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Chapter 1

Principles of Numerical

Calculations

1.1 Introduction

Although mathematics has been used for centuries in one form or another within
many areas of science and industry, modern scientific computing using electronic
computers has its origin in research and developments during the second world war.
In the late forties and early fifties the foundation of numerical analysis was laid as
a separate discipline of mathematics. The new capabilities of performing millions
of operations led to new classes of algorithms, which needed a careful analysis to
ensure their accuracy and stability.

Recent modern development has increased enormously the scope for using nu-
merical methods. Not only has this been caused by the continuing advent of faster
computers with larger memories. Gain in problem solving capabilities through bet-
ter mathematical algorithms have in many cases played an equally important role!
This has meant that today one can treat much more complex and less simplified
problems through massive amounts of numerical calculations. This development has
caused the always close interaction between mathematics on the one hand and sci-
ence and technology on the other to increase tremendously during the last decades.
Advanced mathematical models and methods are now used more and more also in
areas like medicine, economics and social sciences. It is fair to say that today ex-
periment and theory, the two classical elements of scientific method, in many fields
of science and engineering are supplemented in many areas by computations as an
equally important component.

As a rule, applications lead to mathematical problems which in their complete
form cannot be conveniently solved with exact formulas unless one restricts oneself
to special cases or simplified models which can be exactly analyzed. In many cases,
one thereby reduces the problem to a linear problem—for example, a linear system
of equations or a linear differential equation. Such an approach can quite often lead
to concepts and points of view which can, at least qualitatively, be used even in the
unreduced problems.

1
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1.2 Common Ideas and Concepts

In most numerical methods one applies a small number of general and relatively
simple ideas. These are then combined in an inventive way with one another and
with such knowledge of the given problem as one can obtain in other ways—for
example, with the methods of mathematical analysis. Some knowledge of the back-
ground of the problem is also of value; among other things, one should take into
account the order of magnitude of certain numerical data of the problem.

In this chapter we shall illustrate the use of some general ideas behind nu-
merical methods on some simple problems which may occur as subproblems or
computational details of larger problems, though as a rule they occur in a less pure
form and on a larger scale than they do here. When we present and analyze numer-
ical methods, we use to some degree the same approach which was described first
above: we study in detail special cases and simplified situations, with the aim of
uncovering more generally applicable concepts and points of view which can guide
in more difficult problems.

It is important to have in mind that the success of the methods presented
depends on the smoothness properties of the functions involved. In this first survey
we shall tacitly assume that the functions have as many well-behaved derivatives as
is needed.

1.2.1 Fixed-Point Iteration

One of the most frequently recurring ideas in many contexts is iteration (from
the Latin iteratio, “repetition”) or successive approximation. Taken generally,
iteration means the repetition of a pattern of action or process. Iteration in this
sense occurs, for example, in the repeated application of a numerical process—
perhaps very complicated and itself containing many instances of the use of iteration
in the somewhat narrower sense to be described below—in order to improve previous
results. To illustrate a more specific use of the idea of iteration, we consider the
problem of solving a nonlinear equation of the form

x = F (x), (1.2.1)

where F is assumed to be a differentiable function whose value can be computed for
any given value of a real variable x, within a certain interval. Using the method of
iteration, one starts with an initial approximation x0, and computes the sequence

x1 = F (x0), x2 = F (x1), x3 = F (x2), . . . (1.2.2)

Each computation of the type xn+1 = F (xn) is called an iteration. If the sequence
{xn} converges to a limiting value α then we have

α = lim
n→∞

xn+1 = lim
n→∞

F (xn) = F (α),

so x = α satisfies the equation x = F (x). As n grows, we would like the numbers xn

to be better and better estimates of the desired root. One then stops the iterations
when sufficient accuracy has been attained.
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Figure 1.2.1. (a)–(d) Geometric interpretation of iteration xn+1 = F (xn).

A geometric interpretation is shown in Fig. 1.2.1. A root of Equation (1.2.1) is
given by the abscissa (and ordinate) of an intersecting point of the curve y = F (x)
and the line y = x. Using iteration and starting from x0 we have x1 = F (x0).
The point x1 on the x-axis is obtained by first drawing a horizontal line from the
point (x0, F (x0)) = (x0, x1) until it intersects the line y = x in the point (x1, x1)
and from there drawing a vertical line to (x1, F (x1)) = (x1, x2) and so on in a
“staircase” pattern. In Fig. 1.2.1a it is obvious that {xn} converges monotonically
to α. Fig. 1.2.1b shows a case where F is a decreasing function. There we also
have convergence but not monotone convergence; the successive iterates xn are
alternately to the right and to the left of the root α.

But there are also divergent cases, exemplified by Figs. 1.2.1c and 1.2.1d. One
can see geometrically that the quantity which determines the rate of convergence
(or divergence) is the slope of the curve y = F (x) in the neighborhood of the root.
Indeed, from the mean value theorem we have

xn+1 − α

xn − α
=

F (xn) − F (α)

xn − α
= F ′(ξn),
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where ξn lies between xn and α. We see that, if x0 is chosen sufficiently close to
the root, (yet x0 6= α), the iteration will diverge if |F ′(α)| > 1 and converge if
|F ′(α)| < 1. In these cases the root is called, respectively, repulsive and attractive.
We also see that the convergence is faster the smaller |F ′(α)| is.

Example 1.2.1.
A classical fast method for calculating square roots:
The equation x2 = c (c > 0) can be written in the form x = F (x), where

F (x) = 1
2 (x + c/x). If we set

x0 > 0, xn+1 = 1
2 (xn + c/xn) ,

then the α = limn→∞ xn =
√

c (see Fig. 1.2.2)
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Figure 1.2.2. The fix-point iteration xn = (xn + c/xn)/2, c = 2, x0 = 0.75.

For c = 2, and x0 = 1.5, we get x1 = 1
2 (1.5 + 2/1.5) = 1 5

12 = 1.4166666 . . .,
and

x2 = 1.414215 686274, x3 = 1.414213 562375,

which can be compared with
√

2 = 1.414213 562373 . . . (correct to digits shown).
As can be seen from Fig. 1.2.2 a rough value for x0 suffices. The rapid convergence
is due to the fact that for α =

√
c we have

F ′(α) = (1 − c/α2)/2 = 0.

One can in fact show that if xn has t correct digits, then xn+1 will have at least
2t − 1 correct digits; see Example 6.3.3 and the following exercise. The above
iteration method is used quite generally on both pocket calculators and computers
for calculating square roots. The computation converges for any x0 > 0.

Iteration is one of the most important aids for the practical as well as theoreti-
cal treatment of both linear and nonlinear problems. One very common application
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of iteration is to the solution of systems of equations. In this case {xn} is a sequence
of vectors, and F is a vector-valued function. When iteration is applied to differen-
tial equations {xn} means a sequence of functions, and F (x) means an expression in
which integration or other operations on functions may be involved. A number of
other variations on the very general idea of iteration will be given in later chapters.

The form of equation (1.2.1) is frequently called the fixed point form, since
the root α is a fixed point of the mapping F . An equation may not be given
originally in this form. One has a certain amount of choice in the rewriting of
equation f(x) = 0 in fixed point form, and the rate of convergence depends very
much on this choice. The equation x2 = c can also be written, for example, as
x = c/x. The iteration formula xn+1 = c/xn, however, gives a sequence which
alternates between x0 (for even n) and c/x0 (for odd n)—the sequence does not
even converge!

Let an equation be given in the form f(x) = 0, and for any k 6= 0, set

F (x) = x + kf(x).

Then the equation x = F (x) is equivalent to the equation f(x) = 0. Since F ′(α) =
1 + kf ′(α), we obtain the fastest convergence for k = −1/f ′(α). Because α is not
known, this cannot be applied literally. However, if we use xn as an approximation
this leads to the choice F (x) = x − f(x)/f ′(x), or the iteration

xn+1 = xn − f(xn)

f ′(xn)
. (1.2.3)

This is the celebrated Newton’s method.1 (Occasionally this method is referred
to as the Newton–Raphson method.) We shall derive it in another way below.

Example 1.2.2.
The equation x2 = c can be written in the form f(x) = x2 − c = 0. Newton’s

method for this equation becomes

xn+1 = xn − x2
n − c

2xn
=

1

2

(

xn +
c

xn

)

,

which is the fast method in Example 1.2.1.

1.2.2 Linearization and Extrapolation

Another often recurring idea is that of linearization. This means that one locally,
i.e. in a small neighborhood of a point, approximates a more complicated function
with a linear function. We shall first illustrate the use of this idea in the solution of
the equation f(x) = 0. Geometrically, this means that we are seeking the intersec-
tion point between the x-axis and the curve y = f(x); see Fig. 1.2.3. Assume that

1Isaac Newton (1642–1727), English mathematician, astronomer and physicist, invented, inde-
pendently of the German mathematician and philosopher Gottfried W. von Leibniz (1646–1716),
the infinitesimal calculus. Newton, the Greek mathematician Archimedes (287–212 B.C.) and
the German mathematician Carl Friedrich Gauss (1777–1883) gave pioneering contributions to
numerical mathematics and to other sciences.
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Figure 1.2.3. Newton’s method.

we have an approximating value x0 to the root. We then approximate the curve
with its tangent at the point (x0, f(x0)). Let x1 be the abscissa of the point of
intersection between the x-axis and the tangent. Since the equation for the tangent
reads

y − f(x0) = f ′(x0)(x − x0),

we obtain by setting y = 0, the approximation

x1 = x0 − f(x0)/f ′(x0).

In many cases x1 will have about twice as many correct digits as x0. However, if
x0 is a poor approximation and f(x) far from linear, then it is possible that x1 will
be a worse approximation than x0.

If we combine the ideas of iteration and linearization, that is, we substitute
xn for x0 and xn+1 for x1, we rediscover Newton’s method mentioned earlier. If x0

is close enough to α the iterations will converge rapidly; see Fig. 1.2.3, but there
are also cases of divergence.

x
1

x
0

x
2

Figure 1.2.4. The secant method.

Another way, instead of drawing the tangent, to approximate a curve locally
with a linear function is to choose two neighboring points on the curve and to ap-
proximate the curve with the secant which joins the two points; see Fig. 1.2.4. The
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secant method for the solution of nonlinear equations is based on this approxi-
mation. This method, which preceded Newton’s method, is discussed more closely
in Sec. 6.4.1.

Newton’s method can easily be generalized to solve a system of nonlinear
equations

fi(x1, x2, . . . , xn) = 0, i = 1 : n.

or f(x) = 0, where f and x now are vectors in Rn. Then xn+1 is determined by
the system of linear equations

f ′(xn)(xn+1 − xn) = f(xn), (1.2.4)

where

f ′(x) =







∂f1

∂x1

. . . ∂f1

∂xn

...
...

∂fn

∂x1

. . . ∂fn

∂xn






∈ Rn×n, (1.2.5)

is the matrix of partial derivatives of f with respect to x. This matrix is called the
Jacobian of f and often denoted by J(x). System of nonlinear equations arise in
many different contexts in scientific computing, e.g., in the solution of differential
equations and optimization problems. We shall several times, in later chapters,
return to this fundamental concept.

The secant approximation is useful in many other contexts. It is, for instance,
generally used when one “reads between the lines” or interpolates in a table of
numerical values. In this case the secant approximation is called linear interpo-
lation. When the secant approximation is used in numerical integration, that
is in the approximate calculation of a definite integral,

I =

∫ b

a

y(x) dx, (1.2.6)

(see Fig. 1.2.5) it is called the trapezoidal rule. With this method, the area
between the curve y = y(x) and the x-axis is approximated with the sum T (h) of
the areas of a series of parallel trapezoids.

Using the notation of Fig. 1.2.5, we have

T (h) = h
1

2

n−1
∑

i=0

(yi + yi+1), h =
b − a

n
. (1.2.7)

(In the figure, n = 4.) We shall show in a later chapter that the error is very nearly
proportional to h2 when h is small. One can then, in principle, attain arbitrary
high accuracy by choosing h sufficiently small. However, the computational work
involved is roughly proportional to the number of points where y(x) must be com-
puted, and thus inversely proportional to h. Thus the computational work grows
rapidly as one demands higher accuracy (smaller h).

Numerical integration is a fairly common problem because in fact it is quite
seldom that the “primitive” function can be analytically calculated in a finite ex-
pression containing only elementary functions. It is not possible, for example, for
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Figure 1.2.5. Numerical integration by the trapezoidal rule (n = 4).

such simple functions as ex2

or (sin x)/x. In order to obtain higher accuracy with
significant less work than the trapezoidal rule requires, one can use one of the fol-
lowing two important ideas:

(a) Local approximation of the integrand with a polynomial of higher degree,
or with a function of some other class, for which one knows the primitive
function.

(b) Computation with the trapezoidal rule for several values of h and then ex-
trapolation to h = 0, so-called Richardson extrapolation2 or the deferred
approach to the limit, with the use of general results concerning the de-
pendence of the error on h.

The technical details for the various ways of approximating a function with
a polynomial, among others Taylor expansions, interpolation, and the method of
least squares, are treated in later chapters.

The extrapolation to the limit can easily be applied to numerical integration
with the trapezoidal rule. As was mentioned previously, the trapezoidal approxima-
tion (1.2.7) to the integral has an error approximately proportional to the square
of the step size. Thus, using two step sizes, h and 2h, one has:

T (h) − I ≈ kh2, T (2h)− I ≈ k(2h)2,

and hence 4(T (h)− I) ≈ T (2h) − I, from which it follows that

I ≈ 1
3 (4T (h) − T (2h)) = T (h) + 1

3 (T (h) − T (2h)).

Thus, by adding the corrective term 1
3 (T (h) − T (2h)) to T (h), one should get an

estimate of I which typically is far more accurate than T (h). In Sec. 3.6 we shall see

2Lewis Fry Richardson (1881–1953) studied mathematics, physics, chemistry, botany and zo-
ology. He graduated from King’s College, Cambridge 1903. He was the first (1922) to attempt to
apply the method of finite differences to weather prediction, long before the computer age!
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that the improvements is in most cases quite striking. The result of the Richardson
extrapolation is in this case equivalent to the classical Simpson’s rule3 for nu-
merical integration, which we shall encounter many times in this volume. It can be
derived in several different ways. Sec. 3.6 also contains application of extrapolation
to other problems than numerical integration, as well as a further development of the
extrapolation idea, namely repeated Richardson extrapolation. In numerical
integration this is also known as Romberg’s method.

Knowledge of the behavior of the error can, together with the idea of extrap-
olation, lead to a powerful method for improving results. Such a line of reasoning is
useful not only for the common problem of numerical integration, but also in many
other types of problems.

Example 1.2.3.

The integral
∫ 12

10
f(x) dx is computed for f(x) = x3 by the trapezoidal method.

With h = 1 we obtain

T (h) = 2, 695, T (2h) = 2, 728,

and extrapolation gives T = 2.684, equal to the exact result. Similarly, for f(x) = x4

we obtain
T (h) = 30, 009, T (2h) = 30, 736,

and with extrapolation T = 29, 766.7 (exact 29, 766.4).

1.2.3 Finite Difference Approximations

The local approximation of a complicated function by a linear function leads to an-
other frequently encountered idea in the construction of numerical methods, namely
the approximation of a derivative by a difference quotient. Fig. 1.2.6 shows the
graph of a function y(x) in the interval [xn−1, xn+1] where xn+1−xn = xn−xn−1 =
h; h is called the step size. If we set yi = y(xi), i = n−1, n, n+1, then the derivative
at xn can be approximated by a forward difference quotient,

y′(xn) ≈ yn+1 − yn

h
, (1.2.8)

or a similar backward difference quotient involving yn and yn−1. The error in the
approximation is called a discretization error.

However, it is conceivable that the centered difference approximation

y′(xn) ≈ yn+1 − yn−1

2h
(1.2.9)

will usually be more accurate. It is in fact easy to motivate this. By Taylor’s
formula,

y(x + h) − y(x) = y′(x)h + y′′(x)h2/2 + y′′′(x)h3/6 + . . . (1.2.10)

−y(x − h) + y(x) = y′(x)h − y′′(x)h2/2 + y′′′(x)h3/6 − . . . (1.2.11)

3Thomas Simpson (1710–1761), English mathematician best remembered for his work on inter-
polation and numerical methods of integration. He taught mathematics privately in the London
coffee–houses and from 1737 began to write texts on mathematics.



10 Chapter 1. Principles of Numerical Calculations

(n − 1)h nh (n + 1)h

y
n−1

y
n

y
n+1

Figure 1.2.6. Finite difference quotients.

Set x = xn. Then, by the first of these equations,

y′(xn) =
yn+1 − yn

h
− h

2
y′′(xn) + . . .

Next, add the two Taylor expansions and divide by 2h. Then the first error term
cancels and we have

y′(xn) =
yn+1 − yn−1

2h
+

h2

6
y′′′(xn) + . . .

We shall in the sequel call a formula (or a method), where a step size parameter h
is involved, accurate of order p, if its error is approximately proportional to hp.
Since y′′(x) vanishes for all x if and only if y is a linear function of x, and similarly,
y′′′(x) vanishes for all x if and only if y is a quadratic function, we have established
the following important result:

Lemma 1.2.1. The forward difference approximation (1.2.8) is exact only for a
linear function, and it is only first order accurate in the general case. The centered
difference approximation (1.2.9) is exact also for a quadratic function, and is second
order accurate in the general case.

For the above reason the approximation (1.2.9) is, in most situations, prefer-
able to (1.2.8). However, there are situations when these formulas are applied to the
approximate solution of differential equations where the forward difference approx-
imation suffices, but where the centered difference quotient is entirely unusable, for
reasons which have to do with how errors are propagated to later stages in the cal-
culation. We shall not discuss it more closely here, but mention it only to intimate
some of the surprising and fascinating mathematical questions which can arise in
the study of numerical methods.

Higher derivatives are approximated with higher differences, that is, differ-
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ences of differences, another central concept in numerical calculations. We define:

(∆y)n = yn+1 − yn;

(∆2y)n = (∆(∆y))n = (yn+2 − yn+1) − (yn+1 − yn)

= yn+2 − 2yn+1 + yn;

(∆3y)n = (∆(∆2y))n = yn+3 − 3yn+2 + 3yn+1 − yn;

etc. For simplicity one often omits the parentheses and writes, for example, ∆2y5

instead of (∆2y)5. The coefficients that appear here in the expressions for the higher
differences are, by the way, the binomial coefficients. In addition, if we denote the
step length by ∆x instead of by h, we get the following formulas, which are easily
remembered:

dy

dx
≈ ∆y

∆x
,

d2y

dx2
≈ ∆2y

(∆x)2
, (1.2.12)

etc. Each of these approximations is second order accurate for the value of the
derivative at an x which equals the mean value of the largest and smallest x for
which the corresponding value of y is used in the computation of the difference. (The
formulas are only first order accurate when regarded as approximations to deriva-
tives at other points between these bounds.) These statements can be established
by arguments similar to the motivation for the formulas (1.2.8) and (1.2.9).

Taking the difference of the Taylor expansions (1.2.10)–(1.2.11) with one more
term in each, and dividing by h2 we obtain the following important formula

y′′(xn) =
yn+1 − 2yn + yn−1

h2
− h2

12
yiv(xn) + · · · ,

Introducing the central difference operator

δyn =
(

xn + 1
2h

)

− y
(

xn − 1
2h

)

, (1.2.13)

and neglecting higher order terms we get

y′′(xn) ≈ 1

h2
δ2yn − h2

12
yiv(xn). (1.2.14)

The approximation of equation (1.2.9) can be interpreted as an application of
(1.2.12) with ∆x = 2h, or else as the mean of the estimates which one gets according
to equation (1.2.12) for y′((n + 1

2 )h) and y′((n − 1
2 )h).

When the values of the function have errors, for example, when they are
rounded numbers, the difference quotients become more and more uncertain the
less h is. Thus if one wishes to compute the derivatives of a function given by a
table, one should as a rule use a step length which is greater than the table step.

Example 1.2.4.
For y = cosx one has, using function values correct to six decimal digits:
This arrangement of the numbers is called a difference scheme. Note that

the differences are expressed in units of 10−6. Using (1.2.9) and (1.2.12) one gets

y′(0.60) ≈ (0.819648− 0.830941)/0.02 = −0.56465,

y′′(0.60) ≈ −83 · 10−6/(0.01)2 = −0.83.
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x y ∆y ∆2y

0.59 0.830941
-5605

0.60 0.825336 -83
-5688

0.61 0.819648

The correct results are, with six decimals,

y′(0.60) = −0.564642, y′′(0.60) = −0.825336.

In y′′ we only got two correct decimal digits. This is due to cancellation, which is
an important cause of loss of accuracy; see further Sec. 2.2.3. Better accuracy can
be achieved by increasing the step h; see Problem 5 at the end of this section.

Finite difference approximations are useful for partial derivatives too. Suppose
that the values ui,j = u(xi, yj) of a function u(x, y) are given on a square grid with
grid size h, i.e. xi = x0 + ih, yj = y0 + jh, 0 ≤ i ≤ M , 0 ≤ j ≤ N that covers
a rectangle. A very important equation of Mathematical Physics is Poisson’s
equation:4

∂2u

∂x2
+

∂2u

∂y2
= f(x, y), (1.2.15)

where f(x, y) is a given function. Under certain conditions, gravitational, electric,
magnetic, and velocity potentials satisfy Laplace equation5, which is (1.2.15)
with f(x, y) = 0. By (1.2.14), a second order accurate approximation of Poisson’s
equation is given by

ui+1,j − 2ui,j + ui−1,j

h2
+

ui,j+1 − 2ui,j + ui,j−1

h2

=
1

h2

(

ui,j+1 + ui−1,j + ui+1,j + ui,j−1 − 4ui,j

)

= fi,j .

This corresponds to the “computational molecule”





1
1 −4 1

1





Review Questions

1. Make lists of the concepts and ideas which have been introduced. Review their
use in the various types of problems mentioned.

4Siméon Denis Poisson (1781–1840).
5Pierre Simon, Marquis de Laplace (1749–1827).
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2. Discuss the convergence condition and the rate of convergence of the method
of iteration for solving x = F (x).

3. What is the trapezoidal rule? What is said about the dependence of its error
on the step length?

Problems and Computer Exercises

1. Calculate
√

10 to seven decimal places using the method in Example 1.2.1.
Begin with x0 = 2.

2. Consider f(x) = x3−2x−5. The cubic equation f(x) = 0 has been a standard
test problem, since Newton used it in 1669 to demonstrate his method. By
computing (say) f(x) for x = 1, 2, 3, we see that x = 2 probably is a rather
good initial guess. Iterate then by Newton’s method until you trust that the
result is correct to six decimal places.

3. The equation x3−x = 0 has three roots, −1, 0, 1. We shall study the behaviour
of Newton’s method on this equation, with the notations used in §1.2.2 and
Fig. 1.2.3.

(a) What happens if x0 = 1/
√

3 ? Show that xn converges to 1 for any
x0 > 1/

√
3. What is the analogous result for convergence to −1?

(b) What happens if x0 = 1/
√

5? Show that xn converges to 0 for any x0 ∈
(−1/

√
5, 1/

√
5).

Hint: Show first that if x0 ∈ (0, 1/
√

5) then x1 ∈ (−x0, 0). What can then
be said about x2?

(c) Find, by a drawing (with paper and pencil), limxn if x0 is a little less than
1/

√
3. Find by computation limxn if x0 = 0.46.

*(d) A complete discussion of the question in (c) is rather complicated, but
there is an implicit recurrence relation that produces a decreasing sequence
{a1 = 1/

√
3, a2, a3, . . .}, by means of which you can easily find limn→∞ xn

for any x0 ∈ (1/
√

5, 1/
√

3). Try to find this recurrence.

Answer: ai − f(ai)/f ′(ai) = −ai−1; limn→∞ xn = (−1)i if x0 ∈ (ai, ai+1);
a1 = 0.577, a2 = 0.462, a3 = 0.450, a4 ≈ limi→∞ ai = 1/

√
5 = 0.447.

4. Calculate
∫ 1/2

0 ex dx

(a) to six decimals using the primitive function.

(b) with the trapezoidal rule, using step length h = 1/4.

(c) using Richardson extrapolation to h = 0 on the results using step length
h = 1/2, and h = 1/4.

(d) Compute the ratio between the error in the result in (c) to that of (b).

5. In Example 1.2.4 we computed y′′(0.6) for y = cos(x), with step length h =
0.01. Make similar calculations using h = 0.1, h = 0.05 and h = 0.001. Which
value of h gives the best result, using values of y to six decimal places? Discuss
qualitatively the influences of both the rounding errors in the function values
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and the error in the approximation of a derivative with a difference quotient
on the result for various values of h.

1.3 Some Numerical Algorithms

For a given numerical problem one can consider many different algorithms. These
can differ in efficiency and reliability and give approximate answers sometimes with
widely varying accuracy. In the following we give a few examples of how algorithms
can be developed to solve some typical numerical problems.

1.3.1 Recurrence Relations

One of the most important and interesting parts of the preparation of a problem
for a computer is to find a recursive description of the task. Often an enormous
amount of computation can be described by a small set of recurrence relations.
Euler’s method for the step-by-step solution of ordinary differential equations is an
example. Other examples will be given in this section; see also problems at the end
of this section.

A common computational task is the evaluation of a polynomial, at a given
point x where, say,

p(x) = a0x
3 + a1x

2 + a2x + a3 = ((a0x + a1)x + a2)x + a3.

We set b0 = a0, and compute

b1 = b0x + a1, b2 = b1x + a2, p(x) = b3 = b2x + a3.

This illustrates, for n = 3, Horner’s rule for evaluating a polynomial of degree n,

p(x) = a0x
n + a1x

n−1 + · · · + an−1x + an,

This algorithm can be described by the recurrence relation:

b0 = a0, bi = bi−1x + ai, i = 1 : n, (1.3.1)

where p(x) = bn.
The quantities bi in (1.3.1) are of intrinsic interest because of the following

result, often called synthetic division:

p(x) − p(z)

x − z
=

n−1
∑

i=0

bix
n−1−i, (1.3.2)

where the bi are defined by (1.3.1). The proof of this result is left as an exercise.
Synthetic division is used, for instance, in the solution of algebraic equations, when
already computed roots are successively eliminated. After each elimination, one can
deal with an equation of lower degree. This process is called deflationsee Sec. 6.5.5.
. (As shown in Sec. 6.6.4, some care is necessary in the numerical application of
this idea.)

The proof of the following useful relation is left as an exercise to the reader:
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Lemma 1.3.1.
Let the bi be defined by (1.3.1) and

c0 = b0, ci = bi + zci−1, i = 1 : n − 1. (1.3.3)

Then p′(z) = cn−1.

Recurrence relations are among the most valuable aids in numerical calcu-
lation. Very extensive calculations can be specified in relatively short computer
programs with the help of such formulas. However, unless used in the right way
errors can grow exponentially and completely ruin the results.

Example 1.3.1.

To compute the integrals In =

∫ 1

0

xn

x + 5
dx, i = 1 : N one can use the

recurrence relation
In + 5In−1 = 1/n, (1.3.4)

which follows from

In + 5In−1 =

∫ 1

0

xn + 5xn−1

x + 5
dx =

∫ 1

0

xn−1 dx =
1

n
.

Below we use this formula to compute I8, using six decimals throughout. For n = 0
we have

I0 = [ln(x + 5)]10 = ln 6 − ln 5 = 0.182322.

Using the recurrence relation we get

I1 = 1 − 5I0 = 1 − 0.911610 = 0.088390,

I2 = 1/2 − 5I1 = 0.500000− 0.441950 = 0.058050,

I3 = 1/3 − 5I2 = 0.333333− 0.290250 = 0.043083,

I4 = 1/4 − 5I3 = 0.250000− 0.215415 = 0.034585,

I5 = 1/5 − 5I4 = 0.200000− 0.172925 = 0.027075,

I6 = 1/6 − 5I5 = 0.166667− 0.135375 = 0.031292,

I7 = 1/7 − 5I6 = 0.142857− 0.156460 = −0.013603.

It is strange that I6 > I5, and obviously absurd that I7 < 0! The reason for the
absurd result is that the round-off error ǫ in I0 = 0.18232156 . . ., whose magnitude
is about 0.44 · 10−6 is multiplied by (−5) in the calculation of I1, which then has an
error of −5ǫ. That error produces an error in I2 of 52ǫ, etc. Thus the magnitude
of the error in I7 is 57ǫ = 0.0391, which is larger than the true value of I7. On top
of this comes the round-off errors committed in the various steps of the calculation.
These can be shown in this case to be relatively unimportant.

If one uses higher precision, the absurd result will show up at a later stage.
For example, a computer that works with a precision corresponding to about 16
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decimal places, gave a negative value to I22 although I0 had full accuracy. The
above algorithm is an example of a disagreeable phenomenon, called numerical
instability.

We now show how, in this case, one can avoid numerical instability by choosing
a more suitable algorithm.

Example 1.3.2.
We shall here use the recurrence relation in the other direction,

In−1 = (1/n − In)/5. (1.3.5)

Now the errors will be divided by −5 in each step. But we need a starting value.
We can directly see from the definition that In decreases as n increases. One can
also surmise that In decreases slowly when n is large (the reader is recommended
to motivate this). Thus we try setting I12 = I11. It then follows that

I11 + 5I11 ≈ 1/12, I11 ≈ 1/72 ≈ 0.013889.

(show that 0 < I12 < 1/72 < I11). Using the recurrence relation we get

I10 = (1/11 − 0.013889)/5 = 0.015404, I9 = (1/10− 0.015404)/5 = 0.016919,

and further

I8 = 0.018838, I7 = 0.021232, I6 = 0.024325, I5 = 0.028468,

I4 = 0.034306, I3 = 0.043139, I2 = 0.058039, I1 = 0.088392,

and finally I0 = 0.182322. Correct!
If we instead simply take as starting value I12 = 0, one gets I11 = 0.016667,

I10 = 0.018889, I9 = 0, 016222, I8 = 0.018978, I7 = 0.021204, I6 = 0.024331, and
I5, . . . , I0 have the same values as above. The difference in the values for I11 is
0.002778. The subsequent values of I10, I9, . . . , I0 are quite close because the error
is divided by -5 in each step. The results for In obtained above have errors which
are less than 10−3 for n ≤ 8.

The reader is warned, however, not to draw erroneous conclusions from the
above example. The use of a recurrence relation “backwards” is not a universal
recipe as will be seen later on! Compare also Problems 6 and 7 at the end of this
section.

1.3.2 Divide and Conquer Strategy

A powerful strategy for solving large scale problems is the divide and conquer
strategy. The idea is to split a high dimensional problem into problems of lower
dimension. Each of these are then again split into smaller subproblems, etc., until
a number of sufficiently small problems are obtained. The solution of the initial
problem is then obtained by combining the solution of the subproblems working
backwards in the hierarchy.
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We illustrate the idea on the computation of the sum s =
∑n

i=1 ai. The usual
way to proceed is to use the recursion

s0 = 0, si = si−1 + ai, i = 1 : n.

Another order of summation is as illustrated below for n = 23 = 8:

a1

ց
a2

ւ
a3

ց
a4

ւ
a5

ց
a6

ւ
a7

ց
a8

ւ
s1:2

ց
s3:4

ւ
s5:6

ց
s7:8

ւ
s1:4

ց
s5:8

ւ
s1:8

where si,j = ai + · · ·+aj. In this table each new entry is obtained by adding its two
neighbors in the row above. Clearly this can be generalized to compute an arbitrary
sum of n = 2k terms in k steps. In the first step we perform n/2 sums of two terms,
then n/4 partial sums each of 4 terms, etc., until in the kth step we compute the
final sum.

This summation algorithm uses the same number of additions as the first one.
However, it has the advantage that it splits the task in several subtasks that can
be performed in parallel. For large values of n this summation order can also be
much more accurate than the conventional order (see Problem 2.3.5, Chapter 2).
Espelid [9] gives an interesting discussion of such summation algorithms.

The algorithm can also be described in another way. Consider the following
definition of a summation algorithm for computing the s(i, j) = ai + · · ·+ aj , j > i:

sum = s(i, j);

if j = i + 1 then sum = ai + aj ;

else k = ⌊(i + j)/2⌋; sum = s(i, k) + s(k + 1, j);

end

This function defines s(i, j) in a recursive way; if the sum consists of only two terms
then we add them and return with the answer. Otherwise we split the sum in two
and use the function again to evaluate the corresponding two partial sums. This
approach is aptly called the divide and conquer strategy. The function above is
an example of a recursive algorithm—it calls itself. Many computer languages
(e.g., Matlab ) allow the definition of such recursive algorithms. The divide and
conquer is a top down description of the algorithm in contrast to the bottom up
description we gave first.

There are many other less trivial examples of the power of the divide and
conquer approach. It underlies the Fast Fourier Transform and leads to efficient
implementations of, for example, matrix multiplication, Cholesky factorization, and
other matrix factorizations. Interest in such implementations have increased lately
since it has been realized that they achieve very efficient automatic parallelization
of many tasks.
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1.3.3 Approximation of Functions

Many important function in applied mathematics cannot be expressed in finite
terms of elementary functions, and must be approximated by numerical methods.
Examples from statistics are the normal probability function, the chi-square dis-
tribution function, the exponential integral, and the Poisson distribution. These
can, by simple transformations, be brought to particular cases of the incomplete
gamma function

γ(a, z) =

∫ z

0

e−tta−1dt, ℜa > 0, (1.3.6)

A collection of formulas that can be used to evaluate this function is found in
Abramowitz and Stegun [1, Sec. 6.5]. Codes and some theoretical background are
given in Numerical Recipes [34, Sec. 6.2–6.3].

Example 1.3.3.
As a simple example we consider evaluating the error function defined by

erf(x) =
2√
π

∫ x

0

e−t2 dt, (1.3.7)

for x ∈ [0, 1]. This function is encountered in computing the distribution function
of a normal deviate. It takes the values erf(0) = 0, erf(∞) = 1, and is related to
the incomplete gamma functions by erf(x) = γ(1/2, x2).

In order to compute erf(x) for x ∈ [0, 1] with a relative error less than 10−8

with a small number of arithmetic operations, the function can be approximated by
a power series. Setting z = −t2 in the well known Maclaurin series for ez, truncating
after n + 1 terms and integrating term by term we obtain the approximation

erf(x) ≈ 2√
π

∫ x

0

n
∑

j=0

(−1)j t2j

j!
dt =

2√
π

n
∑

j=0

ajx
2j+1, (1.3.8)

where

a0 = 1, aj =
(−1)j

j!(2j + 1)
.

(Note that erf(x) is a odd function of x.) This series converges for all x, but is
suitable for numerical computations only for values of x which are not too large. To
evaluate the series we note that the coefficients aj satisfies the recurrence relation

aj = −aj−1
(2j − 1)

j(2j + 1)
, j > 0.

This recursion shows that for x ∈ [0, 1] the absolute values of the terms tj = ajx
2j+1

decrease monotonically. This implies that the absolute error in a partial sum is
bounded by the absolute value of the first neglected term. (Why? For an answer
see Theorem 3.1.5 in Chapter 3.)

A possible algorithm for evaluating the sum in (1.3.8) is then:
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Set s0 = t0 = x; for j = 1, 2, . . . compute

tj = −tj−1
(2j − 1)

j(2j + 1)
x2, sj = sj−1 + tj , until |tj | ≤ ·10−8sj .

Here we have estimated the error by the last term added in the series. Since we
have to compute this term for the error estimate we might as well use it! Note also
that in this case, where the number of terms is fixed in advance, Horner’s scheme
is not suitable for the evaluation. Fig. 1.3.1 shows the graph of the relative error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 1.3.1. Relative error e(x) = |p2n+1(x) − erf(x)|/erf(x).

in the computed approximation p2n+1(x). At most twelve terms in the series were
needed.

In the above example there are no errors in measurement, but the “model” of
approximating the error function with a polynomial is not exact, since the function
demonstrably is not a polynomial. There is a truncation error6 from truncat-
ing the series, which can in this case be made as small as one wants by choosing
the degree of the polynomial sufficiently large (e.g., by taking more terms in the
Maclaurin series).

The use of power series and rational approximations will be studied in depth
in Chapter 3, where also other more efficient methods than the Maclaurin series for
approximation by polynomials will be treated.

A different approximation problem, which occurs in many variants, is to ap-
proximate a function f by a member f∗ of a class of functions which is easy to work
with mathematically (e.g., polynomials, rational functions, or trigonometric poly-
nomials), where each particular function in the class is specified by the numerical
values of a number of parameters.

6In general the error due to replacing an infinite process by a finite is referred to as a truncation
error.
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In computer aided design (CAD) curves and surfaces have to be represented
mathematically, so that they can be manipulated and visualized easily. Important
applications occur in aircraft and automotive industries. For this purpose spline
functions are now used extensively. The name spline comes from a very old tech-
nique in drawing smooth curves, in which a thin strip of wood, called a draftsman’s
spline, is bent so that it passes trough a given set of points. The points of inter-
polation are called knots and the spline is secured at the knots by means of lead
weights called ducks. Before the computer age splines were used in ship building
and other engineering designs.

Bézier curves, which can also be used for these purposes, were developed
in 1962 by Bézier and de Casteljau, when working for the French car companies
Renault and Citroën,

1.3.4 The Principle of Least Squares

In many applications a linear mathematical model is to be fitted to given observa-
tions. For example, consider a model described by a scalar function y(t) = f(x, t),
where x ∈ Rn is a parameter vector to be determined from measurements (yi, ti),
i = 1 : m. There are two types of shortcomings to take into account: errors in
the input data, and shortcomings in the particular model (class of functions, form),
which one intends to adopt to the input data. For ease in discussion. We shall call
these measurement errors and errors in the model, respectively.

In order to reduce the influence of measurement errors in the observations one
would like to use a greater number of measurements than the number of unknown
parameters in the model. If f(x, t) be linear in x and of the form

f(x, t) =

n
∑

j=1

xjφj(t).

Then the equations

yi =

n
∑

j=1

xjφj(ti), i = 1 : m,

form an overdetermined linear system Ax = b, where aij = φj(ti) and bi = yi.
The resulting problem is then to “solve” an overdetermined linear system of
equations Ax = b. where b ∈ Rm, A ∈ Rm×n (m > n). Thus we want to find
a vector x ∈ Rn such that Ax is the “best” approximation to b. We refer in the
following to r = b − Ax as the residual vector.

There are many possible ways of defining the “best” solution. A choice which
can often be motivated for statistical reasons and which also leads to a simple
computational problem is to take as solution a vector x, which minimizes the sum
of the squared residuals, i.e.

min
x∈Rn

m
∑

i=1

r2
i , (1.3.9)

The principle of least squares for solving an overdetermined linear system was first
used by Gauss, who in 1801 used it to successively predicted the orbit of the as-
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teroid Ceres. It can shown that the least squares solution satisfies the normal
equations

AT Ax = AT b. (1.3.10)

The matrix AT A is symmetric and can be shown to be nonsingular if A has linearly
independent columns, in which case Ax = b has a unique least squares solution.
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Figure 1.3.2. Fitting a linear relation to observations.

Example 1.3.4.
The points in Fig. 1.3.2 show for n = 1 : 5, the time tn, for the nth passage

of a swinging pendulum through its point of equilibrium. The condition of the
experiment were such that a linear relation of the form t = a + b n can be assumed
to be valid. Random errors in measurement are the dominant cause of the deviation
from linearity shown in Fig. 1.3.2. This deviation causes the values of the parameters
a and b to be uncertain. The least squares fit to the model, shown by the straight
line in Fig 1.3.2, minimizes the sum of squares of the deviations

∑5
n=1(a+b n−tn)2.

Example 1.3.5.
The recently discovered comet 1968 Tentax is supposed to move within the

solar system. The following observations of its position in a certain polar coordinate
system have been made

r 2.70 2.00 1.61 1.20 1.02
φ 48◦ 67◦ 83◦ 108◦ 126◦

By Kepler’s first law the comet should move in a plane orbit of elliptic or hyperbolic
form, if the perturbations from planets are neglected. Then the coordinates satisfy

r = p/(1 − e cosφ),



22 Chapter 1. Principles of Numerical Calculations

where p is a parameter and e the eccentricity. We want to estimate p and e by the
method of least squares from the given observations.

We first note that if the relationship is rewritten as

1/p− (e/p) cosφ = 1/r,

it becomes linear in the parameters x1 = 1/p and X2 = e/p. We then get the linear
system Ax = b, where

A =













1.0000 −0.6691
1.0000 −0.3907
1.0000 −0.1219
1.0000 0.3090
1.0000 0.5878













, b =











0.3704
0.5000
0.6211
0.8333
0.9804











.

The least squares solution is x = ( 0.6886 0.4839 )T giving p = 1/x1 = 1.4522 and
finally e = px2 = 0.7027.

In practice, both the measurements and the model are as a rule insufficient.
One can also see approximation problems as analogous to the task of a communi-
cation engineer, to filter away noise from the signal. These questions are connected
with both Mathematical Statistics and the mathematical discipline Approximation
Theory.

Review Questions

1. Describe Horner’s rule and synthetic division.

2. Give a concise explanation why the algorithm in Example 1.3.1 did not work
and why that in Example 1.3.2 did work.

3. Describe the idea behind the divide and conquer strategy. What is a main
advantage of this strategy? How do you apply it to the task of summing n
numbers?

4. Describe the least squares principle for solving an overdetermined linear sys-
tem.

Problems and Computer Exercises

1. (a) Use Horner’s scheme to compute p(2) where

p(x) = x4 + 2x3 − 3x2 + 2.

(b) Count the number of multiplications and additions required for the eval-
uation of a polynomial p(z) of degree n by Horner’s rule. Compare with the
work needed when the powers are calculated recursively by xi = x · xi−1 and
subsequently multiplied by an−i.
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2. Show how repeated synthetic division can be used to move the origin of a
polynomial, i.e., given a1, a2, . . . , an and z, find c1, c2, . . . , cn so that

pn(x) =
∑n

j=1 ajx
j−1 ≡ ∑n

j=1 cj(x − z)j−1.

Write a program for synthetic division (with this ordering of the coefficients),
and apply it to this algorithm.

Hint: Apply synthetic division to pn(x), pn−1(x) = (pn(x) − pn(z))/(x − z),
etc.

3. (a) Show that the transformation made in Problem 2 can also be expressed
by means of the matrix-vector equation,

c = diag(z1−i)P diag(zj−1) a,

where a = [a1, a2, . . . an]T , c = [c1, c2, . . . cn]T , and diag(zj−1) is a diagonal
matrix with the elements zj−1, j = 1 : n. The matrix P ∈ Rn×n has elements
pi,j =

(

j−1
i−1

)

, if j ≥ i, else pi,j = 0. By convention,
(

0
0

)

= 1 here.

(b) Note the relation of P to the Pascal triangle, and show how P can be
generated by a simple recursion formula. Also show how each element of P−1

can be expressed in terms of the corresponding element of P . How is the origin
of the polynomial pn(x) moved, if you replace P by P−1 in the matrix-vector
equation that defines c?

(c) If you reverse the order of the elements of the vectors a, c—this may
sometimes be a more convenient ordering—how is the matrix P changed?

Comment: With a terminology to be used much in this book (see Sec. 4.1.2),
we can look upon a and c as different coordinate vectors for the same element
in the n-dimensional linear space Pn of polynomials of degree less than n. The
matrix P gives the coordinate transformation.

4. Derive recurrence relations and write a program for computing the coefficients
of the product r of two polynomials p and q,

r(x) = p(x)q(x) =

( m
∑

i=1

aix
i−1

)( n
∑

j=1

bjx
j−1

)

=

m+n−1
∑

k=1

ckxk−1.

5. Let x, y be nonnegative integers, with y 6= 0. The division x/y yields the
quotient q and the remainder r. Show that if x and y have a common factor,
then that number is a divisor of r as well. Use this remark to design an
algorithm for the determination of the greatest common divisor of x and y
(Euclid’s algorithm).

6. Derive a forward and a backward recurrence relation for calculating the inte-
grals

In =

∫ 1

0

xn

4x + 1
dx.

Why is in this case the forward recurrence stable and the backward recurrence
unstable?
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7. (a) Solve Example 1.3.1 on a computer, with the following changes: Start the
recursion (1.3.4) with I0 = ln 1.2, and compute and print the sequence {In}
until In for the first time becomes negative.

(b) Start the recursion (1.3.5) first with the condition I19 = I20, then with
I29 = I30. Compare the results you obtain and assess their approximate
accuracy. Compare also with the results of 7 (a).

*8. (a) Write a program (or study some library program) for finding the quotient
Q(x) and the remainder R(x) of two polynomials A(x), B(x), i.e., A(x) =
Q(x)B(x) + R(x), deg R(x) < deg B(x).

(b) Write a program (or study some library program) for finding the coeffi-
cients of a polynomial with given roots.

*9. (a) Write a program (or study some library program) for finding the greatest
common divisor of two polynomials. Test it on a number of polynomials of
your own choice. Choose also some polynomials of a rather high degree, and
do not only choose polynomials with small integer coefficients. Even if you
have constructed the polynomials so that they should have a common divisor,
rounding errors may disturb this, and some tolerance is needed in the decision
whether a remainder is zero or not. One way of finding a suitable size of
the tolerance is to make one or several runs where the coefficients are subject
to some small random perturbations, and find out how much the results are
changed.

(b) Apply the programs mentioned in the last two problems for finding and
eliminating multiple zeros of a polynomial.

Hint: A multiple zero of a polynomial is a common zero of the polynomial
and its derivative.

10. It is well known that erf(x) → 1 as x → ∞. If x ≫ 1 the relative accuracy of
the complement 1 − erf(x) is of interest. However, the series expansion used
in Example 1.3.3 for x ∈ [0, 1] is not suitable for large values of x. Why?

Hint: Derive an approximate expression for the largest term.

1.4 Matrix Computations

Matrix computations are ubiquitous in Scientific Computing. A survey of basic
notations and concepts in matrix computations and linear vector spaces is given in
Appendix A. This is needed for several topics treated in later chapters of this first
volume. A fuller treatment of this topic will be given in Vol. II.

In this section we focus on some important developments since the 1950s in
the solution of linear systems. One is the systematic use of matrix notations and
the interpretation of Gaussian elimination as matrix factorization. This decom-
positional approach has several advantages, e.g, a computed factorization can
often be used with great saving to solve new problems involving the original ma-
trix. Another is the rapid developments of sophisticated iterative methods, which
are becoming increasingly important as the size of systems increase.
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1.4.1 Matrix Multiplication

A matrix A is a collection of m × n numbers ordered in m rows and n columns

A = (aij) =









a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn









.

We write A ∈ Rm×n, where Rm×n denotes the set of all real m × n matrices. If
m = n, then the matrix A is said to be square and of order n. If m 6= n, then A is
said to be rectangular.

The product of two matrices A and B is defined if and only if the number of
columns in A equals the number of rows in B. If A ∈ Rm×n and B ∈ Rn×p then

C = AB ∈ Rm×p, cij =

n
∑

k=1

aikbkj . (1.4.1)

It is often useful to think of a matrix as being built up of blocks of lower
dimensions. The great convenience of this lies in the fact that the operations of ad-
dition and multiplication can be performed by treating the blocks as non-commuting
scalars and applying the definition (1.4.1). Of course the dimensions of the blocks
must correspond in such a way that the operations can be performed.

Example 1.4.1.
Assume that the two n × n matrices are partitioned into 2 × 2 block form

A =

(

A11 A12

A21 A22

)

, B =

(

B11 B12

B21 B22

)

,

where A11 and B11 are square matrices of the same dimension. Then the product
C = AB equals

C =

(

A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)

. (1.4.2)

Be careful to note that since matrix multiplication is not commutative the order of
the factors in the products cannot be changed! In the special case of block upper
triangular matrices this reduces to

(

R11 R12

0 R22

) (

S11 S12

0 S22

)

=

(

R11S11 R11S12 + R12S22

0 R22S22

)

. (1.4.3)

Note that the product is again block upper triangular and its block diagonal simply
equals the products of the diagonal blocks of the factors.

It is important to know roughly how much work is required by different matrix
algorithms. By inspection of (1.4.1) it is seen that computing the mp elements cij

requires mnp additions and multiplications.
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In matrix computations the number of multiplicative operations (×, /) is usu-
ally about the same as the number of additive operations (+,−). Therefore, in
older literature, a flop was defined to mean roughly the amount of work associated
with the computation

s := s + aikbkj ,

i.e., one addition and one multiplication (or division). In more recent textbooks
(e.g., Golub and Van Loan [14, ]) a flop is defined as one floating point operation
doubling the older flop counts.7 Hence, multiplication C = AB of two two square
matrices of order n requires 2n3 flops. The matrix-vector multiplication y = Ax,
where x ∈ Rn×1 requires 2mn flops.

Operation counts are meant only as a rough appraisal of the work and one
should not assign too much meaning to their precise value. On modern computer
architectures the rate of transfer of data between different levels of memory of-
ten limits the actual performance. Also ignored here is the fact that on current
computers division usually is 5–10 times slower than a multiply.

However, an operation count still provides useful information, and can serve
as an initial basis of comparison of different algorithms. For example, it tells us
that the running time for multiplying two square matrices on a computer roughly
will increase cubically with the dimension n. Thus, doubling n will approximately
increase the work by a factor of eight; cf. (1.4.2).

An intriguing question is whether it is possible to multiply two matrices A, B ∈
Rn×n (or solve a linear system of order n) in less than n3 (scalar) multiplications.
The answer is yes! Strassen [38] developed a fast algorithm for matrix multiplication,
which, if used recursively to multiply two square matrices of dimension n = 2k,
reduces the number of multiplications from n3 to nlog

2
7 = n2.807....

1.4.2 Solving Triangular Systems

The solution of linear systems of equations is one of the most frequently en-
countered problems in scientific computing. One important source of linear systems
is discrete approximations of continuous differential and integral equations.

A linear system can be written in matrix-vector form as









a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

















x1

x2
...

xn









=









b1

b2
...

bm









, (1.4.4)

where aij and bi, 1 ≤ i ≤ m, 1 ≤ j ≤ n be the known input data and the task is
to compute the unknown variables xj , 1 ≤ j ≤ n. More compactly Ax = b, where
A ∈ Rm×n is a matrix and x ∈ Rn and b ∈ Rm are column vectors. If A is square
and nonsingular there is an inverse matrix A−1 such that A−1A = AA−1 = I, the
identity matrix. The solution to (1.4.4) can then be written as x = A−1b, but in
almost all cases one should avoid computing the inverse A−1.

7Stewart [p. 96][36] uses flam (floating point addition and multiplication) to denote an “old”
flop.
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Linear systems which (possibly after a permutation of rows and columns of
A) are of triangular form are particularly simple to solve. Consider a square upper
triangular linear system (m = n)









u11 . . . u1,n−1 u1n

. . .
...

...
un−1,n−1 un−1,n

unn

















x1
...

xn−1

xn









=









b1
...

bn−1

bn









.

The matrix U is nonsingular if and only if

det(U) = u11 · · ·un−1,n−1unn 6= 0.

If this is the case the unknowns can be computed by the following recursion

xn = bn/unn, xi =
(

bi −
n

∑

k=i+1

uikxk

)

/uii, i = n − 1, . . . , 1. (1.4.5)

It follows that the solution of a triangular system of order n can be computed in
about n2 flops. Note that this is the same amount of work as required for multiplying
a vector by a triangular matrix.

Since the unknowns are solved for in backward order, this is called back-
substitution. Similarly, a square linear system of lower triangular form Lx = b,









l11
l21 l22
...

...
. . .

ln1 ln2 . . . lnn

















x1

x2
...

xn









=









b1

b2
...

bn









.

where L is nonsingular, can be solved by forward-substitution

x1 = b1/l11, xi =
(

bi −
i−1
∑

k=1

likxk

)

/lii, i = 2 : n. (1.4.6)

(Note that by reversing the order of the rows and columns an upper triangular
system is transformed into a lower triangular and vice versa.)

When implementing a matrix algorithm on a computer, the order of operations
in matrix algorithms may be important. One reason for this is the economizing of
storage, since even matrices of moderate dimensions have a large number of ele-
ments. When the initial data is not needed for future use, computed quantities may
overwrite data. To resolve such ambiguities in the description of matrix algorithms
it is important to be able to describe computations like those in equations (1.4.5)
in a more precise form. For this purpose we will use an informal programming
language, which is sufficiently precise for our purpose but allows the suppression
of cumbersome details. We illustrate these concepts on the back-substitution al-
gorithm given above. In the following back-substitution algorithm the solution x
overwrites the data b.
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Algorithm 1.4.1 Back-substitution

Given a nonsingular upper triangular matrix U ∈ Rn×n and a vector b ∈ Rn, the
following algorithm computes x ∈ Rn such that Ux = b:

for i = n : (−1) : 1

s :=

n
∑

j=i+1

uikbk;

bi := (bi − s)/uii;

end

Here x := y means that the value of y is evaluated and assigned to x. We use the
convention that when the upper limit in a sum is smaller than the lower limit the
sum is set to zero.

Another possible sequencing of the operations in Algorithm 1.3.1 is the fol-
lowing:

for k = n : (−1) : 1

bk := bk/ukk;

for i = k − 1 : (−1) : 1

bi := bi − uikbk;

end

end

Here the elements in U are accessed column-wise instead of row-wise as in the pre-
vious algorithm. Such differences can influence the efficiency of the implementation
depending on how the elements in the matrix U are stored.

1.4.3 Gaussian Elimination

Gaussian elimination8 is taught already in elementary courses in linear algebra.
However, although the theory is deceptively simple the practical solution of large
linear systems is far from trivial. In the beginning of the computer age in 1940s
there was a mood of pessimism about the possibility of accurately solving systems
even of modest order, say n = 100. Today there is a much deeper understanding of
how Gaussian elimination performs in finite precision arithmetic and linear systems
with hundred of thousands unknowns are routinely solved in scientific computing!

Clearly the following elementary operation can be performed on the system
without changing the set of solutions:

• Interchanging two equations

• Multiplying an equation by a nonzero scalar α.

8Named after Carl Friedrich Gauss (1777–1855), but known already in China as early as in the
first century BC.
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• Adding a multiple α of the ith equation to the jth equation.

These operations correspond in an obvious way to row operations carried out on the
augmented matrix (A, b). By performing a sequence of such elementary operations
one can always transform the system Ax = b into a simpler system, which can be
trivially solved.

In the most important direct method Gaussian elimination the unknowns are
eliminated in a systematic way, so that at the end an equivalent triangular system
is produced, which can be solved by substitution. Consider the system (1.4.4) with
m = n and assume that a11 6= 0. Then we can eliminate x1 from the last (n − 1)
equations as follows. Subtracting from the ith equation the multiple

li1 = ai1/a11, i = 2 : n,

of the first equation, the last (n − 1) equations become







a
(2)
22 · · · a

(2)
2n

...
. . .

...
a
(2)
n2 · · · a

(2)
nn











x2
...

xn



 =







b
(2)
2
...

b
(2)
n






,

where the new elements are given by

a
(2)
ij = aij − li1a1j , b

(2)
i = bi − li1b1, i = 2 : n.

This is a system of (n−1) equations in the (n−1) unknowns x2, . . . , xn. If a
(2)
22 6= 0,

we can proceed and in the next step eliminate x2 from the last (n−2) of these equa-
tions. This gives a system of equations containing only the unknowns x3, . . . , xn.
We take

li2 = a
(2)
i2 /a

(2)
22 , i = 3 : n,

and the elements of the new system are given by

a
(3)
ij = a

(2)
ij − li2a

(2)
2j , b

(3)
i = b

(2)
i − li2b

(2)
2 , i = 3 : n.

The diagonal elements a11, a
(2)
22 , a

(3)
33 , . . ., which appear during the elimination

are called pivotal elements. As long as these are nonzero, the elimination can be
continued. After (n − 1) steps we get the single equation

a(n)
nn xn = b(n)

n .

Collecting the first equation from each step we get











a
(1)
11 a

(1)
12 · · · a

(1)
1n

a
(2)
22 · · · a

(2)
2n

. . .
...

a
(n)
nn



















x1

x2
...

xn









=











b
(1)
1

b
(2)
2
...

b
(n)
n











, (1.4.7)
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where we have introduced the notations a
(1)
ij = aij , b

(1)
i = bi for the coefficients in the

original system. Thus, we have reduced (1.4.4) to an equivalent nonsingular, upper
triangular system (1.4.7), which can be solved by back-substitution. In passing we
remark that the determinant of a matrix A, defined in (A.2.4), does not change
under row operations we have from (1.4.7)

det(A) = a
(1)
11 a

(2)
22 · · · a(n)

nn (1.4.8)

Gaussian elimination is indeed in general the most efficient method for computing
determinants!

Algorithm 1.4.2 Gaussian Elimination (without row interchanges)

Given a matrix A = A(1) ∈ Rn×n and a vector b = b(1) ∈ Rn, the following
algorithm computes the elements of the reduced system of upper triangular form

(1.4.7). It is assumed that a
(k)
kk 6= 0, k = 1 : n:

for k = 1 : n − 1

for i = k + 1 : n

lik := a
(k)
ik /a

(k)
kk ; a

(k+1)
ik := 0;

for j = k + 1 : n

a
(k+1)
ij := a

(k)
ij − lika

(k)
kj ;

end

b
(k+1)
i := b

(k)
i − likb

(k)
k ;

end

end

We remark that no extra memory space is needed to store the multipliers.

When lik = a
(k)
ik /a

(k)
kk is computed the element a

(k+1)
ik becomes equal to zero, so the

multipliers can be stored in the lower triangular part of the matrix. Note also that if
the multipliers lik are saved, then the operations on the vector b can be carried out
at a later stage. This observation is important in that it shows that when solving a
sequence of linear systems

Axi = bi, i = 1 : p,

with the same matrix A but different right hand sides the operations on A only have
to be carried out once.

If we form the matrices

L =









1
l21 1
...

...
. . .

ln1 ln2 . . . 1









, U =











a
(1)
11 a

(1)
12 · · · a

(1)
1n

a
(2)
22 · · · a

(2)
2n

. . .
...

a
(n)
nn











(1.4.9)
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then it can be shown that we have A = LU . Hence Gaussian elimination provides
a factorization of the matrix A into a lower triangular matrix L and an upper
triangular matrix U . This interpretation of Gaussian elimination has turned out to
be extremely fruitful. For example, it immediately follows that the inverse of A (if
it exists) has the factorization

A−1 = (LU)−1 = U−1L−1.

This shows that the solution of linear system Ax = b,

x = A−1b = U−1(L−1b),

can be computed by solving the two triangular systems Ly = b, Ux = y. Indeed it
has been said (G. E. Forsythe and C. B. Moler [12]) that

“almost anything you can do with A−1 can be done without it”

Several other important matrix factorizations will be studied at length in Volume II.
From Algorithm 1.3.2 it follows that (n − k) divisions and (n − k)2 multipli-

cations and additions are used in step k to transform the elements of A. A further
(n−k) multiplications and additions are used to transform the elements of b. Sum-
ming over k and neglecting low order terms we find that the total number of flops
required for the reduction of Ax = b to a triangular system by Gaussian elimination
is

n−1
∑

k=1

2(n − k)2 ≈ 2n3/3,

for the LU factorization ofA and

n−1
∑

k=1

2(n − k) ≈ n2,

for each right hand side vector b. Comparing this with the n2 flops needed to solve
a triangular system we conclude that, except for very small values of n, the LU
factorization of A dominates the work in solving a linear system. If several linear
systems with the same matrix A but different right-hand sides are to be solved,
then the factorization needs to be performed only once!

Example 1.4.2. Many applications give rise to linear systems where the matrix
A only has a few nonzero elements close to the main diagonal. Such matrices are
called band matrices. An important example is, banded matrices of the form

A =













b1 c1

a1 b2 c2

. . .
. . .

. . .

an−2 bn−1 cn−1

an−1 bn













, (1.4.10)
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which are called tridiagonal. Tridiagonal systems of linear equations can be solved
by Gaussian elimination with much less work than the general case. The following
algorithm solves the tridiagonal system Ax = g by Gaussian elimination without
pivoting.

First compute the LU factorization A = LU , where

L =













1
γ1 1

γ2 1
. . .

. . .

γn−1 1













, U =













β1 c1

β2 c2

. . .
. . .

βn−1 cn−1

βn













.

The new elements in L nd U are obtained from the recursion: Set β1 = b1, and

γk = ak/βk, βk+1 = bk+1 − γkck, k = 1 : n − 1. (1.4.11)

(Check this by computing the product LU !) The solution to Ax = L(Ux) = g is
then obtained in two steps. First a forward substitution to get y = Ux

y1 = g1, yk+1 = gk+1 − γkyk, k = 1 : n − 1, (1.4.12)

followed by a backward recursion for x

xn = yn/βn, xk = (yk − ckxk+1)/βk, k = n − 1 : −1 : 1. (1.4.13)

In this algorithm the LU factorization requires only about n divisions and n multi-
plications and additions. The solution of the two triangular systems require about
twice as much work.

Consider the case when in step k of Gaussian elimination a zero pivotal element

is encountered, i.e. a
(k)
kk = 0. (The equations may have been reordered in previous

steps, but we assume that the notations have been changed accordingly.) If A is
nonsingular, then in particular its first k columns are linearly independent. This
must also be true for the first k columns of the reduced matrix and hence some
element a

(k)
ik , i = k : n must be nonzero, say a

(k)
rk 6= 0. By interchanging rows k and r

this element can be taken as pivot and it is possible to proceed with the elimination.
The important conclusion is that any nonsingular system of equations can be reduced
to triangular form by Gaussian elimination, if appropriate row interchanges are
used.

Note that when rows are interchanged in A the same interchanges must be
made in the elements of the right-hand side b. Also the computed factors L and U
will be the same as had the the row interchanges first been performed on A and the
Gaussian elimination been performed without interchanges.

To ensure the numerical stability in Gaussian elimination it will, except for
special classes of linear systems, be necessary to perform row interchanges not only
when a pivotal element is exactly zero. Usually it suffices to use partial pivoting,
i.e. to choose the pivotal element in step k as the element of largest magnitude in
the unreduced part of the kth column.
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Example 1.4.3.
The linear system

(

ǫ 1
1 1

) (

x1

x2

)

=

(

1
0

)

.

is nonsingular for any ǫ 6= 1 and has the unique solution x1 = −x2 = −1/(1 − ǫ).
However, when a11 = ǫ = 0 the first step in Gaussian elimination cannot be carried
out. The remedy here is obviously to interchange the two equations, which directly
gives an upper triangular system.

Suppose that in the system above ǫ = 10−4. Then the exact solution, rounded
to four decimals equals x = (−1.0001, 1.0001)T . However, if Gaussian elimination is
carried through without interchanges we obtain l21 = 104 and the triangular system

0.0001x1 + x2 = 1

(1 − 104)x2 = −104.

Suppose that the computation is performed using arithmetic with three decimal

digits. Then in the last equation the coefficient a
(2)
22 will be rounded to −104 and

the solution computed by back-substitution is x̄2 = 1.000, x̄1 = 0, which is a
catastrophic result!

If before performing Gaussian elimination we interchange the two equations
then we get l21 = 10−4 and the reduced system becomes

x1 + x2 = 0

(1 − 10−4)x2 = 1.

The coefficient a
(2)
22 is now rounded to 1, and the computed solution becomes x̄2 =

1.000, x̄1 = −1.000, which is correct to the precision carried.

In this simple example it is easy to see what went wrong in the elimination
without interchanges. The problem is that the choice of a small pivotal element
gives rise to large elements in the reduced matrix and the coefficient a22 in the
original system is lost through rounding. Rounding errors which are small when
compared to the large elements in the reduced matrix are unacceptable in terms of
the original elements! When the equations are interchanged the multiplier is small
and the elements of the reduced matrix of the same size as in the original matrix.

In general an algorithm is said to be backward stable if the computed solu-
tion w always equals the exact solution of a problem with “slightly perturbed data”.
It will be shown in Volume II, Sec. 7.5, that backward stability can almost always
be ensured for Gaussian elimination with partial pivoting. The essential condition
for stability is that no substantial growth occurs in the elements in L and U . To
formulate a basic result of the error analysis we need to introduce some new nota-
tions. In the following the absolute values |A| and |b| of a matrix A and vector b
should be interpreted componentwise,

|A|ij = (|aij |), |b|i = (|bi|).
Similarly the partial ordering “≤” for the absolute values of matrices |A|, |B| and
vectors |b|, |c|, is to be interpreted component-wise.
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Theorem 1.4.1.
Let L and U denote the LU factors and x the solution of the system Ax = b,

using LU factorization and substitution. Then x satisfies exactly the linear system

(A + ∆A)x = b, (1.4.14)

where δA is a matrix depending on both A and b, such that

|∆A| / 3nu|L| |U |, (1.4.15)

where u is a measure of the precision in the arithmetic.

It is important to note that the result that the solution satisfies (1.4.14) with
a small |∆A| does not mean that the solution has been computed with a small error.
If the matrix A is ill-conditioned then the solution is very sensitive to perturbations
in the data. This is the case, e.g., when the rows (columns) of A are almost linearly
dependent. However, this inaccuracy is intrinsic to the problem and cannot be
avoided except by using higher precision in the calculations. Condition numbers for
linear systems are discussed in Sec. 2.4.4.

1.4.4 Sparse Matrices and Iterative Methods

A matrix A is called a sparse if it contains much fewer than the n2 nonzero elements
of a full matrix of size n × n. Sparse matrices typically arise in many different
applications. In Figure 1.4.1 we show a sparse matrix and its LU factors. In this
case the original matrix is of order n = 479 and contains 1887 nonzero elements,
i.e., less than 0.9% of the elements are nonzero. The LU factors are also sparse and
contain together 5904 nonzero elements or about 2.6%.
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Figure 1.4.1. Nonzero pattern of a sparse matrix and its LU factors.

For many classes of sparse linear systems iterative methods when a are
more efficient o use than direct methods such as Gaussian elimination. Typical
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examples are those arising when a differential equation in 2D or 3D is discretized.
In iterative methods a sequence of approximate solutions is computed, which in the
limit converges to the exact solution x. Basic iterative methods work directly with
the original matrix A and therefore has the added advantage of requiring only extra
storage for a few vectors.

In a classical iterative method due to Richardson [35], a sequence of approxi-
mate solutions x(k) is defined by x(0) = 0,

x(k+1) = x(k) + ω(b − Ax(k)), k = 0, 1, 2, . . . , (1.4.16)

where ω > 0 is a parameter to be chosen. It follows easily from (1.4.16) that the
error in x(k) satisfies x(k+1) − x = (I − ωA)(x(k) − x), and hence

x(k) − x = (I − ωA)k(x(0) − x).

The convergence of Richardson’s method will be studied in Sec. 10.1.4 in Volume II.
Iterative methods are used most often for the solution of very large linear

systems, which typically arise in the solution of boundary value problems of partial
differential equations by finite difference or finite element methods. The matrices
involved can be huge, sometimes involving several million unknowns. The LU fac-
tors of matrices arising in such applications typically contain order of magnitudes
more nonzero elements than A itself. Hence, because of the storage and number of
arithmetic operations required, Gaussian elimination may be far too costly to use.

Example 1.4.4.
In a typical problem for Poisson’s equation (1.2.15) the function is to be de-

termined in a plane domain D, when the values of u are given on the boundary
∂D. Such boundary value problems occur in the study of steady states in most
branches of Physics, such as electricity, elasticity, heat flow, fluid mechanics (in-
cluding meteorology). Let D be the a square grid with grid size h, i.e. xi = x0 + ih,
yj = y0 + jh, 0 ≤ i ≤ N + 1, 0 ≤ j ≤ N + 1. Then the difference approximation
yields

ui,j+1 + ui−1,j + ui+1,j + ui,j−1 − 4ui,j = h2f(xi, yj),

(1 ≤ i ≤ M, 1 ≤ j ≤ N). This is a huge system of linear algebraic equations; one
equation for each interior gridpoint, altogether N2 unknown and equations. (Note
that ui,0, ui,N+1, u0,j, uN+1,j are known boundary values.) To write the equations
in matrix-vector form we order the unknowns in a vector

u = (u1,1, . . . , u1,N , u2,1, . . . , u2,N−1, uN,1, . . . , uN,N).

If the equations are ordered in the same order we get a system Au = b where A
is symmetric with all nonzero elements located in five diagonals; see Figure 1.3.3
(left).

In principle Gaussian elimination can be used to solve such systems. However,
even taking symmetry and the banded structure into account this would require 1

2·N4

multiplications, since in the LU factors the zero elements inside the outer diagonals
will fill-in during the elimination as shown in Figure 1.4.2 (right).
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Figure 1.4.2. Structure of A (left) and L + U (right) for the Poisson
problem, N = 20. (Row-wise ordering of the unknowns)

The linear system arising from Poisson’s equation has several features common
to boundary value problems for all linear partial differential equations. One of
these is that there are at most 5 nonzero elements in each row of A, i.e. only a
tiny fraction of the elements are nonzero. Therefore one iteration in Richardson’s
method requires only about 5·N2 multiplications or equivalently five multiplications
per unknown. Using iterative methods which take advantage of the sparsity and
other features does allow the efficient solution of such systems. This becomes even
more essential for three-dimensional problems!

1.4.5 Software for Matrix Computations

In most computers in use today the key to high efficiency is to avoid as much
as possible data transfers between memory, registers and functional units, since
these can be more costly than arithmetic operations on the data. This means that
the operations have to be carefully structured. One observation is that Gaussian
elimination consists of three nested loops, which can be ordered in 3 ·2 ·1 = 6 ways.
Disregarding the right hand side vector b, each version does the operations

a
(k+1)
ij := a

(k)
ij − a

(k)
kj a

(k)
ik /a

(k)
kk ,

and only the ordering in which they are done differs. The version given above uses
row operations and may be called the “kij” variant, where k refers to step number,
i to row index, and j to column index. This version is not suitable for program-
ming languages like Fortran 77, in which matrix elements are stored sequentially
by columns. In such a language the form “kji” should be preferred, which is the
column oriented back-substitution rather than Algorithm 1.3.1 might be preferred.

An important tool for structuring linear algebra computations are the Basic
Linear Algebra Subprograms (BLAS). These are now commonly used to formulate
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matrix algorithms and have become an aid to clarity, portability and modularity in
modern software. The original set of BLAS identified frequently occurring vector
operations in matrix computation such as scalar product, adding of a multiple of
one vector to another. For example, the operation

y := αx + y

in Single precision is named SAXPY. These BLAS were adopted in early Fortran
programs and by carefully optimizing them for each specific computer the perfor-
mance was enhanced without sacrificing portability.

For modern computers is is important to avoid excessive data movements
between different parts of memory hierarchy. To achieve this so called level 3 BLAS
have been introduced in the 1990s. These work on blocks of the full matrix and
perform, e.g., the operations

C := αAB + βC, C := αAT B + βC, C := αABT + βC,

Since level 3 BLAS use O(n2) data but perform O(n3) arithmetic operations
and gives a surface-to-volume effect for the ratio of data movement to operations.
LAPACK [2], is a linear algebra package initially released in 1992, which forms
the backbone of the interactive matrix computing system Matlab . LAPACK
achieves close to optimal performance on a large variety of computer architectures
by expressing as much as possible of the algorithm as calls to level 3 BLAS.

Example 1.4.5.
In 1974 the authors wrote in [8, Sec. 8.5.3] that “a full 1, 000 × 1, 000 system

of equations is near the limit at what can be solved at a reasonable cost”. Today
systems of this size can easily be handled by the a personal computer. The bench-
mark problem for Japanese Earth Simulator, one of the worlds fastest computers in
2004, was the solution of a system of size 1, 041, 216 on which a speed of 35.6×1012

operations per second was measured. This is a striking illustration of the progress
in high speed matrix computing that has occurred in these 30 years!

Review Questions

1. How many operations are needed (approximately) for

(a) The multiplication of two square matrices?

(b) The LU factorization of a square matrix?

(b) The solution of Ax = b, when the triangular factorization of A is known?

2. Show that if the kth diagonal entry of an upper triangular matrix is zero, then
its first k columns are linearly dependent.

3. What is the LU -decomposition of an n by n matrix A, and how is it related to
Gaussian elimination? Does it always exist? If not, give sufficient conditions
for its existence.
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4. (a)For what type of linear systems are iterative methods to be preferred to
Gaussian elimination?

(b) Describe Richardson’s method for solving Ax = b. What can you say
about the error in successive iterations?

5. What does the acronym BLAS stand for? What is meant by level 3 BLAS
and why are they used in current linear algebra software??

Problems and Computer Exercises

1. (a) Let A and B be square upper triangular matrices of order n. Show that
the product matrix C = AB is also upper triangular. Determine how many
multiplications are needed to compute C.

(b) Show that if R is an upper triangular matrix with zero diagonal elements,
then Rn = 0.

2. Show that there cannot exist a factorization

A =

(

0 1
1 1

)

=

(

l11 0
l21 l22

) (

u11 u12

0 u22

)

.

Hint: Equate the (1, 1)-elements and deduce that either the first row or the
first column in LU must be zero.

3. (a) Consider the special upper triangular matrix of order n,

Un(a) =













1 a a · · · a
1 a · · · a

1 · · · a
. . .

...
1













,

Determine the solution x to the triangular system Un(a)x = en, where en =
(0, 0, . . . , 0, 1)T is the nth unit vector.

(b) Show that the inverse of an upper triangular matrix is also upper trian-
gular. Determine for n = 3 the inverse of of Un(a). Try also to determine
Un(a)−1 for an arbitrary n.

Hint: Use the property of the inverse that UU−1 = U−1U = I, the identity
matrix.

4. A matrix Hn of order n such that hij = 0 whenever i > j + 1 is called an
upper Hessenberg matrix. For n = 5 it has the structure e.g.,

H5 =











h11 h12 h13 h14 h15

h21 h22 h23 h24 h25

0 h32 h33 h34 h35

0 0 h43 h44 h45

0 0 0 h54 h55











.
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(a) Determine the approximate number of operations needed to compute the
LU factorization of Hn if no pivoting is needed.

(b) Determine the approximate number of operations needed to solve the
system Hnx = b, when the factorization in (a) is given.

5. Compute the product |L| |U | for the LU factors of the matrix in Example 1.4.3
with and without pivoting.

1.5 Numerical Solution of Differential Equations

1.5.1 Euler’s Method

Approximate solution of differential equations is a very important task in scientific
computing. Nearly all the areas of science and technology contain mathematical
models which leads to systems of ordinary (or partial) differential equations. An
initial value problem for an ordinary differential equation is to find y(x) such
that

dy

dt
= f(t, y), y(0) = c.

The differential equation gives, at each point (t, y), the direction of the tangent to
the solution curve which passes through the point in question. The direction of the
tangent changes continuously from point to point, but the simplest approximation
(which was proposed as early as the 18th century by Euler) is that one studies the
solution for only certain values of t = tn = nh, n = 0, 1, 2, . . . (h is called the “step”
or “step length”) and assumes that dy/dt is constant between the points. In this
way the solution is approximated by a polygon segment (Fig. 1.4.1) which joins the
points (tn, yn), 0, 1, 2, . . ., where

y0 = c,
yn+1 − yn

h
= f(tn, yn). (1.5.1)

Thus we have a simple recursion formula, Euler’s method:

y0 = c, yn+1 = yn + hf(tn, yn), n = 0, 1, 2 . . . (1.5.2)

During the computation, each yn occurs first on the left-hand side, then recurs
later on the right-hand side of an equation: hence the name recursion formula.
(One could also call equation (1.5.2) an iteration formula, but one usually reserves
the word “iteration” for the special case where a recursion formula is used solely as
a means of calculating a limiting value.)

