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Abstract

This study presents the use of a post-processing technique called repeated Richardson extrapolation (RRE) to improve
he accuracy of numerical solutions of local and global variables obtained using the smoothed particle hydrodynamics (SPH)

ethod. The investigation focuses on both the steady and unsteady one-dimensional heat conduction problems with Dirichlet
oundary conditions, but this technique is applicable to multidimensional and other mathematical models. By using all the
ariables of the real type and quadruple precision (extended precision or Real*16) we were able to, for example, reduce the
iscretization error from 1.67E−08 to 3.46E−33 with four extrapolations, limited only by the round-off error and, consequently,
etermining benchmark solutions for the variable of interest ψ(1/2) using the SPH method. The increase in CPU time and
emory usage owing to post-processing was almost null. RRE has proven to be robust in determining up to a sixteenth order

f accuracy in meshless discretization for the spatial domain.
2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

eserved.

eywords: SPH with RRE highly accurate scheme; Sixteenth order of accuracy; Heat diffusion; Discretization error; Verification; SPH benchmark
olutions

1. Introduction

In computational fluid dynamics (CFD) and computational heat transfer (CHT), there are some numerical meth-
ds that do not require domain discretization with a computational mesh. These are meshless methods [2,22,23,41],
ne of which is smoothed particle hydrodynamics (SPH) [14,26].
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The smoothed particle hydrodynamics (SPH) method has emerged as a promising simulation technique for
onlinear simulations, being able to deal with flows related to complex geometry domains without the need for
ne meshes. However, one drawback is its low order.

Despite its adaptability to complex geometries [15,17,34], efforts to overcome the SPH low order are still a field
f research. Two ways to improve this are the so-called corrective smoothed particle method (CSPM) [6] and the
nite particle method (FPM) [24]. Both techniques increase the number of summation terms for the approximations
r append additional terms in the Taylor series to compose the numerical approximation [10,11,13,43]. FPM
roduces more robust results than CSPM; however, it uses at least six summations and calculates an inverse matrix
n each approximation at the position of the particle xi .

SPH is generally applied to multidimensional mathematical models with complex geometries. However, the low
accuracy of the original standard method requires further studies to improve its overall accuracy. Recently, a review
of methods to obtain a more accurate SPH approximation has been presented. Techniques or other approaches
that alter the standard SPH or consider kernels with higher orders of accuracy are reviewed by Lind et al. [19].
Observing the numerical error of the sixth order of accuracy, which is between 1.0E−13 and 1.0E−15, we know
that it is possible to reduce these magnitudes further without extra computational effort using a technique known
as repeated Richardson extrapolation (RRE) [7,28,30–33,42]. The mathematical models chosen in this study are
simple to facilitate numerical error analyses, but the technique is robust and can be applied to any mathematical
model and any type of geometry [3].

In the literature, it is very common to find the use of Euler’s method for time integration when solving
mathematical models with SPH [9]. In our work, we choose to solve linear systems of algebraic equations even for
problems independent of the time variable. In general, problems involving the time variable are solved explicitly
with the SPH method. We solve this implicitly, that is, to determine the numerical solutions, we need to solve the
systems of linear equations. In the case of the unsteady heat diffusion equation, we adopted the Crank–Nicolson
method, which is unconditionally stable. Thus, the discretization can be refined without the concern of generating
impossible systems to solve.

In the present study, we propose a low computational cost technique that may be more efficient than kernel
correction techniques [6,24]. By using the standard SPH approximation, we solve the problem over some
discretizations, typically from a very coarse to a sufficiently refined one. This was achieved by doubling the number
of particles at each new discretization. After solving the problem with SPH for the considered discretizations, we
apply the RRE, a post-processing technique that at each level of extrapolation causes the order of accuracy to be
increased, achieving very high values, numerical errors with a magnitude on the order of the round-off error, and
negligible CPU time and RAM usage. The process only requires that the solutions are situated in the monotonic
convergent region (i.e., the number of particles is sufficiently large so that the error is dominated by the first term
of the discretization expression and still below the round-off error).

The RRE is a robust technique with low computational cost, which can be applied to any mathematical model,
even with higher complexity, such as the Euler equations [20,38,40]. Moreover, its robustness allows it to be
applied in cases of structured and unstructured grids [16,28,32]. This flexibility also motivated us to apply RRE to
particle discretization. This technique decreases the discretization error and increases the order of accuracy until
the computer capacity is reached. For us, this limit is established by the quadruple precision (extended precision or
Real*16) that the Fortran 95 language compiler uses. This means that the machine round-off error is in the order of
1.0E−32. Of course, when the numerical error reaches this order of magnitude in quadruple precision, the round-off
error can damage the results.

Similar to methods that use meshes, such as the finite difference method (FDM) and finite volume method (FVM),
we believe that it is possible to define coherence tests to evaluate the numerical solutions obtained with the SPH
method. These tests allow us to evaluate the consistency and accuracy of the solutions using the variables of interest,
which can be primary (midpoint temperature Ψ (1/2)) or secondary (average temperature Ψmean). These coherence
tests can complement the already known techniques to improve the approximations obtained with SPH [20,21] and
take a step forward in terms of reducing the discretization error, increasing the order of accuracy, and ensuring
consistency and convergence of numerical solutions obtained with SPH.

In this study, we consider a method to be consistent if the truncation error of the approximation tends to zero as
the number of particles tends to infinity. In this case, the numerical solution tends to the analytical one. Thus, unlike
the classic SPH bibliography, consistency for us is no longer measured by the moments of the kernel [24,43]; instead,
it is a global tool that evaluates the decrease in the discretization error as a function of the number of particles.
232
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When verifying numerical solutions, we must adopt coherence tests, so that we can identify the sources of
umerical errors in numerical solutions. Verification of these numerical solutions requires careful and detailed
nalysis to prove the veracity of the sources of numerical error [29]. In addition, it is necessary to deepen the
nowledge about numerical pollution errors [27]. The definition of this type of error was based on a posteriori

error estimation [1] and may also be similar to the equation used to show the instability of the round-off error, as
in [5, p. 178–179].

The mathematical models selected for this study have characteristics that allow the behavior of the numerical
solutions to be evaluated. This is because we choose functions for the source term with the following characteristics:
infinitely differentiable functions (C∞), sign change at each new derivative, or constant zero term.

The main goal of our research is to show: (i) an efficient way to decrease the discretization error until the
ortran language compiler reaches the quadruple precision limit; (i i) verify that the RRE is so efficient that the

computational time for its execution can be neglected; (i i i) combine numerical solutions obtained with different
umber of particles, always with constant refinement (q = 2). By doing so, we intend to achieve: (a) consistent
nd accurate numerical solutions; (b) sixteenth order of accuracy for numerical solutions of all variables of interest;
c) behavior of the discretization error; and (d) calculation of the orders of accuracy of the numerical solutions
effective orders (pE ) and apparent orders (pU )). These four items are defined as coherence tests because they can
e used to identify numerical errors in numerical solutions calculated using any numerical method.

