analytical values

of C Df for the Euler, NS-C and NS-V models, that is, -0.0193692004363766, 0.0935033798783678 and 0.0961133712787234,

respectively. 

2.2.2. Solution verification 

The numerical errors resulting from the solution of the partial differential equations of Section 2.1 are those generally

found in Computational Fluid Dynamics [23] : round-off errors, iteration errors and discretization errors. 

Round-off errors are caused by the limited representation of real numbers. Their influence on the solution may be esti-

mated, for instance, by comparing the solution obtained with double precision floating point representation (16 significant

figures) with the solution obtained with quadruple precision floating point representation (32 significant figures). In this

comparison, it is assumed that the round-off error in the quadruple precision solution is vanishingly small compared to that

of double precision. 

Iteration error is, by definition, the difference between the numerical solution at some iteration and the exact numerical

solution of the discretized model. In this work, the iterations are performed until the machine error is reached, so that the

iteration errors may be considered negligibly small. 

Finally, the discretization error results from approximations to the mathematical model which expresses the solution in

terms of a finite number of discrete values, such as finite differences or numerical quadrature. This is typically the greatest

source of the numerical error. 

Considering that the round-off and iteration errors are small compared to the discretization error, in this work, the

discretization error is analyzed with the convergent estimator [13] as well as with the well-known Grid Convergence Index

(GCI) [7] . While GCI will provide the numerical uncertainty of the numerical solution in the finest grid, convergent estimator

will provide an extrapolated solution (with an error bound), which gives a second order accurate solution from the first

order numerical solution. 

In order to perform the calculations, consider that three numerical solutions, φ1 , φ2 and φ3 were obtained in grids with

uniform partitions h 1 , h 2 and h 3 , respectively, and that the grid refinement ratio r g is a constant, i.e. , 

r g = 

h 2 

h 1 

= 

h 3 

h 2 

> 1 . (42)

According to the convergent estimator, the exact solution � of the mathematical model is bounded by the convergent

estimation of the analytical solution φC and its error bound U C , i.e. , 

φC − U C ≤ � ≤ φC + U C , (43)

where 

φC = 

φRi (p L ) + φRi (p U ) 

2 

(44)

and 

U C = 

| φRi (p L ) − φRi (p U ) | 
2 

. (45)

In Eqs. (44) and (45) , φRi is the Richardson extrapolation of the numerical solutions based on the asymptotic order of

accuracy p L or based on the observed order of accuracy p U . The asymptotic order of accuracy p L is the dominant order of

accuracy obtained from the truncation error for a sufficiently refined grid (first order accurate in this study, i.e. , p L = 1 ) and

the observed order p U is determined by 

p U = 

log 
(

φ2 −φ3 

φ1 −φ2 

)
log r g 

. (46)

The Richardson extrapolation for an arbitrary order of accuracy p A , and based on the finest grid h 1 , is given by 

φRi (p A ) = φ1 + 

φ1 − φ2 

r p A g − 1 

. (47)

The application of this estimator requires that the observed order p U is within the convergent range, i.e. , that p U decreases

or increases monotonically towards p as the grid is refined. 
L 
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According to the Grid Convergence Index, the numerical uncertainty U GCI of φ1 is given by 

U GCI = F s 

∣∣∣∣φ1 − φ2 

r p U g − 1 

∣∣∣∣, (48) 

where F s is 1.25 when p U converges to p L in a refinement study with at least three grids, which is the case for this work.

For this estimator, no extrapolation will be used and the final solution is expressed as 

φ1 ± U GCI . (49) 

2.3. Validation 

According to the ASME V&V 20–2009 Standard [12] , the modeling error δmodel in a simulation result φnum , due to mod-

eling assumptions and approximations, is expected to be within the interval 

E − U 

val ≤ δmodel ≤ E + U 

val , (50) 

where E and U 

val are the validation metrics. E is given by 

E = φnum − φexp (51) 

and U 

val depends on how the experimental result φexp was obtained. For the case in which φexp is directly measured, U 

val 

reads 

U 

val = 

√ 

( U 

num ) 
2 + 

(
U 

input 
)2 + ( U 

exp ) 
2 
, (52) 

where U 

num is the estimate of the standard numerical uncertainty, U 

input is the estimate of the standard uncertainty in the

numerical solution caused by the variability of the input parameters and U 

exp is the estimate of the standard uncertainty in

the experimental measurement. 