1.5.2 An Introductory Example

One of the most important techniques in computer applications to science and tech-
nology is the step by step simulation of a process or the time development of
a system. A mathematical model is first set up, i.e., state variables which
describe the essential features of the state of the system are set up. Then the laws
are formulated, which govern the rate of change of the state variables, and other
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Figure 1.5.1. Approximate solution of dy/dx = y, y0 = 0.25, by Euler’s
method with h = 0.5.

mathematical relations between these variables. Finally, these equations are pro-
grammed for a computer to calculate approximately, step by step, the development
in time of the system.

The reliability of the results depends primarily on the goodness of the mathe-
matical model and on the size of the time step. The choice of the time step is partly
a question of economics. Small time steps may give you good accuracy, but also long
computing time. More accurate numerical methods are often a good alternative to
the use of small time steps. Such questions will be discussed in depth in Chapter 13
in Volume III.

The construction of a mathematical model is not trivial. Knowledge of nu-
merical methods and programming helps also in that phase of the job, but more
important is a good understanding of the fundamental processes in the system, and
that is beyond the scope of this text. It is, however, important to realize that if
the mathematical model is bad, no sophisticated numerical techniques or powerful
computers can stop the results from being unreliable, or even harmful.

A mathematical model can be studied by analytic or computational tech-
niques. Analytic methods do not belong to this text. We want, though, to empha-
size that the comparison with results obtained by analytic methods, in the special
cases when they can be applied, can be very useful when numerical methods and
computer programs are tested. We shall now illustrate these general comments on
a particular example.

Example 1.5.1.
Consider the motion of a ball (or a shot) under the influence of gravity and air

resistance. It is well known that the trajectory is a parabola, when the air resistance
is neglected and the force of gravity is assumed to be constant. We shall still neglect
the variation of the force of gravity and the curvature and the rotation of the earth.
This means that we forsake serious applications to satellites, etc. We shall, however,
take the air resistance into account. We neglect the rotation of the shot around its
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own axis. Therefore we can treat the problem a a motion in a plane, but we have to
forsake the application to, for example, table tennis or a rotating projectile. Now
we have introduced a number of assumptions, which define our model of reality.

The state of the ball is described by its position (x, y) and velocity (u, v),
each of which has two Cartesian coordinates in the plane of motion. The x-axis is
horizontal, and the y-axis is directed upwards. Assume that the air resistance is
a force P , such that the direction is opposite to the velocity, and the strength is
proportional to the square of the speed and to the square of the radius R of the
shot. If we denote by Px and Py the components of P along the x and y directions,
respectively, we can then write,

Px = −mzu, Py = −mzv, z =
cR2

m

√

u2 + v2, (1.5.3)

where m is the mass of the ball.
For the sake of simplicity we assume that c is a constant. It actually depends on

the density and the viscosity of the air. Therefore, we have to forsake the application
to cannon shots, where the variation of the density with height is important. If one
has access to a good model of the atmosphere, the variation of c would not make
the numerical simulation much more difficult. This contrasts to analytic methods,
where such a modification is likely to mean a considerable complication. In fact,
even with a constant c, a purely analytic treatment offers great difficulties.

Newton’s law of motion tells us that,

mdu/dt = Px, mdv/dt = −mg + Py, (1.5.4)

where the term −mg is the force of gravity. Inserting (1.5.3) into (1.5.4) and dividing
by m we get

du/dt = −zu, dv/dt = −g − zv, (1.5.5)

By the definition of velocity,

dx/dt = u, dy/dt = v, (1.5.6)

Equations (1.5.5) and (1.5.6) constitute a system of four differential equations for
the four variables x, y, u, v. The initial state x0, y0, and u0, v0 at time t0 = 0
is assumed to be given. A fundamental proposition in the theory of differential
equations tells that, if initial values of the state variables u, v, x, y are given at some
initial time t = t0, then they will be uniquely determined for all t > t0.

The simulation in Example 1.5.1 means that, at a sequence of times, tn, n =
0, 1, 2, . . ., we determine the approximate values, un, vn, xn, yn. We first look at the
simplest technique, using Euler’s method with a constant time step h. Set therefore
tn = nh. We replace the derivative du/dt by the forward difference quotient (un+1−
un)/h, and similarly for the other variables. Hence after multiplication by h, the
differential equations are replaced by the following system of difference equations:

un+1 − un = −hznun,

vn+1 − vn = −h(g + znvn), (1.5.7)

xn+1 − xn = hun, yn+1 − yn = hvn,
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from which un+1, vn+1, xn+1, yn+1, etc. are solved, step by step, for n = 0, 1, 2, . . .,
using the provided initial values u0, v0, x0, y0. Here zn is obtained by insertion of
u = un, v = vn into (1.5.3).

We performed these computations until yn+1 became negative for the first
time, with g = 9.81, φ = 60o, and the initial values

x0 = 0, y0 = 0, u0 = 100 cosφ, v0 = 100 sinφ.

In Fig. 1.4.2 are shown curves obtained for h = 0.01, and cR2/m = 0.25i · 10−3,
i = 0, 1, 2, 3, 4. There is, in this graphical representation, also an error due to the
limited resolution of the plotting device.
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Figure 1.5.2. Approximate trajectories computed with Euler’s method for
cR2/m = 0.25i · 10−3, i = 0 : 4, and h = 0.01.

In Euler’s method the state variables are locally approximated by linear func-
tions of time, one of the often recurrent ideas in numerical computation. We can
use the same idea for computing the coordinate x∗ of the point, where the shot hits
the ground. Suppose that yn+1 becomes negative for the first time when n = N .
For xN ≤ x ≤ xN+1 we then approximate y by a linear function of x, represented
by the secant through the points (xN , yN) and(xN+1, yN+1) , i.e.,

y = yN + (x − xN )
yN+1 − yN

xN+1 − xN
.

By setting y = 0 we obtain

x∗ = xN − yN
xN+1 − xN

yN+1 − yN
. (1.5.8)

The error from the linear approximation in (1.5.8) used for the computation of x∗

is proportional to h2. It is thus approximately equal to the error committed in one
single step with Euler’s method, and hence of less importance than the other error.
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The case without air resistance (i = 0) can be solved exactly. In fact it can be
shown that x∗ = 2u0v0/9.81 = 5000 ·

√
3/9.81 = 882.7986. The computer produced

x∗ = 883.2985 for h = 0.01, and x∗ = 883.7984 for h = 0.02. The error for h = 0.01
is therefore 0.4999, and for h = 0.02 it is 0.9998. The approximate proportionality
to h is thus verified, actually more strikingly than could be expected!

It can be shown that the error in the results obtained with Euler’s method is
also proportional to h (not h2). Hence a disadvantage of the above method is that
the step length h must be chosen quite short if reasonable accuracy is desired. In
order to improve the method we can apply another idea mentioned in the previously,
namely Richardson extrapolation. The application differs a little from the one you
saw there, because now the error is approximately proportional to h, while for the
trapezoidal rule it was approximately proportional to h2. For i = 4, the computer
produced x∗ = 500.2646 and x∗ = 500.3845 for, respectively, h = 0.01 and h = 0.02.
Now let x∗ denote the exact coordinate of the landing point. Then

x∗ − 500.2646 ≈ 0.01k, x∗ − 500.3845 ≈ 0.02k.

By elimination of k we obtain

x∗ ≈ 2 · 500.2646− 500.3845 = 500.1447,

which should be a more accurate estimate of the landing point. By a more accurate
integration method we obtained 500.1440. So in this case, we gained more than two
decimal digits by the use of Richardson extrapolation.

The simulations shown in Fig. 1.4.2 required about 1500 time steps for each
curve. This may seem satisfactory, but we must not forget that this is a very small
task, compared to most serious applications. So we would like to have a method
that allows much larger time steps than Euler’s method.

1.5.3 A Second Order Accurate Method

In step by step computations we have to distinguish between the local error, i.e.,
the error that is committed at a single step, and the global error, i.e., the error
of the final results. Recall that we say that a method is accurate of order p, if
its global error is approximately proportional to hp. Euler’s method is only first
order accurate; we shall below present a method that is second order accurate. To
achieve the same accuracy as with Euler’s method the number of steps can then be
reduced to about the square root of the number of steps in Euler’s method, e.g., in
the above ball problem to

√
1500 ≈ 40 steps. Since the amount of work is closely

proportional to the number of steps this is an enormous saving!
Another question is how the step size h is to be chosen. It can be shown that

even for rather simple examples (see below) it is adequate to use very different step
size in different parts of the computation. Hence the automatic control of the step
size (also called adaptive control) is an important issue.

Both requests can be met by an improvement of the Euler method (due to
Runge) obtained by the applying the Richardson extrapolation in every second
step. This is different from our previous application of the Richardson idea. We
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first introduce a better notation by writing a system of differential equations
and the initial conditions in vector form

dy/dt = f(t,y), y(a) = c, (1.5.9)

where y is a column vector that contains all the state variables.9 With this notation
methods for large systems of differential equations can be described as easily as
methods for a single equation. The change of a system with time can then be
thought of as a motion of the state vector in a multidimensional space, where the
differential equation defines the velocity field. This is our first example of the
central role of vectors and matrices in modern computing. We temporarily use
superscripts for the vector components, because we need subscripts for the same
purpose as in the above description of Euler’s method.

For the ball example, we have by (1.5.5) and (1.5.6)

y =







y1

y2

y3

y4






≡







x
y
u
v






, f(t,y) =







y3

y4

−zy3

−g − zy4






, c = 102







0
0

cosφ
sin φ






,

where

z =
cR2

m

√

(y3)2 + (y4)2.

The computations in the step which leads from tn to tn+1 are then as follows:

i. One Euler step of length h yields the estimate:

y∗

n+1 = yn + hf(tn,yn).

ii. Two Euler steps of length 1
2h yield another estimate:

yn+ 1

2

= yn +
1

2
hf(tn, yn); y∗∗

n+1 = yn+ 1

2

+
1

2
hf(tn+1/2,yn+1/2),

where tn+1/2 = tn + h/2.

iii. Then yn+1 is obtained by Richardson extrapolation:

yn+1 = y∗∗

n+1 + (y∗∗

n+1 − y∗

n+1).

It is conceivable that this yields a 2nd order accurate method. It is left as an
exercise (Problem 2) to verify that this scheme is identical to the following somewhat
simpler scheme known as Runge’s 2nd order method:

k1 = hnf(tn,yn);

k2 = hnf(tn + hn/2,yn + k1/2); (1.5.10)

yn+1 = yn + k2,

9The boldface notation is temporarily used for vectors in this section, not in the rest of the
book.
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where we have replaced h by hn in order to include the use of variable step size.
Another explanation of the 2nd order accuracy of this method is that the displace-
ment k2 equals the product of the step size and a sufficiently accurate estimate
of the velocity at the midstep of the time step. A more detailed analysis of this
method comes in Sec. 13.3.2. Sometimes this method is called the improved Euler
method or Heun’s method, but these names are also used to denote other 2nd order
accurate methods.

We shall now describe how the step size can be adaptively (or automatically)
controlled by means of a tolerance tol, by which the user tells the program how
large error he tolerates in values of variables (relative to the values themselves).10

Compute
δ = max

i
|ki

2 − ki
1|/|3yi|,

where δ is related to the relative errors of the components of the vector y; see below.
A step size is accepted if δ ≤ tol, and the next step should be

hnext = h min{1.5,
√

tol/(1.2δ)},

where 1.2 is a safety factor, since the future is never exactly like the past . . . . The
square root occurring here is due to the fact that this method is 2nd order accurate,
i.e., the global error is almost proportional to the square of the step size and δ is
approximately proportional to h2.

A step is rejected, if δ > tol, and recomputed with the step size

hnext = h max{0.1,
√

tol/(1.2δ)}.

The program needs a suggestion for the size of the first step. This can be be
a very rough guess, because the step size control described above, will improve it
automatically, so that an adequate step size is found after a few steps (or recompu-
tations, if the suggested step was too big). In our experience, a program of this sort
can efficiently handle guesses that are wrong by several powers of 10. If y(a) 6= 0
and y′(a) = 0, you may try the initial step size

h =
1

4

∑

i

|yi|
/

∑

i

|dyi/dt|

evaluated at the initial point t = a. When you encounter the cases y(a) = 0 or
y′(a) = 0 for the first time, you are likely to have gained enough experience to
suggest something that the program can handle. More professional programs take
care of this detail automatically.

The request for a certain relative accuracy may cause trouble when some
components of y are close to zero. So, already in the first version of your program,
you had better replace yi in the above definition of δ by ȳi = max{|yi|, 0.001}.

10With the terminology that will be introduced in the next chapter, TOL is, with the step size
control described here, related to the global relative errors . At the time of writing, this contrasts
to most codes for the solution of ordinary differential equations, in which the local errors per step
are controlled by the tolerance.
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A more detailed discussion of such matters follows in Sections 13.1 and 13.2 in
Volume II (see in particular Computer Exercise 13.1.1). (You may sometimes have
to replace the default value 0.001 by something else.)

It is a good habit to make a second run with a predetermined sequence of
times (if your program allows this) instead of adaptive control. Suppose that the
sequence of times used in the first run is t0, t1, t2, . . . . Divide each subinterval
[tn, tn+1] into two steps of equal length. So, the second run still has variable step
size and twice as many steps as the first run. The errors are therefore expected to
be approximately 1

4 of the errors of the first run. The first run can therefore use a
tolerance that is 4 times as large than the error you can tolerate in the final result.
Denote the results of the two runs by yI(t) and yII(t). You can plot 1

3 (yII(t)−yI(t))
versus t; this is an error curve for yII(t) Alternatively you can add 1

3 (yII(t)− yI(t))
to yII(t). This is another application of the Richardson extrapolation idea. The
cost is only 50% more work than the plain result without an error curve.

If there are no singularities in the differential equation, 1
3 (yII(t) − yI(t))

strongly overestimates the error of the extrapolated values—typically by a factor
like tol

−1/2. It is, however, a non-trivial matter to find an error curve that strictly
and realistically tells how good the extrapolated results are. There will be more
comments about these matters in Sec. 3.3.4 in Volume II (see also Example 13.2.1
in Volume III). The reader is advised to test experimentally how this works on
examples where the exact results are known.

An easier, though inferior, alternative is to run a problem with two different
tolerances. One reason why it is inferior is that the two runs do not ”keep in step”.
For example, Richardson extrapolation cannot be easily applied.

If you request very high accuracy in your results, or if you are going to sim-
ulate a system over a very long time, you will need a method with a higher order
of accuracy than two. The reduction of computing time if you replace this method
by a higher order method can be large, but the improvements are seldom as dras-
tic as when you replace Euler’s method by a second order accurate scheme like
this. Runge’s 2nd order method is, however, no universal recipe. There are spe-
cial classes of problems, notably the problems which are called “stiff”, which need
special methods. These matters are treated in Chapter 13.

One advantage of a second order accurate scheme when requests for accuracy
are modest, is that the quality of the computed results is normally not ruined by
the use of linear interpolation at the graphical output, or at the post-processing
of numerical results. (After you have used a more than second order accurate
integration method, it may be necessary to use a more sophisticated interpolation
at the graphical or numerical treatment of the results.)

Example 1.5.2.
The differential equation y′ = − 1

2y3, with initial condition y(1) = 1, was
treated by a program, essentially constructed as described above, with tol = 10−4

until t = 104.
In this example we can compare with the exact solution, y(t) = t−1/2. It was

found that the actual relative error stayed a little less than 1.5tol all the time
when t > 10. The step size increased almost linearly with t from h = 0.025 to
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h = 260. The number of steps increased almost proportionally to log t; the total
number of steps was 374. Only one step had to be recomputed (except for the first
step, where the program had to find an appropriate step size).

The computation was repeated with tol = 4 · 10−4. The experience was the
same, except that the steps were about twice as long all the time. This is what can
be expected, since the step sizes should be approximately proportional to

√
tol,

for a second order accurate method. The total number of steps was 194.

Example 1.5.3.
The example of the motion of a ball was treated by Runge’s 2nd order method

with the constant step size h = 0.9. The coordinate of the landing point became
x∗ = 500.194, which is more than twice as accurate than the result obtained by
Euler’s method (without Richardson extrapolation) with h = 0.01, which uses about
90 times as many steps.

We have now seen a variety of ideas and concepts which can be used in the
development of numerical methods. A small warning is perhaps warranted here: it
is not certain that the methods will work as well in practice as one might expect.
This is because approximations and the restriction of numbers to a certain number
of digits introduce errors which are propagated to later stages of a calculation. The
manner in which errors are propagated is decisive for the practical usefulness of a
numerical method. We shall examine such questions in Chapter 2. Later chapters
will treat propagation of errors in connection with various typical problems.

The risk that error propagation may up-stage the desired result of a numerical
process should, however, not dissuade one from the use of numerical methods. It is
often wise, though, to experiment with a proposed method on a simplified problem
before using it in a larger context. The development of hardware as well as software
has created a far better environment for such work than we had a decade ago. In
this area too, the famous phrase of the Belgian-American chemist Baekeland holds:

“Commit your blunders on a small scale and make your profits on a
large scale.”

Review Questions

1. Explain the difference between the local and global error of a numerical method
for solving a differential equation. What is meant by the order of accuracy for
a method?

2. Describe how Richardson extrapolation can be used to increase the order of
accuracy of Euler’s method.
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Problems and Computer Exercises

1. Integrate numerically using Euler’s method the differential equation dy/dx =
y, with initial conditions y(0) = 1, to x = 0.4:

(a) with step length h = 0.2 and h = 0.1.

(b) Extrapolate to h = 0, using the fact that the error is approximately
proportional to the step length. Compare the result with the exact solution
of the differential equation and determine the ratio of the errors in the results
in (a) and (b).

(c) How many steps would have been needed in order to attain, without using
extrapolation, the same accuracy as was obtained in (b)?

2. (a) Write a program for the simulation of the motion of the ball, using Euler’s
method and the same initial values and parameter values as above. Print only
x, y at integer values of t and at the last two points (i.e. for n = N and
n = N + 1) as well as the coordinate of the landing point. Take h = 0.05
and h = 0.1. As post-processing, improve the estimates of x∗ by Richardson
extrapolation, and estimate the error by comparison with the results given in
the text above.

(b) In Equation (1.5.8) replace in the equations for xn+1 and yn+1 the right
hand sides un and vn by, respectively, un+1 and vn+1. Then proceed as in (a)
and compare the accuracy obtained with that obtained in (a).

(c) Choose initial values which correspond to what you think is reasonable for
shot put. Make experiments with several values of u0, v0 for c = 0. How much
is x∗ influenced by the parameter cR2/m?

3. Verify that Runge’s 2nd order method, as described by equation (1.5.10), is
equivalent to the scheme described a few lines earlier (with Euler steps and
Richardson extrapolation).

4. Write a program for Runge’s 2nd order method with automatic step size con-
trol that can be applied to a system of differential equations, or use the Mat-

lab program on the diskette. Store the results so that they can be processed
afterwards, e.g., for making table of the results, and/or curves to be drawn
showing y(t) versus t, or (for a system) y2 versus y1, or some other interesting
curves.
Apply the program to Examples 1.4.2 and 1.4.3, and to the circle test, i.e.

y′

1 = −y2, y′

2 = y1,

with initial conditions y1(0) = 1, y2(0) = 0. Verify that the exact solution is
a uniform motion along the unit circle in the (y1, y2)-plane. Stop the com-
putations after 10 revolutions (t = 20π). Make experiments with different
tolerances, and determine how small the tolerance has to be in order that the
circle on the screen should not become “thick”.
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1.6 Monte Carlo Methods

1.6.1 Origin of Monte Carlo Methods

In most of the applications of probability theory one makes a mathematical formu-
lation of a stochastic problem (i.e., a problem where chance plays some part), and
then solves the problem by using analytical or numerical methods. In the Monte
Carlo method, one does the opposite; a mathematical or physical problem is
given, and one constructs numerical game of chance, the mathematical analysis
of which leads to the same equations as the given problem, e.g., for the probability
of some event, or for the mean of some random variable in the game. One plays
it N times and estimates the relevant quantities by traditional statistical methods.
Here N is a large number, because the standard deviation of a statistical estimate
typically decreases only inversely proportional to

√
N .

The idea behind the Monte Carlo method was used by the Italian physicist
Enrico Fermi to study the neutron diffusion in the early 1930s. Fermi used a small
mechanical adding machine for this purpose. With the development of comput-
ers larger problems could be tackled. At Los Alamos in the late 1940s the use of
the method was pioneered by John von Neumann,11 Ulam12 and others for many
problems in mathematical physics including approximating complicated multidi-
mensional integrals. The picturesque name of the method was coined by Nicholas
Metropolis.

The Monte Carlo method is now so popular that the definition is too narrow.
For instance, in many of the problems where the Monte Carlo method is successful,
there is already an element of chance in the system or process which one wants to
study. Thus such games of chance can be considered to be a numerical simulation
of the most important aspects. In this wider sense the “Monte Carlo methods also
include techniques used by statisticians since around 1900, under names like ex-
perimental or artificial sampling. For example, one used statistical experiments to
check the adequacy of certain theoretical probability laws, which the eminent scien-
tist W .S .Gosset, who used the pseudonym “Student” when he wrote on Probability,
had derived mathematically.

Monte Carlo methods may be used, when the changes in the system are de-
scribed with a much more complicated type of equation than a system of ordinary
differential equations. Note that there are many ways to combine analytical meth-
ods and Monte Carlo methods. An important rule is that if a part of a problem
can be treated with analytical or traditional numerical methods, then one should use
such methods.

11John von Neumann was born János Neumann in Budapest 1903, and died in Washington
D.C. 1957. He studied under Hilbert in Göttingen during 1926–27, was appointed professor at
Princeton University in 1931, and in 1933 joined the newly founded Institute for Advanced Studies
in Princeton. He built a framework for quantum mechanics, worked in game theory and was one
of the pioneers of computer science.

12Stanislaw Marcin Ulam, born in Lemberg, Poland (now Lwow, Ukraine) 1909, died in Santa
Fe, New Mexico, USA, 1984. Ulam obtained his Ph.D. in 1933 from the Polytechnic institute of
Lwow, where he studied under Banach. He was invited to Harward University by G. D. Birkhoff
in 1935, and left Poland permanently in 1939. In 1943 he was asked by von Neumann to come to
Los Alamos, where he remained until 1965.
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Inside Shield Outside

Figure 1.6.1. Neutron scattering.

The following are some areas where the Monte Carlo method has been applied:

(a) Problems in reactor physics; for example, a neutron, because it collides with
other particles, is forced to make a random journey. In infrequent but impor-
tant cases the neutron can go through a layer of (say) shielding material (see
Fig. 1.5.1).

(b) Technical problems concerning traffic (telecommunication, railway networks,
regulation of traffic lights and other problems concerning automobile traffic).

(c) Queuing problems.

(d) Models of conflict.

(e) Approximate computation of multiple integrals.

(f) Stochastic models in financial mathematics.

Monte Carlo methods are often used for the evaluation of high dimensional
(10–100) integrals over complicated regions. Such integrals occur in such diverse ar-
eas as quantum physics and mathematical finance. The integrand is then evaluated
at random points uniformly distributed in the region of integration. The arithmetic
mean of these function values is then used to approximate the integral. Such ran-
domization makes multivariate integration computationally feasible. Interestingly
choosing the evaluation points uniformly distributed in the region of integration is
not the optimal strategy. Instead one should use “quasi-random numbers” designed
specifically for that purpose; see Sec. 5.??.

In a simulation, one can study the result of various actions more cheaply, more
quickly, and with less risk of organizational problems than if one were to take the
corresponding actions on the actual system. In particular, for problems in applied
operations research, it is quite common to take a shortcut from the actual system to
a computer program for the game of chance, without formulating any mathematical
equations. The game is then a model of the system. In order for the term Monte
Carlo method to be correctly applied, however, random choices should occur
in the calculations. This is achieved by using so-called random numbers; the
values of certain variables are determined by a process comparable to dice throwing.
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Simulation is so important that several special programming languages have been
developed exclusively for its use.13

In the rest of this section we assume that the reader is familiar with some
basic concepts, formulas and results from Probability and Statistics, and we make
use of them without proofs (which may be found in most texts on these subjects).
The terminology of Probability and Statistics is varied, in particular within areas
of application. We shall use the following terms for probability distributions in R:

The distribution function of a random variable X is denoted by F (x) and
defined by

F (x) = Pr{X ≤ x}.
Note that F (x) is non-negative and non-decreasing, F (−∞) = 0, F (∞) = 1. If
F (x) is differentiable, the (probability) density function 14 is f(x) = F ′(x). Note
that f(x) ≥ 0,

∫

R
f(x) dx = 1, and

Pr{X ∈ [x, x + dx] = f(x) dx + o(dx)}.

The mean or the expectation is

E(X) =

{∫

R
xf(x) dx, continuous case,

∑

i pixi, discrete case,

where the pi are probabilities that satisfy the conditions pi ≥ 0,
∑

i pi = 1, i = 1 : N .
The variance of X equals

var(X) =

{

E((X − m)2), continuous case,
∑

i pi(xi − m)2, discrete case,

where m = E(X). The standard deviation, std(X) =
√

var(X). Some formu-
las for the estimation of mean, standard deviation etc., from results of simulation
experiments or other statistical data are given in the computer exercises of Sec. 2.3.
See also the references to the Matlab Reference Guide in the problems and exercises
of the present section.

1.6.2 Random and Pseudo-Random Numbers

In the beginning coins, dice and roulettes were used for creating the randomness,
e.g., the sequence of twenty digits

11100 01001 10011 01100

is a record of twenty tosses of a coin where “heads” are denoted by 1 and “tails”
by 0. Such digits are sometimes called (binary) random digits, assuming that we

13One notable example is the SIMULA programming language designed and built by Ole-Johan
Dahl and Kristen Nygaard at the Norwegian Computing Center in Oslo 1962–1967, It was originally
built as a language for discrete event simulation, but was influential also because it introduced
object-oriented programming concepts.

14In old literature a density function is often called a frequency function. The term cumulative
distribution is also used as a synonym of distribution function. Unfortunately, distribution or
probability distribution is sometimes used in the meaning of a density function.
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have a perfect coin—i.e., that heads and tails have the same probability of occurring.
We also assume that the tosses of the coin are made in a statistically independent
way. (Of course, these assumptions cannot be obtained in practice, as shown in
theoretical and experimental studies by Persi Diaconis, Stanford University.)

Similarly, decimal random digits could in principle be obtained by using a
well-made icosahedral (twenty-sided) dice, and assigning each decimal digit to two
of its sides. Such mechanical (or analogous electronical) devices have been used
to produce tables of random sampling digits; the first one by Tippett was
published in 1927 and was to be considered as a sequence of 40000 independent
observations of a random variable that equals one of the integer values 0, 1, 2, . . . , 9,
each with probability 1/10. In the early 1950s the Rand Corporation constructed
a million-digit table of random numbers using an electrical “roulette wheel” ([6,
]). The wheel had 32 slots, of which 12 were ignored; the others were numbered
from 0 to 9 twice. To test the quality of the randomness several tests were applied.
Every block of a thousand digits in the tables (and also the table as a whole) were
tested.

Random digits from a table can be packed together to give a sequence of
equi-distributed integers. For example, the sequence

55693 02945 81723 43588 81350 76302 . . .

can be considered as six five-digit random numbers, where each element in the
sequence has probability of 10−5 of taking on the value, 0,1,2,. . . ,99,999. From the
same digits one can also construct the sequence

0.556935, 0.029455, 0.817235, 0.435885, 0.813505, 0.763025, . . . , (1.6.1)

which can be considered a good approximation to a sequence of independent ob-
servations of a variable which is a sequence of uniform deviates in on the interval
[0, 1). The 5 in the sixth decimal place is added in order to get the correct mean
(without this the mean would be 0.499995 instead of 0.5).

We shall return to this in the next subsection, together with the further devel-
opment in the computer age, where arithmetic methods are used for producing
the so-called pseudo-random numbers needed for the large-scale simulations that
nowadays are demanded, e.g. in the areas applications mentioned below.15

In a computer it is usually not appropriate to store a large table of random
numbers. One instead computes a sequence of uniform deviates u0, u1, u2, . . . ,∈
[0, 1], by a random number generator, i.e., some arithmetic algorithm. Se-
quences obtained in this way are uniquely determined by one or more starting
values (seeds), to be given by the user (or some default values). The aim of a
pseudo-random number generator is to imitate the abstract mathematical concept
of mutually independent random variables uniformly distributed over the interval
[0, 1). They should be analyzed theoretically and be backed by practical evidence

15Several physical devices for random number generation, using for instance electronic or ra-
dioactive noise, have been proposed but very few seem to have been inserted in an actual computer
system.
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from extensive statistical testing. According to a much quoted statement by D. H.
Lehmer16

“A random sequence is a vague notion . . . in which each term is un-
predictable to the uninitiated and whose digits pass a certain number of
tests traditional with statisticians. . .”

Because the set of floating point numbers in [0, 1] is finite, although very large,
there will eventually appear a number that has appeared before, (say) ui+j = ui

for some positive i, j. The sequence {un} therefore repeats itself periodically for
n ≥ i; the length of the period is j. A truly random sequence is, of course, never
periodic. A sequence generated like this is, for this and for other reasons, called
pseudo-random. However, the ability to repeat exactly the same sequence of
numbers, which is needed for program verification and variance reduction, is a
major advantage over generation by physical devices.

There are two popular myths about the making of random number generators:

(1) it is impossible; (2) it is trivial . . . .

We have seen that the first myth is correct, unless we add the prefix “pseudo”.17

The second myth, however, is completely false.
In a computer the fundamental concept is not a sequence of decimal random

digits, but the uniform random deviates, i.e., a sequence of mutually indepen-
dent observations of a random variable U with a uniform distribution on [0, 1); the
density function of U is thus (with a temporary notation)

f1(u) =

{

1, if u ∈ (0, 1);
0, otherwise.

Random deviates for other distributions, are generated by means of uniform devi-
ates, e.g., the variable X = a + (b − a)U is a uniform deviate on (a, b).. Its density
function isf(x) = f1((x − a)/(b − a)). If [a, b] = [0, 1] we usually write “uniform
deviate” (without mentioning the interval). We often write “deviate” instead of
“random deviate”, when the meaning is evident from the context.

The most widely generators used for producing pseudo-random numbers are
the multiple recursive generator based on linear recurrences of order k

xi = a1xi−1 + · · · + akxi−k + c mod m, (1.6.2)

i.e., xi is the remainder obtained when the right hand side is divided by the modulus
m. Here m is a positive integer and the coefficients a1, . . . , ak belong to the set
{0, 1, . . . , m − 1}. The state at step i is si = (xi−k+1, . . . , xi) and the generator
is started from a seed sk−1 = (x0, . . . , xk−1). When m is large the output can

16Some readers may think that Lehmer’s definition is too vague. There have been many deep
attempts for more precise formulation. See Knuth [pp. 149–179]knut:97, who catches the flavor of
the philosophical discussion of these matters and contributes to it himself.

17“Anyone who considers arithmetic methods of producing random numbers is, of course, in a
state of sin ”, John von Neumann (1951).
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be taken as the number ui = xi/m. When k = 1, we obtain the classical linear
congruential generator.

An important characteristic of a random number generator is its period,
which is the maximum length of the sequence before it begins to repeat. Note that
if the algorithm for computing xi only depends on xi−1, then the entire sequence
repeats once the seed x0 is duplicated.

A good RNG should have an extremely long period. If m is a prime number
and and if the coefficients aj satisfy certain conditions, then the generated sequence
has the maximal period length mk − 1; see Knuth [18].

The linear congruential generator defined by

xi = 16807xi−1 mod (231 − 1), (1.6.3)

with period length (231−2), was proposed originally by Lewis, Goodman, and Miller
(1969). It has been widely used in many software libraries for statistics, simulation
and optimization. In the survey by Park and Miller [32] this generator was proposed
as a “minimal standard” against which other generators should be judged. A similar
generator but with the multiplier 77 = 823543 was used in Matlab 4.

Marsaglia [25] pointed out a theoretical weakness of all linear congruential
generators. He showed that if k successive random numbers (xi+1, . . . , xi+k) at
a time are generated and used to plot points in k-dimensional space, then they
will lie on (k − 1)-dimensional hyperplanes, and will not fill up the space. More
precisely the values will lie on a set of, at most (k!m)1/k ∼ (k/e)m1/k equidistant
parallel hyperplanes in the k-dimensional hypercube (0, 1)k. When the number of
hyperplanes is too small, this obviously is a strong limitation to the k-dimensional
uniformity. For example, for m = 231 − 1 and k = 3, this is only about 1600 planes.
This clearly may interfere with a simulation problem.

If the constants m, a and c are not very carefully chosen, there will be many
fewer hyperplanes than the maximum possible. One such infamous example is the
linear congruential generator with a = 65539, c = 0 and m = 231 used by IBM
mainframe computers for many years.

Another weakness of linear congruential generators is that their low-order
digits are much less random than their high-order digits. Therefore when only part
of a generated random number is used one should pick the high-order digits.

One approach to better generators is to combine two RNGs. One possibility
is to use a second RNG to shuffle the output of a linear congruential generator. In
this way it is possible to get rid of some serial correlations in the output; see the
generator ran1 described in Press et. al. [34, Chapter 7.1].

Dahlquist in 1962 [7] developed a random number generator to be used for
drawing of prizes of Swedish Premium Saving Bonds. This starts with a primary
series of random digits, produced by some mechanical device. This primary series
has length n = p1 + p2 + · · · + pk, where pi are prime numbers and pi 6= pj ,
i 6= j. From this a secondary series of random digits with a period of p1 · p2 · · · pn

is generated by cyclically adding k digits mod 10.
At the time of writing simplistic and unreliable RNGs still abound in some

other commercial software products, despite the availability of much better alter-
natives. L’Ecuyer [22] reports on tests of RNGs used in some popular software
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products. Microsoft Excel uses the linear congruential generator

ui = 9821.0un−1 + 0.211327 mod 1,

implemented directly for the ui in floating point arithmetic. Its period length
depends on the precision of the arithmetic and it is not clear what it is. Microsoft
Visual Basic uses a linear congruential generator with period 224, defined by

xi = 1140671485xi−1 + 12820163 mod (224),

and takes ui = xi/224. The Unix standard library uses the recurrence

xi = 25214903917xi−1 + 12820163 mod (248),

with period length 248 and sets ui = xi/248. The Java standard library uses the
same recurrence but construct random deviates ui from x2i and x2i+1.

One conclusion of recent tests is that when large sample sizes are needed all
the above RNGs are unsafe to use and can fail decisively. It has been observed that
to avoid misleading results the period length ρ of the RNG needs to be such that
generating ρ1/3 numbers is not feasible. Thus a period length of 224 or even 248 may
not be enough. Linear RNGs are also unsuitable for cryptographical applications,
because the output is too predictable. For this reason, nonlinear generators have
been developed, but these are in general much slower than the linear generators.

In Matlab 5 and later versions the previous linear congruential generator
has been replaced with a much better generator, based on ideas of G, Marsaglia.
This generator has a 35 element state vector and can generate all the floating point
numbers in the closed interval [2−53, 1 − 2−53]. Theoretically it can generate 21492

values before repeating itself; see Moler [29]. If one generates one million random
numbers a second it would take 10435 years before it repeats itself!

Some recently developed linear RNGs can generate huge samples of pseudo-
random numbers very fast and reliably. The multiple recursive generator MRG32k3a
proposed by L’Ecuyer has a period near 2191. The Mersenne twister MT19937
by Matsumoto and Nishimura [28], the current “World Champion” among RNGs,
has a period length of 219937 − 1!

1.6.3 Testing Pseudo-Random Number Generators

Many statistical tests have been adapted and extended for the examination of arith-
metic methods of (pseudo-)random number generation, in use or proposed for digital
computers. In these the observed frequencies (a histogram) for some random vari-
able associated with the test, is compared with the theoretical frequencies on the
hypothesis that the numbers are independent observations from a true sequence of
random digits without bias. This is done by means of the famous χ2-test of K.
Pearson [33]18, which we now describe.

18This paper by the English mathematician Karl Pearson (1857–1936) is considered as one of
the foundations of modern statistics. In it he gave several examples, e.g., he proved that some
runs at roulette he had observed during a visit to Monte Carlo were so far from expectations that
the odds against an honest wheel was about 1029 to one.
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Suppose that the space S of the random variable is divided into a finite number
r of non-overlapping parts S1, . . . , Sr. These parts may be groups into which the
sample values have been arranged for tabulation purposes. Let the corresponding
group probabilities be pi = Pr(Si), i = 1, . . . , r, where

∑

i pi = 1. We now form
a measure of the deviation of the observed frequencies ν1, . . . , νr,

∑

i νi = n, from
the expected frequencies

χ2 =

r
∑

i=1

(νi − npi)
2

npi
=

r
∑

i=1

ν2
i

npi
− n. (1.6.4)

It is known that as n tends to infinity the distribution of χ2 tends to a limit inde-
pendent of P (Si), which is the χ2-distribution with r − 1 degrees of freedom.

Now let χ2
p be a value such that Pr(χ2 > χ2

p) = p%. Here p is chosen so small
that we are practically certain that an event of probability p% will not occur in a
single trial. The hypothesis is rejected if the observed value of χ2 is larger than χ2

p.
Often a rejection level of 5% or 1% is used.

Example 1.6.1.
In n = 4040 throws with a coin, Buffon obtained ν = 2048 heads and hence

n− ν = 1992 tails. Is this consistent with the hypothesis that there is a probability
of p = 1/2 of throwing tails? Here we obtain

χ2 =
(νi − np)2

np
+

(n − ν − np)2

npi
= 2

(2048− 2020)2

2020
= 0.776.

Using a rejection level of 5% we find from a table of the χ2-distribution with one
degree of freedom that κ2

5 = 3.841. Hence the hypothesis is accepted at this level.

Some test that have been used for testing RNGs are:

1. Frequency test This test is to find out if the generated numbers are equidis-
tributed. One divides the possible outcomes in equal non-overlapping intervals
and tallies the amount of numbers in each interval.

2. Poker test This test applies to generated digits, which are divided into non-
overlapping groups of 5 digits. Within the groups we study some (unordered)
combinations of interest in poker. These are given below together with their
probabilities.

All different: abcde 0.3024
One pair: aabcd 0.5040
Two pairs: aabbc 0.1080
Three of a kind: aaabc 0.0720
Full house: aaabb 0.0090
Four of a kind: aaaab 0.0045
Five of a kind: aaaaa 0.0001
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3. Gap test This test examines the length of “gaps” between occurences of Uj in
a certain range. If α and β are two numbers with 0 ≤ α < β ≤ 1, we consider
the length of consecutive subsequences Uj , Uj+1, . . . , Uj+r in which Uj+r lies
between α and β but Uj , Uj+1, . . . , Uj+r−1 does not. This subsequence then
represents a gap of length r.

Working with single digits the gap equals the distance between two equal
digits. The probability of a gap of length r in this case equals

pr = 0.1(1 − 0.1)r = 0.1(0.9)r, r = 0, 1, 2, . . . .

Several other tests are decribed in Knuth [18, Sec. 3.3].
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Figure 1.6.2. Plots of pairs of 106 random uniform deviates (Ui, Ui+1)
such that Ui < 0.0001. Left: Matlab 4; Right: Matlab 5.

Example 1.6.2.
It is also important to test the serial correlation of the generated numbers. To

test the two-dimensional behavior of a random number generator we generated 106

pseudo-random numbers Ui. We then placed the numbers each plot (Ui, Ui+1) in
the unit square. A thin slice of the surface of the square 0.0001 wide by 1.0 high was
the cut on its left side and stretched out horizontally. This corresponds to plotting
only the pairs (Ui, Ui+1) such that Ui < 0.0001 (about 1000 points).

In Figure 1.6.2 we show the two plots from the generators in Matlab 4 and
Matlab 5, respectively. The lattice structure is quite clear in the first plot. With
the new generator no lattice structure is visible.

A good generator should have been analyzed theoretically and be supported by
practical evidence from extensive statistical and other tests. Knuth [18, Chapter 3],
ends his masterly chapter on Random Numbers with the following exercise: Look at
the subroutine library at your computer installation, and replace the random number
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generators by good ones. Try to avoid to be too shocked at what you find. He has
in the chapter pointed out both the important ideas, concepts and facts of the
topic, and also mentioned some scandalously poor random number generators that
were in daily use for decades as standard tools in widely spread computer libraries.
Although the generators in daily use have improved, many are still not satisfactory.
L’Ecuyer [22] writes in 2001:

“Unfortunately, despite repeated warnings over the past years about cer-
tain classes of generators, and despite the availability of much better
alternatives, simplistic and unsafe generators still abound in commer-
cial software.”

1.6.4 Random Deviates for Other Distributions.

We have so far discussed how to generate sequences that behave as if they were
random uniform deviates U on [0, 1). By arithmetic operations one can form random
numbers with other distributions. A simple example is that S = a + (b − a)U will
be uniformly distributed on [a, b). We can also easily generate a random integer
between 1 and k; see Example 1.6.1.

Monte Carlo methods often call for other kinds of distributions, for example
normal deviates. As we shall see, these can also be generated from a sequence of
uniform deviates. Many of the tricks used to do this were originally suggested by
John von Neumann in the early 1950s, but have since been improved and refined.
We now exemplify, how to use uniform deviates to generate random deviates X for
some other distributions.

Discrete Distributions

To make a random choice from a finite number k equally probable possibilities is
equivalent to generate a random integer X between 1 and k. To do this we take a
random deviate U uniformly distributed on [0, 1) multiply by k and take the integer
part, and 1, i.e.

X = ⌈kU⌉,
where ⌈x⌉ denotes the smallest integer larger than or equal to x.There is a small
error because the set of floating point numbers is finite, but this is usually negligible.

In a more general situation, we might want to give different probabilities to the
values of a variable. Suppose we give the values X = xi, i = 1 : k the probabilities
pi, i = 1 : k; note that

∑

pi = 1. We can the generate a uniform number U and let

X =















x1, if 0 ≤ U < p1;
x2, if p1 ≤ U < p1 + p2;
...
xk, if p1 + p2 + · · · pk−1 ≤ U < 1.

If k is large, and the sequence {pi} is irregular, may require some thought how to
find x quickly for a given u. See the analogous question to find a first guess to the
root of Equation (1.6.5) below, and the discussion in Knuth [18, Sec. 3.4.1].
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A General Transformation from U to X

Suppose we want to generate numbers for a random variable X with a given con-
tinuous or discrete distribution function F (x). (In the discrete case, the graph of
the distribution function becomes a staircase, see the formulas above.) A general
method for this is to solve the equation

F (X) = U, or equivalently, X = F−1(U), (1.6.5)

see Figure 1.6.4. Because F (x) is a nondecreasing function, and Pr{U ≤ u} =
u, ∀u ∈ [0, 1], equation (1) is proved by the line

Pr{X ≤ x} = Pr{F (X) ≤ F (x)} = Pr{U ≤ F (x)} = F (x).

How to solve (1.6.5) fast is often a problem with this method, and for some distri-
butions we shall see better methods below.
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Figure 1.6.3. Random number with distribution F (x).

Exponential Deviates.

As an example consider the exponential distribution with parameter λ > 0. This
distribution occurs in queuing problems, e.g., in tele-communication, to model ar-
rival and service times. The important property is that the intervals of time between
two successive events are a sequence of exponential deviates. The exponential dis-
tribution with mean 1/λ has density function f(t) = λe−λt, t > 0, and distribution
function

F (x) =

∫ x

0

λe−λt dt = 1 − e−λx. (1.6.6)

Using the general rule given above, exponentially distributed random numbers X
can be generated as follows: Let U be a uniformly distributed random number in
[0, 1]. Solving the equation 1 − e−λX = U , we obtain

X = −λ−1 ln(1 − U).
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A drawback of this method is that the evaluation of the logarithm is relatively slow.
One important use of exponentially distributed random numbers is in the

generation of so-called Poisson processes. Such processes are often fundamental
in models of telecommunications systems and other service systems. A Poisson
process with frequency parameter λ is a sequence of events characterized by the
property that the probability of occurrence of an event in a short time interval
(t, t + ∆t) is equal to λ·∆t + o(∆t), independent of the sequence of events previous
to time t. In applications an “event” can mean a call on a telephone line, the
arrival of a customer in a store, etc. For simulating a Poisson process one can use
the important property that the intervals of time between two successive events are
independent exponentially distributed random numbers.

Normal Deviates.

A normal deviate N is a random variable with zero mean and unit standard devia-
tion, and has the density function

f(x) =
1√
2π

e−x2/2, (m = 0, σ = 1).

A normal deviate with mean m and standard deviation σ is m + σN ; the density
function is (1/σ)f((x − m)/σ). The normal distribution function

Φ(x) =
1√
2π

∫ x

−∞

e−t2/2 dt =
1

2

(

1 + erf
( x√

2

))

is related to the error function erf(x) introduced in Sec. 1.3.4 and is not an elemen-
tary function, In this case solving the equation (1.6.5) is time consuming.

Fortunately random normal deviates can be obtained in easier ways. In the
polar algorithm a random point in the unit circle is generated as follows. Let
U1, U2 be two independent, uniformly distributed random numbers on [0, 1]. Then
the point (V1, V2), where Vi = 2Ui − 1, i = 1, 2, is uniformly distributed in the
square [−1, 1]× [−1, 1]. We compute S = V 2

1 + V 2
2 and reject the point if it outside

the unit circle, i.e. if S > 1. The remaining points are uniformly distributed on the
unit circle.

For each accepted point we form

N1 = V1

√

−2 lnS

S
, N2 = V2

√

−2 lnS

S
. (1.6.7)

It can be proved that N1, N2 are two independent, normally distributed random
numbers with mean zero and standard deviation 1. We point out that N1, N2 can be
considered to be rectangular coordinates of a point whose polar coordinates (r, φ)
are determined by the equations

r2 = N2
1 + N2

2 = −2 lnS, cosφ = U1/
√

S, sinφ = U2/
√

S.

Thus the problem is to show that the distribution function for a pair of indepen-
dent, normally distributed random variables is rotationally symmetric (uniformly
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distributed angle) and that their sum of squares is exponentially distributed with
mean 2; see Knuth [18, p. 123].

The polar algorithm, which was used for Matlab 4, is moderately expensive.
First, about (1 − π/4) = 21.5% of the uniform numbers are rejected because the
generated point falls outside the unit circle. Further, the calculation of the logarithm
contributes significantly to the cost. From Matlab 5 on a more efficient table
look-up algorithm developed by Marsaglia and Tsang [27] is used. This is called
the “ziggurat” algorithm after the name of ancient Mesopotamian terraced temples
mounds, that look like two-dimensional step functions. A popular description of
the ziggurat algorithm is given by Moler [30]; see also [17].

Chi-square Distribution

The chi-square distribution function P (χ2, n) is related to the incomplete gamma
function (see Sec. 3.?? by

P (χ2, n) = (n/2, χ2/2). (1.6.8)

Its complement Q(χ2, n) = 1 − P (χ2, n) is the probability that the observed chi-
square will exceed the value χ2 even for a correct model. Subroutines for evaluating
the χ2-distribution function as well as other important statistical distribution func-
tions are given in [34, Sec. 6.2–6.3].

Numbers belonging to the chi-square distribution can also be obtained by
using the definition of the distribution. If N1, N2, . . . , Nn are normal deviates with
mean 0 and variance 1, the number

Yn = N2
1 + N2

2 + · · · + N2
n

is distributed as χ2 with n degrees of freedom.

Other Distributions

Methods to generate random deviates with, e.g., Poisson, gamma and binomial dis-
tribution, are described in Knuth [18, Sec. 3.4]) and Press et al. [34, Chapter 7.3].
A general method, introduced by G. Marsaglia [24], is the rectangle-wedge-tail
method. It been further developed and applied by Marsaglia and coauthors, see
references in Knuth [18, Sec. 3.4]). The rejection method is based on ideas of von
Neumann.Several authors, notably G. Marsaglia, have developed powerful combi-
nations of rejection methods and the rectangle-wedge-tail method.

1.6.5 Reduction of Variance.

From statistics, we know that if one makes n independent observations of a quantity
whose standard deviation is σ, then the standard deviation of the mean is σ/

√
n.

Hence to increase the accuracy by a factor of 10 (say) we have to increase the
number of experiments n by a factor 100.
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Example 1.6.3.
In 1777 Buffon19 carried out a probability experiment by throwing sticks over

his shoulder onto a tiled floor and counting the number of times the sticks fell across
the lines between the tiles. He stated that the favourable cases correspond “to the
area of part of the cycloid whose generating circle has diameter equal to the length
of the needle”. To simulate Buffon’s experiment we suppose a board is ruled with
equidistant parallel lines and that a needle fine enough to be considered a segment
of length l not longer than the distance d between consecutive lines is thrown on
the board. The probability is then 2l/(πd) that it will hit one of the lines.

The Monte Carlo method and this game can be used to approximate the value
of π. Take the distance δ between the center of the needle and the lines and the
angle φ between the needle and the lines to be random numbers. By symmetry we
can choose these to be rectangularly distributed on [0, d/2] and [0, π/2], respectively.
Then the needle hits the line if δ < (l/2) sinφ.
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Figure 1.6.4. The left part shows how the estimate of π varies with the
number of throws. The right part compares |m/n−2/π| with the standard deviation
of m/n. The latter is inversely proportional to n1/2, and is therefore a straight line
in the figure.

We took l = d. Let m be the number of hits in the first n throws in a Monte
Carlo simulation with 1000 throws. The expected value of m/n is therefore 2/π,
and so 2n/m is an estimate of π after n throws. In the left part of Fig. 1.5.3 we see,
how 2n/m varies with n in one simulation. The right part compares |m/n − 2/π|
with the standard deviation of m/n, which equals

√

2/π(1 − 2/π)/n and is, in the
log-log-diagram, represented by a straight line, the slope of which is −1/2. This
can be taken as a test that the random number generator in Matlab is behaving
correctly! (The spikes, directed downwards in the figure, typically indicate where

19Compte de Buffon (1707–1788), French natural scientist that contributed to the understanding
of probability. He also computed the probability that the sun would continue to rise after having
been observed to rise on n consecutive days.
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m/n − 2/π changes sign.)

A more efficient way than increasing the number of samples, often is to instead
try to decrease the value of σ by redesigning the experiment in various ways. Assume
that one has two ways (which require the same amount of work) of carrying out an
experiment, and these experiments have standard deviations σ1 and σ2 associated
with them. If one repeats the experiments n1 and n2 times (respectively), the same
precision will be obtained if σ1/

√
n1 = σ2/

√
n2, or

n1/n2 = σ2
1/σ2

2 . (1.6.9)

Thus if a variance reduction by a factor k can be achieved, then the number of
experiments needed is also reduced by the same factor k.

An important means of reducing the variance of estimates obtained from the
Monte Carlo method is to use antithetic sequences. For example, if Ui is a series
of random uniform deviates on [0, 1] then U ′

i = 1−Ui are also uniformly distributed
on [0, 1]. For example, from the sequence in (1.6.1) we get the sequence

0.443065, 0.970545, 0.182765, 0.564115, 0.186495, 0.236975, . . . , (1.6.10)

which is the antithetic sequence derived from (1.6.1). Antithetic sequences of nor-
mally distributed numbers are obtained simply by reversing the sign of the original
sequence.

Roughly speaking, since the influence of chance has opposing effects in the
two antithetic experiments, one can presume that the effect of chance on the means
is much less than the effect of chance in the original experiments. In the following
example we show how to make a quantitative estimate of the reduction of variance
accomplished with the use of antithetic experiments.

Example 1.6.4.
Suppose the numbers xi are the results of statistically independent measure-

ments of a quantity with expected value m, and standard deviation σ. Set

x̄ =
1

n

n
∑

i=1

xi, s2 =
1

n

n
∑

i=1

(xi − x̄)2.

Then x̄ is an estimate of m, and s/
√

n − 1 is an estimate of σ.
In ten simulation and their antithetic experiments of a service system the

following values were obtained for the treatment time:

685 1, 045 718 615 1, 021 735 675 635 616 889 .

From this experiment the mean for the treatment time is estimated as 763, 4, and
the standard deviation 51.5, which we write 763 ± 52. Using an anthitetic series,
one got the following values:

731 521 585 710 527 574 607 698 761 532 .
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Table 1.6.1. Simulation of patients at a polyclinic.

k = 1 k = 2

Pno Parr Tbeg R Ttime Tend Parr Tend

1 0∗ 0 211 106 106 0∗ 106

2 50 106 3 2 108 0 108

3 100 108 53 26 134 50 134

4 150∗ 150 159 80 230 100 214

5 200 230 24 12 242 150 226

6 250∗ 250 35 18 268 200 244

7 300∗ 300 54 27 327 250∗ 277

8 350∗ 350 39 20 370 300∗ 320

9 400∗ 400 44 22 422 350∗ 372

10 450∗ 450 13 6 456 400∗ 406

Σ 2,250 319 2,663 1,800 2,407

The series means is thus

708 783 652 662 774 654 641 666 688 710 ,

from which one gets the estimate 694 ± 16.
When one instead supplemented the first sequence with ten values using in-

dependent random numbers, the estimate 704 ± 36 using all twenty values was
obtained. These results indicate that, in this example, using antithetical sequence
produces the desired accuracy with (16/36)2 ≈ 1/5 of the work required if com-
pletely independent random numbers are used. This rough estimate of the work
saved is uncertain, but indicates that it is profitable to use the technique of an-
thitetic series.

Example 1.6.5.
Monte Carlo methods have been successfully used to study queuing problems.

A well known example is a study by Bailey [3] to determine how to give appointment
times to patients at a polyclinic. The aim is to find a suitable balance between
the mean waiting times of both patients and doctors. This problem was in fact
solved analytically—much later—after Bailey already had gotten the results that he
wanted; this situation is not uncommon when numerically methods (and especially
Monte Carlo methods) have been used.

Suppose that k patients have been booked at the time t = 0 (when the clinic
opens), and that the rest of the patients (altogether 10) are booked at intervals
of 50 time units thereafter. The time of treatment is assumed to be exponentially
distributed with mean 50. (Bailey used a distribution function which was based
on empirical data.) Three alternatives, k = 1, 2, 3, are to be simulated. By using
the same random numbers for each k (hence the same treatment times) one gets a
reduced variance in the estimate of the change in waiting times as k varies.
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The computations are shown in the Table 1.5.1. The following abbreviations
are used: P = patient, D = doctor, T = treatment. An asterisk indicates that the
patient did not need to wait. In the table Parr follows from the rule for booking
patients given previously. The treatment time Ttime equals 50R/100 where R are
exponentially distributed numbers with mean 100 taken from a table. Tbeg equals
the larger of the number Parr (on the same row) and Tend (in the row just above),
where Tend = Tbeg + Ttreat.

From the table we find that for k = 1 the doctor waited the time D = 456 −
319 = 137; the total waiting time for patients was P = 2, 663 − 2, 250 − 319 = 94.
For k = 2 the corresponding waiting times were D = 406 − 319 = 87 and P =
2, 407−1, 800−319 = 288. Similar calculations for k = 3 gave D = 28 and P = 553
(see Fig. 1.5.5). For k ≥ 4 the doctor never needs to wait.
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Figure 1.6.5. Mean waiting times for doctor/patients at polyclinic.

One cannot, of course, draw any tenable conclusions from one experiment.
More experiments should be made in order to put the conclusions on statistically
solid ground. Even isolated experiments, however, can give valuable suggestions
for the planning of subsequent experiments, or perhaps suggestions of appropriate
approximations to be made in the analytic treatment of the problem. The large-
scale use of Monte Carlo methods requires careful planning to avoid drowning in in
enormous quantities of unintelligible results.

Two methods for reduction of variance have here been introduced: anti-
thetic sequence of random numbers and the technique of using the same random
numbers in corresponding situations. The latter technique is used when studying
the changes in behavior of a system when a certain parameter is changed (e.g., the
parameter k in Exercise 4). (Note that we just have restart the RNG using the
same seed.)

Many effective methods have been developed for reducing variance, e.g., im-
portance sampling and splitting techniques (see Hammersley and Hand-
scomb [15]).
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Review Questions

1. What is a uniformly distributed random number?

2. Describe a general method for obtaining random numbers with a given discrete
or continuous distribution. Give examples of their use.

3. What are the most important properties of a Poisson process? How can one
generate a Poisson process with the help of random numbers?

4. What is the mixed congruential method for generating pseudo-random num-
bers? What important difference is there between the numbers generated by
this method and “genuine” random numbers?

5. Give three methods for reduction of variance in estimates made with the Monte
Carlo method, and explain what is meant by this term. Give a quantitative
connection between reducing variance and decreasing the amount of compu-
tation needed in a given problem?

Problems and Computer Exercises

1. (C. Moler) Consider the toy random number generator, xi = axi mod m, with
a = 13, m = 31 and start with x0 = 1. Show that this generates a sequence
consisting of a permutation of all integers from 1 to 30, and then repeats itself.
Thus this generator has the period equal to m−1 = 30, equal to the maximum
possible.

2. Simulate (say) 360 throws with two usual dices. Denote the sum of the number
of dots on the two dice in the n’th throw by Yn, 2 ≤ Yn ≤ 12. Tabulate or draw
a histogram, i.e., the (absolute) frequency of the occurrence of j dots versus
j, j = 2 : 12. Make a conjecture about the true value of P (Yn = j). Try to
confirm it by repeating the experiment with fresh uniform random numbers.
When you have found the right conjecture, it is not hard to prove it.

3. (a) Let X, Y be independent uniform random numbers on the interval [0, 1].
Show that P (X2 + Y 2 ≤ 1) = π/4, and estimate this probability by a Monte
Carlo experiment with (say) 1000 pairs of random numbers. For example,
make graphical output like in the Buffon needle problem.

(b) Make an antithetic experiment, and take the average of the two results.
Is the average better than one can expect if the second experiment had been
independent of the first one.

(c) Estimate similarly the volume of the four-dimensional unit ball. If you
have enough time, use more random numbers. (The exact volume of the unit
ball is π2/2.)

4. A famous result by P. Diaconis asserts that it takes approximately 3
2 log2 52 ≈

8.55 riffle shuffles to randomize a deck of 52 cards, and that randomization
occurs abruptly according to a “cutoff phenomenon”. (For example, after six
shuffles the deck is still far from random.)
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The following defintion can be used for simulating a riffle shuffle. The deck
of cards is first cut roughly in half according to a binomial distribution, i.e.
the probabiity that ν cards are cut is n

ν /2n. The two halfs are then riffled to
gether by dropping cards roughly alternately from each half onto a pile, with
the probability of a card being dropped from each half being proportional to
the number of cards in it.
Write a program that uses uniform random numbers (and perhaps uses the
the formula X = ⌈kR⌉ for several values of k ) to simulate a random “shuffle”
of a deck of 52 cards according to the above precise definition. This is for a
numerical game; do not spend time on drawing beautiful hearts, clubs etc.

5. Brownian motion is the irregular motion of dust particles suspended in a fluid,
being bombarded by molecules in a random way. Generate two sequences of
random normal deviates ai and bi, and use these to simulate Brownian motion
by generating a path defined by the points (xi, yj), where x0 = y0 = 0,
xi = xi−1 + ai, yi = yi−1 + bi. Plot each point and connect the points with a
straight line to visualize the path.

6. Repeat the simulation in the queuing problem in Example 1.6.5 for k = 1 and
k = 2 using the sequence of exponentially distributed numbers R

13 365 88 23 154 122 87 112 104 213 ,

antithetic to that used in Example 1.6.5. Compute the mean of the waiting
times for the doctor and for all patients for this and the previous experiment.

7. A target with depth 2b and very large width is to be shot at with a can-
non. (The assumption that the target is very wide makes the problem one-
dimensional.) The distance to the center of the target is unknown, but esti-
mated to be D. The difference between the actual distance and D is assumed
to be a normally distributed variable X with zero mean and standard devia-
tion σ1.
One shoots at the target with a salvo of three shots, which are expected to
travel a distance D − a, D and D + a, respectively. The difference between
the actual and the expected distance traveled is assumed to be a normally
distributed random variable with zero mean and standard deviation σ2; the
resulting error component in the three shots is denoted by Y−1, Y0, Y1. We
further assume that these three variables are stochastically independent of
each other and X .
One wants to know how the probability of at least one “hit” in a given salvo
depends on a and b. Use normally distributed pseudo-random numbers to
shoot ten salvos and determine for each salvo, the least value of b for which
there is at least one “hit” in the salvo. Show that this is equal to

min
k

|X − (Yk + ka)|, k = −1, 0, 1.

Fire an “antithetic salvo” for each salvo.
Graph using σ1 = 3, σ2 = 1, for both a = 1 and a = 2 using the same random
numbers curves, which give the probability of a hit as a function of the depth
of the target.
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Notes and References

A good paper explaining to a mathematical audience problems inherent in numerical
computations is Forsythe [10, ]. Fox [13, ] gives numerous examples in
which incorrect answers are obtained from plausible numerical methods.

Many of the methods and problems introduced in this introductory chapter
will be studied in more detail in later chapters and volumes. In particular, methods
for solving a single nonlinear equation are found in Chapter 6, and corresponding
methods for nonlinear systems of equations are treated in Chapter 12, Volume II.
Gaussian elimination and iterative methods for linear systems will be covered in
Volume II, Chapters 7 and 10, respectively. The numerical solution of ordinary
differential equations is treated in depth in Volume III, Chapter 13.

An good source of information on random numbers is Knuth [18]. Another
comprehensive reference is the monograph by Niederreiter [31, ]. An overview
more suited for applications is found in Press et al. [34, Chapter 7]. Guidelines for
choosing a good RNG are given in Marsaglia [26] and L’Ecuyer [19]. Recent progress
in random number generation and testing is found in the two authoritative papers
by L’Ecuyer [20, 21]. Hellekalek [16] explains the art to access random number
generators for practitioners.

Computational aspects of numerical linear algebra will be treated in Volume II.
For an elementary introduction to Linear Algebra we refer to one of several good
textbooks, e.g., Leon [23], Strang [37].

The historical developments of Numerical Analysis in the 20th Century is
surveyed in [5]. An eloquent essay on the foundations of computational mathematics
is found in [4].
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Chapter 2

How to Obtain and

Estimate Accuracy

2.1 Basic Concepts in Error Estimation

The main purpose of numerical analysis and scientific computing is to develop ef-
ficient and accurate methods to compute approximations to quantities that are
difficult or impossible to obtain by analytic means. It has been convincingly argued
(N. Trefethen [43]) that controlling rounding errors is just a small part of this, and
that the main business of computing is the development of algorithms that converge
fast. Even if we acknowledge the truth of this statement, it is still necessary to be
able to control different sources of errors, including round-off errors, so that these
will not interfere with the computed results.

2.1.1 Sources of Error

Numerical results are affected by many types of errors. Some sources of error are
difficult to influence; others can be reduced or even eliminated by, for example,
rewriting formulas or making other changes in the computational sequence. Errors
are propagated from their sources to quantities computed later, sometimes with a
considerable amplification or damping. It is important to distinguish between the
new error produced at the computation of a quantity (a source error), and the error
inherited (propagated) from the data that the quantity depends on.

A. Errors in Given Input Data. Input data can be the result of measurements
which have been influenced by systematic errors or by temporary disturbances.
A rounding error occurs, for example, whenever an irrational number is
shortened (“rounded off”) to a fixed number of decimals. It can also occur
when a decimal fraction is converted to the form used in the computer.

B. Rounding Errors During the Computations. The limitation of floating point
numbers in a computer leads at times to a loss of information that, depending
on the context, may or may not be important. Two typical cases are:

1
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(i) If the computer cannot handle numbers which have more than, say, s
digits, then the exact product of two s-digit numbers (which contains 2s or
2s− 1 digits) cannot be used in subsequent calculations; the product must be
rounded off.

(ii) If, in a floating point computation, a relatively small term b is added to
a, then some digits of b are “shifted out” (see Example 2.3.1, and they will
not have any effect on future quantities that depend on the value of a + b.

The effect of such rounding can be quite noticeable in an extensive calculation,
or in an algorithm which is numerically unstable (see Example 1.3.1).

C. Truncation Errors. These are errors committed when a limiting process is trun-
cated (broken off) before one has come to the limiting value. A truncation
error occurs, for example, when an infinite series is broken off after a finite
number of terms, or when a derivative is approximated with a difference quo-
tient (although in this case the term discretization error is better). Another
example is when a nonlinear function is approximated with a linear function
as in Newton’s method. Observe the distinction between truncation error and
rounding error.

D. Simplifications in the Mathematical Model. In most of the applications of math-
ematics, one makes idealizations. In a mechanical problem, for example, one
might assume that a string in a pendulum has zero mass. In many other types
of problems it is advantageous to consider a given body to be homogeneously
filled with matter, instead of being built up of atoms. For a calculation in
economics, one might assume that the rate of interest is constant over a given
period of time. The effects of such sources of error are usually more difficult
to estimate than the types named in A, B, and C.

E. “Human” Errors and Machine Errors. In all numerical work, one must expect
that clerical errors, errors in hand calculation, and misunderstandings will
occur. One should even be aware that textbooks (!), tables and formulas
may contain errors. When one uses computers, one can expect errors in the
program itself, typing errors in entering the data, operator errors, and (more
seldom) pure machine errors.

Errors which are purely machine errors are responsible for only a very small
part of the strange results which (occasionally with great publicity) are produced
by computers. Most of the errors depend on the so-called human factor. As a
rule, the effect of this type of error source cannot be analyzed with the help of
the theoretical considerations of this chapter! We take up these sources of error
in order to emphasize that both the person who carries out a calculation and the
person who guides the work of others can plan so that such sources of error are
not damaging. One can reduce the risk for such errors by suitable adjustments in
working conditions and routines. Stress and tiredness are common causes of such
errors.

Intermediate results that may reveal errors in a computation are not visible
when using a computer. Hence the user must be able to verify the correctness of
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his results or be able to prove that his process cannot fail! Therefore one should
carefully consider what kind of checks can be made, either in the final result or
in certain stages of the work, to prevent the necessity of redoing a whole project
for the sake of a small error in an early stage. One can often discover whether
calculated values are of the wrong order of magnitude or are not sufficiently regular,
for example using difference checks (see Sec. 4.5).

Occasionally one can check the credibility of several results at the same time
by checking that certain relations are true. In linear problems, one often has the
possibility of sum checks. In physical problems, one can check, for example, to see
whether energy is conserved, although because of the error sources A–D one cannot
expect that it will be exactly conserved. In some situations, it can be best to treat
a problem in two independent ways, although one can usually (as intimated above)
check a result with less work than this.

Errors of type E do occur, sometimes with serious consequences. For example,
the first American Venus probe was lost due to a program fault caused by the
inadvertent substitution of a statement in a Fortran program of the form DO 3

I = 1.3 for one of the form DO 3 I = 1,3.1 A hardware error that got much
publicity surfaced in 1994, when it was found that the INTEL Pentium processor
gave wrong results for division with floating point numbers of certain patterns. This
was discovered during research on prime numbers; see Edelman [18].

From a different point of view, one may distinguish between controllable and
uncontrollable (or unavoidable) error sources. Errors of type A and D are usually
considered to be uncontrollable in the numerical treatment (although a feedback
to the constructor of the mathematical model may sometimes be useful). Errors
of type C are usually controllable. For example, the number of iterations in the
solution of an algebraic equation, or the step size in a simulation can be chosen,
either directly or by setting a tolerance, see Sec. 1.4.3.

The rounding error in the individual arithmetic operation (type B) is, in a
computer, controllable only to a limited extent, mainly through the choice between
single and double precision. A very important fact is, however, that it can often be
controlled by appropriate rewriting of formulas or by other changes of the algorithm,
see, e.g., Example 2.3.3.

If it doesn’t cost too much, a controllable error source should be controlled
so that its effects are evidently negligible, for example compared to the effects of
the uncontrollable sources. A reasonable interpretation of “full accuracy” is that
the controllable error sources should not increase the error of a result more than
about 20%. Sometimes, “full accuracy” may be expensive, for example in terms of
computing time, memory space or programming efforts. Then it becomes important
to estimate the relation between accuracy and these cost factors. One goal of the
rest of this chapter is to introduce concepts and techniques useful to this purpose.

Many real-world problems contain some non-standard features, where under-
standing the general principles of numerical methods can save much time in the
preparation of a program as well as in in the computer runs. Nevertheless, we

1The erroneous replaced symbol “,” with “.” converts the intended loop statement into an
assignment statement!
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strongly encourage the reader to use quality library programs whenever possible,
since a lot of experience and profound theoretical analysis has often been built into
these (sometimes far beyond the scope of this text). It is not practical to “reinvent
the wheel”!

2.1.2 Absolute and Relative Errors

Approximation is a central concept in almost all the uses of mathematics. One must
often be satisfied with approximate values of the quantities with which one works.
Another type of approximation occurs when one ignores some quantities which are
small compared to others. Such approximations are often necessary to insure that
the mathematical and numerical treatment of a problem does not become hopelessly
complicated.

We make the following definition.

Definition 2.1.1.
Let x̃ be an approximate value whose exact value is x. Then the absolute

error in x̃ is:

∆x = x̃ − x,

and if x 6= 0 the relative error is:

∆x/x = (x̃ − x)/x.

In some books the error is defined with the opposite sign to that we use here.
It makes almost no difference which convention one uses, as long as one is consistent.
Using our definition x− x̃ is the correction which should be added to x̃ to get rid of
the error. The correction and the error have then the same magnitude but different
sign.

It is important to distinguish between the error x̃−x, which can be positive or
negative, and a bound for the magnitude of the error. In many situations one wants
to compute strict or approximate error bounds for the absolute or relative error.
Since it is sometimes rather hard to obtain an error bound that is both strict and
sharp, one sometimes prefers to use less strict but often realistic error estimates.
These can be based on the first neglected term in some expansion or some other
asymptotic considerations.

The notation x = x̃ ± ǫ means, in this book, |x̃ − x| ≤ ǫ. For example, if
x = 0.5876 ± 0.0014 then 0.5862 ≤ x ≤ 0.5890, and |x̃ − x| ≤ 0.0014. In other
texts, the same plus-minus notation is sometimes used for the “standard error” (see
Sec. 2.3.3) or some other measure of deviation of a statistical nature. If x is a vector
‖ · ‖ then the error bound and the relative error bound may be defined as bounds
for

‖x̃ − x‖ and ‖x̃ − x‖/‖x‖,
respectively, where ‖ · ‖ denotes some vector norm (see Sec. 1.6.8). Then a bound
‖x̃− x‖/‖x‖ ≤ 1/2 · 10−p implies that components x̃i with |x̃i| ≈ ‖x‖ have about p
significant digits but this is not true for components of smaller absolute value. An
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alternative is to use componentwise relative errors, e.g.,

max
i

|x̃i − xi|/|xi|, (2.1.1)

but this assumes that xi 6= 0, for all i.
We will distinguish between the terms accuracy and precision. By accuracy

we mean the absolute or relative error of an approximate quantity. The term pre-
cision will be reserved for the accuracy with which the basic arithmetic operations
+,−, ∗, / are performed. For floating point operations this is given by the unit
roundoff; see (2.2.8).

Numerical results which are not followed by any error estimations should often,
though not always, be considered as having an uncertainty of 1

2 a unit in the last
decimal place. In presenting numerical results, it is a good habit, if one does not
want to go to the difficulty of presenting an error estimate with each result, to give
explanatory remarks such as:

• “All the digits given are thought to be significant.”

• “The data has an uncertainty of at most 3 units in the last digit.”

• “For an ideal two-atomed gas, cP /cV = 1.4 (exactly).”

We shall also introduce some notations, useful in practice, though their defi-
nitions are not exact in a mathematical sense:

a ≪ b (a ≫ b) is read: “a is much smaller (much greater) than b”.
What is meant by “much smaller”(or “much greater”) depends on the
context—among other things, on the desired precision.

a ≈ b is read: “a is approximately equal to b” and means the same as
|a − b| ≪ c, where c is chosen appropriate to the context. We cannot
generally say, for example, that 10−6 ≈ 0.

a / b (or b ' a) is read: “a is less than or approximately equal to b” and
means the same as “a ≤ b or a ≈ b.”

Occasionally we shall have use for the following more precisely defined math-
ematical concepts:

f(x) = O(g(x)), x → a, means that |f(x)/g(x)| is bounded as x → a
(a can be finite, +∞, or −∞).

f(x) = o(g(x)), x → a, means that limx→a f(x)/g(x) = 0.

f(x) ∼ g(x), x → a, means that limx→a f(x)/g(x) = 1.

2.1.3 Rounding and Chopping

When one counts the number of digits in a numerical value one should not include
zeros in the beginning of the number, as these zeros only help to denote where the
decimal point should be. If one is counting the number of decimals, one should of
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course include leading zeros to the right of the decimal point. For example, the
number 0.00147 is given with three digits but has five decimals. The number 12.34
is given with four digits but has two decimals.

If the magnitude of the error in ã does not exceed 1
2 · 10−t, then ã is said to

have t correct decimals. The digits in ã which occupy positions where the unit is
greater than or equal to 10−t are called, then, significant digits (any initial zeros
are not counted). Thus, the number 0.001234± 0.000004 has five correct decimals
and three significant digits, while 0.001234 ± 0.000006 has four correct decimals
and two significant digits. The number of correct decimals gives one an idea of the
magnitude of the absolute error, while the number of significant digits gives a rough
idea of the magnitude of the relative error.

We distinguish here between two ways of rounding off a number x to a given
number t of decimals. In chopping (or round toward zero) one simply leaves off all
the decimals to the right of the tth. That way is generally not recommended since
the rounding error has, systematically, the opposite sign of the number itself. Also,
the magnitude of the error can be as large as 10−t.

In rounding to nearest (sometimes called “correct” or “optimal” round-
ing”), one chooses, a number with s decimals which is nearest to x. Hence if p is
the part of the number which stands to the right of the sth decimal one leaves the
tth decimal unchanged if and only if |p| < 0.5 ·10−s. Otherwise one raises the sth
decimal by 1. In case of a tie, when x is equidistant to two s digit numbers then
one raises the sth decimal if it is odd or leaves it unchanged if it is even (round
to even). In this way, the error is positive or negative about equally often. The
error in rounding a decimal number to s decimals will always lie in the interval
[

− 1
210−s, 1

210−s
]

.
Suppose that you are tabulating a transcendental function and a particular

entry has been evaluated as 1.2845 correct to the digits given. You want to round
the value to three decimals. Should the final digit be 4 or 5? The answer depends
on whether there is a nonzero trailing digit. You compute the entry more accu-
rately and find 1.28450, then 1.284500, then 1.2845000, etc. Since the function is
transcendental, there clearly is no bound on the number of digits that has to be
computed before distinguishing if to round to 1.284 or 1.285. This is called the
tablemaker’s dilemma.2

Example 2.1.1.
Shortening to three decimals:

0.2397 rounds to 0.240 (is chopped to 0.239)
−0.2397 rounds to −0.240 (is chopped to −0.239)
0.23750 rounds to 0.238 (is chopped to 0.237)
0.23650 rounds to 0.236 (is chopped to 0.236)
0.23652 rounds to 0.237 (is chopped to 0.236)

2This can be used to advantage in order to protect mathematical tables from illegal copying
by rounding a few entries incorrectly where the error in doing so is insignificant due to several
trailing zeros. An illegal copy could then be exposed simply by looking up these entries!
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Observe that when one rounds off a numerical value one produces an error;
thus it is occasionally wise to give more decimals than those which are correct.
Take, for example, a = 0.1237± 0.0004, which has three correct decimals according
to the definition given previously. If one rounds to three decimals, one gets 0.124;
here the third decimal is not correct, since the least possible value for a is 0.1233.

Example 2.1.2.
The difference between chopping and rounding can be important as is illus-

trated by the following story. The index of the Vancouver Stock Exchange, founded
at the initial value 1000.000 in 1982, was hitting lows in the 500s at the end of 1983
even though the exchange apparently performed well. It was discovered (The Wall
Street Journal, Nov. 8, 1983, p. 37) that the discrepancy was caused by a computer
program which updated the index thousands of times a day and used chopping
instead of rounding to nearest! The rounded calculation gave a value of 1098.892.

