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A B S T R A C T

In our study we solve 2D equations that model the mathematical phenomenon of steady state heat diffusion.
The discretization of the equations is performed with the smoothed particle hydrodynamics (SPH) method and
the resolution of the associated system of linear equations is determined with a modified solver that we call
the Gauss–Seidel–Silva (G–S–S). The single level parallel G–S–S solver is compared to the algebraic multilevel
(AML) with serial G–S–S smoother which has the ability to smooth the error of the numerical solutions and
accelerate convergence due to its iterative formulation. The AML with serial G–S–S smoother is responsible
for determining speed-ups of 4084 times for uniform and 5136 times for non-uniform particle discretization.
We estimate a speed-up of 41082 times for the AML with parallel G–S–S smoother.
1. Introduction

Computational heat transfer (CHT) [1] is an area that concentrates
computational techniques with the objective of determining numerical
solutions for independent variables of interest, such as the tempera-
ture at a given mesh node position, for example. To determine the
numerical solution of a variable of interest, it is necessary to know
the mathematical model, to choose a numerical scheme capable of
discretizing the model, and to solve the associated system of linear or
nonlinear equations. Also, the accuracy of the solution depends only
on the numerical scheme applied; the efficiency, however, is dictated
by the numerical scheme and also by the algorithm used to solve the
system of equations.

Among CHT problems, heat diffusion in the steady state is a fre-
quently studied mathematical model, because the mathematical equa-
tion representing this phenomenon is contained in the Navier–Stokes
equations when the projection method is applied. Solving this equation
using classical methods such as: finite difference method [2–5], finite
volume method (FDM) [6,7], and finite element method (FEM) [8,9]
is known from the literature. There are also high order methods, for
example those based on FDM approximations, such as compact finite
difference scheme (Compact-4) [10], and exponential finite difference
scheme (Exponential-4) [10].
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Geometric multigrid (GMG) is a method that can be applied to
accelerate the convergence of numerical solutions for cases where
the computational grid is structured. Its efficiency is highly appreci-
ated, but its implementation is specific for each geometric structure,
mathematical model, and boundary condition [11–15].

A detailed study on optimal parameters for the geometric multigrid
was performed by [16]. The authors identified appropriate values for
the number of levels of the multigrid when solving equations such as
Laplace’s, Burger’s, and Navier–Stokes with MSI and SOR solver. In
the cases shown, they identified that the CPU time increased for a
number of levels other than the optimal one. Also, the excellent per-
formance of the geometric multigrid method over the singlegrid (SG),
obtained for the coupled problems, was not maintained when using
the Navier–Stokes equation written with the streamfunction–vorticity
formulation.

In [12] it was used local Fourier analysis to show the robustness
of the multigrid method with ILU smoother on anisotropic problems
on triangular meshes. Excellent results were obtained for oblique flow
problems and problems on semi-structured triangular grids. In other
studies [17,18], the authors used local Fourier analysis to show the
efficiency and robustness of the geometric multigrid method in physical
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anisotropy/orthotropy problems. They used different restriction and
prolongation operators and x–y-zebra Gauss–Seidel [17] and ILU [18]
smoother with different orderings. Excellent results were obtained for
problems with strong diffusive orthotropy.

In the study [19], the authors solved the Navier–Stokes equations
using a projection method with an incremental correction scheme on
pressure and the conjugate gradient method preconditioned with the
geometric multigrid method and ILU solver to solve the velocity and
pressure equations. Such a methodology considerably accelerated the
iterative process compared to the classical methods available in the
literature. Furthermore, the acceleration between the solution obtained
with the Gauss–Seidel method without geometric multigrid and for
the ILU method with geometric multigrid was determined using the
speed-up equal to 105 times for a grid of 128 × 128.

In [10] the authors showed how to solve the 2D steady state
heat diffusion equation using two fourth order of accuracy methods.
In addition, using repeated Richardson extrapolation (RRE) [20–26],
they determined tenth order of accuracy for the numerical solutions
that were initially fourth order. To determine the numerical solutions,
they applied the geometric multigrid method which accelerated the
convergence of the solutions, obtaining the solution for the most refined
grid shown, 4097 × 4097, in 4.75E+02 seconds for Compact-4, and
4.12E+02 seconds for Exponential-4.

In [27] it was applied the multigrid method to the 1D and 2D
wave equation, with discretization using the weighted finite difference
method and time-stepping. The multigrid method proved to be very
advantageous for this class of problems, as it showed good convergence
and robustness factors.

In the recent study [28], the authors introduced a generalized multi-
grid method as an extension of the monotone multigrid method, which
can handle linear inequality restrictions. They showed the robustness
and efficiency of the multigrid method to solve Signorini’s problem
and two-body contact problems. The generalized multigrid method
introduced in the paper can be used to solve quadratic constraint
minimization problems where the number of constraints is signifi-
cantly smaller than the number of unknowns. In addition, the authors
point out that the application of the method to models that consider
hyperelastic material can be quite attractive.

The main difficulties in applying the geometric multigrid method
are that it is the only one for each problem and requires the use of
structured grids. To get around this limitation, they developed another
type of multigrid, which they called the algebraic multigrid (AMG) [29,
30]. Over the years, a review study has pointed out that no algebraic
method is able to solve all problems indiscriminately [31]. However,
the fact that the algebraic multigrid uses the information directly from
the coefficient matrix associated with the system of linear or nonlinear
equations makes the method robust.

The study performed by [32] points out optimal values for some
parameters used in AMG when solving the equation that models the
phenomenon of heat diffusion in the steady state; the highest efficiency
of AMG is obtained when considering the maximum number of levels.
In all cases, AMG was slightly slower than GMG, however, when com-
pared to SG, both AMG and GMG showed high efficiency to accelerate
the convergence of the numerical solutions.

It is very important to understand that AMG solves all the problems
that GMG also solves, but the reciprocal is not true. GMG is a method
that only solves problems involving structured grids. In this way, it
becomes a particular case of the algebraic multigrid method [33]. AMG
is based directly on the characteristics of the matrix of coefficients,
boundary conditions, discontinuities, and geometric anisotropies. Con-
structing the matrix at the levels with the fewest elements is a purely
algebraic problem, making it adaptable to cases of great geometric
complexity.

Thinking about the robustness of AMG, which is suitable for solving
problems on unstructured grids [31], and the discretization characteris-
2

tic with the SPH method [34,35], which generally considers disordered
particles, we decided to investigate the behavior of AMG to accelerate
the convergence of numerical solutions also in methods that do not use
computational meshes, such as SPH, for example.

In SPH the domain is discretized by a set of particles that replace
the computational mesh. To adapt AMG to SPH, we replace the term
grid by level, since the particles form discretization levels and not
grids. Furthermore, we will call the algebraic multigrid by algebraic
multilevel (AML) without causing any loss of authorship.

We understand that the study involving the application of AML to
determine the numerical solutions obtained from the discretization of
the mathematical models using the SPH, can contribute to the state-of-
the-art in the sense that implicit and stable formulations can be adopted
to solve flow models, where the time variable is very relevant.

2. Mathematical and numerical models

For our study, we chose the 2D mathematical model of steady state
heat diffusion equation. We selected two distinct cases for the analyses
of the results. One is n-derivable and the other has a finite number of
derivatives. Table 1 presents all the symbols shown in the study along
with their respective descriptions.

2.1. Mathematical model

The 2D model of steady state heat diffusion applied to particle
𝐱 = 𝐱(𝑥, 𝑦) is

∇2𝜳 (𝐱) = 𝑓 (𝐱), 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1, (1)

ith 𝜳 (0, 𝑦), 𝜳 (1, 𝑦), 𝜳 (𝑥, 0), and 𝜳 (𝑥, 1) being Dirichlet boundary con-
itions.
Case I of a 2D steady state heat diffusion model (C1-2Ds): The

ource term is polynomial.
2𝜳 (𝐱) = −2[(1 − 6𝑥2)𝑦2(1 − 𝑦2) + (1 − 6𝑦2)𝑥2(1 − 𝑥2)], (2)

here 𝜳 (𝐱) = (𝑥2 − 𝑥4)(𝑦4 − 𝑦2) is analytical solution, and 𝜳 (𝑥, 0) =
𝜳 (𝑥, 1) = 𝜳 (0, 𝑦) = 𝜳 (1, 𝑦) = 0 being boundary conditions.

Case II of a 2D steady state heat diffusion model (C2-2Ds): The
ource term is trigonometric.
2𝜳 (𝐱) = sin(𝜋𝑥) sin(𝜋𝑦), (3)

here 𝜳 (𝐱) = −1∕(2𝜋2) sin(𝜋𝑥) sin(𝜋𝑦) is analytical solution, and 𝜳 (𝑥, 0)
= 𝜳 (𝑥, 1) = 𝜳 (0, 𝑦) = 𝜳 (1, 𝑦) = 0 being boundary conditions.

2.2. Numerical model

In this section we present the discrete form of the two-dimensional
steady state heat diffusion equation using the SPH method.

2.2.1. Discretization of the 2D steady state heat diffusion model
We consider in our study that the discretization error is generated

exclusively by the truncation error, this means that other sources of
numerical error are negligible, according to the equation

⟨∇2𝜳 (𝐱𝑖)⟩ = 𝝍(𝐱𝑖) + 𝜀𝜏 (𝝍(𝐱𝑖)). (4)

Eq. (5) describes the SPH approximation for the second-order
erivative [36] and the associated truncation error.