This paper is structured as follows: In Section 2, we present the mathematical and numerical models used and the
ariables of interest; in Section 3, we present the methodology used to achieve the goals pointed out in Section 1,
ection 4 presents the results for all tests, and Section 5 presents the conclusions.

. Mathematical and numerical models

The mathematical models chosen for this study are the steady and unsteady 1D heat diffusion equations. We
onsider three cases with increasing complexity.

In the following sections, the Ψ function represents the analytical solution for the temperature field, ψ the
umerical solution, f the source term, and x = x(x) or x = x(x, t) is the particle position vector which reduces
o the coordinate x in one dimension. The subscripts i and j refer to the i th particle and j th neighboring particle,
espectively. Ψmean is the analytical temperature, and ψmean is the numerical average temperature.

.1. Mathematical models

The one-dimensional model of steady heat diffusion is

∂2Ψ

∂x2 = f (x), 0 ≤ x ≤ 1, (1)

where Ψ (0) and Ψ (1) are Dirichlet boundary conditions and ∂2/∂x2 is the second derivative with respect to the
ariable x. The unsteady one-dimensional model of the heat diffusion is

∂Ψ

∂t
= λ

∂2Ψ

∂x2 + f (x), 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, (2)

where Ψ (0, t) and Ψ (1, t) are Dirichlet boundary conditions and λ is the constant thermal diffusivity.
Case I: the source term is an infinitely differentiable function C∞ that do not change sign (3).

∂2Ψ

∂x2 = ex, (3)

with the analytical solution Ψ (x) = ex and boundary conditions Ψ (0) = 1, Ψ (1) = e, and average temperature
mean = (e − 1).
Case II: the source term is an infinitely differentiable function C∞ that change sign (4).

∂2Ψ

∂x2 = −π2 sin(πx), (4)

ith the analytical solution Ψ (x) = sin(πx) and boundary conditions Ψ (0) = 0, Ψ (1) = 0, and average temperature
= 2/π .
mean
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Case III: constant thermal diffusivity λ and zero heat source, according to

∂Ψ

∂t
= λ

∂2Ψ

∂x2 , (5)

with the analytical solution Ψ (x, t) = sin(πx)e−π2t when λ = 1, boundary conditions Ψ (0, t) = 0 and Ψ (1, t) = 0,
and initial condition Ψ (x, 0) = sin(πx); the average temperature Ψmean = (2/π )e−π2

at time t = 1.0 s.

.2. Numerical models

For the results to be obtained correctly, it is important to take some care. Therefore, we define the following
iscretization characteristics.

efinition 1. A fixed sensor particle xs(Q) or xs(Q, t), where xs is any chosen particle that has coincident
oordinates Q at all discretization levels and time steps simultaneously.

In all of our cases, the fixed sensor particles xs(Q) and xs(Q, t) have coordinates x = 1/2 (midpoint) and
= 1.0 s. The expressions xs(x) = 1/2 or x(xi ) = 1/2 are equivalent. Note that particles with coordinates

x = 1/8, 1/4, 3/4, and 7/8 also satisfy Definition 1.

.2.1. Discretization of the steady heat diffusion equation
We extended the analysis of the local truncation error characteristics (ετ ) in the FDM and FVM methods [12]

to the SPH method [41]. Following this approach, we define the local truncation error [29] as xi (particle) as

ετ (ψ) = C0
(
kh(xi − x j )

)p0
+ C1

(
kh(xi − x j )

)p1
+ C2

(
kh(xi − x j )

)p2
+ · · · + Cn

(
kh(xi − x j )

)pn
. (6)

The powers p0 < p1 < p2 < · · · < pn are the true orders for the non-null terms in the truncation error equation.
hese true orders are positive integers that usually characterize an arithmetic series as p0 ≥ 1, the smallest of which

is called asymptotic order. The k scale is used to modify the base radius of the kernel function without the need to
change the number of particles in the domain discretization (in practice, we use kh, which is the smoothing length
multiplied by the k-factor), in which we choose the simplification effect h = ∆x (uniform mean particle distance),
which is also the smoothing length for k = 1. The constant coefficients Cn are independent of h.

The discretization error is generated exclusively by the truncation error⟨
∂2Ψ (xi )
∂x2

⟩
= ψ(xi ) + ετ (ψ(xi )). (7)

Eq. (8) defines the SPH approximation for the second derivative [4] and its truncation error.⟨
∂2Ψ (xi )
∂x2

⟩
= 2

∑
j∈Vi

(ψ(xi ) − ψ(x j ))
r2

i j

m j

ρ j
xi j .∇i Wi j + O(xi − x′)2, (8)

∂2Ψ (xi )
∂x2 ≈ 2

∑
j∈Vi

(ψ(xi ) − ψ(x j ))
r2

i j

m j

ρ j
xi j .∇i Wi j (9)

nd

∇i W (xi j , h) =
αw,dxi j

hd+1ri j

∂Wi j

∂φ
, (10)

here m j and ρ j are the mass and density of particle x j , respectively. In addition, xi j = xi − x′, ri j = ∥xi j∥, αw,d
is a normalization constant, and d is the domain dimension. The kernel gradient ∇i W (xi j , h) is written in terms of
the first kernel derivative ∂Wi j/∂φ, as described in Section 2.2.4.

From Eq. (8), the discretization of the steady heat diffusion 1D is given by:

−
∂2Ψ (xi )

= f (xi ). (11)

∂x2
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Since Ψ represents the analytical solution and we consider it to be unknown, we replace Ψ with ψ , which will
be the calculated solution, such that

−
∂2ψ(xi )
∂x2 = f (xi ), (12)

hat is,

−2
∑
j∈Vi

(ψ(xi ) − ψ(x j ))
r2

i j

m j

ρ j
xi j .∇i Wi j = f (xi ). (13)

Eq. (13) determines a linear system, where the associated coefficient matrix has principal diagonal elements ai i

formed by the sum of all elements ai j of row i for all j ̸= i with opposite sign.

2.2.2. Discretization of the unsteady heat diffusion equation
Various forms of temporal integration can be applied in the discretization process. The Crank–Nicolson method

was chosen because it has a second-order accuracy O[h2,∆t2] [23,39]. Thus, we determine approximations for the
emporal and spatial derivatives, as observed in Eqs. (14) and (15).

∂Ψ

∂t
(xi , tn) ≈

ψn+1
i − ψn

i

∆t
. (14)

∂2Ψ (xi , tn)
∂x2 ≈ 2

∑
j∈Vi

(ψn
i − ψn

j )

r2
i j

m j

ρ j
xi j .∇i Wi j . (15)

Eq. (2) for f (x) = 0, becomes

ψn+1
i − ψn

i

∆t
= 2λ

∑
j∈Vi

(ψn
i − ψn

j )

r2
i j

m j

ρ j
xi j .∇i Wi j , (16)

which gives the calculated solution.

