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SUMMARY 
Frictionless flows with finite vorticity are usually made deter- 

minate by the imposition of boundary conditions specifying the dis- 
tribution of vorticity ' at infinity '. No such boundary conditions 
are available in the case of flows with closed streamlines, and the 
velocity distributions in regions where viscous forces are small (the 
Reynolds number of the flow being assumed large) cannot be made 
determinate by considerations of the fluid as inviscid. It is shown 
that if the motion is to be exactly steady there is an integral con- 
dition, arising from the existence of viscous forces, which must be 
satisfied by the vorticity distribution no matter how small the vis- 
cosity may be. This condition states that the contribution from 
viscous forces to the rate of change of circulation round any stream- 
line must be identically zero. (In cases in which the vortex lines 
are also closed, there is a similar condition concerning the circu- 
lation round vortex lines.) 

The inviscid flow equations are then combined with this integral 
condition in cases for which typical streamlines lie entirely in the 
region of small viscous forces. In  two-dimensional closed flows, 
the vorticity is found to be uniform in a connected region of small 
viscous forces, with a value which remains to be determined-as is 
done explicitly in one simple case-by the condition that the vis- 
cous boundary layer surrounding this region must also be in 
steady motion. Analogous results are obtained for rotationally 
symmetric flows without azimuthal swirl, and for a certain class of 
flows with swirl having no interior boundary to the streamlines in 
an axial plane, the latter case requiring use of the fact that the vortex 
lines are also closed. In  all these cases, the results are such that the 
Bernoulli constant, or ' total head ', varies linearly with the appro- 
priate stream function, and the effect of viscosity on the rate of 
change of vorticity at any point vanishes identically. 

1. GENERAL REMARKS 

The work described herein concerns the steady laminar motion of fluids 
of small viscosity, and is based on the generally accepted premise that, when 
the Reynolds number of a flow field is very large, viscous forces acting on the 
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fluid are small everywhere, except perhaps in the neighbourhood of certain 
surfaces in the fluid. ‘ Small viscous forces ’ here means forces that are small 
compared with unity when made non-dimensional using a length and a 
velocity typical of the flow as a whole (those used in the definition of Reynolds 
number would be suitable). It will usually happen that pressure forces on 
the fluid are of order unity when made non-dimensional in this same way, 
and the above premise is then equivalent to the statement that viscous forces 
are small compared with pressure forces nearly everywhere. 

It is well known, partly as a matter of observation and partly from mathe- 
matical analysis, that, for certain steady flow fields amenable to study, the 
above premise is undoubtedly true. It seems that, if the Reynolds number 
of the flow is allowed to approach infinity, without any other change in the 
conditions of these flow fields, the region of the fluid in which viscous forces 
are not small becomes smaller and smaller, and ultimately reduces, at most, 
to a number of thin layers, usually in the form of boundary layers and wakes. 
In the limit of infinite Reynolds number, the region in which viscous forces 
are not small either disappears altogether or becomes a number of stream- 
surfaces (i.e. surfaces whose tangent planes everywhere contain the local 
velocity vector), which usually coincide with, or are connected with, rigid 
boundaries in the fluid. Across such singular stream-surfaces there may 
be a discontinuity in velocity, as for instance at a rigid boundary where the 
presence of a singular stream-surface ensures that the no-slip condition is 
satisfied even in the limit of zero viscosity. In what follows, the above- 
mentioned premise will simply be accepted as valid generally. 

We shall consider those steady flows that take place in a confined region, 
the motion of the fluid being generated by steady tangential motion of the 
surrounding boundaries (which need not all be rigid). It will be assumed 
that the Reynolds number is large enough for the thicknesses of the asso- 
ciated viscous layers to be small compared with the linear dimensions of the 
region of fluid under consideration. I t  will also be assumed that the motion 
of the fluid is laminar, despite the high Reynolds number (which clearly will 
correspond with reality only if the velocity distribution happens to have 
strong inherent stability). Most of the flows of this type that are capable of 
practical reproduction involve plane rigid boundaries’ moving in their own 
planes, or rigid surfaces of revolution rotating about their axes. Cases in 
which part of the boundary is rigid and stationary, the remaining part of the 
boundary of the region of closed streamlines being a ‘ free boundary layer ’ 
--for example, the motion in a cavity opening off a plane wall over which 
fluid is streaming-are of interest in a wide range of practical problems in 
aerodynamics and hydraulics. Examples of steady flow in a closed region 
are not common, but they perhaps occur often enough in practice to 
warrant notice of their peculiar features. 