∇2𝜳 (𝐱𝑖)⟩ = 2
∑

𝑗∈𝑉𝑖

(𝝍(𝐱𝑖) − 𝝍(𝐱𝑗 ))

𝑟2𝑖𝑗

𝑚𝑗

𝜌𝑗
𝐱𝑖𝑗 .∇𝑖𝑊𝑖𝑗 + 𝑂(𝐱𝑖 − 𝐱𝑗 )2, (5)

2𝜳 (𝐱𝑖) ≈ 2
∑

𝑗∈𝑉𝑖

(𝝍(𝐱𝑖) − 𝝍(𝐱𝑗 ))

𝑟2𝑖𝑗

𝑚𝑗

𝜌𝑗
𝐱𝑖𝑗 .∇𝑖𝑊𝑖𝑗 (6)

nd

𝑖𝑊 (𝐱𝑖𝑗 , ℎ) =
𝛼𝑤,𝑑𝐱𝑖𝑗
𝑑+1

𝜕𝑊𝑖𝑗 , (7)

ℎ 𝑟𝑖𝑗 𝜕𝜙
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Table 1
Symbol description.

Symbol Description

𝐴,𝐴1 , 𝐴2 ,… Coefficient matrix
𝐴ℎ Coefficient matrix associated to finer level
𝐴𝐻 Coefficient matrix associated to coarser level
𝐴𝐴 Row or column vector with all the elements of matrix A
𝐴𝐷 Row or column vector with elements of the principal

diagonal of A
𝑑 Dimension
DS Degree of sparsity
𝑓, 𝑓1 , 𝑓2 ,… Source term
𝑓ℎ Source term associated to finer level
𝑓𝐻 Source term associated to coarser level
𝑓𝑝 Portion of the algorithm that can be improved (parallelized

fraction)
𝑔 Smallest distance between two particles
G–S–S Gauss–Seidel–Silva solver and smoother
ℎ Smoothing length (ℎ = 𝜅𝛥𝑥 = 𝜅𝛥𝑦), where 𝜅 = 1
𝐼𝐴 Row or column vector with start and end pointer to the

non-null elements in each row of A
𝐽𝐴 Row or column vector with all the numbers of the non-null

columns of A
𝑘 Scaling factor
𝑘ℎ Radius of the circumference of the domain of influence of

the kernel function
𝑚 Mass
𝑛𝑎𝑎 Dimension of vectors AA and JA
𝑛𝑖𝑎 Dimension of vector IA
𝑁𝑝𝑥 Numbers of uniform mean particle spacing in 𝑥 direction
𝑁𝑝𝑦 Numbers of uniform mean particle spacing in 𝑦 direction
𝑁main Number of main discretizations
𝑁𝐿 Number of AML sublevels
𝑁𝐿𝑚𝑎𝑥 Maximum number of AML sublevels (log2(𝑁𝑝𝑥 )−1 =

log2(𝑁𝑝𝑦 )−1)
𝑁𝑥 Number of inner particles in the x direction (𝑁𝑥 = 𝑁𝑝𝑥 − 1)
𝑁𝑦 Number of inner particles in the y direction (𝑁𝑦 = 𝑁𝑝𝑦 − 1)
𝑁𝑡𝑖 Number of inner particles (𝑁𝑡𝑖 = 𝑁𝑥𝑁𝑦)
𝑁𝑡 Total number of particles including the boundaries

(𝑁𝑡 = (𝑁𝑥 + 1)(𝑁𝑦 + 1))
𝑞 Constant refinement ratio
𝑄 Particle coordinates
𝑟 Distance between particles (||𝐱𝑖𝑗 ||)
𝑟𝑒 Constant coarsening ratio
𝑆𝑝 Speed-up
𝑆𝜏 Speed-up
𝑆𝐴𝑚𝑑𝑎ℎ𝑙 Speed-up
𝑡0 , 𝑡𝜏 , 𝑡𝐶𝑃𝑈 CPU time
𝑊 Kernel function
𝐱𝑖 Particle where the kernel function is centered
𝐱𝑗 Neighboring particle
𝐱𝑖𝑗 Difference between particle coordinates 𝐱𝑖 and 𝐱𝑗 (𝐱𝑖 − 𝐱𝑗 )
𝐱𝑠 Particle sensor fixed
𝑥𝑖 Is the abscissa of the fixed particle
𝑥𝑗 Is the abscissa of the neighboring particle
𝑦𝑖 Is the ordinate of the fixed particle
𝑦𝑗 Is the ordinate of the neighboring particle
𝛼𝑤,𝑑 Normalization constants
𝛥𝑥 Uniform mean particle distance (𝛥𝑥 = 1∕𝑁𝑝𝑥 )
𝛥𝑦 Uniform mean particle distance (𝛥𝑦 = 1∕𝑁𝑝𝑦 )
𝜅 Abscissa shift factor 𝜙
𝜙 Independent variable of the kernel function (𝜙 = 𝑟∕ℎ)
𝛶 Algorithm
𝜳 Analytical solution
𝝍 Numerical solution
𝜌 Density
∇𝑊 Kernel gradient

where 𝜌𝑗 and 𝑚𝑗 are the density and mass of particle 𝐱𝑗 , respectively.
Furthermore, 𝐱𝑖𝑗 = 𝐱𝑖 − 𝐱𝑗 , 𝑟𝑖𝑗 = ‖𝐱𝑖𝑗‖, 𝛼𝑤,𝑑 is a normalization
constant, and 𝑑 is the domain dimension, according to [20]. The kernel
gradient ∇𝑖𝑊 (𝐱𝑖𝑗 , ℎ) is written based on the first derivative of the kernel
𝜕𝑊𝑖𝑗∕𝜕𝜙 [37], and the kernel function used in the study was the quintic
3

spline shown in [38].
From Eq. (5), we have the 2D discretization of the steady state heat
diffusion model is given by

−∇2𝜳 (𝐱𝑖) = 𝑓 (𝐱𝑖). (8)

We know that 𝜳 represents the analytical solution that is unknown,
o preserving mathematical rigor, we take care to replace such solution

by 𝝍 , which will be the solution we will calculate (see the full
eduction in [37,39]). Therefore,

∇2𝝍(𝐱𝑖(𝑥𝑖, 𝑦𝑖)) ≈ 𝑓 (𝐱𝑖(𝑥𝑖, 𝑦𝑖)), (9)

r using simplicity

∇2𝝍(𝐱𝑖) = 𝑓 (𝐱𝑖). (10)

Thus, we have

2
∑

𝑗∈𝑉𝑖

(𝝍(𝐱𝑖) − 𝝍(𝐱𝑗 ))

𝑟2𝑖𝑗

𝑚𝑗

𝜌𝑗
𝐱𝑖𝑗 .∇𝑖𝑊𝑖𝑗 = 𝑓 (𝐱𝑖). (11)

Eq. (11), applied in our cases, determines sparse systems of linear
quations with 25 diagonals, where the diagonal elements 𝑎𝑖𝑖 deter-
ined by the sum of all elements 𝑎𝑖𝑗 of row 𝑖 for all 𝑗 ≠ 𝑖 with opposite

sign [37].

3. Methodology

3.1. Compressed sparse row (CSR)

Compressed sparse row (CSR) method [40], allows a sparse matrix
to be stored in three vectors: 𝐴𝐴, 𝐽𝐴, and 𝐼𝐴. The vector 𝐴𝐴 stores all
nonzero coefficients of the matrix 𝐴. Meanwhile, 𝐽𝐴 carries the number
of the columns of each of the coefficients of 𝐴, and finally, the vector
𝐼𝐴 stores the start and end of each of the rows, as shown in Algorithm
1 [39]. The dimension of the vectors 𝐴𝐴 and 𝐽𝐴, Eqs. (13) and (14),
respectively, are the same and thus denoted by (𝑛𝑎𝑎). The vector 𝐼𝐴
has dimension 𝑛𝑖𝑎 = 𝑛+ 1, where 𝑛 is the order of the matrix 𝐴 defined
in Eq. (12), for example. The first element of 𝐼𝐴 is always equal to unity
(𝐼𝐴(1) = 1) and the last element of 𝐼𝐴 is always the number of elements
of the vector AA + 1 (𝐼𝐴(𝑛𝑖𝑎) = 𝑛𝑎𝑎 + 1). The vector 𝐴𝐷, Eq. (16),
is not part of the CSR method, but it is an important vector for the
development of the Gauss–Seidel CSR smoother parallel programming.
In 𝐴𝐷, only the main diagonal elements of the matrix 𝐴 are stored, and
its dimension is 𝑁𝑥𝑁𝑦 = 𝑁𝑡𝑖, for 𝑁𝑥 = 𝑁𝑦.

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

3 4 0 0 0
2 5 2 0 0
0 7 9 3 0
0 0 6 1 8
0 0 0 7 3

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (12)

𝐴𝐴 =
[

3 4 2 5 2 7 9 3 6 1 8 7 3
]

, (13)

𝐽𝐴 =
[

1 2 1 2 3 2 3 4 3 4 5 4 5
]

, (14)

𝐼𝐴 =
[

1 3 6 9 12 (𝑛𝑎𝑎 + 1)
]

=
[

1 3 6 9 12 14
]

, (15)

and

𝐴𝐷 =
[

3 5 9 1 3
]

. (16)

3.2. Robust parallel Gauss–Seidel–Silva CSR smoother

The linear systems of algebraic equations associated with discretiza-
tion of mathematical models using numerical methods are, in general,
sparse. Degree of sparsity (DS), which represents the percentage of null
elements in the matrix, increases as the domain is discretized with an
increasing number of spacial step size or particles, for example. In this
way, the CSR method contributes to memory savings by storing only
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Algorithm 1: Compressed sparse row (CSR) with principal diagonal
vector 𝐴𝐷.
nput: 𝐴
utput: 𝐴𝐴, 𝐽𝐴, 𝐼𝐴,𝐴𝐷
1 begin
2 𝐼𝐴(1) = 1
3 𝑘0 = 0
4 𝑘1 = 0
5 for 𝑖 = 1,… , 𝑛 do
6 for 𝑗 = 1,… , 𝑛 do
7 if 𝐴(𝑖, 𝑗) ≠ 0 then
8 𝑘0 = 𝑘0 + 1
9 𝐴𝐴(𝑘0) = 𝐴(𝑖, 𝑗)
10 𝐽𝐴(𝑘0) = 𝑗
11 if 𝑖 = 𝑗 then
12 𝑘1 = 𝑘1 + 1
13 𝐴𝐷(𝑘1) = 𝐴(𝑖, 𝑗)
14 end
15 end
16 𝐼𝐴(𝑖 + 1) = 𝑘0 + 1
17 end
18 end
19 end

the non-null coefficients of the matrix and, in addition, allows faster
operations than in cases where the full sparse matrix is used. The gain
in speed happens with or without parallelization, however, using the
parallel solver with the CSR method, it will have a further reduction in
processing time which in turn is attractive [40,41].