Since U GCI empirically provides a numerical uncertainty with 95% confidence, U 

num and U GCI are related by 

U 

num = U GCI /k, (53) 

where the factor k depends on the error distribution. Assuming a Gaussian distribution, ASME V&V 20–2009 Standard rec-

ommends a factor k = 1 . 1 to 1.15. In this work, it is adopted k = 1 . 1 . 

Considering the existence of n input parameters Z i (1 ≤ i ≤ n ), U 

input is calculated as 

(
U 

input 
)2 = 

n ∑ 

1 

(
∂φnum 

∂Z i 
U Z i 

)2 

, (54) 

where U Z i 
is the standard uncertainty in Z i . 

In this work, φexp represents the foredrag coefficient C Df from the experiment of Eggers et al. [9] . The foredrag coefficient

was not directly measured, but obtained from a data reduction involving some data that are input parameters for the math-

ematical model. Because of that, Eq. (52) is not the appropriate expression to U 

val . The appropriate expression, however,

involves experimental data that are not available. So, in this case, Eq. (52) will be used at least as an approximation to U 

val .

3. Results and discussion 

3.1. Code verification 

The modified transport equations and corresponding boundary conditions resulting from the application of the Method

of Manufactured Solutions, described in Section 2.2.1 , were numerically solved for seven grids with N × N volumes, where

N varied from 16 to 1024. Table 3 presents the error E of C Df and the order of convergence p E for the three models studied

here. It is possible to observe that the error is reduced as the grid is refined and the order of convergence tends to the

asymptotic order p L , i.e. , p E → p L = 1 . 

3.2. Solution verification 

This section deals with the verification of the foredrag coefficient C Df of Euler, Navier–Stokes with constant thermo-

physical properties (NS-C) and Navier–Stokes with variable thermophysical properties (NS-V) models in the supersonic and

hypersonic regimes. Table 4 shows the free-stream Mach numbers, their corresponding free-stream Reynolds number and

free-stream pressure. Table 5 presents the parameters common to all Mach number studied. 

Simulations were carried out for two sets of grids. For both of them, the coarser grids were obtained from the finer one

by removing every other grid line. Initially, a set with five grids m 1 , m 2 , m 3 , m 4 and m 5 with, respectively, 60, 120, 240,

480 and 960 volumes in each coordinate direction was applied to investigate the round-off error, the iteration error, the
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Table 3 

C Df error and the order of convergence p E . 

Euler NS-C NS-V 

N E p E E p E E p E 

16 0.00685774 −0 . 24 4 43152 −0 . 18290376 

32 0.00286248 1.26 −0 . 08526885 1.52 −0 . 06573812 1.48 

64 0.00128123 1.16 −0 . 03192256 1.42 −0 . 02402013 1.45 

128 0.0 0 059186 1.11 −0 . 01274224 1.32 −0 . 00912627 1.40 

256 0.0 0 028161 1.07 −0 . 00532113 1.26 −0 . 00359801 1.34 

512 0.0 0 013691 1.04 −0 . 00230944 1.20 −0 . 00147487 1.29 

1024 0.0 0 0 06744 1.02 −0 . 00103807 1.15 −0 . 0 0 062985 1.23 

Table 4 

Free-stream Mach number, Reynolds number 

and pressure. 

M ∞ Re ∞ p ∞ (Pa) 

2.73 2.10 × 10 6 4.64630687 × 10 4 

3.50 2.85 × 10 6 4.91844771 × 10 4 

4.00 2.16 × 10 6 3.26170743 × 10 4 

5.05 1.05 × 10 6 1.25588295 × 10 4 

6.28 4.50 × 10 5 4.32816803 × 10 3 

Table 5 

Input parameters for the simulations. 

Quantity Symbol Value 

Length of the elliptical x semi-axis l a 0.08382 m 

Length of the elliptical r semi-axis l b 0.0508 m 

Base radius r b 0.0127 m 

Fineness ratio f 3 

Parameter for grid clustering near cone tip α 1.5 

Parameter for grid clustering near cone surface c bl 0.04 

Free-stream temperature T ∞ 300 K 

Free-stream specific heat ratio γ ∞ 1.40 0 066604 974 9 

Free-stream Prandtl number Pr ∞ 7 . 2449781781596 × 10 −1 

Gas constant R g 2 . 8700669426733 × 10 2 J kg 
−1 

K −1 

Free-stream specific heat c p ( c p ) ∞ 1 . 0044039743660 × 10 3 J kg 
−1 

K −1 

Free-stream viscosity μ∞ 1 . 8559826909460 × 10 −5 Pa s 

Free-stream thermal conductivity κ∞ 2 . 5730324 4 4 4046 × 10 −2 W m 

−1 K −1 
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effect of grid clustering, the estimated discretization error, the effect of free-stream temperature on C Df and the effect of

input parameters on C Df . After all these investigations had been performed, another set of simulations was carried out in an

attempt to reduce still more the discretization error. This time, six grids m 

′ 
1 
, m 

′ 
2 
, m 

′ 
3 
, m 

′ 
4 
, m 

′ 
5 

and m 

′ 
6 

with, respectively, 60,

120, 240, 480, 960 and 1920 volumes in each coordinate direction were applied. Note that the grids m 1 to m 5 differ from m 

