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Richardson extrapolation is a powerful approach for reducing spatial discretization errors
and increasing, in this way, the accuracy of the computed solution obtained by use of many
numerical methods for solving different scientific and engineering problems. This approach
has been used in a variety of computational fluid dynamics problems to reduce numeri-
cal errors, but its use has been restricted mainly to the computation of incompressible
fluid flows and on grids with coincident nodes. In this work we present a completed re-
peated Richardson extrapolation (CRRE) procedure for a more generic type of grid not nec-
essarily with coincident nodes, and test it on compressible fluid flows. Three tests are per-
formed for one-dimensional and quasi-one-dimensional Euler equations: (i) Rayleigh flow,
(i1) isentropic flow, and (iii) adiabatic flow through a nozzle. The last test involves a normal
shock wave. To build a simple solver, these problems are solved by a first-order upwind-
type finite difference method as the base scheme. The normal shock wave problem is also
solved with a high-order weighted essentially nonoscillatory (WENO) scheme to compare
it with the CRRE procedure. The procedure we propose can increase the achieved accuracy
and significantly decrease the magnitude of the spatial error in all three tests. Its per-
formance is best demonstrated in the Rayleigh flow test, where the spatial discretization
error is reduced by seven orders of magnitude and the achieved accuracy is increased from
0.998 to 6.62 on a grid with 10,240 nodes. Similar performance is observed for isentropic
flow, for which the spatial discretization error is reduced by nine orders of magnitude and
the achieved accuracy is increased from 0.996 to 6.73 on a grid with 10,240 nodes. Fi-
nally, in adiabatic flow with a normal shock wave, the procedure can reduce the spatial
discretization error both upstream and downstream of the shock. However, the more ex-
pensive high-order WENO scheme results in errors of lower magnitude upstream of the
shock and a sharper shock transition for this shocked test case.
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1. Introduction

In fluid mechanics, the set of equations describing an inviscid fluid flow are known as the Euler equations, which con-
stitute a nonlinear hyperbolic system of conservation laws and are a particular case of the Navier-Stokes equations for zero
viscosity and thermal conductivity [1]. Although more restrictive than the Navier-Stokes equations, the Euler equations can
model compressible fluid flows, or, in other words, high-speed internal and external flows. These equations are very im-
portant in modern engineering, but their solution requires the use of numerical methods, and as a consequence, numerical
errors arise. The most common approaches in numerical analysis to reduce the numerical error are grid refinement and the
use of higher-order numerical schemes, to which Richardson extrapolation (RE) is an alternative.

RE has been used in distinct contexts; for example, step size control [2], error estimation [3], and error reduction. Since
the original work of Richardson [4], RE for error reduction has been used repeatedly [5], in a completed manner (CRE) [6],
completed with repetition [7], and with Runge-Kutta methods [8], and to compute eigenvalues of the Helmholtz equation
[9]. The applications of RE to reduce numerical errors range from simple computational fluid dynamics (CFD) problems
to complex ones [10]. There have been two recent modifications of RE to reduce numerical errors. The first one was for
secondary variables (e.g., average temperature) and used polynomials to achieve higher accuracy orders [11]. The second
modification was made in the CRE procedure to achieve higher accuracy in the entire property field [7].

The original CRE and the last modification mentioned above were intended for grids with coincident nodes, as shown
in Fig. 1, where g is the grid level and the refinement ratio (r) between grids is set as 2. The coarse grid (g = 1) has nodes
coincident with nodes of the fine grid (g = 2). A grid with non-coincident nodes is presented in Fig. 2, where we can see
that there are no coincident nodes for r = 2. Grids with non-coincident nodes are used in CFD, notably for finite volume-type
methods, although in this article we concentrate on the use of finite difference methods.

In nonlinear hyperbolic systems of conservation laws, the speed of propagation is an important feature. The Euler equa-
tions can model subsonic and supersonic flows that depend on the speed of propagation and are subject to the possible
appearance of discontinuities, including shocks. Because of this complication, one needs to use robust numerical schemes to
solve these conservation laws. For finite difference schemes, one could use simple upwind or upwind-biased first-order
methods, such as the Lax-Friedrichs method (see, e.g., [12]). However, such first-order methods are highly dissipative.
Higher-order methods can also be used, such as the total variation diminishing scheme or the weighted essentially nonoscil-
latory (WENO) scheme (see, e.g., [12]). However, these are nonlinear schemes that add extra computational effort and com-
plexity to the solver, and they can suffer from accuracy degeneration in the presence of shocks [13].