To solve the linear systems in our study, we adapted the original
Gauss–Seidel to receive parallelization and also the CSR structure. Thus,
we call this modified model Gauss–Seidel–Silva (G–S–S) (see Algo-
rithm 2) [42]. This modification implies convergence of the numerical
solution of the linear system in such a way that it is impossible to
distinguish between Gauss–Seidel and Gauss–Jacobi, and may even be
a combination of both methods. We kept the same structure for the
serial Gauss–Seidel–S and will always differentiate between parallel and
serial in our analyses. In addition, the Gauss–Seidel–S solver within the
AML will be called a smoother due to its property of smoothing the
oscillatory modes of the error.

In order to highlight the contributions made by G–S–S, we will
point out a few observations: (i) the Gauss–Seidel solver well known
in the literature is also known for not being parallelizable; (ii) the
linear systems determined by SPH may vary the number of diagonals
a lot. In our study we kept at most 25 diagonals; (iii) SCR structure
only serves to compact the coefficients matrix; (iv) we adapted the CSR
structure to capture the coefficients of the main diagonal, so that if we
change the total number of diagonals, we can still solve the system, as
this adaptation generated robustness; (v) we included the robust SCR
structure within Gauss–Seidel.

Putting all this together, it is impossible within the parallel region to
establish for the loop (Algorithm 2) which update returned first (upper
or lower triangular matrix). Thus, the solution will converge regardless
of which update returns first. This certainly differs from a modified
Gauss–Seidel known in the literature. To reinforce our contribution, we
present the scalability of Gauss–Seidel–S, as shown in Fig. 7, where we
can confirm that our solver has a parallelized fraction of 90%.

To facilitate understanding about the gains in processing time when
using the parallel Gauss–Seidel–S CSR smoother, it is necessary to know
some performance metrics and the phenomenon known as ‘‘Amdahl’s
law’’ [43].

To evaluate the performance of algorithms, the following metric was
defined [44]:
4

Definition 1. Speed-up (𝑆𝑝) is a metric used to measure the increase
n speed of a 𝛶1 algorithm relative to 𝛶2.

𝑝 =
𝑡𝐶𝑃𝑈 (𝛶1)
𝑡𝐶𝑃𝑈 (𝛶2)

. (17)

In terms of parallelization, 𝑆𝑝 is used to measure the speed increase
by comparing the CPU time of the 𝛶 algorithm with only one processor
(𝛶 -serial algorithm) and with number 𝜏 of processors (𝛶 -parallel algo-
rithm) [11]. The 𝑆𝑝 shown in Eq. (17) considers that the two algorithms
are running with the same number of processors. The metric for the
case where number 𝜏 of processors are used can be rewritten as

𝑆𝜏 =
𝑡0(𝛶 )
𝑡𝜏 (𝛶 )

, (18)

here 𝑆𝜏 is the speed-up that measures the speed increase when com-
aring the CPU time 𝑡0 of the serial 𝛶 algorithm with one processor only
nd the CPU time 𝑡𝜏 of the 𝛶 algorithm with number 𝜏 of processors.
ote that the time 𝑡0(𝛶 ) is calculated without parallelization and 𝑡1(𝛶 )
as a single parallel region. For 𝑆𝜏 to be calculated coherently, the
1 = 𝑡0(𝛶 )∕𝑡1(𝛶 )1 ≈ 1. The larger the value of 𝑆𝜏 , the shorter the
PU time. However, due to some serial calculation regions within the
lgorithm, the value of 𝑆𝜏 has a limiting factor, which is the CPU time
f the serial 𝑆𝜏 algorithm itself. This limitation is known as ‘‘Amdahl’s
aw’’. A more generalized form of Amdahl’s law [45] can be described
y

𝐴𝑚𝑑𝑎ℎ𝑙 =
1

(1 − 𝑓𝑝) +
𝑓𝑝
𝜏

, (19)

where 𝑓𝑝 (parallelized fraction) is the portion of the algorithm that
can be improved by a 𝜏 factor due to the number of processors, and
(1−𝑓𝑝) is the portion that cannot be improved. In terms of parallelism,
𝑓𝑝 represents the portion of the algorithm that can be improved by
using a 𝜏 number of processors.

In Fig. 1, we present the theoretical speed-up determined by Am-
dahl’s law, Eq. (19), for algorithms 𝛶1, 𝛶2, 𝛶3, 𝛶4, 𝛶5, and 𝛶6. As a way
of illustrating such a law, it is assumed that the algorithms are paral-
lelized and that their parallelized fractions are, respectively, 𝑓𝑝 = 50%,
𝑓𝑝 = 80%, 𝑓𝑝 = 90%, 𝑓𝑝 = 95%, 𝑓𝑝 = 99%, and 𝑓𝑝 = 100%. The algorithm
𝛶1 hypothetically has 𝑓𝑝 = 50%, 𝛶2 hypothetically has 𝑓𝑝 = 80% and
so on. Thus, by analyzing Fig. 1, one can conclude, for example, that
the 𝛶5 algorithm hypothetically has 99% of parallelization and, when
executed with 28 processors, its speed-up is 22 times that of the 𝛶0
algorithm executed serially with only 1 processor.

3.3. Iteration error

The iteration error (𝜀𝑙) [39,46] is simply defined as the difference
not absolute between the exact and approximate solution of the system
of algebraic equations in a given iteration [3,47]

𝜀𝑙(𝝍(𝐱𝑖)) = 𝜳 (𝐱𝑖) − [𝝍(𝐱𝑖)]𝑙 , (20)

where 𝑙 represents the number of the current iteration in the solution
process of the system of linear or nonlinear equations.

In this study, we use the Euclidean norm vector (𝐿2) [48] to
perform the iteration error analyses. To do this, we evaluate 𝐿2 over
the difference between the numerical solution at iteration 𝑙 and 𝑙 − 1,
according to equation

𝐿𝑙
2 =

√

√

√

√

𝑛
∑

𝑖=1

(

𝝍(𝐱𝑖)𝑙 − 𝝍(𝐱𝑖)𝑙−1
)2, (21)

r on the residue 𝐫𝑙 = 𝐟 − 𝐴𝝍 𝑙

𝑙
2 =

√

√

√

√

𝑛
∑

(

𝐫𝑙 − 𝐫𝑙−1
)2, (22)
𝑖=1
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Fig. 1. Upper bound on parallelized algorithms with 𝑓𝑝 ranging between 50% and
100%.

where 𝑛 is order of the matrix.
In all analyses, we evaluate the dimensionless iteration error, that

is, 𝐿𝑙
2∕𝐿

0
2, where 𝐿0

2 is the error at iteration 𝑙 = 0 with 𝝍(𝐱𝑖) = 0. Note
hat 𝐿1

2∕𝐿
0
2 ≈ 1.

.4. Multigrid

Geometric multigrid is a method capable of smoothing the error in
grid, and by means of transfer operators, injects information from

he finer grid into the coarser grid using, for example, full weighting
perator (process of restriction) [11,49] and from the coarser grid
nto the finer grid using bilinear interpolation operator (process of
rolongation) [11,49] in a number of cycles, which can be 𝑉 (𝜈1, 𝜈2),
s shown in Fig. 2(a), or 𝑊 (𝜈1, 𝜈2) or 𝐹 (𝜈1, 𝜈2), with 𝜈1 pre and 𝜈2 post-
moothing. The information transferred from one grid to the other can
e from just the residue, correction scheme (CS), or residue and solu-
ion, full approximation scheme (FAS). To facilitate the understanding
f the transfer of information between grids, we highlight in red the
dea of restriction (advance to coarser grid) operator, and in blue the
rolongation (return to the finer grid) operator.

The algebraic multigrid is a method that performs procedures sim-
lar to the geometric multigrid, but the idea of information transfer
etween grids, Fig. 2(b), is applied directly to the matrix of coeffi-
ients associated with the system of algebraic equations determined
y discretizing the mathematical model with some chosen numerical
ethod [29–31]. In Table 3 we show the relationship among the coef-

icient matrix associated with the consistent discretization level and the
atrices associated with the intermediate discretization sublevels until

he inconsistent sublevel is reached. Since in our study we do not have
hierarchy of grids but rather discretization levels, the nomenclature
as adapted to better represent the discretization levels using particles,
hich can be from the SPH method or any other particle method, as we

an see in Fig. 2. In this way, the algebraic multigrid (AMG) becomes
lgebraic multilevel (AML).

In Table 2 we show the relationship between the main discretization
nd the number of uniform mean particle spacing. The symbol 𝑔 rep-
esents distance between 𝐱𝑖 particle and the immediately neighboring
rthogonal projection of 𝐱𝑗 on the straight line parallel to the 𝑥 or 𝑦
xis that passes through 𝐱𝑖 (smallest distance between two particles).