′ 
1

to m 

′ 
5 
, because later grids were generated from m 

′ 
6 
. Only the discretization error and the iteration error were reinvestigated

for the set of grids m 

′ 
1 

to m 

′ 
6 
, because the calculations in the m 

′ 
6 

grid are too computationally expensive. 

All simulations were performed in computers with processors Intel®Core TM i5-2310 of 2.90 GHz, with 6 or 8 GB of RAM

memory, where they took 8 s to 8.7 days to run and consumed 20 MB to 3.4 GB of RAM memory. 

The round-off error and the iteration error were investigated in the following way. In order to evaluate the effect of the

round-off error, C Df was calculated using double and quadruple precision. This test was limited to a specific simulation (grid

m 4 of 480 × 480 volumes and M ∞ 

= 4 . 00 ) due to the computational expense of the quadruple precision simulation. Fig. 2

shows the relative difference of C Df of the Euler model, calculated with double ( C Df ) dble and quadruple precision ( C Df ) quad ,

as a function of the number of iterations. It is possible to note that this relative difference reaches 10 −8 during the false

transient, but becomes lower than 10 −14 for the converged solution. The same behavior occurred for the NS-C and NS-

 models. The iteration error was evaluated by observing the convergence of the residuals of the linear systems and the

residual of the mass conservation equation as a function of the number of iterations. Fig. 2 shows these residuals for Euler

model (grid m 4 of 480 × 480 volumes and M ∞ 

= 4 . 00 ). The residual of the linear systems reaches the machine zero at about

30 0 0 iterations, but the iteration procedure is kept until about 60 0 0 iterations in order to ensure that the iteration errors are

vanishingly small. This procedure was applied in all the simulations for all models studied here. Based on these results, we

believe that both the iterative error and the round-off error are negligibly small compared to the discretization error, which

allows to proceed with the calculation of the discretization error following the methodology described in Section 2.2.2 . In

order to estimate the discretization error, the numerical values of C Df were obtained in the grids m 

′ to m 

′ (see Table 6 ).

1 6 
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Fig. 2. Residual of the linear systems, residual of the mass conservation equation and relative difference of C Df for double and quadruple precision. Euler 

model. Grid m 4 (480 × 480). M ∞ = 4 . 00 . 

Table 6 

Foredrag coefficient C Df numerically calculated for grids m 

′ 
1 to m 

′ 
6 . 

C Df - Euler 

Grid M ∞ = 2 . 73 3.50 4.00 5.05 6.28 

m 

′ 
1 0.082416940 0.074810574 0.071467831 0.066729502 0.063370058 

m 

′ 
2 0.082582621 0.075057714 0.071771565 0.067128413 0.063848596 

m 

′ 
3 0.082700352 0.075228552 0.071975525 0.067381472 0.064136155 

m 

′ 
4 0.082775126 0.075336585 0.072101505 0.067529038 0.064295830 

m 

′ 
5 0.082820547 0.075401271 0.072174731 0.067610084 0.064380381 

m 

′ 
6 0.082847363 0.075438176 0.072215168 0.067652831 0.064423956 

C Df - NS-C 

m 

′ 
1 0.088758826 0.080 0 01863 0.077294884 0.074799558 0.075448650 

m 

′ 
2 0.088531228 0.079960190 0.077285553 0.074777812 0.075306200 

m 

′ 
3 0.088574698 0.080091492 0.077458689 0.075020853 0.075598293 

m 

′ 
4 0.088621125 0.080184709 0.077573375 0.075165998 0.075761940 

m 

′ 
5 0.088654769 0.080243413 0.077642263 0.075246996 0.075850104 

m 

′ 
6 0.088676395 0.080277755 0.077680931 0.075290090 0.075895925 

C Df - NS-V 

m 

′ 
1 0.090191601 0.081672987 0.079546328 0.079185861 0.084289022 

m 

′ 
2 0.090036312 0.081742923 0.079702930 0.079392142 0.084472374 

m 

′ 
3 0.090105206 0.081902102 0.079911048 0.079676133 0.084816391 

m 

′ 
4 0.090160145 0.082004518 0.080037664 0.079835579 0.084987265 

m 

′ 
5 0.090196673 0.082066626 0.080111168 0.079922487 0.085076341 

m 

′ 
6 0.090219575 0.082102540 0.080151971 0.079968176 0.085121855 

 