2.2.3. Crank–Nicolson method for SPH
The Crank–Nicolson method approximates the function Ψ (xi , tn) as the arithmetic mean between the approxima-

tions in time n and n + 1 [5]. Thus, we can approximate the diffusive term to the unsteady heat diffusion equation
as follows:

∂2Ψ

∂x2 (xi , tn) ≈
1
2

⎡⎣2
∑
j∈Vi

m j

ρ j

(ψn
i − ψn

j )

r2
i j

xi j .∇i Wi j

⎤⎦ +
1
2

⎡⎣2
∑
j∈Vi

m j

ρ j

(ψn+1
i − ψn+1

j )

r2
i j

xi j .∇i Wi j

⎤⎦ . (17)

The temporal derivative shown in Eq. (14) is approximated by the forward Euler method. However, when
onsidering the Crank–Nicolson method for the heat equation, the implicit system of equations (17) takes place.
onsidering that the compact support (Vi ) contains the particles Vi = {xi−1, xi+1}, or Vi = {xi−2, xi−1, xi+1, xi+2},
fter some algebraic manipulations, we obtain

σψn+1
i−1 + (1 − σ )ψn+1

i + σψn+1
i+1 = −σψn

i−1 + (1 + σ )ψn
i − σψn

i+1, (18)

here

σ = λ∆t
(

m j

ρ j

αw,d

ri j

∂Wi j

∂φ

)
.

Note that the truncation error equation remains the same as defined in Eq. (8), depending only on time.

.2.4. Kernel SPH
The functions chosen as kernels to be used are the cubic and quartic splines [25,36]

W (φ) =
αw,d

hd

⎧⎨⎩ 1 −
3
2φ

2
+

3
4φ

3 0 ≤ φ < 1
1
4 (2 − φ)3 1 ≤ φ < 2, (19)
0 φ ≥ 2
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Fig. 1. Generic representation of SPH kernel with first derivative (a) Cubic Spline and (b) Quartic Spline.

ith first derivative,

∂W (φ)
∂ri j

=
αw,d

hd+1

⎧⎨⎩ −3φ +
9
4φ

2 0 ≤ φ < 1
−

3
4 (2 − φ)2 1 ≤ φ < 2,

0 φ ≥ 2
(20)

here φ = r/h and the normalization constant αw,d=1 = 2/3.
The cubic spline kernel function (19) and its first derivative (20) are shown in Fig. 1(a), while the quartic spline

nd first derivative, (21) and (22), are shown in Fig. 1(b).

W (φ) =
αw,d

hd

⎧⎨⎩
2
3 −

9
8φ

2
+

19
24φ

3
−

5
32φ

4 0 ≤ φ < 2

0 φ ≥ 2
, (21)

ith first derivative,
∂W (φ)
∂ri j

=
αw,d

hd+1

{
−

9
4φ +

19
8 φ

2
−

5
8φ

3 0 ≤ φ < 2
0 φ ≥ 2

, (22)

where the normalization constant is αw,d=1 = 1.

. Methodology

.1. Verification

The linear system of algebraic equations will be solved using the tridiagonal matrix algorithm (TDMA) solver [5];
herefore, there will be no influence from iteration error. To verify the order of accuracy, we used the effective order
pE ) [29], which shows the asymptotic convergence of the numerical solution based on the error associated with
wo consecutive discretizations and a constant refinement ratio (q = h1/h2 = 2) or (q = h2/h3 = 2), as defined
ater in Eq. (25). Note that E((ψi )1) refers to the true numerical error (the true numerical error is the difference
etween the analytical and numerical solutions without using the modulus) in a discretization with few particles
coarse discretization) (E(ψi ) = Ψi − ψi ), and E((ψi )2)) is the true numerical error using an immediately more
efined discretization (h2 = h1/2).

The discretization error can be evaluated according to Eq. (23) and by taking two consecutive discretizations as
ell as its decay, according to Eq. (24) for q = p = 2.

E(ψ) = C[kh(x′
− x)]p. (23)

E((ψi )1)
E((ψi )2)

=
C1[kh1(x′

− x)]p

C1 [kh2(x′ − x)]p =
C1[kh1(x′

− x)]p

C1

[
kh1 (x′ − x)

]p = 2p
= 22

= 4, (24)

2
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The right hand side (RHS) of Eq. (24) shows that the discretization error is reduced four times at each progressive
efinement level with the particles h2 = h1/2. Note that the E(ψ2)/E(ψ1) = 1/4 inversion is also true.

By calculating the effective order of the numerical solution with Eq. (25), we find the value of pE that converges
symptotically to the order of accuracy p, according to

pE = lim
h→0

log
(

|E((ψi )1)|
|E((ψi )2)|

)
log(q)

→ p, (25)

here q = hg/hg+1 = 2 is the constant refinement ratio, and g is the reference discretization level. This calculation
an also be performed if the analytical solution is unknown. It suffices to consider a linear combination of three
olutions with supercoarse (h1), coarse (h2), and fine (h3) discretization, as follows in Eq. (29) [8,29].

In practice, many real cases have no analytical solution; therefore, the error cannot be calculated. An alternative
s to estimate the error of the numerical solution (U ), defined as [29]:

U (ψ) = (ψi )∞ − (ψi ), (26)

here ψ∞ is the estimated analytical solution defined later in Eq. (30), and the subscript represents the reference
article.

The apparent order (pU ) is defined as the curve of numerical solution error versus the uniform distance between
he particles (h). In practice, we understand that pU is an apparent order if pU → pE → p when h → 0.

The mathematical model of pU is obtained as follows [8],

U (ψ) = KU h pU , (27)

here KU is an independent coefficient of h. By substituting Eq. (26) in (27), we obtain⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ψi )∞ − (ψi )g=1,m = KU h pU

1

(ψi )∞ − (ψi )g=2,m = KU h pU
2 .

(ψi )∞ − (ψi )g=3,m = KU h pU
3

(28)

The unknowns of the system represented by Eq. (28) are ψ∞, KU , and pU . Meanwhile, g is the mesh (number
f particle levels) on which the numerical solution was found, and m is the number of extrapolations. For example,
ψi )1 represents the variable ψ in the coordinates of particle i at discretization level 1 and at zero extrapolation
evel (m = 0), or equivalently, (ψi )g=1,m=0 = (ψi )1,0. For simplicity, we hide subindex m when it is null ((ψi )1).
olving this system, we obtain

pU =

log
(

|(ψi )2−(ψi )1|

|(ψi )3−(ψi )2|

)
log

(
h1
h2

) → p, if h → 0, (29)

ψ∞ = (ψi )3 +
(ψi )3 − (ψi )2

q pU − 1
, for pU > 0. (30)

The value pU in Eq. (29) represents the average of the local slope of U (ψ(1/2)1), U (ψ(1/2)2), U (ψ(1/2)3),
and (ψi )1, (ψi )2, (ψi )3 correspond to the variables ψ(1/2) at three consecutive discretization levels. For example,
ψ1 = ψ(1/2)1 (numerical solution at level Np = 8), ψ2 = ψ(1/2)2 (numerical solution at level Np = 16), and
ψ3 = ψ(1/2)3 (numerical solution at level Np = 32). We consider Ei = Ψi − ψi the true numerical error.