To facilitate the understanding of this technique, we will adopt the
ollowing nomenclature:

• 𝐴0𝝍0 = 𝒇 0 main system with main matrix 𝐴0 associated with
5

consistent level;
Algorithm 2: Parallel Gauss-Seidel-Silva CSR smoother.
nput: 𝐴𝐴, 𝐽𝐴, 𝐼𝐴,𝐴𝐷,𝒇 , 𝑡𝑜𝑙,𝑁𝑡𝑖, 𝑖𝑡𝑒𝑚𝑎𝑥
utput: 𝝍 , 𝑒𝑟𝑟𝑜, 𝑒𝑟𝑟𝑜1, 𝑖𝑡𝑒
1 begin
2 allocate: 𝑟𝑒𝑠𝐿2(1 ∶ 𝑖𝑡𝑒𝑚𝑎𝑥), 𝑒𝑟𝑟𝑜1(1 ∶ 𝑖𝑡𝑒𝑚𝑎𝑥)
3 𝑖𝑡𝑒 = 0
4 𝐿2𝑠𝑢𝑚 = 0
5 𝑟𝑒𝑠𝐿2 = 0⃗
6 𝑟𝑒𝑠00𝐿2 = 0
7 𝑒𝑟𝑟𝑜 = 0
8 𝑒𝑟𝑟𝑜1 = 0⃗
9 while 𝑒𝑟𝑟𝑜 >= 𝑡𝑜𝑙 do
10 𝑖𝑡𝑒 = 𝑖𝑡𝑒 + 1
11 !$OMP BARRIER
12 for 𝑘 = 1,… , 𝑁𝑡𝑖 (performed in parallel by each thread)

do
13 𝑐𝑜𝑛𝑡 = 𝐼𝐴(𝑘) − 1
14 𝑐 = 𝐼𝐴(𝑘 + 1) − 𝐼𝐴(𝑘)
15 𝑠 = 0
16 for 𝑖 = 1,… , 𝑐 do
17 𝑐𝑜𝑛𝑡 = 𝑐𝑜𝑛𝑡 + 1
18 𝑗 = 𝐽𝐴(𝑐𝑜𝑛𝑡)
19 if 𝑗 > 𝑘 then
20 𝑠 = 𝑠 + 𝐴𝐴(𝑐𝑜𝑛𝑡)𝝍𝑜𝑙𝑑 (𝑗)
21 end
22 if 𝑗 < 𝑘 e 𝑘 ≠ 𝐴𝐷(𝑘) then
23 𝑠 = 𝑠 + 𝐴𝐴(𝑐𝑜𝑛𝑡)𝝍(𝑗)
24 end
25 end
26 𝝍(𝑘) = [1∕𝐴𝐴(𝐴𝐷(𝑘))][𝒇 (𝑘) − 𝑠]
27 𝐿2𝑠𝑢𝑚 = 𝐿2𝑠𝑢𝑚 + [𝝍(𝑘) − 𝝍𝑜𝑙𝑑 (𝑘)]2

28 𝝍𝑜𝑙𝑑 (𝑘) = 𝝍(𝑘)
29 end
30 serial region realized by single thread do
31 !$OMP SINGLE
32 𝑟𝑒𝑠𝐿2(𝑖𝑡𝑒) =

√

𝐿2𝑠𝑢𝑚
33 𝑟𝑒𝑠00𝐿2 = 𝑟𝑒𝑠𝐿2(1)
34 𝑒𝑟𝑟𝑜 = 𝑟𝑒𝑠𝐿2(𝑖𝑡𝑒)∕𝑟𝑒𝑠00𝐿2
35 𝑒𝑟𝑟𝑜1(𝑖𝑡𝑒) = 𝑒𝑟𝑟𝑜
36 𝐿2𝑠𝑢𝑚 = 0
37 !$OMP END SINGLE
38 end
39 if 𝑖𝑡𝑒 == 𝑖𝑡𝑒𝑚𝑎𝑥 then
40 stop
41 else
42 continue
43 end
44 end
45 end

• 𝐴1∶𝑁𝐿𝑚𝑎𝑥−2𝝍1∶𝑁𝐿𝑚𝑎𝑥−2 = 𝒇 1∶𝑁𝐿𝑚𝑎𝑥−2 subsystems with submatrices
𝐴1∶𝑁𝐿𝑚𝑎𝑥−2 associated with intermediate sublevels;

• 𝐴𝑁𝐿𝑚𝑎𝑥−1𝝍𝑁𝐿𝑚𝑎𝑥−1 = 𝒇𝑁𝐿𝑚𝑎𝑥−1 subsystem with submatrix 𝐴𝑁𝐿𝑚𝑎𝑥−1
associated to the inconsistent sublevel.

Remark. we see in Table 3 that each main discretization determines
a set of submatrices. In the case of the table, for example, we choose
the main discretization 4096 × 4096 (number of uniform mean particle
spacing), which generates a level of 4097 × 4097 particles (including
the particles in the boundaries). In this way, 𝐴𝑁𝐿+1 will always be
coarser than 𝐴𝑁𝐿

. Consequently, 𝐴𝑁𝐿
always more finer than 𝐴𝑁𝐿+1,

for all 𝑁 = 0, 1,… , 𝑁 −2. In this study the texts have been adapted
𝐿 𝐿𝑚𝑎𝑥
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Fig. 2. Representation of an AML 𝑉 (𝜈1 , 𝜈2) cycle (a) uniform particle discretization (b) non-uniform particle discretization.
Table 2
Spatial discretization parameters.

Number of main
discretizations
(𝑁main)

𝑔 = 𝛥𝑥 = 𝛥𝑦 (initial
discretization)

Number of uniform
mean particle
spacing (𝑁𝑝𝑥 ×𝑁𝑝𝑦 )

1 𝑔1 8 × 8
2 𝑔2 16 × 16
3 𝑔3 32 × 32
4 𝑔4 64 × 64
5 𝑔5 128 × 128
6 𝑔6 256 × 256
7 𝑔7 512 × 512
8 𝑔8 1024 × 1024
9 𝑔9 2048 × 2048
10 𝑔10 4096 × 4096

so that the focus is on the hierarchy of matrices associated with the
AML hierarchy. This adaptation does not cause any harm to the studies
reported in our work, which have a focus, in general, on the hierarchy
of grids.

The AML is also composed of two phases, namely: (i) setup phase
and (ii) solution phase [29–31,50].

(i) setup phase: is responsible for generating the levels, matrices
of coefficients and source terms, and for constructing the trans-
fer operators (restriction and prolongation) among the levels
involved in this process;

(ii) solution phase: is direct and applies operators previously defined
in the setup phase. In this phase, the matrices and coarser source
terms are visited according to a previously proposed cycle, such
as the 𝑉 (𝜈1, 𝜈2) cycle, for example.

To construct the matrices associated with the intermediate and
inconsistent sublevels (𝐴1 until 𝐴𝑁𝐿𝑚𝑎𝑥

), we need to partition the ma-
trix associated with the consistent level (𝐴0). The symbol 𝑁𝐿𝑚𝑎𝑥 =
𝑙𝑜𝑔2(𝑁𝑝𝑥 ) − 1 = 𝑙𝑜𝑔2(𝑁𝑝𝑦 ) − 1. To partition the coefficients of 𝐴0, one
needs to proceed as follows: let 𝑖 ∈ 𝛺0, where 𝛺0 denotes the indices
set {1, 2,… , 𝑛}. This partition generates two disjoint subsets, 𝐶0 and 𝐹 0,
where 𝛺0 = 𝐶0∪𝐹 0. The 𝐶0, representing the coefficients which should
be contained in the intermediate/inconsistent sublevel (𝐶-coefficients),
and 𝐹 0, the complementary set, in which are placed the coefficients
not included in the intermediate/inconsistent sublevel. This partition
is based on the strong algebraic connections. In addition, some other
sets must be defined as [31].

𝑁 𝑖 = {𝑗 ∈ 𝛺0 ∶ 𝑗 ≠ 𝑖, 𝑎𝑖𝑗 ≠ 0}, (23)

𝑆𝑖 = {𝑗 ∈ 𝑁 𝑖 ∶ −𝑎𝑖𝑗 ≥ 𝜃max |𝑎𝑖𝑘|with fixed 𝜃, 0 < 𝜃 < 1}, (24)
6

𝑎𝑖𝑘<0
𝑆𝑇
𝑖 = {𝑗 ∈ 𝛺0 ∶ 𝑖 ∈ 𝑆𝑗}, (25)

where 𝑁 𝑖 is the set of neighboring coefficients associated with the
particle 𝐱𝑗 , 𝑆𝑖 determines the set of coefficients that strongly influences
𝑖 and 𝑆𝑇

𝑖 is the set of coefficients which are strongly dependent of 𝑖. The
constant parameter 𝜃(0 < 𝜃 < 0), represents the matrix order reduction
(or level reduction) factor. This parameter is a measure that determines
how strongly a matrix coefficient is connected to others. The Influence
of 𝜃 on CPU time can be found in [32].

Upon completion of the 𝛺0 = 𝐶0 ∪ 𝐹 0 partition for each coefficient
associated with particle 𝐱𝑖, three other subsets are determined: 𝐶𝑖, 𝐷𝑆

𝑖
and 𝐷𝑤

𝑖 .
According to [51], these three subsets represent:

1. 𝐶𝑖 = 𝐶0 ∩ 𝑆𝑖 are the coefficients of the new submatrix that
strongly influence the particle 𝐱𝑖.

2. 𝐷𝑆
𝑖 = 𝐷𝑖 ∩ 𝑆𝑖, and 𝐷𝑖 = 𝑁𝑖 − 𝐶𝑖, are all the neighboring

coefficients of 𝐹 0 that strongly influence the coefficients of 𝐱𝑖;
3. 𝐷𝑊

𝑖 = 𝐷𝑖 −𝑆𝑖, the coefficients that have a weak influence on 𝐱𝑖.
This set may contain coefficients in the matrix 𝐴𝑁𝐿−1 (finer) and
𝐴𝑁𝐿

(coarser). These coefficients are called weakly connected
neighbors.