The main advantage of the RE procedure is that it increases the accuracy of the spatial discretization and reduces its
errors with low computational effort, as reported in [11,14]. Although RE can be used with higher-order base schemes [15],
it is more advantageous to use it with lower-order schemes because they are computationally less expensive and are more
robust for compressible fluid flows with possible discontinuities in their solution. Since RE (with repetition) and CRE (with
and without repetition) have already been developed for incompressible fluid flows and for grids with coincident nodes
(see, e.g., [7.11,14]), and since it is more advantageous to use lower-order schemes with RE especially for compressible flows,
in this work we present a completed repeated RE (CRRE) procedure for grids with possibly non-coincident nodes, which
are often used for compressible flows, and test it with a first-order compressible fluid flow solver as the base scheme.
The tests are performed on numerical solutions of one-dimensional (1D) and quasi-one-dimensional (Q1D) Euler equations
with steady-state solutions. To solve these equations, we use an explicit first-order upwind-biased finite difference method
with Lax-Friedrichs splitting, and an optimal strong-stability-preserving third-order Runge-Kutta method for the time step
integration [12] to reach steady states. To assess the performance of the procedure in the presence of shocks, we solve the
same shocked problem with the high-order nonlinear WENO-Z scheme [16] for the purpose of comparison.

2. Mathematical model and numerical methods

The conservation law we are interested in has the general form

U:+F(U)x=SU). (1)
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Fig. 1. Grid with coincident nodes.
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Fig. 2. Grid with non-coincident nodes.
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Table 1
Inflow conditions and other parameters for 1D flow.
R (J/(kg K)  286.9 T (K) 400
q (J/kg) 5x10*  p (MPa) 0.20265
x; (m) 0 p (kg/m?)  p/(RT)
Xr (m) 0.2 v (m/s) M,/vp/p
M 1.3
Table 2
Q1D flow parameters.
X; (m) 0 po (MPa) 02
Xr (m) 0.5 Ty (K) 800
xm (m) 025  po (kg/m®)  po/(RTo)
ry (m) 005  pe (MPa) 0.101325

where U is the vector of the conservative variables, F is the physical flux, and § is a source term.

The first test for the CRRE procedure is a steady 1D compressible fluid flow. The flow is also known as Rayleigh flow
or flow with heat addition. In our case, the inflow is supersonic and heat is being taken to maintain this condition. The
conservative variables, flux, and source vectors are

p pv 0
U=|pv|. FU)=|pr2+p| and sSW)= AO , 2)
E v(E +p) ROy

h

where p, v, E, p, and h are the density, velocity, total energy, pressure, and discretization partition size, respectively. Ag=q/N
is the heat taken in each node and ¢ is the total heat per unit mass taken from the flow. The equation of state is given by
2
p i
E=—+ 7, 3
1 s €))]
where y =14 is the specific heat ratio for air. One should note that we are using the perfect gas equation of state. The
inflow conditions and ¢ are given in Table 1, where R, M, T, x;, and x; are the gas constant, Mach number, temperature, the
right boundary position, and the left boundary position, respectively.
The Q1D tests involve a steady compressible fluid flow in a convergent-divergent idealized nozzle, whose geometry
(cross-sectional area) is computed by

A(x) = m[(x — xth)? + rth]?, (4)

where xth and rth are the position and the radius of the throat, respectively.
Depending on the inflow and outflow conditions, a smooth (isentropic) or discontinuous (adiabatic) solution may be
obtained. The conservative variables and flux vectors are the same as in the 1D test. The source term is

A pu
SUy=--2 puz | (5)
u(E+p)

The flow parameters are presented in Table 2, where the subscript 0 denotes the total or stagnation properties and pe is
the pressure at the nozzle exit. If a certain pe is imposed at the outflow boundary, a normal shock wave can stand at some
position in the divergent region of the nozzle (more details can be found in [17]).