Review Questions

1. Clarify with examples the various types of error sources which occur in nu-
merical work.

2. (a) Define “absolute error” and “relative error” for an approximation x̄ to a
scalar quantity x. What is meant by an error bound?

(b) Generalize the definitions in (a) to a vector x.

3. (a) How is “rounding to nearest” performed.

4. Give π to four decimals using: (a) chopping; (b) rounding.

5. What is meant by the “tablemaker’s dilemma”?

2.2 Computer Number Systems

2.2.1 The Position System

In order to represent numbers, we use in daily life a position system with base 10
(the decimal system). Thus to represent the numbers we use ten different characters,
and the magnitude with which the digit a contributes to the value of a number
depends on the digit’s position in the number. If the digit stands n steps to the
right of the decimal point, the value contributed is a · 10−n. For example, the
sequence of digits 4711.303 means

4 · 103 + 7 · 102 + 1 · 101 + 1 · 100 + 3 · 10−1 + 0 · 10−2 + 3 · 10−3.

Every real number has a unique representation in the above way, except for the
possibility of infinite sequences of nines—for example, the infinite decimal fraction
0.3199999 . . . represents the same number as 0.32.
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One can very well consider other position systems with base different from 10.
Any natural number β ≥ 2 (or β ≤ −2) can be used as base. One can show that
every positive real number a has, with exceptions analogous to the nines-sequences
mentioned above, a unique representation of the form

a = dnβn + dn−1β
n−1 + . . . + d1β

1 + d0β
0 + d−1β

−1 + d−2β
−2 + . . . ,

or more compactly a = (dndn−1 . . . d0.d−1d−2 . . .)β , where the coefficients di, the
“digits” in the system with base β, are positive integers di such that 0 ≤ di ≤ β−1.

One of the greatest advantages of the position system is that one can give
simple, general rules for the arithmetic operations. The smaller the base is, the
simpler these rules become. This is just one reason why most computers operate in
base 2, the binary number system. The addition and multiplication tables then
take the following simple form:

0 + 0 = 0; 0 + 1 = 1 + 0 = 1; 1 + 1 = 10;

0 · 0 = 0; 0 · 1 = 1 · 0 = 0; 1 · 1 = 1;

In the binary system, the number seventeen, for example, becomes 10001, since
1 · 24 + 0 · 23 + 0 · 22 + 0 · 21 + 1 · 20 = sixteen + one = seventeen. Put another way
(10001)2 = (17)10, where the index (in decimal representation) denotes the base of
the number system. The numbers become longer written in the binary system; large
integers become about 3.3 times as long, since N binary digits suffice to represent
integers less than 2N = 10N log

10
2 ≈ 10N/3.3.

Occasionally one groups together the binary digits in subsequences of three or
four, which is equivalent to using 23 and 24, respectively, as base. These systems
are called the octal and hexadecimal number systems, respectively. The octal
system uses the digits from 0 to 7; in the hexadecimal system the digits 0 through
9 and the letters A, B, C, D, E, F (“ten” through “fifteen”) are used.

Example 2.2.1.

(17)10 = (10001)2 = (21)8 = (11)16,

(13.25)10 = (1101.01)2 = (15.2)8 = (D.4)16,

(0.1)10 = (0.000110011001 . . .)2 = (0.199999 . . .)16.

Note that the finite decimal fraction 0.1 cannot be represented exactly by a finite
fraction in the binary number system! (For this reason some pocket calculators use
the base 10.)

Example 2.2.2.
In 1991 a Patriot missile in Saudi Arabia failed to track and interrupt an in-

coming Scud due to a precision problem. The Scud then hit an Army barrack and
killed 28 Americans. The computer used to control the Patriot missile was based on
a design dating from the 1970’s using 24-bit arithmetic. For the tracking computa-
tions time was recorded by the system clock in tenth of a second but converted to
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a 24-bit floating point number. Rounding errors in the time conversions caused an
error in the tracking. After 100 hours of consecutive operations the calculated time
in seconds was 359999.6567 instead of the correct value 360000, an error of 0.3433
seconds leading to an error in the calculated range of 687 meters; see Skeel [41].
Modified software was later installed.

In the binary system the “point” used to separate the integer and fractional
part of a number (corresponding to the decimal point) is called the binary point.
The digits in the binary system are called bits(=binary digits).

We are so accustomed to the position system that we forget that it is built
upon an ingenious idea. The reader can puzzle over how the rules for arithmetic
operations would look if one used Roman numerals, a number system without the
position principle described above.

Recall that rational numbers are precisely those real numbers which can be
expressed as a quotient between two integers. Equivalently rational numbers are
those whose representation in a position system have a finite number of digits or
whose digits are repeating.

We now consider the problem of conversion between two number systems with
different base. Since almost all computers use a binary system this problem arises
as soon as one want to input data in decimal form or print results in decimal form.

Algorithm 2.2.1 Conversion between number systems:

Let a be an integer given in number systems with base α. We want to determine
its representation in a number system with base β:

a = bnβm + bm−1β
n−1 + · · · + b0, 0 ≤ bi < β. (2.2.1)

The computations are to be done in the system with base α and thus also β is
expressed in this representation. The conversion is done by successive divisions of
a with β: Set q0 = a, and

qk/β = qk+1 + bk/β, k = 0, 1, 2, . . . (2.2.2)

(qk+1 is the quotient and bk the remainder in the division).

If a is not an integer, we write a = b + c, where b is the integer part and

c = c−1β
−1 + c−2β

−2 + c−3β
−3 + · · · (2.2.3)

is the fractional part, where c−1, c−2, . . . are to be determined. These digits are
obtained as the integer parts when successively multiplying c with β: Set p−1 = c,
and

pk · β = ckβ + pk−1, k = −1,−2,−3 . . . . (2.2.4)

Since a finite fraction in a number system with base α usually does not correspond
to a finite fraction in the number system with base β rounding of the result is in
general needed.
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When converting by hand between the decimal system and, for example, the
binary system all computations are made in the decimal system (α = 10 and β =
2). (It is then more convenient to convert the decimal number first to octal or
hexadecimal, from which the binary representation easily follows.) If, on the other
hand, the conversion is carried out on a binary computer, the computations are
made in the binary system (α = 2 and β = 10).

Example 2.2.3.
Convert the decimal number 176.524 to ternary form (base β = 3). For the

integer part we get 176/3 = 58 with remainder 2; 58/3 = 19 with remainder 1;
19/3 = 6 with remainder 1; 6/3 = 2 with remainder 0; 2/3 = 0 with remainder 2.
It follows that (176)10 = (20112)3.

For the fractional part we compute .524 · 3 = 1.572, .572 · 3 = 1.716, .716 · 3 =
2.148, . . .. Continuing in this way we obtain (.524)10 = (.112010222 . . .)3. The finite
decimal fraction does not correspond to a finite fraction in the ternary number
system!

2.2.2 Fixed and Floating Point Representation

A computer is in general built to handle pieces of information of a fixed size called a
word. The number of digits in a word (usually binary) is called the word-length
of the computer. Typical word-lengths are 32, 48, or 64 bits. A real or integer
number is usually stored in a word. Integers can be exactly represented, provided
that the word-length suffices to store all the digits in its representation.

In the first generation of computers calculations were made in a fixed-point
number system, that is, real numbers were represented with a fixed number of t
binary digits. If the word-length of the computer is s + 1 bits (including the sign
bit), then only numbers in the interval I = [−2s−t, 2s−t] are permitted. Some
common conventions in fixed point are t = s (fraction convention) or t = 0 (integer
convention). This limitation causes difficulties, since even when x ∈ I, y ∈ I, we can
have, e.g., x − y 6∈ I or x/y 6∈ I. In a fixed-point number system one must see to it
that all numbers, even intermediate results, remain within I. This can be attained
by multiplying the variables by appropriate scale factors, and then transforming
the equations accordingly. This is a tedious process. Moreover it is complicated by
the risk that if the scale factors are chosen carelessly, certain intermediate results
can have many leading zeros which can lead to poor accuracy in the final results. As
a consequence, fixed point is very seldom used for computations with real numbers.
An exception is in some on-line real-time computations, e.g., in digital filtering,
where fixed point systems still are used. Otherwise it is limited to computations
with integers as in subscript expressions for vectors and matrices.

By a normalized floating point representation of a real number a, we
mean a representation in the form

a = ±m · βe, β−1 ≤ m < 1, e an integer. (2.2.5)

Such a representation is possible for all real numbers a, and unique if a 6= 0. (The
number 0 is treated as a special case.) Here the fraction part m is called the
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mantissa3 or significand), e is the exponent and β the base (also called the
radix).

In a computer, the number of digits for q and m is limited by the word-length.
Suppose that t digits is used to represent m. Then we can only represent floating
point numbers of the form

ā = ±m · βe, m = (0.d1d2 · · · dt)β , 0 ≤ di < β, (2.2.6)

where m is the mantissa m rounded to t digits, and the exponent is limited to a
finite range

emin ≤ e ≤ emax. (2.2.7)

A floating point number system F is characterized by the base β, the precision
t, and the numbers emin, emax. Only a finite set F of rational numbers can be
represented in the form (2.2.6). The numbers in this set are called floating point
numbers. Since d1 6= 0 this set contains, including the number 0, precisely

2(β − 1)βt−1(emax − emin + 1) + 1

numbers. (Show this!) The limited number of digits in the exponent implies that
a is limited in magnitude to an interval which is called the range of the floating
point system. If a is larger in magnitude than the largest number in the set F , then
a cannot be represented at all (exponent spill). The same is true, in a sense, of
numbers smaller than the smallest nonzero number in F .

Example 2.2.4.
Consider the floating point number system for β = 2, t = 3, emin = −1,

and emax = 2. The positive normalized numbers in the corresponding set F are
shown in Fig. 2.2.1. The set F contains exactly 2 · 16 + 1 = 33 numbers. In this

0
1

4

1

2
1 2 3

Figure 2.2.1. Positive normalized numbers when β = 2, t = 3, emin = −1,
and emax = 2.

example the nonzero numbers of smallest magnitude that can be represented are
(0.100)2 · 2−1 = 1

4 and the largest is (0.111)2 · 22 = 7
2 .

Notice that floating point numbers are not equally spaced; the spacing jumps
by a factor β at each power of β. This wobbling is smallest for β = 2.

Definition 2.2.1.
3Strictly speaking mantissa refers to the decimal part of a logarithm.
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The spacing of floating point numbers is characterized by the machine ep-
silon, which is the distance ǫM from 1.0 to the next larger floating point number.

The leading significant digit of numbers represented in a number system with
base β has been observed to closely fit a logarithmic distribution, i.e., the proportion
of numbers with leading digit equal to n is lnβ(1+1/n) (n = 0, 1, . . . , β− 1). It has
been shown that under this assumption taking the base equal to 2 will minimize the
mean square representation error. A discussion of this intriguing fact with historic
references is found in Higham [29, Sec. 2.7].

Even if the operands in an arithmetic operation are floating point numbers
in F , the exact result of the operation may not be in F . For example, the exact
product of two floating point t-digit numbers has 2t or 2t− 1 digits.

If a real number a is in the range of the floating point system the obvious way
is to represent a by ā = fl (a), where fl (a) denotes a number in F which is nearest
to a. This corresponds to rounding of the mantissa m, and according to Sec. 2.1.3,
we have

|m − m| ≤ 1

2
β−t.

(There is one exception. If |m| after rounding should be raised to 1, then |m| is set
equal to 0.1 and e raised by 1.) Since m ≥ 0.1 this means that the magnitude of
the relative error in ā is at most equal to

1
2β−t · βe

m · βe
≤ 1

2
β−t+1.

Even with the exception mentioned above this relative bound still holds. (If chop-
ping is used, this doubles the error bound above.) This proves the following theorem:

Theorem 2.2.2.
In a floating point number system F = F (β, t, emin, emax) every real number

in the floating point range of F can be represented with a relative error, which does
not exceed the unit roundoff u, which is defined by

u =

{

1
2β−t+1, if rounding is used,
β−t+1, if chopping is used.

(2.2.8)

Note that in a floating point system both large and small numbers are repre-
sented with nearly the same relative precision. The quantity u is, in many contexts,
a natural unit for relative changes and relative errors. For example, termination
criteria in iterative methods usually depend on the unit roundoff.

To measure the difference between a floating point number and the real number
it approximates we shall occasionally use “unit in last place” or ulp. For example,
if in a decimal floating point system the number 3.14159 is represented as 0.3142·101

this has an error of 0.41 ulps. We shall say that “the quantity is perturbed by a
few ulps”.
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Example 2.2.5.
Sometimes it is useful to be able to approximately determine the unit roundoff

in a program at run time. This may be done using the observation that u ≈ µ, where
µ is the smallest floating point number x such that fl (1 + x) > 1. The following
program computes a number µ which differs from the unit roundoff u at most by a
factor of 2:

x := 1;

while 1 + x > 1 x := x/2; end;

µ := x;

One reason why u does not exactly equal µ is that so called double rounding occurs.
This is when a result is first rounded to extended format and then to the target
precision.

A floating point number system can be extended by including denormalized
numbers (also called subnormal numbers). These are numbers with the minimum
exponent and with the most significant digit equal to zero. The three numbers

(.001)22
−1 = 1/16, (.010)22

−1 = 2/16, (.011)22
−1 = 3/16,

can then also be represented. Denormalized numbers have fewer digits of precision
than normalized numbers.

0
1

4

1

2
1 2 3

Figure 2.2.2. Positive normalized and denormalized numbers when β = 2,
t = 3, emin = −1, and emax = 2.

2.2.3 IEEE Floating Point Standard

Actual computer implementations of floating point representations may differ in
detail from the one given above. Although some pocket calculators use a floating
point number system with base β = 10, almost all modern computers use base
β = 2. Most current computers now conform to the IEEE 754 standard for binary
floating point arithmetic.4 This standard from 1985 (see [21]), which is the result of
several years work by a subcommittee of the IEEE, is now implemented on almost
all chips used for personal computers and workstations. (There is also a standard
IEEE 854 for floating point arithmetic for base 2 and 10, which is used by several
hand calculators.)

The IEEE 754 standard specifies basic and extended formats for floating point
numbers, elementary operations and rounding rules available, conversion between

4W. Kahan, University of California, Berkeley, was given the Turing Award by the Association
of Computing Machinery for his contribution to this standard.
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different number formats, and binary-decimal conversion. The handling of excep-
tional cases like exponent overflow or underflow and division by zero are also spec-
ified.

Two main basic formats, single and double precision are defined, using 32 and
64 bits respectively. In single precision a floating point number a is stored as a
sign s (one bit), the exponent e (8 bits), and the mantissa m (23 bits). In double
precision of the 64 bits 11 are used for the exponent, and 52 bits for the mantissa;
see Fig. 2.2.2. The value v of a is in the normal case

v = (−1)s(1.m)22
e, −emin ≤ e ≤ emax. (2.2.9)

Note that the digit before the binary point is always 1 for a normalized number.
Thus the normalization of the mantissa is different from that in (2.2.6). This bit
is not stored (the hidden bit). In that way one bit is gained for the mantissa. A
biased exponent is stored and no sign bit used for the exponent. For example, in
single precision emin = −126 and emax = 127 and e + 127 is stored.

The unit roundoff equals

u =

{

2−24 ≈ 5.96 · 10−8, in single precision;
2−53 ≈ 1.11 · 10−16 in double precision.

(The machine epsilon is twice as large.) The largest number that can be represented
is approximately 2.0 · 2127 ≈ 3.4028 × 1038 in single precision and 2.0 · 21023 ≈
1.7977× 10308 in double precision. The smallest normalized number is 1.0 · 2−126 ≈
1.1755 × 10−38 in single precision and 1.0 · 2−1022 ≈ 2.2251 × 10−308 in double
precision.

An exponent e = emin − 1 and m 6= 0, signifies the denormalized number

v = (−1)s(0.m)22
emin ;

The smallest denormalized number that can be represented is 2−126−23 ≈ 7.14·10−44

in single precision and 2−1022−52 ≈ 4.94 · 10−324 in double precision.
There are distinct representations for +0 and −0. ±0 is represented by a sign

bit, the exponent emin − 1 and a zero mantissa. Comparisons are defined so that
+0 = −0. One use of a signed zero is to distinguish between positive and negative
underflowed numbers. Another use occurs in complex arithmetic.

Example 2.2.6.
The function

√
x is multivalued and there is no way to select the values so

the function is continuous over the whole complex plane. If a branch cut is made
by excluding all real negative numbers from consideration the square root becomes
continuous. Signed zero provides a way to distinguish numbers of the form x+i(+0)
and x + i(−0) and to select one or the other side of the cut.

Infinity is also signed and ±∞ is represented by the exponent emax + 1 and
a zero mantissa. When overflow occurs the result is set to ±∞. This is safer than
simply returning the largest representable number, that may be nowhere near the
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correct answer. The result ±∞ is also obtained from the illegal operations a/0,
where a 6= 0. The infinity symbol obeys the usual mathematical conventions, such
as ∞ + ∞ = ∞, (−1) ×∞ = −∞, a/∞ = 0 if a 6= 0.

The IEEE standard also includes two extended precision formats that offer
extra precision and exponent range. The standard only specifies a lower bound
on how many extra bits it provides.5 Extended formats simplify tasks such as
computing elementary functions accurately in single or double precision. Extended
precision formats are used also by hand calculators. These will often display 10
decimal digits but use 13 digits internally—“the calculator knows more than it
shows”!

The characteristics of the IEEE formats are summarized in Table 2.2.1. (The
hidden bit in the mantissa accounts for the +1 in the table. Note that double
precision satisfies the requirements for single extended, so three different precisions
suffice.)

Table 2.2.1. IEEE floating point formats.

Format t e emin emax

Single 32 bits 23 + 1 8 bits −126 127
Single extended ≥ 43 bits ≥ 32 ≥ 11 bits ≤ −1022 ≥ 1023
Double 64 bits 52 + 1 11 bits −1022 1023
Double extended ≥ 79 bits ≥ 64 ≥ 15 bits ≤ −16382 ≥ 16383

Example 2.2.7.
Although the exponent range of the floating point formats seems reassuringly

large, even simple programs can quickly give exponent spill. If x0 = 2, xn+1 = x2
n,

then already x10 = 21024 is larger than what IEEE double precision permits. One
should also be careful in computations with factorials, e.g., 35! > 1040 and 459! >
101026.

Four rounding modes are supported by the standard. The default rounding
mode is round to nearest representable number, with round to even in case of a
tie. (Some computers in case of a tie round away from zero, i.e., raise the absolute
value of the number, because this is easier to realize technically.) Chopping is also
supported as well as directed rounding to ∞ and to −∞. The latter mode simplifies
the implementation of interval arithmetic, see Sec. 2.5.3.

The standard specifies that all arithmetic operations should be performed as if
they were first calculated to infinite precision and then rounded to a floating point
number according to one of the four modes mentioned above. This also includes
the square root and conversion between integer and floating point. The standard
also requires the conversion between internal formats and decimal to be correctly
rounded.

5Hardware implementation of extended precision normally does not use a hidden bit, so the
double extended format uses 80 bits rather than 79.
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This can be implemented using extra guard digits in the intermediate result
of the operation before normalization and rounding. Using a single guard digit,
however, will not always ensure the desired result. However by introducing a second
guard digit and a third sticky bit (the logical OR of all succeeding bits) the rounded
exact result can be computed at only a little more cost (Goldberg [25]). One
reason for specifying precisely the results of arithmetic operations is to improve
the portability of software. If a program is moved between two computers both
supporting the IEEE standard intermediate results should be the same.

IEEE arithmetic is a closed system, i.e. every operation, even mathematical
invalid operations, even 0/0 or

√
−1 produces a result. To handle exceptional

situations without aborting the computations some bit patterns (see Table 2.2.2)
are reserved for special quantities like NaN (“Not a Number”) and ∞. NaNs (there
are more than one NaN) are represented by e = emax + 1 and m 6= 0.

Table 2.2.2. IEEE 754 representation.

Exponent Mantissa Represents
e = emin − 1 m = 0 ±0
e = emin − 1 m 6= 0 ±0.m · 2emin

emin < e < emax ±1.m · 2e

e = emax + 1 m = 0 ±∞
e = emax + 1 m 6= 0 NaN

Note that the gap between 0 and the smallest normalized number is 1.0×2emin.
This is much larger than for the spacing 2−p+1 × 2emin for the normalized numbers
for numbers just larger than the underflow threshold; compare Example 2.2.4. With
denormalized numbers the spacing becomes more regular and permits what is called
gradual underflow.. This makes many algorithms well behaved also close to the
underflow threshold. Another advantage of having gradual underflow is that it
makes it possible to preserve the property

x = y ⇔ x − y = 0

as well as other useful relations. Several examples of how denormalized numbers
makes writing reliable floating point code easier are analyzed by Demmel [17].

One illustration of the use of extended precision is in converting between
IEEE 754 single precision and decimal. The converted single precision number
should ideally be converted with enough digits so that when it is converted back
the binary single precision number is recovered. It might be expected that since
224 < 108 eight decimal digits in the converted number would suffice. However,
it can be shown that nine decimal digits are needed to recover the binary number
uniquely (see Goldberg [25, Theorem. 15] and Problem 3). When converting back
to binary form a rounding error as small as one ulp will give the wrong answer. To
do this conversion efficiently extended single precision is needed!6

6It should be noted that some computer languages do not include input/output routines, but



2.2. Computer Number Systems 17

A NaN is generated by operations such as 0/0, +∞+(−∞), 0×∞ and
√
−1.

A NaN compares unequal with everything including itself. (Note that x 6= x is a
simple way to test if x equals a NaN.) When a NaN and an ordinary floating-point
number is combined the result is the same as the NaN operand. A NaN is often
used also for uninitialized or missing data.

Exceptional operations also raise a flag. The default is to set a flag and
continue, but it is also possible to pass control to a trap handler. The flags are
“sticky” in that they remain set until explicitly cleared. This implies that without
a log file everything before the last setting is lost, why it is always wise to use a
trap handler. There is one flag for each of the following five exceptions: underflow,
overflow, division by zero, invalid operation and inexact. By testing the flags it is,
for example, possible to test if an overflow is genuine or the result of division by
zero.

Because of cheaper hardware and increasing problem sizes double precision
is more and more used in scientific computing. With increasing speed and mem-
ory becoming available, bigger and bigger problems are being solved and actual
problems may soon require more than IEEE double precision! When the IEEE 754
standard was defined no one expected computers able to execute more than 1012

floating point operations per second!

2.2.4 Elementary Functions

Although the square root is included, the IEEE 754 standard does not deal with
the implementation of elementary functions, i.e., the exponential function exp, the
logarithm ln, and the trigonometric and hyperbolic functions sin, cos, tan, sinh,
cosh, tanh, and their inverse functions. With the IEEE 754 standard more accurate
implementations are possible which in many cases give almost correctly rounded
exact results. To always guarantee correctly rounded exact results sometimes re-
quire computing many more digits than the target accuracy (cf. the tablemaker’s
dilemma) and therefore is in general too costly. It is also important to preserve
monotonicity, e.g, 0 ≤ x ≤ y ≤ π/2 ⇒ sin x ≤ sin y, and range restrictions, e.g.,
sin x ≤ 1, but these demands may conflict with rounded exact results!

The first step in computing an elementary function is to perform a range
reduction.

• To compute trigonometric functions, e.g., sinx, an additive range reduction
is first performed, in which a reduced argument x∗, −π/4 ≤ x∗ ≤ π/4, is
computed by finding an integer k such that

x∗ = x − kπ/2, (π/2 = 1.57079 63267 94896 61923).

(Quantities such as π/2, ln(2), that are often used in standard subroutines
are listed in decimal form to 30 digits and octal form to 40 digits in Hart
et al. [Appendix C][28] and to 40 and 44 digits in Knuth [32, Appendix A].)

these are developed separately. This can lead to double rounding, which spoils the careful designed
accuracy in the IEEE 754 standard. (Some banks use separate routines with chopping even today—
you may guess why!)
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Then sin x = ± sin x∗ or sinx = ± cosx∗, depending on if k mod 4 equals
0, 1, 2 or 3. Hence approximation for sinx and cosx need only be provided for
0 ≤ x ≤ π/4. If the argument x is very large then cancellation in the range
reduction can lead to poor accuracy; see Example 2.3.9.

• To compute the exponential function exp(x) an integer k is determined such
that

x∗ = x − k ln 2, x∗ ∈ [0, ln 2] (ln 2 = 0.69314 71805 59945 30942 . . .).
(2.2.10)

It then holds that exp(x) = exp(x∗) · 2k and hence we only need an approxi-
mation of exp(x) for the range x ∈ [0, ln 2]; see Problem 13.

• To compute ln x, x > 0, a multiplicative range reduction is used. If an integer
k is determined such that

x∗ = x/2k, x∗ ∈ [1/2, 1],

then lnx = ln x∗ + k · ln 2.

We remark that rational approximations often give much better accuracy than
polynomial approximations. This as related to the fact that continued fraction
expansions often converge much faster than those based on power series. We refer
to Sec. 3.3 for a discussion of continued fraction and related Padé approximations.

Coefficients of polynomial and rational approximations suitable for software
implementations are tabulated in Hart et al. [28] and Cody and Waite [16]. However,
approximation of functions can now be simply obtained using software such as
Maple [13]. For example in Maple the commands

Digits = 40; minimax(exp(x), x = 0..1, [i,k],1,’err’)

means that we are looking for the coefficients of the minimax approximation of
the exponential function on [0, 1] by a rational function with numerator of de-
gree i and denominator of degree k with weight function 1 and that the variable
err should be equal to the approximation error. The coefficients are to be com-
puted to 40 decimal digits. A trend now is that elementary functions are more
and more implemented in hardware. Hardware implementations are discussed
by Muller [35]. Carefully implemented algorithms for elementary functions are
available from www.netlib.org/fdlibm in the library package fdlibm (Freely Dis-
tributable Math. Library) developed by Sun Microsystems and used by Matlab

.
To test the implementation of elementary functions a Fortran package ELE-

FUNT has been developed by Cody [14]. This checks the quality using indentities
like cosx = cos(x/3)(4 cos2(x/3)− 1). For complex elementary functions a package
CELEFUNT serves the same purpose; see Cody [15].

2.2.5 Multiple Precision Arithmetic

Hardly any quantity in the physical world is known to an accuracy beyond IEEE
double precision. A value of π correct to 20 decimal digits would suffice to cal-
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culate the circumference of a circle around the sun at the orbit of the earth to
within the width of an atom. There seems to be little need for multiple precision
calculations. Occasionally, however, one may want to perform some calculations,
e.g., the evaluation of some mathematical constant (such as π and Euler’s constant
γ) or elementary functions, to very high precision.7 Extremely high precision is
sometimes needed in experimental mathematics, e.g., when trying to discover new
mathematical identities. Algorithms, which may be used for these purposes include
power series, continued fractions, solution of equations with Newton’s method or
other superlinearly convergent methods, etc.).

For performing such tasks it is convenient to use arrays to represent numbers
in a floating point form with a large base and a long mantissa and have routines
for performing floating point operations on such numbers. In this way it is possible
to simulate arithmetic of arbitrarily high precision using standard floating point
arithmetic.

Brent [10, 9] developed the first major such multiple-precision package in For-
tran 66. His package represents multiple precision numbers as arrays of integers and
operates on them with integer arithmetic. It includes subroutines for multiple pre-
cision evaluation of elementary functions. A more recent package called MPFUN,
written in Fortran 77 code, is that of Bailey [3]. In MPFUN a multiple precision
numbers is represented as a vector of single precision floating point numbers with
base 224. Complex multiprecision numbers are also supported. There is also a
Fortran 90 version of this package [4], which is easy to use.

Fortran routines for high-precision computation are also provided in Press
et al [37, §20.6], and is also supported by symbolic manipulation systems such as
Maple [13] and Mathematica [48].

In Appendix A we describe the basics of Mulprec, a collection of Matlab

m-files for, in principle, unlimited multiple precision floating point computations
and give some examples of its use.

Review Questions

1. What base β is used in the binary, octal and hexadecimal number systems?

2. Show that any finite decimal fraction corresponds to a binary fraction that
eventually is periodic.

3. (a) What is meant by a normalized floating point representation of a real
number?

4. (a) How large can the maximum relative error be in representation of a real
number a in the floating point system F = F (β, p, emin, emax)? It is assumed
that a is in the range of F .

(b) How are the quantities “machine epsilon” and “unit round off”defined?

5. What are the characteristics of the IEEE single and double precision formats?

7In Oct. 1995 Yasumasa Kanada of the University of Tokyo computed π to 6,442,458,938
decimals on a Hitachi supercomputer; see [5].



20 Chapter 2. How to Obtain and Estimate Accuracy

6. What are the advantages of including denormalized numbers in the IEEE
standard?

7. Give examples of operations that give NaN as result.

Problems and Computer Exercises

1. Which rational numbers can be expressed with a finite number of binary digits
to the right of the binary point?

2. (a) Prove the algorithm for conversion between number systems given in
Sec. 2.2.1.

(b) Give the hexadecimal form of the decimal numbers 0.1 and 0.3. What
error is incurred in rounding these numbers to IEEE 754 single and double
precision? (c) What is the result of the computation 0.3/0.1 in IEEE 754
single and double precision ?

3. (W. Kahan) An (over-)estimate of u can be obtained for almost any computer
by evaluating |3×(4/3−1)−1| using rounded floating point for every operation.
Test this on a calculator or computer available to you.

4. (Goldberg [25]) The binary single precision numbers in the half-open interval
[103, 1024) have 10 bits to the left and 14 bits to the right of the binary
point. Show that there are (210 − 103) · 214 = 393, 216 such numbers, but only
(210−103) ·104 = 240, 000 decimal numbers with 8 decimal digits in the same
interval. Conclude that 8 decimal digits are not enough to uniquely represent
single precision binary numbers in the IEEE 754 standard.

5. Suppose one wants to compute the power An of a square matrix A, where n
is a positive integer. To compute Ak+1 = A · Ak, for k = 1 : n − 1 requires
n− 1 matrix multiplications. Show that the number of multiplications can be
reduced to less than 2⌊log2 n⌋ by converting n into binary form and successive
squaring A2k = (Ak)2, k = 1 : ⌊log2 n⌋.

6. Give in decimal representation: (a) (10000)2; (b) (100)8; (c) (64)16; (d)
(FF )16; (e) (0.11)8; (g) the largest positive integer which can be written with
thirty–one binary digits (answer with one significant digit).

7. (a) Show how the following numbers are stored in the basic single precision
format of the IEEE 754 standard: 1.0; −0.0625; 250.25; 0.1.

(b) Give in decimal notation the largest and smallest positive numbers which
can be stored in this format.

8. (Goldberg [25, Theorem. 7].) When β = 2, if m and n are integers with
m < 2p−1 (p is the number of bits in the mantissa) and n has the special form
n = 2i +2j, then fl((m ·n) ·n) = 1 provided that floating-point operations are
exactly rounded to nearest. The sequence of possible values of n start with
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17. Test the theorem on your computer for these
numbers.

9. Let pi be the closest floating point number to π in double precision IEEE 754
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standard. Find a sufficiently accurate approximation to π from a table and
show that π − pi ≈ 1.2246 · 10−16. What value do you get on your computer
for sin π?

10. (A. Edelman.) Let x, 1 ≤ x < 2, be a floating point number in IEEE double
precision arithmetic. Show that fl(x · fl(1/x)) is either 1 or 1− ǫM/2, where
ǫM = 2−52 (the machine epsilon).

11. (N. J. Higham.) Let a and b be floating point numbers with a ≤ b. Show that
the inequalities a ≤ fl((a + b)/2) ≤ b can be violated in base 10 arithmetic.
Show that a ≤ fl(a+ (b− a)/2) ≤ b in base β arithmetic, assuming the use of
a guard digit.

12. (J.-M. Muller) A rational approximation of tanx in [−π/4, π/4] is

r(x) =
(0.99999 99328− 0.09587 5045x2)x

1 − (0.42920 9672 + 0.00974 3234x2)x2
.

Determine the approximate maximum error of this approximation by compar-
ing with the function on your system on 100 equidistant points in [0, π/4].

13. (a) Show how on a binary computer the exponential function can be approx-
imated by first performing a range reduction based on the relation ex = 2y,
y = x/ ln 2, and then approximating 2y on y ∈ [0, 1/2].

(b) Show that since 2y satisfies 2−y = 1/2y a rational function r(y) approxi-
mating 2y should have the form

r(y) =
q(y2) + ys(y2)

q(y2) − ys(y2)
,

where q and s are polynomials.

(c) Suppose the r(y) in (b) is used for approximating 2y with

q(y) = 20.81892 37930 062+ y,

s(y) = 7.21528 91511 493+ 0.05769 00723 731y.

How many additions, multiplications and divisions are needed in this case to
evaluate r(y)? Investigate the accuracy achieved for y ∈ [0, 1/2].

2.3 Accuracy and Rounding Errors

2.3.1 Floating Point Arithmetic

It is useful to have a model of how the basic floating point operations are carried
out. If x and y are two floating point numbers, we denote by

fl (x + y), f l (x − y), f l (x · y), f l (x/y)

the results of floating addition, subtraction, multiplication, and division, which the
machine stores in memory (after rounding or chopping). We will in the following
assume that underflow or overflow does not occur. and that the following standard
model for the arithmetic holds:
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Definition 2.3.1.
Assume that x, y ∈ F . Then in the standard model it holds

fl (x op y) = (x op y)(1 + δ), |δ| ≤ u, (2.3.1)

where u is the unit roundoff and “op” stands for one of the four elementary opera-
tions +, −, ·, and /.

The standard model holds with the default rounding mode for computers
implementing the IEEE 754 standard. In this case we also have

fl (
√

x) =
√

x(1 + δ), |δ| ≤ u, (2.3.2)

If a guard digit is lacking then instead of (2.3.1) only the weaker model

fl (x op y) = x(1 + δ1) op y(1 + δ2), |δi| ≤ u, (2.3.3)

holds for addition/subtraction. The lack of a guard digit is a serious drawback
and can lead to damaging inaccuracy caused by cancellation. Many algorithms
can be proved to work satisfactorily only if the standard model (2.3.1) holds. We
remark that on current computers multiplication is as fast as addition/subtraction.
Division usually is 5–10 times slower than a multiply and a square root about twice
slower than division.

Some earlier computers lack a guard digit in addition/subtraction. Notable
examples are several models of Cray computers (Cray 1,2, X-MP,Y-MP, and C90)
before 1995, which were designed to have the highest possible floating-point perfor-
mance. The IBM 360, which used a hexadecimal system, lacked a (hexadecimal)
guard digit between 1964–1967. The consequences turned out to be so intolerable
that a guard digit had to be retrofitted.

Sometimes the floating point computation is more precise than what the stan-
dard model assumes. An obvious example is that when the exact value x op y can
be represented as a floating point number there is no rounding error at all.

Some computers can perform a fused multiply-add operation, i.e. an expression
of the form a × x + y can be evaluated with just one instruction and there is only
one rounding error at the end

fl (a × x + y) = (a × x + y)(1 + δ), |δ| ≤ u.

Fused multiply-add can be used to advantage in many algorithms. For example,
Horner’s rule to evaluate the polynomial p(x) = a0x

n + a1x
n−1 + · · ·+ an−1x + an,

which uses the recurrence relation b0 = a0, bi = bi−1 · x + ai, i = 1 : n, needs only
n fused multiply-add operations.

It is important to realize that these floating point operations have, to some
degree, other properties than the exact arithmetic operations. For example, float-
ing point addition and multiplication are commutative, but not associative and
the distributive law also fails for them. This makes the analysis of floating point
computations more difficult.
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Example 2.3.1.
To show that associativity does not, in general, hold for floating addition,

consider adding the three numbers

a = 0.1234567 · 100, b = 0.4711325 · 104, c = −b.

in a decimal floating point system with t = 7 digits in the mantissa. The following
scheme indicates how floating point addition is performed:

fl (b + c) = 0, f l (a + fl (b + c)) = a = 0.1234567 · 100

a = 0.0000123 4567 · 104

+b = 0.4711325 ·104

fl (a + b) = 0.4711448 ·104

c = −0.4711325 ·104

The last four digits to the right of the vertical line are lost by outshifting, and

fl (fl (a + b) + c) = 0.0000123 · 104 = 0.1230000 · 100 6= fl (a + fl (b + c)).

An interesting fact is that assuming a guard digit is used floating point sub-
traction of two sufficiently close numbers is always exact.

Lemma 2.3.2 (Sterbenz).
Let the floating point numbers x and y satisfy

y/2 ≤ x ≤ 2y.

If subtraction is performed with a guard digit then fl(x − y) = x − y, unless x − y
underflows.

Proof. By the assumption the exponent of x and y in the floating point represen-
tations of x and y can differ at most by one unit. If the exponent is the same then
the exact result will be computed. Therefore assume the exponents differ by one.
After scaling and, if necessary, interchanging x and y it holds that x/2 ≤ y ≤ x < 2
and the exact difference z = x − y is of the form

x = x1.x2 . . . xt

y = 0 .y1 . . . yt−1yt

z = z1.z2 . . . ztzt+1

But from the assumption x/2− y ≤ 0 or x− y ≤ y. Hence we must have z1 = 0, so
after shifting the exact result is obtained also in this case.

With gradual underflow, as in the IEEE 754 standard, the condition that x−y
does not underflow can be dropped.
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Example 2.3.2.
A corresponding result holds for any base β. For example, using four digit

floating decimal arithmetic we get with guard digit

fl (0.1000 · 101 − 0.9999) = 0.0001 = 1.000 · 10−4,

(exact) but without guard digit

fl (0.1000 · 101 − 0.9999) = (0.1000− 0.0999)101 = 0.0001 · 101 = 1.000 · 10−3.

The last result satisfies equation (2.3.3) with |δi| ≤ 0.5 · 10−3 since 0.10005 · 101 −
0.9995 = 10−3.

Outshiftings are common causes of loss of information that may lead to catas-
trophic cancellation later, in the computations of a quantity that one would have
liked to obtain with good relative accuracy.

Example 2.3.3.
An example where the result of Lemma 2.3.2 can be used to advantage is in

computing compounded interest. Consider depositing the amount c every day on
an account with an interest rate i compounded daily. Then with the accumulated
capital at the end of the year equals

c[(1 + x)n − 1]/x, x = i/n ≪ 1,

and n = 365. Using this formula does not give accurate results. The reason is that
a rounding error occurs in computing fl(1 + x) = 1 + x̄ and low order bits of x is
lost. For example, if i = 0.06 then i/n = 0.0001643836 and in decimal arithmetic
using six digits when this is added to one we get fl(1+ i/n) = 1.000164 so four low
order digits are lost.

The problem then is to accurately compute (1 + x)n = exp(n ln(1 + x)). The
formula

ln(1 + x) =







x, if fl (1 + x) = 1;

x
ln(1 + x)

(1 + x) − 1
, otherwise.

(2.3.4)

can be shown to yield accurate results when x ∈ [0, 3/4] provided subtraction is
performed with a guard digit and the computed value of ln(1 + x) equals the exact
result rounded; see Goldberg [25, p. 12].

To check this formula we recall that the base e of the natural logarithm can
be defined by the limit

e = lim
n→∞

(1 + 1/n)n

In Fig. 2.3.1 we show computed values, using double precision floating point arith-
metic, of the sequence |(1 + 1/n)n − e| for n = 10p, p = 1 : 14. More precisely, the
expression was computed as

| exp(n ln(1 + 1/n)) − exp(1)|.
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Figure 2.3.1. Computed values for n = 10p, p = 1 : 14, of the sequences:
solid line |(1 + 1/n)n − e|; dashed line | exp(n ln(1 + 1/n)) − e| using (2.3.4).

The smallest difference 3 ·10−8 occurs for n = 108, for which about half the number
of bits in x = 1/n are lost. For larger values of n rounding errors destroy the
convergence. However, using (2.3.4) we obtain correct results for all values of n!
(The Maclaurin series ln(1 + x) = x − x2/2 + x3/3 − x4/4 + · · · will also give good
results; see Computer Exercise 1.)

A fundamental insight from the above examples can be expressed in the fol-
lowing way:

“mathematically equivalent” formulas or algorithms are not in general
“numerically equivalent”.

This adds a new dimension to calculations in finite precision arithmetic and it will
be a recurrent theme in the analysis of algorithms in this book!

By mathematical equivalence of two algorithms we mean here that the
algorithms give exactly the same results from the same input data, if the com-
putations are made without rounding error (“with infinitely many digits”). One
algorithm can then, as a rule, formally be derived from the other using the rules
of algebra for real numbers, and with the help of mathematical identities. Two
algorithms are numerically equivalent if their respective floating point results,
using the same input data are the same.

In error analysis for compound arithmetic expressions based on the standard
model (2.3.1) one often needs an upper bound for quantities of this form

ǫ ≡ |(1 + δ1)(1 + δ2) · · · (1 + δn) − 1|, |δi| ≤ u, i = 1 : n.
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Then ǫ ≤ (1 + u)n − 1. Assuming that nu < 1 an elementary calculation gives

(1 + u)n − 1 = nu +
n(n − 1)

2!
u2 + · · · +

(

n

k

)

uk + · · ·

< nu
(

1 +
nu

2
+ · · · +

(nu

2

)k−1

+ · · ·
)

=
nu

1 − nu/2
(2.3.5)

Similarly it can be shown that (1−u)−n−1 < nu/(1−nu), and the following useful
result follows:

Lemma 2.3.3. [N. J. Higham [29, Lemma3.1]]
Let |δi| ≤ u, ρi = ±1, i = 1:n, and

n
∏

i=1

(1 + δi)
ρi = 1 + θn.

If nu < 1, then |θn| < γn, where

γn = nu/(1 − nu). (2.3.6)

Complex arithmetic can be reduced to real arithmetic. Let x = a+ ib and
y = c + id be two complex numbers. Then we have:

x ± y = a ± c + i(b ± d),

xy = (ac − bd) + i(ad + bc), (2.3.7)

x/y =
ac + bd

c2 + d2
+ i

bc− ad

c2 + d2
,

Using the above formula complex addition (subtraction) needs two real additions
and multiplying two complex numbers requires four real multiplications

Lemma 2.3.4. Assuming the standard model (2.3.1) the complex operations com-
puted according to (2.3.7) satisfy

fl (x ± y) = (x ± y)(1 + δ), |δ| ≤ u,

fl (xy) = xy(1 + δ), |δ| ≤
√

2γ2, (2.3.8)

fl (x/y) = x/y(1 + δ), |δ| ≤
√

2γ4,

where δ is a complex number and γn is defined in (2.3.6).

Proof. See Higham [29, Sec. 3.6].

The square root of a complex number u + iv =
√

x + iy is given by

u =

(

r + x

2

)1/2

, v =

(

r − x

2

)1/2

, r =
√

x2 + y2. (2.3.9)
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When x > 0 there will be cancellation when computing v, which can be severe if
also |x| ≫ |y| (cf. Sec. 2.3.5). To avoid this we note that uv =

√
r2 − x2/2 = y/2,

so v can be computed from v = y/(2u). When x < 0 we instead compute v from
(2.3.9) and set u = y/(2v).

Most rounding error analysis given in this book are formulated for real arith-
metic. Since the bounds in Lemma 2.3.4 are of the same form as the standard model
for real arithmetic, these can simply be extended to complex arithmetic.

In some cases it may be desirable to avoid complex arithmetic when working
with complex matrices. This can be achieved in a simple way by replacing the
complex matrices and vectors by real ones of twice the order. Suppose that a
complex matrix A ∈ Cn×n and a complex vector z ∈ Cn are given, where

A = B + iC, z = x + iy,

with real B, C, x and y. Form the real matrix Ã ∈ R2n×2n and real vector z̃ ∈ R2n

defined by

Ã =

(

B −C
C B

)

, z̃ =

(

x
y

)

.

It is easy to verify the following rules

(̃Az) = Ãz̃, (̃AB) = ÃB̃, (̃A−1) = (Ã)−1,

etc. Thus we can solve complex valued matrix problems using algorithms for the
real case. However, this incurs a penalty in storage and arithmetic operations.

2.3.2 Basic Rounding Error Results

We now use the notation of Sec. 2.3.1 and the standard model of floating point
arithmetic (Definition 2.3.1) to carry out rounding error analysis of some basic
computations. Most but not all results are still true if only the weaker bound
(2.3.3) hold for addition and subtraction. Note that fl (x op y) = (x op y)(1 + δ),
|δ| ≤ u, can be interpreted for multiplication to mean that fl (x · y) is the exact
result of x · y(1 + δ) for some δ, |δ| ≤ u. In the same way, the results using the
three other operations can be interpreted as the result of exact operations where
the operands have been perturbed by a relative amount which does not exceed u. In
backward error analysis (see Sec. 2.4.5) one applies the above interpretation step
by step backwards in an algorithm.

By repeatedly using formula (2.3.1) in case of multiplication, one can show
that

fl (x1x2 · · ·xn) = x1x2(1 + δ2)x3(1 + δ3) · · ·xn(1 + δn),

|δi| ≤ u, i = 2 : n.

That is, the computed product fl (x1x2 · · ·xn) is exactly equal to a product of the
factors

x̃1 = x1, x̃i = xi(1 + δi), i = 2 : n.
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Using the estimate and notation of (2.3.6) it follows from this analysis that

|fl (x1x2 · · ·xn) − x1x2 · · ·xn| < γn−1|x1x2 · · ·xn|, (2.3.10)

which bounds the forward error of the computed result.
For a sum of n floating point numbers similar results can be derived. If the

sum is computed in the natural order we have

fl (· · · (((x1 + x2) + x3) + · · · + xn))

= x1(1 + δ1) + x2(1 + δ2) + · · · + xn(1 + δn),

where
|δ1| < γn−1, |δi| < γn+1−i. i = 2 : n,

and thus the computed sum is the exact sum of the numbers xi(1 + δi). This also
gives an estimate of the forward error

|fl (· · · (((x1 + x2) + x3) + · · · + xn)) − (x1 + x2 + x3 + · · · + xn)|

<

n
∑

i=1

γn+1−i|xi| ≤ γn−1

n
∑

i=1

|xi|, (2.3.11)

where the last upper bound holds independent of the summation order.
Notice that to minimize the first upper bound in equation (2.3.11), the terms

should be added in increasing order of magnitude! For large n an even better bound
can be shown if the summation is done using the divide-and-conquer technique
described in Sec. 1.3.2; see Problem 5.

Example 2.3.4.
Using a hexadecimal machine (β = 16), with t = 6 and chopping (u = 16−5 ≈

10−6) one computed
10,000
∑

n=1

n−2 ≈ 1.644834

in two different orders. Using the natural summation order n = 1, 2, 3, . . . the error
was 1.317 · 10−3. Summing in the opposite order n = 10, 000, 9, 999, 9, 998 . . . the
error was reduced to 2 · 10−6. This was not unexpected. Each operation is an
addition, where the partial sum s is increased by n−2. Thus, in each operation,
one commits an error of about s · u, and all these errors are added. Using the first
summation order, we have 1 ≤ s ≤ 2 in every step, but using the other order of
summation we have s < 10−2 in 9, 900 of the 10, 000 additions.

Similar bounds for roundoff errors can easily be derived for basic vector and
matrix operations; see Wilkinson [46, pp. 114–118]. For an inner product xT y
computed in the natural order we have

fl (xT y) = x1y1(1 + δ1) + x2y2(1 + δ2) + · · · + xnyn(1 + δn)

where
|δ1| < γn, |δr| < γn+2−i, i = 2 : n.
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The corresponding forward error bound becomes

|fl (xT y) − xT y| <

n
∑

i=1

γn+2−i|xi||yi| < γn

n
∑

i=1

|xi||yi|,

If we let |x|, |y| denote vectors with elements |xi|, |yi| the last estimate can be
written in the simple form

|fl (xT y) − xT y| < γn|xT ||y|. (2.3.12)

This bound is independent of the summation order and holds also for the weaker
model (2.3.3) valid with no guard digit rounding.

The outer product of two vectors x, y ∈ Rn is the matrix xyT = (xiyj). In
floating point arithmetic we compute the elements fl (xiyj) = xiyj(1+δij), δij ≤ u,
and so

|fl (xyT ) − xyT | ≤ u |xyT |. (2.3.13)

This is a satisfactory result for many purposes, but the computed result is not
in general a rank one matrix and it is not possible to find ∆x and ∆y such that
fl(xyT ) = (x + ∆x)(x + ∆y)T .

The product of two t digit floating point numbers can be exactly represented
with at most 2t digits. This allows inner products to be computed in extended pre-
cision without much extra cost. If fle denotes computation with extended precision
and ue the corresponding unit roundoff then the forward error bound for an inner
product becomes

|fl (fle((x
T y)) − xT y| < u|xT y| + nue

1 − nue/2
(1 + u)|xT ||y|, (2.3.14)

where the first term comes form the final rounding. If |xT ||y| ≤ u|xT y| then the
computed inner product is almost as accurate as the correctly rounded exact re-
sult. These accurate inner products can be used to improve accuracy by iterative
refinement in many linear algebra problems (see Chapters 7–9, Volume II). How-
ever, since computations in extended precision are machine dependent it has been
difficult to make such programs portable.8 The recent development of Extended
and Mixed Precision BLAS (Basic Linear Algebra Subroutines) (see [33] may now
make this more feasible!

Similar error bounds can easily be obtained for matrix multiplication. Let
A ∈ Rm×n, B ∈ Rn×p, and denote by |A| and |B| matrices with elements |aij | and
|bij |. Then it holds that

|fl (AB) − AB| < γn|A||B|. (2.3.15)

where the inequality is to be interpreted elementwise. Often we shall need bounds
for some norm of the error matrix. From (2.3.15) it follows that

‖fl (AB) − AB‖ < γn‖ |A| ‖ ‖ |B| ‖. (2.3.16)

8It was suggested that the IEEE 754 standard should require inner products to be precisely
specified, but that did not happen.
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Hence, for the 1-norm, ∞-norm and the Frobenius norm we have

‖fl (AB) − AB‖ < γn‖A‖ ‖B‖. (2.3.17)

but unless A and B have non-negative elements, we have for the 2-norm only the
weaker bound

‖fl (AB) − AB‖2 < nγn‖A‖2 ‖B‖2. (2.3.18)

To reduce the effects of rounding errors in computing a sum
∑n

i=1 xi one can
use compensated summation. In this algorithm the rounding error in each addi-
tion is estimated and then compensated for with a correction term. Compensated
summation can be useful when a large number of small terms are to be added as in
numerical quadrature. Another example is the case in the numerical solution of ini-
tial value problems for ordinary differential equations. Note that in this application
the terms have to be added in the order in which they are generated.

Compensated is based on the possibility to simulate double precision floating
point addition in single precision arithmetic. To illustrate the basic idea we take as
in Example 2.3.1

a = 0.1234567 · 100, b = 0.4711325 · 104,

so that s = fl (a + b) = 0.4711448 · 104, Suppose we form

c = fl (fl (b − s) + a) = −0.1230000 · 100 + 0.1234567 · 100 = 4567000 · 10−3.

Note that the variable c is computed without error and picks up the information
that was lost in the operation fl (a + b).

The following algorithm uses this idea to accurately computing
∑n

i=1 xi:

Algorithm 2.3.1 Compensated Summation.

s := x1; c := 0;

for i = 2 : n

y := c + xi;

t := s + y;

c := (s − t) + y;

s := t;

end

It can be proved (see Goldberg [25, ]) that on binary machines with a
guard digit the computed sum satisfies

s =

n
∑

i=1

(1 + ξi)xi, |ξi| < 2u + O(nu2). (2.3.19)

This formulation is a typical example of a backward error analysis; see Sec. 2.4.5.
The single precision term in the error bound is independent of n.
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2.3.3 Statistical Models for Rounding Errors

The bounds for the accumulated rounding error we have derived so far are estimates
of the maximal error. These bounds ignore the sign of the errors and tend to be
much too pessimistic when the number of variables is large. They can still give
valuable insight into the behavior of a method and be used for the purpose of
comparing different method.

An alternative is a statistical analysis of rounding errors, which is based on the
assumption that rounding errors are independent and have some statistical distri-
bution. It was observed already in the 1950s that rounding errors occurring in the
solution of differential equations are not random and often are strongly correlated.
This does not in itself preclude that useful information can sometimes be obtained
by modeling them by random uncorrelated variables! For example, in many com-
putational situations and scientific experiments, where the error can be considered
to have arisen from the addition of a large number of independent error sources of
about the same magnitude an assumption that the errors are normally distributed
is justified.

Example 2.3.5.
Fig. 2.3.2 illustrates the effect of rounding errors on the evaluation of two

different expressions for the polynomial p(x) = (x − 1)5 for x ∈ [0.999, 1.001],
using a machine precision of about 2.2 · 10−16. Among other things it shows that
the monotonicity of a function can be lost due to rounding errors. The model of
rounding errors as independent random variables works well in this example. It is
obvious that it would be impossible to locate the zero of p(x) to a precision better
than about (0.5 · 10−14)1/6 ≈ 0.0007 using the expanded form of p(x). However,
using the expression p(x) = (1−x)5 function values can be evaluated with constant
relative precision even close to x = 1, and the problem disappears!

0.999 0.9992 0.9994 0.9996 0.9998 1 1.0002 1.0004 1.0006 1.0008 1.001
−2

0

2
x 10

−15

Figure 2.3.2. Calculated values of a polynomial: solid line p(x) = x5 −
5x4 + 10x3 − 10x2 + 5x − 1 = 0; dashed line p(x) = (x − 1)5.
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Figure 2.3.3. The frequency function of the normal distribution for σ = 1.

The theory of standard error is based on probability theory and will not be
treated in detail here. The standard error of an estimate of a given quantity is the
same as the standard deviation of its sampling distribution.

If in a sum y =
∑n

i=1 xi each xi has error |∆i| ≤ δ, then the maximum
error bound for y is nδ. Thus, the maximal error grows proportionally to n. If
n is large—for example, n = 1000—then it is in fact highly improbable that the
real error will be anywhere near nδ, since that bound is attained only when every
∆xi has the same sign and the same maximal magnitude. Observe, though, that
if positive numbers are added, each of which has been abridged to t decimals by
chopping, then each ∆xi has the same sign and a magnitude which is on the average
1
2δ, where δ = 10−t. Thus, the real error is often about 500δ.

If the numbers are rounded instead of chopped, and if one can assume that the
errors in the various terms are stochastically independent with standard deviation
ǫ, then the standard error in y becomes (see Theorem 2.4.5)

(ǫ2 + ǫ2 + . . . + ǫ2)1/2 = ǫ
√

n.

Thus the standard error of the sum grows only proportionally to
√

n. This supports
the following rule of thumb, suggested by Wilkinson [45, p. 26], that if a rounding
error analysis gives a bound f(n)u for the maximum error, then one can expect the
real error to be of size

√

f(n)u.
If n ≫ 1, then the error in y is, under the assumptions made above, approxi-

mately normally distributed with standard deviation σ = ǫ
√

n. The corresponding
frequency function,

f(t) =
1√
2π

e−t2/2,

is illustrated in Fig. 2.3.3; the curve shown there is also called the Gauss curve.
The assumption that the error is normally distributed with standard deviation σ
means, e.g., that the statement “the magnitude of the error is greater than 2σ” (see
the shaded area of Fig. 2.3.3) is false in about only 5 % of all cases. (the clear area
under the curve). More generally, the assertion that the magnitude of the error is
less than σ, 2σ, and 3σ respectively, is about 32%, 5%, and 0.27%.
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One can show that if the individual terms in a sum y =
∑n

i=1 xi have a uni-
form probability distribution in the interval [− 1

2δ, 1
2δ], then the standard deviation

of an individual term is δ/12. Therefore, in only about 5% of the cases is the error
in the sum of 1, 000 terms greater than 2δ

√

1000/12 ≈ 18δ, which can be compared
to the maximum error 500δ. This shows that rounding can be far superior to chop-
ping when a statistical interpretation (especially, the assumption of independence)
can be given to the principal sources of errors. Observe that, in the above, we have
only considered the propagation of errors which were present in the original data,
and have ignored the effect of possible round-off errors in the additions themselves.

In science and technology, one generally should be careful to discriminate
between systematic errors and random errors. A systematic error can, e.g., be
produced by insufficiencies in the construction of an instrument; such an error is
the same in each trial. Random errors depend on the variation in the experimental
environment which cannot be controlled; then the formula for standard errors is
used. For systematic errors, however, the formula for maximal error (2.4.5) should
be used.

2.3.4 Avoiding Overflow

In the rare cases when input and output data are so large or small in magnitude that
the range of the machine is not sufficient, one can, for example, use higher precision
or else work with logarithms or some other transformation of the data. One should,
however, keep in mind the risk that intermediate results in a calculation can produce
an exponent which is too large exponent overflow or too small underflow for the
floating point system of the machine. Different machines take different actions in
such situations, as well for division by zero. Too small an exponent is usually, but
not always, unprovoking. If the machine does not signal underflow, but simply
sets the result equal to zero, there is a risk of harmful consequences. Occasionally,
“unexplainable errors” in output data are caused by underflow somewhere in the
computations.

The Pythagorean sum c =
√

a2 + b2 occurs frequently, e.g., in conversion to
polar coordinates and in computing the complex modulus and complex multiplica-
tion. If the obvious algorithm is used, then damaging underflows and overflows may
occur in the squaring of a and b even if a and b and the result c are well within the
range of the floating point system used. This can be avoided by using instead the
algorithm: If a = b = 0 then c = 0; otherwise set p = max(|a|, |b|), q = min(|a|, |b|),
and compute

ρ = q/p; c = p
√

1 + ρ2. (2.3.20)

Example 2.3.6.
The formula (2.3.7) for complex division suffers from the problem that inter-

mediate results can overflow even if the final result is well within the range of the
floating point system. This problem can be avoided by rewriting the formula as for



34 Chapter 2. How to Obtain and Estimate Accuracy

the Pythagorean sum: If |c| > |d| then compute

a + ib

c + id
=

a + be

r
+ i

b − ae

r
, e = d/c, r = c + de.

If |d| > |c| then e = c/d is computed and a corresponding formula used.

Similar precautions are also needed for computing the Euclidian length (norm)

of a vector ‖x‖2 =
(
∑n

i=1 x2
i

)1/2
, x 6= 0. We could avoid overflows by first finding

xmax = max1≤i≤n |xi| and then forming

s =

n
∑

i=1

(xi/xmax)2, ‖x‖2 = xmax

√
s. (2.3.21)

This has the drawback of needing two passes through the data.

Example 2.3.7.
The following algorithm requiring only one pass is due to S. J. Hammarling:

t = 0; s = 1;

for i = 1 : n

if |xi| > t

s = 1 + s(t/xi)
2; t = |xi|;

else

s = s + s(xi/t)2;

end

end

‖x‖2 = t
√

s;

On the other hand this code does not vectorize and can therefore be slower if
implemented on a vector computer.

2.3.5 Cancellation of Terms

One very common reason for poor accuracy in the result of a calculation is that
somewhere a subtraction has been carried out in which the difference between the
operands is considerably less than either of the operands.

Consider the computation of y = x1−x2 where x̃1 = x1 +∆x1, x̃2 = x2 +∆x2

are approximations to the exact values. If the operation is carried out exactly the
result is ỹ = y + ∆y, where ∆y = ∆x1 − ∆x2. But, since the errors ∆x1 and ∆x2

can have opposite sign, the best error bound for ỹ is

|∆y| ≤ |∆x1| + |∆x2|. (2.3.22)

Notice the plus sign! Hence for the relative error we have
∣

∣

∣

∣

∆y

y

∣

∣

∣

∣

≤ |∆x1| + |∆x2|
|x1 − x2|

. (2.3.23)

This shows that there can be very poor relative accuracy in the difference between
two nearly equal numbers. This phenomenon is called cancellation of terms.
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Example 2.3.8.
For computing the roots of the quadratic equation ax2 + bx + c = 0 (a 6= 0)

we have the well-known formula

r1,2 =
(

− b ±
√

b2 − 4ac
)/

(2a).

Hence the quadratic equation x2 − 56x + 1 = 0 has the two roots

r1 = 28 +
√

783 ≈ 28 + 27.982 = 55.982± 1
210−3.

r2 = 28 −
√

783 ≈ 28 − 27.982 = 0.018± 1
210−3.

In spite of the fact that the square root is given to five digits, we get only two
significant digits in r2, while the relative error in r1 is less than 10−5. Notice that
the subtraction in the calculation of r2 has been carried out exactly.
The cancellation in the subtraction only gives an indication of the unhappy conse-
quence of a loss of information in previous steps, due to the rounding of one of the
operands, and is not the cause of the inaccuracy.

In general one should if possible try to avoid cancellation, as in the example
above, by an appropriate rewriting of formulas, or by other changes in the algo-
rithm. For the quadratic equation above, by comparing coefficients in
x2 + (b/a)x + c/a = (x − r1)(x − r2) = x2 − (r1 + r2) + r1r2,
we get the dependence between coefficients and roots

r1 + r2 = −b/a, r1r2 = c/a. (2.3.24)

Computing the root of smaller magnitude from the latter of these relations, we get
x2 = 1/55.982 = 0.0178629 ± 0.0000002, i.e., five significant digits instead of two.
In general we can avoid cancellation by using the algorithm:

Algorithm 2.3.2 Solving a quadratic equation.

d := b2 − 4ac;

if d ≥ 0 % real roots

r1 := −sign(b)
(

|b| +
√

d
)

/(2a);

r2 := c/(a · r1);

else % complex roots x + iy

x := −b/(2a);

y :=
√
−d/(2a);

end

Note that we define sign(b) = 1, if b ≥ 0, else sign(b) = −1.9 It can be shown that
this algorithm computes a slightly wrong solution to a slightly wrong problem.

9In Matlab sign(0) = 0, which can lead to failure of this algorithm!
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Lemma 2.3.5.
Assume that the Algorithm 2.3.2 is used to compute the roots r1,2 of the

quadratic equation ax2 + bx + c = 0. Denote the computed roots by r̄1,2 and let
r̃1,2 be the exact roots of the nearby equation ax2 + bx+ c̃ = 0, where |c̃− c| ≤ γ2|c̃|.
Then |r̃i − r̄i| ≤ γ5|r̃i|, i = 1, 2.

Proof. See Kahan [30].

More generally, if |δ| ≪ x, then one should rewrite

√
x + δ −

√
x =

x + δ − x√
x + δ +

√
x

=
δ√

x + δ +
√

x
.

There are other exact ways of rewriting formulas which are as useful as the
above; for example,

cos(x + δ) − cosx = −2 sin(δ/2) sin(x + δ/2).

If one cannot find an exact way of rewriting a given expression of the form f(x +
δ) − f(x), it is often advantageous to use one or more terms in the Taylor series

f(x + δ) − f(x) = f ′(x)δ +
1

2
f ′′(x)δ2 + · · ·

Example 2.3.9. (Cody [14])
To compute sin 22 we first find ⌊22/(π/2)⌋ = 14. It follows that sin 22 =

− sinx∗, where x∗ = 22 − 14(π/2). Using the correctly rounded 10 digit approxi-
mation π/2 = 1.57079 6327 we obtain

x∗ = 22 − 1.57079 6327 = 8.85142 · 10−3.

Here cancellation has taken place and the reduced argument has a maximal error
of 7 · 10−9, The actual error is slightly smaller since the correctly rounded value
is x∗ = 8.85144 8711 · 10−3, which corresponds to a relative error in the computed
sin 22 of about 2.4 · 10−6, in spite of using a ten digit approximation to π/2.

For very large arguments the relative error can be much larger. Techniques for
carrying out accurate range reductions without actually needing multiple precision
calculations are discussed by Muller [35]; see also Problem 9.

In previous examples we got a warning that cancellation would occur, since
x2 was found as the difference between two nearly equal numbers each of which
was, relatively, much larger than the difference itself. In practice, one does not
always get such a warning, for two reasons: first, in using a computer one has no
direct contact with the individual steps of calculation; secondly, cancellation can be
spread over a great number of operations. This may occur in computing a partial
sum of an infinite series. For example, in a series where the size of some terms are
many order of magnitude larger than the sum of the series small relative errors in
the computation of the large terms can then produce large errors in the result.
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Example 2.3.10.
Set y0 = 28 and define yn, for n = 1 : 100, by the recursion formula:

yn = yn−1 −
√

783/100.

As previously, we use the approximate value 27.982 for the square root. We
then compute with five decimals in each operation in order to make the effect of
further rounding errors negligible. We get the same bad value for y100 that we got
for x1 in the previous example. Of all the subtractions, only the last would lead
one to suspect cancellation, y100 = 0.29782 − 0.27982 = 0.01800, but this result in
itself gives one no reason to suspect that only two digits are significant. (With four
significant digits, the result is 0.01786.)

Review Questions

1. What is the standard model for floating point arithmetic? What weaker model
holds if a guard digit is lacking?

2. Give examples to show that some of the axioms for arithmetic with real num-
bers do not always hold for floating point arithmetic.

3. (a) Give the results of a backward and forward error analysis for computing
fl (x1 + x2 + · · · + xn). It is assumed that the standard model holds.

(b) Describe the idea in compensated summation.

4. Explain the terms “maximum error” and “standard error”. What statistical
assumption about rounding errors is often made, for example, when calculating
the standard error in a sum due to rounding?

5. Explain, what is meant by “cancellation of terms”. Give an example how this
can be avoided by rewriting a formula.

Problems

1. Rewrite the following expression to avoid cancellation of terms:
(a) 1 − cosx, |x| ≪ 1; (b) sin x − cosx, |x| ≈ π/4;

2. (a) The expression x2−y2 exhibits catastrophic cancellation if |x| ≈ |y|. Show
that it is more accurate to evaluate it as (x + y)(x − y).

(b) Consider using the trigonometric identity sin2 x + cos2 x = 1 to compute
cosx = (1 − sin2 x)1/2. For which arguments in the range 0 ≤ x ≤ π/4 will
this formula fail to give good accuracy?

3. The polar representation of a complex number is

z = x + iy = r(sin φ + cosφ) ≡ r · eiφ.
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Develop accurate formulas for computing this polar representation from x and
y using real operations.

4. (Kahan) Show that with the use of fused multiply-add the algorithm

w := bc; c := w − bc; y := (ad − w) + c;

computes x = det

(

a b
c d

)

with high relative accuracy.

5. Suppose that the sum s =
∑n

i=1 xi, n = 2k, is computed using the the divide-
and-conquer technique described in Sec. 1.3.2. Show that this summation
algorithm computes an exact sum

s̄ =
n
∑

i=1

xi(1 + δi), |δi| ≤ ũ log2 n.

Hence for large values of n this summation order can be much more accurate
than the conventional order.

6. Show that for the evaluation of a polynomial p(x) =
∑n

i=0 aix
i by Horner’s

rule the following roundoff error estimate holds:

|fl (p(x)) − p(x)| < γ1

n
∑

i=0

(2i + 1)|ai|x|i, (2nu ≤ 0.1).

7. In solving linear equations by Gaussian elimination there often occurs expres-
sions of the form s = (c −∑n−1

i=1 aibi)/d. Show that by a slight extension of
the result above shows that the computed s̄ satisfies

∣

∣

∣s̄d − c +

n−1
∑

i=1

aibi

∣

∣

∣ ≤ γn

(

|s̄d| +
n−1
∑

i=1

|ai||bi|
)

,

where the inequality holds independent of the summation order.

8. The zeros of the reduced cubic polynomial z3 + 3qz − 2r = 0, can be found
from the Cardano–Tartaglia formula:

z =
(

r +
√

q3 + r2
)1/3

+
(

r −
√

q3 + r2
)1/3

.

The two cubic roots are to be chosen so that their product equals −q. A real
root is obtained if q3 + r2 ≥ 0, which is the case unless all three roots are real
and distinct.
The above formula can lead to cancellation. Rewrite it so that it becomes
more suitable for numerical calculation and requires the calculation of only
one cubic root.

9. (Eldén and Wittmeyer-Koch) In the interval reduction for computing sinx
there can be a loss of accuracy through cancellation in the computation of
the reduced argument x∗ = x − k · π/2 when k is large. A way to avoid
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this without reverting to higher precision has been suggested by Cody and
Waite [16]). Write

π/2 = π0/2 + r,

where π0/2 is exactly representable with a few digits in the (binary) floating
point system. The reduced argument is now computed as x∗ = (x−k ·π0/2)−
kr. Here, unless k is very large, the first term can be computed without
rounding error. The rounding error in the second term is bounded by k|r|u,
where u is the unit roundoff.
In IEEE single precision one takes

π0/2 = 201/128 = 1.573125 = (10.1001001)2, r = 4.838267949 · 10−4

Estimate the relative error in the computed reduced argument x∗ when x =
1000 and r is represented in IEEE single precision.

10. (W. Kahan [1983]) The area A of a triangle with sides equal to a, b, c is given
by Heron’s formula10

A =
√

s(s − a)(s − b)(s − c), s = (a + b + c)/2.

Show that this formula fails for needle-shaped triangles, using five digit decimal
floating arithmetic and a = 100.01, b = 99.995, c = 0.025.
The following formula can be proved to work if addition/subtraction satisfies
(2.3.20):
Order the sides so that a ≥ b ≥ c, and use

A =
1

4

√

(a + (b + c))(c − (a − b))(c + (a − b))(a + (b − c)).

Compute a correct result for the data above using this modified formula. If a
person tells you that this gives an imaginary result if a − b > c, what do you
answer him?

Computer Exercises

1. (a) To compute ln(1 + x) for 0 < x ≪ 1, the Mclaurin series ln(1 + x) =
x − x2/2 + x3/3 − x4/4 + x5/5 + · · · is useful. How many terms in the series
are needed to get IEEE 754 double precision accuracy for all x < 10−3?

(b) Show that ln(1 + x) = ln(1 + y) − ln(1 − y), where y = (x/2)/(1 + x/2),
and deduce that

ln(1 + x) = 2(y + y3/3 + y5/5 + · · ·).

How many terms in this series are needed for the same computation as in (a)?

Hint: Assume that the error from truncating the series can be estimated by
the first neglected term.

10Heron (or Hero) of Alexandria, 1st century AD.
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2. (a) Compute the derivative of the exponential function ex at x = 0, by approx-
imating with the difference quotients (ex+h − ex)/h, for h = 2−i, i = 1 : 20.
Explain your results.

(b) Same as in (a) but approximate instead with the central difference ap-
proximation (ex+h − ex−h)/(2h).

3. (W. Gautschi) Euler’s constant γ = 0.57721566490153286 . . . is defined as the
limit

γ = lim
n→∞

γn, where γn = 1 +
1

2
+

1

3
+ · · · + 1

n
− ln n.

Assuming that γ − γn ∼ cn−d, n → ∞, for some constants c and d > 0, try to
determine c and d experimentally on your computer.

4. In the statistical treatment of data, one often needs to compute the quantities

x̄ =
1

n

n
∑

i=1

xi, s2 =
1

n

n
∑

i=1

(xi − x̄)2.

If the numbers xi are the results of statistically independent measurements of
a quantity with expected value m, then x̄ is an estimate of m, whose standard
deviation is estimated by s/

√
n − 1.

(a) The computation of x̄ and m using the formulas above have the drawback
that they require two passes through the data xi. Let α be a provisional mean,
chosen as an approximation to x̄, and set x′

i = xi −α. Show that the formulas

x̄ = α +
1

n

n
∑

i=1

x′

i, s2 =
1

n

n
∑

i=1

(x′

i)
2 − (x̄ − α)2.

hold for an arbitrary α.

(b) In sixteen measurements of a quantity x one got the following results:

i xi i xi i xi i xi

1 546.85 5 546.81 9 546.96 13 546.84
2 546.79 6 546.82 10 546.94 14 546.86
3 546.82 7 546.88 11 546.84 15 546.84
4 546.78 8 546.89 12 546.82 16 546.84

Compute x̄ and s2 to two significant digits using α = 546.85.
(c) In the computations in (b), one never needed more than three digits.
If one uses the value α = 0, how many digits is needed in (x′

i)
2 in order

to get two significant digits in s2? If one uses five digits throughout the
computations, why is the cancellation in the s2 more fatal than the cancellation
in the subtraction x′

i − α? (one can even get negative values for s2!)

(d) If we define

mk =
1

k

k
∑

i=1

xi, qk =

k
∑

i=1

(xi − mk)2 =

k
∑

i=1

x2
i −

1

k

(

k
∑

i=1

xi

)2

,
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then it holds that x̄ = mn, and s2 = qn/n. Show the recursion formulas

m1=x1, mk = mk−1 + (xk − mk−1)/k

q1=0, qk = qk−1 + (xk − mk−1)
2(k − 1)/k

3. Compute the sum in Example 2.3.4 using the natural summation ordering
in IEEE 754 double precision. Repeat the computations using compensated
summation Algorithm 2.3.1.

2.4 Error Propagation

2.4.1 Numerical Problems, Methods and Algorithms

By a numerical problem we mean here a clear and unambiguous description of
the functional connection between input data —that is, the “independent vari-
ables” in the problem—and output data—that is, the desired results. Input data
and output data consist of a finite number of real (or complex) quantities and are
thus representable by finite dimensional vectors. The functional connection can be
expressed in either explicit or implicit form. We require for the following discussion
also that the output data should be uniquely determined and depend continuously on
the input data.

By an algorithm11 for a given numerical problem we mean a complete descrip-
tion of well-defined operations through which each permissible input data vector is
transformed into an output data vector. By “operations” we mean here arithmetic
and logical operations, which a computer can perform, together with references to
previously defined algorithms. It should be noted that, as the field of computing has
developed, more and more complex functions (e.g., square root, circular and hyper-
bolic functions) are built into the hardware. In many programming environments
operations like matrix multiplication, solution of linear systems, are considered as
“elementary operations” and for the user appear as black boxes.

(The concept algorithm can be analogously defined for problems completely
different from numerical problems, with other types of input data and fundamental
operations—for example, inflection, merging of words, and other transformations of
words in a given language.)

Example 2.4.1.
To determine the largest real root of the cubic equation

p(z) = a0z
3 + a1z

2 + a2z + a3 = 0,

with real coefficients a0, a1, a2, a3, is a numerical problem. The input data vector
is (a0, a1, a2, a3). The output data is the desired root x; it is an implicitly defined
function of the input data.

11The term “algorithm” is a latinization of the name of the Arabic 9th century mathematician Al-
Khowârizmı̂. He also introduced the word algebra (Al-jabr). Western Europe became acquainted
with the Hindu positional number system from a latin translation of his book entitled “Algorithmi
de numero Indorum”.



42 Chapter 2. How to Obtain and Estimate Accuracy

An algorithm for this problem can be based on Newton’s method, supple-
mented with rules for how the initial approximation should be chosen and how the
iteration process is to be terminated. One could also use other iterative methods,
or algorithms based upon the formula by Cardano–Tartaglia for the exact solution
of the cubic equation (see Problem 2.3.8). Since this uses square roots and cube
roots, one needs to assume that algorithms for the computation of these functions
have been specified previously.

One often begins the construction of an algorithm for a given problem by
breaking down the problem into subproblems in such a way that the output data
from one subproblem is the input data to the next subproblem. Thus the distinction
between problem and algorithm is not always so clearcut. The essential point is that,
in the formulation of the problem, one is only concerned with the initial state and
the final state. In an algorithm, however, one should clearly define each step along
the way, from start to finish.

We use the term numerical method in this book to mean a procedure ei-
ther to approximate a mathematical problem with a numerical problem or to solve
a numerical problem (or at least to transform it to a simpler problem). A numer-
ical method should be more generally applicable than an algorithm, and set lesser
emphasize on the completeness of the computational details. The transformation
of a differential equation problem to a system of nonlinear equations, as in Exam-
ple 1.4.1 can be called a numerical method—even without instructions as to how to
solve the system of nonlinear equations. Newton’s method is a numerical method
for determining a root of a large class of nonlinear equations. In order to call it
an algorithm conditions for starting and stopping the iteration process should be
added.