The equations governing the steady laminar motion of a uniform in- 
compressible fluid are 

c . u  = 0, (1.1) 
(1.2) u X ~ - V ( ~ / ~ + ~ ~ ~ ) + ~ V ~ U  = aqat  = 0, 
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wherew = V x u, q = IuI, and the other symbols have their usual meanings. 
When the Reynolds number of the motion is large, viscous forces, according 
to our premise, are small everywhere except in the neighbourhood of certain 
singular surfaces, and equation (1.2) reduces approximately to 

u x w  = V H ,  (1.3) 
where H = p / p  + tqz  is the local ‘ total head ’ in the fluid. H is here constant 
over stream-vortex surfaces, or ‘ Bernoulli surfaces ’, each such surface con- 
taining the local vectors u and o in its tangent plane everywhere and being 
swept out by a material vortex line. When v f 0, stream-vortex surfaces 
will not exist, in general, because u xw is then (see (1.2)) not necessarily 
parallel everywhere to the gradient of some scalar function. 

It is well known that equation (1.3), which is approximately valid every- 
where except in the neighbourhood of the singular surfaces, is not suffi- 
cient to allow the velocity distribution to be determined from the condition 
of zero normal velocity at specified boundaries in the field. In the case of 
two-dimensional steady motion, the indeterminacy takes a form such that 
the vorticity-which is constant along a streamline-may vary arbitrarily 
from one streamline to another. It often happens that the inviscid flow 
equations can be made sufficient to determine u with the help of additional 
information, for instance about the variation of o from one streamline to 
another far upstream (most often in the form of a statement that the velocity 
is uniform at infinity). 

However, in the case of flow in a confined region, for which all the stream- 
lines are necessarily closed, the possibility of making equation (1.3) sufficient 
to determine u in the region of small viscous forces, by introducing boundary 
conditions which specifyo everywhere in a region ‘far upstream ’, no longer 
exists. Other means of making the velocity distribution determinate must 
be found, and it is apparent that there is no further information to be found 
from considerations of the fluid as inviscid ; this is the feature that makes the 
study of flow with closed streamlines novel and interesting. It will be shown 
that the action of viscosity imposes certainly one, and, when the vortex lines 
also are closed, two, integral conditions on the distribution of o, and that in 
the cases of two-dimensional flow and of rotationally symmetric flow (with 
suitable restrictions) these integral conditions render the distributions of o 
and u determinate in the region of small viscous forces. The question of 
what further conditions are needed to make the distributions of o and u 
determinate in general three-dimensional flow with closed streamlines is 
left unresolved. We begin with a derivation of the integral conditions in 
the general three-dimensional case. 

2. INTEGRAL CONDITIONS ARISING FROM THE EFFECT OF VISCOSITY 

To obtain a condition which arises from the effect of viscosity and which 
is valid no matter how small the value of Y may be, we operate on the com- 
plete equation of motion (1.2) in such a way that the contributions from all 
terms other than the term containing v vanish identically. Such an 
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operation is to take the line integral around a closed contour (in space) of 
certain shape, with line element dl, giving 

$ ( u x o ) . d l  - $ dl.VH - v $ ( V x w ) . d l  = at (2.1) 

The term on the right-hand side vanishes in view of the steadiness of the 
motion. (It is important to notice that the motion is regarded as exactly 
steady, even though the value of v will later be taken as very small and even 
though steady motion would take a long time to develop from arbitrary 
initial conditions. In  other words, we are considering flows subject to the 
double limiting operation t + 00, v -+ 0, in that order, corresponding in effect, 
to the procedure that would be used in a real observation of the forms of the 
steady flows set up at several different large values of the Reynolds number.) 
The second term on the left-hand side vanishes since H is a single-valued 
function of position. We now make the first term on the left-hand side 
zero by choosing the closed contour to coincide with a streamline, of which 
a line element will be donated by ds. Then, since v is non-zero (although it 
will later be assumed to be small), we have the exact integral condition 