The domain is discretized as follows (see Fig. 2):

Xi=x+h(i—-1/2), 1<i<N, and h= (xr —x;)/N.
where N is the number of nodes.
For the finite difference method, we approximate (1) as
d
dt
where F is the numerical flux. We refer to [12] for the first-order Lax—Friedrichs flux and to [16] for the higher-order WENO-

Z flux. The time stepping is implemented by a strong-stability-preserving third-order Runge-Kutta method [12] to integrate
(6) in time:

u® —uy"+ kLU,
30" +UP + kL)
3 . (7)
U"+20% 4 2kL W™
e .

s =
U; :7E(Fi+1/2*ﬂ71/2)+S(Ui)' *

U(2) o

Un+1 -
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where L(U) is the spatial discretization operator. For stability, we use the time step k as

_ hCFL
===

k (8)
where CFL=0.5, & = maxy max; j3 IAj(U)I. and 4;(U) are the eigenvalues of the Jacobian f(U). This time step is valid for
the upwind, and the required time step for the WENO-Z scheme is

k = min hcj,.hsf3 ! (9)
o

For the boundary conditions, we use the inverse Lax-Wendroff procedure [18,19] to maintain higher order at the bound-
aries.

With regard to Rayleigh flow, we use the analytical solution as the initial condition (see [17] for details of the analytical
solution). Note that, to the numerical scheme, this is not a solution; hence, we need to march in time to reach the steady
state. The time integration will be stopped when the residue reaches machine epsilon (round-off error).

Since the inflow is supersonic, we impose all three components of the solution uy, Uy, and usz at the inflow boundary,
and extrapolate all of them to the ghost nodes via Taylor expansion [18]. Because our base scheme is first-order accurate,
the values at the ghost node are the same as at the boundary.

The outflow is also supersonic, and we extrapolate the characteristic variables to get U at the boundary and then at
the ghost node (see [18] for details of the inverse Lax-Wendroff procedure). Although our base scheme is first-order accu-
rate, our numerical tests have shown that a higher-order extrapolation (e.g., fifth-order accurate) is needed to maintain the
designed high-order accuracy of the CRRE procedure at the outflow boundary.

For Q1D flow, we again use the exact solution as the initial condition (see [17] for details of the exact solution for the
Q1D flow) and the time integration is stopped when the residue reaches machine epsilon (round-off error).

The inflow is subsonic for both isentropic flow and adiabatic flow. Therefore, we impose two conservative variables and
extrapolate one characteristic variable. With the exact solution, we impose u; and u; and extrapolate the first characteristic
variable vq corresponding to the negative eigenvalue at the left boundary, then extrapolate U to the ghost node. As before,
even though our scheme is first-order accurate, we still need to use a high-order (we use a fifth-order) extrapolation to
maintain the designed high-order accuracy of the CRRE procedure.

Finally, for the last test, which consists of a Q1D adiabatic flow with a normal shock wave, the outflow is subsonic and
we impose one conservative variable and extrapolate two characteristic variables. With the exact solution, we impose uy
and extrapolate the two characteristic variables v5 and v3 corresponding to the two positive eigenvalues at the right bound-
ary, and then extrapolate U to the ghost node. Because the first three grids are very coarse and the scheme is first-order
accurate, the shock may cause oscillation problems near the outflow boundary. To avoid these oscillations, we reduce the
extrapolation order in the coarse grids. The oscillation problems could also be avoided by use of a WENO-type extrapola-
tion [18,19]. However, such nonlinear WENO-type extrapolation seems to cause order reduction with the CRRE procedure. In
isentropic flow, the outflow is supersonic and we treat it in a similar way as in the 1D test.

Once the numerical solutions have been obtained by the numerical methods presented in this section, their spatial accu-
racy can be increased by application of the RE procedure. The application leads to additional computational effort but better
accuracy properties will compensate for the additional computations. Furthermore, the computational effort added by the
RE is negligible when compared with the effort needed for computation on finer grids [11,14]. The RE procedure we propose
is presented in Section 4.3.

3. Verification

As stated in [20], verification assesses the code and solution correctness and involves error evaluation and estimation in a
systematic grid refinement. This analysis is done by means of the error itself, numerical error estimate, and accuracy orders.
The numerical error can be the difference between the exact solution and the numerical solution, if the former is available,
or the difference between the numerical solutions from different meshes. To get reliable results, the achieved accuracy
should approach the asymptotic order (pg), ideally monotonically, in more than three grids [20,21]. The asymptotic order p,
depends on the numerical scheme itself and the regularity of the exact solution, which is obtained a priori, regardless of
the numerical solution [21,22]. As we will be considering problems with known analytical or exact solutions, these will be
used to compute the numerical errors and achieved accuracy.