For a given numerical problem one can consider many differing algorithms. As
we have seen in Sec. 2.3 these can, in floating point arithmetic, give approximations
of widely varying accuracy to the exact solution.

Example 2.4.2.
The problem of solving the differential equation

d2y

dx2
= x2 + y2

with boundary conditions y(0) = 0, y(5) = 1, is not a numerical problem according
to the definition stated above. This is because the output data is the function y,
which cannot in any conspicuous way be specified by a finite number of parameters.
The above mathematical problem can be approximated with a numerical problem
if one specifies the output data to be the values of y for x = h, 2h, 3h, . . . , 5 − h.
Also the domain of variation of the unknowns must be restricted in order to show
that the problem has a unique solution. This can be done, however, and there are a
number of different algorithms for solving the problem approximately, which have
different properties with respect to number of arithmetic operations needed and the
accuracy obtained.
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Before an algorithm can be used it has to be implemented in an algorithmic
program language in a reliable and efficient manner. We leave these aspects aside
for the moment, but this is far from a trivial task—it has been said that when the
novice thinks the job is done then the expert knows that most of the hard work lies
ahead!

2.4.2 Propagation of Errors

In scientific computing the given input data is usually imprecise. The errors in the
input will propagate and give rise to errors in the output. In this section we develop
some general tools for studying the propagation of errors. Error-propagation formu-
las are also of great interest in the planning and analysis of scientific experiments.

Note that rounding errors from each step in a calculation are also propagated
to give errors in the final result. For many algorithms a rounding error analysis can
be given, which shows that the computed result always equals the exact (or slightly
perturbed) result of a nearby problem, where the input data has been slightly
perturbed (see, e.g, Lemma 2.3.5). The effect of rounding errors on the final result
can then be estimated using the tools of this section.

We first consider two simple special cases of error propagation. For a sum of
an arbitrary number of terms we get from (2.3.22) by induction:

Lemma 2.4.1.
In addition (and subtraction) a bound for the absolute errors in the result is

given by the sum of the bounds for the absolute errors of the operands

y =
n
∑

i=1

xi, |∆y| ≤
n
∑

i=1

|∆xi|. (2.4.1)

To obtain a corresponding result for the error propagation in multiplication
and division, we start with the observations that for y = ln(x) we have ∆(ln(x)) ≈
∆(x)/x. In words: the relative error in a quantity is approximately equal to the
absolute error in its natural logarithm. This is related to the fact that displacements
of the same length at different places on a logarithmic scale, mean the same relative
change of the value. From this we obtain the following result:

Lemma 2.4.2.
In multiplication and division, an approximate bound for the relative error is

obtained by adding the relative errors of the operands. More generally, for y =
xm1

1 xm2

2 · · ·xmn

n ,
∣

∣

∣

∣

∆y

y

∣

∣

∣

∣

/
n
∑

i=1

|mi|
∣

∣

∣

∣

∆xi

xi

∣

∣

∣

∣

. (2.4.2)

Proof. The proof follows by differentiating ln y = m1 ln x1+m2 ln x2+· · ·+mn ln xn

and estimating the perturbation in each term.
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We now study the propagation of errors in more general non-linear expressions.
Consider first the case when we want to compute a function y = f(x) of a single
real variable x. How is the error in x propagated to y? Let x̃ − x = ∆x. Then, a
natural way is to approximate ∆y = ỹ− y with the differential of y (see Fig. 2.4.1).
By the mean value theorem,

∆y = f(x + ∆x) − f(x) = f ′(ξ)∆x,

where ξ is a number between x and x+∆x. Suppose that |∆x| ≤ ǫ. Then it follows
that

|∆y| ≤ max
ξ

|f ′(ξ)|ǫ, ξ ∈ [x − ǫ, x + ǫ]. (2.4.3)

In practice, it is usually sufficient to replace ξ by the available estimate of x. Even
if high precision is needed in the value of f(x), one rarely needs a high relative
precision in an error bound or an error estimate. (In the neighborhood of zeros of
the first derivative f ′(x) one has to be more careful!)

x

∆x

∆ y y′ ∆ x

Figure 2.4.1. Propagated error in function y = f(x).

By the implicit function theorem a similar result holds if y is an implicit
function of x defined by g(x, y) = 0. If g(x, y) = 0 and ∂g

∂y (x, y) 6= 0, then in a

neighborhood of x, y there exists a unique function y = f(x) such that g(x, f(x)) = 0
and it holds that

f ′(x) =
∂g

∂x
(x, f(x))

/∂g

∂y
(x, f(x)).

Example 2.4.3.
The result in Lemma 2.3.5 does not say that the computed roots of the

quadratic equation are close to the exact roots r1, r2. To answer that question
we must determine how sensitive the roots are to a relative perturbation in the
coefficient c. Differentiating ax2 + bx + c = 0, where x = x(c) with respect to c we
obtain (2ax + b)dx/dc + 1 = 0, dx/dc = −1/((2ax + b). With x = r1 and using
r1 + r2 = −b/a, r1r2 = c/a this can be written

dr1

r1
= −dc

c

r2

r1 − r2
.
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This shows that when |r1 − r2| ≪ |r2| the roots can be very sensitive to small
relative perturbations in c.

When r1 = r2, i.e. when there is a double root, this linear analysis breaks
down. Indeed it is easy to see that the equation (x − r)2 + ∆c = 0 has roots
x = r ±

√
∆c.

To analyze error propagation in a function of several variables we need the
following generalization of the mean value theorem:

Theorem 2.4.3.
Assume that the real valued function f is differentiable in a neighborhood of

the point x = (x1, x2, . . . , xn), and let x = x + ∆x be a point in this neighborhood.
Then there exists a number θ, such that

∆f = f(x + ∆x) − f(x) =

n
∑

i=1

∂f

∂xi
(x + θ∆x)∆xi, 0 ≤ θ ≤ 1.

Proof. The proof follows by considering the function F (t) = f(x+ t∆x) and using
the mean value theorem for functions of one variable and the chain rule.

From Theorem 2.4.3 it follows that the perturbation ∆f is approximately equal
to the total differential. The use of this approximation means that the function
f(x) is, in a neighborhood of x that contains the point x + ∆x, approximated by
a linear function. All the techniques of differential calculus, such as logarithmic
differentiation, implicit differentiation etc. may be useful for the calculation of the
total differential; see the examples and the problems at the end of this section.

Theorem 2.4.4. General Formula for Error Propagation:
Let the real valued function f = f(x1, x2, . . . , xn) be differentiable in a neigh-

borhood of the point x = (x1, x2, . . . , xn) with errors ∆x1, ∆x2, . . . , ∆xn. Then it
holds

∆f ≈
n
∑

i=1

∂f

∂xi
∆xi. (2.4.4)

where the partial derivatives are evaluated at x.
For the maximal error in f(x1, x2, . . . , xn) we have the approximate bound

|∆f | /
n
∑

i=1

∣

∣

∣

∣

∂f

∂xi

∣

∣

∣

∣

|∆xi|. (2.4.5)

In order to get a strict bound for |∆f |, one should use in (2.4.5) the maximum
absolute values of the partial derivatives in a neighborhood of the known point x.
In most practical situations it suffices to calculate |∂f/∂xi| at x and then add a
certain marginal amount (5 to 10 percent, say) for safety. Only if the ∆xi are
large or if the derivatives have a large relative variation in the neighborhood of x,
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need the maximal values be used. (The latter situation occurs, for example, in a
neighborhood of an extremal point of f(x).)

The bound in Theorem 2.4.4 is the best possible, unless one knows some
dependence between the errors of the terms. Sometimes it can, for various reasons,
be a coarse overestimate of the real error, as we have seen in Example 2.3.10.

Example 2.4.4.
Compute error bounds for f = x2

1−x2, where x1 = 1.03±0.01, x2 = 0.45±0.01.
We obtain

∣

∣

∣

∣

∂f

∂x1

∣

∣

∣

∣

= |2x1| ≤ 2.1,

∣

∣

∣

∣

∂f

∂x2

∣

∣

∣

∣

= | − 1| = 1,

and find |∆f | ≤ 2.1 · 0.01 + 1 · 0.01 = 0.031, or f = 1.061 − 0.450 ± 0.032 =
0.611± 0.032; the error bound has been raised 0.001 because of the rounding in the
calculation of x2

1.

One is seldom asked to give mathematically guaranteed error bounds. More
often it is satisfactory to give an estimate of the order of magnitude of the anticipated
error. The bound for |∆f | obtained with Theorem 2.4.3 estimates the maximal
error, i.e, covers the worst possible cases, where the sources of error ∆xi contribute
with the same sign and magnitudes equal to the error bounds for the individual
variables.

In practice, the trouble with formula (2.4.5) is that it often gives bounds which
are too coarse. More realistic estimates are often obtained using the standard error
introduced in Sec. 2.3.3. Here we give without proof the result for the general case,
which can be derived using probability theory and the formula (2.4.4). (Compare
with the result for the standard error of a sum given in Sec. 2.3.3.)

Theorem 2.4.5.
Assume that the errors ∆x1, ∆x2, . . . , ∆xn are independent random variables

with mean zero and standard deviations ǫ1, ǫ2, . . . , ǫn. Then the standard error ǫ for
f(x1, x2, . . . , xn) is given by the formula:

ǫ ≈
(

n
∑

i=1

(

∂f

∂xi

)2

ǫ2i

)1/2

(2.4.6)

Analysis of error propagation is more than just a means for judging the relia-
bility of calculated results. As remarked above, it has an equally important function
as a means for the planning of a calculation or scientific experiment. For example,
it can help in the choice of algorithm, and in making certain decisions during a
calculation. Examples of such decisions are the choice of step length during a nu-
merical integration. Increased accuracy often has to be bought at the price of more
costly or complicated calculations. One can also shed some light, to what degree
it is advisable to obtain a new apparatus to improve the measurements of a given
variable, when the measurements of other variables are subject to error as well.
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Example 2.4.5.
In Newton’s method for solving a nonlinear equation a correction is to be

calculated as a quotient ∆x = f(xk)/f ′(xk). Close to a root the relative error in
the computed value of f(xk) can be quite large due to cancellation. How accurately
should one compute f ′(xk), assuming that the work grows as one demands higher
accuracy? Since the limit for the relative error in ∆x is equal to the sum of the
bounds for the relative errors in f(xk) and f ′(xk), there is no gain in making
the relative error in f ′(xk) very much less than the relative error in f(xk). This
observation is of great importance in particular in the generalization of Newton’s
method to systems of nonlinear equations.

2.4.3 Condition Numbers of Problems

It is useful to have a measure of how sensitive the output data is for variations
in the input data. In general, if “small” changes in the input data can result in
“large” changes in the output data, we call the problem ill-conditioned; otherwise
it is called well-conditioned. (The definition of large may differ from problem
to problem depending on the accuracy of the data and the accuracy needed in the
solution.)

We have seen in Sec. 2.4.2 that |f ′(x)| can be taken as a measure of the
sensitivity of f(x) to a perturbation ∆x of x.

Definition 2.4.6.
Assume that f(x) is differentiable at x. Then the absolute condition num-

ber for the numerical problem of computing y = f(x) given x is

κabs = lim
|∆x|→0

|f(x + ∆x) − f(x)|
|∆x| = |f ′(x)|. (2.4.7)

Usually it is preferable to use condition numbers that are invariant with respect
of scaling. Then the ratio of the relative perturbations in f(x) and x is the relevant
quantity.

Definition 2.4.7.
Assume that f(x) is differentiable at x and that x 6= 0 and f(x) 6= 0. Then

the relative condition number κrel is

κrel = lim
|∆x|→0

|f(x + ∆x) − f(x)|
|f(x)|

/ |∆x|
|x| = |x| |f

′(x)|
|f(x)| . (2.4.8)

We say that the problem of computing f(x) given x is ill-conditioned if κ is “large”
and well-conditioned otherwise.

It is important to note that the condition number is a property of the numerical
problem and does not depend on the algorithm used! An ill-conditioned problem is
intrinsically difficult to solve accurately using any numerical algorithm. Even if the
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input data is exact rounding errors made during the calculations in floating point
arithmetic may cause large perturbations in the final result. Hence, in some sense
an ill-conditioned problem is not well posed.

Example 2.4.6.
If we get an inaccurate solution to an ill-conditioned problem, then often

nothing can be done about the situation. (If you ask a stupid questions you get a
stupid answer!) However, sometimes the difficulty can depend on the form one has
chosen to represent the input and output data of the problem.

The polynomial

P (x) = (x − 10)4 + 0.200(x − 10)3 + 0.0500(x− 10)2 − 0.00500(x− 10) + 0.00100,

is identical with a polynomial Q which if the coefficients are rounded to six digits,
becomes

Q̃(x) = x4 − 39.8000x3 + 594.050x2 − 3941.00x + 9805.05.

One finds that P (10.11) = 0.0015± 10−4, where only three digits are needed in the
computation, while Q̃(10.11) = −0.0481 ± 1

2 · 10−4, in spite of the fact that eight
digits were used in the computation. The rounding to six digits of the coefficients
of Q has thus caused an error in the polynomial’s value at x = 10.11; the erroneous
value is more than 30 times larger than the correct value and has the wrong sign.
When the coefficients of Q are input data, the problem of computing the value of
the polynomial for x ≈ 10 is far more ill-conditioned than when the coefficients of
P are input data.

Consider now a multivariate numerical problem, where the solution is given
by the function y = f(x), or in component form

yj = fj(x1, . . . , xn), j = 1 : m.

It is usually more convenient to have a single number to measure the conditioning.
This can be achieved by using norms, e.g., the special cases (p = 1, 2 and ∞) of the
family of vector p-norms, (see Sec. 1.6.8)

‖x‖p = (x1|p + |x2|p + · · · + |xn|p)1/p, 1 ≤ p < ∞,

and the corresponding matrix norms.

Definition 2.4.8.
Consider a problem of computing y = f(x), where the input data is (x1, . . . , xn)

and the output data (y1, . . . , ym). The absolute condition number of this problem is

κabs = lim
ǫ→0

sup
1

ǫ
{‖f(x̃) − f(x)‖ : ‖x̃ − x‖ ≤ ǫ} . (2.4.9)

If x 6= 0 and f(x) 6= 0, then the (normwise) relative condition number is

κrel = lim
ǫ→0

sup
1

ǫ

{‖f(x̃) − f(x)‖
‖f(x)‖ : ‖x̃ − x‖ ≤ ǫ‖x‖

}

. (2.4.10)
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The (absolute or relative) condition number is a function of the input data x
and also depends on the choice of norms in the data space and in the solution space.
If the relative condition number of a problem is κrel, then for sufficiently small ǫ we
have the estimate

‖ỹ − y‖ ≤ κǫ‖y‖ + O(ǫ2).

It follows that the solution will have roughly s = log10 κ less significant decimal
digits than the input data, but this may not hold for all components of the output.

The conditioning of a problem can to some degree be illustrated geometrically.
A numerical problem P means a mapping of the space X of possible input data onto
the space Y of the output data. The dimensions of these spaces are usually quite
large. In Fig 2.4.2 we picture a mapping in two dimensions. Since we are considering
relative changes, we take the coordinate axis to be logarithmically scaled. A small
circle of radius r is mapped onto an ellipse whose major axis is κr, where κ is the
condition number of the problem P .

Input data
Space of Space of

Output data

X Y
P

Figure 2.4.2. Geometrical illustration of the condition number.

Assume that each function fj has partial derivatives with respect to all n
variables xi, i = 1 : n and let J be the Jacobian matrix with elements

Jij =
∂fj

∂xi
, j = 1 : m, i = 1 : n. (2.4.11)

Conditioning numbers of general differentiable functions have been studied already
by Rice [38], who showed that the condition numbers defined above can then be
expressed as

κabs = ‖J‖, κrel =
‖x‖

‖f(x)‖‖J‖. (2.4.12)

where the matrix norm is subordinate to the vector norm.
The normwise analysis used above is usually satisfactory provided the problem

is “well scaled”, i.e., when the error in the components of x have roughly similar
magnitude. If this is not the case then a component-wise perturbation analysis
may give sharper bounds.
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2.4.4 Perturbation Analysis for Linear Systems

An important special case is the perturbation analysis for a linear systems. Ax = b,
where x, b ∈ Rn. We assume that A is nonsingular and b 6= 0 so that the system has
a unique solution x 6= 0. We shall investigate the sensitivity of x to perturbations
δA and δb in A and b.

The perturbed solution x + δx satisfies the linear system

(A + δA)(x + δx) = b + δb.

Subtracting Ax = b we obtain (A + δA)δx = δb − δAx. Assuming that also the
matrix (A + δA) = A(I + A−1δA) is nonsingular, and solving for δx yields

δx = (I + A−1δA)−1A−1(δb − δAx), (2.4.13)

which is the basic identity for the analysis. Taking norms gives

‖δx‖ ≤ ‖(I + A−1δA)−1‖ ‖A−1‖ (‖δA‖ ‖x‖ + ‖δb‖) .

It can be shown (see Problem 9) that if ‖A−1δA‖ < 1, then A + δA is nonsingular
and

‖(I + A−1δA)−1‖ < 1/(1 − ‖A−1δA‖).
When δA = 0 we have δx = A−1δb. It follows that ‖δx‖ ≤ ‖A−1‖ ‖δb‖, and

hence κabs = ‖A−1‖ is the absolute condition number. For the (normwise) relative
perturbation, we get the upper bound

‖δx‖
‖x‖ ≤ κrel(A, b)

‖δb‖
‖b‖ , κrel(A, b) :=

‖Ax‖
‖x‖ ‖A−1‖, (2.4.14)

This inequality is sharp in the sense that for any matrix norm and for any A and b
there exists a perturbation δb such that equality holds.

Consider now the case δb = 0. From (2.4.13)we obtain, neglecting second
order terms,

‖δx‖
‖x‖ / κrel(A)

‖δA‖
‖A‖ , κrel(A) = κ = ‖A‖ ‖A−1‖. (2.4.15)

We have

κrel(A, b) =
‖Ax‖
‖x‖ ‖A−1‖ ≤ ‖A‖ ‖A−1‖ = κrel(A).

although, for given x (or b), this upper bound may not be achievable for any pertur-
bation δb. However, usually the factor κ = ‖A‖ ‖A−1‖ is used as condition number
for both perturbations in A and in b.

For the Euclidian vector and matrix norm (p = 2) we define:

Definition 2.4.9.
The condition number for a square nonsingular matrix A is

κ2 = κ2(A) = ‖A‖2 ‖A−1‖2 = σ1/σn, (2.4.16)
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where σ1 and σn are the largest and smallest singular value of A.

Note that κ(αA) = κ(A), i.e., the condition number is invariant under multi-
plication of A by a scalar. From the definition and the identity AA−1 = I it also
follows that κ(AB) ≤ κ(A)κ(B) and

κ2(A) = ‖A‖2‖A−1‖2 ≥ ‖I‖ = 1,

that is, the condition number κ2 is always greater or equal to one. Matrices with
small condition numbers are said to be well-conditioned.

For any real, orthogonal matrix Q we have

κ2(Q) = ‖Q‖2‖Q−1‖2 = 1,

so Q is perfectly conditioned. By Lemma 1.6.3 we have ‖QAP‖2 = ‖A‖2 for any
orthogonal P and Q. It follows that

κ2(PAQ) = κ2(A),

i.e. the condition number of a matrix A is invariant under orthogonal transforma-
tions. This important fact is one reason why orthogonal transformations play a
central role in numerical linear algebra!

How large may κ be before we consider the problem to be ill-conditioned?
That depends on the accuracy of the data and the accuracy desired in the solution.
If the data have a relative error of 10−7 then we can guarantee a (normwise) relative
error in the solution ≤ 10−3 if κ ≤ 0.5 · 104. However, to guarantee a (normwise)
relative error in the solution ≤ 10−6 we need to have κ ≤ 5.

Example 2.4.7.
The Hilbert matrix Hn of order n with elements

Hn(i, j) = hij = 1/(i + j − 1), 1 ≤ i, j ≤ n.

is a notable example of an ill-conditioned matrix. In Table 2.4.1 approximate condi-
tion numbers of Hilbert matrices of order ≤ 12, computed in IEEE double precision,
are given. For n > 12 the Hilbert matrices are too ill-conditioned even for IEEE
double precision! From a result by G. Szegö (see Gautschi [24, p. 34]) it follows that

κ2(Hn) ≈ (
√

2 + 1)4(n+1)

215/4
√

πn
∼ e3.5n,

that is, the condition numbers grows exponentially with n. Although the severe
ill-conditioning exhibited by the Hilbert matrices is rare, moderately ill-conditioned
linear systems do occur regularly in many practical applications!

The normwise analysis in the previous section usually is satisfactory when
the linear system is “well scaled”. If this is not the case then a component-wise
perturbation analysis may give sharper bounds.
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Table 2.4.1. Condition numbers of Hilbert matrices of order ≤ 12.

n κ2(Hn) n κ2(Hn)
1 1 7 4.753·108

2 19.281 8 1.526·1010

3 5.241·102 9 4.932·1011

4 1.551·104 10 1.602·1013

5 4.766·105 11 5.220·1014

6 1.495·107 12 1.678·1016

We first introduce some notations. The absolute values |A| and |b| of a matrix
A and vector b is interpreted componentwise,

|A|ij = (|aij |), |b|i = (|bi|).

The partial ordering “≤” for the absolute values of matrices |A|, |B| and vectors
|b|, |c|, is to be interpreted component-wise12

|A| ≤ |B| ⇐⇒ |aij | ≤ |bij |, |b| ≤ |c| ⇐⇒ |bi| ≤ |ci|.

It follows easily that |AB| ≤ |A| |B| and a similar rule holds for matrix-vector
multiplication.

Assume now that we have component-wise bounds for the perturbations in A
and b,

|δA| ≤ ω|E|, |δb| ≤ ω|f |, (2.4.17)

where E and f are known. Taking absolute values in (2.4.13) gives component-wise
error bounds for the corresponding perturbations in x,

|δx| ≤ |(I + A−1δA)−1| |A−1|(|δA||x| + |δb|)

The matrix (I − |A−1||δA|) is guaranteed to be nonsingular if ‖ |A−1| |δA| ‖ < 1.
Neglecting second order terms in ω and using (2.4.17) gives

|δx| / |A−1|(|δA||x| + |δb|) ≤ ω|A−1|(|E| |x| + |f |), (2.4.18)

If we set E = |A| and f = |b|, then taking norms in (2.4.18) we get

‖δx‖ / ω‖ |A−1|(|A| |x| + |b|) ‖ + O(ω2). (2.4.19)

2.4.5 Forward and Backward Error Analysis

Consider a finite algorithm with input data (a1, . . . , ar), in which by a sequence
of arithmetic operations the output data (w1, . . . , ws) is computed. There are two
basic forms of roundoff error analysis for such an algorithm, which both are useful:

12Note that A ≤ B in other contexts means that B − A is positive semidefinite.
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(i) In forward error analysis one attempts to find bounds for the errors in the
solution |wi − wi|, i = 1 : s, where wi denotes the computed value of wi.

(ii) In backward error analysis, pioneered by J. H. Wilkinson in the late fifties,
one attempts to determine a modified set of data ãi such that the computed
solution wi is the exact solution, and give bounds for |ãi − ai|. There may be
an infinite number of such sets; sometimes there is just one and it can happen,
even for very simple algorithms, that no such set exists.

By means of backward error analysis it has been shown, even for many quite
complicated algorithms, that the computed results the algorithm produces under
the influence of roundoff error are the exact output data of a problem of the same
type in which the relative change data only is of the order of the unit roundoff u.

Sometimes, when a pure backward error analysis is difficult to achieve, one
can show that the computed solution is a slightly perturbed solution to a problem
with slightly modified input data. An example of such a mixed error analysis is
the error analysis given in Lemma 2.3.5 for the solution of a quadratic equation.

In backward error analysis no reference is made to the exact solution for the
original data. In practice, when the data is known only to a certain accuracy,
the “exact” solution may not be well-defined. Then any solution, whose backward
error is smaller than the domain of uncertainty of the data, may be considered to a
satisfactory result.

To yield error bounds for wi, a backward error analysis has to be comple-
mented with a perturbation analysis. For this the error propagation formulas in
Sec. 2.4.2 can often be used. A great advantage of backward error analysis is that
when it applies, it tends to give much sharper results than a forward error analysis.
Perhaps more important, it usually also gives a better insight into the stability (or
lack of it) of the algorithm. It should be stressed that the primary purpose of a
rounding error analysis is to give insight in the properties of the algorithm.

2.4.6 Stability of Algorithms

One common reason for poor accuracy in the computed solution is that the problem
is ill-conditioned. But poor accuracy can also be caused by a poorly constructed
algorithm. We say in general that an algorithm is unstable if it can introduce large
errors in the computed solutions to a well-conditioned problem.

There are different definitions of stability of algorithms for different classes
of numerical problems. The treatment here is geared towards stationary problems
and may not be very useful for time dependent problems in ordinary and partial
differential equations. We defer the treatment of suitable definitions of stability for
these classes of problems until Volume 3; see also Sec. 3.??.

Example 2.4.8.
For ǫ = 10−6 the system

(

ǫ 1
1 1

)(

x1

x2

)

=

(

1
0

)

,
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is well-conditioned and has the exact solution x1 = −x2 = −1/(1 − ǫ) ≈ −1. If
Gaussian elimination is used, multiplying the first equation by 106 and subtracting
from the second, we obtain (1− 106)x2 = −106. Rounding this to x2 = 1 is correct
to six digits. In the back-substitution to obtain x1, we then get 10−6x1 = 1− 1, or
x1 = 0, which is a completely wrong result. This shows that Gaussian elimination
can be an unstable algorithm. To ensure stability it is necessary to perform row
(and/or column) interchanges not only when a pivotal element is exactly zero, but
also when it is small.

Definition 2.4.10.
An algorithm is backward stable if the computed solution w for the data a

is the exact solution of a problem with slightly perturbed data ā such that for some
norm ‖ · ‖ it holds

‖ā − a‖/‖a‖ < c1u, (2.4.20)

where c1 is a not too large constant and u is the unit roundoff.

We are usually satisfied if we can prove normwise forward or backward stability
for some norm, e.g., ‖ · ‖2 or ‖ · ‖∞. Occasionally we may like the estimates to hold
element-wise, e.g.

|āi − ai|/|ai| < c2u, i = 1 : r. (2.4.21)

For example, by equation (2.3.15) the usual algorithm for computing an inner prod-
uct xT y is backward stable, for element-wise relative perturbations.

We would like stability to hold for some class of input data. For example,
a numerical algorithm for solving systems of linear equations Ax = b is backward
stable for a class of matrices A if for each A ∈ A and for each b the computed
solution x̄ satisfies Āx̄ = b̄ where Ā and b̄ are close to A and b.

A backward stable algorithm will not necessarily compute an accurate solution.
However, if the condition number of the problem is κ, then it follows that

‖w − w‖ ≤ c1uκ‖w‖ + O(u2). (2.4.22)

Hence the error in the solution may still be large if the problem is ill-conditioned.
However, we have obtained an answer which is the exact mathematical solution to
a problem with data close to the one we wanted to solve. If the perturbations ā− a
are within the uncertainties of the given data, the computed solution is as good as
our data warrants!

An important property of backward stable algorithms for the solution of linear
systems is given in the following theorem.

Theorem 2.4.11.
An algorithm for solving Ax = b is backward stable according to Defini-

tion 2.4.10 if and only if the computed solution x̄ has a small residual, that is,

‖b − Ax̄‖ ≤ c3u‖A‖‖x̄‖. (2.4.23)
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Proof. Suppose that (2.4.23) holds. If we define for the 2-norm

δA = rx̄T /‖x̄‖2
2, r = b − Ax̄,

then it holds exactly that (A + δA)x̄ = Ax̄ + r = b, where

‖δA‖2 ≤ ‖r‖2/‖x̄‖2 ≤ c3u‖A‖2.

We can take δb = 0 and hence the algorithm is backward stable by Definition 2.4.10.
Conversely, if the algorithm is backward stable then, Āx̄ = b̄, where

‖Ā − A‖ ≤ c2u‖A‖, ‖b̄ − b‖ ≤ c2u‖b‖.
Since b − Ax̄ = (Ā − A)x̄ + b − b̄ it follows that an estimate of the form (2.4.23)
holds for the norm of the residual.

Many important algorithms for solving linear systems, for example, most iter-
ative methods, are not backward stable. The following weaker definition of stability
is also useful.

Definition 2.4.12.
An algorithm is stable if the computed solution w satisfies (2.4.22), where c1

is a not too large constant, u is the unit roundoff, and κ is the condition number of
the problem.

By the definition of the condition number κ it follows that backward stability
implies forward stability, but the converse is not true.

Sometimes it is necessary to weaken the definition of stability. Often an algo-
rithm can be considered stable if it produces accurate solutions for well-conditioned
problems. Such an algorithm can be called weakly stable. Weak stability may be
sufficient for giving confidence in an algorithm.

Example 2.4.9.
In the method of normal equations for computing the solution of a linear

least squares problem one first forms the matrix AT A. This product matrix can be
expressed in outer form as

AT A =
m
∑

i=1

aia
T
i ,

where aT
i is the ith row of A, i.e. AT = ( a1 a2 . . . am ). From (2.3.13) it follows

that this computation is not backward stable, i.e. it is not true that fl(AT A) =
(A+E)T (A+E) for some small error matrix E. In order to avoid loss of significant
information higher precision need to be used.

Backward stability is easier to prove when there is a sufficiently large set
of input data compared to the number of output data. In Example 2.4.9 that
computing the outer product xY T , where we have 2n data and n2 results is not
a backward stable operations. Also it is harder (sometimes impossible) to show
backward stability when the input data is structured rather than general.
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Example 2.4.10.
It can be shown that many algorithms for solving a linear system Ax = b

are backward stable, i.e. the computed solution is the exact solution of a system
(A + E)x = b, where ‖E‖ is not much larger than the machine precision. In
many cases the system matrix is structured. An important example is Toeplitz
matrices T . A Toeplitz matrix has entries that are constant along every diagonal

T = (ti−j)1≤i,j≤n =









t0 t1 . . . tn−1

t−1 t0 . . . tn−2

...
...

. . .
...

t−n+1 t−n+2 . . . t0









∈ Rn×n

and is defined by the vector of 2n− 1 quantities t = (t−n+1, . . . , t0, . . . , tn−1).
Ideally, in a strict backward error analysis, we would like to show that a

solution algorithm always computes an exact solution to a nearby Toeplitz system
defined by t + s, where s is small. It has been shown that no such algorithm can
exist! We have to be content with algorithms that (at best) compute the exact
solution of (T + E)x = b, where ‖E‖ is small but E unstructured.

In the construction of an algorithm for a given problem, one often breaks
down the problem into a chain of subproblems, P1, P2, . . . , Pk for which algorithms
A1, A2, . . . , Ak are known, in such a way that the output data from Pi−1 is the input
data to Pi. Different ways of decomposing the problem give numerically different
algorithms. It is dangerous if the last subproblem in such a chain is ill-conditioned.

Good algorithm

X X′ Y

Poor algorithm

X X′′ Y

Figure 2.4.3. Two examples of a decomposition of a problem P into two
subproblems.

In Fig. 2.4.3 we see two examples of a decomposition of the problem P into
two subproblems. From X to X ′′ there is a strong contraction which is followed
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by an expansion about equally strong in the mapping from X ′′ to Y . The roundoff
errors which are made in X ′′ when the intermediate results are stored have as a
consequence that one arrives somewhere in the surrounding circle, which is then
transformed into a very large region in Y . The important conclusion is that even if
the algorithms for the subproblems are stable we cannot conclude that the composed
algorithm is stable!

Example 2.4.11.
The problem of computing the eigenvalues λi of a symmetric matrix A, given

its elements (aij), is always a well-conditioned numerical problem with condition
number equal to 1. Consider an algorithm which breaks down this problem into
two subproblems:

P1: compute the coefficients of the characteristic polynomial of the matrix A
p(λ) = det(A − λI) of the matrix A.

P2: compute the roots of the polynomial p(λ) obtained from P1.
It is well known that the second subproblem P2 can be very ill-conditioned.

For example, for a symmetric matrix A with eigenvalues ±1,±2, . . . ,±20 the con-
dition number for P2 is 1014 in spite of the fact that the origin lies exactly between
the largest and smallest eigenvalues, so that one cannot blame the high condition
number on a difficulty of the same type as that encountered in Example 2.4.7.

The important conclusion that eigenvalues should not be computed as outlined
above is further discussed in Sec. 6.4.1.

On the other hand, as the next example show, it need not be dangerous if the
first subproblem of a decomposition is ill-conditioned, even if the problem itself is
well-conditioned.

Example 2.4.12.
The first step in many algorithms for computing the eigenvalues λi of a sym-

metric matrix A is to use orthogonal similarity transformations to symmetric tridi-
agonal form,

QT AQ = T =













α1 β2

β2 α2 β3

. . .
. . .

. . .

βn−1 αn−1 βn

βn αn













.

In the second step the eigenvalues of T , which coincide with those of A, are com-
puted.

Wilkinson [46, §5.28] showed that the computed tridiagonal matrix can differ
a lot from the matrix corresponding to exact computation. Hence here the first
subproblem is ill-conditioned. (This fact is not as well known as it should be and still
alarms many users!) However, the second subproblem is well-conditioned and the
combined algorithm is known to be backward stable, i.e. the computed eigenvalues
are the exact eigenvalues of a matrix A + E, where ‖E‖2 < c(n)u‖A‖2. This is a
more complex example of a calculation, where rounding errors cancel!
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In Sec. 1.4 some methods for the numerical solution of differential equations
were illustrated. It should be realized that there are possibilities for catastrophic
growth of errors in such processes. The notion of stability for such methods is
related to the stability of linear difference equations and will be treated in Sec. 3.2
and at length in Vol. III.

Review Questions

1. The maximal error bounds for addition and subtraction can for various reasons
be a coarse overestimate of the real error. Give, preferably with examples, two
such reasons.

2. How is the condition number κ(A) of a matrix A defined? How does κ(A)
relate to perturbations in the solution x to a linear system Ax = b, when A
and b are perturbed?

3. Define the condition number of a numerical problem P of computing output
data y1, . . . , ym given input data x1, . . . , xn.

4. Give examples of well-conditioned and ill-conditioned problems.

5. What is meant by (a) a forward error analysis; (b) a backward error analysis;
(c) a mixed error analysis?

6. What is meant by (a) a backward stable algorithm; (b) a forward stable algo-
rithm; (c) a mixed stable algorithm; (d) a weakly stable algorithm?

Problems

1. (a) Determine the maximum error for y = x1x
2
2/
√

x3, where x1 = 2.0 ± 0.1,
x2 = 3.0 ± 0.2, and x3 = 1.0 ± 0.1. Which variable contributes most to the
error?

(b) Compute the standard error using the same data as in (a), assuming that
the error estimates for the xi indicate standard deviations.

2. One wishes to compute f = (
√

2 − 1)6, using the approximate value 1.4 for√
2. Which of the following mathematically equivalent expressions gives the

best result
1

(
√

2 + 1)6
; (3 − 2

√
2)3;

1

(3 + 2
√

2)3
; 99 − 70

√
2;

1

99 + 70
√

2
?

3. Analyze the error propagation in xα:

(a) If x is exact and α in error. (b) If α is exact and x in error.

4. One is observing a satellite in order to determine its speed. At the first
observation, R = 30, 000 ± 10 miles. Five seconds later, the distance has
increased by r = 125.0 ± 0.5 miles and the change in the angle was φ =
0.00750 ± 0.00002 radians. What is the speed of the satellite, assuming that
it moves in a straight line and with constant speed in the interval?
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5. One has measured two sides and the included angle of a triangle to be a =
100.0± 0.1, b = 101.0± 0.1, and the angle C = 1.00o ± 0.01o. Then the third
side is given by the cosine theorem

c = (a2 + b2 − 2ab cosC)1/2.

(a) How accurately is it possible to determine c from the given data?

(b) How accurately does one get c if one uses the value cos 1o = 0.9998, which
is correct to four decimal places.

(c) Rewrite the cosine theorem so that it is possible to compute c to full
accuracy using only a four-decimal table for the trigonometric functions.

6. Consider the linear system

(

1 α
α 1

)(

x
y

)

=

(

1
0

)

,

where α 6= 1. What is the relative condition number for computing x and
show that the problem of computing x. Using Gaussian elimination and four
decimal digits compute x and y for α = 0.9950 and compare with the exact
solution x = 1/(1 − α2), y = −α/(1 − α2).

7. (a) Let two vectors u and v be given with components (u1, u2) and (v1, v2).
The angle φ between u and v is given by the formula

cosφ =
u1v1 + u2v2

(u2
1 + u2

2)
1/2(v2

1 + v2
2)1/2

.

Show that computing the angle φ from the components of u and v is a well-
conditioned problem.

Hint: Take the partial derivative of cosφ with respect to u1, and from this
compute ∂φ/∂u1. The other partial derivatives are obtained by symmetry.

(b) Show that the formula in (a) is not stable for small angles φ.

(c) Show that the following algorithm is stable. First normalize the vectors
ũ = u/‖u‖2, ṽ = v/‖v‖2. Then compute α = ‖ũ − ṽ‖2, β = ‖ũ + ṽ‖2 and set

φ =

{

2 arctan(α/β), if α ≤ β;
π − 2 arctan(β/α), if α > β.

8. One has an algorithm for computing the integral

I(a, b) =

∫ 1

0

e−bx

a + x2
dx.

The physical quantities a and b have been measured to be a = 0.4000± 0.003,
b = 0.340 ± 0.005. Using the algorithms for various values of a and b one
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performs experimental perturbations and obtains:

a b I

0.39 0.34 1.425032
0.40 0.32 1.408845
0.40 0.34 1.398464
0.40 0.36 1.388198
0.41 0.34 1.372950

How large is the uncertainty in I(a, b)?

9. Let B ∈ Rn×n be a matrix for which ‖B‖ < 1. Show that the infinite sum
and product

(I − B)−1 =

{

I + B + B2 + B3 + B4 · · · ,
(I + B)(I + B2)(I + B4)(I + B8) · · ·

both converge to the indicated limit.

Hint: Use the identity (I − B)(I + B + · · · + Bk) = I − Bk+1.

(b) Show that the matrix (I − B) is nonsingular and that

‖(I − B)−1‖ ≤ 1/(1 − ‖B‖).

10. Solve the linear system in Example 2.4.8 with Gaussian elimination after ex-
changing the two equations. Do you now get an accurate result?

11. Derive forward and backward recursion formulas for calculating the integrals

In =

∫ 1

0

xn

4x + 1
dx.

Why is one algorithm stable and the other unstable?

Problems and Computer Exercises

1. (a) Use the results in Table 2.4.1 to determine constants c and q such that
κ(Hn) ≈ c · 10q.

(b) Compute the Bauer–Skeel condition number cond (Hn) = ‖ |H−1
n ||Hn| ‖2,

of the Hilbert matrices for n = 1 : 12. Compare the result with the values of
κ(Hn) given in Table 2.4.1.

2. Vandermonde matrices are structured matrices of the form

Vn =









1 1 · · · 1
α1 α2 · · · αn
...

... · · ·
...

αn−1
1 αn−1

2 · · · αn−1
n









.

Let αj = 1 − 2(j − 1)/(n − 1), j = 1 : n. Compute the condition numbers
κ2(Vn) for n = 5, 10, 15, 20, 25. Is the growth in κ2(Vn) exponential in n?
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2.5 Automatic Control of Accuracy and Verified
Computing

2.5.1 Running Error Analysis

A different approach to rounding error analysis is to perform the analysis automat-
ically, for each particular computation. This gives an a posteriori error analysis as
compared to the a priori error analysis discussed above.

A simple form of a posteriori analysis, called running error analysis, was used
in the early days of computing, see Wilkinson [47]. To illustrate his idea we rewrite
the basic model for floating point arithmetic as

x op y = fl (x op y)(1 + ǫ).

These are also satisfied for most implementations of floating point arithmetic. Then,
the actual error can be estimated |fl (x op y) − x op y| ≤ u|fl (x op y)|. Note that
the error is now given in terms of the computed result and is available in the computer
at the time the operation is performed. This running error analysis can often be
easily implemented. We just take an existing program and modify it, so that as
each arithmetic operation is performed, the absolute value of the computed results
is added into the accumulating error bound.

Example 2.5.1.
The inner product fl (xT y) is computed by the program

s = 0; η = 0;
for i = 1, 2, . . . , n

t = fl (xiyi); η = η + |t|;
s = fl (s + t); η = η + |s|;

end

For the final error we have the estimate |fl (xT y)−xT y| ≤ ηu. Note that a running
error analysis takes advantage of cancellations in the sum. This is in contrast to the
previous estimates, which we call a priori error analysis, where the error estimate
is the same for all distribution of signs of the elements xi and yi.

Efforts have been made to design the computational unit of a computer so
that it gives, in every arithmetic operation, only those digits of the result which
are judged to be significant (possibly with a fixed number of extra digits), so-called
unnormalized floating arithmetic. This method reveals poor construction in al-
gorithms, but in many other cases it gives a significant and unnecessary loss of
accuracy. The mechanization of the rules, which a knowledgeable and experienced
person would use for control of accuracy in hand calculation, is not as free from
problems as one might expect. As complement to arithmetical operations of con-
ventional type, the above type of arithmetic is of some interest, but it is doubtful
that it will ever be widely used.
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A fundamental difficulty in automatic control of accuracy is that to decide
how many digits is needed in a quantity to be used in later computation, one needs
to consider the entire context of the computations. It can in fact occur that the
errors in many operands depend on each other in such a way that they cancel each
other. Such cancellation of error, is a completely different phenomenon from the
previously discussed cancellation of terms, is most common in larger problems, but
will be illustrated here with a simple example.

Example 2.5.2.
Suppose we want to compute y = z1 + z2, where z1 =

√
x2 + 1, z2 = 200 − x,

x = 100 ± 1, with a rounding error which is negligible compared to that resulting
from the errors in z1 and z2. The best possible error bounds in the intermediate
results are z1 = 100 ± 1, z2 = 100 ± 1. It is then tempting to be satisfied with the
result y = 200 ± 2.

However, the errors in z1 and z2 due to the uncertainty in x will, to a large
extent, cancel each other! This becomes clear if we rewrite the expression as

y = 200 + (
√

x2 + 1 − x) = 200 +
1√

x2 + 1 + x
.

It follows that y = 200 + u, where 1/202 / u ≤ 1/198. Thus y can be computed
with an absolute error less than about 2/(200)2 = 0.5 · 10−4. Therefore using the
expression y = z1 + z2 the intermediate results z1 and z2 should be computed
to four decimals even though the last integer in these is uncertain! The result is
y = 200.0050± 1

210−4.

In larger problems, such a cancellation of errors can occur even though one
cannot easily give a way to rewrite the expressions involved. The authors have
seen examples where the final result, a sum of seven terms, was obtained correctly
to eight decimals even though the terms, which were complicated functions of the
solution to a system of nonlinear equations with fourteen unknowns, were correct
only to three decimals! Another nontrivial example is given in Example 2.4.12.

2.5.2 Experimental Perturbations

In many practical problems, the functional dependence between input data and
output data are so complicated that it is difficult to directly apply the general
formulas for error propagation derived in Sec. 2.4.4. One can then investigate the
sensitivity of the output data for perturbations in the input data by means of an
experimental perturbational calculation: one performs the calculations many
times with perturbed input data and studies the perturbations in the output data.

Important data, such as the step length in a numerical integration or the
parameter which determines when an iterative process is going to be broken off,
should be varied with all the other data left unchanged. If one can easily vary the
precision of the machine in the arithmetic operations one can get an idea of the
influence of rounding errors. It is generally not necessary to make a perturbational
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calculation for each and every data component; one can instead perturb many input
data simultaneously–for example, by using random numbers.

A perturbational calculation often gives not only an error estimate, but also
greater insight into the problem. Occasionally, it can be difficult to interpret the
perturbational data correctly, since the disturbances in the output data depend not
only on the mathematical problem, but also on the choice of numerical method
and the details in the design of the algorithm. The rounding errors during the
computation are not the same for the perturbed and unperturbed problem. Thus if
the output data reacts more sensitively than one had anticipated, it can be difficult
to immediately point out the source of the error. It can then be profitable to plan
a series of perturbation experiments with the help of which one can separate the
effects of the various sources of error. If the dominant source of error is the method
or the algorithm, then one should try another method or another algorithm.

It is beyond the scope of this book to give further comments on the planning
of such experiments; imagination and the general insights regarding error analysis
which this chapter is meant to give play a large role. Even in the special literature,
the discussion of planning of such experiments is surprisingly meager. An exception
is the collection of software tools called PRECISE, developed by Chaitin-Chatelin et
al., see [11, 12]. These are designed to help the user set up computer experiments to
explore the impact of the quality of convergence of numerical methods. It involves
a statistical analysis of the effect on a computed solution of random perturbations
in data

2.5.3 Introduction to Interval Arithmetic

In interval arithmetic one assumes that all input values are given as intervals
and systematically calculates an inclusion interval for each intermediate result. It is
partly an automatization of calculation with maximal error bounds. The importance
of interval arithmetic is that it provides a tool for computing validated answers to
mathematical problems. This has played an important role in mathematics. A
noteworthy example is the verification of the existence of a Lorenz attractor by
W. Tucker [44].

The most frequently used representations for the intervals are the infimum-
supremum representation

I = [a, b] := {x | a ≤ x ≤ b}, (a ≤ b). (2.5.1)

The absolute value or the magnitude of an interval is defined as

| [a, b] | = mag([a, b]) = max{|x| | x ∈ [a, b]}, (2.5.2)

and the mignitude of an interval is defined as

mig([a, b]) = min{|x| | x ∈ [a, b]}. (2.5.3)

In terms of the endpoints we have

mag([a, b]) = max{|a|, |b|},

mig([a, b]) =

{

min{|a|, |b|}, if 0 /∈ [a, b],
0, otherwise

.
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The result of an interval operation equals the range of the corresponding real
operation. For example, the difference between the intervals [a1, a2] and [b1, b2],
is defined as the shortest interval which contains all the numbers x1 − x2, where
x1 ∈ [a1, a2], x2 ∈ [b1, b2], i.e. [a1, a2]− [b1, b2] := [a1−b2, a2−b1]. Other elementary
interval arithmetic operations are similarly defined:

[a1, a2] op [b1, b2] := {x1 op x2 | x1 ∈ [a1, a2], x2 ∈ [b1, b2]}, (2.5.4)

where op ∈ {+,−, ·, div }. The interval value of a function φ (e.g., the elementary
functions sin, cos, exp, ln) evaluated on an interval is defined as

φ([a, b]) = [ inf
x∈[a,b]

φ(x), sup
x∈[a,b]

φ(x)].

Operational Definitions

Although (2.5.4) characterizes interval arithmetic operations we also need opera-
tional definitions. We take

[a1, a2] + [b1, b2] = [a1 + b1, a2 + b2],

[a1, a2] − [b1, b2] = [a1 − b2, a2 − b1],

[a1, a2] · [b1, b2] =
[

min{a1b1, a1b2, a2b1, a2b2}, max{a1b1, a1b2, a2b1, a2b2}
]

,

1/[a1, a2] = [1/a2, 1/a1], for a1a2 > 0, (2.5.5)

[a1, a2]/[b1, b2] = [a1, a2] · (1/[b1, b2]).

It is easy to prove that in exact interval arithmetic the operational definitions
above give the exact range (2.5.4) of the interval operations. Division by an interval
containing zero is not defined and may cause an interval computation to come to a
premature end.

A degenerate interval with radius zero is called a point interval and can be
identified with a single number a ≡ [a, a]. In this way the usual arithmetic is
recovered as a special case. The intervals 0 = [0, 0] and 1 = [1, 1] are the neutral
elements with respect to interval addition and interval multiplication, respectively.
A non-degenerate interval has no inverse with respect to addition or multiplication
For example, we have

[1, 2]− [1, 2] = [−1, 1], [1, 2]/[1, 2] = [0.5, 2].

For interval operations the commutative law

[a1, a2] op [b1, b2] = [b1, b2] op [a1, a2]

holds. However, the distributive law has to be replaced by so called subdistribu-
tivity

[a1, a2]([b1, b2] + [c1, c2]) ⊆ [a1, a2][b1, b2] + [a1, a2][c1, c2]. (2.5.6)

This unfortunately means that expressions, which are equivalent in real arithmetic,
differ in exact interval arithmetic. The simple example

[−1, 1]([1, 1] + [−1,−1]) = 0 ⊂ [−1, 1][1, 1] + [−1, 1][−1,−1] = [−2, 2]
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shows that −[−1, 1] is not the additive inverse to [−1, 1] and also illustrates (2.5.6).
The operations introduced are inclusion monotonic, i.e,

[a1, a2] ⊆ [c1, c2], [b1, b2] ⊆ [d1, d2] ⇒ [a1, a2] op [b1, b2] ⊆ [c1, c2] op [d1, d2].
(2.5.7)

An alternative representation for an interval is the midpoint-radius repre-
sentation, for which we use brackets

〈c, r〉 := {x
∣

∣ |x − c| ≤ r} (0 ≤ r), (2.5.8)

where the midpoint and radius of the interval [a, b] are defined as

mid ([a, b]) =
1

2
(a + b), rad ([a, b]) = 1

2 (b − a). (2.5.9)

For intervals in the midpoint-radius representation we take as operational definitions

〈c1, r1〉 + 〈c2, r2〉 = 〈c1 + c2, r1 + r2〉,
〈c1, r1〉 − 〈c2, r2〉 = 〈c1 − c2, r1 + r2〉,
〈c1, r1〉 · 〈c2, r2〉 = 〈c1c2, |c1|r2 + r1|c2| + r1r2〉, (2.5.10)

1/〈c, r〉 = 〈c̄/(|c|2 − r2), r/(|c|2 − r2)〉, (|c| > r),

〈c1, r1〉/〈c2, r2〉 = 〈c1, r1〉 · (1/〈c2, r2〉),

where c̄ is the complex conjugate of c. For addition, subtraction and inversion,
these give the exact range, but for multiplication and division they overestimate
the range (see Problem 2). For multiplication we have for any x1 ∈ 〈c1, r1〉 and
x2 ∈ 〈c2, r2〉

|x1x2 − c1c2| = |c1(x2 − c2) + c2(x1 − c1) + (x1 − c1)(x2 − c2)|
≤ |c1|r2 + |c2|r1 + r1r2.

In implementing interval arithmetic using floating point arithmetic the oper-
ational interval results may not be exactly representable as floating point numbers.
Then if the lower bound is rounded down to the nearest smaller machine num-
ber and the upper bound rounded up, the exact result must be contained in the
resulting interval. Recall that these rounding modes (rounding to −∞ and +∞)
are supported by the IEEE 754 standard. For example, using 5 significant decimal
arithmetic, we would like to get

[1, 1] + [−10−10, 10−10] = [0.99999, 1.0001],

or in midpoint-radius representation

〈1, 0〉 + 〈0, 10−10〉 = 〈1, 10−10〉.

Note that in the conversion between decimal and binary representation rounding
the appropriate rounding mode must also be used where needed. For example, con-
verting the point interval 0.1 to binary IEEE double precision we get an interval
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with radius 1.3878 · 10−17. The conversion between the infimum-supremum repre-
sentation is straightforward but the infimum-supremum and midpoint may not be
exactly representable.

Interval arithmetic applies also to complex numbers. A complex interval in
the infimum-supremum representation is

[z1, z2] = {z = x + iy | x ∈ [x1, x2], y ∈ [y1, y2]}.

This defines a closed rectangle in the complex plane defined by the two real intervals,

[z1, z2] = [x1, x2] + i[y1, y2], x1 ≤ x2, y1 ≤ y2.

This can be written more compactly as [z1, z2] := {z | z1 ≤ z ≤ z2}, where we use
the partial ordering

z ≤ w ⇐⇒ ℜz ≤ ℜw & ℑz ≤ ℑw.

Complex interval operations in the infimum-supremum arithmetic are defined in
terms of the real intervals in the same way as the complex operations are defined
for complex numbers z = x + iy. For addition and subtraction the result coincides
with the exact range. This is not the case for complex interval multiplication,
where the result is a rectangle in the complex plane, whereas the actual range is
not of this shape. Therefore, for complex intervals multiplication will result in an
overestimation.

In the complex case the midpoint-radius representation is

〈c, r〉 := {z ∈ C | |z − c| ≤ r}, 0 ≤ r,

where the midpoint c now is a complex number. This represents a closed circular
disc in the complex plane. The operational definitions (2.5.10) are still valid, except
that some operations now are complex operations and that inversion becomes

1/〈c, r〉 = 〈c̄/(|c|2 − r2), r/(|c|2 − r2)〉, for |c| > r,

where c̄ is the complex conjugate of c. Complex interval midpoint-radius arithmetic
is also called circular arithmetic. For complex multiplications it generates less
overestimation than the infimum-supremum notation.

Although the midpoint-radius arithmetic seems more appropriate for complex
intervals, most older implementations of interval arithmetic use infimum-supremum
arithmetic. One reason for this is the overestimation caused also for real intervals by
the operational definitions for midpoint-radius multiplication and division. Recently
Rump [39] has shown that the overestimation is bounded by a factor 1.5 in radius
and that midpoint-radius arithmetic allows for a much faster implementation for
modern vector and parallel computers.

Range of Functions

One use of interval arithmetic is to enclose the range of a real valued function. This
can be used, e.g., for localizing and enclosing global minimizers and global minima
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of a real function of one or several variables in a region. It can also be used for
verifying the nonexistence of a zero of f(x) in a given interval.

Let f(x) be a real function composed of a finite number of elementary opera-
tions and standard functions. If one replaces the variable x by an interval [x, x] and
evaluates the resulting interval expression one gets as result an interval denoted by
f([x, x]). (It is assumed that all operations can be carried out.) A fundamental
result in interval arithmetic is that this evaluation is inclusion monotonic, i.e.,

[x, x] ⊆ [y, y], ⇒ f([x, x]) ⊆ f([y, y]).

In particular this means that

x ⊆ [x, x] ⇒ f(x) ⊆ f([x, x]),

i.e., f([x]) contains the range of f(x) over the interval [x, x]. A similar result holds
also for functions of several variables f(x1, . . . , xn).

An important case when interval evaluation gives the exact range of a function
is when f(x1, . . . , xn) is a rational expression, where each variable xi occurs only
once in the function.

Example 2.5.3.
In general narrow bounds cannot be guaranteed. For example, if f(x) =

x/(1 − x) then

f([2, 3]) = [2, 3]/(1− [2, 3]) = [2, 3]/[−2,−1] = [−3,−1].

The result contains but does not coincide with the exact range [−2,−3/2]. However,
if we rewrite the expression as f(x) = 1/(1/x − 1), where x only occurs once, then
we get

f([2, 3]) = 1/(1/[2, 3]− 1) = 1/[−2/3,−1/2] = [−2,−3/2],

which is the exact range.

When interval analysis is used in a naive manner as a simple technique for
simulating forward error analysis it does not in general give sharp bounds on the
total computational error. To get useful results the computations in general need
to be arranged so that overestimation as far as possible is minimized. Often a
refined design of the algorithm is required in order to prevent the bounds for the
intervals from becoming unacceptably coarse. The answer [−∞,∞] is of course
always correct but not at all useful!

The remainder term in Taylor expansions includes a variable ξ, which is known
to lie in an interval ξ ∈ [a, b]. This makes it suitable to treat the remainder term
with interval arithmetic.

Example 2.5.4.
Evaluate for [x] = [2, 3] the polynomial

p(x) = 1 − x + x2 − x3 + x4 − x5
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Using exact interval arithmetic we find

p([2, 3]) = [−252, 49]

(verify this!). This is an overestimate of the exact range, which is [−182,−21].
Rewriting p(x) in the form p(x) = (1− x)(1 + x2 + x4) we obtain the correct range.
In the first example there is a cancellation of errors in the intermediate results
(cf. Example 2.5.2), which is not revealed by the interval calculations.

Sometimes it is desired to compute a tiny interval that is guaranteed to enclose
a real simple root x∗ of f(x). This can be done using an interval version of Newton’s
method. Suppose that the function f(x) is continuously differentiable. Let f ′([x0])
denote an interval containing f ′(x) for all x in a finite interval [x] := [a, b]. Define
the Newton operator on N [x] by

N([x]) := m − f(| (x))

f ′([x])
. (2.5.11)

For the properties of the iteration [xk+1) = N([xk]), see Sec. 6.3.4.
Another important application of interval arithmetic is to initial value prob-

lems for ordinary differential equations

y′ = f(x, y), y(x0) = y0, y ∈ Rn.

Interval techniques can be used to provide for errors in the initial values, as well as
truncation and rounding errors, so that at each step intervals are computed that
contain the actual solution. However, it is a most demanding task to construct an
interval algorithm for the initial value problem, and they tend to be significantly
slower than corresponding point algorithms. One problem is that a wrapping effect
occurs at each step and causes the computed interval widths to grow exponentially.
This is illustrated in the following example.

Example 2.5.5.
The recursion formulas

xn+1 = (xn − yn)/
√

2, yn+1 = (xn + yn)/
√

2,

mean a series of 45-degree rotations in the xy-plane (see Fig. 2.3.5). By a two-
dimensional interval one means a rectangle whose sides are parallel to the coordinate
axes.

If the initial value (x0, y0) is given as an interval [x0] = [1−ǫ, 1+ǫ], [y0] = [−ǫ, ǫ]
(see the dashed square, in the leftmost portion of Fig. 2.3.5), then (xn, yn) will,
with exact performance of the transformations, also be a square with side 2ǫ, for all
n (see the other squares in Fig. 2.3.5). If the computations are made using interval
arithmetic, rectangles with sides parallel to the coordinate axis will, in each step, be
circumscribed about the exact image of the interval one had in the previous step.
Thus the interval is multiplied by

√
2 in each step. After 40 steps, for example, the

interval has been multiplied by 220 > 106. This phenomenon, intrinsic to interval
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computations, is called the wrapping effect. (Note that If one used discs instead
of rectangular, there would not have been any difficulties of this example.)

Figure 2.5.1. Wrapping effect in interval analysis.

Interval Matrix Computations

In order to treat multidimensional problems we introduce interval vectors and ma-
trices. An interval vector is denoted by [x] and has interval components [xi] =
[xi, xi]), i = 1 : n. Likewise an interval matrix [A] = ([aij ]) has interval elements
[aij ] = [aij , aij ], i = 1 : m, j = 1 : n,

Operations between interval matrices and interval vectors are defined in an
obvious manner. The interval matrix-vector product [A][x] is the smallest inter-
val vector, which contains the set {Ax | A ∈ [A], x ∈ [x]}, but normally does not
coincide with it. By the inclusion property it holds that

{Ax | A ∈ [A], x ∈ [x]} ⊆ [A][x] =

( n
∑

j=1

[aij ][xj ]

)

. (2.5.12)

In general, there will be an overestimation in enclosing the image with an interval
vector caused by the fact that the image of an interval vector under a transfor-
mation in general is not an interval vector. This phenomenon, intrinsic to interval
computations, is called the wrapping effect.

Example 2.5.6.
We have

A =

(

1 1
−1 1

)

, [x] =

(

[0, 1]
[0, 1]

)

, ⇒ A[x] =

(

[0, 2]
[−1, 1]

)

.

Hence b = ( 2 −1 )T ∈ A[x], but there is no x ∈ [x] such that Ax = b. (The

solution to Ax = b is x = ( 3/2 1/2 )
T
.)

The magnitude of an interval vector or matrix is interpreted component-wise
and defined by

| [x] | = (| [x1] |, | [x2] |, . . . , | [xn] |)T ,
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where the magnitude of the components are defined by

| [a, b] | = max{|x| | x ∈ [a, b]}, (2.5.13)

The ∞-norm of an interval vector or matrix is defined as the ∞-norm of their
magnitude,

‖ [x] ‖∞ = ‖ | [x] | ‖∞, ‖ [A] ‖∞ = ‖ | [A] | ‖∞. (2.5.14)

In implementing matrix multiplication it is important to avoid case distinc-
tions in the inner loops, because that would make it impossible to use fast vector
and matrix operations. Using interval arithmetic it is possible to compute strict
enclosures of the product of two matrices. Note that this is needed also in the case
of the product of two point matrices since rounding errors will in general occur.

We assume that the command

setround(i), i = −1, 0, 1,

sets the rounding mode to −∞, to nearest, and to +∞, respectively. (Recall that
these rounding modes are supported by the IEEE standard.) Let A and B be point
matrices and suppose we want to compute an interval matrix [C] such that

fl(A · B) ⊂ [C] = [Cinf , Csup].

Then the following simple code, using two matrix multiplications, does that:

setround(−1); Cinf = A · B;

setround(1); Csup = A · B;

We next consider the product of a point matrix A and an interval matrix [B] =
[Binf , Bsup]. The following code performs this using four matrix multiplications:

A− = min(A, 0); A+ = max(A, 0);

setround(−1);

Cinf = A+ · Binf + A− · Bsup;

setround(1);

Csup = A− · Binf + A+ · Bsup;

(Note that the commands A− = min(A, 0) and A+ = max(A, 0) acts component-
wise.) For an algorithm for computing the product of two interval matrices using
eight matrix multiplications; see Rump [40].

Fast portable codes for interval matrix computations are now available. that
makes use of the Basic Linear Algebra Subroutines (BLAS) and IEEE 754 standard.
This makes it possible to efficiently use high-performance computers for interval
computation. The Matlab toolbox INTLAB (INTerval LABoratory)., by Rump
[40, 39] is partcularly easy to use. It includes many useful subroutines, e.g., one to
compute an enclosure of the difference between the solution and an approximate
solution xm = Cmid [b]. Verified solutions of linear least squares problems can also
be computed.
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Review Questions

1. (a) Define the magnitude and mignitude of an interval I = [a, b].

(b) How is the ∞-norm of an interval vector defined?

2. Describe the two different ways of representing intervals used in real and com-
plex interval arithmetic. Mention some of the advantages and drawbacks of
each of these!

3. An important property of interval arithmetic is that the operations are inclu-
sion monotonic. Define this term!

4. What is meant by the “wrapping effect” in interval arithmetic and what are
its implications? Give some examples of where it occurs.

Problems

1. Carry out the following calculations in exact interval arithmetic:

(a) [0, 1] + [1, 2]; (b) [3, 3.1]− [0, 0, 2]; (c) [−4. − 1] · [−6, 5];

(d) [2, 2] · [−1, 2]; (e) [−1, 1]/[−2,−0.5]; (f) [−3, 2] · [−3.1, 2.1];

2. Show that using the operational definitions (2.5.5) the product of the discs
〈c1, r1〉 and 〈c2, r2〉 contains zero if c1 = c2 = 1 and r1 = r2 =

√
2 − 1.

3. (J. Stoer) Evaluate using Horner’s scheme and exact interval arithmetic the
cubic polynomial

p(x) = ((x − 3)x + 3)x, [x] = [0.9, 1.1].

Compare the result with the exact range, which can be determined by observ-
ing that p(x) = (x − 1)3 + 1.

4. Treat the Example 1.3.2 using interval analysis and four decimal digits. Start-
ing with the inclusion interval I10 = [0, 1/60] = [0, 0.01667] generate succes-
sively intervals Ik, k = 9 : −1 : 5, using interval arithmetic and the recursion

In−1 = 1/(5n) − In/5.

Notes and References

A treatment of many different aspects of number systems and floating point com-
putations is given in Knuth [32, Chapter 4]. It contains an interesting overview of
the historical development of number representation. Leibniz 1703 seems to have
been the first to discuss binary arithmetic. He did not advocate it for practical
calculations, but stressed its importance for number-theoretic investigations. King
Charles XII of Sweden came upon the idea of radix 8 arithmetic in 1717. He felt
this to be more convenient than the decimal notation and considered introducing
octal arithmetic into Sweden. He died in battle before decreeing such a change!
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In the early days of computing floating point computations were not built into
the hardware but implemented in software. The earliest subroutines for floating
point arithmetic were probably those developed by J. H. Wilkinson at the National
Physical Laboratory, England, in 1947. A general source on floating point computa-
tion is Sterbenz [42]. An excellent tutorial on IEEE 754 standard for floating-point
arithmetic, defined in [20, ], is Goldberg [25, ]. A self-contained, accessible
and easy to read introduction with many illustrating examples is the monograph by
Overton [36, ]. An excellent treatment on floating point computation, round-
ing error analysis, and related topics is given in Higham [29, Chapter 2]. Different
aspects of accuracy and reliability are discussed in [19].

Forsythe [22, ] gives a good introduction for a mathematical audience of
some problems inherent in numerical computations. Numerous examples in which
incorrect answers are obtained from plausible numerical methods can be found in
Fox [23, ].

Statistical analysis of rounding errors goes back to an early paper of Goldstine
and von Neumann [26, ]. Barlow and Bairess [6] have investigated the distribu-
tion of rounding errors for different modes of rounding under the assumption that
the mantissa of the operands are from a logarithmic distribution.

Backward error analysis was developed and popularized by J. H. Wilkinson
in the 1950s and 1960s and the classic treatise on rounding error analysis is [45].
The more recent survey [47] gives a good summary and a historical background.
Kahan [30] gives an in depth discussion of rounding error analysis with examples
how flaws in the design of hardware and software in computer systems can have
undesirable effects on accuracy. The normwise analysis is natural for studying the
effect of orthogonal transformations in matrix computations; see Wilkinson [45].
The componentwise approach, used in perturbation analysis for linear systems by
Bauer [7], has recently gained in popularity.

Condition numbers are often viewed pragmatically as the coefficients of the
backward errors in bounds on forward errors. Wilkinson in [45] avoids a precise
definition of condition numbers in order to use them more freely. The more precise
limsup definition in Definition 2.4.8 is usually attributed to Rice [38].

The modern development of interval arithmetic was initiated by the work of
R. E. Moore [34, ]. Interval arithmetic has since been developed into a useful
tool for many problems in scientific computing and engineering. A more general
interval arithmetic, which allows unbounded intervals, which occur when dividing
by an interval containing zero was introduced by W. Kahan in unpublished lecture
notes; see Hargreaves [27], which also give a good introduction to interval arithmetic,
and includes a short tutorial on INTLAB.
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Chapter 3

Series, Operators and

Continued Fractions

3.1 Some Basic Facts about Series

3.1.1 Introduction

Series expansions are a very important aid in numerical calculations, especially
for quick estimates made in hand calculation—for example, in evaluating functions,
integrals, or derivatives. Solutions to differential equations can often be expressed in
terms of series expansions. Since the advent of computers it has, however, become
more common to treat differential equations directly, using, e.g., finite difference
or finite element approximations instead of series expansions. Series have some
advantages, especially in problems containing parameters. Automatic methods for
formula manipulation and some new numerical methods provide, however, new
possibilities for series.

In this section we will discuss general questions concerning the use of infi-
nite series for numerical computations including, e.g., the estimation of remainders,
power series and various algorithms for computing their coefficients. Often a series
expansion can be derived by simple operations with a known series. We also give
an introduction to formal power series. The next section treats perturbation ex-
pansions, ill-conditioned and semi-convergent expansions, from the point of view of
computing.

Methods and results will sometimes be formulated in terms of series, some-
times in terms of sequences. These formulations are equivalent, since the sum of an
infinite series is defined as the limit of the the sequence sn of its partial sums

Sn = a1 + a2 + . . .+ an.

Conversely, any sequence S1, S2, S3, . . . can be written as the partial sums of a series,

S1 + (S2 − S1) + (S3 − S2) + . . . .

We start with some simple examples and some general rules for the approxi-
mation of remainders.

1
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Example 3.1.1.
Compute, to five decimals, y(0.5), where y(x) is the solution to the differential

equation y′′ = −xy, with initial conditions y(0) = 1, y′(0) = 0. The solution cannot
be simply expressed in terms of elementary functions. We shall use the method of
undetermined coefficients. Thus we try substituting a series of the form:

y(x) =

∞
∑

n=0

cnx
n = c0 + c1x+ c2x

2 + · · · .

Differentiating twice we get

y′′(x) =

∞
∑

n=0

n(n− 1)cnx
n−2

= 2c2 + 6c3x+ 12c4x
2 + · · · + (m+ 2)(m+ 1)cm+2x

m + · · · ,
−xy(x) = −c0x− c1x

2 − c2x
3 − · · · − cm−1x

m − · · · .

Equating coefficients of xm in these series gives

c2 = 0, (m+ 2)(m+ 1)cm+2 = −cm−1, m ≥ 1.

It follows from the initial conditions that c0 = 1, c1 = 0. Thus cn = 0, if n is not a
multiple of 3, and using the recursion we obtain

y(x) = 1 − x3

6
+

x6

180
− x9

12, 960
+ · · · .

This gives y(0.5) = 0.97925. The x9 term is ignored, since it is less than 2 · 10−7.
In this example also the first neglected term gives a rigorous bound for the error
(i.e. for the remaining terms), since the absolute value of the term decreases, and
the terms alternate in sign.

Since the calculation was based on a trial substitution, one should, strictly
speaking, prove that the series obtained defines a function which satisfies the given
problem. Clearly, the series converges at least for |x| < 1, since the coefficients
are bounded. (In fact the series converges for all x.) Since a power series can be
differentiated term by term in the interior of its interval of convergence, the proof
presents no difficulty. Note, in addition, that the finite series obtained for y(x)
by breaking off after the x9-term is the exact solution to the following modified
differential equation:

y′′ = −xy − x10

12, 960
, y(0) = 1, y′(0) = 0,

where the “perturbation term” −x10/12, 960 has magnitude less than 10−7 for |x| ≤
0.5.1

1We shall see, in Volume III, Chapter 13, how to find a rigorous bound for the difference
between the solutions of a differential system and a modified differential system.
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In practice, one is seldom seriously concerned about a rigorous error bound
when the computed terms decrease rapidly, and it is “obvious” that the terms will
continue to decrease equally quickly. One can then break off the series and use
either the last included term or a coarse estimate of the first neglected term as
an estimate of the remainder.

This rule is not very precise. How rapidly is “rapidly”? Questions like this
occur everywhere in scientific computing. If mathematical rigor costs little effort
or little extra computing time, then it should, of course, be used. Often, however,
an error bound that is both rigorous and realistic may cost more than what is felt
reasonable for (say) a one-off problem.

In problems, where guaranteed error bounds are not asked for, when it is
enough to obtain a feeling for the reliability of the results, one can handle these
matters in the same spirit as one handles risks in every day life. It is then a matter
of experience to formulate a simple and sufficiently reliable termination criterion
based on the automatic inspection of the successive terms.2

The unexperienced scientific programmer may, however, find such questions
hard, also in simple cases. In the production of general purpose mathematical soft-
ware, or in a context where an inaccurate numerical result can cause a disaster,
such questions are serious and sometimes hard also for the experienced scientific
programmer. For this reason, we shall formulate a few theorems, with which one
can often transform the feeling that “the remainder is negligible” to a mathemat-
ical proof. There are, in addition, actually numerically useful divergent series; see
Sec. 3.2.6. When one uses such series, estimates of the remainder are clearly essen-
tial.

Assume that we want to compute a quantity S, which can be expressed in a
series expansion, S =

∑

∞

j=0 aj , and set

Sn =
∑n

j=0 aj , Rn = S − Sn.

We call
∑

∞

j=n+1 aj the tail of the series; an is the “last included term” and an+1

is the “first neglected term”. The remainder Rn with reversed sign is called the
truncation error.3

The tail of a convergent series can often be compared to a series with a known
sum, for example, a geometric series, or with an integral which can be computed
directly.

Theorem 3.1.1. Comparison with a Geometric Series.

If |aj+1| ≤ k|aj |, ∀j ≥ n, where k < 1, then

|Rn| ≤
|an+1|
1 − k

≤ k|an|
1 − k

.

In particular if k < 1/2, then it is true that the absolute value of the remainder is
less than the last included term.

2Termination criteria for iterative methods will be discussed in Sec. 6.1.3.
3In this terminology the remainder is the correction one has to make in order to eliminate the

error.
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Proof. By induction, one finds that |aj | ≤ kj−1−n|an+1|, j ≥ n+ 1, since

|aj | ≤ kj−1−n|an+1| ⇒ |aj+1| ≤ k|aj | ≤ kj−n|an+1|.

Thus

|Rn| ≤
∞
∑

j=n+1

|aj | ≤
∞
∑

j=n+1

kj−1−n|an+1| =
|an+1|
1 − k

≤ k|an|
1 − k

,

according to the formula for the sum of an infinite geometric series. The last
statement follows from the inequality k/(1 − k) < 1, when k < 1/2.

Example 3.1.2. Power series with slowly varying coefficients.

Let aj = j1/2π−2j . Then a6 = 2.4·0.0000011< 3·10−6. Further,

|aj+1|
|aj |

≤ (j + 1)1/2

j1/2

π2j−2

π−2j
≤ (1 + 1/6)1/2π−2 < 0.11,

for j ≥ 6. Thus, by Theorem 3.1.1 |R6| < 3·10−6 0.11

1 − 0.11
< 4·10−7.
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Figure 3.1.1. Comparison with an integral, (n=5).

Theorem 3.1.2. Comparison of a Series with an Integral.

If |aj| ≤ f(j) for all j ≥ n, where f(x) is a nonincreasing function for x ≥ n,
then

|Rn| ≤
∫

∞

n

f(x)dx,

which yields an upper bound for |Rn|, if the integral is finite.
If aj = f(j) > 0 for all j ≥ n+ 1, we also obtain a lower bound for the error,

namely
∫

∞

n+1
f(x)dx.
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Proof. See Figure 3.1.1.

Example 3.1.3.
When aj is slowly decreasing, the two error bounds are typically rather close

to each other, and are hence rather realistic bounds, much larger than the first
neglected term an+1. Let aj = 1/(j3 + 1), f(x) = x−3. It follows that

0 < Rn ≤
∫

∞

n

x−3dx = n−2/2.

In addition this bound gives an asymptotically correct estimate of the remainder,
as n→ ∞. which shows that Rn is here significantly larger than the first neglected
term.

For alternating series, however, the situation is typically quite different.

Definition 3.1.3.
A series is alternating for j ≥ n if, for all j ≥ n, aj and aj+1 have opposite

signs, or equivalently sign aj = −sign aj+1, where sign x (read “signum” of x), is
defined by

sign x =

{

+1, if x > 0;
0, if x = 0;

−1, if x < 0.

- -

-

Sn S Sn+1

Rn −Rn+1

an+1

Figure 3.1.2. Illustration to Theorem 3.1.4

Theorem 3.1.4.
If Rn and Rn+1 have opposite signs, then S lies between Sn and Sn+1. Fur-

thermore

S =
1

2
(Sn + Sn+1) ±

1

2
|an+1|.

We also have the weaker results:

|Rn| ≤ |an+1|, |Rn+1| ≤ |an+1|, sign Rn = sign an+1.

This theorem has non-trivial applications to practically important divergent
sequences; see Sec. 3.2.6.
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Proof. The fact that Rn+1 and Rn have opposite signs means, quite simply, that
one of Sn+1 and Sn is too large and the other is too small, i.e. that S lies between
Sn+1 and Sn. Since an+1 = Sn+1 − Sn, one has for positive values of an+1, the
situation shown in Figure 3.1.2. From this figure, and an analogous one for the case
of an+1 < 0, the remaining assertions of the theorem clearly follow.

The actual error of the average 1
2 (Sn + Sn+1) is, for slowly convergent alter-

nating series, usually much smaller than the error bound 1
2 |an+1|. For example, if

Sn = 1− 1
2 + 1

3 − . . .± 1
n , limSn = ln 2 ≈ 0.6931, the error bound for n = 4 is 0.1,

while the actual error is less than 0.01. A systematic exploration of this observation,
by means of repeated averaging. is carried out in Sec. 3.4.3.