$ (V xw) .ds  = 0, (2.2) 

to be satisfied for every closed streamline. 
It is natural to enquire if there are any other choices of the closed contour 

for which the integral ( u  x o ) . d l  vanishes identically. If there existed a 

family of surfaces such that their normals were everywhere parallel to u x o ,  
we could make the integral zero by choosing the contour as any closed curve 
on one of these surfaces. However, as already remarked, such a family of 
surfaces does not exist in general ; the surface formed by all the streamlines 
passing through a given vortex line will in general be intersected by other 
vortex lines (except when v = 0, which is irrelevant, since we are seeking an 
integral condition which is exact for small but non-zero values of v). For 
reasons related to the symmetry, surfaces which everywhere contain the 
local vectors u and o exist in,cases of two-dimensional motion and of rota- 
tionally symmetric motion without azimuthal swirl when v # 0, but we 
shall see that the condition (2.2) alone is then sufficient to make the distri- 
butions o f o  and u determinate and no other choice of closed contour is needed. 

There exists the possibility that vortex lines are closed and that the 

integral ( u  xo) .d l  may be made zero by choosing the contour to coincide 

with a closed vortex line. Vortex lines may end at a rigid boundary, but 
there is no reason why at least some of the vortex lines in a confined flow 
should not be closed; for such lines we have the additional exact integral 
condition 

where d v  is an element of a vortex line. It appears to be difficult to decide 
whether vortex lines are, or are not, closed in any given flow field, but in one 
case, described in 5 4, this is possible and the condition (2.3)- is utilized. 

f 

f 

$ ( V x w ) . d v  = 0, (2.3) 
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Other contours which are closed, and which are such that each line 
element is orthogonal to u xw, may be imagined (one natural choice is a 
contour which consists of four segments, of which the first and third coincide 
with streamlines, and the second and fourth with vortex lines) ; however, 
their existence depends on the particular properties af the flow, and in any 
case it is not clear how the corresponding integral condition could be made 
use of. 

The integral condition (2.2) (and likewise (2.3), where it is applicable) is 
valid independently of the Reynolds number of the flow. If now the 
Reynolds number is assumed to be large, the equation of inviscid flow, (1.3), 
is approximately valid over nearly all the flow field, and there exists the 
possibility of making use of both equation (1.3) and the condition (2.2). 
Provided the streamline, around which the integral in (2.2) is taken, lies 
entirely in the region of small viscous forces, the integrand in (2.2) may be 
evaluated with the aid of (1.3). It will be shown that, in this way, the form 
of the velocity distribution ifi the region of small viscous forces may be 
determined in certain cases. 

The proviso of the penultimate sentence is equivalent to the requirement 
that the shortest distance from the streamline to any singular surface does 
not tend to zero as v --f 0. Now the velocity in the region of small viscous 
forces will in general be of the same order of magnitude as the tangential 
velocity of the boundaries (as can be verified experimentally in certain 
simple cases, and can in any case be examined a posteriori). Consequently, 
in cases of two-dimensional flow and of rotationally symmetric flow without 
azimuthal swirl, a typical streamline passing through the region of small 
viscous forces, on which the.value of the appropriate stream function + 
differs from that for the outer enclosing boundary or singular surface by a 
finite amount, cannot eome close to the boundary of this region without the 
velocity there being infinite. The above proviso is therefore satisfied for 
typical streamlines in these two cases. However, in more general types of 
flow, it is not certain that streamlines lying entirely in the region of small 
viscous forces exist ; indeed, there are some closed flows for which all the 
closed streamlines pass through a boundary layer region. 

3. STEADY TWO-DIMENSIONAL FLOW WITH CLOSED STREAMLINES 
When the flow is two-dimensional, we.can introduce the stream function 

$, and use ($, .$) as orthogonal curvilinear coordinates, the lines ,$ = const. 
being everywhere normal to the streamlines. The displacements corre- 
sponding to increments in + and .$ are d$[q and h@, where h is an unknown 
function of t,h and [. The inviscid flow equation (1.3) can then be written as 

This equation will be approximately valid, when the Reynolds number is 
large, everywhere except in the neighbourhood of certain singular curves 
(in the plane of motion) which are themselves members of the family of 
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streamlines. Even when the shapes of outer and inner streamlines (perhaps 
given by the shape of enclosing rigid boundaries) bounding a region in 
which (3.1) holds is given, there will in general be a solution of this equation 
for any choice of function w(#),  and the flow in the region of small viscous 
forces can be made determinate only with the aid of further conditions. The 
considerations given in $ 2  supply the integral condition (2.2), which we 
proceed to apply. 