The average temperature (ψmean) is calculated by the trapezoidal rule [18]; however, as it is a secondary variable,
there is no need to integrate using SPH formalism; thus, we use the classical composite application of the trapezoidal
rule as used in the FDM.

ψmean =
h

2L

Nt∑
(ψi−1 + ψi ) −

(
ψ i i h2

12
+ ψ iv h4

480
+ ψvi h6

53760
+ · · ·

)
, (31)
i=2
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where ψ i i =

⎛⎝ Nt∑
j=1

ψ i i
j−1/2

⎞⎠ /
Nt , ψ iv =

⎛⎝ Nt∑
j=1

ψ iv
j−1/2

⎞⎠ /
Nt , ψvi =

⎛⎝ Nt∑
j=1

ψvi
j−1/2

⎞⎠ /
Nt , where L is the length

of the domain, and Nt is the number of nodes in the grid. In addition, Nt denotes the number of particles. The
discretization error for the average temperature behaves as shown in Eq. (24), where

E((ψmean)1 )
E((ψmean)

2
)

=
C1(h1)p

C1(h2)p
=

C1(h1)p

C1

(
h1
2

)p = 2p
= 22

= 4. (32)

Note that ψmean is obtained by the trapezoidal rule when integrating using the FDM and the temperature field
is obtained with the SPH.

.2. Repeated Richardson extrapolation

Repeated Richardson extrapolation (RRE) [28,30–33,42] is a post-processing technique that allows to obtain very
ccurate solutions with a relatively small number of particles, even if low-order schemes are employed.

The RRE has always been applied in simulations with classical methods that use meshes, thus we use it here with
he same goal. This is possible because we do not need a mesh to perform the repeated Richardson extrapolation.

The RRE combines solutions of a chosen variable in different meshes, and as extrapolation progresses,
iscretization errors decrease and the solutions increase in accuracy. The magnitude of such errors obeys true orders
pm) but can also be based on apparent orders (pU ).

Without any loss, we replace the meshes with several discretizations with particles, as long as they have the same
profile, adopting a constant refinement ratio. In this case, it was used as a reference for the SPH discretization model
originally of second-order accuracy p0 = 2, with true orders pm = {2, 4, 6, 8, . . .} deduced a priori (p0 = min{pm}).
In fact, when the analytical solution is known, we can calculate pE , defined a posteriori. When the analytical
solution is unknown, we can calculate pU , which is also set a posteriori. The elements of the set pE are the
approximations of the elements of the sorted set pm . In addition, the elements of the set pU are approximations
equivalent to the elements of set pE , which are also sorted.

Remark: In general there is a standard for the a priori deduced true orders. Such a standard can have, for
example, increment ∆m = 1 (pm = {2, 3, 4, 5, 6, . . .}) or ∆m = 2 (pm = {2, 4, 6, 8, . . .}) for the second-order
accuracy methods. In all the considered cases, the increment is ∆m = 2. These increments are not the only ones
that exist and depend on how the numerical schemes were constructed (the increment can be ∆m = 3, we only
need to deduce a numerical scheme that considers such information, which is not always easy). What we can state
with complete certainty is the fact that if pE and pU determine the same orders pU = pE = {2, 4, 6, 8, . . .}, then
pm = {2, 4, 6, 8, . . .}; otherwise, pE and pU would not show the same results. Coherence tests, among other things,
can confirm this information.

The expression for the RRE is given by equation

(ψi )g,m = (ψi )g,m−1 +
(ψi )g,m−1 − (ψi )g−1,m−1

q pm−1 − 1
, (33)

here ψ is the numerical solution of the variable of interest on the coordinates of the particle i , g is the mesh
number of particle levels) on which the numerical solution is found, m is the number of extrapolations, pm are the

true orders of the discretization error equation, q = hg−1/hg is the refinement ratio, and h = ∆x = 1/Npi . The
et Npi = {8, 16, 32, . . . , 65536} contains the numbers of uniform mean particle spacing (similar to FDM mesh
lements).

The theoretical order of accuracy of the numerical solution of ψ , with pm orders constituting an arithmetic
rogression and m extrapolations, is

pm = p0 + m(p1 − p0), (34)

hereby this equation is valid for g = [1,G], where G is the level with the highest number of particles (most
efined level) and m = [0, g − 1].
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Mathematically, pE and pU are two sets of orders of accuracy that have a number of elements called pm , that is,
pE ⊃ pm and pU ⊃ pm . However, the values of pm for the set pE are calculated using |E |, whereas the values of
pm for the pU set use only the values of the variable of interest ψ(1/2) or ψmean obtained with three consecutive
discretizations.

Generalizing Eq. (33) for the case in which the apparent orders are applied, we obtain the equations

(pU )g,m =

log
(

|(ψi )g−1,m−(ψi )g−2,m |

|(ψi )g,m−(ψi )g−1,m |

)
log(q)

, (35)

(ψi )g,m = (ψi )g,m−1 +
(ψi )g,m−1 − (ψi )g−1,m−1

q (pU )g,m−1 − 1
. (36)

For Eq. (35), the variation between the number of discretizations and extrapolations can be described as
≤ g ≤ G and 0 ≤ m ≤ [integer part (g − 3)/2]. In Eq. (36), m = 0 represents the non-extrapolated solutions
g,0 (numerical solutions obtained with the SPH). From this, 3 ≤ g ≤ G and 1 ≤ m ≤ [integer part (g − 1)/2].
We have defined that the Np = 8, . . . , 65536 set has 14 elements that determine 14 levels of numerical solutions,

hat is, for Np = 8, we determined a numerical solution level where the domain was discretized with Np = 8 (nine
articles). The SPH level is equivalent to a mesh generated with the FDM or FVM. For example, if Np has 14
lements, then we have 14 solution levels in m0 to apply the RRE.

In Fig. 2(a), we present the illustration of the RRE to facilitate the understanding of the extrapolations. We need
t least three solutions to perform an extrapolation in cases where the analytical solution is unknown. Meanwhile,
n Fig. 2(b), we can observe the pU values associated with each of the extrapolated solutions. Note that the graph
s an association of the pU values, not the nodal value of (ψi ) at each extrapolation level. The larger the values of

g and m, the smaller the discretization error associated with the extrapolated variable. Furthermore, the magnitude
f the modulus of the discretization error approaches the magnitude of the round-off error, which can influence the
xtrapolated numerical solutions. The alternating red and blue colors have no meaning; they are used to enhance
he illustration. To apply the RRE xi = xs , that is, ψi = ψ(xi ) = ψ(xs) = ψ(1/2), according to Definition 1.