The error and accuracy analysis will be performed in the entire property field (e.g., density) of the steady converged
solution by means of the L! norm; that is,

N
1
IEG 1 = 5 2 |Egs (10)
i=1
with
E;j:ﬁ(xi)_ug_li! (11)
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Fig. 3. Grid with coincident nodes in three levels and r = 2.

where u is the steady converged numerical solution, i is the analytical or exact solution, the superscript m refers to the
CRE level, and the subscripts g and i refer to the grid level and the node position, respectively. One should note that m =0
is the numerical solution without any CRE. Also, to avoid confusion, the numerical solution without CRE will not have a
superscript.

The achieved accuracy can be computed as

logo ([1EG: ¢ 1 /11 EG 1)
logy, (1)

Pen =

The achieved accuracy may not be (and often is not) an integer.

4. Richardson extrapolation
4.1. Completed Richardson extrapolation

The RE is based on the assumption that discrete solutions have a series representation in terms of the discretization
partition size h. For instance [22],

U =1(x) +cih?P + czh?* 4+ c3hP? + @(hP2), (13)
where pg < p; < p3 < ... are the true orders with RE, which depend on the numerical scheme and approximations. In our
case, the true orders for the first-order upwind base scheme are 1,2, 3,... and the true orders for the WENO-Z scheme are
5,8y sociae

As the grid is refined (h — 0), the first term of h dominates and the numerical solution at the vth level can be expressed
as

U = Uy + CyhP, (14)

where U, called the extrapolated solution, is an approximation to the analytical solution. It is a better approximation than
u, as the order of accuracy is p,.1, which is bigger than p,.
If one has the numerical solution on two distinct grids, (14) can be written for these two grids and combined to compute

Us as
Ug — U
_ g~ Mgl
Uno = Ug+ 1 (15)
From the RE, one can also obtain the Richardson error estimate U,;,
Upp= oo —Ug: (16)

Roache and Knupp [6] devised a method based on (15) for the entire property field called CRE using a grid with coinci-
dent nodes. Since the grid has coincident nodes, they proposed that

Uno = Ug+ G, (17)
with a correction
Ug — Ug 1

=TT )

for the coincident nodes (e.g., see nodes Uy ;_3;4, Uy i_3/4, U1 iy1/4. and Uy .14 in Fig. 3) and

G +G

=1

(19)

for the other nodes (see node uy ;1,4 in Fig. 3).
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4.2. Assessment of completed Richardson extrapolation with repetition

Let us consider the CRE with repetition. Fig. 3 shows three different grid levels with r =2 and the numerical solution
without CRE. The goal is to assess the accuracy at the node i with two levels of CRE.

The error for a first-order scheme at a generic node (e.g., i—3/4, i—1/4, i, and i+ 1/4) can be assessed through the
following Taylor expansions (h3 = hy/2 = hy/4 = h/4, since r = 2):
2 3
. h h h
ugv,-fu(xf) :CL;‘Z +C2,f(4) +C3‘,‘(2) +O(h4). (20)
2 3
- h h h
uzl,-fu(x,-) C]‘fi"’czvf(i) +C3_,‘(§) +O(h4). (21)
Uy j— ﬁ(Xf) = Cl‘fh —+ Cz\ihz —+ C3_fh3 —+ O(h4) (22)

For the first CRE level, we substitute (21) and (22) in (17) regarding the node positions. Hence,

2, h? h?
u;.j_3/4 —1(Xj_3/4) = G234 — 3Ca.i—3/4z +O(hh), (23)
. . h? h? x
Uzir1ya — UXis1/4) = —Coivta — 3Cg.i+1/4z + O(hh). (24)
Since ¢y; is a function of x and assuming it is smooth, one can expand ¢y ;_3,4 and ¢y ;.44 to get

n h_ o R

C1,i-3/4 = Cli—1/4 — C{-i)—lﬂii + Ci.i)—m? +0O(h?), (25)
am h oo R 3

Cli+1/4 = Cri—1/4 + C1_;‘_1/4'2' & C]_,‘_]m%“' +0O(h ) (26)