When evaluating the integral in (2.2) for streamlines lying wholly in the 
region of small viscous forces, we can make use of the approximation (3.1), 
whence V x o  becomes a vector parallel to the local streamline, and (2.2) 
takes the form 

Hence (3.3) 

everywhere in a connected region of small viscous forces. (The possibility 
P 

of there being an exception to (3.3) on a streamline for which qds = 0 

-which is possible only if the velocity is zero at all points on the streamline 
-with a possible discontinuity in w across such a streamline, is irrelevant 
since the viscous forces would then be large at such a streamline). The 
distribution of velocity in the region of small viscous forces can be deter- 
mined from (3.3) without difficulty when the shape of the streamline 
bounding this region is known*. 

The argument leading to the simple result (3.3) may be summarized as 
follows. In  view of the fact that v is small, convection of vorticity will 
dominate viscous diffusion of vorticity when both processes occur, so that 
w is approximately constant along streamlines. But, in exactly steady 
motion, the net viscous diffusion of vorticity across a closed streamline 
must be exactly zero (even when the streamline encloses a rigid boundary), 
and this is then possible only if w is also approximately constant across 
streamlines. It seems that two-dimensional flows with closed streamlines 
cannot be exactly steady until the slow but persistent effect of viscous 
diffusion of vorticity across streamlines has evened out any variation of 
vorticity that may have been present initially ; the time required for this 
asymptotic steady state to be set up will of course increase as v decreases. 

9 

* The notion of a two-dimensional ‘ inviscid ’ core with uniform vorticity has 
already been inferred from arguments rather less general or rigorous than those 
given above, and has been applied to some problems of two-dimensional free con- 
vection in closed regions. Pillow (in a dissertation submitted for the degree of Ph.D. 
at the University of Cambridge, 1952) and Batchelor (1954) have used it to cal- 
culate the Eeat transfer across rectangular cavities, and Carrier (1953) has done so 
for a circular cavity. The temperature in the core was shown to be uniform in all 
these cases from an argument based on symmetry of the streamlines, but in fact 
this result is true generally in a simply-connected ‘ non-conducting ’ closed region 
in two dimensions, as may be seen from a proof like that used above. 
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The  value of the constant wo is undetermined as yet, and since the distri- 
bution (3.3) is such that vV2u is identically zero there is no further inform- 
ation to be gained from considerations of the region in which viscous 
forces are small. Surrounding the region in which (3.3) is valid there is a 
singular streamline, in the neighbourhood of which viscous forces are not 
small, and the value of w,, will presumably be determined by the need for 
steady motion to be possible near this singular streamline. The  situation 
can be illustrated by reference to the simple case of flow inside a circular 
cylinder of radius a which rotates steadily with angular velocity Qwl, an 
inner sleeve of length 2raa being held stationary (figure 1). It is evident 
here that, when the Reynolds number is large, viscous forces will be small 
everywhere except near the outer circular boundary, so that the region of 
' inviscid ' flow is circular and in it the fluid rotates as a rigid body with 
angular velocity +coo. The motion in the ' inviscid ' core can be regarded 
as a standing eddy, which is driven by the motion of part of the outer boun- 
dary, the exact speed of rotation of the eddy being determined by the need 
for steadiness in the viscous boundary layer surrounding the eddy. 

fixed sleeve 

cylinder 
ro:ating 
steadily 

-=. 
reqion of inviscid* 
motion with uniform . annular region in 

which viscous 
forces are not 
small 

Figure 1. A case of two-dimensional flow in a closed region. 

The  present paper is concerned with general results rather than solutions- 
for particular configurations of the boundaries, but it may be found illurni- 
Rating to present some consideration of the boundary layer problem asso- 
ciated with the simple system shown in figure 1. Being unable to solve the 
boundary layer equation exactly, I at first solved the problem by linearizing 
it in the manner of Oseen" (which is equivalent to  converting it to a time- 
dependent problem as Rayleigh did for a flat plate). However, it was 