The interpolator operator (responsible for transferring information
from a coarser matrix to a finer matrix) is given by [51], where ℎ and
𝐻 generically represent two consecutive levels, respectively, ℎ being
the finer and 𝐻 the coarser,

(𝐼ℎ𝐻𝑒𝐻 )𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑒𝐻𝑖 , if 𝑖 ∈ 𝐶ℎ

∑

𝑗∈𝐶𝑖

𝜔𝑖𝑗𝑒
𝐻
𝑗 , if 𝑖 ∈ 𝐹 ℎ

, (26)

where

𝜔𝑖𝑗 = −

𝑎𝑖𝑗 +
∑

𝑚∈𝐷𝑆
𝑖

⎛

⎜

⎜

⎜

⎜

⎝

𝑎𝑖𝑚𝑎𝑚𝑗
∑

𝑘∈𝐶𝑖

𝑎𝑚𝑘

⎞

⎟

⎟

⎟

⎟

⎠

𝑎𝑖𝑖 +
∑

𝑛∈𝐷𝑊
𝑖

𝑎𝑖𝑛
. (27)

The constant parameter 𝜀 > 0, which represents the strong depen-
dency in the submatrix, also implies the change in CPU time, as shown
in [32,52]. The parameter 𝜀 is employed in the judgment if a coefficient
𝑗 ∈ 𝐷𝑆

𝑖 strongly influences a given coefficient in 𝐶, in such way that
the interpolation is also influenced. The left-hand side of Eq. (26) for
two levels, for example, can be written as (𝐼01 𝑒

1)𝑖. As we are transferring
information from the system 𝐴 𝝍 = 𝒇 to 𝐴 𝝍 = 𝒇 , then we define
0 0 0 1 1 1
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Table 3
Association between coefficient matrix order and number of uniform mean particle spacing.

Number of sublevel (𝑁𝐿) Number of uniform mean particle
spacing (𝑁𝑝𝑥 ×𝑁𝑝𝑦 )

Matrix order (𝐴) Source term order (𝑓 ) Representation

0 4096 × 4096 40952 × 40952 40952 × 1 𝐴0 , 𝑓0 → consistent level
1 2048 × 2048 20472 × 20472 20472 × 1 𝐴1 , 𝑓1 → intermediate sublevel
2 1024 × 1024 10232 × 10232 10232 × 1 𝐴2 , 𝑓2 → intermediate sublevel
3 512 × 512 5112 × 5112 5112 × 1 𝐴3 , 𝑓3 → intermediate sublevel
4 256 × 256 2552 × 2552 2552 × 1 𝐴4 , 𝑓4 → intermediate sublevel
5 128 × 128 1272 × 1272 1272 × 1 𝐴5 , 𝑓5 → intermediate sublevel
6 64 × 64 632 × 632 632 × 1 𝐴6 , 𝑓6 → intermediate sublevel
7 32 × 32 312 × 312 312 × 1 𝐴7 , 𝑓7 → intermediate sublevel
8 16 × 16 152 × 152 152 × 1 𝐴8 , 𝑓8 → intermediate sublevel
9 8 × 8 72 × 72 72 × 1 𝐴9 , 𝑓9 → intermediate sublevel
10 4 × 4 32 × 32 32 × 1 𝐴10 , 𝑓10 → intermediate sublevel
𝑁𝐿𝑚𝑎𝑥 = 𝑙𝑜𝑔2(4096) − 1 = 11 2 × 2 12 × 12 12 × 1 𝐴11 , 𝑓11 → inconsistent sublevel
𝐴1 = 𝐼10𝐴0𝐼01 , and (𝐼10 ) = (𝐼01 )
𝑇 (see Algorithm 3). Therefore, it is

necessary to define a data set, as seen in [52]:

𝑆𝐷
𝑖 =

{

𝑗 ∈ 𝐷𝑆
𝑖 ∶

∑

𝑙∈𝐶𝑖

|𝑎𝑖𝑗 | > 𝜀
(

|𝑎𝑖𝑗 |
max |𝑎𝑖𝑘|

)

max |𝑎𝑗𝑙|,with fixed 𝜀 > 0

}

.

(28)

See also other details about interpolation in this same study [52].
Generically, the restriction operator is defined as 𝐼𝐻ℎ = (𝐼ℎ𝐻 )𝑇 .

Remark. The G–S–S used within AML is not parallel because the
algebraic multilevel structure has not been prepared to receive par-
allelization. Nevertheless, we have estimated results that account for
parallelization, since studies involving AML with parallel G–S–S are
attractive.

Algorithm 3: AML two levels correction scheme (CS).
nput: 𝝍0

0, 𝐴0,𝒇 0

utput: 𝝍0

1 Go to inconsistent sublevel - transfer operator: restriction
2 begin
3 Relax 𝜈1 times on 𝐴0𝝍0 = 𝒇 0 with initial guess 𝝍0

0 = 0;
4 Compute the consistent level residual 𝛺0 ∶ r0 = 𝒇 0 − 𝐴0𝝍0;
5 Restrict it to be the inconsistent sublevel by r1 = 𝐼10 r

0;
6 Solve 𝛺1 ∶ 𝐴1e1 = r1 with initial guess e10 = 0.
7 end
8 Return to consistent level - transfer operator: interpolation
9 begin
10 Interpolate the inconsistent sublevel error to the consistent

level by 𝛺0 ∶ e0 = 𝐼01e
1;

11 Correct the consistent level approximation by 𝝍0 ← 𝝍0 + e0;
12 Relax 𝜈2 times on 𝐴0𝝍0 = 𝒇 0 with initial guess 𝝍0 (updated

in line 11).
13 end

3.5. Complexity order

The equation that measures the complexity order over computa-
tional operations chosen to determine this metric is given by
[11,49]:

𝑡𝑐𝑝𝑢(𝑁𝑡) = 𝑐(𝑁𝑡)
𝑝, (29)

where 𝑡𝑐𝑝𝑢(𝑁𝑡) is the CPU time for each discretization level, 𝑁𝑡 is
the number of variables, 𝑐 a constant of proportionality and 𝑝 the
complexity order.
7

4. Numerical results

The computational code is implemented in Fortran 95 language that
runs AML to determine the numerical solutions obtained with the SPH
method. Our study aims to verify the efficiency of AML to accelerate
the convergence of SPH numerical solutions when considering uniform
and non-uniform discretizations. Thus, to make our study coherent,
we determine all real-type variables with quadruple (or extended)
precision. However, as a code checking tool, the use of double precision
is sufficient. The software used was Microsoft® Visual Studio® 2008
compiler v. 9.0.21022.8 RTM. The hardware architecture has a 3.4 GHz
Intel Core (TM)™ i7-6700 processor, and with 16 GB of RAM hosting
64-bit Windows® 10. After verification of the computational code, the
simulations were run on the GridUNESP cluster.

4.1. Canonical discretization with fixed sensor particle

According to [53], the canonical disorder (or perturbation) is de-
fined as a measure assigned to the particles in the initial configuration,
i.e., over the uniform discretization that considers 𝛥𝑦 = 𝛥𝑥 = 1∕ℎ,
where ℎ = 1∕𝑁𝑝𝑥 . This measure is given by

𝑅 = 𝜂𝛥𝑥, (30)

where 𝜂 ∈ [0, 0.5[. The representation of the canonical disorder defined
by Eq. (30) can be seen in Fig. 3. The canonical perturbation imposes a
multidirectional displacement, so that, the particle moves only within
the region bounded by the circle of radius 𝑅. In other words, analyzing
a Fig. 3, we see that the particle 41 does not invade the bounded space
of any of the neighboring particles 31, 32, 33, 40, 42, 49, 50 and, 51. This
dynamic prevents collisions among particles and allows analyses of the
effects of disorder to be performed with less difficulty.

With the discretization shown in [53], in [20] the canonical dis-
cretization with fixed sensor particle was defined, allowing a variable
to be evaluated at all levels of the main discretization, because a
fixed particle remains positioned in all these discretizations, while its
neighbor can move according to the canonical disorder. This technique
will contribute to the advancement of studies of repeated Richard-
son extrapolation (RRE) [10,21–26] in multidimensional problems,
continuing the studies shown in [20].

Definition 2 describes what [20] define as a fixed sensor particle,
and this technique was applied in all our studies presented in this paper.
Thus, with 𝜂 = 0, we have the uniform particle discretization (ordered
distribution), and for 𝜂 ∈ [0, 0.5[ we determine the non-uniform particle
discretization (disordered distribution).

Definition 2. A fixed sensor particle 𝐱𝑠(𝐐) or 𝐱𝑠(𝐐, 𝑡), where 𝐱𝑠 is any
chosen particle that has coincident coordinates 𝐐 at all discretization
levels and time steps simultaneously [20,37,39].

In Figs. 4(a) and 4(b), the sensor particle was defined as 𝐱𝑠 =

𝐱(1∕2, 1∕2), occupying the 25 position (𝐱25) obtained with lexicographic
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Fig. 3. Representation of the particle motion area with canonical disorder.

Table 4
Simulation parameters.

Parâmetro AML SL

Tolerance for G–S–S 1.0𝐸−08 1.0𝐸−08
Internal iterations 2 –
External cycles 7 –
Level reduction factor 0.25 –
Strong dependency factor
at the inconsistent sublevel

0.35 −

ordering. In Fig. 4(a) the value of 𝜂 = 0, i.e. we have a uniform
discretization, while in Fig. 4(b), the disorder 𝜂 = 0.499999 is applied to
all particles except for the fixed sensor particle that occupies position
25. Thus, it is equivalent to say that 𝝍(1∕2, 1∕2) = 𝝍(𝐱𝑠), for 𝐱𝑠(1∕2, 1∕2)

See that in our examples, we can create 49 fixed sensor parti-
cles, which are all the particles from the coarsest main discretization,
i.e., 𝑁𝑡𝑖 = 7 × 7 (inner particles only). This allows variables of interest,
for example the temperature 𝝍 , to be evaluated locally in all regions
of the entire domain.