Using the same idea for the other terms, we can write

- h? h?
u},i71f4 —W(Xj_14) = —C2i-ia — (Cﬁ)_m + 1253}1;4)% +0O(h*), (27)
ul (X 14) = —Cy; i — 3¢5 i oht) (28)
3i-1/4 i-1/4) = —Coi-1/a7g 3i-1/435 e s
ul — i (Xis1/2) = —Coi = 3c3; w O(ht) (29)
3,i+1/4 i+17/4) = —C2it1/4 g C3i41/4 37 + i
1 » hZ (2) h3 4
us; —U(x;) = —Cig ~ ( 11T 125'3,&)@ +O(h*). (30)
For the second CRE level
. h?
Uz 1,4 — 0(Xi_1y4) = (Cﬁ),m + 553.f4/4)@ +0Oh*), (31)
- h?
”%.mm —U(Xj3104) = Giviag + O(h%), (32)
3 g 2 4 72 i ellis 13
U — 0(x) = Cigr + (67 +72631) 58 +O(H7), (33)

where we can see that the accuracy is 2 at g = 3, the second level of CRE, and node i. This is a problem because after the
first level the CRE will not be able to eliminate this second-order error term.

C; for non-coincident nodes are second-order approximations, and one possible remedy for the order limitation would
be to use a higher-order computation of C;. However, this must be done for each non-coincident C; at every CRE level.

A cheaper remedy to achieve higher orders with CRE and repetition would be to use (15) at the coincident nodes only
(e.g., nodes i —3/4 and i+ 1/4 in Fig. 3) and then obtain higher-order approximations at the other nodes with a suitable
interpolation. Unfortunately, this cannot be done for grids with only non-coincident nodes. Therefore, a different approach
must be devised to increase the accuracy of the solution for grids of this type.

4.3. Completed repeated Richardson extrapolation

As a first approach, to increase the accuracy for grids with non-coincident nodes, one could combine three nodes and
compute a correction in a similar way to that in the original CRE. However, a fixed-order correction would impose a limit
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Fig. 4. Extrapolation between two grid levels,

Table 3

Extrapolations to u.
Grid CRE level (m)
level

® 0 1 2 3 4

1 g - - - -
3 Us,i uy U3 - -
4 U uy, uj; u3; -
& Us,i ul Uz ug; ui;

on the order of the procedure. Another approach would be the combination of more than three nodes to achieve higher
orders. Nevertheless, higher orders demand a large number of nodes and, therefore, a large system to solve. This system
may not be solvable. The easiest, but perhaps not the cheapest, approach is to use repetition.
First, we write
m—1 _ ,m-1
um =yl Ugi Ug1.i

== e withm=1,..., G-—1land m<g, (34)

where G is the number of grids. The first level (m = 1) of CRE depends on the numerical solution (m = 0).
To compute the CRE at level m, one needs an equivalent node in the coarse grid (g— 1). That is, one needs u;fr." and an

equivalent ”;_11‘.'- This can be done with a Newton polynomial py(x) of degree d =1+r = pg_1 — 1 with [ nodes to the left

and 1 nodes to right of i, satisfying pg(x;) = ug:]_j with j=i—1,..., i+randi=1,..., N, as shown in Fig. 4.
If we have G =10 grid levels, then it is possible to compute G— 1 =9 CRE levels. If the true orders are 1,2,3,..., it is

expected we can reach tenth order with CRRE (pg = 10). A ninth-degree polynomial is required because experiments have
shown that CRE cannot remove lower-order terms inserted by the polynomial.

Once all fine grid nodes have equivalent nodes in the coarse grid, the extrapolation can be computed with (34). CRRE is
a recursive application of CRE and it is summarized in Table 3.

The algorithm for computing the CRRE in smooth solutions at level m is summarized next. Forg=m+1,..., G, proceed
as follows:

1. Obtain an equivalent node in the coarse mesh {”;1;11,1‘} with a Newton polynomial of degree pg_1 — 1.
2. Compute the CRE with (34).

The compressible fluid flow is subject to discontinuities and shocks, which are challenging issues for numerical methods.
One of the most popular numerical schemes used to capture shocks in conservation laws, such as the Euler equations, is
the WENO scheme [12,16]. Through the weighted combination of approximations in different substencils, this scheme can
maintain higher order sufficiently far from the shock. Considering this, we propose use of the WENO idea with CRRE to
reduce the error in solutions with shocks.