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 3.1.3. The sum of an alternating series.

In Example 1.2.3 the error function was approximated for |x| ∈ [−1, 1] by a
power series. The series has terms of alternating sign, and the absolute values of
the terms decrease monotonically to zero. For such a series the above theorem can
be used to prove that the first neglected term gives a rigorous error estimate.

Theorem 3.1.5.
For an alternating series, the absolute values of whose terms approach zero

monotonically, the remainder has the same sign as the first neglected term an+1,
and the absolute value of the remainder does not exceed |an+1|. (It is well known
that such a series is convergent).

Proof. (Sketch) That the theorem is true is almost clear from Figure 3.1.3. The
figure shows how Sj depends on j when the premises of the theorem are fulfilled.
A formal proof is left to the reader.

The use of this theorem was illustrated in Examples 3.1.1 and 3.1.2. An
important generalization is given as Problem 3.2.1(g).

In the preceding theorems the ideas of well known convergence criteria are
extended to bounds or estimates of the error of a truncated expansion. In Sec. sec3.4,
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we shall see a further extension of these ideas, namely for improving the accuracy
obtained from a sequence of truncated expansions. This is known as convergence
acceleration.

3.1.2 Power Series

Consider an expansion into powers of a complex variable z, and suppose that it is
convergent for some z 6= 0, and denote its sum by f(z),

f(z) =
∞
∑

j=0

ajz
j, z ∈ C. (3.1.1)

It is then known from complex analysis that the series (3.1.1) either converges for
all z, or it has a circle of convergence with radius ρ, such that it either converges
for all |z| < ρ, and diverges for |z| > ρ. (For |z| = ρ convergence or divergence is
possible). The radius of convergence is determined by the relation

ρ = lim sup |an|−1/n. (3.1.2)

Another formula is ρ = lim |an|/|an+1|, if this limit exists.
The function f(z) can be expanded into powers of z − a around any point of

analyticity,

f(z) =

∞
∑

j=0

aj(z − a)j , z ∈ C. (3.1.3)

By Taylor’s formula the coefficients are given by

a0 = f(a), aj = f (j)(a)/j!, j ≥ 1. (3.1.4)

This infinite series is in the general case called a Taylor series, while the special
case, a = 0, is by tradition called a Maclaurin series.4

The function f(z) is analytic inside its circle of convergence, and has at least
one singular point on its boundary. The singularity of f , which is closest to the
origin, can often be found easily from the expression that defines f(z); so the radius
of convergence of a Maclaurin series can often be easily found.

Note that these Taylor coefficients are uniquely determined for the function f .
This is true also for a non-analytic function, for example if f ∈ Cp[a, b], although
in this case the coefficient aj exists only for j ≤ p. Also the remainder formulas
(3.1.5), (3.1.7), require only that f ∈ Cn. It is thus not necessary that the infinite
expansion converges or even exists.

There are several expressions for the remainder Rn(z), when the expansion
for f(z) is truncated after the term that contains zn−1. In order to simplify the
notation, we put a = 0, i.e. we consider the Maclaurin series. The following

4Brook Taylor (1685–1731), who announced his theorem in 1712, and Colin Maclaurin (1698–
1746) were British mathematicians.
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integral form can be obtained by the application of repeated integration by parts

to the integral z
∫ 1

0 f
′(zt) dt:

Rn(z) = zn

∫ 1

0

(1 − t)n−1

(n− 1)!
f (n)(zt) dt; (3.1.5)

the details are left for Problem 24 (b). From this follows the upper bound

|Rn(z)| ≤ 1

n!
|z|n max

0≤t≤1
|f (n)(zt)|. (3.1.6)

This holds also in the complex case; if f is analytic on the segment from 0 to z, one
integrates along this segment, i.e. for 0 ≤ t ≤ 1, otherwise another path is to be
chosen.

For a real-valued function, Lagrange’s formula5 for the remainder

Rn(x) =
f (n)(ξ)xn

n!
, ξ ∈ [0, x], (3.1.7)

is obtained by the mean value theorem of integral calculus.
For complex-valued functions and, more generally, for vector-valued functions

the mean value theorem and Lagrange’s remainder term are not valid with a single
ξ. (Sometimes componentwise application with different ξ is possible.) A different
form for the remainder, valid in the complex plane is given in Sec. sec3.1.cfft, in
terms of the maximum modulus M(r) = max|z|=r |f(z)|, which may sometimes
be easier to estimate than the nth derivative. A power series is uniformly convergent
in any closed bounded region strictly inside its circle of convergence. Roughly
speaking, the series can be manipulated like a polynomial, as long as z belongs to
such a region;

• it can be integrated or differentiated term by term,

• substitutions can be performed, and terms can be rearranged,

• it can be multiplied by another power series, etc.

Theorem 3.1.6.
If f(z) =

∑

ajz
j, g(z) =

∑

bkz
k, then

f(z)g(z) =
∑

cnz
n, cn =

n
∑

j=0

ajbn−j. (3.1.8)

The expression on the right side of (3.1.8) is called the convolution or the Cauchy
product of the coefficient sequences of f and g.

5Joseph Louis Lagrange (1736–1813) was born in Turin, Italy. In 1766 he succeeded Euler
in Berlin but in 1787 went to Paris where he remained until his death. He gave fundamental
contributions to most branches of Mathematics and Mechanics.
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The use of the Taylor coefficient formula and Lagrange’s form of the remainder
may be inconvenient, and it is often easier to obtain an expansion by manipulating
some known expansions. The geometric series,

1

1 − z
= 1 + z + z2 + z3 + · · · + zn−1 +

zn

1 − z
, z 6= 1, (3.1.9)

is of particular importance; note that the remainder zn/(1 − z) is valid even when
the expansion is divergent.

Example 3.1.4.
Set z = −t2 in the geometric series, and integrate:

∫ x

0

(1 + t2)−1 dt =

n−1
∑

j=0

∫ x

0

(−t2)j dt+

∫ x

0

(−t2)n(1 + t2)−1 dt.

Using the mean-value theorem of integral calculus on the last term we get

arctanx =

n−1
∑

j=0

(−1)jx2j+1

2j + 1
+

(1 + ξ2)−1(−1)nx2n+1

2n+ 1
, (3.1.10)

for some ξ ∈ int[0, x]. Both the remainder term and the actual derivation are
much simpler than what one would get by using Taylor’s formula with Lagrange’s
remainder term. Note also that Theorem 3.1.4 is applicable to the series obtained
above for all x and n, even for |x| > 1, when the infinite power series is divergent.

Some useful expansions are collected in Table 3.1.1.These formulas will be
used often without a reference; the reader is advised to memorize the expansions.
“Remainder ratio” means the ratio of the remainder to the first neglected term, if
x ∈ R; ξ means a number between 0 and x. Otherwise these expansions are valid
in the unit circle of C or in the whole of C.

The binomial coefficients are, also for non-integer k, defined by

(

k

n

)

=
k(k − 1) · · · (k − n+ 1)

1 · 2 · · ·n .

Depending on the context, they may be computed by one of the following well
known recurrences:

(

k

(n+ 1)

)

=

(

k

n

)

(k − n)

(n+ 1)
; or

(

k + 1

n

)

=

(

k

n

)

+

(

k

n− 1

)

, (3.1.11)

with appropriate initial conditions. The latter recurrence follows from the matching
of the coefficients of tn in the equation (1 + t)k+1 = (1 + t)(1 + t)k. (Compare the
Pascal triangle.) The explicit formula

(

k
n

)

= k!
n!(k−n)! , for integers k, n, is to be

avoided, if k can become large, because k! has overflow for k ≥ 170 in IEEE double
precision.
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Table 3.1.1. Maclaurin expansions for some elementary functions.

Function Expansion (x ∈ C) Remainder ratio (x ∈ R)

(1 − x)−1 1 + x+ x2 + x3 + · · · if |x| < 1 (1 − x)−1 if x 6= 1

(1 + x)k 1 + kx+

(

k

2

)

x2 + · · · if |x| < 1 (1 + ξ)k−n if x > −1

ln(1 + x) x− x2

2
+
x3

3
− x4

4
+ · · · if |x| < 1 (1 + ξ)−1 if x > −1

ex 1 + x+
x2

2!
+
x3

3!
+ · · · all x eξ, all x

sinx x− x3

3!
+
x5

5!
− x7

7!
+ · · · all x cos ξ, all x, n odd

cosx 1 − x2

2!
+
x4

4!
− x6

6!
+ · · · all x cos ξ, all x, n even

1
2 ln
(1 + x

1 − x

)

x+
x3

3
+
x5

5
+ · · · if |x| < 1

1

1 − ξ2
, |x| < 1, n even

arctanx x− x3

3
+
x5

5
+ · · · if |x| < 1

1

1 + ξ2
, all x

The exponent k in (1+x)k is not necessarily an integer; it can even be an irra-
tional or a complex number. This function may be defined as (1 + x)k = ek ln(1+x).
Since ln(1+x) is multi-valued, (1+x)k is multi-valued too, unless k is an integer.
We can, however, make them single-valued by forbidding the complex variable x to
take real values less than −1. In other words, we make a cut along the real axis from
−1 to −∞ that the complex variable must not cross. (The cut is outside the circle
of convergence.) We obtain the principal branch by requiring that ln(1 + x) > 0
if x > 0. Let 1 + x = reiφ, r > 0, φ→ ±π. Note that

1 + x→ −r, ln(1 + x) → ln r +

{

+iπ, if φ→ π;
−iπ, if φ→ −π.

(3.1.12)

Two important power series, not given in Table 3.1.1, are:

Gauss’ hypergeometric function

F (a, b, c; z) = 1 +
ab

c

z

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2!

+
a(a+ 1)(a+ 2)b(b+ 1)(b+ 2)

c(c+ 1)(c+ 2)

z3

3!
+ . . . , (3.1.13)
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Figure 3.1.4. The partial sums of the Maclaurin expansions for two func-
tions. The upper curves are for f(x) = cosx, n = 0 : 2 : 26, 0 ≤ x ≤ 10. This
series converges for all x, but the rounding errors cause trouble for large values of
x; see Sec. 3.2.5, Ill-conditioned series. The lower curves are for f(x) = 1/(1+x2),
n = 0 : 2 : 18, 0 ≤ x ≤ 1.5. The convergence radius is 1 in this case.

where a and b are complex constants and c 6= −1,−2. . . . . The radius of convergence
for this series equals unity. (see [1, Chap. 15])

Kummer’s confluent hypergeometric function6

M(a, b; z) = 1 +
a

b

z

1!
+
a(a+ 1)

b(b + 1)

z2

2!
+
a(a+ 1)(a+ 2)

b(b+ 1)(b+ 2)

z3

3!
+ . . . , (3.1.14)

converges for all z (see [1, Ch. 13]). It is named “confluent” because

M(a, c; z) = lim
b→∞

F (a, b, c, z/b).

The coefficients of these series are easily computed and the functions are easily
evaluated by recurrence relations. (You also need some criterion for the truncation
of the series, adapted to your demands of accuracy.) In Sec. 3.5, these functions are
also expressed in terms of infinite continued fractions that typically converge faster
and in larger regions than the power series do.

6Ernst Eduard Kummer (1810–1893) German mathematician, professor in Berlin from 1855.
He extended Gauss work on hypergeometric series. He, together with Weierstrass and Kronecker,
made Berlin into one of the leading centers of mathematics.
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Example 3.1.5.
The following procedure can generally be used in order to find the expansion

of the quotient of two expansions. We illustrate it in a case, where the result is of
interest to us later.

The Bernoulli7 numbers Bn are defined by the Maclaurin series

x

ex − 1
≡

∞
∑

j=0

Bjx
j

j!
(3.1.15)

For x = 0 the left hand side is defined by Hôpital’s rule; the value is 1. If we
multiply this equation by the denominator, we obtain

x ≡
( ∞
∑

i=1

xi

i!

)( ∞
∑

j=0

Bjx
j

j!

)

.

By matching the coefficients of xn, n ≥ 1, on both sides, we obtain a recurrence
relation for the Bernoulli numbers, which can be written in the form

B0 = 1,

n−1
∑

j=0

1

(n− j)!

Bj

j!
= 0, n ≥ 2, i.e.

n−1
∑

j=0

(

n

j

)

Bj = 0. (3.1.16)

The last equation is a recurrence that determines Bn−1 in terms of Bernoulli num-
bers with smaller subscripts, hence B0 = 1, B1 = − 1

2 , B2 = 1
6 , B3 = 0, B4 = − 1

30 ,
B5 = 0, B6 = 1

42 , . . . .
We see that the Bernoulli numbers are rational. We shall now demonstrate

that Bn = 0, when n is odd, except for n = 1.

x

ex − 1
+
x

2
=
x

2

ex + 1

ex − 1
=
x

2

ex/2 + e−x/2

ex/2 − e−x/2
=

∞
∑

n=0

B2nx
2n

(2n)!
. (3.1.17)

Since the next to last term is an even function, i.e. its value is unchanged when x is
replaced by −x, its Maclaurin expansion contains only even powers of x, and hence
the last expansion is also true.

The recurrence obtained for the Bernoulli numbers by the matching of coeffi-
cients in the equation,

(ex/2 − e−x/2)

( ∞
∑

n=0

B2nx
2n/(2n)!

)

= 1
2x
(

ex/2 + e−x/2
)

,

is not the same as the one we found above. It turns out to have better properties
of numerical stability. We shall look into this experimentally in Problem 10(g).

7Jacob (or James) Bernoulli (1654-1705), Swiss mathematician, one of the earliest to realize
how powerful is the infinitesimal calculus. The Bernoulli numbers were published posthumously
in 1713, in his fundamental work Ars Conjectandi (on Probability). The notation for Bernoulli
numbers varies in the literature. Our notation seems to be the most common in modern texts.
Several members of the same family enriched mathematics by their teaching and writing. Their
role in the history of mathematics resembles the role of the Bach family in the history of music.
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The singularities of the function x/(ex − 1) are poles at x = 2nπi, n =
±1,±2,±3, . . ., hence the radius of convergence is 2π. Further properties of Bernoulli
numbers and the related Bernoulli polynomials and periodic functions, are presented
in Sec. 3.4.4, where they occur as coefficients in the important Euler–Maclaurin for-
mula.

If r is large the following formula is very efficient; the series on its right hand
side then converges rapidly.

B2r/(2r)! = (−1)r−12(2π)−2r
(

1 +

∞
∑

n=2

n−2r
)

. (3.1.18)

This is a particular case (t = 0) of a Fourier series for the Bernoulli functions that
we shall encounter in Lemma 3.4.2(c). In fact, you obtain IEEE double accuracy
for r > 26, even if the infinite sum on the right hand side is totally ignored. Thanks
to (3.1.18) we do not need to worry much over the instability of the recurrences.
When r is very large, however, we must be careful about underflow and overflow.

The Euler numbers En, which will be used later, are similarly defined by
the generating function

1

cosh z
≡

∞
∑

n=0

Enz
n

n!
, |z| < π

2
. (3.1.19)

Obviously En = 0 for all odd n. It can be shown that the Euler numbers are
integers, E0 = 1, E2 = −1, E4 = 5, E6 = −61; see Problem 7e.

Example 3.1.6.
Let f(x) = (x3 +1)−

1

2 . Compute
∫

∞

10 f(x)dx to 9 decimal places, and f ′′′(10),
with at most 1% error. Since x−1 is fairly small, we expand in powers of x−1:

f(x) = x−3/2(1 + x−3)−1/2 = x−3/2
(

1 − 1

2
x−3 +

1·3
8
x−6 − . . .

)

= x−1.5 − 1

2
x−4.5 +

3

8
x−7.5 − . . . .

By integration,
∫

∞

10

f(x)dx = 2·10−0.5 − 1

7
10−3.5 +

3

52
10−6.5 + . . . = 0.632410375.

Each term is less than 0.001 of the previous term.
By differentiating the series three times, we similarly obtain

f ′′′(x) = −105

8
x−4.5 +

1, 287

16
x−7.5 + . . . .

For x = 10 the second term is less than 1% of the first; the terms after the second
decrease quickly and are negligible. One can show that the magnitude of each term
is less than 8 x−3 of the previous term. We get f ′′′(10) = −4.12 10−4 to the desired
accuracy. The reader is advised to carry through the calculation in more detail.
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Example 3.1.7. How to compute sinhx.
On a computer using IEEE double precision the roundoff unit is u = 2−53 ≈

1.1 ·10−16. One wishes to compute sinhx with good relative accuracy, both for
small and large |x|, at least moderately large. Assume that ex is computed with a
relative error less than u in the given interval. The formula (ex − e−x)/2 for sinhx
is sufficiently accurate except when |x| is very small and cancellation occurs. Hence
for |x| ≪ 1, ex and e−x and hence (ex − e−x)/2 can have absolute errors of order
of magnitude (say) u. Then the relative error in (ex − e−x)/2 can have magnitude
≈ u/|x|; for example, this is more than 100% for x ≈ 10−16.

For |x| ≪ 1 one can instead use (say) two terms in the series expansion for
sinhx,

sinhx = x+ x3/3! + x5/5! + . . . .

Then one gets an absolute truncation error which is about x5/120, and a round-off
error of the order of 2u|x|. Thus the formula x+x3/6 is better than (ex − e−x)/2 if

|x|5/120 + 2u|x| < u.

If 2u|x| ≪ u, we have |x|5 < 120u ≈ 15·2−50, or |x| < 151/5 ·2−10 ≈ 0.00168, (which
shows that 2u|x| really could be ignored in this rough calculation). Thus, if one
switches from (ex − e−x)/2 to x + x3/6 for |x| < 0.00168, the relative error will
nowhere exceed u/0.00168 ≈ 0.66·10−14. If one needs higher accuracy, one can take
more terms in the series, so that the switch can occur at a larger value of |x|.

For very large values of |x| one must expect a relative error of order of mag-
nitude |xu| because of round-off error in the argument x. Compare the discussion
of range reduction in Sec. 2.2.4 and Problem 2.2.9.

In numerical computation a series should be regarded as a finite expansion
together with a remainder. Taylor’s formula with the remainder (3.1.5) is valid for
any function f ∈ Cn[a, a+ x], but the infinite series is valid only if the function is
analytic in a complex neighborhood of a.

If a function is not analytic at 0, it can happen that the Maclaurin expansion
converges to a wrong result. A classical example (see Appendix to Chapter 6 in
Courant [15]) is

f(x) = e−1/x2

, x 6= 0, f(0) = 0.

It can be shown that all its Maclaurin coefficients are zero. This trivial Maclaurin
expansion converges for all x, but the sum is wrong for x 6= 0. There is nothing
wrong with the use of Maclaurin’s formula as a finite expansion with a remainder.
Although the remainder that in this case equals f(x) itself, does not tend to 0 as
n→ ∞ for a fixed x 6= 0, it tends to 0 faster than any power of x, as x→ 0, for any
fixed n. The “expansion” gives, e.g., an absolute error less than 10−43 for x = 0.1,
but the relative error is 100%. Also note that this function (and there are lots
of other examples) can be added to any function without changing its Maclaurin
expansion.

From the point of view of complex analysis, however, the origin is a singular
point for this function, note, e.g., that |f(z)| → ∞ as z → 0 along the imaginary
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axis, and this prevents the application of any theorem that would guarantee that
the infinite Maclaurin series represents the function. This trouble does not occur
for a truncated Maclaurin expansion around a point, where the function under
consideration is analytic. The size of the first non-vanishing neglected term then
gives a good hint about the truncation error, when |z| is a small fraction of the
radius of convergence.

The above example may sound like a purely theoretical matter of curiosity.
We emphasize this distinction between the convergence and the validity of an in-
finite expansion in this text, as a background to other expansions of importance
in numerical computation, e.g., the Euler–Maclaurin expansion in Sec. 3.4.4, which
may converge to the wrong result, also in the application to a well-behaved analytic
function. On the other hand, we shall see, e.g., in Sec. 3.1.8, that divergent expan-
sions can sometimes be very useful. The universal recipe in numerical computation
is to consider an infinite series as a finite expansion plus a remainder term. A more
algebraic point of view on a series is, however, often useful in the design of a numer-
ical method. See, e.g., Sec. 3.1.5 (Formal Power Series) and Sec. 3.3.2 (The Calculus
of Operators). Convergence of an expansion is neither necessary nor sufficient for
its success in practical computation.

3.1.3 Analytic Continuation

Analytic functions have many important properties that you may find in any text
on complex analysis. A good summary for the purpose of numerical mathematics is
found in the first chapter of Stenger [43]. Two important properties are contained
in the following lemma.

We remark that the region of analyticity of a function f(z) is an open set. If,
e.g., we say that f(z) is analytic on a closed real interval, it means that there exists
an open set in C that contains this interval, where f(z) is analytic.

Lemma 3.1.7.
An analytic function can only have a finite number of zeros in a compact subset

of the region of analyticity, unless the function is identically zero.
Suppose that two functions f1 and f2 are analytic in regions D1 and D2,

respectively. Suppose that D1 ∩ D2 contains an interval throughout which f1(z) =
f2(z). Then f1(z) = f2(z) in the intersection D1 ∩D2.

Proof. We refer, for the first part, to any text on Complex Analysis. We here
follow Titchmarsh [45] closely. The second part follows by the application of the
first part to the function f1 − f2.

A consequence of this is known as the permanence of functional equations, i.e.
in order to prove the validity of a functional equation (or “a formula for a function”)
in a region of the complex plane, it may be sufficient to prove its validity in (say)
an interval of the real axis, under the conditions specified in the lemma.

Example 3.1.8. The permanence of functional equations.
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We know from elementary real analysis that the functional equation

e(p+q)z = epzeqz , (p, q ∈ R),

holds for all z ∈ R. We also know that all the three functions involved are analytic
for all z ∈ C. Set in the lemma D1 = D2 = C, and let “the interval” be any
compact interval of R. The lemma then tells us that that the displayed equation
holds for all complex z.

The right and the left hand side then have identical power series. Applying
the convolution formula and matching the coefficients of zn, we obtain

(p+ q)n

n!
=

n
∑

j=0

pj

j!

qn−j

(n− j)!
, i.e., (p+ q)n =

n
∑

j=0

n!

j!(n− j)!
pjqn−j .

This is not a very sensational result. It is more interesting to start from the following
functional equation

(1 + z)p+q = (1 + z)p(1 + z)q.

The same argumentation holds, except that—by the discussion around Table 3.1.1—
D1, D2 should be equal to the complex plane with a cut from −1 to −∞, and that
the Maclaurin series is convergent in the unit disk only.

We obtain the equations
(

p+ q

n

)

=

n
∑

j=0

(

p

j

)(

q

n− j

)

, n = 0, 1, 2, . . . . (3.1.20)

(They can also be proved by induction, but it is not needed.) This sequence of alge-
braic identities, where each identity contains a finite number of terms, is equivalent
to the above functional equation.

We shall see that this observation is useful for motivating certain “symbolic
computations” with power series, that can provide elegant derivations of useful
formulas in numerical mathematics.

Now we may consider the aggregate of values of f1(z) and f2(z) at points
interior to D1 or D2 as a single analytic function f . Thus f is analytic in the union
D1 ∪D2, and f(z) = f1(z) in D1, f(z) = f2(z) in D2.

The function f2 may be considered as extending the domain in which f1 is
defined, and it is called a (single-valued) analytic continuation of f1. In the
same way f1 is an analytic continuation of f2. Analytic continuation denotes both
this process of extending the definition of a given function, and the result of the
process. We shall see examples of this, e.g., in Sec. 3.1.3. Under certain conditions
the analytic continuation is unique.

Theorem 3.1.8.
Suppose that a region D is overlapped by regions D1, D2, and that (D1∩D2)∩D

contains an interval. Let f be analytic in D, and let f1 be an analytic continuation
of f to D1, and let f2 an analytic continuation of f to D2, so that

f(z) = f1(z) = f2(z) in (D1 ∩D2) ∩D.
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Then either of these functions provides a single-valued analytic continuation of f
to D1 ∩D2. The results of the two processes are the same.

Proof. Since f1−f2 is analytic in D1∩D2, and f1−f2 = 0 in the set (D1∩D2)∩D,
which contains an interval, it follows from the lemma that f1(z) = f2(z) in D1∩D2,
which proves the theorem.

If the set (D1 ∩ D2) ∩ D is void, the conclusion in the theorem may not be
valid. We may still consider the aggregate of values as a single analytic function,
but this function can be multi-valued in D1 ∩D2.

Example 3.1.9.
For |x| < 1 the important formula

arctanx =
1

2i
ln

(

1 + ix

1 − ix

)

easily follows from the expansions in the Table 3.1.1. The function arctanx has
an analytic continuation as single-valued functions in the complex plane with cuts
along the imaginary axis from i to ∞ and from −i to −∞. It follows from the
theorem that “the important formula” is valid in this set.

3.1.4 Manipulating Power Series

In some contexts, algebraic recurrence relations can be used for the computation of
the coefficients in Maclaurin expansions, in particular if only a moderate number
of coefficients are wanted. We shall study a few examples.

Example 3.1.10. Expansion of a composite function.
Let g(x) = b0 + b1x + b2x

2 + . . . , f(z) = a0 + a1z + a2z
2 + . . . , be given

functions, analytic at the origin. Find the power series

h(x) = f(g(x)) ≡ c0 + c1x+ c2x
2 + . . . .

In particular, we shall study the case f(z) = ez.
The first idea we may think of is to substitute the expansion b0+b1x+b2x

2+. . .
for z into the power series for f(z). This is, however, no good unless g(0) = b0 = 0,
because

(g(x))k = bk0 + kbk−1
0 b1x+ . . .

gives a contribution to, e.g., c0, c1, for every k, so we cannot successively compute
the cj by finite computation.

Now suppose that b0 = 0, b1 = 1, i.e. g(x) = x + b2x
2 + b3x

3 + . . .. (The
assumption that b1 = 1 is not important, but it simplifies the writing.) Then cj
depends only on bk, ak, k ≤ j, since (g(x))k = xk + kb2x

k+1 + . . . . We obtain

h(x) = a0 + a1x+ (a1b2 + a2)x
2 + (a1b3 + 2a2b2 + a3)x

3 + . . . ,
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and the coefficients of h(x) come out recursively,

c0 = a0; c1 = a1, c2 = a1b2 + a2, c3 = a1b3 + 2a2b2 + a3, . . . .

Now consider the case f(z) = ez, i.e. an = 1/n!. We first see that it is then
also easy to handle the case that b0 6= 0, since

eg(x) = eb0eb1x+b2x2+b3x3+....

But there exists a more important simplification if f(z) = ez. Note that h satisfies
the differential equation h′(x) = g′(x)h(x), h(0) = eb0 . Hence

∞
∑

n=0

(n+ 1)cn+1x
n ≡

∞
∑

j=0

(j + 1)bj+1x
j

∞
∑

k=0

ckx
k.

Set c0 = eb0 , apply the convolution formula (3.1.8), and match the coefficients of
xn on the two sides:

(n+ 1)cn+1 = b1cn + 2b2cn−1 + . . .+ (n+ 1)bn+1c0, (n = 0, 1, 2, . . .).

This recurrence relation is more easily programmed than the general procedure
indicated above. Other functions that satisfy appropriate differential equations
can be treated similarly; see Problem 8. More information is found in Knuth [29,
Sec. 4.7].

Formulas like these are often used in packages for symbolic differentiation
and for automatic or algorithmic differentiation. Expanding a function into a
Taylor series is equivalent to finding the sequence of derivatives of the function at a
given point. The goal of symbolic differentiation is to obtain analytic expressions
for derivatives of functions given in analytic form. This is handled by computer
algebra systems, e.g., Maple or Mathematica.

In contrast, the goal of automatic or algorithmic differentiation is to ex-
tend an algorithm (a program) for the computation of the numerical values of a few
functions to an algorithm that also computes the numerical values of a few deriva-
tives of these functions, without truncation errors. A simple example, Horner’s
scheme for computing values and derivatives for a polynomial was given in Sec. 1.3.1.
At the time of writing, there is a lively activity about automatic differentiation—
theory, software development and applications. Typical applications are in the
solution of ordinary differential equations by Taylor expansion; see Example 3.1.1.
Such techniques are also used in optimization for partial derivatives of low order,
e.g., for the computation of Jacobian and Hessian matrices.

Sometimes power series are needed with many terms, although rarely more
than 30 (say). (The ill-conditioned series are exceptions; see Sec. 3.2.5.) The de-
termination of the coefficients can be achieved by the Toeplitz matrix method
using floating point computation and an interactive matrix language. Computa-
tional details will be given in Problems 9–12 of this section for Matlab . (Systems
like Maple and Mathematica that include exact arithmetic and other features, are
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evidently also useful here.) An alternative method, the Cauchy–FFT method,
will be described in Sec. 3.2.2.

Both methods will be applied later in the book. See in particular Sec. 3.3.4,
where they are used for deriving approximation formulas in the form of expansions
in powers of elementary difference or differential operators. In such applications,
the coefficient vector, v (say), is obtained in floating point (usually in a very short
time). Very accurate rational approximations to v, often even the exact values, can
be obtained (again in a very short time) by applying Matlab function [N,D] =
rat(z,Tol) to the results, with two different values of the tolerance. This function
is based on a continued fraction algorithm, given in Example 3.5.2 for finding the
best rational approximation to a real number. This can be used for the “cleaning”
of numerical results which have, for practical reasons, been computed by floating
point arithmetic, although the exact results are known to be (or strongly believed
to be) rather simple rational numbers. The algorithm attempts to remove the
“dirt” caused by computational errors. In Sec. 3.5.1 you also find some comments
of importance for the interpretation of the results, e.g., for judging whether the
rational numbers are exact results or good approximations only.

Let

f(z) =
∞
∑

j=0

ajz
j

be the power series of a function analytic at z = 0. With this power series we can
associate an infinite upper triangular semicirculant matrix

Cf =













a0 a1 a2 a3 . . .
a0 a1 a2 . . .

a0 a1 . . .
a0 . . .

. . .













, (3.1.21)

Similarly, a truncated power series fN (z) =
∑N−1

j=0 ajz
j is represented by the finite

leading principalN×N submatrix of Cf (see Definition A.3.1), which can be written
as

fN (SN ) =

N−1
∑

j=0

ajS
j
N , (3.1.22)

where SN is a shift matrix. For example, with N = 4,

fN (SN ) =







a0 a1 a2 a3

0 a0 a1 a2

0 0 a0 a1

0 0 0 a0






, SN =







0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0






.

The following properties of SN explains the term “shift matrix”:

SN







x1

x2

x3

x4






=







x2

x3

x4

0






, (x1, x2, x3, x4)SN = (0, x1, x2, x3).
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An N × N matrix, with a structure analogous to f4(S4), is known as an upper
triangular Toeplitz matrix.8. Matrices (not necessarily triangular), whose entries
are constant along each diagonal, are called Toeplitz matrices.

What do the powers of SN look like? Note that SN
N = 0, i.e. SN is a nilpo-

tent matrix. This is one of the reasons why the Toeplitz matrix representation is
convenient for work with truncated power series, since it follows that

f(SN) =

∞
∑

j=0

ajS
j
N =

N−1
∑

j=0

ajS
j
N = fN(SN ).

It is easily verified that a product of upper triangular Toeplitz matrices is of the
same type. Also note that the multiplication of such matrices is commutative. It
is also evident that a linear combination of such matrices is of the same type.
Further it holds that

(f · g)(SN ) = f(SN )g(SN ) = fN(SN )gN (SN );

(αf + βg)(SN ) = αfN (SN ) + βgN (SN ).

(In general, Toeplitz matrices are not nilpotent, and the product of two non-
triangular Toeplitz matrices is not a Toeplitz matrix. Similarly for the inverse.
In this section we shall only deal with upper triangular Toeplitz matrices.)

Denote by eT
1 the first row of the unit matrix of a size appropriate in the

context. An upper triangular Toeplitz matrix of order N is uniquely determined by
its first row r by means of a simple and fast algorithm that we call toep (r,N). For
example, the unit matrix of order N is IN = toep (eT

1 , N), and the shift matrix is
SN = toep ([0 eT

1 ], N). A Matlab implementation is given in Problem 9.
Now it will be indicated how one can save CPU time and memory space by

working on the row vector level, with the first rows instead of with the full triangular
matrices.9 We shall denote by f1, g1, the row vectors with the first N coefficients
of the Maclaurin expansions of f(z), g(z). They are equal to the first rows of the
matrices f(SN ), g(SN ), respectively. Suppose that f1, g1 are given and we shall
compute f · g1, i.e. the first row of f(SN ) · g(SN ) in a similar notation. Then

f · g1 = eT
1 (f(SN ) · g(SN)) = (eT

1 f(SN )) · g(SN ) = f1 · toep(g1, N). (3.1.23)

Note that you never have to multiply two triangular matrices, if you work with
the first rows only. So, only about N2/2 flops and (typically) an application of
the toep(r,N) algorithm, are needed instead of about N3/6 if two upper trian-
gular matrices are multiplied; see Sec. 1.4.1, where the operation count for matrix
multiplication is discussed.

Similarly the quotient of two upper triangular Toeplitz matrices, (say)

Q(SN) = f(SN ) · g(SN )−1,

8Otto Toeplitz (1881-1940), German mathematician
9In interactive computations with rather short series the gain of time may sometimes be neu-

tralized by an increased number of manual operations. See the computer exercises.



3.1. Some Basic Facts about Series 21

is also a matrix of the same type. (A hint to a proof is given in Problem 9.10) Note
that Q(SN ) · g(SN ) = f(SN ). With similar notations as above, we obtain for the
first row of this matrix equation the following triangular linear system where the
row vector q1 is the unknown.

q1 · toep(g1, N) = f1. (3.1.24)

Although the discussion in Sec. 1.3.4 is concerned with a linear system with a column
as the unknown (instead of a row), we draw from it the conclusion that only about
N2/2 scalar flops (including N scalar divisions) and one application of the toep
algorithm, are needed, instead of the N3/6 needed in the solution of the matrix
equation Q · g(SN) = f(SN ).11

A library called toeplib consists of short Matlab scripts mainly based on
Table 3.1.2. It is given in Problem 10 (a). In Problem 10 (b), etc., the series of the
library are combined by elementary operations to become interesting examples of
the Toeplitz matrix method. The convenience, the accuracy and the execution time
are probably much better than you expect; even the authors were surprised.

Next we shall study how a composite function h(z) = f(g(z)) can be
expanded in powers of z. Suppose that f(z) and g(z) are analytic at z = 0,
f(z) =

∑

∞

j=1 f1(j)zj−1. An important assumption is that g(0) = 0. Then
we can set g(z) = zḡ(z), hence (g(z))n = zn(ḡ(z))n and, because Sn

N = 0, n ≥ N ,
we obtain

(g(SN ))n = Sn
N · (ḡ(SN ))n = 0, if n ≥ N and g(0) = 0,

h(SN ) ≡ f(g(SN )) =

N
∑

j=1

f1(j)(g(SN))j−1, if g(0) = 0. (3.1.25)

This matrix polynomial can be computed by a matrix version of Horner’s scheme.
The row vector version of this equation is written

h1 = comp(f1, g1, N). (3.1.26)

A Matlab implementation of the function comp is listed and applied in Prob-
lem 11.

If g(0) 6= 0, Equation (3.1.25) still provides an “expansion”, but it is wrong;
see Problem 11 (c). Suppose that |g(0)| is less than the radius of convergence of the
Maclaurin expansion of f(x). Then a correct expansion is obtained by a different
decomposition. Set g̃(z) = g(z) − g(0), f̃(x) = f(x+ g(0)). Then f̃ , g̃ are analytic

10In the terminology of algebra, the set of upper triangular N × N Toeplitz matrices, i.e.
{

PN−1

j=0
αjS

j
N}, αj ∈ C, is a commutative integral domain that is isomorphic with the set of

polynomials
PN−1

j=0
αjx

j modulo x
N , where x is an indeterminate.

11The equations (3.1.23) and (3.1.24) are mathematically equivalent to the convolution product
in (3.1.8) and the procedure demonstrated in Example 3.1.6, respectively. Sometimes both proce-
dures suffer from the growth of the effects of rounding errors when n is very large, in particular
when the power series are ill- conditioned; see Sec. 3.1.11. An advantage of the Toeplitz matrix
method is that the coding, in a language with convenient matrix handling, becomes easier.
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at z = 0. g̃(0) = 0 and f̃(g̃(z)) = f(g(z)) = h(z). So, (3.1.25) and its row vector
implementations can be used if f̃ , g̃ are substituted for f, g.

Analytic functions of matrices are defined, in terms of their Taylor series; see
Sec. 9.2.5 in Vol. II. For example, the series

eA = I +A+
A2

2!
+
A2

2!
+ · · · ,

converges elementwise for any matrix A. There exist several algorithms for comput-
ing eA,

√
A, logA, where A is a square matrix. One can make linear combinations,

products, quotients and composite functions of them. For example, a “principal
matrix value” of Y = (I +A)α is obtained by

B = log(I +A), Y = eαB.

For a composite function f(g(A)), it is here not necessary that g(0) = 0, but it
is important that g(z) and f(g(z)) are analytic when z is an eigenvalue of A. We
obtain truncated power series if A = SN ; note that SN has a multiple eigenvalue at
0. The coding, and the manual handling in interactive computing, are convenient
with matrix functions, but the computer has to perform more operations on full
triangular matrices than with the row vector level algorithms described above. So,
for very long expansions the earlier algorithms are notably faster.

If the given power series, f(x), g(x), . . . have rational coefficients, then the
exact results of a sequence of additions, multiplications, divisions, compositions,
differentiations, integrations will have rational coefficients, because the algorithms
are all formed by a finite number of scalar additions, multiplications and divisions.
As mentioned above, very accurate rational approximations, often even the exact
values, can be quickly obtained by applying a continued fraction algorithm that
is presented in Sec. 3.5.2 to the results of a floating point computation. See also
Problems 9–12.

If f(x) is an even function, its power series contains only even powers of x.
You gain space and time, by letting the shift matrix SN correspond to x2 (instead
of x). Similarly, if f(x) is an odd function, you can instead work with the even
function f(x)/x, and let SN correspond to x2. See Problems 9–12.

Finally we consider a classical problem of mathematics, known as power
series reversion. The task is to find the power series for the inverse function
x = g(y) of the function y = f(x) =

∑

∞

j=0 ajx
j , in the particular case where a0 = 0,

a1 = 1. Note that even if the series for f(x) is finite, the series for g(y) is in general
infinite!

The following simple cases of power series reversion are often sufficient and
useful in low order computations with paper and pencil.

y = x+ axk + . . . , (k > 1),

⇒ x = y − axk − . . . = y − ayk − . . . ; (3.1.27)

y = f(x) ≡ x+ a2x
2 + a3x

3 + a4x
4 + . . . ,

⇒ x = g(y) ≡ y − a2y
2 + (2a2

2 − a3)y
3 − (5a2

2 − 5a2a3 + a4)y
4 + . . . . (3.1.28)
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An application of power series reversion occurs in the derivation of a family of
iterative methods of arbitrary high order for solving scalar non-linear equations; see
Sec. 6.3.5.

Knuth [29] devotes Sec. 4.7 to the manipulation of power series. He presents
several algorithms for power series reversion, e.g., a classical algorithm due to La-
grange 1768 that requires O(N3) operations to compute the first N terms. Knuth
also includes a recent algorithm due to Brent and Kung [7]. It is based on an adap-
tation, to formal power series, of Newton’s method (1.2.3) for solving a numerical
algebraic equation. For power series reversion, the equation to be solved reads

f(g(y)) = y, (3.1.29)

where the coefficients of g are the unknowns. The number of correct terms is
roughly doubled in each iteration, as long as N is not exceeded. In the usual nu-
merical application of Newton’s method to a scalar non-linear equation (see Secs. 1.2
and 6.3) it is the number of significant digits that is (approximately) doubled, so-
called quadratic convergence. Brent–Kung’s algorithm can be implemented in about
150 (N logN)3/2 scalar flops.

In Problem 12, a convenient Toeplitz matrix implementation of the idea of
Brent and Kung is presented. It requires about cN3 logN scalar flops with a mod-
erate value of c. It is thus much inferior to the original algorithm if N is very large.
In some interesting interactive applications, however, N rarely exceeds 30. In such
cases our implementation is satisfactory, unless (say) hundreds of series are to be
reversed.

3.1.5 Formal Power Series

A power series is not only a means for numerical computation; it is also an aid
for deriving formulas in numerical mathematics and in other branches of applied
mathematics. Then one has another, more algebraic, aspect of power series that
we shall briefly introduce. A more rigorous and detailed treatment is found in
Henrici [25, Chapter 1], and in the literature quoted there.

In a formal power series, P = a0 + a1x + a2x
2 + · · ·, the coefficients aj

may be real or complex numbers (or elements in some other field), while x is an
algebraic indeterminate; x and its powers can be viewed as place keepers. No real
or complex values are assigned to x and P. Convergence, divergence and remainder
term have no relevance for formal power series. The coefficients of a formal power
series may even be such that the series diverges for any non-zero complex value that
you substitute for the indeterminate, e.g. the series

P = 0! − 1!x + 2!x2 − 3!x3 + · · · . (3.1.30)

In algebraic terminology, the set of formal power series is an integral domain. The
sum of P and another formal power series, Q = b0 + b1x + b2x

2 + · · ·, is defined as

P + Q = (a0 + b0) + (a1 + b1)x + (a2 + b2)x
2 + · · · .
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Similarly, the Cauchy product is defined as

PQ = c0 + c1x + c2x
2 + · · · ,

where the coefficients are given by the convolution formula (3.1.8). The division of
two formal power series is defined by a recurrence, as indicated in Example 3.1.5,
iff the first coefficient of the the denominator is not zero.

Other operations are defined without surprises, e.g., the derivative of P is
defined as P′ = 1a1 +2a2x+3a3x

2 + . . .. The limit process, by which the derivative
is defined in Calculus, does not exist for formal power series. The usual rules for
differentiation are still valid, and as an exercise you may verify that the formal power
series defined by (3.1.30) satisfies the formal differential equation x2P′ = x − P.
See also Sec. 3.1.11.

Formal power series can be used for deriving identities. In most applications
in this book difference operators or differential operators are substituted for the
indeterminates, and the identities are then used in the deriving of approximation
formulas, e.g. for interpolation, numerical differentiation and integration etc.

The formal definitions of the Cauchy product, (i.e. convolution) and division
are rarely used in practical calculation. It is easier to work with upper triangular
N×N Toeplitz matrices, as in Sec. 3.1.5, where N is any natural number. Algebraic
calculations with these matrices are isomorphic with calculations with formal power
series modulo xN .

If you perform operations on matrices fM (S), gM (S), . . ., where M < N , the
results are equal to the principal M ×M submatrices of the results obtained with
the matrices fN(S), gN(S), . . .. This fact follows directly from the equivalence with
power series manipulations. It is also related to the fact that in the multiplication
etc. of block upper triangular matrices, the diagonal blocks of the product equals
the products of the diagonal blocks, and no new off-diagonal blocks enter.

So, we can easily define the product of two infinite upper triangular matrices,
C = AB, by stating that if i ≤ j ≤ n then cij has the same value that it has in
the N × N submatrix CN = ANBN for every N ≥ n. In particular C is upper
triangular, and note that there are no conditions on the behaviour of the elements
aij , bij as i, j → ∞. One can show that this product is associative and distributive.
For the infinite triangular Toeplitz matrices it is commutative too.12

Henrici [25, Sec. 1.3], calls this a representation of formal power series by in-
finite upper triangular Toeplitz matrices, (which he names semicirculants), and
proves that the mapping of the set of formal power series onto the set of semicir-
culants is an isomorphism. If the formal power series a0 + a1x + a2x

2 + · · ·, and
its reciprocal series, which exists iff a0 6= 0, are represented by the semicirculants
A and B, respectively, Henrici proves that AB = BA = I, where I is the unit ma-
trix of infinite order. This indicates how to define the inverse of any infinite upper
triangular matrix if all diagonal elements aii 6= 0.

If a function f of a complex variable z is analytic at the origin, then we define13

12For infinite non-triangular matrices the definition of a product generally contains conditions
on the behaviour of the elements as i, j → ∞, but we shall not discuss this here.

13Henrici, loc. cit., does not use this concept—it may not be established.
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f(x) as the formal power series with the same coefficients as the Maclaurin series
for f(z). In the case of a multivalued function we take the principal branch.

We do not consider formal power series with several indeterminates. There
may occur expressions with several bold-type symbols. Only one of them is the
indeterminate, and the others are shorthand notations for analytic functions of this
indeterminate.

There is a kind of “permanence of functional equations” also for the gener-
alization from a function g(z) of a complex variable that is analytic at the origin,
to the formal power series g(x). We illustrate a general principle on an important
special example that we formulate as a lemma, since we shall need it in the next
section.

Lemma 3.1.9.

(ex)θ = eθx, (θ ∈ R). (3.1.31)

Proof. Let the coefficient of xj in the expansion of the left hand side be φj(θ).
The corresponding coefficient for the right hand side is θj/j!. If we replace x by
a complex variable z, the power series coefficients are the same, and we know that
(ez)θ = eθz, hence φj(θ) = θj/j!, j = 1, 2, 3 . . ., hence

∑

∞

0 φj(θ)x
j =

∑

∞

0 (θj/j!)xj ,
and the lemma follows.

Example 3.1.11.
Find (if possible) a formal power series Q = 0 + b1x + b2x

2 + b3x
3 + . . ., that

satisfies the equation

e−Q = 1 − x, (3.1.32)

where e−Q = 1 − Q + Q2/2!− . . ..
We can, in principle, determine an arbitrarily long sequence b1, b2, b3, . . . bk by

matching the coefficients of x,x2,x3, . . .xk, in the two sides of the equation. We
display the first three equations.

1 − (b1x + b2x
2 + b3x

3 + . . .) + (b1x + b2x
2 + . . .)2/2 − (b1x + . . .)3/6 + . . .

= 1 − 1x + 0x2 + 0x3 + . . . .

For any natural number k, the matching condition is of the form

−bk + φk(bk−1, bk−2, . . . , b1) = 0.

This shows that the coefficients are uniquely determined.

−b1 = −1 ⇒ b1 = 1;

−b2 + b21/2 = 0 ⇒ b2 = 1/2;

−b3 + b1b2 − b1/6 = 0 ⇒ b3 = 1/3;
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There exists, however, a much easier way to determine the coefficients. For the
analogous problem with a complex variable z, we know that the solution is unique:
q(z) = − ln(1 − z) =

∑

∞

1 zj/j (the principal branch, where b0 = 0), and hence
∑

∞

1 xj/j is the unique formal power series that solves the problem, and we can use
the notation Q = − ln(1 − x) for it.14

This example will be applied in Example 3.2.18 to the derivation of formulas
for numerical differentiation.

The theory of formal power series can in a similar way justify many elegant
“symbolic” applications of power series for deriving mathematical formulas.

Review Questions

1. (a) Formulate three general theorems that can be used for estimating the
remainder term in numerical series.

(b) What can you say about the remainder term, if the nth term is O(n−k),
k > 1? Suppose in addition that the series is alternating. What further
condition should you add, in order to guarantee that the remainder term will
be O(n−k)?

2. Give, with convergence conditions, the Maclaurin series for ln(1+x), ex, sinx,

cosx, (1 + x)k, (1 − x)−1, ln
1 + x

1 − x
, arctanx.

3. Describe the main features of a few methods to compute the Maclaurin coef-
ficients of, e.g.,

√
2ex − 1.

4. Give generating functions of the Bernoulli and the Euler numbers. Describe
generally how to derive the coefficients in a quotient of two Maclaurin series.

5. If a functional equation, e.g. 4(cosx)3 = cos 3x+ 3 cosx, is known to be valid
for real x, how do you know that it holds also for all complex x? Explain what
is meant by the statement that it holds also for formal power series, and why
is this true?

6. (a) Show that multiplying two arbitrary upper triangular matrices of order

N uses
∑N

k=1 k(N − k) ≈ N3/6 flops, compared to
∑N

k=1 k ≈ N2/2 for the
product of a row vector and an upper triangular matrix.

(b) Show that if g(x) is a power series and g(0) = 0, then g(SN )n = 0, n ≥ N .
Make an operation count for the evaluation of the matrix polynomial f(g(SN ))
by the matrix version of Horner’s scheme.

(c) Consider the product f(SN )g(SN ), where f(x) and g(x) are two power
series. Show, using rules for matrix multiplication, that for any M < N the
leading M ×M block of the product matrix equals f(SM )g(SM ).

7. Consider a power series y = f(x) =
∑

∞

j=0 ajx
j , where a0 = 0, a1 = 1. What

is meant by reversion of this power series? In the Brent–Kung method the

14The three coefficients bj computed above agree, of course, with 1/j, j = 1 : 3.
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problem of reversion of a power series is formulated as a nonlinear equation.
Write this equation for the Toeplitz matrix representation of the series.

8. Let P = a0 + a1x + a2x
2 + · · · and Q = b0 + b1x + b2x

2 + · · · be two formal
power series. Define the sum P + Q and the Cauchy product PQ.

Problems and Computer Exercises

1. In how large a neighborhood of x = 0 does one get, respectively, four and six
correct decimals using the following approximations?

(a) sinx ≈ x; (b) (1+x2)−1/2 ≈ 1−x2/2; (c) (1+x2)−1/2e
√

cos x ≈ e(1− 3
4x

2).

Comment: The truncation error is asymptotically qxp where you know (?) p.

An alternative to an exact algebraic calculation of q, is a numerical estimation
of q, by means of the actual error for a suitable value of x—neither too big
nor too small (!). (Check the estimate of q for another value of x.)

2. (a) Let a, b, be the lengths of the two smaller sides of a right angle triangle,
b ≪ a. Show that the hypotenuse is approximately a+ b2/(2a) and estimate
the error of this approximation. If a = 100, how large is b allowed to be, in
order that the absolute error should be less than 0.01?

(b) How large a relative error do you commit, when you approximate the
length of a small circular arc by the length of the chord? How big is the error
if the arc is 100 km on a great circle of the earth? (Approximate the earth by
a ball of radius 40000/(2π) km.)

(c) P (x) = 1 − 1
2x

2 + 1
24x

4 is a polynomial approximation to cosx for small

values of |x|. Estimate the errors of P (x), P ′(x), 1
x

∫ x

0 P (t) dt, and compare
them, e.g., for x = 0.1.

(d) How accurate is the formula arctanx ≈ π/2 − 1/x for x≫ 1 ?

3. (a) Compute 10−(999.999)1/3 to 9 significant digits, by the use of the binomial
expansion. Compare with the result obtained by a computer in IEEE double
precision, directly from the first expression.

(b) How many terms of the Maclaurin series for ln(1 + x) would you need
in order to compute ln 2 with an error less than 10−6 ? How many terms
do you need, if you use instead the the series for ln (1 + x)/(1 − x), with an
appropriate choice of x?

4. Give an approximate expression of the form ahbf (c)(0) for the error of the

estimate of the integral
∫ h

−h
f(x)dx obtained by Richardson extrapolation (ac-

cording to Sec. 1.2.2) from the trapezoidal values T (h) and T (2h).

5. Compute, by means of appropriate expansions, not necessarily in powers of t,
the following integrals to (say) five correct decimals.
(This is for paper, pencil and a pocket calculator.)

(a)

∫ 0.1

0

(1 − 0.1 sin t)1/2 dt; (b)

∫

∞

10

(t3 − t)−1/2 dt.
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6. (a) Expand arcsinx into powers of x by the integration of the expansion of
(1 − x2)−1/2.

(b) Use the result in (a) to prove the expansion

x = sinhx− 1

2

sinh3 x

3
+

1·3
2·4

sinh5 x

5
− 1·3·5

2·4·6
sinh7 x

7
+ . . .

7. (a) Consider the power series for

(1 + x)−α, x > 0, 0 < α < 1.

Show that it is equal to the hypergeometric function F (α, 1, 1,−x). Is it true
that the expansion is alternating, and that the remainder has the same sign
as the first neglected term, also if x > 1, where the series is divergent? What
do the Theorems 3.1.3 and 3.1.4 tell you in the cases x < 1 and x > 1?

Comment: An application of the divergent case for α = 1
2 is found in Prob-

lem 3.2.9 (c).

(b) Express the coefficients of the power series expansions of y cot y and
ln(sin y/y) in terms of the Bernoulli numbers.

Hint: Set x = 2iy into (3.1.17). Differentiate the second function.

(c) Find a recurrence relation for the Euler numbers En, see Example 3.1.5,
and use it for showing that these numbers are integers.

(d) Show that

ln
(z + 1

z − 1

)

= 2
(1

z
+

1

3z3
+

1

5z5
+ . . .

)

, |z| > 1.

Find a recurrence relation for the coefficients of the expansion

(

ln
(z + 1

z − 1

))−1

=
1

2
z − µ1z

−1 − µ3z
−3 − µ5z

−5 − . . . , |z| > 1.

Compute µ1, µ3, µ5 and determine
∑

∞

0 µ2j+1 by letting z ↓ 1. (Full rigor is
not required.)

Hint: Look at Example 3.1.5.

8. The power series expansion g(x) = b1x + b2x
2 + . . . is given. Find recurrence

relations for the coefficients of the expansion for h(x) ≡ f(g(x)) = c0 + c1x+
c2x

2 + . . . in the following cases:

(a) h(x) = ln(1 + g(x)), f(x) = ln(1 + x).

Hint: Show that h′(x) = g′(x) − h′(x)g(x). Then proceed analogously to
Example 3.1.10.

Answer:

c0 = 0, cn = bn − 1

n

n−1
∑

j=1

(n− j)cn−jbj .

(b) h(x) = (1 + g(x))k, f(x) = (1 + x)k, k ∈ R, k 6= 1.
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Hint: Show that g(x)h′(x) = kh(x)g′(x) − h′(x). Then proceed analogously
to Example 3.1.10.

Answer:

c0 = 1, cn =
1

n

n
∑

j=1

(

(k + 1)j − n
)

cn−jbj ,

n = 1, 2,. . . . The recurrence relation is known as the J. C.P. Miller formula.

(c) h1(y) = cos g(x), h2(y) = sin g(x), simultaneously.

Hint: Consider instead h(y) = eig(x), and separate real and imaginary parts
afterwards.

9. In Problems 9–12 we use notations and results from the Toeplitz matrix rep-
resentation in Sec. 3.1.4. For example, SN denotes the Nth order shift matrix
and f1 is the first row vector of the matrix f(SN). We also assume that
you are familiar with simple Matlab . We now present some more advanced
notions from Matlab that are important in our context.
The solution to the linear system (3.1.24), i.e. q1 · toep(g1, N) = f1, can in
Matlab be neatly written as q1 = f1/toep(g1,N). Note that this is the
vector by matrix division of Matlab .
If x is a vector, cumprod(x) is the cumulative product of the elements of x,
e.g., cumprod(2:5) = [2 6 24 120]; cumsum is analogously defined.
If some of the arguments of a function, in the sense of Matlab , are optional,
nargin is the number of input arguments actually used; nargout is defined
analogously.
The Matlab function [Nu,De] = rat(v,Tol) returns two integer vectors
so that abs(Nu./De - v) <= Tol*abs(v). There are several variants of the
function rat; see the help file. This function is based on a version of the
continued fraction algorithm presented in Sec. 3.5.2. Take at least two different
values for Tol, and compare the results. Use the rational form of a result,
only if it seems reliable and shorter than the floating form.
Choose N = 6 while you test that a code is correct. When you apply it
or examine the properties of the algorithm, choose N in the range [12, 24].
(Even then the computing time may be too short to be measured by the “the
stopwatch timer” tic . . . toc; tic starts the timer; toc, by itself, displays the
elapsed time since tic was used. (You can also save the elapsed time by a
statement like t = toc.) If you choose N very large you may risk exponent
underflow or overflow, or some other nuisance.
In most of the following examples, the algorithms are reasonably stable. Nu-
merical instability can occur, however, depending on the functions f, g, . . . that
they are applied to, and it is a good habit to try to compare the results of two
”independent” ways to derive an expansion. In applications to ill-conditioned
power series; see Sec. 3.2.5, high values of N are needed, and the results may
sometimes be ruined by numerical instability, unless multiple precision is used.

(a) Convince yourself that the following function expands the row r to a tri-
angular Toeplitz matrix. What is done if length(r) < N and why? What is
the default value of the optional input argument N?
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function T = toep(r,N);

% toep expands the row vector r into an upper

% triangular Toeplitz matrix T.

%N is an optional argument.

%

lr= length(r);

if (nargin==1 | lr > N), N = lr; end;

if lr<N, r=[r, zeros(1,N-lr)]; end;

gs = zeros(N,N);

for i=1:N,

gs(i,i:N) = r(1:N-i+1);

end

T = gs;

(b) If you want N > 3, terms in your results, although the number of terms
in the given expression for f(x), e.g., (1 + x+ x2)/(1− x+ x2) is smaller, you
must augment this by sequences of zeros, so that the order of Toeplitz matrix
becomes N . Show experimentally and theoretically that the first row of

(IN + SN + S2
N )/(IN − SN + S2

N)

is, e.g., obtained by the statement

[1, 1, 1, zeros(1,N-3)]/toep([1, -1, 1, zeros(1,N-3)]).

(c) Let f(z) = −z−1 ln(1−z). Compute the first six coefficients of the Maclau-
rin series for the functions f(z)k, k = 1 : 5 in floating point, and convert them
to rational form. (The answer and an application to numerical differentiation
are given in Example 3.3.6.)

Comment: If you choose an appropriate tolerance in the Matlab function
rat you will obtain an accurate rational approximation, but it is not necessar-
ily exact. Try to judge which of the coefficients are exact.

(d) Compute in floating point the coefficients µ2j−1, j = 1 : 11, defined in
Problem 7 (d), and convert them to rational form.

Hint: First seek an equivalent problem for an expansion in ascending powers.

(e) Prove that Q = f(SN)g(SN )−1 is an upper triangular Toeplitz matrix.

Hint: Define Q = toep(q1, N), where q1 is defined by (3.1.24), and show that
each row of the equation Q · g(SN ) = f(SN ) is satisfied.

10. (a) Study the following “library” of Matlab lines for common applications
of the Toeplitz matrix method for arbitrary given values of N ; the shift matrix
SN corresponds to the variable x. You are welcome to add new “cases”, e.g.,
for some of the exercises below.

function y = toeplib(cas,N,par)

% cas is a string parameter;

% par is an optional real or complex scalar;

% the default value is 1.
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% All series are truncated to N terms.

if nargin == 2, par = 1; end

if cas == ’bin’,

y=[1 cumprod(par:-1:par-N+2)./cumprod(1:N-1)];

% y = 1st row of binomial series (1+x)^par, par in R;

elseif cas == ’con’,

y = cumprod([1 par*ones(1,N-1)]);

% The array multiplication y.*f1 returns the first

% row of f(par*S_N);

% sum(y.*f1) evaluates f(par). See also Problem~(b).

elseif cas == ’exp’,

y = [1 cumprod(par./[1:(N-1)]];

% y = 1st row of exponential \exp(par*x).

% Since par can be complex, circular

% (or trigonometric) functions can also be expanded.

elseif cas == ’log’,

y=[0 1./[1:(N-1)]].*cumprod ([-1 -par*ones(1:N-1)]);

% y= 1st row of logarithm \ln(1+par*x).

elseif cas == ’e1t’,

y=[1 zeros(1,N-1)];

% y=e_1^T , i.e. 1st row of (eye)N.

elseif cas == ’SN1’, y = [0 1 zeros(1,N-2)];

% y=1st row of S_N .

elseif cas == ’dif’, y = [0 1:(N-1)];

% The array multiplication y.*f1 returns xf’(x).

else cas == ’int’, y =1./[1:N].

% The array multiplication y.*f1 returns

% {1\over x}\int_0^x f(t) dt.

end

(b) Evaluation of f(x). Given N and f1 of your own choice, set fterms

= toeplib(’con’,N,x).*f1. What is sum(fterms) and cumsum(fterms)?
When can sum(fliplr(fterms)) be useful?

(c) Write a code that, for arbitrary given N , returns the 1st rows of the
Toeplitz matrices for cos x and sin x, with SN corresponding to x, and then
transforms them to to 1st rows for Toeplitz matrices with SN corresponding
to x2. Apply this, for (say) N = 36, to determine the errors of the coefficients
of 4(cosx)3 − 3 cosx− cos 3x.

(d) Find out how a library “toeplib2” designed for Toeplitz matrices for even
functions, where SN corresponds to x2, must be different from toeplib. For
example how are cas == ’dif’ and cas == ’int’ to be changed?

(e) Unfortunately, a toeplib “case” has at most one parameter, namely par.
Write a code that calls toeplib twice for finding the Maclaurin coefficients of
the three parameter function

y = (a+ bx)α, a > 0,

b, α real. Compute the coefficients in two different ways for N = 24; a = 2;
b = −1; α = ±3, and compare the results for estimating the accuracy of the
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coefficients.

(f) Compute the Maclaurin expansions for (1−x2)−1/2 and arcsin(x), and for
y = 2arcsinh (x/2). Expand also dy/dx and y2. Convert the coefficients to
rational numbers, as long as they seem to be reliable. Save the results, or make
it easy to reproduce them, for comparisons with the results of Problem 12(b).

Comment: The last three series are fundamental for the expansions of differ-
ential operators in powers of central difference operators, which lead to highly
accurate formulas for numerical differentiation.

(g) Two power series that generate the Bernoulli numbers are given in Exam-
ple 3.1.5, namely

x ≡
( ∞
∑

i=1

xi

i!

)( ∞
∑

j=0

Bjx
j

j!

)

;
x

2

ex/2 + e−x/2

ex/2 − e−x/2
=

∞
∑

j=0

B2jx
2j

(2j)!
.

Compute B2j for (say) j ≤ 30 in floating point, using each of these formulas,
and compute the difference of the results, which are influenced by rounding
errors. Try to find, whether one of the sequences is more accurate than the
other, by means of the formula in (3.1.18) for (say) j > 4. Then convert the
results to rational numbers. Use several tolerances in the function rat and
compare with [1, Table 23.2]. Some of the results are likely to disagree. Why?

(h) The Kummer confluent hypergeometric function M(a, b, x) is defined by
the power series (3.1.14). Kummer’s first identity, i.e.

M(a, b,−x) = e−xM(b− a, b, x),

is important, e.g., because the series on the left hand side is ill-conditioned
if x ≫ 1, a > 0, b > 0, while the expression on the right hand side is well-
conditioned. Check the identity experimentally by computing the difference
between the series on the left hand side and on the right for a few values of a, b,
The computed coefficients are afflicted by rounding errors. Are the differences
small enough to convince you of the validity of the formula?

11. Read about expansions of composite functions in Sec. 3.1.4
(a) Write the Horner recurrence for the evaluation of the matrix polynomial
f(g(SN)) according to (3.1.25). Then show that the following Matlab func-
tion evaluates the first row of h(SN ) = f(g(SN)), if g(0) = 0.

function h1 = comp(f1,g1,N);

%

% INPUT: the integer N and the rows f1, g1, with the

% first N Maclaurin coefficients for the analytic functions

% f(z), g(z).

% OUTPUT: The row h1 with the first N Maclaurin coefficients

% for the composite function h(z)=f(g(z)), where g1(1)=g(0)=0.

% computed according to the algorithm for a composite function.

% Error message if g(0)\ne 0.
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if g1(1) ~= 0,

error(‘g(0) ~= 0 in a composite function f(g(z))’)

end

e1t = zeros(1,N); e1t(1)=1;

r = f1(N)*e1t;

gs = toep(g1,N);

for j = N-1:-1:1,

r = r*gs + f1(j)*e1t;

end

h1 = r;

(b) Matrix functions in Matlab : For h(z) = eg(z) it is convenient to use the
matrix function expm(g(SN)) or, on the vector level, h1 = e1t*expm(g(SN)),
rather than to use h1 = comp(f1,g1). If f(0) 6= 0, you can analogously use
the functions logm and sqrtm. They may be slower and less accurate than
h1 = comp(f1,g1), but they are typically fast and accurate enough.
Compare computing time and accuracy in the use of expm(k * logm(eye(N)

+ SN) and toeplib(’bin’,N,k) for a few values of N and k.

Comment: The Matlab function funm should, however, not be used, because
it uses an eigenvalue method that does not work well for matrices that have
multiple eigenvalues. For triangular Toeplitz matrices the diagonal elements
are multiple eigenvalues. The functions expm, logm and sqrtm should not be
confused with the functions exp, log and sqrt, which operate on the matrix
elements.

(c) Expand esin(z) in powers of z in two ways: first using the function in
Problem 11(a); second using the matrix functions of Matlab. Show that the
latter can be written

HN = expm(imag(expm(i*SN))).
Do not be surprised if you find a dirty imaginary part of HN . Kill it!
Compare the results of the two procedures. If you have done the runs appro-
priately, the results should agree excellently.

(d) Treat the series h(z) =
√

(1 + ez) in three different ways, and compare
the results, with respect to validity, accuracy and computing time.
(i) Set ha(z) = h(z), and determine f(z), g(z), analytic at z = 0, so that
g(0) = 0. Compute ha1 = comp(f1,g1,N). Do you trust the result?

(ii) Set h(z) = H(z). Compute HN = sqrtm(eye(N) + expm(SN)).
In the first test, i.e. for N = 6, display the matrix HN , and check that HN

is an upper triangular Toeplitz matrix. For larger values of N , display the
first row only, and compare it to ha1. If you have done all this correctly, the
agreement should be extremely good, and we can practically conclude that
both are very accurate.
(iii) Try the “natural”, although “illegal’, decomposition hb(z) = f(g(z)), with
f(x) = (1+x)0.5, g(z) = ez. Remove temporarily the error stop. Demonstrate
by numerical experiment that hb1 is very wrong. If this is a surprise, read
Sec. 3.1.4 once more.

(e) Suppose that you perform matrix level operations on f(SM ), g(SM ), . . .,
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where M < N . Show that the results are exactly equal to the principal M×M
submatrices of the results obtained with the matrices f(SN ), g(SN ), . . .

12. Reversion of series. Let

y = f(x) =

∞
∑

j=1

f1(j)xj−1,

where f1(1) = f(0) = 0, f1(2) = f ′(0) = 1 (with the notation used in
Sec. 3.1.5 and in the previous problems). Power series reversion is to find the
power series for the inverse function

x = g(y) =

∞
∑

j=1

g1(j)yj−1,

where g1(1) = g(0) = 0. Read also the last paragraphs of Sec. 3.1.5.
We work with truncated series withN terms in the Toeplitz matrix representa-
tion. The inverse function relationship gives the matrix equation f(g(SN)) =
SN . Because g(0) = 0, we have, by (3.1.25),

f(g(SN )) =
N
∑

j=1

f1(j)(g(SN)j−1.

Now Horner’s scheme can be used for computing the polynomial and its deriva-
tive, the latter is obtained by algorithmic differentiation; see Sec. 1.3.1.
The first row of this matrix equation is treated by Newton’s method in the
code breku listed below. The Horner algorithms are adapted to the first row.15

The notations in the code is almost the same as in the theoretical description,
although lower case letters are used, e.g., the matrix g(SN ) is denoted gs, and
fgs1 is the first row of the matrix f(g(SN )). The equation reads fgs1−s1 = 0.

(a) Convince yourself that the following Matlab function implements power
series reversion under a certain condition. Describe in a few words the main
features of the method.

function g1 = breku(f1,N);

%

% INPUT: The row vector f1 that represents a (truncated)

% Maclaurin series

% OUTPUT: The row g1, i.e. the first N terms of the series

% x = g(y) where y = f(x).

% Note that f1(1) = 0, f1(2) = 1; if not, there will

% be an error message. The integer N, i.e. the length

% of the truncated series wanted in the output, is optional

% input; by default N = length(f1).

15The name“breku” comes from Brent and Kung, who were probably the first mathematicians
to apply Newton’s method to series reversion, although with a different formulation of the equation
than ours (no Toeplitz matrices).
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% If length(f1) < N, f1 is extended to length N by zeros.

% Uses the function toep(r,N) (see Problem~9) for expanding

% a row to an upper triangular Toeplitz matrix.

%

if ~ (f1(1) ~= 0|f1(2) ~= 1),

error(‘wrong f1(1) or f1(2)’);

end

lf1 = length(f1);

if (nargin == 1|lf1 > N), N = lf1; end

if lf1 < N, f1 = [f1 zeros(1, N-lf1)] end

maxiter = floor(log(N)/log(2));

e1t = [1, zeros(1,N-1)];

s1 = [0 1 zeros(1,N-2)]; gs1 = s1;

for iter = 0:maxiter

gs = toep(gs1,N);

% Horner’s scheme for computing the first rows

% of f(gs) and f’(g(s)):

fgs1 = f1(N)*e1t; der1 = zeros(1,N);

for j = N-1:-1:1

ofgs1 = fgs1; %ofgs1 means "old" fgs1

fgs1 = ofgs1*gs + f1(j)*e1t ;

der1 = ofgs1 + der1*gs ;

end

% A Newton iteration for the equation fgs1 - s1 = 0:

gs1 = gs1 - (fgs1 - s1)/toep(der1,N);

end

g1 = gs1;

Comment: The radius of convergence depends on the singularities of g(y),
which are typically related to the singularities of f(x) and to the zeros of
f ′(x), (why?). There are other cases, e.g., if f ′(x) → 0 as x → ∞ then
lim f(x) may be a singularity of g(y).

(b) Apply the code breku to the computation of g(y) for f(x) = sinx and
for f(x) = 2 sinh(x/2). Compare with the results of Problem 10 (d). Then
reverse the two computed series g(y), and study how you return to the original
expansion of f(x), more or less accurately. Use tic toc to take the time, for a
few values of N .

(c) Apply the code breku to compute g(y) for f(x) = ln(1+x), f(x) = ex −1,
f(x) = x+ x2, f(x) = x+ x2 + x3.
If you know an analytic expression for g(y), find the Maclaurin expansion for
this, and compare with the expansions obtained from breku .
Apply breku to the computed expansions of g(y), and study how accurately
you return to the expansion of f(x).

(d)f(x) = xex; the inverse function g(y) is known as the Lambert W func-
tion.16 Determine g(y). Then reverse the power series for g(y), and compare
with the expansion of f(x).

16Johann Heinrich Lambert (1728–1777), German mathematician, physicist and astronomer,
and colleague of Euler and Lagrange at the Berlin Academy of Sciences. He is best known for
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(e) Estimate for f(x) = xex the radius of convergence approximately, by means
of the ratios of the coefficients computed in (d), and exactly; see the comment
after the code above.

(f)* Set y = f(x). Suppose that y(0) 6= 0, y′(0) 6= 0. Show that the code breku
can be used for expanding the inverse function in powers of (y − y(0))/y′(0).
Construct some good test example.

(g)* For the equation sinx − (1 − y)x = 0, express x2 = g(y) (why x2?),
with N = 12. Then express x in the form x ≈ ±y1/2P (y), where P (y) is a
truncated power series with (say) 11 terms.

(h)* Make simple temporary changes in the code breku, so that you can follow
the iterations on the screen.

3.2 More About Series

3.2.1 Laurent and Fourier Series

A Laurent series is a series of the form

∞
∑

n=−∞

cnz
n. (3.2.1)

Its convergence region is the intersection of the convergence regions of the expansions

∞
∑

n=0

cnz
n and

∞
∑

m=1

c−mz
−m,

the interior of which are determined by conditions of the form |z| < r2 and |z| > r1.
The convergence region can be void, e.g., if r2 < r1.

If 0 < r1 < r2 < ∞ the convergence region is an annulus, r1 < |z| < r2. The
series defines an analytic function in the annulus. Conversely, if f(z) is a single-
valued analytic function in this annulus, it is there represented by a Laurent
series, that converges uniformly in every closed subdomain of the annulus.

The coefficients are determined by the following formula, due to Cauchy17

cn =
1

2πi

∫

|z|=r

z−n−1f(z)dz, r1 < r < r2,−∞ < n <∞, (3.2.2)

and
|cn| ≤ r−n max

|z|=r
|f(z)|. (3.2.3)

The extension to the case when r2 = ∞ is obvious; the extension to r1 = 0 depends
on whether there are any terms with negative exponents or not. In the extension
of formal power series to formal Laurent series, however, only a finite number of

his illumination laws and for the continued fraction expansions of elementary functions, Sec. 3.5.3.
His W function was “rediscovered” a few years ago, [14].

17Augustin Cauchy (1789–1857) is the father of modern analysis. He is the creator of complex
analysis, a centerpiece of which this formula plays a fundamental role.
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terms with negative indices are allowed to be different from zero; see Henrici loc.
cit. Sec. 1.8. If you substitute z for z−1 an infinite number of negative indices is
allowed, if the number of positive indices is finite.

Example 3.2.1.
A function may have several Laurent expansions (with different regions of

convergence), e.g.,

(z − a)−1 =







−
∑

∞

n=0 a
−n−1zn if |z| < |a|

∑

∞

m=1 a
m−1z−m if |z| > |a|.

The function 1/(z − 1) + 1/(z − 2) has three Laurent expansions, with validity
conditions |z| < 1, 1 < |z| < 2, 2 < |z|, respectively. The series contains both
positive and negative powers of z in the middle case only. The details are left for
Problem 4 (a).

Lemma 3.2.2 can, with some modifications, be generalized to Laurent series
(and to complex Fourier series), e.g.,(3.2.17) becomes

c̃n − cn = . . . cn−2Nr
−2N + cn−Nr

−N + cn+Nr
N + cn+2Nr

2N . . . (3.2.4)

Remark 3.2.1. The restriction to single-valued analytic functions is important
in this subsection. In this book we cannot entirely avoid to work with multi-
valued functions such as

√
z, ln z, zα, (α non-integer). We always work with such

a function, however, in some region where one branch of it, determined by some
convention, is single-valued. In the examples mentioned, the natural conventions
are to require the function to be positive when z > 1, and to forbid z to cross the
negative real axis. In other words, the complex plane has a cut along the negative
real axis. The annulus mentioned above is in these cases incomplete; its intersection
with the negative real axis is missing, and we cannot use a Laurent expansion.

For a function like ln
(z + 1

z − 1

)

, we can, depending on the context, cut out

either the interval [−1, 1] or the complement of this interval with respect to the
real axis. We then use an expansion into negative or into positive powers of z,
respectively.

If r1 < 1 < r2, we set F (t) = f(eit). Note that F (t) is a periodic function;
F (t+2π) = F (t). By (3.2.1) and (3.2.2), the Laurent series then becomes for z = eit

a Fourier series:

F (t) =

∞
∑

n=−∞

cne
int, cn =

1

2π

∫ π

−π

e−intF (t) dt. (3.2.5)

Note that c−m = O(rm
1 ) form→ +∞, and cn = O(r−n

2 ) for n→ +∞. The formulas
in (3.2.5), however, are valid in much more general situations, where cn → 0 much
more slowly, and where F (t) cannot be continued to an analytic function f(z), z =
reit, in an annulus. (In such a case r1 = 1 = r2, typically.)
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A Fourier series is often written in the following form,

F (t) = 1
2a0 +

∞
∑

k=1

(ak cos kt+ bk sin kt). (3.2.6)

Consider cke
ikt + c−ke

−ikt ≡ ak cos kt+ bk sinkt. Since e±ikt = cos kt± i sinkt, we
obtain for k ≥ 0:

ak = ck + c−k =
1

π

∫ π

−π

F (t) cos kt dt; bk = i(ck − c−k) =
1

π

∫ π

−π

F (t) sin kt dt.

(3.2.7)
Also note that ak − ibk = 2ck. If F (t) is real for t ∈ R then c−k = c̄k.

We mention without proof the important Riemann–Lebesgue theorem,18

by which the Fourier coefficients cn tend to zero as n → ∞ for any function that
is integrable (in the sense of Lebesgue), a fortiori for any periodic function that
is continuous everywhere. A finite number of finite jumps in each period are also
allowed.