4.2. Quantitative verification of numerical solutions

The AML parameters used in the simulations were reproduced from
the studies [32,54] and in SL the same tolerance for the iteration error
(𝜀𝑙) was maintained. These parameters are shown in Table 4. The total
number of particles varied among 81 and 16 785 409 (over 16 million)
lways with constant refinement ratio 𝑞 = 2 (𝑔𝑁main∕𝑔𝑁main+1 = 2) in 𝑥

and 𝑦 directions for main discretization and constant coarsening ratio
𝑟𝑒 = 1∕2 (𝑔𝑁𝐿+1∕𝑔𝑁𝐿

) for generating the submatrices of the AML.
In our study, the source of numerical error called iteration error

is considered negligible, because as shown in Figs. 5(a) and 5(b), the
order of magnitude of this error between two consecutive iterations
has already reached the order of magnitude of the round-off error.
This error is calculated using the dimensionless form, that is, the ratio
between the Euclidean norm of the error at the 𝑙th iteration (𝐿𝑙

2) and
the initial iteration (𝐿0

2). In Fig. 5(b) we can see the dimensionless error
scillating around 1.0E−32, which makes the influence of 𝜀𝑙 negligible.

In Table 5, the degree of sparsity (DS) of the matrices associ-
ated with the system of linear equations, obtained when discretiz-
ing the mathematical model of steady state heat diffusion with the
SPH method, is presented. This information is important, because one
should not make the mistake of solving the systems in sparse matrix
8

form. In this study we use the CSR method. CSR method is capable of
Table 5
Degree of sparsity of the matrices [55].

Number of uniform mean
particle spacing

Matrix order Degree of sparsity

8 × 8 72 × 72 64.9729%
16 × 16 152 × 152 90.5956%
32 × 32 312 × 312 97.5960%
64 × 64 632 × 632 99.3939%
128 × 128 1272 × 1272 99.8479%
256 × 256 2552 × 2552 99.9619%
512 × 512 5112 × 5112 99.9905%
1024 × 1024 10232 × 10232 99.9976%
2048 × 2048 20472 × 20472 99.9994%
4096 × 4096 40952 × 40952 99.9999%

accelerating the convergence of the solution of the systems with respect
to the sparse form.

4.2.1. 2D steady state heat diffusion model (C1-2Ds)
In multidimensional problems the complexity order of solver is an

appropriate metric to evaluate the coherence of the time required to
determine the numerical solutions when using single level and mul-
tilevel methods, as well as for singlegrid and multigrid. In the single
level (equivalent to a singlegrid) methods the complexity order is 𝑝 = 2,
while in the multilevel (equivalent to a multigrid) methods it is unitary,
that is, 𝑝 = 1 in accordance with [29,30,49]. This information can be
confirmed by looking at the data in Table 6. It can also be seen that
the parallel solver does not have the same efficiency as the algebraic
multilevel with G–S–S smoother that can reduce one complexity order
compared to the single level solver. It is important to note that the
solver of the AML method is not parallelized, that is, by parallelizing
such a smoother, the complexity order unity will be reduced.

Regarding the complexity order of the cases where non-uniform
discretization is applied, the values obtained are slightly larger than
for uniform discretization and this change is related to the slower
convergence of the numerical solutions, as we can see in Table 7.

After the verification of the complexity order, in Figs. 6(a) and 6(b),
we present the efficiency of AML by varying the number of sublevels.
For this we use CPU time (s) in y-log scale versus number of sublevels
(𝑁𝐿) for the case of uniform particle discretization (ordered distribu-
tion) and non-uniform particle discretization (disordered distribution).
We change the three levels of principal discretization in the case of
the non-uniform discretization, Fig. 6(b), because the goal is to show
the efficiency of AML with respect to the number of sublevels, and
this can be proven in any principal discretization. In addition, the
non-uniform discretization presents slower convergence and therefore
we decided not to show the same values as in Fig. 6(a). Evidently,
this change does not harm the analyses. In all cases we note that the
efficiency of the AML is higher when considering the maximum number
of sublevels. Also in Fig. 6(a), one can see that we use the minimum
of 2 sublevels because we have reached the maximum simulation time
within GridUNESP which is thirty days. See that for 𝑁𝑡 = 4097 × 4097
the time needed to determine the numerical solution with only the
main discretization level (zero sublevel or SL), would be something
over thirty years.

Remark. the total number of sublevels is defined by 𝑁𝐿𝑚𝑎𝑥 − 1.
Revisiting Table 3, we can conclude that the sublevels are all those
among 𝑁𝐿 = 1 and 𝑁𝐿 = 11. In practice, the analyses in Figs. 6(a) and
6(b) are performed by varying the number of sublevels, but saying that
we are varying the number of levels is acceptable and may be familiar
in the literature.

To highlight the efficiency of AML, we perform a theoretical analysis
on parallelization and present some results so that the comparison
between the results obtained with parallel G–S–S and AML with se-
rial G–S–S can be made with coherence. We adopt the application
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Fig. 4. Representation of the canonical discretization with fixed sensor particle (a) 𝜂 = 0 (b) 𝜂 = 0.499999.
Fig. 5. Decrease iteration error versus number of iterations for C1-2Ds (a) parallel G–S–S SL (b) serial G–S–S AML.
Fig. 6. CPU time versus number of AML sublevels for C1-2Ds (a) uniform particle discretization (b) non-uniform particle discretization.
rogramming interface (API) called Open Multi-processing (OpenMP)
nd, according to Amdahl’s law [43], we identify the 90% parallelized
raction for parallel G–S–S, described in Algorithm 2. This means that
sing 28 CPU’s, the speed-up over serial G–S–S is 𝑆28 = 8 times. This
nformation is verified in the main discretization with 𝑁𝑡 = 513 × 513
articles, as we show in Fig. 7. To calculate the parallelized fraction
𝑓𝑝), we averaged the processing time across several simulations, in
ach main discretization. In addition, the speed-up 𝑆𝜏 is obtained by
he ratio between the CPU time of the G–S–S series (𝑡0) and parallel G–
–S (𝑡𝜏 ) using 𝜏 CPU’s, i.e., 𝑆𝜏 = 𝑡0∕𝑡𝜏 . For coherence in the speed-ups
esults, 𝑆1 ≈ 1.

In Fig. 8(a), we present the CPU time to determine the numerical
olutions at all the principal discretization levels and compare SL with
9

Table 6
Complexity order with canonical uniform discretization for case C1-2Ds.

Method 𝑐 𝑝

SL with serial G–S–S CSR solver 1.996𝐸−06 2.013
SL with parallel G–S–S CSR solver 1.672𝐸−04 1.492
AML with serial G–S–S CSR smoother 8.878𝐸−05 1.005

serial G–S–S, SL with parallel G–S–S, AML with serial G–S–S and the
projection of AML with parallel G–S–S smoother, considering 𝑓𝑝 =
90%. In all these cases, the CSR structure is considered, including in
the projection calculations. We realize that parallelization of G–S–S
is advantageous over serial G–S–S only from the main discretization
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Fig. 7. Scalability of the G–S–S solver CSR for C1-2Ds.

Table 7
Complexity order with canonical non-uniform discretization for case C1-2Ds.

Method 𝑐 𝑝

SL with serial G–S–S CSR solver 2.230𝐸−06 2.023
SL with parallel G–S–S CSR solver 7.883𝐸−06 1.729
AML with serial G–S–S CSR smoother 7.414𝐸−05 1.227

with 𝑁𝑡 = 129 × 129 particles, while AML and its projection is more
advantageous always. Note that using SL with serial G–S–S we simulate
up to 𝑁𝑡 = 513 × 5013 and using SL with parallel G–S–S, up to 𝑁𝑡 =
1025×1025, because the time to determine the another solutions is quite
high. Furthermore, the slope of the single level straight lines is different
from that of the multilevels, which means that AML is progressively
more advantageous, i.e. the more particles we use to discretize the
domain, the more efficient AML becomes. In all our study every time
we use the G–S–S solver or the G–S–S smoother (for AML only) the
CSR structure is being used, so we will hide this information from now
on because it is known. For the case of the non-uniform discretization,
Fig. 8(b), parallelization starts to be more advantageous from level 𝑁𝑡 =
65 × 65, this is because the time to determine the numerical solution
using the serial G–S–S was longer than with the uniform discretization.

Analyzing the results shown in Fig. 9(a), one can observe the big
difference between the speed-up of the SL with G–S–S parallel versus
SL with serial G–S–S and the AML with serial G–S–S smoother versus
SL with serial G–S–S solver. While parallel determines an 𝑆28 = 8, AML
determines 𝑆0 = 4084 and its projection 𝑆28 = 32670. We are faced
with an excellent result for determining the fast convergence of the
numerical solutions determined with the SPH method. The previous
values 𝑆28 = 3 for parallel G–S–S are not shown because only from
the main discretization level 𝑁𝑡 = 129×129 does parallelization start to
e advantageous, i.e. the speed-up greater than 1 is determined at the

level 𝑁𝑡 = 129×129. With the non-uniform discretization, Fig. 9(b), the
speed-up for the parallel G–S–S is higher due to the increased time to
determine the numerical solutions with the serial solver. However, we
kept the estimated projection with the same 8 times speed-up as with
the uniform discretization. See also that as a consequence of the results
shown in Fig. 8(b), parallelization is already more advantageous from
the level 𝑁𝑡 = 65 × 65. Moreover, the speed-up of AML is more than a
thousand times when compared to uniform discretization, reinforcing
our results that particle disorder does not characterize an impossibility
10
Table 8
Number of cycles and iteration erro using AML.