 

 

 

 

 

 

 

 

 

Based on these results, the observed order of accuracy p U was calculated from Eq. (46) and is shown in Table 7 . The symbol

— means that it was not possible to calculate p U , because the argument of the logarithm in the numerator of Eq. (46) is non-

positive, or means that p U itself is negative. In the latter case, p U cannot be employed, because Richardson’s extrapolation

diverges [13] . 

Once p U was calculated, the Grid Convergence Index (GCI) and convergent estimator (CE) were applied (based on grids

m 

′ 
4 to m 

′ 
6 ) to calculate, respectively, the numerical uncertainty and the extrapolated numerical solution and its error bound,

which are shown in Table 8 for the three models. The values in the parenthesis represent the numerical uncertainty or the

error bound, depending whether GCI or CE is applied, respectively. For instance, 0 . 082880(6) means 0.082880 ± 0.0 0 0 0 06.

For the whole interval of Mach numbers considered, the numerical uncertainty calculated with GCI does not exceed 0.09%

of the numerical solution in the finest grid and the error bound of the convergent estimator does not exceed 0.01% of the

extrapolated solution. It must be emphasized that, although the numerical scheme applied to solve the transport equations
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Table 7 

Observed order of accuracy p U of the calculated foredrag 

coefficient C Df for grids m 

′ 
1 to m 

′ 
6 . 

Grids \ M ∞ p U - Euler 

2.73 3.50 4.00 5.05 6.28 

( m 

′ 
1 , m 

′ 
2 , m 

′ 
3 ) 0.49 0.53 0.57 0.66 0.73 

( m 

′ 
2 , m 

′ 
3 , m 

′ 
4 ) 0.65 0.66 0.70 0.78 0.85 

( m 

′ 
3 , m 

′ 
4 , m 

′ 
5 ) 0.72 0.74 0.78 0.86 0.92 

( m 

′ 
4 , m 

′ 
5 , m 

′ 
6 ) 0.76 0.81 0.86 0.92 0.96 

p U - NS-C 

( m 

′ 
1 , m 

′ 
2 , m 

′ 
3 ) – – – – –

( m 

′ 
2 , m 

′ 
3 , m 

′ 
4 ) – 0.49 0.59 0.74 0.84 

( m 

′ 
3 , m 

′ 
4 , m 

′ 
5 ) 0.46 0.67 0.74 0.84 0.89 

( m 

′ 
4 , m 

′ 
5 , m 

′ 
6 ) 0.64 0.77 0.83 0.91 0.94 

p U - NS-V 

( m 

′ 
1 , m 

′ 
2 , m 

′ 
3 ) – – – – –

( m 

′ 
2 , m 

′ 
3 , m 

′ 
4 ) 0.33 0.64 0.72 0.83 1.01 

( m 

′ 
3 , m 

′ 
4 , m 

′ 
5 ) 0.59 0.72 0.78 0.88 0.94 

( m 

′ 
4 , m 

′ 
5 , m 

′ 
6 ) 0.67 0.79 0.85 0.93 0.97 

Table 8 

Foredrag coefficient C Df obtained with the Taylor-Maccoll equation and the Euler, NS-C and NS-V models (based on the 

convergent estimator (CE) and based on GCI using grids m 

′ 
4 to m 

′ 
6 ). 

C Df 

Euler NS-C NS-V 

M ∞ Taylor-Maccoll CE GCI CE GCI CE GCI 

2.73 0.082880590432055 0.082880(6) 0.08285(5) 0.088707(9) 0.08868(5) 0.090250(8) 0.09022(5) 

3.50 0.075479996996251 0.075481(6) 0.07544(6) 0.080319(7) 0.08028(6) 0.082145(7) 0.08210(6) 

4.00 0.072259094418355 0.072260(5) 0.07222(6) 0.077725(5) 0.07768(6) 0.080198(5) 0.08015(6) 

5.05 0.067697273968818 0.067698(2) 0.06765(6) 0.075336(3) 0.07529(6) 0.080016(2) 0.07997(6) 

6.28 0.06446 845526 8321 0.064469(1) 0.06442(6) 0.075944(2) 0.07590(6) 0.085168(1) 0.08512(6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is of first order of accuracy, the extrapolated foredrag calculated with the convergent estimator and presented in Table 8 is,

at least, second order accurate, thanks to the extrapolation methodology [13] . 