A function F (t) is said to be of bounded variation in an interval if, in this
interval, it can expressed in the form F (t) = F1(t)−F2(t), where F1 and F2 are non-
decreasing bounded functions. A finite number of jump discontinuities are allowed.

The variation of F over the interval [a, b] is denoted
∫ b

a |dF (t)|. If F is differentiable

the variation of F equals
∫ b

a
|F ′(t)| dt.

Another classical result in the theory of Fourier series reads: If F (t) is of
bounded variation. in the closed interval [−π, π] then cn = O(n−1); see Titch-
marsh [45, § 13.21, §13.73]. This can be generalized. Suppose that F (p) is of bounded
variation on [−π, π], and that F (j) is continuous everywhere for j < p. Denote the

Fourier coefficients of F (p)(t) by c
(p)
n . Then

cn = (in)−pc(p)
n = O(n−p−1). (3.2.8)

This follows from the above classical result, after the integration of the formula for
cn in (3.2.2) by parts p times. Bounds for the truncation error of a Fourier series
can also be obtained from this. The details are left for Problem 4 (d), together with
a further generalization. A similar result is that cn = o(n−p) if F (p) is integrable,
hence a fortiori if F ∈ Cp.

In particular, we find for p = 1 (since
∑

n−2 is convergent) that the Fourier
series (3.2.2) converges absolutely and uniformly in R. It can also be shown that the
Fourier series is valid, i.e. the sum is equal to F (t).

3.2.2 The Cauchy–FFT Method

An alternative method for deriving coefficients of power series, when many terms
are needed is based on the following classic result. Suppose that the value f(z)

18Jean Baptist Joseph Fourier (1768–1830), French mathematician and physicist. In a pioneer-
ing publication about the flow of heat (1822), he utilized series of the type of equation (3.2.6).
B. Riemann (1826-1866), German mathematician, made fundamental contributions to Analysis
and Geometry. H. Lebesgue (1875-1941), French mathematician, created path-breaking general
concepts of measure and integral.
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of an analytic function can be computed at any point inside and on the circle
Cr = {z : |z − a| = r}, and set

M(r) = max |f(z)|, z ∈ Cr, z = a+ reiθ, z′ = a+ r′eiθ, (r′ < r).

Then the coefficients of the Taylor expansion around a are determined by Cauchy’s
formula,

an =
1

2πi

∫

Cr

f(z)

(z − a)(n+1)
dz =

r−n

2π

∫ 2π

0

f(a+ reiθ)e−niθ dθ. (3.2.9)

For a derivation, multiply the Taylor expansion (3.1.3) by (z − a)−n−1, integrate
term by term over Cr, and note that

1

2πi

∫

Cr

(z − a)j−n−1 dz =
1

2π

∫ 2π

0

rj−ne(j−n)iθ dθ =

{

1, if j = n;
0, if j 6= n.

(3.2.10)

The following inequalities are useful consequences of the definitions and of (3.2.9).

|an| ≤ r−nM(r), (3.2.11)

|Rn(z′)| ≤
∞
∑

j=n

|aj(z
′ − a)j | ≤

∞
∑

j=n

r−jM(r)(r′)j =
M(r)(r′/r)n

1 − r′/r
, 0 ≤ r′ < r.

This form of the remainder term of a Taylor series is useful in theoretical studies,
and also for practical purpose, if the maximum modulus M(r) is easier to estimate
than the nth derivative.

Set z = a + reiθ , ∆θ = 2π/N , and apply the trapezoidal rule to the second
integral in (3.2.9). Then19

an ≈ ãn ≡ 1

Nrn

N−1
∑

k=0

f(a+ reik∆θ)e−ink∆θ, n = 0 : N − 1. (3.2.12)

The approximate Taylor coefficients ãn, or rather the numbers a⋆
n = ãnNr

n, are here
expressed as a case of the (direct) Discrete Fourier Transform. More generally,
this transform maps an arbitrary sequence {αk}N−1

0 to a sequence {a⋆
n}N−1

0 , by the
following equations:

a⋆
n =

N−1
∑

k=0

αke
−ink∆θ, n = 0 : N − 1. (3.2.13)

The transform will be studied more systematically in Sec. 4.6.
If N is a power of 2, it is shown in Sec. 4.6 that, given the N values αk, k = 0 :

N−1, and e−i∆θ, no more than N log2N complex multiplications and additions are

19See (1.2.6). Note that the integrand has the same value for θ = 2π as for θ = 0. The terms
1

2
f0 and 1

2
fN that appear in the general trapezoidal rule can therefore in this case be replaced by

f0.
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needed for the computation of all the N coefficients a⋆
n, if an implementation of the

discrete Fourier transform known as the Fast Fourier Transform (FFT) is used.
This makes our theoretical considerations very practical. (Packages for interactive
mathematical computation usually contain commands related to FFT.)

It is also shown in Sec. 4.6 that the inverse of the discrete Fourier transform
(3.2.13) is given by the formulas,

αk = (1/N)

N−1
∑

n=0

a⋆
ne

ink∆θ, k = 0 : N − 1. (3.2.14)

It looks almost like the direct Discrete Fourier Transform (3.2.13), except for the
sign of i and the factor 1/N . It can therefore also be performed by means of
O(N logN) elementary operations, instead of the O(N3) operations that the most
obvious approach to this task would require, (i.e. by solving the linear system
(3.2.13)).

In our context, i.e. the computation of Taylor coefficients, we have, by (3.2.12)
and the line after that equation,

αk = f(a+ reik∆θ), a⋆
n = ãnNr

n. (3.2.15)

Set zk = a+ reik∆θ . Using (3.2.15), the inverse transformation then becomes,20

f(zk) =

N−1
∑

n=0

ãn(zk − a)n, k = 0 : N − 1. (3.2.16)

Since the Taylor coefficients are equal to f (n)(a)/n!, this is de facto a method
for the accurate numerical differentiation of an analytic function. If r and N are
chosen appropriately, it is more well-conditioned than most methods for numeri-
cal differentiation, such as the difference approximations mentioned in Chapter 1;
see also Sec. 3.3 and Chapter 4. It requires, however, complex arithmetic for a
convenient implementation. We call this the Cauchy–FFT method for Taylor
coefficients and differentiation.

The question arises, how to choose N and r. Theoretically, any r less than the
radius of convergence ρ would do, but there may be trouble with cancellation if r is
small. On the other hand, the truncation error of the numerical integration usually
increases with r. “Scylla and Charybdis situations” 21 like this are very common
with numerical methods.

It is typically the rounding error that sets the limit for the accuracy; it is
usually not expensive to choose r and N , so that the truncation error becomes
much smaller. A rule of thumb for this situation is to guess a value of n̂, i.e. how

20One interpretation of these equations is that the polynomial
PN−1

n=0
ãn(z −a)n is the solution

of a special, although important, interpolation problem for the function f , analytic inside a circle
in C.

21According to American Heritage Dictionary Scylla is a rock on the Italian side of the Strait
of Messina, opposite to the whirlpool Charybdis, personified by Homer (Ulysses) as a female sea
monster who devoured sailors. The problem is to navigate safely between them.
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many terms will be needed in the expansion, and then to try two values for N
(powers of 2) larger than n̂. If ρ is finite try r = 0.9ρ and r = 0.8ρ, and compare
the results. They may or may not indicate that some other values of N and r (and
perhaps also n̂) should also be tried. On the other hand, if ρ = ∞, try, e.g., r = 1
and r = 3, and compare the results. Again the results indicate whether or not more
experiments should be made.

One can also combine numerical experimentation with a theoretical analysis
of a more or less simplified model, including a few elementary optimization calcu-
lations. The authors take the opportunity to exemplify below this type of “hard
analysis” on this question.

We first derive two lemmas, which are important also in many other contexts.
First we have a discrete analogue of equation (3.2.10).

Lemma 3.2.1. Let p,N be integers. Then
∑N−1

k=0 e2πipk/N = 0, unless p = 0 or
p is a multiple of N . In these exceptional case every term equals 1, and the sum
equals N .

Proof. If p is neither 0 nor a multiple of N , the sum is a geometric series, the
sum of which is equal to (e2πip − 1)/(e2πip/N − 1) = 0. The rest of the statement is
obvious.

Lemma 3.2.2. Suppose that f(z) =
∑

∞

0 an(z−a)n is analytic in the disc |z−a| <
ρ. Let ãn be defined by (3.2.12), where r < ρ. Then

ãn − an = an+N rN + an+2N r2N + an+3N r3N + . . . , 0 ≤ n < N. (3.2.17)

Proof. Since ∆θ = 2π/N ,

ãn =
1

Nrn

N−1
∑

k=0

e−2πink/N
∞
∑

m=0

am

(

re2πik/N
)m

=
1

Nrn

∞
∑

m=0

amr
m

N−1
∑

k=0

e2πi(−n+m)k/N .

By the previous lemma, the inner sum of the last expression is zero, unless m − n
is a multiple of N . Hence (recall that 0 ≤ n < N),

ãn =
1

Nrn

(

anr
nN + an+N rn+NN + an+2N rn+2NN + . . .

)

,

from which equation (3.2.17) follows.

Let M(r) be the maximum modulus for the function f(z) on the circle Cr,
and denote by M(r)U an upper bound for the error of a computed function value
f(z), |z| = r, where U ≪ 1. Assume that rounding errors during the computation
of ãn are of minor importance.

Then, by (3.2.12), M(r)U/rn is a bound for the rounding error of ãn. (The
rounding errors during the computation can be included by a redefinition of U .)
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Next we shall consider the truncation error of (3.2.12). First we estimate the
coefficients that occur in (3.2.17) by means of max |f(z)| on a circle with radius r′;
r′ > r, where r is the radius of the circle used in the computation of the first N
coefficients. So, in (3.2.9) we substitute r′, j for r, n, respectively, and obtain the
inequality

|aj | ≤M(r′)(r′)−j , 0 < r < r′ < ρ.

The actual choice of r′, strongly depends on the function f .22 Put this inequality
into (3.2.17), where we shall choose r < r′ < ρ. Then

|ãn − an| ≤M(r′)
(

(r′)−n−NrN + (r′)−n−2Nr2N + (r′)−n−3N r3N + . . .
)

= M(r′)(r′)−n
(

(r/r′)N + (r/r′)2N + (r/r′)3N + . . .
)

=
M(r′)(r′)−n

(r′/r)N − 1
.

We make a digression here, because this is an amazingly good result. The trapezoidal
rule that was used in the calculation of the Taylor coefficients is typically expected
to have an error that is O

(

(∆θ)2
)

= O
(

N−2
)

. (As before, ∆θ = 2π/N .) This
application is, however, a very special situation: a periodic analytic function is
integrated over a full period. We shall return to results like this several times. In
this case, for fixed values of r, r′, the truncation error is O

(

(r/r′)N
)

= O
(

e−η/∆θ
)

,
where η > 0, ∆θ → 0+. This tends to zero faster than any power of ∆θ.

It follows that a bound for the total error of ãn, i.e. the sum of the bounds
for the rounding and the truncation errors, is given by

UM(r)r−n +
M(r′)(r′)−n

(r′/r)N − 1
, r < r′ < ρ. (3.2.18)

Example 3.2.2. “Scylla and Charybdis” in the Cauchy–FFT.
We shall discuss how to choose the parameters r and N , so that the absolute

error bound of an, given in (3.2.18) becomes uniformly small for (say) n = 0 : n̂.
1 + n̂ ≫ 1 is thus the number of Taylor coefficients requested. The parameter r′

does not belong to the Cauchy–FFT method, but it has to be chosen well in order
to make the bound for the truncation error realistic.

The discussion is rather technical, and you may omit it at a first reading.
It may, however, be useful to study this example later, because similar technical
subproblems occur in many serious discussions of numerical methods that contain
parameters that should be appropriately chosen.

First consider the rounding error. By the maximum modulus theorem, M(r)
is an increasing function, hence, for r > 1, maxnM(r)r−n = M(r) > M(1). On
the other hand, for r ≤ 1, maxnM(r)r−n = M(r)r−n̂.23 Let r∗ be the value of r,
for which this maximum is minimal. Note that r∗ = 1 unless M ′(r)/M(r) = n̂/r
for some r ≤ 1.

Then try to determine N and r′ ∈ [r∗, ρ) so that, for r = r∗, the bound for
the the second term of (3.2.18) becomes much smaller than the first term, i.e. the

22In rare cases we may choose r
′ = ρ.

23
n̂ was introduced in the beginning of this example.
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truncation error is made negligible compared to the rounding error. This works well
if ρ ≫ r∗. In such cases, we may therefore choose r = r∗, and the total error is
then just a little larger than UM(r∗)(r∗)−n̂.

For example, if f(z) = ez then M(r) = er, ρ = ∞. In this case r∗ = 1 (since
n̂≫ 1). Then we shall choose N and r′ = N , so that er′

/((r′)N −1) ≪ eU . One can
show that it is sufficient to choose N ≫ | lnU/ ln | lnU ||. For instance, if U = 10−15,
this is satisfied with a wide margin by N = 32. On a computer, the choice r = 1,
N = 32, gave (with 53 bits floating point arithmetic) an error less than 2 ·10−16.
The results were much worse for r = 10, and for r = 0.1; the maximum error of the
first 32 coefficients became 4·10−4 and 9·1013(!), respectively. In the latter case the
errors of the first 8 coefficients did not exceed 10−10, but the rounding error of an,
due to cancellations, increase rapidly with n.

If ρ is not much larger than r∗, the procedure described above may lead to a
value of N that is much larger than n̂. In order to avoid this, we now set n̂ = αN .
We now confine the discussion to the case that r < r′ < ρ ≤ 1, n = 0 : n̂. Then, with
all other parameters fixed, the bound in (3.2.18) is maximal for n = n̂. We simplify
this bound; M(r) is replaced by the larger quantity M(r′), and the denominator is
replaced by (r′/r)N .

Then, for given r′, α,N , we set x = (r/r′)N and determine x so that

M(r′)(r′)−αN (Ux−α + x)

is minimized. The minimum is obtained for x = (αU)1/(1+α), i.e. for r = r′x1/N ,
and the minimum is equal to24

M(r′)(r′)−nU1/(1+α)c(α), where c(α) = (1 + α)α−α/(1+α).

We see that the error bound contains the factor U1/(1+α). This is, e.g., pro-
portional to 2U1/2 for α = 1, and to 1.65U4/5 for α = 1

4 . The latter case is thus
much more accurate, but, for the same n̂, one has to choose N four times as large,
which leads to more than four times as many arithmetic operations. In practice, n̂
is usually given, and the order of magnitude of U can be estimated. Then α is to be
chosen to make a compromise between the requirements for a good accuracy and
for a small volume of computation. If ρ is not much larger than r∗, we may choose

N = n̂/α, x = (αU)1/(1+α), r = r′x1/N .

Experiments were made with f(z) = ln(1 − z). Then ρ = 1, M(1) =
∞. Take n̂ = 64, U = 10−15, r′ = 0.999. Then M(r′) = 6.9. For α =
1, 1/2, 1/4, we have N = 64, 128, 256, respectively. The above theory suggests
r = 0.764, 0.832, 0.894, respectively. The theoretical estimates of the absolute er-
rors become, 10−9, 2.4 10−12, 2.7 10−14, respectively. The smallest errors obtained
in experiments with these three values of α are, 6 10−10, 1.8 10−12, 1.8 10−14, which
were obtained for r = 0.766, 0.838, 0.898, respectively. So, the theoretical predic-
tions of these experimental results are very satisfactory.

24This is a rigorous upper bound of the error for this value of r, in spite of the simplifications
in the formulation of the minimization.
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3.2.3 Chebyshev Polynomials

The Chebyshev25 polynomials of the first kind are

Tn(z) = cosnφ, z = cosφ, (3.2.19)

Note that T0(z) = 1, T1(z) = z. That Tn(z) is an nth degree polynomial follows,
by induction, from the important recurrence relation,

Tn+1(z) = 2zTn(z) − Tn−1(z), (n ≥ 1), (3.2.20)

which follows from the well known trigonometric formula

cos(n+ 1)φ+ cos(n− 1)φ = 2 cosφ cosnφ.

We obtain,

T2(z) = 2z2 − 1; T3(z) = 4z3 − 3z; T4(z) = 8z4 − 8z2 + 1,

T5(z) = 16z5 − 20z3 + 5z; T7(z) = 64z7.− 112z5 + 56z3 − 7z
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Figure 3.2.1. The Chebyshev polynomial T12(x), x ∈ [−1, 1].

The Chebyshev polynomials of the second kind are

Un−1(z) =
sinnφ

sinφ
, where z = cosφ, (3.2.21)

satisfies the same recurrence relation, with the initial conditions U−1(z) = 0,
U0(z) = 1; its degree is n − 1. (When we write just Chebyshev polynomial we
refer to the first kind.)

The Chebyshev polynomial Tn(x) has n zeros in [−1, 1] given by

xk = cos
(2k − 1

n

π

2

)

, k = 1 : n, (3.2.22)

25Pafnuti Lvovich Chebyshev (1821–1894), Russian mathematician, pioneer in approximation
theory and the constructive theory of functions. His name has many different transcriptions, e.g.,
Tschebyscheff. This may explain why the polynomials that bear his name are denoted Tn(x). He
also gave important contributions to probability theory and number theory.
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the Chebyshev points, and n+ 1 extrema

x′k = cos
(kπ

n

)

, k = 0 : n. (3.2.23)

These results follow directly from the fact that cos(nφ) = 0 for φ = (2k+1)π/(2n),
and that cos(nφ) has maxima for φ = kπ/n.

Note that from (3.2.19) it follows that |Tn(x)| ≤ 1 for x ∈ [−1, 1], in spite
that its leading coefficient is as large as 2n−1. The Chebyshev polynomials have a
unique minimax property: (For a use of this property; see, Example 3.2.4.)

Example 3.2.3.
Figure 3.2.1 shows a plot of the Chebyshev polynomial T12(x) for x ∈ [−1, 1].

Setting z = 1 in the recurrence relation (3.2.20) and using T0(1) = T1(1) = 1, it
follows that Tn(1) = 1, n ≥ 0. From T ′

0(1) = 0 an T ′

1(1) = 1 and differentiating the
recurrence relation we get

T ′

n+1(z) = 2(zT ′

n(z) + Tn(z)) − T ′

n−1(z), (n ≥ 1).

It follows easily by induction that T ′

n(1) = n2, that is outside the interval [−1, 1]
the Chebyshev polynomials grow rapidly.

Lemma 3.2.3.
The Chebyshev polynomials have the following minimax property: Of all

nth degree polynomials with leading coefficient 1, the polynomial 21−nTn(x) has the
smallest magnitude 21−n in [−1, 1].

Proof. Suppose there were a polynomial pn(x), with leading coefficient 1 such that
|| < 21−n for all x ∈ [−1, 1]. Let x′k, k = 0 : n, be the abscissae of the extrema of
Tn(x). Then we would have

pn(x0) < 21−nTn(x′0), pn(x1) > 21−nTn(x′1), pn(x2) < 21−nTn(x′2), . . . ,

etc., up to x′n. From this it follows that the polynomial

pn(x) − 21−nTn(x)

changes sign in each of the n intervals (x′k, x
′

k+1), k = 0 : n− 1. This is impossible,
since the polynomial is of degree n− 1. This proves the minimax property.

Expansions in terms of Chebyshev polynomials are an important aid in study-
ing functions on the interval [−1, 1]. If one is working with a function f(t), t ∈ [a, b],
then one should make the substitution

t = 1
2 (a+ b) + 1

2 (b− a)x, (3.2.24)

which maps the interval [−1, 1] onto [a, b].
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Consider the approximation to the function f(x) = xn on [−1, 1] by a poly-
nomial of lower degree. From the minimax property of Chebyshev polynomials it
follows that the maximum magnitude of the error is minimized by the polynomial

p(x) = xn − 21−nTn(x). (3.2.25)

From the symmetry property Tn(−x) = (−1)nTn(x), it follows that this polynomial
has in fact degree n−2. The error 21−nTn(x) assumes its extrema 21−n in a sequence
of n+ 1 points, xi = cos(iπ/n). The sign of the error alternates at these points.

Suppose that one has obtained, e.g., by Taylor series, a truncated power series
approximation to a function f(x). By repeated use of (3.2.25), the series can be
replaced by a polynomial of lower degree with a moderately increased bound for the
truncation error. This process, called economization of power series often yields
a useful polynomial approximation to f(x) with a considerably smaller number of
terms than the original power series.

Example 3.2.4.
If the series expansion cosx = 1 − x2/2 + x4/24 − · · · is truncated after the

x4-term, the maximum error is 0.0014 in [−1, 1]. Since T4(x) = 8x4 − 8x2 + 1, it
holds that

x4/24 ≈ x2/24 − 1/192

with an error which does not exceed 1/192 = 0.0052. Thus the approximation

cosx = (1 − 1/192)− x2(1/2 − 1/24) = 0.99479 + 0.45833x2

has an error whose magnitude does not exceed 0.0052+0.0014< 0.007. This is less
than one-sixth of the error 0.042, which is obtained if the power series is truncated
after the x2-term.

Note that for the economized approximation cos(0) is not approximated by 1.
It may not be acceptable that such an exact relation is lost. In this example one
could have asked for a polynomial approximation to (1 − cosx)/x2 instead.

The Chebyshev polynomials are perhaps the most important example of a
family of orthogonal polynomials; see Sec. 4.5.5. The Chebyshev expansion
of a function f(z),

f(z) =

∞
∑

j=0

cjTj(z), (3.2.26)

have many useful properties. Set eiφ = w; φ and z may be complex. Then

z = 1
2 (w + w−1), Tn(z) = 1

2 (wn + w−n), (3.2.27)

w = z ±
√

z2 − 1, (z +
√

z2 − 1)n = Tn(z) + Un−1(z)
√

z2 − 1.

It follows that the Chebyshev expansion (3.2.26) formally corresponds to a sym-
metric Laurent expansion,

g(w) = f
(

1
2 (w + w−1)

)

=
∞
∑

−∞

ajw
j ; a−j = aj =

{

1
2cj , if j > 0;

c0, if j = 0.
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It can be shown, e.g., by the parallelogram law, that |z + 1|+ |z− 1| = |w|+ |w|−1,
Hence, if R > 1, z = 1

2 (w + w−1) maps the annulus {w : R−1 < |w| < R}, twice
onto an ellipse ER, determined by the relation,

ER = {z : |z − 1| + |z + 1| ≤ R+R−1}, (3.2.28)

with foci at 1 and −1. The axes are, respectively, R+R−1 and R−R−1, and hence
R is the sum of the semi-axes.

Note that, as R → 1, the ellipse degenerates into the interval [−1, 1]. As
R → ∞, it becomes close to the circle |z| < 1

2R. It follows from (3.2.27) etc. that

this family of confocal ellipses are level curves of |w| = |z ±
√
z2 − 1|. In fact, we

can also write,

ER =
{

z : 1 ≤ |z +
√

z2 − 1| ≤ R
}

. (3.2.29)

Theorem 3.2.4.
Let f(z) be real-valued for z ∈ [−1, 1], analytic and single-valued for z ∈

ER, R > 1. Assume that |f(z)| ≤M for z ∈ ER. Then26

∣

∣

∣f(x) −
n−1
∑

j=0

cjTj(x)
∣

∣

∣ ≤ 2MR−n

1 − 1/R
for x ∈ [−1, 1].

Proof. Set as before, z = 1
2 (w + w−1), g(w) = f

(

1
2 (w + w−1)

)

. Then g(w) is
analytic in the annulus R−1 + ǫ ≤ |w| ≤ R − ǫ, and hence the Laurent expansion
(1.2) converges there. In particular it converges for |w| = 1, hence the Chebyshev
expansion for f(x) converges when x ∈ [−1, 1].

Set r = R− ǫ. By Cauchy’s formula, we obtain, for j > 0,

|cj | = 2|aj| =
∣

∣

∣

2

2πi

∫

|w|=r

g(w)w−(j+1)dw
∣

∣

∣ ≤ 2

2π

∫ 2π

0

Mr−j−1rdφ = 2Mr−j .

We then obtain, for x ∈ [−1, 1],

∣

∣

∣
f(x) −

n−1
∑

j=0

cjTj(x)
∣

∣

∣
=
∣

∣

∣

∞
∑

n

cjTj(x)
∣

∣

∣
≤

∞
∑

n

|cj | ≤ 2M
∞
∑

n

r−j ≤ 2M
r−n

1 − 1/r
.

This holds for any ǫ > 0. We can here let ǫ→ 0 and thus replace r by R.

If a Chebyshev expansion converges rapidly, the truncation error is, by and
large, determined by the first few neglected terms. As indicated by Figures 3.2.1
and 3.2.5 the error curve is oscillating with slowly varying amplitude in [−1, 1]. In
contrast, the truncation error of a power series is proportional to a power of x.

Note that f(z) is allowed to have a singularity arbitrarily close to the interval
[−1, 1], and the convergence of the Chebyshev expansion will still be exponential,
although the exponential rate deteriorates, as R ↓ 1.

26A generalization to complex values of x is formulated in Problem 6.
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The numerical value of a truncated Chebyshev expansion can be computed
by means of Clenshaw’s algorithm which holds for any sum of the form S =
∑n

k=1 ckφk, where {φk} satisfies a three term recurrence relation

Theorem 3.2.5. Clenshaw’s algorithm [13]
Suppose that a sequence {pk} satisfies the three term recurrence relation

pk+1 = γkpk − βkpk−1, k = 0 : n− 1, (3.2.30)

where p−1 = 0. Then

S =

n
∑

k=0

ckpk = y0p0

where y0 is obtained by the recursion

yn+1 = 0, yn = cn,

yk = ck + γk−1yk+1 − βkyk+2, k = n− 1 : −1 : 0. (3.2.31)

Proof. Write the recursion (3.2.30) in matrix form as

















1

−γ0 1

β1 −γ1 1
. . .

. . .
. . .

βn−1 −γn−1 1





























p0

p1
...

pn−1

pn













=













p0

0
...
0
0













,

or Lp = g, g = p0e1, where L is unit lower triangular and e1 is the first column of
the unit matrix. Then

S = cT p = cTL−1g = gT (LT )−1c = gT y,

where y is the solution to the upper triangular system LT y = c. Solving this by
backsubstitution we get the recursion (3.2.31).

It can proved that Clenshaw’s algorithm is componentwise backward stable
with respect to the data γk and βk; see Smoktunowicz [41].

Clenshaw’s algorithm can also be applied to series of Legendre functions,
Bessel functions, Coulomb wave functions etc., because they satisfy recurrence re-
lations of this type, where the αk, γk depend on x; see Abramowitz and Stegun [1]
or any text on special functions. Other applications are the case when the φk are
the denominators or numerators of the approximants of a continued fraction; see
Sec. 3.5.1

Important properties of trigonometric functions and Fourier series can be re-
formulated in the terminology of Chebyshev polynomials. For example, they satisfy
certain orthogonality relations; see Sec. 4.5.5. Also results like (3.2.8) concerning
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how the rate of decrease of the coefficients or the truncation error of a Fourier series,
is related to the smoothness properties of its sum, can be translated to Chebyshev
expansions. So, even if F is not analytic, a Chebyshev expansion converges under
amazingly general conditions (unlike a power series), but the convergence is much
slower than exponential. A typical result reads: if f ∈ Ck[−1, 1], k > 0, there
exists a bound for the truncation error that decreases uniformly like O(n−k logn).
Sometimes convergence acceleration can be successfully applied to such series.

3.2.4 Perturbation Expansions

In the equations of applied mathematics it is often possible to identify a small
dimensionless parameter (say) ǫ, ǫ ≪ 1. The case when ǫ = 0 is called the reduced
problem or the unperturbed case, and one asks for a perturbation expansion,
i.e. an expansion of the solution of the perturbed problem into powers of the
perturbation parameter ǫ. In many cases it can be proved that the expansion has
the form c0+c1ǫ+c2ǫ

2+. . ., but there are also important cases, where the expansion
contains fractional or a few negative powers.

In this subsection, we consider an analytic equation φ(z, ǫ) = 0 and seek
expansions for the roots zi(ǫ) in powers of ǫ. This has some practical interest in its
own right, but it is mainly to be considered as a preparation for more interesting
applications of perturbation methods to more complicated problems. A simple
perturbation example for a differential equation is given in Problem 10.

If zi(0) is a simple root, i.e. if ∂φ/∂z 6= 0, for (z, ǫ) = (zi(0), 0), then a theorem
of complex analysis tells us that zi(ǫ) is an analytic function in a neighborhood of
the origin, hence the expansion

zi(ǫ) − zi(0) = c1ǫ+ c2ǫ
2 + . . .

has a positive (or infinite) radius of convergence. We call this a regular pertur-
bation problem. The techniques of power series reversion, presented in Sec. 3.1.4,
can often be applied after some preparation of the equation. Computer algebra
systems are also used in perturbation problems, if expansions with many terms are
needed.

Example 3.2.5.
We shall expand the roots of φ(z, ǫ) ≡ ǫz2 − z + 1 = 0 into powers of ǫ. The

reduced problem −z+1 = 0 has only one finite root z1(0) = 1. Set z = 1+xǫ, x =
c1 + c2ǫ+ c3ǫ

2 + . . .. Then φ(1 + xǫ, ǫ)/ǫ = (1 + xǫ)2 − x = 0, i.e.

(1 + c1ǫ+ c2ǫ
2 + . . .)2 − (c1 + c2ǫ+ c3ǫ

2 + . . .) = 0.

Matching the coefficients of ǫ0, ǫ1, ǫ2, we obtain the system

1 − c1 = 0 ⇒ c1 = 1;

2c1 − c2 = 0 ⇒ c2 = 2;

2c2 + c21 − c3 = 0 ⇒ c3 = 5;
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hence z1(ǫ) = 1 + ǫ+ 2ǫ2 + 5ǫ3 + . . ..
Now, the easiest way to obtain the expansion for the second root z2(ǫ), is to

use the fact that the sum of the roots of the quadratic equation equals ǫ−1, hence
z2(ǫ) = ǫ−1 − 1 − ǫ− 2ǫ2 + . . ..

Note the appearance of the term ǫ−1. This is due to a characteristic feature
of this example. The degree of the polynomial is lower for the reduced problem
than it is for ǫ 6= 0; one of the roots escapes to ∞ as ǫ → 0. This is an example of
a singular perturbation problem, an important type of problem for differential
equations; see Problem 10.

If ∂φ/∂z = 0, for some zi, the situation is more complicated; zi is a multiple
root, and the expansions look differently. If zi(0) is a k-fold root then there may
exist an expansion of the form

zi(ǫ) = c0 + c1ǫ
1/k + c2(ǫ

1/k)2 + . . .

for each of the k roots of ǫ, but this is not always the case. See (3.2.32) below, where
the expansions are of a different type. If one tries to determine the coefficients in an
expansion of the wrong form, one usually runs into contradictions, but the question
about the right form of the expansions still remains.

The answers are given by the classical theory of algebraic functions, where
Riemann surfaces and Newton polygons are two of the key concepts, see, e.g.,
Bliss [5]. We shall, for several reasons, not use this theory here. One reason is
that it seems hard to generalize some of the methods of algebraic function theory to
more complicated equations, such as differential equations. We shall instead use a
general balancing procedure, recommended in Lin and Segel [31, Sec. 9.1], where
it is applied to singular perturbation problems for differential equations too.

The basic idea is very simple: each term in an equation behaves like some
power of ǫ. The equation cannot hold, unless there is a β, such that a pair of terms
of the equation behave like Aǫβ, (with different values of A), and the ǫ-exponents of
the other terms are larger than or equal to β. (Recall that larger exponents make
smaller terms.)

Let us return to the previous example. Although we have already determined
the expansion for z2(ǫ) (by a trick that may not be useful for other problems than
single analytic equations), we shall use this task to illustrate the balancing proce-
dure. Suppose that

z2(ǫ) ∼ Aǫα, (α < 0).

The three terms of the equation ǫz2 − z + 1 = 0 then get the exponents

1 + 2α, α, 0.

Try the first two terms as the candidates for being the dominant pair. Then 1+2α =
α, hence α = −1. The three exponents become −1, −1, 0. Since the third exponent
is larger than the exponent of the candidates, this choice of pair seems possible, but
we have not shown that it is the only possible choice.

Now try the first and the third terms as candidates. Then 1 + 2α = 0, hence
α = − 1

2 . The exponent of the non-candidate is − 1
2 ≤ 0; this candidate pair is thus
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impossible. Finally, try the second and the third terms. Then α = 0, but we are
only interested in negative values of α.

The conclusion is that we can try coefficient matching in the expansion z2(ǫ) =
c−1ǫ

−1 + c0 + c1ǫ+ . . .. We don’t need to do it, since we know the answer already,
but it indicates how to proceed in more complicated cases.

Example 3.2.6.
First consider the equation z3 − z2 + ǫ = 0. The reduced problem z3 − z2 = 0

has a single root, z1 = 1, and a double root, z2,3 = 0. No root has escaped
to ∞. By a similar coefficient matching as in the previous example we find that
z1(ǫ) = 1− ǫ− 2ǫ2 + . . .. For the double root, set z = Aǫβ , β > 0. The three terms
of the equation obtain the exponents 3β, 2β, 1. Since 3β is dominated by 2β we
conclude that 2β = 1, i.e.β = 1/2,

z2,3(ǫ) = c0ǫ
1/2 + c1ǫ+ c2ǫ

3/2 + . . . .

By matching the coefficients of ǫ, ǫ3/2, ǫ2, we obtain the system

−c20 + 1 = 0 ⇒ c0 = ±1,

−2c0c1 + c30 = 0 ⇒ c1 = 1
2 ,

−2c0c2 − c21 + 2c20c1 + c1c
2
0 = 0 ⇒ c2 = ± 5

8 ,

hence z2,3(ǫ) = ±ǫ1/2 + 1
2ǫ± 5

8 ǫ
3/2 + . . ..

There are, however, equations with a double root, where the perturbed pair
of roots do not behave like ±c0ǫ1/2 as ǫ→ 0. In such cases the balancing procedure
may help. Consider the equation

(1 + ǫ)z2 + 4ǫz + ǫ2 = 0. (3.2.32)

The reduced problem reads z2 = 0, with a double root. Try z ∼ Aǫα, α > 0. The
exponents of the three terms become 2α, α + 1, 2. We see that α = 1 makes the
three exponents all equal to 2; this is fine. So, set z = ǫy. The equation reads,
after division by ǫ2, (1 + ǫ)y2 + 4y + 1 = 0, hence y(0) = a ≡ −2 ±

√
3. Coefficient

matching yields the result

z = ǫy = aǫ+ (−a+ a2/2)ǫ2 + . . . , a = −2 ±
√

3,

where all exponents are natural numbers.

If ǫ is small enough, the last term included can serve as an error estimate. A
more reliable error estimate (or even an error bound) can be obtained by inserting
the truncated expansion into the equation. It shows that the truncated expansion
satisfies a modified equation exactly. The same idea was indicated for a differential
equation in Example 3.1.2; see also Problem 10, and it can be applied to equations
of many other types.
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3.2.5 Ill-Conditioned Series

Slow convergence is not the only numerical difficulty that occurs in connection with
infinite series. There are also series with oscillating terms and a complicated type
of catastrophic cancellation. The size of some terms are many orders of magnitude
larger than the sum of the series. Small relative errors in the computation of the
large terms lead to a large relative error in the result. We call such a series ill-
conditioned.

An important class of sequences {cn}, are known as completely monotonic.

Definition 3.2.6.
A sequence {un} is completely monotonic for n ≥ a iff

un ≥ 0, (−∆)jun ≥ 0, ∀j ≥ 0, n ≥ a, (integers).

Such series have not been subject to many systematic investigations. One
simply tries to avoid them. For the important “special functions” of Applied Math-
ematics, such as Bessel Functions, confluent hypergeometric functions etc., there
usually exists expansions into descending powers of z that can be useful, when
|z| ≫ 1 and the usual series, in ascending powers, are divergent or ill-conditioned.
Another possibility is to use multiple precision in computations with ill-conditioned
power series; this is relatively expensive and laborious (but the difficulties should
not be exaggerated). There are, however, also other, less known, possibilities that
will now be exemplified. The subject is still open for new fresh ideas, and we hope
that the following pages and the related problems at the end of the section will
stimulate some readers to thinking about it.

First, we shall consider power series of the form

∞
∑

n=0

(−x)ncn
n!

, (3.2.33)

where x≫ 1, although not so large that there is risk for overflow. We assume that
the coefficients cn are positive and slowly varying (relatively to (−x)n/n!). The
ratio of two consecutive terms is

cn+1

cn

−x
n+ 1

≈ −x
n+ 1

.

We see that the series converges for all x, and that the magnitude increases iff
n + 1 < |x|. The term of largest magnitude is thus obtained for n ≈ |x|. Denote
its magnitude by M(x). Then, for x≫ 1, the following type of approximations can
be used, e.g., for crude estimates of the number of terms needed, the arithmetic
precision that is to be used etc. in computations related to ill-conditioned power
series:

M(x) ≈ cxe
x(2πx)−1/2, i.e., log10M(x)/c0 ≈ 0.43x− 1

2 log10(2πx). (3.2.34)



3.2. More About Series 53

This follows from the classical Stirling’s formula,

x! ∼ (x/e)x
√

2πx, x≫ 1, (3.2.35)

that gives x! with a relative error that is about 1
12x . You find a proof of this in

most textbooks on calculus. It will often be used in the rest of this book. A more
accurate and general version is given in Example 3.3.12 together with a few more
facts about the gamma function, Γ(z), an analytic function that interpolates the
factorial, Γ(n+ 1) = n! if n is a natural number. Sometimes the notation z! is used
instead of Γ(z + 1) also if z is not an integer.

There exist preconditioners, i.e. transformations that can convert classes
of ill-conditioned power series (with accurately computable coefficients) to more
well-conditioned problems. One of the most successful preconditioners known to
the authors is the following:27

∞
∑

n=0

(−x)ncn
n!

= e−x
∞
∑

m=0

xm(−∆)mc0
m!

. (3.2.36)

This identity is proved in Example . A hint to a shorter proof is given in Prob-
lem 3.21.

Example 3.2.7.
Consider the function

F (x) =
1

x

∫ x

0

1 − e−t

t
dt = 1 − x

22 · 1!
+

x2

32 · 2!
− . . . ,

i.e. F (x) is a particular case of (3.2.33) with cn = (n + 1)−2. We shall look
at three methods of computing F (x) for x = 10 : 10 : 50, named A,B,C. F (x)
decreases smoothly from 0.2880 to 0.0898. The computed values of F (x) are denoted
FA(x), FB(x), FC(x).

The coefficients cn, n = 0 : 119, are given in IEEE floating point, double
precision. The table of results show that, except for x = 50, 120 terms is much
more than necessary for the rounding of the coefficients to become the dominant
error source.

x 10 20 30 40 50

F (x) ≈ 0.2880 0.1786 0.1326 0.1066 0.0898

lasttermA 1 · 10−82 8 · 10−47 7 · 10−26 6 · 10−11 2 · 101

M(x;A) 3 · 101 1 · 105 9 · 108 1 · 1013 1 · 1017

|FA(x) − F (x)| 2 · 10−15 5 · 10−11 2 · 10−7 3 · 10−3 2 · 101

lasttermB 4 · 10−84 1 · 10−52 4 · 10−36 2 · 10−25 2 · 10−18

M(x;B) 4 · 10−2 2 · 10−2 1 · 10−2 7 · 10−3 5 · 10−3

|FC(x) − FB(x)| 7 · 10−9 2 · 10−14 6 · 10−17 0 1 · 10−16

27The notation ∆m
cn for high order differences was introduced in Sec. 1.1.3.
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Figure 3.2.2. Example 3.2.5A: Terms of (3.2.33), cn = (n+1)−2, x = 40,
no preconditioner. Note the scale, and look also in the table. Since the largest term
is 1013, it is no surprise that the relative error of the sum is not better than 0.03,
in spite that double precision floating point has been used.
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Example 3.1.17B. x=40.

Figure 3.2.3. Example 3.2.5B: cn = (n + 1)−2, x = 40, with the pre-
conditioner in (3.2.36). The terms of the right hand side, including the factor e−x,
becomes a so-called bell sum; the largest term is about 7 10−3. The computed sum
is correct to 16 decimal places.

A We use (3.2.33) without preconditioner. M(x;A) is the largest magnitude
of the terms of the expansion. M(x;A) · 10−16 tells the order of magnitude of the
effect of the rounding errors on the computed value FA(x). Similarly, the truncation
error is crudely estimated by lasttermA. See also Figure 3.1.6.

B. We use the preconditioner (3.2.36). In this example cn = (n + 1)−2. In
Problem 3.2.2(c) we find the following explicit expressions, related to the series on
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the right hand side of the preconditioner for this example.

(−∆)mc0 = (−∆)mcn|n=0 = c0(−∆)mx−2|x=1 =
c0

m+ 1

m
∑

k=0

1

k + 1
,

F (x) = c0e
−x

∞
∑

m=0

xm

m!

1

(m+ 1)

m
∑

k=0

1

k + 1
. (3.2.37)

Note that (−∆)mc0 is positive and smoothly decreasing; (This is not a special
feature only for this example, but it holds for sequences {cn}, which are completely
monotonic.)

The largest term is thus smaller than the sum, and the series (3.2.37) is well-
conditioned. It can be shown that, if x ≫ 1, the mth term is approximately
proportional to the value at m of the normal probability density with mean x and
standard deviation equal to

√
x; note the resemblance to a Poisson distribution.

Multiple precision is not needed here.
M(x;B) and lasttermB are defined analogously to M(x;A) and lasttermA,

The B-values are very different from the A-values. In fact they indicate that all
values of FB(x), referred to in the table, give F (x) to full accuracy.

C. The following expression for F (x),

xF (x) ≡
∞
∑

n=1

(−x)n

nn!
= −γ − lnx− E1(x); E1(x) =

∫

∞

x

e−t

t
dt, (3.2.38)

is valid for all x > 0; see [1, 5.1.11]. E1(x) is known as the exponential integral,
and

γ = 0.57721 56649 01532 86061 . . .

is the well known Euler’s constant. In the next section, an asymptotic expansion
for E1(x) for x ≫ 1 is derived, the first two terms of which are used here in the
computation of F (x;C) for the table above.

E1(x) ≈ e−x(x−1 − x−2), x≫ 1.

This approximation is the dominant part of the error of F (x;C); it is less than
e−x2x−4. F (x;C) gives full accuracy for (say) x > 25.

More examples of sequences, for which rather simple explicit expressions for
the high order differences are known, are given in Problem 3.21. The Kummer
confluent hypergeometric function M(a, b, x) was defined in (3.1.14). We have

M(a, b, x) = 1 +

∞
∑

n=1

(−x)ncn
n!

, cn = cn(a, b) =
a(a+ 1) . . . (a+ n− 1)

b(b+ 1) . . . (b + n− 1)
.

In our context b > a > 0, n > 0. The oscillatory series for M(a, b,−x), x > 0, is
ill-conditioned if x≫ 1.
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By Problem 3.21, (−∆)nc0(a, b) = cn(b − a, b) > 0, n > 0, hence the precon-
ditioner (3.2.36) yields the equation

M(a, b,−x) = e−xM(b− a, b, x), (3.2.39)

where the series on the right hand side has positive terms, because b−a > 0, x > 0,
and is a well-conditioned bell sum. The mth term has typically a sharp maximum
for m ≈ x; compare Figure 3.2.7. Equation (3.2.39) is in the theory of the confluent
hypergeometric functions known as Kummer’s first identity. It is emphasized
here, because several functions with famous names of their own are particular cases
of the Kummer function. These share the numerous useful properties of Kummer’s
function, e.g., the above identity; see the theory in Lebedev [30, Secs. 9.9–9.14]28 and
the formulas in [1, Ch. 13] in particular Table 13.6 of special cases. An important
example is the error function (see Example 1.2.3) that can be expressed in terms of
Kummer’s confluent hypergeometric as .

erf(x) =
2√
π

∫ x

0

e−t2 dt =
2x√
π
M

(

1

2
,
3

2
,−x2

)

. (3.2.40)

If we cannot find explicit expressions for high order differences, we can make a
difference scheme by the recurrence ∆m+1cn = ∆mcn+1 − ∆mcn. Unfortunately
the computation of a difference scheme suffers from numerical instability. Suppose
that the absolute errors of the cn are bounded by ǫ. Then the absolute errors can
become as large as 2ǫ in the first differences, 4ǫ in the second differences etc. More
generally, the absolute errors of (−∆)mcn can become as large as 2mǫ. (You find
more about this in Examples 3.2.2 and 3.2.3.) In connection with ill-conditioned
series, this instability is much more disturbing than in the traditional applications
of difference schemes to interpolation etc., where m is seldom much larger than 10.
Recall that m ≈ x for the largest term of the preconditioned series. So, if x > 53
even this term may not have any correct bit if IEEE double precision is used, and
many terms are needed after this.

So, during the computation of the new coefficients, (−∆)mcn, (only once for
the function F , and with double accuracy in the results), the old coefficients cn
must be available with multiple accuracy, and multiple precision must be used in
the computation of their difference scheme. Otherwise, we cannot evaluate the
series with a decent accuracy for much larger values of x than we could have done
without preconditioning. Note, however, that if satisfactory coefficients have been
obtained for the preconditioned series, double precision is sufficient when the series
is evaluated for large values of x. (It is different for method A above.)

Let F (x) be the function that we want to compute for x ≫ 1, where it is
defined by an ill-conditioned power series F1(x). A more general preconditioner can
be described as follows. Try to find a power series P (x) with positive coefficients
such that the power series P (x)F1(x) has less severe cancellations than than F1(x).

In order to distinguish between the algebraic manipulation and the numerical
evaluation of the functions defined by these series, we introduce the indeterminate

28Unfortunately, the formulation of Kummer’s first identity in [30, Eqn. (9.11.2)] contains a
serious sign error.



3.2. More About Series 57

x and describe a more general preconditioner as follows:

F∗

2
(x) = P(x) ·F1(x); F2(x) = F ∗

2 (x)/P (x). (3.2.41)

The second statement is a usual scalar evaluation (no bold-face). Here P (x) may
be evaluated by some other method than the power series, if it is more practical. If
P (x) = ex, and F1(x) is the series defined by (3.2.33), then it can be shown that
F2(x) is mathematically equivalent to the right hand side of (3.2.36); see Exam-
ple 3.2.1. In these cases F2(x) has positive coefficients.

If, however, F1(x) has a positive zero, this is also a zero of F ∗

2 (x), and hence it is
impossible that all coefficients of the series F∗

2
(x) have the same sign. Nevertheless,

the following example shows that the preconditioner (3.2.41) can sometimes be
successfully used in such a case too.

Table 3.2.1.

1 x 10 20 30 40 50

2 J0(x) ≈ −2 · 10−1
2·10−1 −9 · 10−2

7 · 10−3
6 · 10−2

3 N1(x) 26 41 55 69 82

4 J(x; N1) − J0(x) 9 · 10−14
3 · 10−10 −2 · 10−6 −1 · 10−1 −2 · 102

5 N2(x) 16 26 36 46 55

6 IJ(x; N2) ≈ −7 · 102
7 · 106 −7 · 1010

1 · 1014
2 · 1019

7 I0(x) ≈ 3 · 103
4 · 107

8 · 1011
1 · 1016

3 · 1020

8 IJ(x)/I0(x) − J0(x) 3 · 10−17
2 · 10−14

3 · 10−13 −5 · 10−12
2 · 10−10

Example 3.2.8.
The two functions

J0(x) =

∞
∑

n=0

(−1)n (x2/4)n

(n!)2
, I0(x) =

∞
∑

n=0

(x2/4)n

(n!)2
,

are examples of Bessel functions of the first kind; I0 is nowadays called a modified
Bessel function. J0(x) is oscillatory and bounded, while I0(x) ∼ ex/

√
2πx for x≫ 1.

Since all coefficients of I0 are positive, we shall set P = I0, F1 = J0, and try

F∗

2(x) = IJ(x) ≡ I0(x) · J0(x), F2(x) = F ∗

2 (x)/I0(x),

as a preconditioner for the power series for J0(x), which is ill-conditioned if x≫ 1.
In Table 3.2.2 line 2 and line 7 are obtained from the fully accurate built-in functions
for J0(x) and I0(x). J(x;N1) is computed in IEEE double precision from N1 terms
of the above power series for J0(x). N1 = N1(x) is obtained by a termination
criterion that should give full accuracy or, if the estimate of the effect of the rounding
error is bigger than 10−16, the truncation error should be smaller than this estimate.
We omit the details; see also Problem 12 (d).

The coefficients of IJ(x) are obtained from the second expression for γm given
in Problem 12 (c). N2 = N2(x) is the number of terms used in the expansion
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of IJ(x), by a termination criterion, similar to the one described for J(x;N1).
Compared to line 4, line 8 is a remarkable improvement, obtained without the use
of multiple precision.

For series of the form
∞
∑

n=0

an
(−x2)n

(2n)!

one can generate a preconditioner from P (x) = coshx. This can also be applied to
J0(x) and other Bessel functions; see Problem 12 (e).

3.2.6 Divergent or Semiconvergent Series

That a series is convergent is no guarantee that it is numerically useful. In this
section, we shall see examples of the reverse situation: a divergent series can be of
use in numerical computations. This sounds strange, but it refers to series where
the size of the terms decreases rapidly at first and increases later, and where an
error bound (see Figure 3.2.4), can be obtained in terms of the first neglected term.
Such series are sometimes called semiconvergent. An important subclass are the
asymptotic series; see below.

Example 3.2.9.
We shall derive a semiconvergent series for the computation of Euler’s function

f(x) = exE1(x) = ex

∫

∞

x

e−tt−1 dt =

∫

∞

0

e−u(u+ x)−1 du

for large values of x. (The second integral was obtained from the first by the
substitution t = u + x.) The expression (u + x)−1 should first be expanded in a
geometric series with remainder term, valid even for u > x,

(u+ x)−1 = x−1(1 + x−1u)−1 = x−1
n−1
∑

j=0

(−1)jx−juj + (−1)n(u+ x)−1(x−1u)n

We shall frequently use the well known formula
∫

∞

0

uje−u du = j! = Γ(j + 1).

We write f(x) = Sn(x) +Rn(x), where

Sn(x) = x−1
n−1
∑

j=0

(−1)jx−j

∫

∞

0

uje−udu =
1

x
− 1!

x2
+

2!

x3
− . . .+ (−1)n−1 (n− 1)!

xn
,

Rn(x) = (−1)n

∫

∞

0

(u+ x)−1
(u

x

)n

e−udu.
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Figure 3.2.4. The first 11 error estimates of the semiconvergent series of
Example 3.2.7; see (3.2.43). The smallest actual error is only 5% of the smallest
error estimate.

The terms in Sn(x) qualitatively behave as in Figure 3.2.4. The ratio between
the last term in Sn+1 and the last term in Sn is

− n!

xn+1

xn

(n− 1)!
= −n

x
, (3.2.42)

and since the absolute value of that ratio for fixed x is unbounded as n → ∞, the
sequence {Sn(x)}∞n=1 diverges for every positive x. But since sign Rn(x) = (−1)n

for x > 0, it follows from Theorem 3.1.4 that

f(x) =
1

2

(

Sn(x) + Sn+1(x)
)

± 1

2

n!

xn+1
. (3.2.43)

The idea is now to choose n so that the estimate of the remainder is as small
as possible. According to (3.2.42), this happens when n is equal to the integer part
of x. For x = 5 we choose n = 5,

S5(5) = 0.2 − 0.04 + 0.016− 0.0096 + 0.00768 = 0.17408,

S6(5) = S5(5) − 0.00768 = 0.16640,

which gives f(5) = 0.17024 ± 0.00384. The correct value is 0.17042, so the actual
error is only 5% of the error bound.

For larger values of x the accuracy attainable increases. One can show that
the bound for the relative error using the above computational scheme decreases
approximately as (π·x/2)1/2e−x; an extremely good accuracy for large values of x,
if one stops at the smallest term. It can even be improved further, by the use of
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the convergence acceleration techniques presented in Sec. 3.4, notably the repeated
averages algorithm, also known as the Euler transformation; see Sec. 3.4.3. The
algorithms for the transformation of a power series into a rapidly convergent con-
tinued fraction, mentioned in Sec. 3.5.1, can also be successfully applied to this
example and to many other divergent expansions.

One can derive the same series expansion as above by repeated integration by
parts. This is often a good way to derive numerically useful expansions, convergent
or semi-convergent, with a remainder in the form of an integral. For convenient
reference, we formulate this as a lemma that is easily proved by induction and the
mean value theorem of integral calculus. See Problem 13 for applications.

Lemma 3.2.7. Repeated Integration by Parts.

Let F ∈ Cp(a, b), let G0 be a piecewise continuous function, and let G0, G1, . . .
be a sequence of functions such that G′

j+1(x) = Gj(x) with suitably chosen constants
of integration. Then

∫ b

a

F (t)G0(t) dt =

p−1
∑

j=0

(−1)jF (j)(t)Gj+1(t)
∣

∣

∣

b

t=a
+ (−1)p

∫ b

a

F (p)(t)Gp(t) dt.

The sum is the “expansion”, and the last integral is the “remainder”. If Gp(t) has
a constant sign in (a, b), the remainder term can also be written in the form

(−1)pF (p)(ξ)(Gp+1(b) −Gp+1(a)), ξ ∈ (a, b).

The expansion in Lemma 3.2.7 is valid as an infinite series, if and only if the
remainder tends to 0 as p → ∞. Even if the sum converges as p → ∞, it may
converge to the wrong result.

The series in Example 3.2.9 is an expansion in negative powers of x, with the
property that for all n, the remainder, when x→ ∞, approaches zero faster than the
last included term. Such an expansion is said to represent f(x) asymptotically
as x→ ∞. Such an asymptotic series can be either convergent or divergent (semi-
convergent). In many branches of applied mathematics, divergent asymptotic series
are an important aid, though they are often needlessly surrounded by an air of
mysticism.

It is important to appreciate that an asymptotic series does not define a sum
uniquely. For example f(x) = e−x is asymptotically represented by the series
∑

0x−j , as x→ ∞. So e−x, (and many other functions), can therefore be added to
the function, for which the expansion was originally obtained.

Asymptotic expansions are not necessarily expansions into negative powers of
x. An expansion into positive powers of x− a,

f(x) ∼
n−1
∑

ν=0

cν(x− a)ν +Rn(x),
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represents f(x) asymptotically when x→ a if

lim
x→a

(x − a)−(n−1)Rn(x) = 0.

Asymptotic expansions of the error of a numerical method into positive powers of
a step length h are of great importance in the more advanced study of numeri-
cal methods. Such expansions form the basis of simple and effective acceleration
methods for improving numerical results; see Sec. 3.4.

Review Questions

1. Give the Cauchy formula for the coefficients of Taylor and Laurent series, and
describe the Cauchy–FFT method. Give the formula for the coefficients of
a Fourier series. For which of the functions in Table 3.1.1 does also another
Laurent expansion exist?

2. Describe by an example the balancing procedure that was mentioned in the
subsection about perturbation expansions.

3. Define the Chebyshev polynomials, and tell some interesting properties of
these and of Chebyshev expansions. For example, what do you know about the
speed of convergence of a Chebyshev expansion for various classes of functions?
(The detailed expressions are not needed.)

4. Describe and exemplify, what is meant by an ill-conditioned power series and
a preconditioner for such a series.

5. Define what is meant, when one says that the series
∑

∞

0 anx
−n

(a) converges to a function f(x) for x ≥ R;

(b) represents a function f(x) asymptotically as x→ ∞.

(c) Give an example of a series that represents a function asymptotically as
x→ ∞, although it diverges for every finite positive x.

(d) What is meant by semi-convergence? Say a few words about termination
criteria and error estimation.

Problems and Computer Exercises

1. Some of the functions appearing in Table 3.1.1, in Problem 6, and in other
examples and problems are not single-valued in the complex plane. Brush up
your Complex Analysis, and find out how to define the branches, where these
expansions are valid, and (if necessary) define cuts in the complex plane that
must not be crossed. It turns out not to be necessary for these expansions.
Why?

(a) If you have access to programs for functions of complex variables (or to
commands in some package for interactive computation), find out the con-
ventions used for functions like square root, logarithm, powers, arctan etc.
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If the manual does not give enough detail, invent numerical tests, both with
strategically chosen values of z and with random complex numbers in some
appropriate domain around the origin. For example, do you obtain

ln

(

z + 1

z − 1

)

− ln(z + 1) + ln(z − 1) = 0, ∀z?

Or, what values of
√
z2 − 1 do you obtain for z = ±i? What values should

you obtain, if you want the branch which is positive for z > 1?

(b) What do you obtain, if you apply Cauchy’s coefficient formula or the
Cauchy–FFT method to find a Laurent expansion for

√
z? Note that

√
z is

analytic everywhere in an annulus, but that does not help. The expansion is
likely to become weird. Why?

2. (a) Apply (on a computer) the Cauchy–FFT method to find the Maclaurin
coefficients an of (say) ez, ln(1 − z) and (1 + z)1/2. Make experiments with
different values of r and N , and compare with the exact coefficients. This
presupposes that you have access to good programs for complex arithmetic
and FFT.

Try to summarize your experiences of how the error of an depends on r, N .
You may find some guidance in Example 3.2.2.

0 0.5 1 1.5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5
−1

−0.5

0

0.5

1
x 10

−3

Figure 3.2.5. Illustrations to Problem 3 c. Upper part: The function
f(x) = 1

1+x2 , x ∈ [0, 1.5]. Lower part: The error of the expansion of f(x) in a

sum of Chebyshev polynomials {Tn(x/1.5)}, n ≤ 10. The scale is 10−3 in the lower
curve.

3. (a) Suppose that r is located inside the unit circle; t is real. Show that

1 − r2

1 − 2r cos t+ r2
= 1 + 2

∞
∑

n=1

rn cosnt,
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2r sin t

1 − 2r cos t+ r2
= 2

∞
∑

n=1

rn sinnt.

Hint: First suppose that r is real. Set z = reit. Show that the two series
are the real and imaginary parts of (1 + z)/(1 − z). Finally make analytic
continuation of the results.

(b) Let a be positive, x ∈ [−a, a], while w is complex, w /∈ [−a, a]. Let
r = r(w), |r| < 1 be a root of the quadratic r2 − (2w/a)r + 1 = 0. Show that
(with an appropriate definition of the square root)

1

w − x
=

1√
w2 − a2

·
(

1 + 2
∞
∑

n=1

rnTn

(x

a

)

)

, (w /∈ [−a, a], x ∈ [−a, a]).

(c) Find the expansion of 1/(1 + x2) for x ∈ [−1.5, 1.5] into the polynomials
Tn(x/1.5). Explain the order of magnitude of the error and the main features
of the error curve in Figure 3.2.5.

Hint: Set w = i, and take the imaginary part. Note that r becomes imaginary.

4. (a) Find the Laurent expansions for

f(z) = 1/(z − 1) + 1/(z − 2).

(b) How do you use the Cauchy–FFT method for finding Laurent expansions?
Test your ideas on the function in the previous subproblem (and on a few
other functions). There may be some pitfalls with the interpretation of the
output from the FFT program, related to so-called aliasing; see Sec. 4.6.4 and
Strang [44].

(c) As in Sec. 3.2.1, suppose that F (p) is of bounded variation in [−π, π] and

denote the Fourier coefficients of F (p) by c
(p)
n . Derive the following general-

ization of (3.2.8):

cn =
(−1)n−1

2π

p−1
∑

j=0

F (j)(π) − F (j)(−π)

(in)j+1
+

c
(p)
n

(in)p
,

and show that if we add the condition that F ∈ Cj [−∞,∞], j < p, then the
asymptotic results given in (and after) (3.2.8) hold.

(d) Let z = 1
2 (w + w−1). Show that |z − 1| + |z + 1| = |w| + |w|−1.

Hint: Use the parallelogram law, |p− q|2 + |p+ q|2 = 2(|p|2 + |q|2).
5. (a) The expansion of arcsinh t into powers of t, truncated after t7, is obtained

from Problem 1.6 (b). Using economization of a power series construct from
this a polynomial approximation of the form c1t+c3t

3 in the interval − 1
2 ≤ t ≤

1
2 . Give bounds for the truncation error for the original truncated expansion
and for the economized expansion.

(b) The graph of T12(x) for x ∈ [−1, 1] is shown in Figure 3.2.1. Draw the
graph of T12(x) for (say) x ∈ [−1.1, 1.1].
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6. Show the following generalization of Theorem 3.2.4. Assume that |f(z)| ≤M
for z ∈ ER. Let |ζ| ∈ Eρ, 1 < ρ < r ≤ R − ǫ. Then the Chebyshev expansion
of f(ζ) satisfies the inequality

∣

∣

∣

∣

f(ζ) −
n−1
∑

j=0

cjTj(ζ)

∣

∣

∣

∣

≤ 2M(ρ/R)n

1 − ρ/R
.

Hint: Set ω = ζ +
√

ζ2 − 1, and show that |Tj(ζ)| = | 12 (ωj + ω−j)| ≤ ρj .

7. Compute a few terms of the expansions into powers of ǫ or k of each of the
roots of the following equations, so that the error is O(ǫ2) or O(k−2) (ǫ is
small and positive; k is large and positive). Note that some terms may have
fractional or negative exponents. Also try to fit an expansion of the wrong
form in some of these examples, and see what happens.

(a) (1 + ǫ)z2 − ǫ = 0; (b) ǫz3 − z2 + 1 = 0; (c) ǫz3 − z + 1 = 0;

(d) z4 − (k2 + 1)z2 − k2 = 0, (k2 ≫ 1).

8. Modify Clenshaw’s algorithm to a formula for the derivative of an orthogonal
expansion.

9. (a) Let αj , j = 1 : n be the zeros of the Chebyshev polynomial Tn(x), n ≥
1. (There are, of course, simple trigonometric expressions for them.) Apply

Clenshaw’s algorithm to compute
∑n−1

m=0 Tm(α1)Tm(x), for x = αj , j = 1 : n.
It turns out that the results are remarkably simple. (An explanation to this
will be found in Sec. 4.5.

(b) Show that S =
∑n−1

k=0 ckφk can be computed by a forward version of
Clenshaw’s algorithm that reads

y−2 = 0; y−1 = 0;

for k = 0 : n− 1,

yk = (−yk−2 + αkyk−1 + ck)/γk+1;

end

S = cnφn + γnyn−1φn−1 − yn−2φn.

Add this version as an option to your program, and study Numerical Recipes
[36, Sec. 5.4], from which this formula is quoted (with adaptation to our nota-
tion etc.). Make some test example of your own choice.

10. The solution of the boundary value problem

(1 + ǫ)y′′ − ǫy = 0, y(0) = 0, y(1) = 1,

has an expansion of the form y(t; ǫ) = y0(t) + y1(t)ǫ+ y2(t)ǫ
2 + . . ..

(a) By coefficient matching, set up differential equations and boundary condi-
tions for y0, y1, y2, and solve them. You naturally use the boundary conditions
of the original problem for y0. Make sure you use the right boundary condi-
tions for y1, y2.
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(b) Set R(t) = y0(t) + ǫy1(t) − y(t; ǫ). Show that R(t) satisfies the (modified)
differential equation

(1 + ǫ)R′′ − ǫR = ǫ2(7t− t3)/6, R(0) = 0, R(1) = 0.

11. (a) Apply Kummer’s first identity (3.2.39) to the error function erf(x), to show
that

erf(x) =
2x√
π
e−x2

M
(

1,
3

2
, x2
)

=
2x√
π
e−x2

(

1 +
2x2

3
+

(2x2)2

3 · 5 +
(2x2)3

3 · 5 · 7 + . . .
)

.

Why is this series well conditioned? (Note that it is a bell sum; compare
Figure 3.2.7.) Investigate the largest term, rounding errors, truncation errors
and termination criterion etc. in the same way as in (a).

(b) erfc(x) has a semi-convergent expansion for x≫ 1 that begins

erfc(x) = 1 − erf(x) =
2√
π

∫

∞

x

e−t2 dt =
e−x2

x
√
π

(

1 − 1

2x2
+

3

4x4
− 15

8x6
+ . . .

)

.

Give an explicit expression for the coefficients, and show that the series di-
verges for every x. Where is the smallest term? Estimate its size.

Hint: Set t2 = x2 + u, and proceed analogously to Example 3.2.8. See Prob-
lem 3.1.7 (c), α = 1

2 , about the remainder term. Alternatively, apply repeated
integration by parts. It may be easier to find the remainder in this way.

12. Other notations for series, with application to Bessel functions.

(a) Set

f(x) =
∞
∑

n=0

anx
n

n!
; g(x) =

∞
∑

n=0

bnx
n

n!
; h(x) =

∞
∑

n=0

cnx
n

n!
;

φ(w) =

∞
∑

n=0

αnw
n

n!n!
; ψ(w) =

∞
∑

n=0

βnw
n

n!n!
; χ(w) =

∞
∑

n=0

γnw
n

n!n!
.

Let h(x) = f(x) · g(x); χ(w) = φ(w) · ψ(w). Show that

cn =

n
∑

j=0

(

n

j

)

ajbn−j; γn =

n
∑

j=0

(

n

j

)2

αjβn−j .

Derive analogous formulas for series of the form
∑

∞

n=0 anw
n/(2n)! etc..

Suggest how to divide two power series in these notations.

(b) Let aj = (−1)ja′j; g(x) = ex. Show that

cn =

n
∑

j=0

(

n

j

)

(−1)ja′j .

Comment: By (3.2.1), this can can also be written cn = (−1)n∆na0. This
proves the mathematical equivalence of the preconditioners (3.1.55) and (3.1.59)
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if P (x) = ex.

(c) Set, according to Example 3.2.8 and (a) (of this problem), w = −x2/4,

J0(x) =

∞
∑

n=0

(−1)nwn

n!n!
; I0(x) =

∞
∑

n=0

wn

n!n!
; IJ(x) ≡ I0(x)J0(x) =

∞
∑

n=0

γnw
n

n!n!
.

Show that

γn =

n
∑

j=0

(−1)j

(

n

j

)(

n

n− j

)

=

{

(−1)m
(

2m
m

)

, if n = 2m;
0, if n = 2m+ 1.

Hint: The first expression for γn follows from (a). It can be interpreted as the
coefficient of tn in the product (1 − t)n(1 + t)n. The second expression for γn

is the same coefficient in (1 − t2)n.

(d) The second expression for γn in (c) is used in Example 3.2.8.29 Recon-
struct and extend the results of that example. Design a termination criterion.
Where is the largest modulus of a term of the preconditioned series, and how
large is it approximately? Make a crude guess in advance of the rounding
error in the preconditioned series.

*(e) Show that the power series of J0(x) can be written in the form

∞
∑

n=0

an
(−x2)n

(2n)!
,

where an is positive and decreases slowly and smoothly.

Hint: Compute an+1/an.
Try preconditioning with P (x) = coshx. At the time of writing the authors
do not know whether this is useful without multiple precision or not.

*(f) It is known; see Lebedev [30, (9.13.11)], that

J0(x) = e−ixM
(

1
2 , 1; 2ix

)

,

where M(a, b, c) is Kummer’s confluent hypergeometric function, this time
with an imaginary argument. Show that Kummer’s first identity is unfortu-
nately of no use here for preconditioning the power series.

Comment: Most of the formulas and procedures in this problem can be gener-
alized to the series for the Bessel functions of the first kind of general integer
order, (z/2)−nJn(x). These belong to the most studied functions of Applied
Mathematics, and there exist more efficient methods for computing them; see,
e.g., [36, Chapter 6]. This problem shows, however, that preconditioning can
work well for a non-trivial power series, and it is worth to be tried, e.g., for
other power series that may occur in connection with new applications.

29It is much better conditioned than the first expression. This may be one reason why multiple
precision is not needed here.
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13. (a) Derive the expansion of Example 3.2.5 by repeated integration by parts.

(b) Derive the Maclaurin expansion with the remainder according to (3.1.5)
by the application of repeated integration by parts to the equation

f(z) − f(0) = z

∫ 1

0

f ′(zt) d(t− 1).

3.3 Difference Operators and Operator Expansions

3.3.1 Properties of Difference Operators

Difference operators are handy tools for the derivation, analysis, and practical ap-
plication of numerical methods for many problems for interpolation, differentiation,
and quadrature of a function in terms of its values at equidistant arguments. The
simplest notations for difference operators and applications to derivatives, were
mentioned in Sec. 1.2.3.

Let y denote a sequence {yn}. Then we define the shift operator E (or
translation operator) and the forward difference operator ∆ by the relations

Ey = {yn+1}, ∆y = {yn+1 − yn},

(see Sec. 1.2). E and ∆ are thus operators which map one sequence to another
sequence. Note, however, that if yn is defined for a ≤ n ≤ b only, then Eyb is
not defined, and the sequence Ey has fewer elements than the sequence y. (It is
therefore sometimes easier to extend the sequences to infinite sequences, e.g., by
adding zeros in both directions outside the original range of definition.)

These operators are linear, i.e. if α, β are real or complex constants and if
y, z are two sequences, then E(αy + βz) = αEy + βEz, and similarly for ∆.

Powers of E and ∆ are defined recursively, i.e.

Eky = E(Ek−1y), ∆ky = ∆(∆k−1y).

By induction, the first relation yields Eky = {yn+k}. We extend the validity of this
relation to k = 0 by setting E0y = y and to negative values of k. ∆ky is called
the kth difference of the sequence y. We make the convention that ∆0 = 1. There
will be little use of ∆k for negative values of k in this book, although ∆−1 can be
interpreted as a summation operator.

Note that ∆y = Ey − y, and Ey = y + ∆y for any sequence y. It is therefore
convenient to express these as equations between operators:

∆ = E − 1, E = 1 + ∆.

The identity operator is in this context traditionally denoted by 1. It can be shown
that all formulas derived from the axioms of commutative algebra can be used for
these operators, for example, the binomial theorem for positive integral k.

∆k = (E − 1)k =
k
∑

j=0

(−1)k−j

(

k

j

)

Ej , Ek = (1 + ∆)k =
k
∑

j=0

(

k

j

)

∆j , (3.3.1)
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(3.3.2)

(∆ky)n =

k
∑

j=0

(−1)k−j

(

k

j

)

yn+j, yn+k = (Eky)n =

k
∑

j=0

(

k

j

)

(∆jy)n. (3.3.3)

We abbreviate the notation further and write, for example, Eyn = yn+1 instead of
(Ey)n = yn+1, and ∆kyn instead of (∆ky)n. However, it is important to remember
that ∆ operates on sequences and not on elements of sequences. Thus, strictly
speaking, this abbreviation is incorrect, though convenient. The formula for Ek

will, in next subsection, be extended to an infinite series for non-integral values of
k, but that is beyond the scope of algebra.

A difference scheme consists of a sequence and its difference sequences,
arranged in the following way:

y0
∆y0

y1 ∆2y0
∆y1 ∆3y0

y2 ∆2y1 ∆4y0
∆y2 ∆3y1

y3 ∆2y2
∆y3

y4

A difference scheme is best computed by successive subtractions; the formulas in
(3.3.1) are used mostly in theoretical contexts.

In many applications the quantities yn are computed in increasing order
n = 0, 1, 2, . . ., and it is natural that a difference scheme is constructed by means
of the quantities previously computed. One therefore introduces the backward
difference operator ∇yn = yn − yn−1 = (1 − E−1)yn. For this operator we have

∇k = (1 − E−1)k, E−k = (1 −∇)k. (3.3.4)

Note the reciprocity in the relations between ∇ and E−1.
Any linear combination of the elements yn, yn−1, . . . yn−k can also be ex-

pressed as a linear combination of yn, ∇yn, . . . ,∇kyn, and vice versa 30 . For
example, yn + yn−1 + yn−2 = 3yn − 3∇yn + ∇2yn, because
1 + E−1 + E−2 = 1 + (1 − ∇) + (1 − ∇)2 = 3 − 3∇ + ∇2. By the reciprocity, we
also obtain yn + ∇yn + ∇2yn = 3yn − 3yn−1 + yn−2.

30An analogous statement holds for the elements yn, yn+1, . . . , yn+k and forward differences.
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In this notation the difference scheme reads

y0
∇y1

y1 ∇2y2
∇y2 ∇3y3

y2 ∇2y3 ∇4y4
∇y3 ∇3y4

y3 ∇2y4
∇y4

y4

In the backward difference scheme the subscripts are constant along diagonals di-
rected upwards (backwards) to the right, while, in the forward difference scheme,
subscripts are constant along diagonals directed downwards (forwards). Note, e.g.,
that ∇kyn = ∆kyn−k. In a computer, a backward difference scheme is preferably
stored as a lower triangular matrix.

Example 3.3.1.
Part of the difference scheme for the sequence y = {. . . , 0, 0, 0, 1, 0, 0, 0, . . .} is

given below.

0 0 1 −7

0 0 1 −6 28

0 1 −5 21

0 1 −4 15 −56

1 −3 10 −35

1 −2 6 −20 70

−1 3 −10 35

0 1 −4 15 −56

0 −1 5 −21

0 0 1 −6 28

0 0 −1 7

This example shows the effect of a disturbance in one element on the sequence
of the higher differences. Because the effect broadens out and grows quickly, dif-
ference schemes are useful in the investigation and correction of computational and
other errors, so-called difference checks. Notice that, since the differences are
linear functions of the sequence, a superposition principle holds. The effect of
errors can thus be estimated by studying simple sequences such as the one above.

Example 3.3.2.
The following is a difference scheme for a 5 decimal table of the function

f(x) = tanx, x ∈ [1.30, 1.36], with step h = 0.01. The differences are given with
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10−5 as unit.

x y ∇y ∇2y ∇3y ∇4y ∇5y ∇6y

1.30 3.60210
14498

1.31 3.74708 1129

15627 140

1.32 3.90335 1269 26

16896 166 2

1.33 4.07231 1435 28 9

18331 194 11

1.34 4.25562 1629 39

19960 233

1.35 4.45522 1862

21822

1.36 4.67344

We see that the differences decrease roughly by a factor of 0.1—that indicates that the

step size has been chosen suitably for the purpose of interpolation, numerical quadrature

etc.—until the last two columns, where the rounding errors of the function values have a

visible effect.

Example 3.3.3.
For the sequence yn = (−1)n one finds easily that

∇yn = 2yn,∇2yn = 4yn, . . . ,∇kyn = 2kyn.

If the error in the elements of the sequence are bounded by ǫ, it follows that the
errors of the kth differences are bounded by 2kǫ. A rather small reduction of this
bound is obtained if the errors are assumed to be independent random variables
(Problem 3.3.26).

It is natural also to consider difference operations on functions not just on
sequences. E and ∆ map the function f onto functions whose values at the point
x are

E f(x) = f(x+ h), ∆f(x) = f(x+ h) − f(x), (3.3.5)

where h is the step size. Of course, ∆f depends on h; in some cases this should
be indicated in the notation. One can, for example, write ∆hf(x), or ∆f(x;h). If
we set yn = f(x0 + nh), the difference scheme of the function with step size h is
the same as for the sequence {yn}. Again it is important to realize that, in this
case, the operators act on functions, not on the values of functions. It would be
more correct to write f(x0 + h) = (Ef)(x0). Actually, the notation (x0)Ef would
be even more logical, since the insertion of the value of the argument x0 is the last
operation to be done, and the convention for the order of execution of operators
proceeds from right to left, but this notation would be too revolutionary.31

31The notation [x0]f occurs, however, naturally in connection with divided differences, Sec. 4.2.



3.3. Difference Operators and Operator Expansions 71

Note that no new errors are introduced during the computation of the differ-
ences, but the effects of the original irregular errors of y grow exponentially. We
emphasize the word irregular errors, e.g., rounding errors in y, since systematic
errors, e.g., the truncation errors in the numerical solution of a differential equation,
often have a smooth difference scheme. For example, if the values of y have been
produced by the iterative solution of an equation, where x is a parameter, with the
same number of iterations for every x and y and the same algorithm for the first
approximation, then the truncation error of y is likely to be a smooth function of x.