* Professor H. B. Squire has also conceived this simple boundary layer problem 
and has solved it in this same way, in a paper to be published in the Journal of the 
Royal Aeronautical Snciet v .  
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later pointed out to me by Mr W. W. Wood that so far as the relation between 
o,, and w1 is concerned the problem may be solved exactly by using the 
von Mises form of the boundary layer equation. This form (see Modern 
Developments in Fluid Dynamics, Oxford University Press, 1938, Vol. 1, $ SO} 
becomes 

in cases in which the velocity outside the boundary layer is uniform, where 
hdt represents a displacement along the streamline # = const., as before, and 
q is the velocity in this same direction. Then, since the streamlines here are 
closed and q is single-valued, we have 

since the mesh parameter h is approximately constant across the boundary 
layer. The total variation of z,h across the boundary layer tends to zero as 
v -+ 0, so that the solution of (3.5) is effectively 

q2h d t  = const. (3.6) I 
throughout the boundary layer. On evaluating the integral for the stream- 
line at the wall and for one just outside the boundary layer, we find the 
required relation to be 

I t  is still necessary to rely on some approximate procedure like tke Oseen 
linearization for details of the velocity distribution in the boundary layer at 
different values o f f ,  but (3.7) represents the crucial piece of information. 
It should be noted that the basic assumption that the velocity in the region 
of small viscous forces does not tend to zero as v -+ 0 is confirmed in this case. 

Another problem whose examination involves a consideration of the 
exact shape of the boundaries, and which will not be attempted here, con- 
cerns the position of the singular streamlines. The location of these viscous 
layers will sometimes be evident from the nature of the conditions at the 
outer boundary, as in the very simple case represented in figure 1. Cases 
in which their location is not evident will clearly present great difficulties in 
any detailed analysis, akin to those in problems in which a boundary layer 
separates from a rigid wall. The natural assumption that the singular sur- 
faces coincide everywhere with rigid boundaries (except where the contrary 
is evident) needs particularly careful scrutiny. For instance, in a case of 
flow in a region bounded externally by a rigid wall which has a 90" corner, 
a viscous boundary layer would not flow along the wall right up to the corner, 
in general, because there would then be a stagnation point of the inviscid 
flow at the corner ; it is probable that a singular surface exists to divide the 
main body of the fluid from a secondary ' standing eddy ' in the corner, and 
indeed there may be even a whole sequence of such singular surfaces and' 
' standing eddies ' of diminishing size as the corner is approached. 

W0/Wl = (1 -Cr)l'? (3.7) 
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Finally, it is worth noting that steady two-dimensional motion of a 
fluid relative to given boun.daries is unaffected by steady rotation of the 
whole system about an axis normal to the plane of motion (Taylor 1921). 
Consequently, all the above remarks and results apply not only to two- 
dimensional flows enclosed by outer boundaries whose positions are fixed 
and whose velocities are steady, but also to flows enclosed by boundaries 
whose positions and velocities are steady relative to suitably chosen uniformly 
rotating axes. 

4. STEADY ROTATIONALLY SYMMETRIC FLOW IN A CLOSED REGION 

It is convenient here to introduce orthogonal curvilinear coordinates 
([,q,$), where the &lines (on which q and # are constant) are everywhere 
parallel to the component of u lying in an axial plane, the q-lines are azimuthal 

b 
A 

axis of symmetry 

Figure 2. Coordinate system for rotationally symmetric flow. 

circles, and the #-lines ($ being the Stokes stream function of the component 
of the motion in an axial plane) lie in axial planes and are orthogonal to the 
(-lines (figure 2). The displacements corresponding to increments in 

hl&, rdq, h 3 4 ,  6, r l l#  are 

where Itl((, q) is unknown, r is the distance from the axis of symmetry, and 
the definition of # supplies the relation 

where (ul, Ug, 0) are the velocity components. 
The &lines, or streamlines of the components of velocity in an axial 

plane, are bounded externally, and perhaps internally also, by a singular 

h, = (ru1)-', (4.1) 
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curve which is itself a member of the family of &lines. Provided the velo- 
city component u1 in the region of small viscous forces remains of order 
unity as v - 0 -which is evident in the case of flow without swirl, since the 
‘ inviscid ’ core would not otherwise be responding to the motion of the 
boundaries, but is not necessarily true in the case of flow with swirl since the 
motion generated in the ‘ inviscid ’ core may here be primarily an azimuthal 
swirl-a typical streamline will lie in the region of small viscous forces 
over the whole of its length. It will thus be possible to combine the exact 
integral condition (2.2) with the approximate inviscid flow equation (1.3). 
However, only in the case in which the azimuthal component of velocity is 
zero are these two equations sufficient to determine the form of the distri- 
butions of w and u in the region of small viscous forces. 