Comparing the extrapolated C Df of the Euler model ( Table 8 ), obtained with the convergent estimator, with the solution

of the Taylor-Maccoll equation [11] , it was found a relative difference of less than 0.002%. The relative differences were

bounded by the error bound of the convergent estimator. The Taylor-Maccoll equation is a specialization of the Euler equa-

tions obtained with the following assumptions [8] : (i) the cone is semi-infinite, (ii) the shock wave is conical and attached

to the cone vertex and (iii) the flow is irrotational between the cone and the shock wave. Table 8 presents the foredrag co-

efficient of the Taylor-Maccoll equation calculated here based on a methodology similar to that of Sims [25] . In the present

work, the Taylor-Maccoll equation was solved using quadruple precision and a fourth order Runge-Kutta method in such a

way that the solution presented in Table 8 is accurate to all presented figures. 

Finally, it is pointed out how the application of the convergent estimator may reduce the computational effort to obtain

a solution with a given precision. Consider the numerical solution of the Euler equation at M ∞ 

= 2 . 73 obtained in the grid

m 

′ 
6 

(1920 × 1920 volumes) ( Table 6 ), for which the relative error is 0.04% compared to the Taylor-Maccoll solution, and the

extrapolated solution of the Euler equation obtained with the convergent estimator for the same condition ( Table 8 ), for

which the relative error compared to the Taylor-Maccoll solution is 0.0 0 06%. If numerical simulations were performed in

finer grids, obtained by doubling the number of volumes in each coordinate direction, and supposing that the error of the

grid m 

′ 
6 

is divided by two every time the grid is refined (this is the expected behavior for a first order scheme), it will be

necessary, at least, a grid with 122880 × 122880 volumes in order to obtain the same precision! 

3.3. Validation 

Validation was performed comparing the foredrag coefficient obtained from the Euler, NS-C and NS-V models and the

experimental data of Eggers et al. [9] . In this section, the numerical solution of the finest grid was not extrapolated and only

GCI was applied for the quantification of its numerical uncertainty, as recommended by the ASME V&V 20–2009 Standard. 

The experiment of Eggers et al. was conducted in the Ames 10- by 14-inch supersonic wind tunnel. The cone models

had base diameter of 1 inch and length of 3 inches. The foredrag force was found by subtracting the base force from the

total drag force, which was measured with a strain-gage balance. The forces on the base of the models were determined

from measured base pressures and from free-stream static pressures. According to this research, the accuracy of the foredrag

coefficients was affected by uncertainties in the measurements of the following quantities: stagnation pressures, free-stream
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static pressures, base pressures, and the forces on the cone models as measured by the strain-gage balance. The combined

effects of all the sources of error result in probable uncertainties in measured foredrag coefficients that varies from ± 0.001

at the low Mach numbers (2.73) to ± 0.005 at the higher Mach numbers (6.28). Since this experiment was not designed

for validation, some information is not available. For instance, the uncertainty over the stagnation pressure p 0 , free-stream

static pressure p ∞ 

and dynamic pressure q ∞ 

are, respectively, 0.5%, 1.5% and 1.5%, but the values of these quantities were

not given. On the other hand, the free-stream Mach and Reynolds numbers were given (see Table 4 ), but their uncertainties

were not. Additionally, neither the free-stream temperature nor the base pressure (and their uncertainties) were given. 

Table 9 presents the experimental foredrag coefficient C 
exp 

Df 
of Eggers et al. and its experimental standard uncertainty

U 

exp . It is relevant to mention that all the values of M ∞ 

read from the plot are in agreement with their nominal values

given by Eggers et al., except 6.28 that was read as 6 . 13(2) . The experimental uncertainty for M ∞ 

= 2 . 73 and 6.28 was

given by Eggers et al. and the intermediate values were obtained by a linear interpolation. Since the data were obtained

from a plot, C 
exp 

Df 
is the average value of several readings. The standard uncertainty associated with the data reading U 

read 

was calculated as one standard deviation from the mean value and it is also included in Table 9 . In this work, the read-

ing standard uncertainty was combined to the experimental one to produce the total experimental standard uncertainty

U 

exp, t , i.e. , 

U 

exp , t = 

√ 

(U 

exp ) 2 + (U 

read ) 2 . (55) 

This additional uncertainty, that is, the reading uncertainty, is a problem often found when comparing numerical to experi-

mental data. That is why tabulated experimental data is more suitable for validations. 