Difference operators are in many respects similar to differentiation operators.
Let f be a polynomial. By Taylor’s formula,

∆f(x) = f(x+ h) − f(x) = hf ′(x) +
1

2
h2f ′′(x) + . . . .

We see from this that deg∆f = deg f − 1. Similarly for differences of higher order;
if f is a polynomial of degree less than k, then

∆k−1f(x) = constant, ∆pf(x) = 0, ∀p ≥ k.

The same holds for backward differences.
The following important result can be derived directly from Taylor’s theorem

with the integral form of the remainder. Assume that all derivatives of f up to kth
order are continuous. If f ∈ Ck,

∆kf(x) = hkf (k)(ζ), ζ ∈ [x, x+ kh]. (3.3.6)

Hence h−k∆kf(x) is an approximation to f (k)(x); the error of this approximation
approaches zero as h → 0 (i.e. as ζ → x). As a rule, the error is approximately
proportional to h. We postpone the proof to Chapter 4, where it appears as a
particular case of a theorem concerning divided differences.

Even though difference schemes do not have the same importance today that
they had in the days of hand calculations or calculation with desk calculators, they
are still important conceptually, and we shall also see how they are still useful
also in practical computing. In a computer it is more natural to store a difference
scheme as an array, e.g. with yn, ∇yn, ∇2yn, . . ., ∇kyn in a row (instead of along
a diagonal).

Many formulas for differences are analogous to formulas for derivatives, though
usually more complicated. The following results are among the most important.

Lemma 3.3.1.
It holds that

∆k(ax) = (ah − 1)kax, ∇k(ax) = (1 − a−h)kax. (3.3.7)

For sequences, i.e. if h=1,

∆k{an} = (a− 1)k{an}, ∆k{2n} = {2n}. (3.3.8)
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Proof. Let c be a given constant. For k = 1 we have

∆(cax) = cax+h − cax = caxah − cax = c(ah − 1)ax

The general result follows easily by induction. The backward difference formula is
derived in the same way.

Lemma 3.3.2. Summation by Parts

N−1
∑

n=0

un∆vn = uNvN − u0v0 −
N−1
∑

n=0

∆un vn+1. (3.3.9)

Proof. (Compare the rule for integration by parts and its proof!) Notice that

N−1
∑

n=0

∆wn = (w1 − w0) + (w2 − w1) + . . .+ (wN − wN−1) = wN − w0.

Use this on wn = unvn. From the result in Lemma 4.5.2 one gets after summation,

uNvN − u0v0 =

N−1
∑

n=0

un∆vn +

N−1
∑

n=0

∆unvn+1,

and the result follows. (For an extension; see Problem 1d.)

Lemma 3.3.3. The Difference of a Product

∆(unvn) = un∆vn + ∆un vn+1. (3.3.10)

Proof. We have

∆(unvn) = un+1vn+1 − unvn = un(vn+1 − vn) + (un+1 − un)vn+1.

Compare the above result with the formula for differentials, d(uv) = udv+vdu.
Note that we have vn+1 (not vn) on the right-hand side.

3.3.2 The Calculus of Operators

Formal calculations with operators, using the rules of algebra and analysis, are
often an elegant means of assistance in finding approximation formulas that are
exact for all polynomials of degree less than (say) k, and they should therefore be
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useful for functions that can be accurately approximated by such a polynomial.
Our calculations often lead to divergent (or semi-convergent) series, but the way
we handle them can usually be justified by means of the theory of formal power
series, of which a brief introduction was given at the end of Sec. 3.1.5. The operator
calculations also provide error estimates, asymptotically valid as the step size h→
0. Strict error bounds can be derived by means of Peano’s remainder theorem,
Sec. 3.3.3.

Operator techniques are sometimes successfully used (see, e.g., Sec. 3.3.4) in a
way that it is hard, or even impossible, to justify by means of formal power series. It
is then not trivial to formulate appropriate conditions for the success and to derive
satisfactory error bounds and error estimates, but it can sometimes be done.

We make a digression about terminology. More generally, the word operator
is in this book used for a function that maps a linear space S into another linear
space S′. S can, for example, be a space of functions, a coordinate space, or a space
of sequences. The dimension of these spaces can be finite or infinite. For example,
the differential operator D maps the infinite-dimensional space C1[a, b] of functions
with a continuous derivative, defined on the interval [a, b], into the space C[a, b] of
continuous functions on the same interval.

In the following we denote by Pk the set of polynomials of degree less than k.
32 Note that Pk is a k-dimensional linear space, for which {1, x, x2, . . ., xk−1} is a
basis called the power basis; the coefficients (c1, c2, . . ., ck) are then the coordinates

of the polynomial p defined by p(x) =
∑k

i=1 cix
i−1.

For simplicity, we shall assume that the space of functions on which the op-
erators are defined is C∞(−∞,∞), i.e. the functions are infinitely differentiable on
(−∞,∞). This sometimes requires (theoretically) a modification of a function out-
side the bounded interval where it is interesting. There are techniques for achieving
this, but they are beyond the scope of this book. Just imagine that they have been
applied.

We define the following operators:

Ef(x) = f(x+ h) Shift (or translation) operator

∆f(x) = f(x+ h) − f(x) Forward difference operator

∇f(x) = f(x) − f(x− h) Backward difference operator

Df(x) = f ′(x) Differentiation operator

δf(x) = f(x+ 1
2h) − f(x− 1

2h) Central difference operator

µf(x) = 1
2

(

f(x+ 1
2h) + f(x− 1

2h)
)

Averaging operator

Suppose that the values of f are given on an equidistant grid only, e.g., xj = x0+jh,
j = −M : N , (j is integer). Set fj = f(xj). Note that δfj , δ

3fj . . ., (odd powers)
and µfj cannot be exactly computed; they are available halfway between the grid
points. (A way to get around this is given later; see (3.3.47)) The even powers
δ2fj , δ

4fj . . ., and µδfj, µδ
3fj . . ., can be exactly computed. This follows from the

32Some authors use similar notations to denote the set of polynomials of degree less than or
equal to k. We regret that.
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formulas

µδf(x) =
1

2

(

f(x+ h) − f(x− h)
)

, µδ = 1
2 (∆ + ∇), δ2 = ∆ −∇. (3.3.11)

Several other notations are in use, e.g., at the study of difference methods for partial
differential equations D+h, D0h, D−h are used instead of ∆, µδ,∇, respectively.

An operator P is said to be a linear operator if

P (αf + βg) = αPf + βPg

holds for arbitrary complex constants α, β and arbitrary functions f, g. The above
six operators are all linear. The operation of multiplying by a constant α, is also a
linear operator.

If P and Q are two operators, then their sum, product, etc., can be defined in
the following way:

(P +Q)f = Pf +Qf,

(P −Q)f = Pf −Qf,

(PQ)f = P (Qf),

(αP )f = α(Pf),

Pnf = P · P · · ·Pf, n factors.

Two operators are equal, P = Q if Pf = Qf , for all f in the space of functions
considered. Notice that ∆ = E − 1. One can show that the following rules hold for
all linear operators:

P +Q = Q+ P, P + (Q+R) = (P +Q) +R,

P (Q+R) = PQ+ PR, P (QR) = (PQ)R.

The above six operators, E, ∆, ∇, hD, δ, and µ, and the combinations of them by
these algebraic operations make a commutative ring, so PQ = QP holds for these
operators, and any algebraic identity that is generally valid in such rings can be
used.

If S = Rn, S′ = Rm, and the elements are column vectors, then the linear
operators are matrices of size [m,n]. They do generally not commute.

If S′ = R or C, the operator is called a functional. Examples of functionals
are, if x0 denotes a fixed (though arbitrary) point,

Lf = f(x0), Lf = f ′(x0), Lf =

∫ 1

0

e−xf(x)dx,

∫ 1

0

|f(x)|2dx;

all except the last one are linear functionals.
There is a subtle distinction here. For example, E is a linear operator that

maps a function to a function. Ef is the function whose value at the point x is
f(x + h). If we consider a fixed point, e.g. x0, then (Ef)(x0) is a scalar. This is
therefore a linear functional. We shall allow ourselves to simplify the notation and
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to write Ef(x0), but it must be understood that E operates on the function f , not
on the function value f(x0). This was just one example; simplifications like this will
be made with other operators than E, and similar simplifications in notation were
suggested earlier in this chapter. There are, however, situations, where it is, for
the sake of clarity, advisable to return to the more specific notation with a larger
number of parentheses.

If we represent the vectors in Rn by columns y, the linear functionals in Rn

are the scalar products aTx =
∑

i = 1naiyi; every row aT thus defines a linear
functional.

Examples of linear functionals in Pk are linear combinations of a finite number
of function values, Lf =

∑

ajf(xj). If xj = x0 + jh the same functional can be
expressed in terms of differences, e.g.,

∑

a′j∆
jf(x0); see Problem 3. The main topic

of this section is to show how operator methods can be used for finding approxima-
tions of this form to linear functionals in more general function spaces. First, we
need a general theorem.

Theorem 3.3.4.
Let x1, x2, . . ., xk be k distinct real (or complex) numbers. Then no non-trivial

relation of the form
k
∑

j=1

ajf(xj) = 0 (3.3.12)

can hold for all f ∈ Pk. If we add one more point (x0), there exists only one non-

trivial relation of the form
∑k

j=0 a
′

jf(xj) = 0, (except that it can be multiplied by
an arbitrary constant). In the equidistant case, i.e. if xj = x0 + jh, then

k
∑

j=0

a′jf(xj) ≡ c∆kf(x0), c 6= 0.

Proof. If (3.3.12) were valid for all f ∈ Pk, then the linear system

k
∑

j=1

xi−1
j aj = 0, i = 1, . . . , k,

would have a non-trivial solution (a1, a2, . . ., ak). The matrix of the system, how-
ever, is a Vandermonde matrix; its determinant is thus equal to the product of all
differences (xi − xj), i > j, 1 < i ≤ k, which is nonzero.

Now we add the point x0. Suppose that there exist two relations,

k
∑

j=0

bjf(xj) = 0,

k
∑

j=0

cjf(xj) = 0.

with linearly independent coefficient vectors. Then we can find a (non-trivial) linear
combination, where x0 has been eliminated, but this contradicts the result that we
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have just proved. Hence the hypothesis is wrong; the two coefficient vectors must
be proportional. We have seen above that, in the equidistant case, ∆kf(x0) = 0 is
such a relation. More generally, we shall see in Chapter 4 that, for k + 1 arbitrary
distinct points, the kth order divided difference is zero for all f ∈ Pk.

Corollary 3.3.5.
Suppose that a formula for interpolation, numerical differentiation or integra-

tion etc. has been derived, for example by an operator technique. If it is a linear
combination of the values of f(x) at k given distinct points xj, j = 1 : k, and is
exact for all f ∈ Pk, this formula is unique. (If it is exact for all f ∈ Pm, m < k,
only, it is not unique.)

In particular, for any {cj}k
j=1, a unique polynomial P ∈ Pk is determined by

the interpolation conditions P (xj) = cj, j = 1 : k.

Proof. The difference between two formulas that use the same function values
would lead to a relation that is impossible, by the theorem.

Now we shall go outside of polynomial algebra and consider also infinite series
of operators. The Taylor series

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(x) + . . .

can be written symbolically as

Ef =
(

1 + hD +
(hD)2

2!
+

(hD)3

3!
+ . . .

)

f.

We can here treat hD like an algebraic indeterminate, and consider the series inside
the parenthesis (without the operand) as a formal power series33

For a formal power series the concepts of convergence and divergence do not
exist. When the operator series acts on a function f , and is evaluated at a point c, we
obtain an ordinary numerical series, related to the linear functional Ef(c) = f(c+h).
We know that this Taylor series may converge or diverge, depending on f , c, and
h.

Roughly speaking, the last part of Sec. 3.1.5 tells that, with some care,“analytic
functions” of one indeterminate can be handled with the same rules as analytic func-
tions of one complex variable.

Theorem 3.3.6.

ehD = E = 1 + ∆, e−hD = E−1 = 1 −∇,
2 sinh 1

2hD = ehD/2 − e−hD/2 = δ,

(1 + ∆)θ = (ehD)θ = eθhD, (θ ∈ R).

33We now abandon the bold-type notation for indeterminates and formal power series used in
Sec. 3.1.5 for the function e

hD , which is defined by this series. The reader is advised to take a look
again at the last part of Sec. 3.1.5.
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Proof. The first formula follows from the previous discussion. The second and the
third formulas are obtained in a similar way. (Recall the definition of δ.) The last
formula follows from the first formula together with Lemma 3.1.9 (in Sec. 3.1.3).

It follows from the power series expansion that

(ehD)θf(x) = eθhDf(x) = f(x+ θh),

when it converges. Since E = ehD it is natural to define

Eθf(x) = f(x+ θh),

and we extend this definition also to such values of θ that the power series for
eθhDf(x) is divergent. Note that, e.g., the formula Eθ2Eθ1f(x) = Eθ2+θ1f(x),
follows from this definition.

When one works with operators or functionals it is advisable to avoid notations
like ∆xn, Deαx, where the variables appear in the operands. For two important
functions we therefore set

Fα : Fα(x) = eαx; fn : fn(x) = xn. (3.3.13)

Let P be any of the operators mentioned above. When applied to Fα it acts like a
scalar that we shall call the scalar of the operator 34 and denote it by sc(P ),

PFα = sc(P )Fα.

We may also write sc(P ;hα) if it is desirable to emphasize its dependence on hα.
(We normalize the operators so that this is true, e.g., we work with hD instead of
D.) Note that

sc(βP + γQ) = βsc(P ) + γsc(Q), (β, γ ∈ C), sc(PQ) = sc(P )sc(Q),

For our most common operators we obtain

(Eθ) = eθhα; sc(∇) = sc(1 − E−1) = 1 − e−hα; (3.3.14)

sc(∆) = sc(E − 1) = ehα − 1; (3.3.15)

sc(δ) = sc(E1/2 − E−1/2) = ehα/2 − e−hα/2.

Let Qh be one of the operators hD, ∆, δ, ∇. It follows from the last formulas that

sc(Qh) ∼ hα, (h→ 0); |sc(Qh)| ≤ |hα|e|hα|

The main reason for grouping these operators together is that each of them has
the important property (3.3.6), i.e. Qk

hf(c) = hkf (k)(ζ), where ζ lies in the smallest
interval that contains all the arguments used in the computation of Qk

hf(c). Hence,

f ∈ Pk ⇒ Qn
hf = 0, ∀n ≥ k. (3.3.16)

34In applied Fourier analysis this scalar is, for α = iω, often called the symbol of the operator.
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This property 35 makes each of these four operators well suited to be the indetermi-
nate in a formal power series that, hopefully, will be able to generate a sequence of
approximations, L1, L2, L3 . . ., to a given linear operator L. Ln is the nth partial
sum of a formal power series for L. Then

f ∈ Pk ⇒ Lnf = Lkf, ∀n ≥ k. (3.3.17)

We shall see in the next theorem that, for expansion into powers of Qh,

lim
n→∞

Lnf(x) = Lf(x)

if f is a polynomial. This is not quite self-evident, because it is not true for all
functions f , and we have seen in Sec. 3.1.5 Sec. 3.1.3 that it can happen that an
expansion converges to a “wrong result”. We shall see more examples of that later.
Convergence does not necessarily imply validity.

Suppose that z is a complex variable, and that φ(z) is analytic at the origin,
i.e. φ(z) is equal to its Maclaurin series, (say) φ(z) = a0 +a1z+a2z

2 + . . ., if |z| < ρ
for some ρ > 0. For multivalued functions we always refer to the principal branch.
The operator function φ(Qh) is usually defined by the formal power series,

φ(Qh) = a0 + a1Qh + a2Q
2
h + . . . ,

where Qh is treated like an algebraic indeterminate.
The operators E, hD, ∆, δ, ∇ and µ are related to each others. See Table 3.3.2

that is adapted from an article by the eminent blind British mathematician W. G.
Bickley (1948). Some of these formulas follow almost directly from the definitions,
others are derived in this section, and the rest are left for Problem 5e. We find the
value sc(·) for each of these operators by substituting α for D in the last column of
the table. (Why?)

Table 3.3.1. Bickley’s table of relations between difference operators

E ∆ δ ∇ hD

E E 1 + ∆ 1 + 1

2
δ
2 + δ

q

1 + 1

4
δ
2

1

1 −∇
e
hD

∆ E − 1 ∆ δ

q

1 + 1

4
δ
2 + 1

2
δ
2

∇

1 −∇
e
hD − 1

δ E
1/2 − E

−1/2 ∆(1 + ∆)−1/2
δ ∇(1 −∇)−1/2 2 sinh 1

2
hD

∇ 1 − E
−1

∆

1 + ∆
δ

q

1 + 1

4
δ
2 − 1

2
δ
2 ∇ 1 − e

−hD

hD ln E ln(1 + ∆) 2 sinh−1 1

2
δ − ln(1 −∇) hD

µ
1

2
(E1/2 + E

−1/2)
1 + 1

2
∆

(1 + ∆)1/2

q

1 + 1

4
δ
2

1 − 1

2
∇

(1 −∇)1/2
cosh 1

2
hD

35The operators E and µ do not possess this property.
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Example 3.3.4. Express E in terms of ∇.
The definition of ∇ reads in operator form E−1 = 1 −∇. This can be looked

upon as a formal power series (with only two non-vanishing terms) for the reciprocal
of E with ∇ as the indeterminate. By the rules for formal power series mentioned
in Sec. 3.1.5, we obtain uniquely

E = (E−1)−1 = (1 −∇)−1 = 1 + ∇ + ∇2 + . . . .

We find in the table an equivalent expression containing a fraction line. Suppose
that we have proved the last column of the table. So, sc(∇) = 1 − e−hα, hence

sc((1 −∇)−1) = (e−hα)−1 = ehα = sc(E).

Example 3.3.5.
Suppose that we have proved the first and the last columns of Bickley’s table

(except for the equation hD = lnE). We shall prove one of the formulas in the
second column, namely the equation δ = ∆(1 + ∆)−1/2. By the first column, the
right hand side is equal to (E − 1)E−1/2 = E1/2 − E−1/2 = δ, Q.E.D.

We shall also compute sc(∆(1 + ∆)−1/2). Since sc(∆) = ehα − 1 we obtain

sc(∆(1 + ∆)−1/2) = (ehα − 1)(ehα)−1/2 = ehα/2 − e−hα/2

= 2 sinh 1
2hα = sc(δ).

By the aid of Bickley’s table, we are in a position to transform L into the form
φ(Qh)Rh. (A sum of several such expressions with different indeterminates can also
be treated.)

• Qh is the one of the four operators, hD, ∆, δ, ∇, which we have chosen to be
the “indeterminate”.

Lf ≃ φ(Qh)f = (a0 + a1Qh + a2Q
2
h + . . .)f. (3.3.18)

The coefficients aj are the same as the Maclaurin coefficients of φ(z), z ∈ C
if φ(z) is analytic at the origin. They can be determined by the techniques
described in Sec. 3.1.5 and Sec. 3.1.4. The meaning of the relation ≃ will
hopefully be clear from the following theorem.

• Rh is, e.g., µδ or Ek, k integer, or more generally any linear operator with
the properties that RhFα = sc(Rh)Fα, and that the values of Rhf(xn) on the
grid xn = x0 + nh, n integer, are determined by the values of f on the same
grid.

Theorem 3.3.7. Recall the notation Qh for either of the operators ∆, δ, ∇, hD,
and the notations Fα(x) = eαx, fn(x) = xn. Note that

Fα(x) =

∞
∑

n=0

αn

n!
fn (x). (3.3.19)
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Also recall the scalar of an operator and its properties, e.g.,

LFα = sc(L)Fα, Qj
hFα = (sc(Qh))jFα;

for the operators under consideration the scalar depends on hα.
Assumptions:

(i) A formal power series equation L =
∑

∞

j=0 ajQ
j
h has been derived.36 Further-

more, |sc(Qh)| < ρ, where ρ is the convergence radius of the series
∑

ajz
j, z ∈ C,

and

sc(L) =

∞
∑

j=0

aj(sc(Qh))j . (3.3.20)

(ii)

L
∂n

∂αn
Fα(x) =

∂n

∂αn
(LFα)(x)

at α = 0, or equivalently,

L

∫

C

Fα(x) dα

αn+1
=

∫

C

(LFα)(x) dα

αn+1
. (3.3.21)

where C is any circle with the origin as center.

(iii) The domain of x is a bounded interval I1 in R.

Then

LFα =
(

∞
∑

j=0

ajQ
j
h

)

Fα, if |sc(Qh)| < ρ, (3.3.22)

Lf(x) =

k−1
∑

j=0

ajQ
j
hf(x), if f ∈ Pk, (3.3.23)

for any positive integer k.
A strict error bound for (3.3.23), if f /∈ Pk, is obtained in Peano’s Theo-

rem 3.3.8.
An asymptotic error estimate (as h → 0 for fixed k) is given by the first

neglected non-vanishing term arQ
r
hf(x) ∼ ar(hD)rf(x), r ≥ k, if f ∈ Cr[I], where

the interval I must contain all the points used in the evaluation of Qr
hf(x).

Proof. By Assumption 1,

LFα = sc(L)Fα = lim
J→∞

J−1
∑

j=0

ajsc(Q
j
h)Fα = lim

J→∞

J−1
∑

j=0

ajQ
j
hFα = lim

J→∞

(

J−1
∑

j=0

ajQ
j
h

)

Fα,

36To simplify the writing, the operator Rh is temporarily neglected. See one of the comments
below.
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hence LFα = (
∑

∞

j=0Q
j
h)Fα. This proves the first part of the theorem.

By (3.3.19), Cauchy’s formula (3.2.9) and Assumption 2,

2πi

n!
Lfn(x) = L

∫

C

Fα(x) dα

αn+1
=

∫

C

(LFα)(x) dα

αn+1

=

∫

C

J−1
∑

j=0

ajQ
j
hFα(x) dα

αn+1
+

∫

C

∞
∑

j=J

ajsc(Qh)jFα(x) dα

αn+1
.

Let ǫ be any positive number. Choose J so that the modulus of the last term
becomes ǫθn2π/n!, where |θn| < 1. This is possible, since |sc(Qh)| < ρ; see As-
sumption 1. Hence, for every x ∈ I1,

Lfn(x) − ǫθn =
n!

2πi

J−1
∑

j=0

ajQ
j
h

∫

C

Fα(x) dα

αn+1
=

J−1
∑

j=0

ajQ
j
hfn(x) =

k−1
∑

j=0

ajQ
j
hfn(x).

The last step holds if J ≥ k > n, because, by (3.3.16), Qj
hfn = 0 for j > n. It follows

that |Lfn(x) −∑k−1
j=0 ajQ

j
hfn(x)| < ǫ for every ǫ > 0, hence Lfn =

∑k−1
j=0 ajQ

j
hfn.

If f ∈ Pk, f is a linear combination of fn, n = 0 : k − 1. Hence Lf =
∑k−1

j=0 ajQ
j
hf if f ∈ Pk. This proves the second part of the theorem.

The error bound is derived in Sec. 3.3.1. Recall the important formula (3.3.6)
that expresses the kth difference as the value of the k’th derivative in a point located
in an interval that contains all the points used in the in the computation of the k’th
difference. i.e. the ratio of the error estimate ar(hD)rf(x) to the true truncation
error tends to 1, as h→ 0.

Remark 3.3.1. This theorem is concerned with series of powers of the four opera-
tors collectively denoted Qh. One may try to use operator techniques also to find a
formula involving, e.g., an infinite expansion into powers of the operator E. Then
one should try afterwards to find sufficient conditions for the validity of the result.
This procedure will be illustrated in connection with Euler–Maclaurin’s formula in
Sec. 3.4.4.

Sometimes, operator techniques which are not covered by this theorem can,
after appropriate restrictions, be justified (or even replaced) by transform methods,
e.g., z-transforms, Laplace or Fourier transforms.

The operator Rh that was introduced just before the theorem, was neglected in
the proof, in order to simplify the writing. We now have to multiply the operands
by Rh in the proof and in the results. This changes practically nothing for Fα,
since RhFα = sc(Rh)Fα. In (3.3.23) there is only a trivial change, because the
polynomials f and Rhf may not have the same degree. For example, if Rh = µδ
and f ∈ Pk then Rhf ∈ Pk−1. The verification of the assumptions typically offers
no difficulties.

It follows from the linearity of (3.3.22) that it is satisfied also if Fα is replaced
by a linear combination of exponential functions Fα with different α, provided that
|sc(Qh)| < ρ for all the occurring α. With some care, one can let the linear combi-
nation be an infinite series or an integral.
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There are two things to note in connection with the asymptotic error estimates.
First, the step size should be small enough; this means in practice that, in the
beginning, the magnitude of the differences should decrease rapidly, as their order
increases. When the order of the differences becomes large, it often happens that
the moduli of the differences also become increasing. This can be due to two causes:
semi-convergence (see the next comment) and/or rounding errors.

The rounding errors of the data may have so large effects on the high order
differences37 that the error estimation does not make sense. One should then use a
smaller value of the order k, where the rounding errors have a smaller influence. An
advantage with the use of a difference scheme is that it is relatively easy to choose
the order k adaptively, and sometimes also the step size h.

This comment is of particular importance for numerical differentiation. Nu-
merical illustrations and further comments are given below in Example 3.3.6 and
Problem 6b, and in several other places.

The sequence of approximations to Lf may converge or diverge, depending
on f and h. It is also often semiconvergent, recall Sec. 3.2.6, but in practice the
rounding errors mentioned in the previous comment, have often, though not always,
taken over already, when the truncation error passes its minimum. See Problem 6b.

Example 3.3.6. The Backwards Differentiation Formula.
By Theorem 3.3.6, e−hD = 1−∇. We look upon this as a formal power series;

the indeterminate is Qh = ∇. By Example 3.1.11,

L = hD = − ln(1 −∇) = ∇ +
1

2
∇2 +

1

3
∇3 + . . . (3.3.24)

Verification of the assumptions of Theorem 3.3.7: 38

(i) sc(∇) = 1 − e−hα; the convergence radius is ρ = 1.

sc(L) = sc(hD) = hα;

∞
∑

j=1

sc(∇)j/j = − ln(1 − (1 − e−hα)) = hα.

The convergence condition |sc(∇)| < 1 reads hα > − ln 2 = −0.69 if α is real,
|hω| < π/3 if α = iω.

(ii) For α = 0, D
∂n

∂αn
(eαx) = Dxn = nxn−1. By Leibniz’ rule:

∂n

∂αn
(αeαx) = 0xn + nxn−1.

By the theorem, we now obtain a formula for numerical differentiation that is exact
for all f ∈ Pk.

hf ′(x) =
(

∇ +
1

2
∇2 +

1

3
∇3 + . . .+

1

k − 1
∇k−1

)

f(x) (3.3.25)

37Recall Example 3.3.2
38Recall the definition of the scalar sc(·), after (3.3.13).
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By Theorem 3.3.4, this is the unique formula of this type that uses the values of f(x)
at the k points xn : −h : xn−k+1. The same approximation can be derived in many
other ways, perhaps with a different appearance; see Chapter 4. This derivation has
several advantages; the same expansion yields approximation formulas for every
k, and if f ∈ Ck, f /∈ Pk, the first neglected term, i.e. 1

k∇k
hf(xn), provides an

asymptotic error estimate, if f (k)(xn) 6= 0.

We now apply this formula to the table in Example 3.3.2, where f(x) = tanx,
h = 0.01, k = 6,

0.01f ′(1.35) ≈ 0.1996 +
0.0163

2
+

0.0019

3
+

0.0001

4
− 0.0004

5
,

i.e. we obtain a sequence of approximate results,

f ′(1.35) ≈ 19.96, 20.78, 20.84, 20.84, 20.83.

The correct value to 3D is (cos 1.35)−2 = 20.849. Note that the last result is worse
than the next to last. Recall the last comments to the theorem. In this case this is
due to the rounding errors of the data. Upper bounds for their effect of the sequence
of approximate values of f ′(1.35) is, by Example 3.3.3, shown in the series

10−2
(

1 +
2

2
+

4

3
+

8

4
+

16

5
+ . . .

)

.

A larger version of this problem was run on a computer with the machine unit
2−53 ≈ 10−16; f(x) = tanx, x = 1.35 : −0.01 : 1.06. In the beginning the error
decreases rapidly, but after 18 terms the rounding errors take over, and the error
then grows almost exponentially (with constant sign). The eighteenth term and its
rounding error have almost the same modulus (but opposite sign). The smallest
error equals 5 10−10, and is obtained after 18 terms; after 29 terms the actual error
has grown to 2 10−6. Such a large number of terms is seldom used in practice, unless
a very high accuracy is demanded. See also Problem 6b, a computer exercise that
offers both similar and different experiences.

Equation (3.3.24)—or its variable step size variant in Chapter 4—is called the
Backwards Differentiation Formula. It is the basis of the important BDF
method for the numerical integration of ordinary differential equations.

Coefficients for Backwards differentiation formulas for higher derivatives, are
obtained from the equations

(hD/∇)k = (− ln(1 −∇)/∇)k.

The following formulas were computed by means of the matrix representation of a
truncated power series:











hD/∇
(hD/∇)2

(hD/∇)3

(hD/∇)4

(hD/∇)5











=













1 1/2 1/3 1/4 1/5
1 1 11/12 5/6 137/180
1 3/2 7/4 15/8 29/15
1 2 17/6 7/2 967/240
1 5/2 25/6 35/6 1069/144













·











1
∇
∇2

∇3

∇4











. (3.3.26)
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The rows of the matrix are the first rows taken from the matrix representation of
each of the expansions (hD/∇)k, k = 1 : 5.

When the effect of the irregular errors of the data on a term becomes larger
in magnitude than the term itself, the term should, of course, be neglected; it does
more harm than good. This happens relatively early for the derivatives of high
order; see Problem 6. When these formulas are to be used inside a program (rather
than during an interactive post-processing of results of an automatic computation),
some rules for automatic truncation have to be designed; an interesting kind of
detail in scientific computing.

The forwards differentiation formula, which is analogously based on the oper-
ator series,

hD = ln(1 + ∆) = ∆ − 1

2
∆2 +

1

3
∆3 ± . . . (3.3.27)

is sometimes useful too. We obtain the coefficients for derivatives of higher order
by inserting minus signs in the second and fourth columns of the matrix in (3.3.26).

A grid (or a table) may be too sparse to be useful for numerical differentiation
and for the computation of other linear functionals. For example, we saw above that
the successive backward differences of eiωx increase exponentially if |ωh| > π/3. In
such a case the grid, where the values are given, gives insufficient information about
the function. One also says that “the grid does not resolve the function”. This is
often indicated by a strong variation in the higher differences. However, even this
indication can sometimes be absent. An extreme example is, f(x) = sin(πx/h),
on the grid xj = jh, j = 0,±1,±2, . . .. All the values, all the higher differences,
and thus the estimates of f ′(x) at all grid points are zero, but the correct values of
f ′(xj) are certainly not zero. So, this is an example where the expansion (trivially)
converges, but it is not valid! (Recall the discussion of a Maclaurin expansion for a
non-analytic function at the end of Sec. 3.1.3. Now a similar trouble can occur also
for an analytic function.)

A less trivial example is given by the functions

f(x) =

20
∑

n=1

an sin(2πnx), g(x) =

10
∑

n=1

(an + a10+n) sin(2πnx).

f(x) = g(x) on the grid, hence they have the same difference scheme, but f ′(x) 6=
g′(x) on the grid, and typically f(x) 6= g(x) between the grid points.

3.3.3 The Peano Theorem

One can often, by a combination of theoretical and numerical evidence, rely on
asymptotic error estimates. Since there are exceptions, it is interesting that there
are two general methods for deriving strict error bounds. We call one of them the
norms and distance formula. It is not restricted to polynomial approximation,
and it is typically easy to use, but it requires some advanced concepts and it often
overestimates the error. We therefore postpone the presentation of that method to
a later chapter.
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We shall now present another method, due to Peano39. Consider a linear
functional L̃, e.g., L̃f =

∑p
j=1 bjf(xj), suggested for the approximate computation

of another linear functional L, e.g., Lf =
∫ 1

0

√
xf(x)dx. Suppose that it is exact,

when it is applied to any polynomial of degree less than k: In other words, L̃f = Lf ,
for all f ∈ Pk. The remainder is then itself a linear functional, R = L− L̃, with the
special property that

Rf = 0 if f ∈ Pk.

Next theorem gives a representation for such functionals, which provides a universal
device for deriving error bounds for approximations of the type that we are con-
cerned with. Let f ∈ Cn[a, b]. In order to make the discussion less abstract we
confine it to functionals of the following form, 0 ≤ m < n,

Rf =

∫ b

a

φ(x)f(x)dx +

p
∑

j=1

(

bj,0f(xj) + bj,1f
′(xj) + . . .+ bj,mf

(m)(xj)
)

, (3.3.28)

where the function φ is integrable, and the points xj lie in the bounded real interval
[a, b], and bj,m 6= 0 for at least one value of j. Moreover, we assume that

Rp = 0 for all p ∈ Pk. (3.3.29)

We define the function40

t+ = max(t, 0); tj+ =
(

t+
)j

; t0+ =
1 + signt

2
; (3.3.30)

The function t0+ is often denoted H(t) an is known as the Heaviside41 unit step

function. The function sign is defined in Definition def3.1.sign. Note that tj+ ∈
Cj−1, (j ≥ 1). The Peano kernel K(u) of the functional R is defined by the
equation,

K(u) =
1

(k − 1)!
Rx(x− u)k−1

+ , x ∈ [a, b], u ∈ (−∞,∞). (3.3.31)

The subscript in Rx indicates that R acts on the variable x (not u).
The function K(u) vanishes outside [a, b], because:

• if u > b then u > x, hence (x− u)k−1
+ = 0 and K(u) = 0,

• if u < a then x > u. It follows that (x− u)k−1
+ = (x− u)k−1 ∈ Pk,

hence K(u) = 0, by (3.3.31) and (3.3.29).

If φ(x) is a polynomial then K(u) becomes a piecewise polynomial; the points
xj are the joints of the pieces. In this caseK ∈ Ck−m−2; the order of differentiability
may be lower, if φ has singularities.

We are now in a position to prove an important theorem.

39Giuseppe Peano (1858-1932), Italian mathematician and logician.
40We use the neutral notation t here for the variable, to avoid to tie up the function too closely

with the variables x and u which play a special role in the following.
41Oliver Heaviside (1850–1925) English physicist.
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Theorem 3.3.8. Peano’s Remainder Theorem.
Suppose that Rp = 0 for all p ∈ Pk. Then 42 , for all f ∈ Ck[a, b],

Rf =

∫

∞

−∞

f (k)(u)K(u)du. (3.3.32)

The definition and some basic properties of the Peano kernel K(u) were given above.

Proof. By Taylor’s formula,

f(x) =

k−1
∑

j=1

f (j)(a)

j!
(x− a)j +

∫ x

a

f (k)(u)

(k − 1)!
(x− u)k−1du.

This follows from putting n = k, z = x − a, t = (u − a)/(x − u) into (3.1.5).
We rewrite the last term as

∫

∞

a f (k)(u)(x − u)k−1
+ du. Then apply the functional

R = Rx to both sides. Since we can allow the interchange of the functional R with
the integral, for the class of functionals that we are working with, this yields

Rf = 0 +R

∫

∞

a

f (k)(u)(x− u)k−1
+

(k − 1)!
du =

∫

∞

a

f (k)(u)Rx(x− u)k−1
+

(k − 1)!
du,

The theorem then follows from (3.3.31).

Corollary 3.3.9.
Suppose that Rp = 0 for all p ∈ Pk. Then

Rx(x− a)k = k!

∫

∞

−∞

K(u)du. (3.3.33)

For any f ∈ Ck[a, b], Rf = f(k)(ξ)
k! Rx((x − a)k), holds for some ξ ∈ (a, b), if and

only if K(u) does not change its sign.
If K(u) changes its sign, the best possible error bound reads

|Rf | ≤ sup
u∈[a,b]

|f (k)(u)|
∫

∞

−∞

|K(u)|du;

a formula with f (k)(ξ) is not generally true in this case.

Proof. First suppose that K(u) does not change sign. Then, by (3.3.32) and the
mean value theorem of Integral Calculus, Rf = f (k)(ξ)

∫

∞

−∞
K(u)du, ξ ∈ [a, b]. For

f(x) = (x− a)k this yields (3.3.33). The “if” part of the corollary follows from the
combination of these formulas for Rf and R(x− a)k.

If K(u) changes its sign, the “best possible bound” is approached by a se-
quence of functions f chosen so that (the continuous functions) f (k)(u) approach
(the discontinuous function) sign K(u). The “only if” part follows.

42The definition of f
(k)(u) for u /∈ [a, b] is arbitrary.
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Example 3.3.7.
The remainder of the trapezoidal rule (one step of length h) reads Rf =

∫ h

0 f(x)dx− h
2 (f(h)+f(0)). We know that Rp = 0 for all p ∈ P2. The Peano kernel

is zero for u /∈ [0, h], while for u ∈ [0, h],

K(u) =

∫ h

0

(x−u)+dx−
h

2
((h−u)+ +0)) =

(h− u)2

2
− h(h− u)

2
=

−u(h− u)

2
< 0

We also compute

Rx2

2!
=

∫ h

0

x2

2
dx− h · h2

2 · 2 =
h3

6
− h3

4
= −h

3

12
.

Since the Peano kernel does not change sign, we conclude that

Rf = −h
3

12
f ′′(ξ), ξ ∈ (0, h).

Example 3.3.8. Peano kernels for difference operators.
Let Rf = ∆3f(a), and set xi = a+ ih, i = 0 : 3. Note that Rp = 0 for p ∈ P3.

Then

Rf = f(x3) − 3f(x2) + 3f(x1) − f(x0),

2K(u) = (x3 − u)2+ − 3(x2 − u)2+ + 3(x1 − u)2+ − (x0 − u)2+,

i.e.

2K(u) =



















0, if u > x3;
(x3 − u)2, if x2 ≤ u ≤ x3;
(x3 − u)2 − 3(x2 − u)2, if x1 ≤ u ≤ x2;
(x3 − u)2 − 3(x2 − u)2 + 3(x1 − u)2 ≡ (u− x0)

2, if x0 ≤ u ≤ x1;
(x3 − u)2 − 3(x2 − u)2 + 3(x1 − u)2 − (x0 − u)2 ≡ 0, if u < x0.

For the simplification of the last two lines we used that ∆3
u(x0 −u)2 ≡ 0. Note that

K(u) is a piecewise polynomial in P3 and that K ′′(u) is discontinuous at u = xi,
i = 0 : 3.

It can be shown (numerically or analytically) that K(u) > 0 in the interval
(u0, u3). This is no surprise, for, by (3.3.6 ), ∆nf(x) = hnf (n)(ξ) for any integer n,
and, by the above corollary, this could not be generally true if K(u) changes its sign.
These calculations can be generalized to ∆kf(a) for an arbitrary integer k. This
example will be generalized in Sec. 4.2.5 to divided differences of non-equidistant
data.

In general it is rather laborious to determine a Peano kernel. Sometimes one
can show that the kernel is piecewise a polynomial, that it has a symmetry, and
that has a simple form in the intervals near the boundaries. All this can simplify
the computation, and might have been used in these examples.
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It is usually much easier to compute R((x − a)k), and an approximate error
estimate is often given by

Rf ∼ f (k)(a)

k!
R
(

(x− a)k
)

, f (k)(a) 6= 0. (3.3.34)

For example, suppose that x ∈ [a, b], where b− a is of the order of magnitude of a
step size parameter h, and that f is analytic in [a, b]. By Taylor’s formula,

f(x) = p(x) +
f (k)(a)

k!
(x− a)k +

f (k+1)(a)

(k + 1)!
(x− a)k+1 + . . . , f (k)(a) 6= 0,

where p ∈ Pk, hence Rp = 0. Most of the common functionals can be applied term
by term. Then

Rf = 0 +
f (k)(a)

n!
Rx(x − a)k +

f (k+1)(a)

(k + 1)!
Rx(x− a)k+1 + . . . .

Assume that, for some c, Rx(x − a)k = O(hk+c), for k = 1, 2, 3, . . .. (This
is often the case.) Then (3.3.34) becomes an asymptotic error estimate as
h→ 0. It was mentioned above that for formulas derived by operator methods, an
asymptotic error estimate is directly available anyway, but if a formula is derived
by other means (see Chapter 4) this error estimate is important.

Asymptotic error estimates are frequently used in computing, because they
are often much easier to to derive and apply than strict error bounds. The question
is, however, how to know (or feel), that “the computation is in the asymptotic
regime”, where an asymptotic estimate is practically reliable. Much can be said
about this central question of Applied Mathematics. Let us her just mention that a
difference scheme displays well the quantitative properties of a function needed for
the judgment. If Rp = 0 for p ∈ Pk, then a fortiori Rp = 0 for p ∈ Pk−i, i = 0 : k.
We may thus obtain a Peano kernel for each i, which is temporarily denoted by
Kk−i(u). They are obtained by integration by parts,

Rkf =

∫

∞

−∞

Kk(u)f (k)(u) du =

∫

∞

−∞

Kk−1(u)f (k−1)(u) du (3.3.35)

=

∫

Kk−2(u)f (k−2)(u) du . . . , (3.3.36)

where Kk−i = (−D)iKk, i = 1, 2, . . ., as long as Kk−i is integrable. The lower
order kernels are useful, e.g., if the actual function f is not as smooth as the usual
remainder formula requires.

For the trapezoidal rule we obtained in Example 3.3.7

K1(u) =
h

2
u0

+ +
h

2
− u+

h

2
(u− h)0+.

A second integration by parts can only be performed within the framework of Dirac’s
delta functions (distributions); K0 is not integrable. A reader, who is familiar with
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these generalized functions, may enjoy the following formula:

Rf =

∫

∞

−∞

K0(u)f(u)du ≡
∫

∞

−∞

(

−h
2
δ(u) + 1 − h

2
δ(u− h)

)

f(u)du.

This is for one step of the trapezoidal rule, but many functionals can be expressed
analogously.

3.3.4 Approximation Formulas by Operator Methods

We shall now demonstrate how operator methods can be applied for deriving ap-
proximation formulas.

In order to find interpolation formulas by operator methods we consider the
operator expansion

f(b− γh) = E−γf(b) = (1 −∇)γf(b) =
∞
∑

j=0

(

γ

j

)

(−∇)jf(b).

The verification of the assumptions of Theorem 3.3.7 offers no difficulties, and we
omit the details. Truncate the expansion before (−∇)k. By the theorem we obtain,
for every γ:

• an approximation formula for f(b − γh) that uses the function values f(b −
jh) for j = 0 : k − 1; it is exact if f ∈ Pk, and is unique in the sense of
Theorem 3.3.4;

• an asymptotic error estimate if f /∈ Pk, namely the first neglected term of the
expansion, i.e.

(

γ

k

)

(−∇)kf(b) ∼
(

γ

k

)

(−h)kf (k)(b)

Note that the binomial coefficients are polynomials in the variable γ, and hence also
in the variable x = b−γh. It follows that the approximation formula yields a unique
polynomial PB ∈ Pk, that solves the interpolation problem: PB(b − hj) =
f(b− hj), j = 0 : k − 1; (B stands for Backward). If we set x = b− γh, we obtain

PB(x) = E−γf(b) = (1 −∇)γf(a) (3.3.37)

=
k−1
∑

j=0

(

γ

j

)

(−∇)jf(b) = f(b− γh) +O(hkf (k)).

Due to the uniqueness; see the corollary of Theorem 3.3.4, the approximation
to f ′(b) obtained by the first k− 1 terms in Example 3.2.4 for xn = b is exactly the
derivative P ′

B(b).
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Similarly, the interpolation polynomial PF ∈ Pk that uses forward differences
based on the values of f at a, a+ h, . . . , a+ (k − 1)h, reads, if we set x = a+ θh,

PF (x) = Eθf(a) = (1 + ∆)θf(a) =

k−1
∑

j=0

(

θ

j

)

∆jf(a) = f(a+ θh) +O(hkf (k)).

(3.3.38)
These formulas are known as Newton’s interpolation formulas for constant
step size, backwards and forwards. The generalization to variable step size will be
found in Sec. 4.2.

There exists a similar expansion for central differences. Set

φ0(θ) = 1, φ1(θ) = θ, φj(θ) =
θ

j

(

θ + 1
2j − 1

j − 1

)

, (j > 1). (3.3.39)

φj is an even function if j is even, and an odd function if j is odd. It can be shown
that δjφk(θ) = φk−j(θ), and δjφk(0) = δj,k, (Kronecker’s delta). The functions φk

have thus an analogous relation to the operator δ as, e.g., the functions θj/j! and
(

θ
j

)

have to the operators D and ∆, respectively. We obtain the following expansion,
analogous to Taylor’s formula and Newton’s forward interpolation formula. The
proof is left for Problem 4(b). Then

Eθf(a) =

k−1
∑

j=0

φj(θ)δ
jf(a) = f(a+ θh) +O(hkf (k)). (3.3.40)

The direct practical importance of this formula is small, since δjf(a) cannot be
expressed as a linear combination of the given data when j is odd. There are several
formulas, where this drawback has been eliminated by various transformations.
They were much in use before the computer age; each formula had its own group
of fans. We shall derive only one of them, by a short break-neck application of the
formal power series techniques.43 Note that

Eθ = eθhD = cosh θhD + sinh θhD,

δ2 = ehD − 2 + e−hD, ehD − e−hD = 2µδ,

cosh θhD = 1
2 (Eθ + E−θ) =

∞
∑

j=0

φ2j(θ)δ
2j ,

sinh θhD =
1

θ

d(cosh θhD)

d(hD)
=

∞
∑

j=0

φ2j(θ)
1

θ

dδ2j

dδ2
dδ2

d(hD)

=
∞
∑

j=0

φ2j(θ)
jδ2(j−1)

θ
(ehD − e−hD) =

∞
∑

j=0

φ2j(θ)
2j

θ
µδ2j−1.

43Differentiation of a formal power series with respect to an indeterminate has a purely algebraic
definition. See the last part of Sec. 3.1.5.
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Hence,

f(x0 + θh) = f0 + θµδf0 +
θ2

2!
δ2f0 +

∞
∑

j=2

φ2j(θ)
(2j

θ
µδ2j−1f0 + δ2jf0

)

. (3.3.41)

This is known as Stirling’s interpolation formula. 44 The first three terms have
been taken out from the sum, in order to show their simplicity and their resemblance
to Taylor’s formula. They yield the most practical formula for quadratic interpola-
tion; it is easily remembered and worth to be remembered. An approximate error
bound for this quadratic interpolation reads |0.016δ3f | if |θ| < 1.

Note that

φ2j(θ) = θ2(θ2 − 1)(θ2 − 4) · · · (θ2 − (j − 1)2)/(2j)!.

The expansion yields a true interpolation formula if it is truncated after an even
power of δ. For k = 1 you see that f0+θµδf0 is not a formula for linear interpolation;
it uses three data points instead of two. It is similar for all odd values of k.

Strict error bounds can be found by means of Peano’s theorem, but the re-
mainder terms given in Sec. 4.2 for Newton’s general interpolation formula (that
does not require equidistant data) typically give the answer easier. Both are typi-
cally of the form ck+1f

(k+1)(ξ) and require a bound for a derivative of high order.
The assessment of such a bound typically costs much more work than performing
interpolation in one point.

A more practical approach is to estimate a bound for this derivative by means
of a bound for the differences of the same order. (Recall the important formula in
(3.3.6).) This is not a rigorous bound, but it typically yields a quite reliable error
estimate, in particular if you put a moderate safety factor on the top of it. There
is much more to be said about the choice of step size and order; we shall return to
this kind of questions in later chapters.

You can make error estimates during the run; it can happen sooner or later
that it does not decrease, when you increase the order. You may just as well stop
there, and accept the most recent value as the result. This event is most likely due
to the influence of irregular errors, e.g. rounding errors, but it can also indicate
that the interpolation process is semi-convergent only.

The attainable accuracy of polynomial interpolation applied to a table with
n equidistant values of an analytic function, depends strongly on θ; the results are
much poorer near the boundaries of the data set than near the center. This question
will be illuminated in Sec. 4.8 by means of complex analysis.

Example 3.3.9.
The continuation of the difference scheme of a polynomial is a classical ap-

plication of a difference scheme for obtaining a smooth extrapolation of a function
outside its original domain. Given the values yn−i = f(xn − ih) for i = 1 : k and

44James Stirling (1692–1770), British mathematician, perhaps most famous for his amazing
approximation to n!.
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the backward differences, ∇jyn−1, j = 1 : k − 1. Recall that ∇k−1y is a constant
for y ∈ Pk. Consider the algorithm

∇k−1yn = ∇k−1yn−1;

for j = k − 1 : −1 : 1,

∇j−1yn = ∇j−1yn−1 + ∇jyn; (3.3.42)

end

yn = ∇0yn;

It is left for Problem 7a to show that the result yn is the value at x = xn of the
interpolation polynomial which is determined by yn−i, i = 1 : k. This is a kind
of inverse use of a difference scheme; there are additions from right to left along a
diagonal, instead of subtractions from left to right.

This algorithm, which needs additions only, was used long ago for the pro-
duction of mathematical tables, e.g., for logarithms. Suppose that one knows, e.g.,
by means of a series expansion, a relatively complicated polynomial approximation
to (say) f(x) = lnx, that is accurate enough in (say) the interval [a, b], and that
this has been used for the computation of k very accurate values y0 = f(a), y1 =
f(a+ h), . . . yk−1, needed for starting the difference scheme. The algorithm is then
used for n = k, k + 1, k + 2, . . . , (b − a)/h. k − 1 additions only are needed for
each value yn. Some analysis must have been needed for the choice of the step h
to make the tables useful with (say) linear interpolation, and for the choice of k
to make the basic polynomial approximation accurate enough over a substantial
number of steps. The precision used was higher, when the table was produced than
when it was used. When x = b was reached, a new approximating polynomial was
needed for continuing the computation over an other interval; at least a new value
of ∇k−1yn.

This procedure was the basis of the unfinished Difference Engine project of
the great 19th century British computer pioneer Charles Babbage. He abandoned
it after a while in order to spend more time on his huge “Analytic Engine” project,
which was also unfinished, but he documented a lot of ideas, where he was (say)
100 years ahead of his time. “Difference engines” based on Babbage’s ideas were,
however, constructed in Babbage’s own time, by the Swedish inventors Scheutz
(father and son) 1834 and by Wiberg 1876, and they were applied, among other
things, to the automatic calculation and printing of tables of logarithms. See, e.g.,
Goldstine [21].

The algorithm in (3.3.42) can be generalized to the non-equidistant with the
use of divided differences; see Sec. 4.2.1.

We now derive some central difference formulas for numerical differentiation.
From the definition and from Bickley’s table (Table 3.2.1)

δ ≡ E1/2 − E−1/2 = 2 sinh
(1

2
hD
)

. (3.3.43)

We may therefore put x = 1
2hD, sinhx = 1

2δ into the following expansion (see
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Problem 3.1.7),

x = sinhx− 1

2

sinh3 x

3
+

1 · 3
2 · 4

sinh5 x

5
− 1 · 3 · 5

2 · 4 · 6
sinh7 x

7
± . . . ,

with the result

hD = 2arcsinh
δ

2
= δ − δ3

24
+

3δ5

640
− 5δ7

7, 168
+

35δ9

294, 912
− 63δ11

2, 883, 584
± . . . . (3.3.44)

The verification of the assumptions of Theorem 3.3.7 follows the pattern of Exam-
ple 3.3.6, and we omit the details. Since arcsinhz, z ∈ C has the same singularities
as its derivative (1 + z2)−1/2, namely z = ±i, it follows that the expansion in
(3.3.44), if sc(δ/2) is substituted for δ/2, converges if sc(δ/2) < 1, hence ρ = 2.

By squaring the above relation, we obtain

(hD)2 = δ2 − δ4

12
+
δ6

90
− δ8

560
+

δ10

3, 150
− δ12

16, 632
± . . . ,

f ′′(x0) ≈
(

1 − δ2

12
+
δ4

90
− δ6

560
+

δ8

3, 150
− δ10

16, 632
± . . .

)

δ2f0
h2

. (3.3.45)

By Theorem 3.3.7 (3.3.45) holds for all polynomials. Since the first neglected non-
vanishing term of (3.3.45) when applied to f , is (asymptotically) cδ12f ′′(x0), the
formula for f ′′(x) is exact if f ′′ ∈ P12, i.e. if f ∈ P14, although only 13 values of
f(x) are used. We thus gain one degree and, in the application to other functions
than polynomials, one order of accuracy, compared to what we may have expected
by counting unknowns and equations only; see Theorem 3.3.4. This is typical for a
problem that has a symmetry with respect to the hull of the data points.

Suppose that the values f(x) are given on the grid x = x0 + nh, n integer.
Since (3.3.44) contains odd powers of δ, it cannot be used to compute f ′

n on the
same grid. as pointed out in the beginning of Sec. 3.3.2. This difficulty can be
overcome by means of another formula given in Bickley’s table, namely

µ =
√

1 + δ2/4. (3.3.46)

This is derived as follows. The formulas

µ = cosh
hD

2
,

δ

2
= sinh

hD

2

follow rather directly from the definitions; the details are left for Problem 5a. The
formula (coshhD)2 − (sinhhD)2 = 1 holds also for formal power series. Hence

µ2 − 1

4
δ2 = 1, or µ2 = 1 +

1

4
δ2,

from which the relation (3.3.46) follows.
If we now multiply the right hand side of equation (3.3.44) by the expansion

1 = µ
(

1 +
1

4
δ2
)−1/2

= µ
(

1 − δ2

8
+

3δ4

128
− 5δ6

1, 024
+

35δ8

32, 768
+ . . .

)

. (3.3.47)
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we obtain

hD =
(

1 − δ2

6
+
δ4

30
− δ6

140
± . . .

)

µδ. (3.3.48)

This leads to a useful central difference formula for the first derivative (where we
have used more terms than we displayed in the above derivation).

f ′(x0) =
(

1 − δ2

6
+
δ4

30
− δ6

140
+

δ8

630
− δ10

2772
± . . .

)f1 − f−1

2h
. (3.3.49)

If you truncate the operator expansion in (3.3.49) after the δ2k term, you obtain
exactly the derivative of the interpolation polynomial of degree 2k+1 for f(x) that
is determined by the 2k + 2 values fi, i = ±1,±2, . . . ,±(k + 1). Note that all
the neglected terms in the expansion vanish when f(x) is any polynomial of degree
2k + 2, independent of the value of f0. (Check the statements first for k = 0; you
will recognize a familiar property of the parabola.) So, although we search for a
formula that is exact in P2k+2, we actually find a formula that is exact in P2k+3.

By the multiplication of the expansions in (3.3.45 ) and (3.3.48), we obtain
the following formulas, which have applications in other sections

(hD)3 = (1 − 1

4
δ2 +

7

120
δ4 + . . .)µδ3

(hD)5 = (1 − 1

3
δ2 + . . .)µδ5 (3.3.50)

(hD)7 = µδ7 + . . .

Another valuable feature typical for δ2-expansions, i.e. for expansions in powers of
δ2, is the rapid convergence. It was mentioned earlier that ρ = 2, hence ρ2 = 4,
(while ρ = 1 for the backwards differentiation formula). The error constants of the
differentiation formulas obtained by (3.3.45) and (3.3.49) are thus relatively small.

All this is typical for the symmetric approximation formulas which are based
on central differences; see, e.g., the above formula for f ′′(x0), or the next example.
In view of this, can we forget the forward and backward difference formulas alto-
gether? Well, this is not quite the case, since one must often deal with data that
are unsymmetric with respect to the point where the result is needed. For exam-
ple, given f−1, f0, f1, how would you compute f ′(x1)? Asymmetry is also typical
for the application to initial value problems for differential equations; see Volume
III. In such applications methods based on symmetric rules for differentiation or
integration have sometimes inferior properties of numerical stability.

When a problem has a symmetry around some point x0, you are advised to
try to derive a δ2-expansion. The first step is to express the relevant operator in
the form Φ(δ2), where the function Φ is analytic at the origin.

To find a δ2-expansion for Φ(δ2) is algebraically the same thing as expanding
Φ(z) into powers of a complex variable z. So, the methods for the manipulation of
power series mentioned in Sec. 3.2.2 and Problem 3.1.8 are available, and so is the
Cauchy–FFT method (Sec. 3.1.4). For suitably chosen r,N you evaluate

Φ(re2πik/N ), k = 0 : N − 1,
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and obtain the coefficients of the δ2-expansion by the FFT! You can therefore derive
a long expansion, and later truncate it as needed. You also obtain error estimates
for all these truncated expansions for free.

Suppose that you have found a truncated δ2-expansion, (say)

A(δ2) ≡ a1 + a2δ
2 + a3δ

4 + . . .+ ak+1δ
2k,

but you want instead an equivalent symmetric expression of the form

B(E) ≡ b1 + b2(E + E−1) + b3(E
2 + E−2) + . . .+ bk+1(E

k + E−k).

Note that δ2 = E − 2 +E−1. The transformation A(δ2) 7→ B(E) can be performed
in several ways. Since it is linear it can be expressed by a matrix multiplication of
the form b = Mk+1a, where a, b are column vectors for the coefficients, and Mk+1

is the k + 1× k + 1 upper triangular submatrix in the northwest corner of a matrix
M that turns out to be

M =

























1 −2 6 −20 70 −252 924 −3432
1 −4 15 −56 210 −792 3003

1 −6 28 −120 495 −2002
1 −8 45 −220 1001

1 −10 66 −364
1 −12 91

1 −14
1

























. (3.3.51)

Note that the matrix elements are binomial coefficients that can be generated
recursively (Problem 13). It is therefore easy to extend the matrix; this 8×8 matrix
is sufficient for a δ2-expansion up to the term a8δ

14.
The operator D−1 is defined by the relation (D−1f)(x) =

∫ x
f(t) dt. The

lower limit is not fixed, so D−1f contains an arbitrary integration constant. Note
that DD−1f = f , while D−1Df = f + C, where C is the integration constant. A

difference expression like D−1f(b) − D−1f(a) =
∫ b

a
f(t) dt is uniquely defined. So

is also δD−1f , but D−1δf has an integration constant.
A right-hand inverse can be defined also for the operators ∆,∇, δ. For exam-

ple, (∇−1u)n =
∑j=n

uj has an arbitrary summation constant but, e.g., ∇∇−1 = 1,
and ∆∇−1 = E∇∇−1 = E are uniquely defined.

One can make the inverses unique by restricting the class of sequences (or
functions). For example, if we require that

∑

∞

j=0 uj is convergent, and make the

convention that (∆−1u)n → 0 as n → ∞, then ∆−1un = −∑∞

j=n uj ; notice the
minus sign. Also notice that this is consistent with the following formal computa-
tion: (1 + E + E2 + . . .)un = (1 − E)−1un = −∆−1un. We recommend, however,
some extra care with infinite expansions into powers of operators like E that is not
covered by Theorem 3.3.7, but the finite expansion

1 + E + E2 + . . .+ En−1 = (En − 1)(E − 1)−1 (3.3.52)

is valid.



96 Chapter 3. Series, Operators and Continued Fractions

In Chapter 5 we will use operator methods together with the Cauchy–FFT
method for finding the Newton–Cotes’ formulas for symmetric numerical integra-
tion.

Operator techniques can also be extended to functions of several variables.
The basic relation is again the operator form of Taylor’s formula, which in the case
of two variables reads,

u(x0 + h, y0 + k) = exp

(

h
∂

∂x
+ k

∂

∂y

)

u(x0, y0)

= exp

(

h
∂

∂x

)

exp

(

k
∂

∂y

)

u(x0, y0). (3.3.53)

There will be applications in some problems of Chapter 4.

3.3.5 Single Linear Difference Equations

Historically, the term difference equation was probably first used in connection
with an equation of the form

b0∆
kyn + b1∆

k−1yn + . . . bk−1∆yn + bkyn = 0, n = 0, 1, 2, . . .

which reminds of a linear homogeneous differential equation. It follows, however,
from the discussion after (3.3.1) and (3.3.4) that this equation can also be written
in the form

yn+k + a1yn+k−1 + . . .+ akyn = 0, (3.3.54)

and nowadays this is what one usually means by a single homogeneous linear differ-
ence equation of kth order with constant coefficients; a difference equation without
differences. More generally, if we let the coefficients ai depend on n; we have a
linear difference equation with variable coefficients. If we replace the zero on the
right hand side with some known quantity rn, we have a nonhomogeneous linear
difference equation.

These types of equations are the main topic of this section. The coefficients
and the unknown are real or complex numbers. We shall occasionally see examples
of more general types of difference equations, e.g., a nonlinear difference equation
F (yn+k, yn+k−1, . . . , yn) = 0), and we shall, in Chapter 13, deal with first order
systems of difference equations, i.e. yn+1 = Anyn + rn, where rn, yn, etc. are
vectors while An is a square matrix. Finally, partial difference equations where you
have two (or more) subscripts in the unknown, occur often as numerical methods
for partial differential equations, but they have many other important applications
too.

A difference equation can be viewed as a recurrence relation. With given
values of y0, y1, . . . , yk−1, called the initial values or the seed of the recurrence,
we can successively compute yk, yk+1, yk+2, . . .; we see that the general solution of
a k’th order difference equation contains k arbitrary constants, just like the general
solution of the k’th order differential equation.

There are other important similarities between difference and differential equa-
tions, for example the following superposition result.
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Lemma 3.3.10. The general solution of a nonhomogeneous linear difference equa-
tion (also with variable coefficients) is the sum of one particular solution of it, and
the general solution of the corresponding homogeneous difference equation.

In practical computing, the recursive computation of the solution of a dif-
ference equations is most common. It was mentioned at the end of Sec. 3.1 that
many important functions, e.g., Bessel functions and orthogonal polynomials, sat-
isfy second order linear difference equations with variable coefficients, (although this
terminology was not used there). Other important applications are the multistep
methods for ordinary differential equations.

In such an application you are usually interested in the solution for one par-
ticular initial condition, but due to rounding errors in the initial values you obtain
another solution. It is therefore of interest to know the behaviour of the solutions
of the corresponding homogeneous difference equation. The questions are:

• Can we use a recurrence to find the wanted solution accurately?

• How shall we use a recurrence, forward or backward?

Forward recurrence is the type we described above. In backward recurrence we
choose some large integer N , and give (almost) arbitrary values of yN+i, i = 0 : k−1
as seed, and compute yn for n = N − 1 : −1 : 0.

We have seen this already in Example 1.3.3 (and in Problem 10a of Sec. 1.3)
for an inhomogeneous first order recurrence relation. It was there found that the
forward recurrence was useless, while backward recurrence, with a rather naturally
chosen seed, gave satisfactory results; (see Example 1.3.4 and Problem 10b).

It is often like this, though not always. In Problem 9 of Sec. 1.3 it is the
other way around: the forward recurrence is useful, and the backward recurrence is
useless.

Sometimes boundary values are prescribed for a difference equation instead
of initial values, (say) p values at the beginning and q = k−p values at the end, e.g.,
the values of y0, y1,. . . , yp−1, and yN−q, . . . ,N−1 , yN are given. Then the difference
equation can be treated as a linear system with N−k unknown. This also holds for
a difference equation with variable coefficients and for an inhomogeneous difference
equation. From the point of view of numerical stability, such a treatment can be
better than either recurrence. The amount of work is somewhat larger, not very
much though, for the matrix is a band matrix. We have sees in Example 1.3.2
that for a fixed number of bands the amount of work to solve such a linear system
is proportional to the number of unknown. An important particular case is when
k = 2, p = q = 1; the linear system is then tridiagonal. An algorithm for such linear
systems is described in Example 1.3.2.

Another similarity for differential and difference equations, is that the general
solution of a linear equation with constant coefficients has a simple closed form.
Although, in most cases, the real world problems have variable coefficients (or are
nonlinear), one can often formulate a class of model problems with constant coeffi-
cients, with similar features. The analysis of such model problems can give hints,
e.g., whether forward or backward recurrence should be used, or other questions re-
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lated to the design and the analysis of the numerical stability of a numerical method
for a more complicated problem.

We shall therefore now study how to solve a single homogeneous linear differ-
ence equation with constant coefficients (3.3.54), i.e.

yn+k + a1yn+k−1 + . . .+ akyn = 0.

It is satisfied by the sequence {yj}, where yj = cuj, (u 6= 0, c 6= 0), if and only if
un+k + a1u

n+k−1 + . . .+ aku
n = 0, that is when

φ(u) ≡ uk + a1u
k−1 + . . .+ ak = 0. (3.3.55)

Equation (3.3.55) is called the characteristic equation of (3.3.54); φ(u) is called
the characteristic polynomial.

Theorem 3.3.11.
If the characteristic equation has k different roots, u1, . . . , uk, then the general

solution of equation (3.3.54) is given by the sequences {yn}, where

yn = c1u
n
1 + c2u

n
2 + · · · + cku

n
k , (3.3.56)

where c1, c2, . . . , ck are arbitrary constants.

Proof. That {yn} satisfies equation (3.3.54) follows from the previous comments
and from the fact that the equation is linear. The parameters c1, c2, . . . , ck can
be adjusted to arbitrary initial conditions y0, y1, . . . , yk−1 by solving the system of
equations









1 1 · · · 1
u1 u2 · · · uk
...

...
...

uk−1
1 uk−1

2 · · · uk−1
k

















c1
c2
...
ck









=









y0
y1
...

yk−1









.

The matrix is a Vandermonde matrix and its determinant is thus equal to the
product of all differences (ui − uj), i ≥ j, 1 < i ≤ k, which is nonzero.

Example 3.3.10.
Consider the difference equation yn+2−5yn+1+6yn = 0 with initial conditions

y0 = 0, y1 = 1. Forward recurrence yields y2 = 5, y3 = 19, y4 = 65, . . . .
The characteristic equation u2 − 5u+ 6 = 0 has roots u1 = 3, u2 = 2. Hence,

the general solution is yn = c13
n + c22

n. The initial conditions give the system of
equations

c1 + c2 = 0, 3c1 + 2c2 = 1,

with solution c1 = 1, c2 = −1, hence yn = 3n − 2n.
As a check we find y2 = 5, y3 = 19 in agreement with the results found by

using forward recurrence.
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Example 3.3.11.
Consider the difference equation

Tn+1(x) − 2xTn(x) + Tn−1(x) = 0, n ≥ 1, −1 < x < 1,

with initial conditions T0(x) = 1, T1(x) = x. We obtain T2(x) = 2x2 − 1, T3(x) =
4x3−3x, T4(x) = 8x4−8x2+1, . . . . By induction, Tn(x) is an nth degree polynomial
in x.

We can obtain a simple formula for Tn(x) by solving the difference equation.
The characteristic equation is u2 − 2xu + 1 = 0, with roots u = x ± i

√
1 − x2. Set

x = cosφ, 0 < x < π. Then u = cosφ± i sinφ, and thus

u1 = eiφ, u2 = e−iφ, u1 6= u2.

The general solution is Tn(x) = c1e
inφ + c2e

−inφ, and the initial conditions give

c1 + c2 = 1, c1e
iφ + c2e

−iφ = cosφ,

with solution c1 = c2 = 1/2. Hence, Tn(x) = cos(nφ), x = cosφ.
These polynomials are thus identical to the important Chebyshev polynomials

that were introduced in (3.2.19), and were there in fact denoted by Tn(x).
We excluded the cases x = 1 and x = −1, i.e. φ = 0 and φ = π, respectively.

For the particular initial values of this example, there are no difficulties; the solution
Tn(x) = cosnφ depends continuously on φ, and as φ → 0 or phi → π, Tn(x) =
cosnφ converges to 1 ∀n or (−1)n ∀n, respectively.

When we ask for the general solution of the difference equation, the matters
are a little more complicated, because the characteristic equation has in these cases
a double root; u = 1 for x = 1, u = −1 for x = −1. Although they are thus covered
by the next theorem, we shall look at them directly, because they are easy to solve,
and they give a good preparation for the general case.

If x = 1, the difference equation reads Tn+1 − 2Tn + Tn−1 = 0, i.e. ∆2Tn = 0.
We know from before (see, e.g., Theorem 3.3.4) that this is satisfied iff Tn = an+ b.
The solution is no longer built up by exponentials; a linear term is there too.

If x = −1, the difference equation reads Tn+1 + 2Tn + Tn−1 = 0. Set Tn =
(−1)nVn. The difference equation becomes, after division by (−1)n+1, Vn+1−2Vn +
Vn−1 = 0, with the general solution, Vn = an+ b, hence Tn = (−1)n(an+ b).

Theorem 3.3.12.
When ui is an mi-fold root of the characteristic equation, then the difference

equation (12.3.3) is satisfied by the sequence {yn}, where

yn = Pi(n)un
i ,

and Pi is an arbitrary polynomial in Pmi
. The general solution of the difference

equation is a linear combination of solutions of this form using all the distinct roots
of the characteristic equation.
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Proof. We can write the polynomial P ∈ Pmi
in the form

Pi(n) = b1 + b2n+ b3n(n− 1) + · · · + bmi
n(n− 1) · · · (n−mi + 2).

Thus it is sufficient to show that equation (3.3.54) is satisfied when

yn = n(n− 1) · · · (n− p+ 1)un
i = (up∂p(un)/∂up)u=ui

, p = 1, 2, . . . ,mi − 1.
(3.3.57)

Substitute this in the left-hand side of equation (3.3.54):

up ∂
p

∂up

(

un+k + a1u
n+k−1 + · · · + aku

n
)

= up ∂
p

∂up

(

φ(u)un
)

= up
(

φ(p)(u)un +

(

p

1

)

φ(p−1)(u)nun−1 + · · · +
(

p

p

)

φ(u)
∂p

∂up
(un)

)

.

The last manipulation was made using Leibniz’s rule.
Now φ and all the derivatives of φ which occur in the above expression are 0

for u = ui, since ui is an mi-fold root. Thus the sequences {yn} in equation (3.3.57)
satisfy the difference equation. We obtain a solution with

∑

mi = k parameters
by the linear combination of such solutions derived from the different roots of the
characteristic equation.

It can be shown (see, e.g., Henrici [23, p. 214]) that these solutions are linearly
independent. (This also follows from a different proof given in Chapter. 13, where a
difference equation of higher order is transformed to a system of first order difference
equations. This transformation also leads to other ways of handling inhomogeneous
difference equations than those which are presented in this section.)

Note that the double root cases discussed in the previous example are com-
pletely in accordance with this theorem. We take one more example.

Example 3.3.12.
Consider the difference equation yn+3 − 3yn+2 + 4yn = 0. The characteristic

equation is u3 − 3u2 + 4 = 0 with roots u1 = −1, u2 = u3 = 2. Hence, the general
solution reads

yn = c1(−1)n + (c2 + c3n)2n.

For a nonhomogeneous linear difference equation of order k, one can often
find a particular solution by the use of an “Ansatz” with undetermined coefficients;
thereafter, by Lemma 3.3.10 one can get the general solution by adding the general
solution of the homogeneous difference equation.

Example 3.3.13.
Consider the difference equation yn+1−2yn = an, with initial condition y0 = 1.

Try the “Ansatz” yn = can. One gets can+1 − 2can = an, c = 1/(a − 2), a 6= 2.
Thus the general solution is yn = an/(a − 2) + c12

n. By the initial condition,
c1 = 1 − 1/(a− 2), hence

yn =
an − 2n

a− 2
+ 2n. (3.3.58)
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When a → 2, l’Hospital’s rule gives yn = 2n + n2n−1. Notice how the “Ansatz”
must be modified when a is a root of the characteristic equation.

The general rule when the right hand side is of the form P (n)an (or a sum of
such terms), where P is a polynomial, is that the contribution of this term to yn is
Q(n)an, where Q is a polynomial. If a does not satisfy the characteristic equation
then deg Q = deg P ; if a is a single or a double root of the characteristic equation,
then deg Q = deg P + 1 or deg Q = deg P + 2, respectively, etc. The coefficients
of Q are determined by the insertion of yn = Q(n)an on the left hand side of the
equation and matching the coefficients with the right hand side.

Another way to find a particular solution is based on the calculus of operators.
Suppose that an inhomogeneous difference equation is given in the form ψ(Q)yn =
bn, where Q is one of the operators ∆, δ and ∇, or an operator easily derived from
these, e.g., 1

6δ
2, see Problem 27.

In § 3.2.2 ψ(Q)−1 was defined by the formal power series with the same coef-
ficients as the Maclaurin series for the function 1/ψ(z), z ∈ C, ψ(0) 6= 0. In simple
cases, e.g., if ψ(Q) = a0 + a1Q, these coefficients are easily found. Example 3.1.6
indicates how to find the coefficients in more general cases. Then ψ(Q)−1bn is a
particular solution of the difference equation ψ(Q)yn = bn; the truncated expan-
sions approximate this. Note that if Q = δ or ∇, the infinite expansion demands
that bn is defined also if n < 0.

Note that a similar technique, with the operator D, can also be applied to lin-
ear differential equations. Today this technique has to a large extent been replaced
by the Laplace transform, that yields essentially the same algebraic calculations as
operator calculus.

In some branches of applied mathematics it is popular to treat nonhomoge-
neous difference equations by means of a generating function, also called the
z-transform, since both the definition and the practical computations are analo-
gous to the Laplace transform. The z-transform of the sequence y = {yn}∞0 is

Y (z) =

∞
∑

n=0

ynz
−n. (3.3.59)

Note that the sequence {Ey} = {yn+1} has the z-transform zY (z) − y0, {E2y} =
{yn+2} has the z-transform z2Y (z) − y0z − y1, etc.

If Y (z) is available in analytic form, it can often be brought to a sum of func-
tions, whose inverse z-transforms are known, by means of various analytic tech-
niques, notably expansion into partial fractions, e.g., if Y (z) is a rational function.
On the other hand, if numerical values of Y (z) have been computed for complex
values of z on some circle in C by means of an algorithm, then yn can be determined
by an obvious modification of the Cauchy–FFT method described in Sec. 3.1.3 (for
expansions into negative powers of z). More information about the z-transform can
be found in Strang [44, Sec. 6.3].

We are now in a position to exemplify in more detail the use of linear difference
equations to studies of numerical stability, of the type mentioned above.
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Theorem 3.3.13.
Necessary and sufficient for boundedness (stability) of all solutions of the dif-

ference equation (3.3.54) for all positive n is the following root condition: (We
shall say either that a difference equation or that a characteristic polynomial satisfies
the root condition; the meaning is the same.)

i. All roots of characteristic equation (3.3.55) should be located inside or on the
unit circle |z| ≤ 1;

ii. The roots on the unit circle should be simple.

Proof. Follows directly from Theorem 3.3.12.

This root condition corresponds to cases, where it is the absolute error that
matters. It is basic in the theory of linear multistep methods for ordinary differential
equations. Computer Graphics and an algebraic criterion due to Schur are useful
for investigations of the root condition in particular if the recurrence relation under
investigation contains parameters.

There are important applications of single linear difference equations to the
study of the stability of numerical methods. When a recurrence is used one is
usually interested in the solution for one particular initial condition, but a rounding
error in an initial value produces a different solution, and it is therefore of interest to
know the behaviour of other solutions of the corresponding homogeneous difference
equation. We have seen this already in Sec. 1.3.3 for an inhomogeneous first order
recurrence relation, but it is even more important for recurrence relations of higher
order.

The following example is based on a study by J. Todd45 in (1950) (see [46]).

Example 3.3.14.
Consider the initial-value problem

y′′(x) = −y, y(0) = 0, y′(0) = 1, (3.3.60)

with the exact solution y(x) = sinx. To compute an approximate solution yk =
y(xk) at equidistant points xk = kh, where h is a step length, we approximate the
second derivative according to (3.3.45),

y′′k = h−2

(

δ2yk +
δ4yk

12
+
δ6yk

90
+ . . .