. Numerical results

The authors implemented a Fortran 95 program that executed the RRE based on numerical solutions obtained
ith the SPH method. As the purpose of this work is the study of discretization errors and to take advantage of

he RRE capability, all real-type variables were declared as quadruple precision. Nonetheless, as a code verification
ool, the use of double precision is sufficient. The software used was Microsoft® Visual Studio® 2008 compiler v.
.0.21022.8 RTM. The hardware architecture has a 3.4 GHz Intel Core (TM)™ i7-6700 processor with 16 GB of
AM hosting 64-bit Windows® 10. The executable file was ran in the GridUNESP cluster.

Consistency is recognized as the mathematical phenomenon that makes the discrete equation match the
ontinuous model (in the limit) as the step size tends to zero (similar to the FDM) [5]. In this study, unlike the
PH literature, we use this definition of consistency as well as replace the step size with the smoothing length.
hus, verification of SPH numerical solutions, as demonstrated in [37], is performed in the three cases proposed in

his study to evaluate consistency by decreasing the true numerical error as the number of particles increases. The
rder of accuracy was evaluated by calculating the effective order (pE ) and apparent order (pU ) for the variables
f interest.

Using quadruple precision (Real*16), the numerical solutions with the SPH method were determined using
ourteen different levels of discretization for the steady heat diffusion equation (up to 65537 particles) and thirteen
or the unsteady heat diffusion equation (up to 32769 particles), varying the number of particles including boundary
articles (Nt ) Nt = 9, 17, 33, . . . , 32769, 65537 (Npi = Nti −1) and maintaining the constant refinement ratio q = 2.
or the steady heat diffusion equation, we used h = ∆x = 1/Npi , and for the unsteady heat diffusion equation,
e used the magnitude ∆t = ∆x = h. The systems have Ni = Nti − 2 unknown, which is equivalent to Nti − 2
articles by excluding the boundary particles. For the unsteady heat diffusion model (case III), the analyses were
erformed at time t = 1.0 s, i.e., ψ(1/2, 1) and ψ | .
mean t=1.0 s
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Fig. 2. (a) Practical scheme for the RRE of numerical solutions and (b) Practical scheme of association of pU with (ψi )g,m .

.1. Verification of numerical solutions for the local variable

The local variable ψ(1/2) was solved using the SPH kernel cubic spline [36] and quartic spline [25], both of
hich present almost identical results. The correlation between the discretization error and the uniform mean particle
istance h is shown in Fig. 3, which displays the classical RRE behavior.

For the first dataset shown in Fig. 3, m = 0 represents the discretization error associated with numerical
olutions of SPH without extrapolation. The following datasets, m = 1, 2, . . . , 7, show the error associated with the
xtrapolated solutions obtained with Eq. (33) at successive extrapolation levels. We plotted the results up to m = 7,
ecause at this level, the values of the discretization error reach the machine round-off error. Based on these results,
e conclude that the discretization error modulus was significantly reduced from 1.67E−08 with 1025 particles

o 3.46E−33 with four Richardson extrapolations m = 4. The RRE was able to decrease the error magnitude by
pproximately 24 orders, even when using a relatively small number of particles. The lines m = 5, 6, and 7 show
hat the discretization error is strongly influenced by the machine round-off error. Degeneration (decrease in the
240
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Fig. 3. Discretization errors of temperature at midpoint with RRE for case I with Cubic Spline.

order of accuracy) occurs when the orders of accuracy obtained a posteriori are lower than those obtained a priori.
This numerical effect always appears from left to right in the graphs showing the orders of accuracy (pU and pE ).
Such degenerations indicate that the modulus of the discretization error of a variable of interest has already reached
machine precision. This only appears from left to right because the first pU and pE values on the right are related
to discretizations with few particles. If the discretization considers a small number of particles, it is impossible
to reach machine precision, and thus there is no numerical effect of degeneration. We tested several SPH kernels
shown in the literature; however, only the cubic and quartic splines determine results that are consistent with our
proposal. The other kernel functions we tested require breaking the uniform particle distribution model, and this
strategy is not within the scope of this study. Interestingly, both the cubic and quartic splines determine numerically
identical results for our models. This is because both kernels determine the same coefficient matrices associated
with the systems of linear equations that we are solving. Identical systems produce identical solutions.

Table 1 lists the modulus of the discretization error in each extrapolation. For presentation purposes, the values
have two decimal places. However, it is important to understand that the calculations were performed using
quadruple precision (Real*16). Note that we use the acronym not applicable (NA) to mark combinations of h
and m for which there is no solution. Note that when a new extrapolation is applied, a solution is also lost at the
previous level. That is, if we do, for example, five Richardson extrapolations, we will lose the first five solutions
obtained in m = 0. In the m = 4 extrapolation, we have reached the error in the order of 3.46E−33, which is linked
to discretization with 1025 particles. This means that there is no need to continue performing new extrapolations
because, from this extrapolation, the discretization error is already influenced by the machine round-off error. Note
that the discretization errors linked to h = 6.10E−05 and h = 3.05E−05 are already at a plateau m = 2.

In Fig. 4(a), we show the calculation of orders of accuracy using the apparent order (pU ). This means that
it is possible to calculate these orders without using the analytical solution. This technique is equivalent to the
calculation of the effective order (pE ). We were able to show that it is possible to adopt the two techniques to
calculate the orders of accuracy and verify the numerical solutions obtained with the SPH method for the models
proposed in this study. Starting at m = 0, where p0 = 2 ∈ pU , we were able to perform three Richardson
extrapolations (m = 3) until reaching p3 = 8; in other words, it was possible to determine the order of accuracy
equal to 8 for numerical solutions of ψ(1/2). It is important to note that when applying the calculation of pU , it
is necessary to use three consecutive numerical solutions, instead of two, when using pE . Hence, we are able to
obtain results with a higher order of accuracy when using pE . Note that pU is a set of orders of accuracy, which
can be represented by pU = {p0, p1, p2, p3, . . . , pm}, where m represents the number of Richardson extrapolations
performed. Generalizing to case I, we have pU = {p0 = 2, p1 = 4, p2 = 6, p3 = 8}, or pU = {2, 4, 6, 8}. The

egative values that appear in the graph do not exist analytically, because they are purely numerical effects and

rise from the discretization error having reached the magnitude of the round-off error (approximately 1.0E−32).
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Table 1
Discretization error modulus with RRE for case I.