To reduce spatial discretization error, the CRRE must be computed sufficiently far from the shock. To accomplish that, we
use the WENO smoothness indicator idea and the Richardson error estimate as a predictor/corrector step, computed as

o _ Ugs - ”;11,:" (35)
£ rpm—l — 1

The CRRE smoothness indicator is

p— Poi (36)
Brit+e
where € = 10~'° to avoid division by zero. Both ,Bﬁi- and ﬁg'i are computed through the following formula [12]:
4 N 2
) diE, .
L 2j-1 v.i ,—
IBU,i_;h 4 (W)’ v=f.g (37)
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where F; and Fy; are the fourth-degree polynomial interpolations at a finer and a coarser stencil, respectively, around X;, as
shown in Fig. 5.

The value of B,,; is of O(h?) if F is smooth in the stencil v and it is of @(1) otherwise [23]. Suppose that F is smooth in
the whole coarse stencil g (which includes the finer stencil f). Since the spatial step in g is twice as large as in f, we have

Bri=0WM?), Bgu=0(2h?%) . PR=~4

However, if F is not smooth in g but is smooth in f, by (36) P; should be larger than 4. In our experiments, the solution can
be assumed to be smooth if

P <24 2R, (38)

Even with the restriction imposed by (38), the CRRE could be computed in a node with high-magnitude errors. To avoid
that, we compute the CRRE in nodes where (38) is satisfied and the Richardson error estimate is lower than in the previous
CRE level. Of course, when m = 0, there is no error estimate. Therefore, we set Ur‘]i as an arbitrary big value.

The algorithm for computing the CRRE at level m in solutions with shocks and for g=G., ..., m+ 1 is as follows:

1. Compute P; in every node and use (38) to determine in which nodes the solution is smooth.
2. Find the beginning (bh) and the ending (e) of the nonsmooth region.

3. Fori=1,...,N proceed as follows:
a. If i is between b and e, use the previous-level value (ug‘i = u"g'.'ﬂ).
b. Otherwise, obtain an equivalent node in the coarse mesh (u™-!) with a Newton polynomial of degree pc_; —1,

g-1.i
avoiding nodes inside the nonsmooth region.
i. Compute the CRE with (34).
ii. Compute Uy;g'.
iii. If |Upg'| > |Un-"g"*1 |. use the previous-level value (ug"fi = ug'ﬂ].

5. Results

QOur interest is to test our method and to assess its performance in increasing the order of the spatial discretization error
in compressible fluid flow solutions. In all cases, the spatial discretization error is close to the double-precision machine
epsilon (round-off error), and to avoid round-off issues, we use quadruple-precision computing. With quadruple precision,
the computational time is greatly increased. To compute solutions more quickly, we use better initial estimates and parallel
computing. One of the most precise initial estimates is the analytical solution (which is not the solution to the numeri-
cal scheme, and hence time marching is still needed to reach a numerical steady state). However, before computing the
solutions, we performed a convergence analysis for more generic initial estimates.

For the 1D problem, we used the inflow values in the entire domain as the initial estimate. For the Q1D isentropic
flow, we used a linear distribution from 0 at the left boundary to 2 at the right boundary for the Mach number as an
initial estimate. Then we computed the density, velocity, and pressure with the gas dynamics equations and the stagnation
properties (shown in Table 2). Finally, for the Q1D flow with normal shock, we used a linear distribution from 0 at the left
boundary to 1 at the nozzle throat and another linear distribution from 1 at the nozzle throat to 0 at the right boundary for
the Mach number as an initial estimate. The density, velocity, and pressure were computed in a similar way as for isentropic
flow.

The convergence analysis was performed on a grid with 640 nodes and is based on the average residue

N ] n+1 n n+1 n n+1 n
o e = p U lpvl = [pv]?] + |ETT - ET
Re = ; N . (39)

where n and n + 1 are time step indices. The results are shown in Fig. 6, where one can see that the average residue settles
down in all cases, except for the Q1D flow with a normal shock and the WENO-Z scheme. This can happen with WENO
schemes, as pointed out in [24]. Furthermore, the residue is greater than the quadruple-precision machine epsilon (round-
off error) because of the magnitude of the third U component and k in the denominator. We do not present the verification
for these initial estimates because the analysis is the same as in the next sections.
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Fig. 6. Average residue for generic initial estimates.
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Fig. 7. L' norm of p at each grid and CRE level for 1D Euler flow.