After finding the estimated numerical error (see Table 8 ) and the experimental standard uncertainty (see Table 9 ), the

next step should be to calculate the input uncertainty in order to estimate the validation metrics. The main input parameters

are the fineness ratio f , the free-stream temperature T ∞ 

, the free-stream Mach number M ∞ 

and the free-stream Reynolds

number Re ∞ 

. A couple of assumptions must be made about these parameters in order to estimate the input uncertainty,

because some of them, or their standard uncertainties, are not known, as previously stated. 

The uncertainty of the fineness ratio f was probably caused by direct measurements of the cone length and base diameter.

Considering that a common caliper of 0.01 mm of uncertainty was applied in the measurement, the fineness ratio is affected

by a relative uncertainty of 0.0017%. 

Both the uncertainty of T ∞ 

and its value are unknown. Therefore, to evaluate how T ∞ 

can affect the foredrag coefficient,

f, M ∞ 

and Re ∞ 

were fixed and four values of T ∞ 

were assumed: 200 K, 250 K, 300 K and 350 K. Table 10 shows the

numerically calculated foredrag coefficient obtained on grid m and its numerical uncertainty, based on grids m to m , as a
5 3 5 

Table 9 

Experimental foredrag coefficient C exp 

Df 
of Eggers 

et al. [9] , its experimental standard uncertainty 

U exp , reading standard uncertainty U read and total 

experimental standard uncertainty U exp, t . 

M ∞ C exp 

Df 
U exp U read U exp, t 

2.73 0.0884 0.0010 0.0014 0.0017 

3.50 0.0807 0.0019 0.0014 0.0024 

4.00 0.0784 0.0024 0.0014 0.0028 

5.05 0.0757 0.0036 0.0014 0.0039 

6.28 0.0892 0.0050 0.0014 0.0052 

Table 10 

Effect of the free-stream temperature T ∞ on the foredrag coefficient C Df . 

C Df - Euler 

T ∞ (K) M ∞ = 2 . 73 3.5 4 5.05 6.28 

200 0.08282(9) 0.0754(1) 0.0722(1) 0.0676(1) 0.0644(1) 

250 0.08282(9) 0.0754(1) 0.0722(1) 0.0676(1) 0.0644(1) 

300 0.08282(9) 0.0754(1) 0.0722(1) 0.0676(1) 0.0644(1) 

350 0.08282(9) 0.0754(1) 0.0722(1) 0.0676(1) 0.0644(1) 

C Df - NS-C 

200 0.08864(9) 0.0802(1) 0.0776(1) 0.0752(1) 0.0758(1) 

250 0.08865(9) 0.0802(1) 0.0776(1) 0.0752(1) 0.0758(1) 

300 0.08865(9) 0.0802(1) 0.0776(1) 0.0752(1) 0.0758(1) 

350 0.08865(9) 0.0802(1) 0.0776(1) 0.0752(1) 0.0759(1) 

C Df - NS-V 

200 0.09037(9) 0.0823(1) 0.0804(1) 0.0804(1) 0.0859(1) 

250 0.09026(9) 0.0821(1) 0.0802(1) 0.0801(1) 0.0854(1) 

300 0.09019(9) 0.0821(1) 0.0801(1) 0.0799(1) 0.0851(1) 

350 0.09013(9) 0.0820(1) 0.0800(1) 0.0798(1) 0.0848(1) 
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function of T ∞ 

. Thus, within the numerical uncertainty, T ∞ 

does not affect the foredrag coefficient C Df of the Euler and NS-C

models, but it affects the foredrag coefficient C Df of the NS-V model by an amount of up to 1.2%. Considering such result,

T ∞ 

was fixed in 300 K with an uncertainty of 50 K. 

The uncertainty of M ∞ 

and Re ∞ 

were estimated as follows. Expressing the Mach number and the Reynolds number as

functions of the free-stream static pressure p ∞ 

and dynamic pressure q ∞ 

, one can show that, for a fixed f and T ∞ 

, 

d M ∞ 

M ∞ 

= 

1 

2 

(
d q ∞ 

q ∞ 

− d p ∞ 

p ∞ 

)
(56)

and 

d Re ∞ 

Re ∞ 

= 

1 

2 

(
d q ∞ 

q ∞ 

+ 

d p ∞ 

p ∞ 

)
, (57)

that is, the relative change of M ∞ 

and Re ∞ 

is directly proportional to relative changes in p ∞ 

and q ∞ 

. Since there is a relative

standard uncertainty of 1.5% over p ∞ 

and q ∞ 

, we assume that the same uncertainty affects M ∞ 

and Re ∞ 

. 