h m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

1.25E−01 2.73E−04 NA NA NA NA NA NA NA NA NA NA
6.25E−02 6.84E−05 5.34E−08 NA NA NA NA NA NA NA NA NA
3.12E−02 1.71E−05 3.34E−09 2.07E−12 NA NA NA NA NA NA NA NA
1.56E−02 4.28E−06 2.09E−10 3.23E−14 1.77E−17 NA NA NA NA NA NA NA
7.81E−03 1.07E−06 1.30E−11 5.06E−16 6.92E−20 3.50E−23 NA NA NA NA NA NA
3.90E−03 2.67E−07 8.16E−13 7.91E−18 2.70E−22 3.42E−26 1.66E−29 NA NA NA NA NA
1.95E−03 6.68E−08 5.10E−14 1.23E−19 1.05E−24 3.40E−29 5.81E−31 5.77E−31 NA NA NA NA
9.76E−04 1.67E−08 3.18E−15 1.93E−21 4.12E−27 3.46E−33 3.67E−32 3.69E−32 3.69E−32 NA NA NA
4.88E−04 4.18E−09 1.99E−16 3.01E−23 1.88E−29 2.78E−30 2.78E−30 2.78E−30 2.78E−30 2.78E−30 NA NA
2.44E−04 1.04E−09 1.24E−17 4.71E−25 7.09E−30 7.04E−30 7.05E−30 7.05E−30 7.05E−30 7.05E−30 7.05E−30 NA
1.22E−04 2.61E−10 7.78E−19 7.37E−27 2.68E−30 2.66E−30 2.66E−30 2.66E−30 2.66E−30 2.66E−30 2.66E−30 2.66E−30
6.10E−05 6.53E−11 4.86E−20 5.84E−29 5.75E−29 5.77E−29 5.78E−29 5.78E−29 5.78E−29 5.78E−29 5.78E−29 5.78E−29
3.05E−05 1.63E−11 3.04E−21 1.36E−28 1.40E−28 1.40E−28 1.40E−28 1.40E−28 1.40E−28 1.40E−28 1.40E−28 1.40E−28
1.52E−05 4.08E−12 1.90E−22 2.32E−28 2.38E−28 2.39E−28 2.40E−28 2.40E−28 2.40E−28 2.40E−28 2.40E−28 2.40E−28

Fig. 4. (a) Apparent orders (pU ) and (b) effective orders (pE ) of temperature at the midpoint with RRE for case I using the cubic Spline.

his is expected to occur and does not indicate that the numerical solution is diverging. This behavior is called
egeneration and means that the extrapolated numerical solutions have the smallest possible discretization error,
nd it is no longer necessary to extrapolate.

In Fig. 4(b) we show the orders of accuracy using the effective order (pE ). Starting at m = 0, where p0 = 2
∈ pE , we were able to perform four Richardson extrapolations (m = 4) until reaching p4 = 10; in other words, it
was possible to determine the order of accuracy equal to 10 for numerical solutions of ψ(1/2). Note that it was not
possible to obtain p5 = 12 in m = 5, which means that the calculations were already influenced by the machine
round-off error. When this occurs, the values show order degeneration.

The processing time can be considered negligible. Regarding RAM consumption, there is no extra memory
usage compared to the explicit method of solving differential equations with SPH. To run the RRE, storage can be
considered constant and negligible because we consume only a few kilobytes (KB). In practice, we store the data
shown in Table 1 in the computer’s memory. For example, the discretization with 8 uniform mean inter-particle
distance determines the numerical solution for the temperature field (ψ) and for the average temperature (ψmean).
At each level, we chose two scalar solutions, the temperature at the midpoint ψ(1/2) and the average temperature
ψmean . Using 14 levels, we determine twenty-eight (14 for each variable) scalar solutions that are used by the RRE.
Since these twenty-eight solutions are real numbers, we can consider the CPU time and RAM usage to be constant
and negligible. Even if 20 levels of discretization are used, the CPU time and RAM usage are still negligible. For

proof, the CPU time to extrapolate all the ψ(1/2) and ψmean solutions were in the order of 1.99E−02. In Table 2,
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Table 2
CPU time of the solutions of case I.

Nt h CPU time (ψ) CPU time (ψmean) CPU time (RRE)

9 1.25E−01 2.34E−05 2.60E−06 NA
17 6.25E−02 2.34E−05 2.60E−06 NA
33 3.12E−02 1.95E−05 3.90E−06 1.82E−05
65 1.56E−02 3.90E−05 3.90E−06 2.60E−05
129 7.81E−03 7.41E−05 7.80E−06 3.38E−05
257 3.90E−03 1.20E−04 1.56E−05 5.46E−05
513 1.95E−03 2.26E−04 3.90E−05 6.24E−05
1025 9.76E−04 5.22E−04 6.24E−05 7.28E−05
2049 4.88E−04 1.16E−03 7.02E−05 1.01E−04
4097 2.44E−04 2.78E−03 3.14E−04 1.09E−04
8193 1.22E−04 4.74E−03 4.85E−04 1.17E−04
16385 6.10E−05 8.50E−03 1.49E−03 1.24E−04
32769 3.05E−05 1.55E−02 1.99E−03 3.96E−04
65537 1.52E−05 3.14E−02 3.00E−02 4.61E−04

Fig. 5. Discretization errors of temperature at the midpoint with RRE for case II using the cubic Spline.

e show as an example, the CPU time for solving the linear system of algebraic equations in case I. To capture the
PU time from levels 8 to 256, we averaged the sum of 6000 simulations. From 512 to 8192, there were 2000, and

rom 16384 to 65536, 20 simulations were sufficient. For the RRE, we averaged 6000 simulations at all levels. This
is because the time is so small that it is very difficult to calculate, and the average can ensure greater confidence
in the information.

Regarding case II, we can obtain six Richardson extrapolations (m = 6), as can be observed in Fig. 5, because
t m = 7 the discretization error is influenced by the machine round-off error. Next, extrapolations already have
significant influence on the machine round-off error. As a consequence of obtaining m = 5, as shown in Fig. 5,
e now attain a single result in the order of accuracy equal to 10 for the pU set, i.e., we find p4 = 10 ∈ pU . This

an be observed in Fig. 6(a). We understand that the difference between the number of extrapolations in cases I
nd II is related to the f (x) function that defines the source term in the mathematical model. In case I, we used
n exponential function, whereas in case II, the function is trigonometric. This can affect the numerical error by
ntroducing another source of error in addition to the discretization error.

In Fig. 6(b), we show that it was possible to determine the order of accuracy p5 = 12 ∈ pE . We note that, at
ach Richardson extrapolation, we lose a solution (right side of the lines), and the more refined the discretization,
he more influential the machine round-off error becomes (lines showing the degeneration of the orders on the left

ide). It is worth remembering that mathematically, pE and pU are two sets of orders of accuracy that have a number
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Fig. 6. (a) Apparent orders (pU ) and (b) effective orders (pE ) of temperature at the midpoint with RRE for case II using the cubic Spline.