5.1. One-dimensional Euler equations

The L! norm of the error and its achieved accuracy for the density are presented in Figs. 7 and 8, and in Table 4, where
we can see the optimal performance of CRRE in increasing the achieved accuracy of the spatial discretization. The results
for the other conservative variables are not shown because they are qualitatively similar.

5.2. Quasi-one-dimensional Euler equations

The L' norm of the error and its achieved accuracy for the density and isentropic flow are presented in Figs. 9 and
10, and in Table 5, where the performance is seen to be less than in the previous case as not all orders are converging
monotonically from the first grid level. However, we can see that the L' norm and its achieved accuracy are stabilizing.
This nonmonotone behavior could be due to the CRE overestimating or underestimating the error. For instance, the second

grid level of the fourth CRE level has a smaller error than expected. The results for the other conservative variables are not
shown because they are qualitatively similar.
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Fig. 8. pg of p at each grid and CRE level for 1D Euler flow.
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Fig. 9. L' norm of p at each grid and CRE level for Q1D isentropic flow.
Table 4
Orders and norms of p for 1D Euler flow.
Node Upwind CRRE
uanti
4 i L' norm Order L' norm Order
20 9.15 x 103 - - -
40 5.57 x 103 0.717 2.03 x 103 -
80 3.16 x 103 0.819 345 x 104 141
160 1.70 x 1073 0.891 454 %107 2.06
320 8.87 x 104 0.939 431 x 105 272
640 4.54 x 10* 0.967 2.73 x 1077 3.43
1280 230x 10~* 0.983 1.10 x 10-8 418
2560 1.16 x 104 0.991 2.66 x 10-10 497
5120 5.79 x 102 0.995 3.80 x 10-12 5.79
10240 2.90x 102 0.998 3.11x10° 1 6.62
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Fig. 10. pg of p error at each grid and CRE level for Q1D isentropic flow.
Table 5
Orders and norms of p for Q1D isentropic flow.
Node Upwind CRRE
tit

Aty L' norm Order L' norm Order
20 1.63 x 102 - - -
40 8.79 x 103 0.890 4.87 x 103 -
80 5.07 x 103 0.794 2.63 x 104 0.609
160 2.95 x 103 0.781 7.49 x 103 2.87
320 1.62 x 103 0.869 9.98 % 105 2.67
640 8.48 x 104 0.931 3.09 x 107 6.28
1280 435x 10 0.965 1.80 x 108 3.77
2560 220 x10°* 0.982 3.56 x 1071° 5.19
5120 1.11 x 10 0.991 4.10 x 1012 6.02
10240 5.55 x 102 0.996 3.07 x 10~ 6.73

For the flow with a normal shock wave, it is not convenient to use (10) to compute the ! norm because the error
behavior is nonmonotone in the shock region. Also, the region downstream of the shock is subject to error degradation
from the shock [13]. This does not happen with the region upstream of the shock because of the flow type (i.e., the flow is
supersonic and the information cannot propagate upstream of the shock). Therefore, we compute the L' norm in the smooth
regions of the solution, identified in the same way as in the CRRE procedure. In this test, we also compute the shock problem
with the WENO-Z method. The boundary treatment is the same as in the upwind scheme with the exception that we use
WENO-type extrapolation [18,19] at the right boundary and that more ghost nodes are needed.

First, we present the solution field and the error at every node for the Mach number and a grid with 5120 nodes in
Figs. 11 and 12. The Mach number is computed as

v
Jyoip

In Figs. 11 and 12 the shock transition is sharper for the WENO-Z scheme than for the upwind scheme and the CRRE, and
the WENO-Z accuracy degenerates downstream of the shock. Also, despite a higher magnitude for the errors, the CRRE
procedure can reduce the error both upstream and downstream of the shock. The accuracy loss for the WENO-Z scheme is
a common behavior of higher-order nonlinear methods [13].