(a) Flow without azimuthal swirl 

vorticity are (0, w2, 0) where 
The velocity here has components (ul, 0, 0), and the components of the 

1 a(hlu1) 
ma = h,h3 ---* 

Everywhere in the region of small viscous forces, (1.3) is satisfied approxi- 
mately, whence 

a$ 

1 d f w )  
u1w2 = K- 3 d# ’ 

that is, . 
This last relation describes the known proportionality, in inviscid flow, 
between the vorticity and the length of a material element of a vortex line. 
This is as far as one can go, making use only of the equations for inviscid 
motion, and (4.3) is the counterpart of (3.1) in two-dimensional flow. For 
information about the function H(+), which describes the unknown vari- 
ation of vorticity across the streamlines, we must take some account of the 
action of viscosity, and this will be done by applying the integral condition 
(2.2) to closed streamlines lying entirely within the region of small viscous 
forces. 

The components of V x w  are given by 

and the condition (2.2) becomes 

or, in view of (4.1) and (4.2), 
H”(#)fr2ulh,d( = -H’($) ar 2h, 

= 2H’(#)f cose ds 

= 0, (4.4) 
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where 8 is the angle between the tangent to the streamline (( and s increasing) 
and the axis of symmetry (with regard for the sense). Hence, we require 

W(+) = 0, H(+) = 4, (4.5) 
where u is a constant (the other constant of integration being absorbed in 
the definition of +), and 

everywhere in a connected region of small viscous forces (the possibility of 
a different result applying on certain exceptional streamlines again being 
irrelevant, since viscous forces would not be small at such streamlinesj. 

The result (4.6) is an obvious counterpart of the result that the vorticity 
is uniform in the region of small viscous forces in two-dimensional flow, and 
it is also true of (4.6) that the net effect of viscosity on the rate of change of 
the vorticity at any point vanishes identically. (But note that in axisym- 
metric motion the vorticity does not satisfy a heat-conduction type of equa- 
tion, and it does not seem possible here to arrive at the result (4.6) by an 
argument in terms of diffusion of vorticity acioss streamlines.) There is 
also the common linear dependence of H on +, although the meanings of + 
i n  the two cases are not the same. The result established for the region of 
small viscous forces in two-dimensional flow is such that the net viscous 
force on any element of fluid vanishes identically, but this is not true of (4.6). 
The  local viscous force per unit mass of fluid is - VV x w, and it is readily seen 
from (4.3) and (4.6) that this is a uniform vector, of magnitude -20: and 
directed along the axis of symmetry. Thus the local viscous force has a 
simple character, and does not require the velocity distribution to be 
different (by even a small amount) from that for an inviscid fluid, since the 
viscous force can be balanced exactly by a uniform pressure gradient. 

When the shape of the singular surfaces bounding the region of small 
viscous forces is known, the velocity distribution can be found from (4.6). 
The constant u, like wo, then remains to be determined from the condition 
that the surrounding viscous boundary layer is steady. 

wzlr = H($) = u (4-6) 

(b) The general case (flow with swirl) 

vorticity are (w,, w2, w3), where 
The velocity components are now (u,, u2, 0), and the components of the 

The  approximate equation (1.3) then yields the three scalar relations 

(4.10) 
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From (4.9), we have 
rug = C(4) (and o3 = 0), (4.11) 

which describes the constancy of circulation around'a material curve in the 
form of a circle about the axis of symmetry, and then (4.8) reduces fo 

H =  H(y5). (4.12) 
The last scalar equation, (4.10), can be written as 

w2 dH 1 dC2 
r d+ 2r2 d# ' 
_ -  - (4.13) 

which is the generalization of (4.2). 
These relations appropriate to purely inviscid flow are now combined 

with the exact relation (2.2) which arises from the existence of viscous forces. 
This can be done only if there exist streamlines which lie entirely in the 
region of small viscous forces. As before, it follows that such streamlines 
will exist provided u1 does not tend to zero, as v -+ 0, everywhere in the region 
of small viscous forces. However, whereis the possibility of u1 tending to 
zero could be rejected in cases of two-dimensional motion and of rotationally 
symmetric flow without swirl, it cannot immediately be rejected in cases in 
which u1 is not the only component of velocity that may be finite. The  
assumption that u1 does not tend to zero as v -+ 0 is here a genuine restriction, 
which places some cases of rotationally symmetric flow with swirl outside 
the scope of the theory. 