The effect of the uncertainty of the input parameters f, T ∞ 

, Re ∞ 

and M ∞ 

over C Df , i.e. U 

input , was determined based on

Eq. (54) . The derivatives were numerically approximated with a central differencing scheme. Table 11 shows the effect of

each input parameter on C Df and the estimated U 

input . �C Df represents the term inside the parenthesis in the right hand side

of Eq. (54) . The number of decimal places in this table corresponds to the accuracy of the numerical uncertainty obtained

with the Grid Convergence Index based on grids m 3 to m 5 . It is possible to note that the uncertainty in the free-stream

Mach number is the main source of uncertainty over C Df . This picture only changes for NS-V in the hypersonic regime, for

which the uncertainty of both T ∞ 

and Re ∞ 

plays an important role. 

Now, experimental data and numerical solutions can be compared through the validation metrics. In order to simplify

the discussion and without loss of generality, it is convenient to introduce the relative validation metrics ε = E/C 
exp 

Df 
and

υ = U 

val /C 
exp 

Df 
of C Df . Table 12 presents ε and υ for the three models studied here. This table shows that the relative standard

uncertainty υ did not depend on the models studied and increased with the Mach number, reaching the expressive 5.8%

at M ∞ 

= 6 . 28 . These large values of υ and their independence on the models occurred because the total experimental
Table 11 

Effect of the uncertainty of the input parameters f, T ∞ , Re ∞ and M ∞ on the fore- 

drag coefficient C Df . 

Euler 

M ∞ �C Df ( �f ) �C Df ( �T ∞ ) �C Df ( �Re ∞ ) �C Df ( �M ∞ ) U input 

2.73 0.0 0 0 0 0 0.0 0 0 0 0 0.0 0 0 0 0 −0 . 0 0 051 0.0 0 051 

3.50 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 −0 . 0 0 04 0.0 0 04 

4.00 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 −0 . 0 0 03 0.0 0 03 

5.05 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 −0 . 0 0 03 0.0 0 03 

6.28 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 −0 . 0 0 02 0.0 0 02 

NS-C 

2.73 0.0 0 0 0 0 0.0 0 0 0 0 −0 . 0 0 0 04 −0 . 0 0 052 0.0 0 052 

3.50 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 −0 . 0 0 04 0.0 0 04 

4.00 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 −0 . 0 0 03 0.0 0 03 

5.05 0.0 0 0 0 0.0 0 0 0 −0 . 0 0 01 −0 . 0 0 03 0.0 0 03 

6.28 0.0 0 0 0 0.0 0 0 0 −0 . 0 0 01 −0 . 0 0 02 0.0 0 02 

NS-V 

2.73 0.0 0 0 0 0 −0 . 0 0 0 06 −0 . 0 0 0 06 −0 . 0 0 049 0.0 0 050 

3.50 0.0 0 0 0 −0 . 0 0 01 −0 . 0 0 01 −0 . 0 0 04 0.0 0 04 

4.00 0.0 0 0 0 −0 . 0 0 01 −0 . 0 0 01 −0 . 0 0 03 0.0 0 03 

5.05 0.0 0 0 0 −0 . 0 0 02 −0 . 0 0 01 −0 . 0 0 02 0.0 0 03 

6.28 0.0 0 0 0 −0 . 0 0 03 −0 . 0 0 02 −0 . 0 0 01 0.0 0 03 

Table 12 

Relative validation metrics ε and υ . 

Euler NS-C NS-V 

M ∞ ε (%) υ (%) ε (%) υ (%) ε (%) υ (%) 

2.73 −6 . 3 2.0 0.3 2.0 2.0 2.0 

3.50 −6 . 6 3.0 −0 . 6 3.0 1.7 3.0 

4.00 −7 . 9 3.6 −0 . 9 3.6 2.2 3.6 

5.05 −11 5.1 −0 . 5 5.1 5.7 5.1 

6.28 −28 5.8 −15 5.8 −4 . 6 5.8 
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standard uncertainty U 

exp, t was the main source of error and dominated over the input U 

input and numerical U 

num standard

uncertainties. 

In accordance to the ASME V&V 20–2009 Standard, E represents an estimation of the model error and U 

val represents its

standard uncertainty. The relative validation metrics ε and υ have an analogous interpretation. Conclusions on the model’s

accuracy depend on the ratio | ε/υ| . The interpretation can be made simpler by plotting ε with its error bar υ . If the error

bar is close to the horizontal axis in the graph ( | ε/υ| � 1 ), then the combined input error, experimental error and numerical

error is of the same order of the model error. In this case, it is not possible to evaluate if the difference between the

experimental and numerical results was caused by the model error or by the other source of errors. On the other hand, if

the error bar is small compared to the distance of ε to the horizontal axis ( | ε/υ| � 1 ), then probably ε is a good estimation

of the model error. 