External cycle Internal iteration 𝜈1 Internal iteration 𝜈2 Iteration error

1 2 2 6.01𝐸−01
2 2 2 1.78𝐸−02
3 2 2 6.03𝐸−04
4 2 2 2.13𝐸−05
5 2 2 7.69𝐸−07
6 2 2 2.85𝐸−08
7 2 2 1.06𝐸−09

to efficiently solve systems of linear equations, and the more particles
we use in the discretization of the domain, the greater the reduction in
CPU time. Again we use a scale y-log.

Now that we have identified the efficiency of the AML with serial
G–S–S smoother with respect to the SL with parallel G–S–S and also SL
with serial G–S–S, we will present the graph of the global analytical and
numerical solutions for the entire temperature field. In Figs. 10(a) and
10(b), we note that the profile of the numerical solution is coherent
with the analytical solution for the case where the non-uniform dis-
cretization is applied. We do not present the graph of the numerical
solution with uniform discretization because we are emphasizing the
results obtained when applying disorder on the particles, which sets up
something closer to the flow models where the particles have motion.
However, the results with uniform discretization are coherent and are
therefore not shown.

In Table 8, we show the number of external cycles and internal
iterations (pre and post-smoothing) and also the iteration error until
the stop criteria (or tolerance) is reached, which is 1.0E−08.

4.2.2. 2D steady state heat diffusion model (C2-2Ds)
In the second case, we confirmed all the results presented in the first

case. In Fig. 11, we see that, once again, using the maximum number of
sublevels guarantees the lowest CPU time for uniform, Fig. 11(a), and
non-uniform discretization, Fig. 11(b). We note that the results of the
second case for CPU time and speed-up are very similar to the first case,
so to avoid repetition we decided to show only the graph of the AML
efficiency versus number of sublevels of the AML and the analytical and
umerical solutions, Figs. 12(a) and 12(b).

. Conclusions

We present a modification to the standard Gauss–Seidel, which we
all Gauss–Seidel–Silva. Such a solver can be a combination between
auss–Jacobi and standard Gauss–Seidel that allows the use of paral-

elization. This allows such a solver to be used as a parallel smoother
ithin AML. Furthermore, in both cases presented in the study, we
rove the efficiency of AML with serial G–S–S smoother over SL with
arallel G–S–S solver. We also apply discretization with fixed sensor
article that will extend the possibilities of studies to increase the
ccuracy of order and reduce the discretization error in flows with
article motion.

Based on the numerical results we make the following highlights:

1. The highest efficiency of AML is achieved when we use the
maximum number of sublevels;

2. We determine the speed-up of 4084 times for uniform discretiza-
tion and 5136 times for non-uniform discretization;

3. The AML can be applied to accelerate the convergence of numer-
ical solutions in any kind of geometry;

4. We present the estimated speed-up of 41 082 times for the AML
with parallel G–S–S smoother using non-uniform particle dis-

cretization.
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Fig. 8. CPU time versus number of particles for C1-2Ds (a) uniform particle discretization and (b) non-uniform particle discretization.

Fig. 9. Speed-up versus number of particles for C1-2Ds (a) uniform particle discretization and (b) non-uniform particle discretization.

Fig. 10. Solutions (a) analytical and (b) numerical with non-uniform particle discretization for C1-2Ds.
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Fig. 11. CPU time versus number of AML sublevels for C2-2Ds (a) uniform particle discretization (b) non-uniform particle discretization.
Fig. 12. Solutions (a) analytical and (b) numerical with non-uniform particle discretization for C2-2Ds.
CRediT authorship contribution statement

L.P. da Silva: Formal analysis, Investigation, Methodology, Valida-
tion, Writing – original draft, Writing – review & editing. C.H. Marchi:
Supervision. M. Meneguette: Supervision. R. Suero: Formal analysis,
Methodology, Validation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data that has been used is confidential.

Acknowledgments

We would like to thank the Graduate Program of Numerical Meth-
ods in Engineering (PPGMNE) from the Federal University of Paraná,
Curitiba, PR, Brazil, and the Brazilian Space Agency (AEB), National
Council of Technological and Scientific Development (CNPq, Brazil).
The second author was supported by a CNPq scholarship. The au-
thors are also grateful to Dr. Stüben, for sharing his AMG1R6 code,
which was used as reference for all the simulations and optimizations
presented in this work. This study was supported by the resources
supplied by the Center for Scientific Computing (NCC/GridUNESP) of
São Paulo State University (UNESP) and the support of the Laboratory
of Numerical Experimentation (LENA). This study was financed in part
by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
- Brasil (CAPES) - Finance Code 001.
12
References

[1] S.V. Patankar, Recent developments in computational heat transfer, J. Heat
Transfer 110 (4b) (1988) 1037–1045.

[2] G.D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference
Methods, Oxford University Press, 1985.

[3] J.H. Ferziger, M. Perić, Computational Methods for Fluid Dynamics, third ed.,
Springer Science & Business Media, 2002.

[4] R.J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential
Equations: Steady-State and Time-Dependent Problems, Vol. 98, SIAM, 2007.

[5] P. Gallagher, R. Marcer, C. Berhault, C. de Jouette, H.C. Raven, L. Eça, L.
Broberg, C.E. Janson, Q.X. Gao, S. Txopeus, B. Alessandrini, T. van Terwisga, M.
Hoekstra, H. Streckwall, F. Salvatore, Best practice guidelines for the application
of computational fluid dynamics in marine hydrodynamics, Virtue Proj. Relat.
Técnico 221 (2009) 16.

[6] S. Patankar, Numerical Heat Transfer and Fluid Flow, CRC Press, 1980.
[7] R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Vol. 31,

Cambridge University Press, 2002.
[8] O.C. Zienkiewicz, R.L. Taylor, P. Nithiarasu, J.Z. Zhu, The Finite Element

Method, Vol. 3, McGraw-hill London, 1977.
[9] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, Vol. 40, SIAM,

2002.
[10] L.P. da Silva, B.B. Rutyna, A.R.S. Righi, M.A.V. Pinto, High order of accuracy for

Poisson equation obtained by grouping of repeated richardson extrapolation with
fourth order schemes, CMES Comput. Model. Eng. Sci. 128 (2) (2021) 699–715.

[11] U. Trottenberg, C.W. Oosterlee, A. Schüller, Multigrid, Elsevier, 2001.
[12] M.A.V. Pinto, C. Rodrigo, F.J. Gaspar, C.W. Oosterlee, On the robustness of ILU

smoothers on triangular grids, Appl. Numer. Math. 106 (2016) 37–52.
[13] S.R. Franco, F.J. Gaspar, M.A.V. Pinto, C. Rodrigo, Multigrid method based on

a space-time approach with standard coarsening for parabolic problems, Appl.
Math. Comput. 317 (2018) 25–34.

[14] D.C. Zanatta, L.K. Araki, M.A.V. Pinto, D.F. Moro, Performance of geometric
multigrid method for two-dimensional Burgers’ equations with non-orthogonal,
structured curvilinear grids, CMES Comput. Model. Eng. Sci. 125 (3) (2020)
1061–1081.

[15] C.H. Marchi, C.D. Santiago, C.A.R.D. Carvalho Jr., Lid-driven square cavity flow:
A benchmark solution with an 8192× 8192 grid, J. Verif. Valid. Uncertain.
Quant. 6 (4) (2021).

http://refhub.elsevier.com/S1877-7503(24)00162-5/sb1
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb1
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb1
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb2
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb2
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb2
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb3
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb3
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb3
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb4
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb4
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb4
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb5
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb5
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb5
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb5
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb5
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb5
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb5
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb5
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb5
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb6
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb7
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb7
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb7
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb8
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb8
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb8
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb9
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb9
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb9
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb10
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb10
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb10
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb10
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb10
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb11
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb12
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb12
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb12
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb13
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb13
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb13
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb13
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb13
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb14
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb14
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb14
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb14
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb14
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb14
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb14
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb15
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb15
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb15
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb15
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb15


Journal of Computational Science 81 (2024) 102369L.P. da Silva et al.
[16] C.D. Santiago, C.H. Marchi, L.F. Souza, Performance of geometric multigrid
method for coupled two-dimensional systems in CFD, Appl. Math. Model. 39
(9) (2015) 2602–2616.

[17] M.L. de Oliveira, M.A.V. Pinto, S.D.F.T. Gonçalves, G.V. Rutz, On the robustness
of the xy-zebra-Gauss-seidel smoother on an anisotropic diffusion problem, CMES
Comput. Model. Eng. Sci. 117 (2) (2018) 251–270.

[18] G.V. Rutz, M.A.V. Pinto, S.D.F.T. Gonçalves, On the robustness of the multigrid
method combining ILU and partial weight applied in an orthotropic diffusion
problem, Rev. Int. Métodos Numér. para Cálc. Diseño Ing. 35 (1) (2019).

[19] M. Anunciação, R.L.A. Pinto, Solution of the Navier-Stokes equations using
projection method and preconditioned conjugated gradient with multigrid and
ilu solver, Rev. Int. Métodos Numér. para Cálc. Diseño Ing. 36 (1) (2020).

[20] L.P. da Silva, C.H. Marchi, M. Meneguette, A.C. Foltran, Robust RRE technique
for increasing the order of accuracy of SPH numerical solutions, Math. Comput.
Simulation 199 (2022) 231–252.

[21] P.J. Roache, P.M. Knupp, Completed richardson extrapolation, Commun. Numer.
Methods Eng. 9 (5) (1993) 365–374.

[22] C.H. Marchi, L.A. Novak, C.D. Santiago, A.P.S. Vargas, Highly accurate numerical
solutions with repeated richardson extrapolation for 2D Laplace equation, Appl.
Math. Model. 37 (2013) 7386–7397.