We first find that the components of V xw are given by expressions like 
those on the right-hand sides of (4.7), with w1 and w2 replacing ul and up. 
All these components are independent of 9, and the integral (2.2) round a 
streamline reduces to an integral round a closed .$-line, giving 

$ [ ( V x w ) , u , + ( V x o ) , u 2 ] ~ d ~  h = 0. 
U1 

(4.14) 

When the inviscid relations (4.1 1) and (4.13) are employed, this condition 
reduces to 

dC 1 a(h1ul) 
]ulh, d( = 0, (4.15) 

which is a more general version of (4.4). 
It is not possible to determine the unknown functions H($) and C($) 

from (4.15), and the inviscid flow equations together with the integral con- 
dition (2.2) are not sufficient here to determine the distributions of w and u 
in the region of small viscous forces. However, there is another condition 
that is applicable in this case of rotationally symmetric flow, at any rate 
provided the &lines are not bounded internally by a solid boundary or a 
singular surface. Since w3 --f 0 as v + 0, the angle between the local compo- 
nents of u and w in the axial plane tends to zera as v --f 0, and the &lines and 
the vector lines formed from the components of w in an axial plane (the 
latter being referred. to as ' vortex lines in an axial plane ') nearly coincide. 
This approximate coincidence of the two families of curves may take either 
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of two forms. The &line and ‘vortex line in an axial plane’ that pass 
through any given point may intersect once more at some other point along 
their lengths (or, more generally, may intersect at an odd number of addi- 
tional points) or they may not intersect again (even number of additional 
points.) In the former case the ‘ vortex lines in an axial plane ’ are necessarily 
closed when v is small, whereas in the latter case they have one end at a point 
exterior to all the &lines and another end at a point interior to all the (-lines- 
which is possible only if the area intercepted on an axial plane by the region 
of small viscous forces is bounded internally. Thus, provided the &lines 
have no inner boundary, we conclude that the vortex lines are closed when 
Y is small, and hence that, as explained in $2, 

(V x o ) . d v  = 0. (4.16) d 
For small values of v, when w3 = 0, this condition becomes 

$ [ ( V X W ) ~ W ~ + ( V X W ) ~ ~ ~ ] ~  w1 dg = 0. (4.17) 

Combining (4.17) with (4.14), we have $(:-$)a 1 a(h w d f  w ) = 0, 

which, after some reduction using (4.11) and (4.13), becomes 

r2 $(ulh1 $) d( = 0, 
that is 

(4.18) 

It has already been assumed that the .$-lines are not bounded internally, so 
that there will exist an inner limiting &line which is merely a point. On 
this degenerate &line, h, = 0 and uldC/d# is finite, in general, so that 
the integral in (4.18) is zero; hence 

(4.19) 

The integral cannot be zero, except perhaps on an isolated (-line (since we 
have already supposed that u1 is not zero everywhere, even when v -+ 0), and 
(4.19) becomes 

C = rug = const. (4.20) 

Equation (4.15) now reduces to the form appropriate to flow without swirl, 
and the solution is 

(4.21) 

as before. 
The solution represented by (4.20) and (4.21) is such that the vortex 

lines are circles about the axis of symmetry, as for flow without azimuthal 
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swirl. Moreover, the remarks of the preceding sub-section about the effect 
of viscosity on the rate of change of vorticity at any point, and on the acceler- 
ation of any fluid element, apply here also. When the azimuthal component 
of velocity is allowed to be non-zero, it seems that in truly steady motion 
.this component is necessarily an irrotational velocity field corresponding to 
a circulation about the axis (provided, as above, that (a)  u1 does not tend to 
zero as u -+ 0, and (b )  there is a degenerate inner &line). Note, however, 
that the result (4.20) does not apply in the neighbourhood of the axis of 
symmetry, since, in cases in which the region of flow does include part of 
the axis of symmetry, the axis is part of the streamline that bounds the whole 
flow (in the axial plane) and this streamline necessarily passes through a 
region in which viscous forces are appreciable. 

In  cases in which the area intercepted on an axial plane by the region of 
small viscous forces does have an inner boundary (as, for example, when the 
fluid lies between two anchor rings with a common axis of symmetry, one 
ring enclosing the other), it does not seem possible to deduce the distri- 
butions of o and u in the region of small viscous forces unless the vortex 
lines can first be shown to be closed. 

I am grateful to Dr I. Proudman and to Mr W. W. Wood for their 
useful comments on certain parts of this paper. 
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