Fig. 3 a, c and e compare the foredrag coefficient C Df from the Euler, NS-C and NS-V models, respectively, with the experi-

mental data. These figures present only the numerical and experimental error bars (note that numerical error bars are much

smaller than the experimental ones). Fig. 3 b, d and f present the corresponding estimated relative model error ε of each

model. Based on the interpretation of the ASME V&V 20–2009 Standard, we can note that: a) the Euler model presented the
Fig. 3. Comparison of the numerical and experimental foredrag coefficient C Df . 
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greatest model error for the whole set of Mach numbers studied. The relative estimated model error ε varied from −6.3%

to −28%. The ratio | ε/υ| was always greater than 2, which indicates that ε is a good estimation of the model error; b) the

Navier-Stokes with constant thermophysical properties (NS-C) improved the modeling compared to the Euler model. For M ∞
≤ 5.05, | ε| ≤ 0.9% and | ε/υ| < 1 . But for M ∞ 

= 6 . 28 , we found a relative estimated model error of 15% with | ε/υ| = 2 . 5 ;

c) taking into account the validation standard uncertainty, the Navier-Stokes model with variable thermophysical properties

(NS-V) agreed better with the experimental data over the whole interval of M ∞ 

studied. The maximum relative estimated

model error was 5.7% with | ε/υ| ≤ 1 . 1 . 

Fig. 3 a, c and e compare the foredrag coefficients of the Euler, NS-C and NS-V models as a function of the free-stream

Mach number. It is important to mention that the free-stream Reynolds number is not constant in these figures, but changes

with M ∞ 

, as shown in Table 4 . According to the Euler model (inviscid flow), the foredrag coefficient decreases monotonically

with M ∞ 

. This does not occur in the NS-C model, because the increased flow speed associated with the decreased Reynolds

number increases the viscous stress over the cone surface, which, consequently, increases the foredrag coefficient. This effect

is augmented in the NS-V model due to the large variations in the temperature field, which affects the thermophysical

properties c p , μ and κ and, consequently, the foredrag coefficient. 

Finally, for the sake of curiosity, Fig. 4 shows some isolines of Mach number, pressure and temperature obtained from

the numerical solution of the NS-V model at free-stream Mach number M ∞ 

= 6 . 28 in the grid m 

′ 
6 
. Contrary to the Euler’s

solution, the isolines are not straight lines, particularly near the cone tip. Although this result is shown for a particular case,

it was observed for the other values of M . 
∞ 

Fig. 4. Isolines of M, p and T for NS-V at M ∞ = 6 . 28 . 
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4. Conclusion 

The verification of the foredrag coefficient for the Euler model, the Navier-Stokes model with constant thermophysical

properties and the Navier-Stokes model with variable thermophysical properties showed that the numerical error was dom-

inated by the discretization error, i.e. , the iteration error and the round-off error were negligibly small. 

For all the Mach numbers considered, the observed order of accuracy, calculated with five or six grids, converged to the

asymptotic one, allowing one to apply the convergent estimator for evaluation of the discretization error. The error bound

did not exceed 0.01% of the extrapolated solution for all models. 

The relative difference between the Euler and the Taylor-Maccoll foredrag coefficients reached up to 0.002%, which was

bounded by the error bound of the convergent estimator. 

The validation metrics of the foredrag coefficient showed that the Navier-Stokes model with variable thermophysical

properties (NS-V) agreed better with experimental data for the whole set of Mach number studied. The greatest relative

difference between numerical and experimental foredrag for the NS-V model was 5.7% with a relative validation standard

uncertainty of 5.1%. For the other two models, i.e. , Euler and Navier-Stokes with constant thermophysical properties (NS-C),

the absolute value of the relative estimated model error varied from 6.3% to 28% and from 0.3% to 15%, respectively. Despite

the 15% relative estimated model error of the NS-C model, that occurred for M ∞ 

= 6 . 28 , for the remaining Mach numbers

studied, comparison of the modeling error of the NS-C and the NS-V models was inconclusive, because the validation stan-

dard uncertainties were of the same order of the estimated modeling errors. The relative validation standard uncertainty

varied from 2% to 5.8% for all models and was dominated by the standard uncertainty of the experimental data. Because of

that, no further grid refinement study would improve the comparison of the modeling errors of the NS-C and NS-V models.
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