[23] C.H. Marchi, L.K. Araki, A.C. Alves, R. Suero, S.F.T. Gonçalves, M.A.V. Pinto, Re-
peated richardson extrapolation applied to the two-dimensional Laplace equation
using triangular and square grids, Appl. Math. Model. 37 (2013) 4661–4675.

[24] C.H. Marchi, E.M. Germer, Effect of the CFD numerical schemes on repeated
Richardson extrapolation (RRE), Appl. Comput. Math. 2 (2013) 128.

[25] C.H. Marchi, M.A. Martins, L.A. Novak, L.K. Araki, M.A.V. Pinto, S.F.T.
Gonçalves, D.F. Moro, I.S. Freitas, Polynomial interpolation with repeated
richardson extrapolation to reduce discretization error in CFD, Appl. Math.
Model. 40 (21–22) (2016) 8872–8885.

[26] C.H. Marchi, F.F. Giacomini, C.D. Santiago, Repeated richardson extrapolation
to reduce the field discretization error in comptational fluid dynamics, Numer.
Heat Transfer B 70 (4) (2016) 340–353.

[27] M.F. Malacarne, M.A.V. Pinto, S.R. Franco, Performance of the multigrid method
with time-stepping to solve 1D and 2D wave equations, Int. J. Comput. Methods
Eng. Sci. Mech. 23 (1) (2022) 45–56.

[28] H. Kothari, R. Krause, A generalized multigrid method for solving contact
problems in Lagrange multiplier based unfitted finite element method, Comput.
Methods Appl. Mech. Engrg. 392 (2022) 114630.

[29] K. Stüben, Algebraic multigrid (AMG): experiences and comparisons, Appl. Math.
Comput. 13 (3–4) (1983) 419–451.

[30] J.W. Ruge, K. Stüben, Algebraic multigrid, in: Multigrid Methods, SIAM, 1987,
pp. 73–130.

[31] K. Stüben, A review of algebraic multigrid, in: Numerical Analysis: Historical
Developments in the 20th Century, Elsevier, 2001, pp. 331–359.

[32] R. Suero, M.A.V. Pinto, C.H. Marchi, L.K. Araki, A.C. Alves, Analysis of algebraic
multigrid parameters for two-dimensional steady heat diffusion equations., Appl.
Math. Model. 36 (1) (2012) 2996–3006.

[33] A. Brandt, Algebraic multigrid theory: The symmetric case, Appl. Math. Comput.
19 (1–4) (1986) 23–56.

[34] V. Gingold, J.J. Monaghan, Smoothed particle hydrodynamics - theory and
application to non-spherical stars, R. Astron. Soc. 181 (1977) 375–389.

[35] L.B. Lucy, A numerical approach to the testing of the fission hypothesis, Astron.
J. 82 (1977) 1013–1024.

[36] L. Brookshaw, A method of calculating radiative heat diffusion in particle
simulations, in: Proceedings of the Astronomical Society of Australia, Vol. 6,
1985, pp. 207–210.

[37] L.P. da Silva, Verification of Numerical Solutions in Diffusive Problems Solved
with the Smoothed Particle Hydrodynamics Method (in Portuguese) (Ph.D.
thesis), Federal University of Paraná, Curitiba, Brazil, 2022.

[38] J.P. Morris, Analysis of Smoothed Particle Hydrodynamics with Applications
(Ph.D. thesis), Monash University, 1996.

[39] L. Pereira da Silva, M. Meneguette Junior, C.H. Marchi, Numerical error analysis
and heat diffusion models, in: Numerical Solutions Applied to Heat Transfer
with the SPH Method: A Verification of Approximations for Speed and Accuracy,
Springer International Publishing, Cham, 2023, pp. 51–75.

[40] A. Buluç, J.T. Fineman, M. Frigo, J.R. Gilbert, C.E. Leiserson, Parallel sparse
matrix-vector and matrix-transpose-vector multiplication using compressed sparse
blocks, in: Proceedings of the Twenty-First Annual Symposium on Parallelism in
Algorithms and Architectures, 2009, pp. 233–244.

[41] R. Pozo, K.A. Remington, A. Lumsdaine, SparseLib++ v. 1.5, in: Sparse Matrix
Class Library, Reference Guide, 1996.

[42] L. Pereira da Silva, M. Meneguette Junior, C.H. Marchi, Numerical modeling
of heat diffusion, in: Numerical Solutions Applied to Heat Transfer with the
SPH Method: A Verification of Approximations for Speed and Accuracy, Springer
International Publishing, Cham, 2023, pp. 7–49.

[43] G.M. Amdahl, Validity of the single processor approach to achieving large scale
computing capabilities, in: Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference, 1967, pp. 483–485.
13
[44] G. Galante, Métodos Multigrid Paralelos em Malhas Não Estruturadas Aplicados à
Simulação de Problemas de Dinâmica de Fluidos Computacional e Transferência
de Calor (in Portuguese) (Master’s thesis), Universidade Federal do Rio Grande
do Sul, Porto Alegre, 2006.

[45] X.-H. Sun, Y. Chen, Reevaluating Amdahl’s law in the multicore era, J. Parallel
Distrib. Comput. 70 (2) (2010) 183–188.

[46] C.H. Marchi, Verification of Unidimensional Numerical Solutions in Fluid Dy-
namics (in Portuguese) (Ph.D. thesis), Federal University of Santa Catarina,
Florianópolis, Brazil, 2001.

[47] P.J. Roache, Verification and Validation in Computational Science and
Engineering, Hermosa, 1998.

[48] R.L. Burden, J.D. Faires, A.M. Burden, Numerical Analysis, tenth ed., 2016.
[49] P. Wesseling, An Introduction to Multigrid Methods, Book News, Inc., 2004.
[50] R.D. Falgout, An Introduction to Algebraic Multigrid, Technical Report, 2006,

pp. 24–33.
[51] W.L. Briggs, V.E. Henson, S.F. McCormick, A Multigrid Tutorial, second ed.,

SIAM, 2000.
[52] C. Iwamura, F.S. Costa, I. Sbarski, A. Easton, N. Li, An efficient algebraic

multigrid preconditioned conjugate gradient solver, Comput. Methods Appl.
Mech. Engrg. 192 (20–21) (2003) 2299–2318.

[53] G. Chaussonnet, S. Braun, L. Wieth, R. Koch, H.-J. Bauer, Influence of particle
disorder and smoothing length on SPH operator accuracy, in: Conference Paper
- 10th International SPHERIC Workshop, 2015.

[54] R. Suero, Parameter Optimization of Algebraic Multigrid Method for Two-
Dimensional Diffusive Problems (in Portuguese) (Ph.D. thesis), Federal University
of Paraná, Curitiba, Brazil, 2010.

[55] L. Pereira da Silva, M. Meneguette Junior, C.H. Marchi, SPH applied to
computational heat transfer problems, in: Numerical Solutions Applied to Heat
Transfer with the SPH Method: A Verification of Approximations for Speed and
Accuracy, Springer International Publishing, Cham, 2023, pp. 77–115.

Luciano Pereira da Silva http://lattes.cnpq.br/187335545
8944068

Carlos Henrique Marchi http://lattes.cnpq.br/8251643344
377056

Messias Meneguette Junior http://lattes.cnpq.br/1531018
187057108

Roberta Suero http://lattes.cnpq.br/6702579185974800

http://refhub.elsevier.com/S1877-7503(24)00162-5/sb16
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb16
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb16
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb16
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb16
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb17
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb17
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb17
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb17
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb17
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb18
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb18
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb18
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb18
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb18
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb19
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb19
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb19
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb19
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb19
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb20
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb20
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb20
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb20
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb20
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb21
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb21
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb21
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb22
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb22
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb22
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb22
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb22
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb23
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb23
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb23
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb23
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb23
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb24
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb24
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb24
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb25
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb25
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb25
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb25
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb25
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb25
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb25
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb26
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb26
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb26
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb26
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb26
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb27
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb27
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb27
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb27
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb27
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb28
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb28
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb28
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb28
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb28
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb29
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb29
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb29
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb30
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb30
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb30
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb31
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb31
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb31
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb32
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb32
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb32
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb32
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb32
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb33
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb33
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb33
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb34
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb34
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb34
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb35
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb35
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb35
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb36
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb36
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb36
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb36
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb36
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb37
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb37
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb37
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb37
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb37
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb38
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb38
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb38
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb39
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb39
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb39
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb39
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb39
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb39
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb39
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb40
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb40
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb40
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb40
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb40
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb40
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb40
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb41
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb41
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb41
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb42
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb42
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb42
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb42
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb42
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb42
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb42
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb43
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb43
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb43
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb43
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb43
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb44
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb44
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb44
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb44
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb44
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb44
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb44
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb45
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb45
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb45
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb46
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb46
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb46
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb46
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb46
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb47
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb47
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb47
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb48
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb49
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb50
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb50
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb50
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb51
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb51
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb51
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb52
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb52
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb52
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb52
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb52
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb53
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb53
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb53
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb53
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb53
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb54
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb54
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb54
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb54
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb54
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb55
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb55
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb55
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb55
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb55
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb55
http://refhub.elsevier.com/S1877-7503(24)00162-5/sb55
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/1873355458944068
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/8251643344377056
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/1531018187057108
http://lattes.cnpq.br/6702579185974800

	Fast convergence of SPH numerical solutions using robust algebraic multilevel
	Introduction
	Mathematical and numerical models 
	Mathematical model
	Numerical model
	Discretization of the 2D steady state heat diffusion model


	Methodology 
	Compressed Sparse Row (CSR)
	Robust parallel Gauss–Seidel–Silva CSR smoother
	Iteration error
	Multigrid
	Complexity order

	Numerical results 
	Canonical discretization with fixed sensor particle
	Quantitative verification of numerical solutions
	2D steady state heat diffusion model (C1-2Ds)
	2D steady state heat diffusion model (C2-2Ds)


	Conclusions 
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