The L! norm and its achieved accuracy for the Mach number for Q1D flow with a normal shock wave are summarized in
Table 6. In this analysis, the WENO-Z error magnitude and order limitation are both due to the loss of accuracy downstream
of the shock. To compare the CRRE and the WENO-Z scheme, the L' norm and its achieved accuracy are presented only
upstream of the shock in Table 7, where one can see that the WENO-Z scheme has lower error magnitude. Because of the
shock region, it is difficult to draw conclusions about the convergence order. However, in both cases, the error is being
reduced.

M= (40)
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Fig. 11. Mach number, magnified in the shock region, for Q1D flow with a normal shock wave and a grid with 5120 nodes.
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Fig. 12. The absolute value of the error for the Mach number at each node for Q1D flow with a normal shock wave and a grid with 5120 nodes.

Table 6

0.05 0.1 0.15 0.2
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x (m)

03 035 04

045 0.5

Orders and norms for the Mach number computed in the smooth regions of the solution for Q1D flow
with a normal shock wave,

Node WENO-Z scheme CRRE with shock

quantity L' norm Order L' norm Order
20 838 x 102 - - -
40 132 x 102 2.67 1.51 x 10-! -
80 1.56 x 102 -0.24 3.54 x 102 2.07
160 6.00 x 103 137 927 x 103 1.92
320 1.73 x 103 1.80 153 x 103 2.60
640 7.80 x 104 1.15 1.01 x 10—* 3.93
1280 1.04 x 10° 6.24 3.69 x 106 477
2560 464 x 10-¢ 1.16 450 x 107 3.04
5120 247 x10°% 0.91 260x10°8 411
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Table 7
Orders and norms for the Mach number computed upstream of the shock.
Node WENO-Z scheme CRRE with shock
i
quantity L' norm Order L' norm Order
20 8.38 x 102 - -
40 1.30 x 102 2.69 1.04 x 10! -
80 1.58 x 102 -0.28 3.92 x 102 137
160 6.12 x 103 1.36 9.44 x 1073 2.05
320 1.73 x 103 1.83 1.45x 103 2.70
640 6.25 x 104 1.46 6.08 x 102 4.58
1280 7.56 x 107 9.69 1.73 x 10-6 5.14
2560 4.44 x 10710 10.7 3.43 x 107 234
5120 511 x 1012 6.44 2.81x10°8 3.61

The negative order values, shown in Tables 6 and 7 for the WENQO-Z scheme, occur because of the smooth region detec-
tion. Clearly, this procedure underestimates the shock region for the WENO-Z solution.

6. Concluding remarks

The classical CRE procedure and its modifications were developed mostly for incompressible fluid flows and for grids
with coincident nodes. Nonetheless, it is also very common to solve CFD problems on grids with non-coincident nodes, and
compressible fluid flows play an important role in modern CFD. Since it is more advantageous to use RE with lower-order
schemes for such cases, we built simple compressible fluid flow solvers to test our CRRE procedure.

We have shown that:

(1) The original CRE procedure is not suitable for repetition, and we proposed a remedy for this situation for grids with
coincident nodes. Instead of testing this, we proposed and tested a general CRRE procedure based on interpolation
from coarse to fine grid nodes at each level of CRE, which is suitable for compressible fluid flows.

(2) The CRRE procedure was successfully tested in Rayleigh flow, where one can observe the optimal CRRE performance.
The error was reduced by seven orders of magnitude and the achieved accuracy was increased from 0.998 to 6.62 on
a grid with 10,240 nodes.

(3) For isentropic flow, the performance is less optimal in the sense that the achieved accuracy does not always increase
monotonically. However, the error was reduced by nine orders of magnitude and the achieved accuracy was increased
from 0.996 to 6.73.

(4) In adiabatic flow with a normal shock wave, CRRE reduced the errors both downstream and upstream of the shock.
However, the high-order WENO-Z scheme resulted in errors with smaller magnitude upstream of the shock and a
sharper shock transition.

The CRRE procedure works well for compressible fluid flows without shock waves by increasing the achieved accuracy
of the spatial discretization and reducing its error significantly. Although the CRRE procedure can also work with shocks,
it resulted in errors with higher magnitude and a smoother shock transition than the high-order WENO-Z scheme. Further
study is needed to improve the performance of the CRRE procedure for shocked solutions.

We plan to investigate a less expensive treatment for boundary conditions while still maintaining the accuracy of the
CRRE procedure, a CRRE procedure with more general equations, including transient problems, and improvement of the
CRRE procedure with discontinuous solutions.
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