Fig. 7. Discretization errors of temperature at the midpoint with RRE for case III using the cubic Spline.

f elements called pm , that is, pm ⊂ pE and pm ⊂ pU . However, the values of pm for the pE set were calculated
sing |E |, whereas the values of pm for the pU set use only the values of the variable of interest ψ(1/2) or ψmean

obtained with three consecutive discretizations.
Next, we analyze the results obtained for the mathematical model of unsteady heat diffusion. In Fig. 7, we can

observe that the error modulus decreases more slowly than in cases of steady diffusion. However, we were able to
determine even more accurate solutions.

Note in Fig. 8(a), we were able to determine numerical solutions with the order of accuracy p3 = 8, because in
p4, the solutions are already influenced by the round-off error.

By analyzing the effective orders found for the problem proposed in case III, we were able to significantly reduce
the modulus of the discretization error in such a way that it was possible to determine a numerical solution with the
order of accuracy p7 = 16 with seven Richardson extrapolation (m = 7) for the primary variable ψ(1/2) with the
SPH kernel, as shown in Fig. 8(b). In terms of the discretization error modulus, it was possible to attain, for m = 0,
the value of 8.87E−10 with 2049 particles up to m = 7, with a value of 3.39E−32, associated to discretization with
2049 particles, thus reducing approximately 22 orders of magnitude. In this case (III), we used 13 discretizations,
lways with q = 2 and varying from Np = 8 to Np = 32768. Based on the results, we realized that it would not

e necessary to use discretizations for Nt > 2049 particles, because they are associated with solutions that were
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Fig. 8. (a) Apparent orders (pU ) and (b) effective orders (pE ) of temperature at the midpoint with RRE for case III using the cubic Spline.

Fig. 9. Discretization errors of average temperature with RRE for case I using the cubic Spline.

extrapolated with the RRE and because they influence the machine round-off error. All results presented for the
primary variable ψ(1/2) were numerically identical to those of the two SPH kernels adopted in the approximations.

.2. Verification of numerical solutions for the global variable

In this section, we verify the numerical solutions for the secondary variable ψmean , known as the global variable,
determined from the numerical model presented in Eq. (31). Note in Fig. 9 for case I, for m = 6 the modulus of
the average temperature discretization error is already influenced by the machine round-off error. This means that it
is unnecessary to continue applying Richardson extrapolations, since the method has reached the machine precision
limit for variables of the real type in the program.

We were able to determine the order of accuracy p3 = 8 for ψmean in m = 3 using pU . Note in Fig. 10(a),
n m = 4, the value of p4 is completely degenerated (the order of accuracy obtained a posteriori is lower than
hat deduced a priori, because the values are completely polluted by the round-off error.) In these cases, the order
f accuracy shows degeneration because the modulus of the discretization error value associated with a given h

eached its lowest possible value and increased again in the immediately more refined discretization.
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Fig. 10. (a) Apparent orders (pU ) and (b) effective orders (pE ) of average temperature with RRE for case I using the cubic Spline.

Note in Fig. 10(b), it was possible to determine an order of accuracy equal to 10 for ψmean by calculating pE
p4 = 10 in m = 4). For m = 5, the results are already influenced by the machine round-off error.

When observing the behavior of the discretization error modulus for variable ψmean in Fig. 11 (case II), we notice
that the lines m = 0 and m = 1 are parallel, this shows that the order of accuracy of the numerical solutions without
applying the RRE (m = 0) and when applying a single Richardson extrapolation (m = 1) behave in the same way
but the error increases. To understand the mathematical phenomenon that caused this change in the expected results,
it is necessary to develop expertise in what we understand to be recognized as a numerical pollution error (εnp)
based on [5,29]. To facilitate this understanding, in Eqs. (37)–(40), we introduce the numerical schemes with their
respective terms of numerical pollution error and truncation error for the variables of primary and secondary interest,
respectively:

∇
2Ψ (xi ) = 2

∑
j∈Vi

(ψ(xi ) − ψ(x j ))
r2

i j

m j

ρ j
xi j .∇i Wi j + εnp(ψ(xi )) + ετ (ψ(xi )), (37)

here

εnp(ψ(xi )) = 2
∑
j∈Vi

(E(ψ(xi )) − E(ψ(x j )))
r2

i j

m j

ρ j
xi j .∇i Wi j , (38)

and

Ψmean =
h

2L

N∑
i=2

(ψi−1 + ψi ) + εnp(ψmean) + ετ (ψmean), (39)

in which

εnp(ψmean) =
h

2L

N∑
i=2

(E(ψi−1) + E(ψi )). (40)

As we know the analytical solution to this problem, the numerical pollution error can be calculated and added to
the numerical solution of the variables of interest. The sum ψmean + εnp(ψmean) completely corrects the numerical
solutions that present an unexpected error profile. We carry out this procedure only to investigate the source of
the numerical error that changed the expected results for the variable of interest ψmean in m = 0. It is important
to highlight that the numerical pollution error can appear in any numerical scheme (see Eqs. (37)–(40)), but in
general, its effects are negligible. In our example, we notice the predominance of the numerical pollution error
(initially unknown), owing to our methodology of verification of numerical solutions using coherence tests (analysis
of graphs of |E |, pU , and pE ). The corrected results are not shown, as it is common for us to solve problems where
the analytical solution is unknown. In such cases, it can be difficult to calculate the numerical pollution error, since
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Fig. 11. Discretization errors of average temperature with RRE for case II using the cubic Spline.

Fig. 12. (a) Apparent orders (pU ) and (b) effective orders (pE ) of average temperature with RRE for case II using the cubic Spline.

e need to determine an estimated analytical solution for this purpose. Since we know how the numerical pollution
rror behaves, we can state that εnp(ψmean) is responsible for the unexpected change in the numerical solution profile
mean in m = 0, shown in Fig. 11 for the discretization error modulus, in Fig. 12(a) for the apparent order (pU ),

and in Fig. 12(b) for the effective order (pE ). We were careful to reproduce the numerical tests using the FDM
and were able, through the coherence tests, to obtain the same behavior as the numerical solutions with the SPH
method. The coupling (ψmean + εnp(ψmean)) using the FDM also corrected the profile of the solutions ψmean in
m = 0.

In Table 3, we can observe the comparison between the true orders (pm) of accuracy deducted a priori and
the apparent (pU ) and effective (pE ) orders of accuracy calculated a posteriori. It is easy to notice that the RRE
corrected the failure that generated an overestimated order of accuracy for pE (p0 = 4). We notice that from p1,
the values coincide with the pm values at all levels. This behavior was not repeated with pU , where the values
remained overestimated.

In Fig. 13 (case III), we can see that it was possible to apply the RRE up to m = 7, where the magnitude of the
discretization error reached the magnitude of the round-off error. Note that at m = 7, we determine two solutions
that are not influenced by the round-off error. These solutions are associated with Nt = 1025 and Nt = 2049

particles. The results show that there is no need to solve the numerical model using many different values for Nt .
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Table 3
Comparison of the orders of accuracy of the variable ψmean of case
II.

m pm (a priori) pU (a posteriori) pE (a posteriori)

0 p0 = 2 p0 = 4 p0 = 4
1 p1 = 4 p1 = 6 p1 = 4
2 p2 = 6 p2 = 8 p2 = 6
3 p3 = 8 p3 = 10 p3 = 8
4 p4 = 10 NA p4 = 10
5 p5 = 12 NA p5 = 12

Fig. 13. Discretization errors of average temperature with RRE for case III using the cubic Spline.

By using Nt = 2049 particles to fill the domain, we achieve the maximum number of extrapolations necessary
for m = 7; thus, the discretization error is not influenced completely by the round-off error. Solving systems for
Ni ≥ 4095 particles would be an unnecessary computational effort.

The results of Fig. 14(a) show that it was possible to attain solutions at the order of accuracy equal to 8 using pU .
ote that p4 does not exhibit asymptotic behavior, thus we believe that in this case, the highest order of accuracy
btained was 8.

Figs. 14(a) and 14(b) clearly show the differences between the pU and pE orders obtained. The apparent order
did not show the same degeneration as the effective order. This may be due to the effects of the temporal derivative,
which as we know, converges more slowly than the spatial derivative. We also noticed that pE reached the magnitude
of the round-off error at the order of accuracy equal to 16, and in general, this occurs when the order is equal to
10.

In Fig. 15 (case III), we show a comparison between the true orders deducted a priori (pm) and the effective
orders (pE ) of the variables of interest ψ(1/2) and ψmean determined a a posteriori. The orders shown are the
highest obtained in each of the extrapolations until reaching the order of accuracy equal to 16, which was the best
result obtained among the three cases. In practice, we selected the most accurate numerical solution for the variables
of interest in each extrapolation and associated it with its corresponding h value. This was done to highlight that
it is not necessary to use a very small h to determine numerical solutions with high order of accuracy. We choose
pE because it is the most precise method, as it is possible to calculate the modulus of the true numerical error. It is
important to note that pm is an infinite set, as it is an analytical method for determining the order of accuracy. On
the other hand, both pE and pU are finite sets of orders of accuracy, as they are obtained numerically and within
the asymptotic convergence region.

In Table 4, we summarize the variables of interest and the orders of accuracy obtained a priori and a posteriori

for each of the three cases presented in this study. Note that the primary variable ψ(1/2) was obtained using the SPH
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Fig. 14. (a) Apparent orders (pU ) and (b) effective orders (pE ) of average temperature with RRE for case III using the cubic Spline.

Fig. 15. Effective orders (pE ) of temperature at the midpoint and average temperature with RRE of case III using the cubic Spline.

method and the secondary variable ψmean with the trapezoidal rule. Both methods have a second-order accuracy at
m = 0. The two variables of interest in all three cases shown here determine the same orders of accuracy at all
levels, except for variable ψmean in case II, which had a profile change due to the characteristics of the function
defined in the source term. This may have caused instability in the round-off error due to the contribution of the
derivatives. The orders obtained for ψ(1/2) and ψmean may indicate that we achieved the same results profile with
the SPH method as when using the FDM and FVM.

In Table 5, we show the benchmark SPH solutions for the three detailed cases. Because we solved the average
temperature (ψmean) with the FDM, we realize that it is not appropriate to claim that we have produced reference
solutions for this variable of interest. We note that with SPH and RRE, we were able to reduce the discretization
error even more than the results shown in [35] when solving the same unsteady heat diffusion equation using the
FDM.

5. Conclusions

We demonstrated how to apply the RRE to SPH solutions to decrease the discretization error. We calculated
the numerical solutions by varying the number of particles from N = 9, . . . , 65537 for the steady heat diffusion
t
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Table 4
Summary of orders of accuracy found a priori and a posteriori.

Cases Variables pm (a priori) pU (a posteriori) pE (a posteriori) Figures

Case I ψ(1/2) {2, 4, 6, 8, . . .} {2, 4, 6, 8} {2, 4, 6, 8, 10} 4(a), 4(b)
Case II ψ(1/2) {2, 4, 6, 8, . . .} {2, 4, 6, 8, 10} {2, 4, 6, 8, 10, 12} 6(a), 6(b)
Case III ψ(1/2) {2, 4, 6, 8, . . .} {2, 4, 6, 8} {2, 4, 6, 8, 10, 12, 14, 16} 8(a), 8(b)
Case I ψmean {2, 4, 6, 8, . . .} {2, 4, 6, 8} {2, 4, 6, 8, 10} 10(a), 10(b)
Case II ψmean {2, 4, 6, 8, . . .} {4, 6, 8, 10} {4, 4, 6, 8, 10, 12} 12(a), 12(b)
Case III ψmean {2, 4, 6, 8, . . .} {2, 4, 6, 8} {2, 4, 6, 8, 10, 12, 14, 16} 14(a), 14(b)

Table 5
SPH benchmark solutions for ψ(1/2).

Case Analytical solution Numerical solution True numerical error

I 1.64872127070012814684865078781416E+00 1.64872127070012814684865078781416E+00 3.46667389989702453550076029665286E−33
II 1.00000000000000000000000000000000E+00 9.99999999999999999999999999999926E−01 7.35705238755924095867383574067442E−32
III 5.17231862038123061454650903823937E−05 5.17231862038123061454650903484924E−05 3.39012100579407388383180429840280E−32

model and Nt = 9, . . . , 32769 for the unsteady heat diffusion model. With this, we realize that it is possible to
decrease the discretization error until the magnitude of the machine round-off error is reached. Furthermore, it
is not necessary to calculate highly refined solutions to achieve the optimum solution. We used 13 and 14 levels
of discretization for particles, with a constant refinement ratio q = 2 for the steady and unsteady heat diffusion
models, respectively. With this, we verified that only nine levels of discretization are sufficient to reach the optimal
solution with a discretization error magnitude of approximately 1.0E−32 and an order of accuracy equal to 12 for
the steady heat diffusion model. We also determined the optimal solution for the unsteady heat diffusion model
with a discretization error magnitude of approximately 1.0E−32 and an order of accuracy equal to 16.

Other noteworthy results were:

1. We showed how to perform verification of the numerical solutions obtained with SPH by means of coherence
tests;

2. We showed the deduction of the numerical pollution error and its effects on the solutions obtained with the
SPH method;

3. We defined the discretization scheme with a fixed sensor particle;
4. We showed SPH numerical solutions obtained with implicit and unconditionally stable methods for the

unsteady heat diffusion model;
5. We have greatly increased the order of accuracy without increasing CPU time with negligible use of RAM;

and
6. We determined benchmark solutions for the variable of interest ψ(1/2) with the SPH method and RRE.
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