)

. (3.3.61)

We first use the first term only; the second term shows that the truncation error of
this approximation of y′′k is asymptotically h2y(4)/12. We then obtain the difference
equation h−2δ2yk = −yk or, in other words,

yk+2 = (2 − h2)yk+1 − yk, y0 = 0, (3.3.62)

45John Todd, Irish-American numerical analyst that was one of the first studies of the numerical
stability of an algorithm for the approximate solution of ordinary differential equations.
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where a suitable value of y1 is to be assigned. In the third column of Table 3.4.2 we
show the results obtained using this recursion formula with h = 0.1 and y1 = sin 0.1.
We obtain about 3 digits accuracy at the end, x = 1.5.

Table 3.3.2. Integrating y′′ = −y, y(0) = 0, y′(0) = 1; the letters U and
S in the headlines of the last two columns refer to “Unstable” and “Stable’.

xk sin xk 2nd order 4th order U 4th order S

0.1 0.0998334166 0.0998334 0.0998334166 0.0998334166

0.2 0.1986693308 0.1986685 0.1986693307 0.1986693303

0.3 0.2955202067 0.2955169 0.2955202067 0.2955202050

0.4 0.3894183423 0.3894101 0.3894183688 0.3894183382

0.5 0.4794255386 0.4794093 0.4794126947 0.4794255305

0.6 0.5646424734 0.5646143 0.5643841035 0.5646424593

0.7 0.6442176872 0.6441732 0.6403394433 0.6442176650

0.8 0.7173560909 0.7172903 0.6627719932 0.7173560580

0.9 0.7833269096 0.7832346 0.0254286676 0.7833268635

1.0 0.8414709848 0.8413465 −9.654611899 0.8414709226

1.1 0.8912073601 0.8910450 −144.4011267 0.8912072789

1.2 0.9320390860 0.9318329 −2010.123761 0.9320389830

1.3 0.9635581854 0.9633026 −27834.59620 0.9635580577

1.4 0.9854497300 0.9851393 −385277.6258 0.9854495749

1.5 0.9974949866 0.9971245 −5332730.260 0.9974948015

Since the algorithm was based on a second order accurate approximation of
y′′ one may expect that the solution of the differential equation is also second order
accurate. This turns out to be correct in this case, e.g., if we divide the step size
by 2, the errors will be divided by 4, approximately. We shall, however; see that
we cannot always draw conclusions of this kind; we also have to take the numerical
stability into account.

In the hope to obtain a more accurate solution, we shall now use one more
term in the expansion (3.3.61); the third term then shows that the truncation error
of this approximation is asymptotically h4y(6)/90. The difference equation now
reads

δ2yk − 1

12
δ4yk = −h2yk (3.3.63)

or, in other words,

yk+2 = 16yk+1 − (30 − 12h2)yk + 16yk−1 − yk−2, k ≥ 2, y0 = 0, (3.3.64)

where starting values for y1, y2, and y3 need to be assigned. You see them in
Table 3.4.2, where the results from this algorithm are shown in the fourth column.
We see that disaster has struck—the recursion is severely unstable! Already for
x = 0.6 the results are less accurate than the second order scheme. For x ≥ 0.9 the
errors dominate completely.



104 Chapter 3. Series, Operators and Continued Fractions

We shall now look at these difference equations from the point of view of the
root condition. The characteristic equation for (3.3.62) reads u2−(2−h2)u+1 = 0,
and since |2 − h2| < 2, direct computation shows that it has simple roots of unit
modulus. The root condition is satisfied. By Example 3.3.11, the solution of (3.3.62)
is yn = Tn(1 − h2/2).

For (3.3.64) the characteristic equation reads u4−16u3+(30−12h2)u2−16u+
1 = 0. We see immediately that the root condition cannot be satisfied. Since the
sum of the roots equals 16, it is impossible that all roots are inside or on the unit
circle. In fact, the largest root equals 13.94. So, a tiny error at x = 0.1 has been
multiplied by 13.9414 ≈ 1016 at the end.

It is easy to construct a stable fourth order accurate method. Just replace the
term δ4yk in (3.3.63) by h2δ2y′′k = −h2δ2yk. This leads to the recursion formula

yk+1 =

(

2 − h2

1 + h2/12

)

yk − yk−1, y0 = 0. (3.3.65)

This difference equation satisfies the root condition if h2 < 6 (Problem 20(b)). This
algorithm can be generalized to differential equations of the form y′′ = f(x, y). It is
known under several names, e.g., Numerov’s method.46 It requires y0, y1 ≈ y(h) as
seed. y(h) can be obtained, for a small value of h, from a few terms of the Taylor
expansion of the solution, the coefficients of which can be computed in the style of
Example 3.1.1; see also Sec. 3.4 (Problem 28).

In the fifth column of Table 3.4.2 we show the results obtained using this
recursion formula with h = 0.1 and y1 = sin 0.1. The error at the end is about
2·10−7.

Remark 3.3.2. If the solution of the original problem is itself strongly decreasing
or strongly increasing, one should consider the location of the characteristic roots
with respect to a circle in the complex plane that corresponds to the interesting
solution. For example, if the interesting root is 0.8 then a root equal to −0.9 causes
oscillations that may eventually become disturbing, if one is interested in relative
accuracy also in a long run, even if the oscillating solution is small in the beginning.

Many problems contain homogeneous or nonhomogeneous linear difference
equations with variable coefficients, for which the solutions are not known in a
simple closed form.

We now confine the discussion to the cases where the original problems are
to compute a particular solution of a second order difference equation with variable
coefficients; several interesting problems of this type were mentioned above, and
we formulated the questions: can we use a recurrence to find the wanted solution
accurately, and how shall we use a recurrence, forwards or backwards. Typically the
original problem contains some parameter, and one usually wants to make a study
for an interval of parameter values.

Such questions are sometimes studied with frozen coefficients, i.e. the model
problems are in the class of difference equations with constant coefficients in the

46The method can be traced back at least to B. Numerov 1924.
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range of the actual coefficients of the original problem; if one of the types of re-
currence is satisfactory (i.e. numerically stable in some sense) for all model prob-
lems, one would like to conclude that they are satisfactory also for the original
problem, but the conclusion is not always valid without further restrictions on the
coefficients—see a counterexample in Problem 26c.

The technique with frozen coefficients provides just a hint that should always
be checked by numerical experiments on the original problem. It is beyond the scope
of this text to discuss what restrictions are needed. If the coefficients of the original
problem are slowly varying, however, there is a good chance that the numerical tests
will confirm the hint—but again: how slowly is “slowly”? A warning against the use
of one of the types of recurrence may also be a valuable result of a study, although
it is negative.

The following lemma exemplifies a type of tool that may be useful in such cases.
The proof is left for Problem 25a. Another useful tool is presented in Problem 26a
and applied in Problem 26b.

Lemma 3.3.14. Suppose that the wanted sequence y∗n satisfies a difference equation
(with constant coefficients),

αyn+1 + βyn − γyn−1 = 0, (α > γ > 0, β > 0),

and that y∗n is known to be positive for all sufficiently large n. Then the characteristic
roots can be written 0 < u1 < 1, u2 < 0 and |u2| > u1. Then y∗n is unique apart
from a positive factor c; y∗n = cun

1 , c > 0.
A solution ȳn, called the trial solution that is approximately of this form can be

computed for n = N : −1 : 0 by backward recurrence starting with the “seed”yN+1 =
0 yN = 1. If an accurate value of y∗0 is given, the wanted solution is

y∗n = ȳny
∗

0/ȳ0,

with a relative error approximately proportional to (u2/u1)
n−N . (neglecting a pos-

sible error in y∗0).
47

The forward recurrence is not recommended for finding y∗n in this case, since
the positive term c1u

n
1 will eventually be drowned by the oscillating term c2u

n
2 that

will be introduced by the rounding errors. The proof is left for Problem 26c. Even
if y0 (in the use of the forward recurrence) has no rounding errors, such errors
committed at later stages will yield similar contributions to the numerical results.

Example 3.3.15.
The ”original problem” is to compute the parabolic cylinder function U(a, x)

which satisfies the difference equation

(a+ 1
2 )U(a+ 1, x) + xU(a, x) − U(a− 1, x) = 0,

see Handbook of mathematical functions [1, Ch. 19]; see in particular Example 19.28.1.

47If y
∗

n is defined by some other condition, one can proceed analogously.



106 Chapter 3. Series, Operators and Continued Fractions

To be more precise, we consider the case x = 5. Given U(3, 5) = 5.2847 10−6

(obtained from a table in Handbook, p. 710), we want to determine U(a, 5) for
integer values of a, a > 3, as long as |U(a, 5)| > 10−15. We guess (a priori) that
the discussion can be restricted to the interval (say) a = [3, 15]. The above lemma
then gives the hint of a backward recurrence, for a = a′ − 1 : −1 : 3 for some
appropriate a′ (see below), in order to obtain a trial solution Ūa with the seed
Ūa′ = 1, Ūa′+1 = 0. Then the wanted solution becomes, by the Lemma, (with
changed notation),

U(a, 5) = ŪaU(3, 5)/Ū3.

The positive characteristic root of the frozen difference equation varies from 0.174
to 0.14 for a = 5 : 15; while the modulus of the negative root is between 6.4 and
3.3 times as large. This motivates a choice of a′ ≈ 4 + (−9− log 5.3)/ ln 0.174 ≈ 17
for the backward recursion; it seems advisable to choose a′ (say) 4 units larger than
the value where U becomes negligible.
Forward recurrence with correctly rounded starting values U(3, 5) = 5.2847 10−6,
U(4, 5) = 9.172 10−7, gives oscillating (absolute) errors of relatively slowly decreas-
ing amplitude, approximately 10−11, that gradually drowns the exponentially de-
creasing true solution; the estimate of U(a, 5) itself became negative for a = 10,
and then the results oscillated with approximate amplitude 10−11, while the correct
results decrease from the order of 10−11 to 10−15 as a = 10 : 15. The details are
left for Problem 25b.

It is conceivable that this procedure can be used for all x in some interval
around 5, but we refrain from presenting the properties of the parabolic cylinder
function needed for determining the interval.

If the problem is nonlinear, one can instead solve the original problem with
two seeds, (say) y′N , y

′′

N , and study how the results deviate. The seeds should be so
close that a linearization like f(y′n)−f(y′′n) ≈ rn(y′n−y′′n) is acceptable, but y′n −y′′n
should be well above the rounding error level. A more recent and general treatment
of these matters is found in [17, Chapter 6].

Review Questions

1. Give expressions for the shift operator Ek in terms of ∆,∇, and hD, and
expressions for the central difference operator δ2 in terms of E and hD.

2. Derive the best upper bound for the error of ∆ny0, if we only know that the
absolute value of the error of yi, i = 0, . . . , n does not exceed ǫ.

3. There is a theorem (and a corollary) about existence and uniqueness of approx-
imation formulas of a certain type that are exact for polynomials of certain
class. Formulate these results, and sketch the proofs.

4. What bound can be given for the k’th difference of a function in terms of a
bound for the k’th derivative of the same function?
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5. Formulate the basic theorem concerning the use of operator expansions for
deriving approximation formulas for linear operators.

6. Formulate Peano’s Remainder Theorem, and compute the Peano kernel for a
given symmetric functional (with at most four subintervals).

7. Express polynomial interpolation formulas in terms of forward and backward
difference operators.

8. Give Stirling’s interpolation formula for quadratic interpolation with approx-
imate bounds for truncation error and irregular error.

9. Derive central difference formulas for f ′(x0) and f ′′(x0) that are exact for
f ∈ P4. They should only use function values at xj , j = 0,±1,±2, . . . , as
many as needed. Give asymptotic error estimates.

10. Derive the formula for the general solution of the difference equation yn+k +
a1yn+k−1 + . . .+ akyn = 0, when the characteristic equation has simple roots
only. What is the general solution, when the characteristic equation has mul-
tiple roots?

11. What is the general solution of the difference equation ∆kyn = an+ b?

12. Prove Lemma 3.3.14, and present the main features of its application to the
parabolic cylinder function.

Problems and Computer Exercises

1. (a) Show that

(1 + ∆)(1 −∇) = 1, ∆ −∇ = ∆∇ = δ2 = E − 2 + E−1,

δ2yn = yn+1 − 2yn + yn−1.

(b) Let ∆pyn,∇pym, δ
pyk all denote the same quantity. How are n,m, k con-

nected? Along which lines in the difference scheme are the subscripts constant?

(c) Given the values of yn, ∇yn, . . . , ∇kyn, for a particular value of n.
Find a recurrence relation for computing yn, yn−1, . . . , yn−k, by simple addi-
tions only. On the way you obtain the full difference scheme of this sequence.

(d) Repeated summation by parts. Show that if u1 = uN = v1 = vN = 0, then

N−1
∑

n=1

un∆2vn−1 = −
N−1
∑

n=1

∆un∆vn =
N−1
∑

n=1

vn∆2un−1.

(e) Show that if ∆kvn → 0, as n→ ∞, then
∑

∞

n=m ∆kvn = −∆k−1vm.

(f) Show that (µδ3 + 2µδ)f0 = f2 − f−2

(g) Prove, e.g., by means of summation by parts, that
∑

∞

n=0 unz
n, |z| =

1, z 6= 1, is convergent if un → 0 monotonically. Formulate similar results for
real cosine and sine series.
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2. (a) Prove, e.g., by induction, the following two formulas:

∆j
x

(

x

k

)

=

(

x

k − j

)

, j ≤ k,

where ∆x means differencing with respect to x, with h = 1.

∆jx−1 =
(−h)jj!

x(x+ h) · · · (x+ jh)
.

Find the analogous expression for ∇jx−1.

(b) What formulas with derivatives instead of differences are these formulas
analogous to?

(c) Show the following formulas, if x, a are integers:

x−1
∑

n=a

(

n

k − 1

)

=

(

x

k

)

−
(

a

k

)

,

∞
∑

n=x

1

n(n+ 1) · · · (n+ j)
=

1

j
· 1

x(x+ 1) · · · (x+ j − 1)
.

Modify these results for non-integer x; x− a is still an integer.

(d) Suppose that b 6= 0,−1,−2, . . ., and set

c0(a, b) = 1, cn(a, b) =
a(a+ 1) . . . (a+ n− 1)

b(b + 1) . . . (b+ n− 1)
, n = 1, 2, 3, . . .

Show, e.g., by induction that (−∆)kcn(a, b) = ck(b − a, b)cn(a, b + k), hence
(−∆)nc0(a, b) = cn(b − a, b).

(e) Compute for a = e, b = π (say), cn(a, b), n = 1 : 100. How do you avoid
overflow? Compute ∆nc0(a, b), both numerically by the difference scheme,
and according to the formula in (d). Compare the results and formulate your
experiences. Do the same with a = e, b = π2.
Do the same with ∆jx−1 for various values of x, j and h.

3. Set

Yord = (yn−k, yn−k+1, . . . , yn−1, yn),

Ydif = (∇kyn, ∇k−1yn, . . . ,∇yn, yn).

Note that the results of this problem also hold if the yj are column vectors.

(a) Find a matrix P , such that Ydif = YordP . Show that

Yord = YdifP hence P−1 = P.

How do you generate this matrix by means of a simple recurrence relation?

Hint: P is related to the Pascal matrix, but do not forget the minus signs in
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this triangular matrix. Compare Problem 3 of Sec. 1.3.

(b) Suppose that
∑k

j=0 αjE
−j and

∑k
j=0 aj∇j represent the same operator.

Set α = (αk, αk−1, . . . , α0)
T , and a = (ak, ak−1, . . . , a0)

T , i.e. Yord · α ≡
Ydif · a. Show that Pa = α, Pα = a.

(c) The matrix P depends on the integer k. Is it true that the matrix which
is obtained for a certain k is a submatrix of the matrix you obtain for a larger
value of k?

(d) Compare this method of performing the mapping Yord 7→ Ydif with the or-
dinary construction of a difference scheme. Consider the number of arithmetic
operations, the kind of arithmetic operations, rounding errors, convenience of
programming in a language with matrix operations as primary operations etc.
Compare in the same way this method of performing the inverse mapping with
the algorithm in Problem 1c.

4. (a) Set f(x) = tanx. Compute by the use of the table of tanx (in Ex-
ample 3.3.2), and the interpolation and differentiation formulas given in the
above examples (almost) as accurately as possible

f ′(1.35), f(1.322), f ′(1.325), f ′′(1.32).

Estimate the influence of rounding errors of the function values and estimate
the truncation errors.

(b) Write a program for computing a difference scheme. Use it for computing
the difference scheme for more accurate values of tanx, x = 1.30 : 0.01 : 1.35,
and calculate improved values of the functionals in (a). Compare the error
estimates with the true errors.

(c) Verify the assumptions of Theorem 3.3.7 for one of the three interpolation
formulas in Sec. 3.3.4.

(d) It is rather easy to find the values at θ = 0 of the first two derivatives
of Stirling’s interpolation formula. You find thus explicit expressions for the
coefficients in the formulas for f ′(x0) and f ′′(x0) in (3.3.49) and (3.3.45),
respectively. Check numerically a few coefficients in these equations, and
explain why they are reciprocals of integers. Also note that each coefficient in
(3.3.49) has a simple relation to the corresponding coefficient in (3.3.45).

5. (a) Study Bickley’s table (Table 3.2.1), and derive some of the formulas, in
particular the expressions for δ and µ in terms of hD, and vice versa.

(b) Show that h−kδk −Dk has an expansion into even powers of h, when k is
even. Find an analogous result for h−kµδk −Dk when k is odd.

6. (a) Compute
f ′(10)/12, f (3)(10)/720, f5(10)/30240,

by means of (3.3.26), given values of f(x) for integer values of x. (This is
asked for, e.g., in applications of Euler–Maclaurin’s formula, Sec. 3.4.4.) Do
this for f(x) = x−3/2. Compare with the correct derivatives. Then do the
same also for f(x) = (x3 + 1)−1/2.

(b) Study the backwards differentiation formula, see Example 3.3.6, on a com-
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puter. Compute f ′(1) for f(x) = 1/x, for h = 0.02 and h = 0.03, and compare
with the exact result. Make a semi-logarithmic plot of the total error after n
terms, n = 1 : 29. Study also the sign of the error. For each case, try to find
out whether the achievable accuracy is set by the rounding errors or by the
semi-convergence of the series.

Hint: A formula mentioned in Problem 2(a) can be helpful. Also note that
this problem is both similar and very different from the function tan(x) that
was studied in Example 3.3.6.

(c) Set xi = x0 + ih, t = (x− x2)/h. Show that

y(x) = y2 + t∆y2 +
t(t− 1)

2
∆2y2 +

t(t− 1)(t− 2)

6
∆3y1

equals the interpolation polynomial in P4 determined by the values (xi, yi),
i = 1 : 4. (Note that ∆3y1 is used instead of ∆3y2 which is located outside
the scheme. Is this OK?)

7. (a) Show the validity of the algorithm in (3.3.42).

(b) A well known formula reads

P (D)(eαtu(t)) = eαtP (D + α)u(t),

where P is an arbitrary polynomial. Prove this, as well as the following
analogous formulas:

P (E)(anun) = anP (aE)un,

P (∆/h)
(

(1 + αh)nun

)

= (1 + αh)nP ((1 + αh)∆/h+ α)un.

Can you find a more beautiful or more practical variant?

8. Find the Peano kernel K(u) for the functional ∆2f(x0). Compute
∫

R
K(u) du

both by direct integration of K(u), and by computing ∆2f(x0) for a suitably
chosen function f .

9. Set yj = y(tj), y
′

j = y′(tj). The following relations are of great interest in the
numerical integration of the differential equations y′ = f(y):

(a) The implicit Adams formula:

yn+1 − yn = h
(

a0y
′

n+1 + a1∇y′n+1 + a2∇2y′n+1 + · · ·
)

.

Show that ∇ = − ln(1 − ∇)
∑

ai∇i, and find a recurrence relation for the
coefficients. The coefficients ai, i = 0 : 6, read as follows. Check a few of
them.

ai = 1, −1

2
, − 1

12
, − 1

24
, − 19

720
, − 3

160
, − 863

60480
.

Alternatively, derive the coefficients by means of the matrix representation, of
a truncated power series.

(b) The explicit Adams formula:

yn+1 − yn = h
(

b0y
′

n + b1∇y′n + b2∇2y′n + · · ·
)

.
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Show that
∑

bi∇iE−1 =
∑

ai∇i, and show that

bn − bn−1 = an, (n ≥ 1).

The coefficients bi, i = 0 : 6, read as follows. Check a few of them.

bi = 1,
1

2
,

5

12
,

3

8
,

251

720
,

95

288
,

19087

60480
.

(c) Apply the the second order explicit Adams formula, i.e.

yn+1 − yn = h(y′n + 1
2∇y

′

n),

to the differential equation y′ = −y2, with initial condition y(0) = 1 and step
size h = 0.1. Two initial values are needed for the recurrence; y0 = y(0) = 1,
of course, and we choose48 y1 = 0.9090. Then compute y′0 = −y2

0, y
′

1 = −y2
1 .

Then the explicit Adams formula yields y2, and so on. Compute a few steps,
and compare with the exact solution.49

10. Let yj = y0 + jh. Find the asymptotic behavior as h→ 0 of

(5(y1 − y0) + (y2 − y1))/(2h) − y′0 − 2y′1.

Comment: This is of interest in the analysis of cubic spline interpolation in
Sec. 4.6.4.

11. It sometimes happens that the values of some function f(x) can be computed
by some very time-consuming algorithm only, and that one therefore com-
putes it much sparser than is needed for the application of the results. It was
common in the pre-computer age to compute sparse tables that needed inter-
polation by polynomials of a high degree; then one needed a simple procedure
for subtabulation, i.e. to obtain a denser table for some section of the table.
Today a similar situation may occur in connection with the graphical output
of the results of (say) a numerical solution of a differential equation.
Define the operators ∇ and ∇k by the equations

∇f(x) = f(x) − f(x− h), ∇kf(x) = f(x) − f(x− kh), (k < 1),

and set

∇r
k =

∞
∑

s=r

crs(k)∇s.

(a) In order to compute the coefficients crs, r ≤ s ≤ m, you are advised to
use a subroutine for finding the coefficients in the product of two polynomials,
truncate the result, and apply the subroutine m− 1 times.

48There are several ways of obtaining y1 ≈ y(h), e.g., by one step of Runge’s 2nd order method,
see Sec. 1.4.3, or by a series expansion, like in Example 3.1.2.

49For an implicit Adams formula it is necessary, in this example, to solve a quadratic equation
in each step.
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(b) Given
fn ∇fn ∇2fn ∇3fn ∇4fn

1 0.181269 0.032858 0.005956 0.001080

Compute for k = 1
2 , fn = f(xn), ∇j

kfn for j = 1 : 4. Compute f(xn − h) and

f(xn − 2h), by means of both {∇jfn} and {∇j
kfn} and compare the results.

How big difference of the results did you expect, and how big difference do
you obtain?

12. Solve the following difference equations. A solution in complex form should
be transformed to real form. As a check, compute (say) y2 both by recurrence
and by your closed form expression.

(a) yn+2 − 2yn+1 − 3yn = 0, y0 = 0, y1 = 1;

(b) yn+2 − 4yn+1 + 5yn = 0, y0 = 0, y1 = 2;

(c) There exist problems with two-point boundary conditions for difference
equations, as for differential equations. yn+2 − 2yn+1 − 3yn = 0, y0 = 0,
y10 = 1;

(d) yn+2 + 2yn+1 + yn = 0, y0 = 1, y1 = 0;

(e) yn+1 − yn = 2n, y0 = 0;

(f) yn+2 − 2yn+1 − 3yn = 1 + cos πn
3 , y0 = y1 = 0;

Hint: The right hand side is ℜ(1 + an), where a = eπi/3.

(g) yn+1 − yn = n, y0 = 0;

(h) yn+1 − 2yn = n2n, y0 = 0;

13. (a) Prove Lemma 3.3.10.

(b) Consider the difference equation yn+2 − 5yn+1 + 6yn = 2n + 3(−1)n.
Determine a particular solution of the form yn = an+ b+ c(−1)n.

(c) Solve also the difference equation yn+2 − 6yn+1 + 5yn = 2n+ 3(−1)n.
Why and how must you change the form of the particular solution?

14. (a) Show that the difference equation
∑k

i=0 bi∆
iyn = 0 has the characteristic

equation:
∑k

i=0 bi(u− 1)i = 0.

(b) Solve the difference equation ∆2yn−3∆yn+2yn = 0, with initial condition
∆y0 = 1.

(c) Find the characteristic equation for the equation
∑k

i=0 bi∇iyn = 0?

15. The influence of wrong boundary slopes for cubic spline interpolation (with
equidistant data)—see Sec. 4.6—is governed by the difference equation

en+1 + 4en + en−1 = 0, 0 < n < m,

e0, em given. Show that en ≈ une0 + um−nem, u =
√

3 − 2 ≈ −0.27. More
precisely

∣

∣en − (une0 + um−nem)
∣

∣ ≤ 2|u3m/2|max(|e0|, |em|)
1 − |u|m .
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Generalize the simpler of these results to other difference and differential equa-
tions.

16. The Fibonacci sequence is defined by the recurrence relation

yn = yn−1 + yn−2, y0 = 0, y1 = 1.

(a) Calculate limn→∞ yn+1/yn.

(b) The error of the secant method (see Sec. 6.2.2) satisfies approximately the
difference equation ǫn = Cǫn−1ǫn−2. Solve this difference equation. Determine
p, such that ǫn+1/ǫ

p
n tends to a finite nonzero limit as n→ ∞. Calculate this

limit.

17. For several algorithms using the “divide and conquer strategy”, such as the
Fast Fourier Transform and some sorting methods, one can find that the work
W (n) for the application of them to data of size n satisfies a recurrence relation
of the form:

W (n) = 2W (n/2) + kn,

where k is a constant. Find W (n).

18. When the recursion

xn+2 = (32xn+1 − 20xn)/3, x0 = 3, x1 = 2,

was solved numerically in low precision (23 bits mantissa), one obtained for
xi, i = 2 : 12 the (rounded) values

1.33, 0.89, 0.59, 0.40, 0.26, 0.18, 0.11, 0.03, −0.46, −5.05, −50.80.

Explain the difference from the exact values xn = 3(2/3)n.

19. (a) k,N are given integers 0 ≤ k <≤ N . A ”discrete Green’s function”
Gn,k, 0 ≤ n ≤ N for the central difference operator −∆∇ together with the
boundary conditions given below, is defined as the solution un = Gn,k of the
difference equation with boundary conditions, a

−∆∇un = δn,k, u0 = uN = 0;

(δn,k is Kronecker’s delta). Derive a fairly simple expression for Gn,k.

(b) Find (by computer) the inverse of the tridiagonal matrix

A =













2 −1 0 0 0
−1 2 −1 0 0

0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2













.

What is the relation between Problems (a) and (b)? Find a formula for the
elements of A−1. Express the solution of the inhomogeneous difference equa-
tion −∆∇un = bn, u0 = uN = 0, both in terms of the Green function Gn,k
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and in terms of A−1 (for general N).

(c) Try to find an analogous formula50 for the solution of an inhomoge-
neous boundary value problem for the differential equation −u′′ = f(x),
u(0) = u(1) = 0.

20. (a) Demonstrate the formula

∞
∑

0

(−x)ncn
n!

= e−x
∞
∑

0

xn(−∆)nc0
n!

. (3.3.66)

Hint: Use the relation e−xE = e−x(1+∆) = e−xe−x∆.

(b) For completely monotonic sequences {cn} and {(−∆)nc0} are typically
positive and decreasing sequences. For such sequences, the left hand side be-
comes extremely ill-conditioned for large x, (say) x = 100, while the graph of
the terms on the right hand side (if exactly computed) are bell-shaped, almost
like the normal probability density with mean x and standard deviation

√
x.

We have called such a sum a bell sum. Such positive sums can be computed
with little effort and no trouble with rounding errors, if their coefficients are
accurate.

Compute the left hand side of (3.3.66), for cn = 1/(n+ 1), x = 10 : 10 : 100,
and compute the right hand side, both with numerically computed differences
and with exact differences; the latter are found in Problem 2a. (In this par-
ticular case you can also find the exact sum.)

Suppose that the higher differences {(−∆)nc0} have been computed recur-
sively from rounded values of cn. Explain why one may fear that the right
hand side of (3.3.66) does not provide much better results than the left hand
side.

(c) Use (3.3.66) to derive the second expansion for erf(x) in Problem 10 of
Sec. 3.1 from the first expansion.

Hint: Use one of the results of Problem 2 a.

(d) If cn = cn(a, b) is defined as in Problem 2d, then the left hand side becomes
the Maclaurin expansion of the Kummer functionM(a, b,−x); see Abramowitz
and Stegun [1, Ch. 13]; Show that

M(a, b,−x) = e−xM(b− a, b, x)

by means of the results of Problems 23a and 2d.

21. (a) The difference equation yn + 5yn−1 = n−1 was discussed in Sec. 1.3.3. It
can also be written thus: (6+∆)yn−1 = n−1. The expansion of (6+∆)−1n−1

into powers of ∆/6 provides a particular solution of the difference equation.
Compute this numerically for a few values of n. Try to prove the convergence,
with or without the expression in Problem 2b. Is this the same as the partic-

ular solution In =
∫ 1

0 x
n(x+ 5)−1dx that was studied in Chapter1?

50In a differential equation, analogous to Problem 21(a), the Kronecker delta is to be replaced
by the Dirac delta function. Also note that the inverse of the differential operator here can be
described as an integral operator with the Green’s function as the “kernel”.
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Hint: What happens as n→ ∞? Can more than one solution of this difference
equation be bounded as n→ ∞?

(b) Make a similar study to the difference equation related to the integral in
Problem 9 of Sec.1.3. Why does the argument suggested by the hint of (a)
not work in this case? Try another proof.

22. (a) Prove Lemma 3.3.14. How is the conclusion to be changed, if we do not
suppose that γ < α, though the coefficients are still positive? Show that a
backward recurrence is still to be recommended.

(b) Work out on a computer the numerical details of Example 3.3.15, and
compare with Abramowitz and Stegun, Example 19.28.1. (Some deviations
are to be expected, since Miller used other rounding rules.) Try to detect the
oscillating component by computing the difference scheme of the the computed
U(a, 5), and estimate roughly the error of the computed values.

23. (a) For which constant real a does the difference equation yn+1−2ayn+yn−1 =
0 satisfy the root condition?
For which values of the real constant a does there exist a solution, such that
limn→∞ yn = 0 ? For these values of a, how do you construct a solution
yn = y∗n by a recurrence and normalization, so that this condition as well as
the condition y∗0 + 2

∑

∞

m=1 y
∗

2m = 1 are satisfied. Is y∗n unique? Give also an
explicit expression for y∗n.
For the other real values of a, show that y∗n does not exist, but that for any
given y0, y1 a solution can be accurately constructed by forward recurrence.
Give an explicit expression for this solution in terms of Chebyshev polynomials
(of the first and the second kind). Is it true that backward recurrence is also
stable, though more complicated than forward recurrence?

(b) The Bessel function Jk(z) satisfies the difference equation,

Jk+1(z) − (2k/z)Jk(z) + Jk−1(z) = 0, k = 1, 2, 3, . . . ,

and the identities,

J0(z) + 2J2(z) + 2J4(z) + 2J6(z) + . . . = 1;

J0(z) − 2J2(z) + 2J4(z) − 2J6(z) + . . . = cos z;

see Abramowitz and Stegun [1], 9.1.27, 9.1.46 and 9.1.47.
Show how one of the identities can be used for normalizing the trial se-
quence obtained by a backwards recurrence. Under what condition does Prob-
lem 26(a) give the hint to use the backwards recurrence for this difference
equation?
Study the section on Bessel functions of integer order in Numerical Recipes.
Apply this technique for z = 10, 1, 0.1 (say). The asymptotic formula (see
[1, 9.3.1])

Jk(z) ∼ 1√
2πk

( ez

2k

)k

, k ≫ 1, z fixed.

may be useful for your decision where to start the backward recurrence. Use
at least two starting points, and subtract the results (after normalization).
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Comment: The above difference equation for Jk(z) is also satisfied by a func-
tion denoted Yk(z),

Yk(z) ∼ −2√
2πk

( ez

2k

)−k

, (k ≫ 1).

How do these two solutions disturb each other, when forward or backward
recurrence is used?
(c) A counterexample to the technique with frozen coefficients. Consider the
difference equation yn+1 − (−1)nyn + yn−1 = 0. The technique with frozen
coefficients leads to the consideration of the difference equations

zn+1 − 2azn + zn−1 = 0, a ∈ [−0.5, 0.5];

all of them have only bounded solutions. Find by numerical experiment that,
nevertheless, there seems to exist unbounded solutions yn of the first difference
equation.

Comment: A theoretical proof of this is found by noting that the mapping
(y2n, y2n+1) 7→ (y2n+2, y2n+3) is represented by a matrix that is independent
of n and has an eigenvalue that is less than −1.

24. Let {bn}∞−∞
be a given sequence, and consider the difference equation,

yn−1 + 4yn + yn+1 = bn,

which can also be written in the form (6 + δ2)yn = bn.

(a) Show that the difference equation has at most one solution that is bounded
for −∞ < n < +∞. Find a particular solution in the form of an expansion
into powers of the operator δ2/6. (This is hopefully bounded.)

(b) Apply it numerically to the sequence bn = (1+n2h2)−1, for a few values of
the step size h, e.g., h = 0.1, 0.2, 0.5, 1. Study for n = 0 the rate of decrease (?)
of the terms in the expansion. Terminate when you estimate that the error is
(say) 10−6. Check how well the difference equation is satisfied by the result.

(c) Study theoretically bounds for the terms when bn = exp(iωhn) ω ∈ R.
Does the expansion converge? Compare your conclusions with numerical ex-
periments. Extend to the case when bn = B(nh), where B(t) can be repre-
sented by an absolutely convergent Fourier integral, B(t) =

∫

∞

−∞
eiωtβ(ω)dω.

Note that B(t) = (1+ t2)−1 if β(ω) = 1
2e

−|ω|. Compare the theoretical results
with the experimental results in (b).

(d) Put Q = δ2/6. Show that ỹn ≡ (1 − Q + Q2 + . . . ± Qk−1)bn/6 satisfies
the difference equation (1 +Q)(ỹn − yn) = Qkbn/6.

Comment: This procedure is worthwhile if the sequence bn is so smooth that
(say) 2 or 3 terms give satisfactory accuracy.
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3.4 Acceleration of Convergence

3.4.1 Introduction

If a sequence {sn}∞0 converges slowly towards a limit s, but has a sort of regular
behavior when n is large, it can under certain conditions be transformed into another
infinite sequence {s′n}, that converges much faster to the same limit. Here s′n
usually depends on the first n elements of the original sequence only. This is called
convergence acceleration. Such a sequence transformation may be iterated, to
yield a sequence of infinite sequences, {s′′n}, {s′′′n } etc., hopefully with improved
convergence towards the same limit s. For an infinite series convergence acceleration
means the convergence acceleration of its sequence of partial sums. Some algorithms
are most easily discussed in terms of sequences, others in terms of series.

Several transformations, linear as well as nonlinear, have been suggested and
are successful, under various conditions. Some of them, like Aitken, repeated av-
erages, and Euler’s transformation, are most successful on oscillating sequences
(alternating series or series in a complex variable). Others, like variants of Aitken
acceleration, Euler–Maclaurin and Richardson, work primarily on monotonic se-
quences (series with positive terms). Some techniques for convergence acceleration
transform a power series into a sequence of rational functions, e.g., continued frac-
tions, Padé approximation, and the ǫ-algorithm

Convergence acceleration cannot be applied to “arbitrary sequences”; some
sort of conditions are necessary that restrict the variation of the future elements
of the sequence, i.e. the elements which are not computed numerically. In this
section, these conditions are of a rather general type, in terms of monotonicity,
analyticity or asymptotic behavior of simple and usual types. Nevertheless some
of these techniques may even sometimes be successfully applied to semi-convergent
sequences. Several of them can also use a limited number of coefficients of a power
series for the computation of values of an analytic continuation of a function, outside
the circle of convergence of the series that defined it.

There are also methods (due to Lindelöf, Plana and others) that transform
an infinite series to an integral in the complex plane. They can, with appropriate
numerical procedures for computing the integral, compete with the methods men-
tioned for the purposes mentioned, but they have the additional property to be
applicable to some ill-conditioned series.

In addition to the “general purpose” techniques to be discussed in this chapter,
there are other techniques of convergence acceleration based on the use of more
specific knowledge about a problem. For example, Poisson summation formula

∞
∑

n=−∞

f(n) =
∞
∑

j=−∞

f̂(j), f̂(ω) =

∫

∞

−∞

f(ω)e−2πiωx dx; (3.4.1)

(f̂ is the Fourier transform of f). This can be amazingly successful to a certain class
of series

∑

a(n), namely if a(x) has a rapidly decreasing Fourier Transform. The
Poisson formula is also an invaluable tool for the design and analysis of numerical
methods for several problems; see Theorem 3.4.3.
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Irregular errors are very disturbing when these techniques are used. They
sometimes set the limit for the reachable accuracy. For the sake of simplicity we
therefore use IEEE double precision, in most examples.

3.4.2 Comparison Series and Aitken Acceleration

Suppose that the terms in the series
∑

∞

j=1 aj behave, for large j, like the terms of

a series
∑

∞

j=1 bj, i.e. limj→∞ aj/bj = 1. Then if the sum s =
∑

∞

j=1 bj is known one
can write

∞
∑

j=1

aj = s+

∞
∑

j=1

(aj − bj),

where the series on the right hand side converges more quickly than the given series.
We call this making use of a simple comparison problem. The same idea is used
in many other contexts—for example, in the computation of integrals where the
integrand has a singularity. Usual comparison series are

∞
∑

j=1

n−2 = π2/6,

∞
∑

j=1

n−4 = π4/90, etc.

A general expression for
∑

∞

j=1 n
−2r, is given by (3.4.26). No simple closed form is

known for
∑

∞

j=1 n
−3.

Example 3.4.1.
The term aj = (j4 + 1)−1/2 behaves, for large j, like bj = j−2, whose sum is

π2/6. Thus

∞
∑

j=1

aj = π2/6 +

∞
∑

j=1

(

(j4 + 1)−1/2 − j−2)
)

= 1.64493− 0.30119 = 1.3437.

Five terms on the right hand side are sufficient for four-place accuracy in the final
result. Using the series on the left hand side, one would not get four-place accuracy
until after 20,000 terms.

This technique is unusually successful in this example. The reader is advised
to find out that and why it is less successful for aj = (j4 + j3 + 1)−1/2.

An important comparison sequence is a geometric sequence

yn = a+ bkn,

for which
∇sn = yn − yn−1 = bkn−1(k − 1).

It this is fitted to the three most recently computed terms of a given sequence,
yn = sn for (say) n = j, j − 1, j − 2, then ∇yj = ∇sj , ∇yj−1 = ∇sj−1, and

k = ∇sj/∇sj−1.
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Hence

bkj =
∇sj

1 − 1/k
=

∇sj

1 −∇sj−1/∇sj
=

(∇sj)
2

∇2sj
.

This yields a comparison sequence for each j. Suppose that |k| < 1. Then the
comparison sequence has the s′j = limn→∞ yn = a = yj − bkj, i.e.

s ≈ s′j = sj −
(∇sj)

2

∇2sj
. (3.4.2)

This is called Aitken acceleration51 and is the most popular nonlinear accelera-
tion methods.

If {sn} is exactly a geometric sequence, i.e. if sn − a = k(sn−1 − a) ∀ n,
then s′j = s ∀j. Otherwise it can be shown (Henrici [24, ]) that under the
assumptions

lim
j→∞

sj = s, and lim
sj+1 − sj

sj − sj−1
= k∗, |k∗| < 1, (3.4.3)

the sequence {s′j} converges faster than does the sequence {sj}. The above as-
sumptions can often be verified for sequences arising from iterative processes and
for many other applications.

If you want the sum of slowly convergent series, it may seem strange to com-
pute the sequence of partial sums, and then compute the first and second differences
of rounded values of this sequence in order to apply Aitken acceleration. The a-
version of Aitken acceleration works on the terms aj of an infinite series instead of
on its partial sums sj .

Clearly we have aj = ∇sj , j = 1 : N . The a-version of Aitken acceleration
thus reads s′j = sj − a2

j/∇aj , j = 1 : N . We want to determine a′j so that

j
∑

k=1

a′k = s′j , j = 1 : N.

Then
a′1 = 0, a′j = aj −∇(a2

j/∇aj), j = 2 : N,

and s′N = sN − a2
N/∇aN (show this). We may expect that this a-version of Aitken

acceleration handles rounding errors better.
The condition |k∗| < 1 is a sufficient condition only. In practice, Aitken

acceleration seems most efficient if k∗ = −1. Indeed, it often converges even if
k∗ < −1; see Problem 7. It is much less successful if k∗ ≈ 1, e.g., for slowly
convergent series with positive terms.

The Aitken acceleration process can often be iterated, to yield sequences,
{s′′n}∞0 , {s′′′n }∞0 , etc., defined by the formulas

s′′j = s′j −
(∇s′j)2
∇2s′j

, s
′′′

j = s′′j −
(∇s′′j )2

∇2s′′j
. . . (3.4.4)

51Alexander Craig Aitken (1895–1967), Scotch mathematician born in New Zealand.
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Example 3.4.2.
By (3.1.10), it follows for x = 1 that

1 − 1/3 + 1/5 − 1/7 + 1/9 − . . . = arctan 1 = π/4 ≈ 0.7853981634.

This series converges very slowly. Even after 500 terms there still occur changes
in the third decimal. Consider the partial sums sj =

∑j
n0

(−1)j(2n + 1)−1, with
n0 = 5, and compute the iterated Aitken sequences as indicated above.

The (sufficient) theoretical condition mentioned above is not satisfied, since
∇sn/∇sn−1 → −1 as n → ∞. Nevertheless, we shall see that the Aitken acceler-
ation works well, and that the iterated accelerations converge rapidly. One gains
two digits for every pair of terms, in spite of the slow convergence of the original
series. The results in the table below were obtained using IEEE double precision.
The errors of s′j , s

′′

j , . . . are denoted e′j, e
′′

j , . . ..

j sj ej e′j e′′j e′′′j

5 0.744012 −4.1387e−2

6 0.820935 3.5536e−2

7 0.754268 −3.1130e−2 −1.7783e−4

8 0.813092 2.7693e−2 1.1979e−4

9 0.760460 −2.4938e−2 −8.4457e−5 −1.3332e−6

10 0.808079 2.2681e−2 6.1741e−5 7.5041e−7

11 0.764601 −2.0797e−2 −4.6484e−5 −4.4772e−7 −1.0289e−8

Example 3.4.3.
Set an = e−

√
n+1, n ≥ 0. As before, we denote by sn the partial sums of

∑

an, s = lim sn = 1.67040681796634, and use the same notations as above. Note
that

∇sn/∇sn−1 = an/an−1 ≈ 1 − 1
2n

−1/2, (n≫ 1],

so this series is slowly convergent. Computations with plain and iterated Aitken in
IEEE double precision gave the results below:

j e2j e
(j)
2j

0 −1.304 −1.304

1 −0.882 −4.10e−1

2 −0.640 −1.08e−1

3 −0.483 −3.32e−2

2 −0.374 −4.41e−3

5 −0.295 −7.97e−4

6 −0.237 −1.29e−4

7 −0.192 −1.06e−5

8 −0.158 −1.13e−5
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The sequence {e(j)2j } is monotonic until j = 8. After this |e(j)2j | is mildly

fluctuating around 10−5 (at least until j = 24), and the differences ∇s(j)2j = ∇e(j)2j

are sometimes several powers of 10 smaller than the actual errors and are misleading
as error estimates. The rounding errors have taken over, and it is almost no use to
compute more terms.

It is possible to use more terms for obtaining higher accuracy by applying
iterated Aitken acceleration to a thinned sequence e.g., s4, s8, s12, . . ., Prob-
lem 4. Note the thinning is performed on a sequence that converges to the limit
to be computed, e.g., the partial sums of a series. Only in so-called bell sums (see
Problem 30) we shall do a completely different kind of thinning, namely a thinning
of the terms of a series.

The convergence ratios of the thinned sequence are much smaller; for the series
of the previous example they become approximately

(

1 − 1
2n

−1/2
)4

≈ 1 − 2n−1/2, n≫ 1.

The most important point is, though, that the rounding errors become more slowly
amplified, so that terms far beyond the eighth number of the un-thinned sequence
can be used in the acceleration, resulting in a much improved final accuracy.

How to realize the thinning depends on the sequence; a different thinning will
be used in the next example.

Example 3.4.4.
We shall compute,

s =

∞
∑

n=1

n−3/2 = 2.612375348685488.

If all partial sums are used in Aitken acceleration, it turns out that the error |e(j)2j |
is decreasing until j = 5, when it is 0.07, and it remains on approximately this level
for a long time.

j 0 1 2 3 4 5
E2j+1 −1.61 −0.94 −4.92e−1 −2.49e−1 −1.25e−1 −6.25e−2

E
(j)
2j+1 −1.61 −1.85 −5.06e−2 −2.37e−4 −2.25e−7 2.25e−10

A much better result is obtained by means of thinning, but since the conver-
gence is much slower here than in the previous case, we shall try “geometric” thin-
ning rather than the “arithmetic” thinning used above, i.e. we now set Sm = s2m .
Then

∇Sm =

2m

∑

1+2m−1

an, Sj = S0 +

j
∑

m=1

∇Sm, Ej = Sj − s.

(If maximal accuracy is wanted, it may be advisable to use the ”divide and con-
quer technique” for computing these sums; see Problem 2.3.5, but it has not been
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used here.) By the approximation of the sums by integrals one can show that
∇Sm/∇Sm−1 ≈ 2−1/2, m ≫ 1. The table above shows the errors of the first
thinned sequence and the results after iterated Aitken acceleration. The last result
has used 1024 terms of the original series, but since

sn − s = −
∞
∑

j=n

j−3/2 ≈ −
∫

∞

n

t−3/2 dt = −2

3
n−1/2, (3.4.5)

1020 terms would have been needed for obtaining this accuracy without convergence
acceleration.

For sequences such that

sn − s = c0n
−p + c1n

−p−1 +O(n−p−2), p > 0,

where s, c0, c1 are unknown, the following variant of Aitken acceleration, (Bjørstad
et al. [3]) is more successful:

s′n = sn − p+ 1

p

∆sn∇sn

∆sn −∇sn
. (3.4.6)

It turns out that s′n is two powers of n more accurate than sn,

s′n − s = O(n−p−2),

see Problem 12. More generally, suppose that there exists a longer (unknown)
asymptotic expansion of the form

sn = s+ n−p(c0 + c1n
−1 + c2n

−2 + . . .), n→ ∞. (3.4.7)

This is a rather common case. Then we can extend this to an to an iterative variant,
where p is to be increased by 2 in each iteration; i = 0, 1, 2, . . . is a superscript, i.e.

si+1
n = si

n − p+ 2i+ 1

p+ 2i

∆si
n∇si

n

∆si
n −∇si

n

. (3.4.8)

If p is also unknown, it can be estimated by means of the equation,

1

p+ 1
= −∆

∆sn

∆sn −∇sn
+O(n−2). (3.4.9)

Example 3.4.5.
We consider the same series as in the previous example, i.e. s =

∑

n−3/2. We
use (3.4.8) without thinning. Here p = −1/2, see Problem 13. As usual, the errors
are denoted ej = sj − s, ei

2j = si
2j − s. In the right column of the table below, we

show the errors from a computation with 12 terms of the original series,
From this point the errors were around 10−10 or a little below. The rounding

errors have taken over, and the differences are, as in Example 3.3.4, misleading
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j e2j ej
2j

0 −1.612 −1.612

1 −1.066 −8.217e−3

2 −0.852 −4.617e−5

3 −0.730 +2.528e−7

4 −0.649 −1.122e−9

5 −0.590 −6.34−12

6 −0.544 −1.322e−9

for error estimation. If needed, higher accuracy can be obtained by “arithmetic
thinning” with more terms.

In this computation only 12 terms were used. In the previous example a less
accurate result was obtained by means of 1024 terms of the same series, but we must
appreciate that the technique of Example 3.3.5 did not require the existence of an
asymptotic expansion for sn and may therefore have a wider range of application.

There are not yet so many theoretical results that give justice to the practically
observed efficiency of iterated Aitken accelerations for oscillating sequences. One
reason for this can be that the transformation (3.4.2), which the algorithms are
based on, is nonlinear). For methods of convergence acceleration that are based
on linear transformations, theoretical estimates of convergence rates and errors are
closer to the practical performance of the methods.

In a generalization of Aitken acceleration one considers a transformation that
is exact for sequences satisfying

a0(sn − a) + · · · + ak(sn−k − a) = 0, ∀ n. (3.4.10)

Shanks considered the sequence transformation

ek(sn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

sn sn+1 · · · sn+k

sn+1 sn+2 · · · sn+k+1

...
... · · ·

...
sn+k sn+k+1 · · · sn+2k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆2sn · · · ∆2sn+k−1

... · · ·
...

∆2sn+k−1 · · · ∆2sn+2k−2

∣

∣

∣

∣

∣

∣

∣

, k = 1, 2, 3, . . . (3.4.11)

For k = 1 Shanks’ transformation reduces to Aitken’s ∆2 process. It can be proved
that ek(sn) = a if and only if sn satisfies (3.4.10). The determinants in the def-
inition of ek(sn) have a very special structure and are called Hankel determi-
nants52. Such determinants satisfy a recurrence relationship, which can be used
for implementing the transformation. An elegant recursive procedure to compute
ek(sn) directly, the epsilon algorithm, will be discussed further in Sec. sec3.5.3 in
connection with continued fraction and Padé approximants.

52Named after the German mathematician Hermann Hankel (1839–1873).
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3.4.3 Euler’s Transformation

In 1755 Euler gave the first version of what is now called Euler’s transformation.
Let

S =

∞
∑

j=0

(−1)juj,

be an alternating series (uj ≥ 0). Then Euler showed that

S =

∞
∑

k=0

1

2k
∆kuk, (3.4.12)

Often it is better to apply Euler’s transformation to the tail of a series.
We shall now apply another method of acceleration based on repeated av-

eraging of the partial sums. Consider again the same series as in Example 3.4.2,
i.e..

∞
∑

j=0

(−1)j(2j + 1)−1 = 1 − 1

3
+

1

5
− 1

7
+

1

9
− . . . =

π

4
. (3.4.13)

Let SN be the sum of the first N terms. The columns to the right of the SN -column
in the scheme given in Table 3.4.1 are formed by building averages.

Each number in a column is the mean of the two numbers which stand to the
left and upper left of the number itself. In other words, each number is the mean
of its “west” and “northwest” neighbor. The row index of M tells how many terms
are used from the original series, while the column index -1 equals the number of
repeated averagings. Only the digits which are different from those in the previous
column are written out.

Table 3.4.1. Summation by repeated averaging.

N SN M2 M3 M4 M5 M6 M7

6 0.744 012
7 0.820 935 782 474
8 0.754 268 787 602 5038
9 0.813 092 783 680 5641 340
10 0.760 460 786 776 5228 434 387
11 0.808 079 784 270 5523 376 405 396
12 0.764 601 786 340 5305 414 395 400 398

Notice that the values in each column oscillate. In general, for an alternating
series, it follows from the next theorem together with (3.2.4) that if the absolute
value of the jth term, considered as a function of j, has a kth derivative which
approaches zero monotonically for j > N0, then every other value in column Mk+1

is larger than the sum, and every other is smaller. The above premise is satisfied
here, since if f(j) = (2j + 1)−1 then f (k)(j) = ck(2j + 1)−1−k, which approaches
zero monotonically.
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If round-off is ignored, it follows from column M6 that 0.785396 ≤ π/4 ≤
0.785400. To take account of round-off error, we set π/4 = 0.785398± 3 · 10−6. The
actual error is only 1.6 10−7. In Example3.4.2 iterated Aitken accelerations gave
about one decimal digit more with the same data.

It is evident how the above method can be applied to any alternating series.
The diagonal elements are equivalent to the results from using Euler’s transforma-
tion.

Euler’s transformation and the averaging method, can be generalized for the
convergence acceleration of a general complex power series

S(z) =

∞
∑

j=1

ujz
j−1. (3.4.14)

The alternating series obtained for z = −1. Other applications include Fourier
series. They can be brought to this form, with z = eiφ, −π ≤ φ ≤ π; see Problem 14
and Example 3.4.7. The irregular errors of the coefficients play a big role if |φ| ≪ π,
and it is important to reduce their effects by means of a variant of the thinning
technique, described (for Aitken acceleration) in the previous section. Another
interesting application is the analytic continuation of the power series outside its
circle of convergence; see Example 3.4.8.

Theorem 3.4.1.
The tail of the power series in (3.4.14) can formally be transformed into the

expansion, (z 6= 1).

S(z) −
n
∑

j=1

ujz
j−1 =

∞
∑

j=n+1

ujz
j−1 =

zn

1 − z

∞
∑

s=0

P sun+1, P =
z

1 − z
∆. (3.4.15)

Set N = n+ k − 1, and set

Mn,1 =

n
∑

j=1

ujz
j−1; MN,k = Mn,1 +

zn

1 − z

k−2
∑

s=0

P sun+1; n = N −k+1. (3.4.16)

These quantities can be computed by the following recurrence formula that yields
several estimates based on N terms from the original series.53 This is called the
generalized Euler transformation.

MN,k =
MN,k−1 − zMN−1,k−1

1 − z
, k = 2 : N. (3.4.17)

For z = −1, this is the repeated average algorithm described above, and P = − 1
2∆.

Assume that |z| ≤ 1, that
∑

ujz
j−1 converges, and that ∆suN → 0, s = 0 : k

as N → ∞. Then MN,k → S(z), as N → ∞. If, moreover, ∆k−1uj has a constant
sign for j ≥ N − k + 2, then the following strict error bounds are obtained:

|MN,k − S(z)| ≤ |z(MN,k −MN−1,k−1)| = |MN,k −MN,k−1|, (k ≥ 2). (3.4.18)

53See Algorithm 3.3.1 for an adaptive choice of a kind of optimal output.
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Proof. We first note that, as N → ∞, P suN → 0, s = 0 : k, and hence, by
(3.4.16), limMN,k = limMN,0 = S(z).

Euler’s transformation can be formally derived by operators as follows:

S(z) −Mn,1 = zn
∞
∑

i=0

(zE)iun+1 =
zn

1 − zE
un+1

=
zn

1 − z − z∆
un+1 =

zn

1 − z

∞
∑

s=0

P sun+1.

In order to derive (3.4.17), note that this relation can equivalently be written thus,

MN,k −MN,k−1 = z(MN,k −MN−1,k−1), (3.4.19)

MN,k−1 −MN−1,k−1 = (1 − z)(MN,k −MN−1,k−1). (3.4.20)

Remembering that n = N − k + 1, we obtain, by (3.4.16),

MN,k −MN−1,k−1 =
zN−k+1

1 − z
P k−2uN−k+2, (3.4.21)

and it can be shown (Problem 17) that

MN,k−1 −MN−1,k−1 = znP k−2un+1 = zN−k+1P k−2uN−k+2. (3.4.22)

By (3.4.21) and (3.4.22), we now obtain (3.4.20) and hence also the equivalent
equations (3.4.19) and (3.4.17).

Now substitute j for N into (3.4.22), and add the p equations obtained for
j = N + 1, . . ., N + p. We obtain:

MN+p,k−1 −MN,k−1 =

N+p
∑

j=N+1

zj−k+1P k−2uj−k+2.

Then substitute k + 1 for k, and N + 1 + i for j. Let p → ∞, while k is fixed. It
follows that

S(z) −MN,k =

∞
∑

j=N+1

zj−kP k−1uj−k+1 =
zN−k+1 · zk−1

(1 − z)k−1

∞
∑

i=0

zi∆k−1uN−k+2+i,

(3.4.23)
hence

|S(z) −MN,k| ≤
∣

∣(z/(1 − z))k−1zN−k+1
∣

∣

∞
∑

i=0

∣

∣∆k−1uN−k+2+i

∣

∣ .

We now use the assumption that ∆k−1uj has constant sign for j ≥ N − k + 2.

Since
∑

∞

i=0 ∆k−1uN−k+2+i = −∆k−2uN−k+2, it follows that

|S(z) −MN,k| ≤
∣

∣

∣

∣

zN−k+1 z
k−1∆k−2uN−k+2

(1 − z)k−1

∣

∣

∣

∣

=

∣

∣

∣

∣

z · zN−k+1

1 − z
P k−2uN−k+2

∣

∣

∣

∣

.
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Now, by (3.4.21), |S(z)−MN,k| ≤ |z| · |MN,k −MN−1,k−1|. This is the first part of
(3.4.18). The second part then follows from (3.4.19).

Comments: Note that the elements MN,k become rational functions of z for fixed
N , k. If the term un, as a function of n, belongs to Pk, then the classical Euler
transformation (for n = 0) yields the exact value of S(z) after k terms, if |z| < 1.
This follows from (3.4.15), because

∑

ujz
j is convergent, and P sun+1 = 0 for s ≥ k.

In this particular case, S(z) = Q(z)(1 − z)−k, where Q is a polynomial; in fact the
Euler transformation gives S(z) correctly for all z 6= 1.

The advantage of the recurrence formula (3.4.17), instead of a more direct use
of (3.4.15), is that it provides a whole lower triangular matrix of estimates, so that
one can, by means of a simple test, decide when to stop. This yields a result with
strict error bound, if ∆k−1uj has a constant sign (for all j with a given k), and
if the effect of rounding errors is evidently smaller than Tol. If these conditions
are not satisfied, there is a small risk that the algorithm may terminate if the error
estimate is incidentally small, e.g., near a sign change of ∆k−1uj .

The irregular errors of the initial data are propagated to the results. In the
long run, they are multiplied by approximately |z/(1 − z)| from a column to the
next—this is less than one if ℜz < 1/2—but in the beginning this growth factor can
be as large as (1+ |z|)/|1− z|. It plays no role for alternating series; its importance
when |1 − z| is smaller will be commented in Example 3.4.7.

The following algorithm is mainly based on the above theorem, but the pos-
sibility for the irregular errors to become dominant has been taken into account
(somewhat) in the third alternative of the termination criterion.

Algorithm 3.4.1 The Generalized Euler Transformation

This algorithm is based on Theorem 3.4.1, with a tolerance named Tol, and a
termination criterion based on (3.4.18), by the computation and inspection of the
elements of M in a certain order, until it finds a pair of neighboring elements that
satisfies the criterion.
The classical Euler transformation would only consider the diagonal elements MNN ,
N = 1, 2, ... and the termination would have been based on |MNN −MN−1,N−1|.
The strategy used in this algorithm is superior for an important class of series.

function [sum,errest,n,kk] = euler(z,u,Tol)

%

% EULER applies the generalized Euler transform to a power series

% with coeffcients given by u at z. The elements of M are

% inspected in a certain order, until a pair of neighboring

% elements are found that satisfies a termination criterion.

Nmax = length(u);

errest = Inf; olderrest = errest;

N = 1; kk = 1; M(1,1) = u(1);

while (errest > Tol) & (N < Nmax) & (errest < olderrest)

N = N+1; olderrest = errest;
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M(N,1) = M(N-1,1)+ u(N)*z^(N-1); % New partial sum

for k = 2:N,

M(N,k) = (M(N,k-1) - z*M(N-1,k-1))/(1-z);

temp = abs(M(N,k) - M(N,k-1))/2;

if temp < errest,

kk = k; errest = temp;

end

end

end

sum = (M(N,kk) + M(N,kk-1))/2;

An oscillatory behavior of the values |MN,k −MN,k−1 in the same row, indi-
cates that the irregular errors have become dominant. The smallest error estimates
may then become unreliable.
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Figure 3.4.1. Logarithms of the actual errors and the error estimates for
MN,k in a more extensive computation for the alternating series in (3.4.13) with
completely monotonic terms. The tolerance is here set above the level, where the
irregular errors become important; for a smaller tolerance parts of the lowest curves
may become less smooth in some parts.

The above algorithm gives a strict error bound if, in the notation used in the
theorem, ∆k−1ui has a constant sign for i ≥ N − k + 2 (in addition to the other
conditions of the theorem). We recall that a sequence, for which this condition is
satisfied for every k, is called completely monotonic; see Definition 3.2.6.

It may seem difficult to check if this condition is satisfied. It turns out that
many sequences that can be formed from sequences like {n−α}, {e−αn} by simple
operations and combinations, belong to this class. The generalized Euler transfor-
mation yields a sequence that converges at least as fast as a geometric series. The
convergence ratio depends on z; it is less than one in absolute value for any complex
z, except for z > 1 on the real axis. So, the generalized Euler transformation often
provides an analytic continuation of a power series outside its circle of convergence.

For alternating series, with completely monotonic terms, i.e. for z = −1, the
convergence ratio typically becomes 1

3 . This is in good agreement with Figure 3.4.1.
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Note that the minimum points for the errors lie almost on a straight line in Fig-
ure 3.5.1, and that the optimal value of k/N is approximately 2

3 , if N ≫ 1, and if
there are no irregular errors.

Example 3.4.6.
A program, essentially the same as Algorithm 3.4.3, is applied to the series

∞
∑

j=1

(−1)jj−1 = 1 − 1

2
+

1

3
− 1

4
+

1

5
− . . . = ln 2 = 0.69314 71805 599453.

with Tol= 10−6, It stops when N = 12, kk = 9. The errors ek = MN,k − ln 2 and
the differences 1

2∇kMN,k along the last row of M read:

k 1 2 3 . . . 9 10 11 12

ek −3.99e-2 1.73e-3 −1.64e-4 . . . −4.51e-7 5.35e-7 −9.44e-7 2.75e-6

∇/2 2.03e-2 −9.47e-4 . . . −4.93e-7 4.93e-7 −7.40e-7 1.85e-6

Note that |errest| = 4.93 10−7 and sum−ln 2 = 1
2 (e9+e8) = 4.2 10−8. Almost

full accuracy is obtained for Tol = 10−16, maxN = 40. The results are N = 32,
kk = 22, errest = 10−16, |error| = 2 10−16. Note that errest < |error|; this can
happen when we ask for such a high accuracy that the rounding errors are not
negligible.

Example 3.4.7. Application to Fourier series.
Consider a complex power series

S(z) =

∞
∑

n=1

unz
n−1, z = eiφ.

A Fourier series that is originally of the form
∑

∞

−∞
or in trigonometric form, can

easily be brought to this form; see Problem 14. As we shall see, the results can often
be improved considerably by the application of thinning. Let thin be a positive
integer. The thinned form of S(z) reads

S(z) =
∞
∑

p=1

u∗pz
thin·(p−1), u∗p =

thin
∑

j=1

uj+thin·(p−1) z
j−1.

For example, if z = eiπ/3 and thin =3, the series becomes an alternating series,
perhaps with complex coefficients. It does not matter in the numerical work that
u∗p depends on z.

We consider the case S(z) = − ln(1 − z)/z =
∑

zn−1/n, which is typical for
a power series with completely monotonic terms. (The rates of convergence are the
same for almost all series of this class.) Numerical computation, essentially by the
above algorithm, gave the following results. The coefficients uj are computed in
IEEE double precision. We make the rounding errors during the computations less
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important by subtracting the first row of partial sums by its last element; it is, of
course, added again to the final result.54 The first table shows, for various φ, the
most accurate result that can be obtained without thinning. These limits are due
to the rounding errors; we can make the pure truncation error arbitrarily small by
choosing N large enough.

φ π 2π/3 π/2 π/3 π/4 π/6 π/8 π/12 π/180

|error| 2e-16 8e-16 1e-14 6e-12 1e-9 7e-8 5e-7 3e-5 2e-1

N 30 33 36 36 36 36 40 40 100

kk 21 22 20 21 20 14 13 10 (3)

Note that a rather good accuracy is obtained also for φ = π/8 and φ = π/12,
where the algorithm is “unstable”, since | z

1−z | > 1. In this kind of computations
“instability” does not mean that the algorithm is hopeless, but it shows the impor-
tance of a good termination criterion. The question is to navigate safely between
Scylla and Charybdis. For a small value like φ = π/180, the sum is approximately
4.1 + 1.5i. The smallest error with 100 terms (or less) is 0.02; it is obtained for
k = 3. Also note that kk/N increases with φ.

By thinning, much better results are obtained for φ ≪ π, in particular for
φ = π/180. This series that has “essentially positive” terms originally can become
“essentially alternating” by thinning. We present the errors obtained for four values
of the parameter thin, with different amount of work. Compare |error|, kk, etc.
with appropriate values in the table above. We see that, by thinning, it is possible
to calculate the Fourier series very accurately also for small values of φ.

thin 80 120 90 15
thin · φ π 2π/3 π/2 π/12
|error| 2e-14 1e-14 3e-13 3e-5
N 28 31 33 41
kk 20 22 18 10

total no. terms 5040 3720 2970 615

Roughly speaking, the optimal convergence rate of the Euler Transformation
depends on z in the same way for all power series with completely monotonic coef-
ficients; independently of the rate of convergence of the original series. The above
tables from a particular example can therefore—with some safety margin—be used
as a guide for the application of the Euler transformation with thinning to any series
of this class.

Say that you want the sum of a series
∑

unz
n for z = eiφ, φ = π/12, with

relative |error| < 10−10. You see in the first table that |error| = 6 10−12 for
φ = π/3 = 4π/12 without thinning. The safety margin is hopefully large enough.
Therefore, try Thin = 4. We make two tests with completely monotonic terms:
un = n−1 and un = exp(−√

n). Tol = 10−10 is hopefully large enough to make
the irregular errors relatively negligible. In both tests the actual |error| turns out

54Tricks like this can often be applied in linear computations with a slowly varying sequence of
numbers. See, e.g., the discussion of rounding errors in Richardson extrapolation in Sec. 3.3.5.
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to be 4 10−11, and the total number of terms is 4 · 32 = 128. The values of errest
are 6 10−11 and 7 10−11; both slightly overestimate the actual errors and are still
smaller than Tol.

Example 3.4.8. Application to a divergent power series, (analytic continuation).
Consider a complex power series

S(z) =

∞
∑

n=1

unz
n−1, |z| > 1.

As in the previous example we study in detail the case of un = 1/n. It was mentioned
above that the generalized Euler transformation theoretically converges in the z-
plane, cut along the interval [1,∞]. The limit is −z−1 ln(1 − z), a single-valued
function in this region. For various z outside the unit circle, we shall see that
rounding causes bigger problems here than for Fourier series. The error estimate
of Algorithm 3.3.1, usually underestimated the error, sometimes by a factor of ten.
The table reports some results from experiments without thinning.

z −2 −4 −10 −100 −1000 2i 8i 1 + i 2 + i
|error| 2e-12 2e-8 4e-5 3e-3 5e-2 8e-11 1e-3 1e-7 2e-2
N 38 41 43 50 51 40 39 38 39
kk 32 34 39 50 51 28 34 22 24

Thinning can be applied also in this application, but here not only the ar-
gument φ is increased (this is good), but also |z| (this is bad). Nevertheless, for
z = 1 + i, the error becomes 10−7, 3 10−9, 10−9, 4 10−8, for thin = 1, 2, 3, 4,
respectively. For z = 2 + i, however, thinning improved the error only from 0.02 to
0.01. All this is for IEEE double precision.

We shall encounter other methods for alternating series and complex power
series, which are even more efficient than the generalized Euler transformation; see
the epsilon algorithm in Sec. 3.5.3.

3.4.4 Euler–Maclaurin’s Formula

In the summation of series with essentially positive terms the tail of the sum can
be approximated by an integral by means of the trapezoidal rule.

As an example, consider the sum S =
∑

∞

j=1 j
−2. The sum of the first nine

terms is, to four decimal places, 1.5398. It immediately occurs to one to compare
the tail of the series with the integral of x−2 from 10 to ∞. We approximate the
integral according to the trapezoidal rule; see Sec. 1.2
∫

∞

10

x−2 dx ≈ T1 + T2 + T3 + . . . =
1

2
(10−2 + 11−2) +

1

2
(11−2 + 12−2) + . . .

=
∞
∑

j=10

j−2 − 1

2
10−2.



132 Chapter 3. Series, Operators and Continued Fractions

Hence it follows that

∞
∑

j=1

j−2 ≈ 1.5398 + [−x−1]∞10 + 0.0050 = 1.5398 + 0.1050 = 1.6448.

The correct answer is π2/6 = 1.64493406684823. We would have needed about
10,000 terms to get the same accuracy by direct addition of the terms!

The above procedure is not a coincidental trick, but a very useful method. A
further systematic development of the idea leads to the important Euler–Maclaurin
summation formula. We first derive this heuristically by operator techniques and
exemplify its use, including a somewhat paradoxical example that shows that a
strict treatment with the consideration of the remainder term is necessary for very
practical reasons. Since this formula has several other applications, e.g., in numer-
ical integration, we formulate it more generally than needed for the summation of
infinite series.

Consider to begin with a rectangle sum on the finite interval [a, b], with n steps
of equal length h, a+ nh = b; with the operator notation introduced in Sec. 3.2.2.

h

n−1
∑

i=0

f(a+ ih) = h

n−1
∑

i=0

Eif(a) = h
En − 1

E − 1
f(a) =

(En − 1)

D

hD

ehD − 1
f(a).

We apply, to the second factor, the expansion derived in Example 3.1.5, with the
Bernoulli numbers Bν . (Recall that a+ nh = b, Enf(a) = f(b), etc.)

h

n−1
∑

i=0

f(a+ ih) =
(En − 1)

D

(

1 +

∞
∑

ν=1

Bν(hD)ν

ν!

)

f(a) (3.4.24)

=

∫ b

a

f(x) dx+

k
∑

ν=1

hνBν

ν!

(

f (ν−1)(b) − f (ν−1)(a)
)

+Rk+1.

Here Rk+1 is a remainder term that will be discussed thoroughly in Theorem 3.4.3.
Set h = 1, and assume that f(b), f ′(b), . . . tend to zero as b → ∞. Recall that
B1 = − 1

2 , B2j+1 = 0 for j > 0, and set k = 2r+1. This yields Euler–Maclaurin’s
summation formula55

∞
∑

i=0

f(a+ i) =

∫

∞

a

f(x) dx+
f(a)

2
−

r
∑

j=1

B2jf
(2j−1)(a)

(2j)!
+R2r+2 (3.4.25)

=

∫

∞

a

f(x) dx+
f(a)

2
− f ′(a)

12
+
f (3)(a)

720
− . . .

in a form suitable for the convergence acceleration of series of essentially positive
terms. We tabulate a few coefficients related to the Bernoulli and the Euler numbers.

55Leonhard Euler (1707–1783), incredibly prolific Swiss mathematician. He gave fundamental
contributions to many branches of mathematics and to the mechanics of rigid and deformable
bodies as well as to fluid mechanics. Colin Maclaurin (1698–1764), British mathematician. They
apparently discovered the summation formula independently; see Goldstine [21, p. 84]. Euler’s
publication came 1738.
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Table 3.4.2. Bernoulli and Euler numbers; B1 = −1/2, E1 = 1.

2j 0 2 4 6 8 10 12

B2j 1
1

6
−

1

30

1

42
−

1

30

5

66
−

691

2730
B2j

(2j)!
1

1

12
−

1

720

1

30240
−

1

1209600

1

47900160

B2j

2j(2j − 1)
1

1

12
−

1

360

1

1260
−

1

1680

1

1188
−

691

360360

E2j 1 −1 5 −61 1385 −50521 2702765

There are some obscure points in this operator derivation, but we shall consider
it as a heuristic calculation only and shall not try to legitimate the various steps of
it. With an appropriate interpretation, a more general version of this formula will
be proved by other means in Theorem 3.4.3. A general remainder term is obtained
there, if you let b→ ∞ in (3.4.31). You do not need it often, because the following
much simpler error bound is usually applicable—but there are exceptions.

The Euler–Maclaurin expansion (on the right hand side) is typically semi-
convergent only. Nevertheless a few terms of the expansion often gives startlingly
high accuracy with simple calculations. For example, if f(x) is completely mono-
tonic, i.e. if

(−1)jf (j)(x) ≥ 0, x ≥ a, j ≥ 0,

then the partial sums oscillate strictly around the true result; the first neglected
term is then a strict error bound. (This statement also follows from the theorem
below.)

Before we prove the theorem we shall exemplify how the summation formula
is used in practice.

Example 3.4.9.
We return to the case of computing S =

∑

∞

j=1 j
−2. and treat it with more

precision and accuracy. With f(x) = x−2, a = 10, we find
∫

∞

a f(x)dx = a−1,
f ′(a) = −2a−3, f ′′′(a) = −24a−5, . . .. By (3.4.25), (r = 2),

∞
∑

x=1

x−2 =

9
∑

x=1

x−2 +

∞
∑

i=0

(10 + i)−2

= 1.53976 7731+ 0.1 + 0.005 + 0.00016 6667− 0.00000 0333 +R6

= 1.64493 4065+R6.

Since f(x) = x−2 is completely monotonic, the first neglected term is a strict error
bound; it is less than 720 10−7/30240 < 3 · 10−9. (The actual error is approxi-
mately 2 · 10−9.)

Although the Euler–Maclaurin expansion, in this example; seems to converge
rapidly, it is in fact, only semi-convergent for any a > 0, and this is rather typical.
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We have namely f (2r−1)(a) = −(2r)!a−2r−1, and, by Example 3.1.5, B2r/(2r)! ≈
(−1)r+12(2π)−2r.The ratio of two successive terms is thus −(2r + 2)(2r + 1)/(2πa)2,
hence the modulus of terms increase when 2r + 1 > 2πa.

The “rule” that one should terminate a semi-convergent expansion at the term
of smallest magnitude, is in general no good for Euler–Maclaurin applications, since
the high order derivatives (on the right hand side) are typically much more difficult
to obtain than a few more terms in the expansion on the left hand side. Typically,
you first choose r, r ≤ 3, depending on how tedious the differentiations are, and
then you choose a in order to meet the accuracy requirements.

In this example we were lucky to have access to simple closed expressions for
the derivatives and the integral of f . In other cases, one may use the possibilities
for the numerical integration on an infinite interval mentioned in Chapter 5. In
Problem 20 (a) you find two formulas that result from the substitution of the for-
mulas (3.3.50) that express higher derivatives in terms of central differences into
the Euler–Maclaurin expansion.

An expansion of f(x) into negative powers of x is often useful both for the
integral and for the derivatives.

Example 3.4.10.
We consider f(x) = (x3 + 1)−1/2, for which the expansion

f(x) = x−3/2(1 + x−3)−1/2 = x−1.5 − 1

2
x−4.5 +

3

8
x−7.5 − . . .

was derived and applied in Example 3.1.6. It was found that
∫

∞

10
f(x)dx = 0.632410375,

correctly rounded, and that f ′′′(10) = −4.13 · 10−4 with less than 1% error. The
f ′′′(10) term in the Euler–Maclaurin expansion is thus −5.73 10−7, with absolute
error less than 6 · 10−9. Inserting this into Euler–Maclaurin’s summation formula,
together with the numerical values of

∑9
n=0 f(n) and 1

2f(10)− 1
12f

′(10), we obtain
∑

∞

n=0 f(n) = 3.7941 1570± 10−8. The reader is advised to work out the details as
an exercise.

Example 3.4.11.
Let f(x) = e−x2

, a = 0. Since all derivatives of odd order vanish at a = 0,

then the expansion (3.4.25) may give the impression that
∑

∞

j=0 e
−j2

=
∫

∞

0 e−x2

dx+
0.5 = 1.386 2269, but the sum (that is easily computed without any convergence
acceleration) is actually 1.386 3186, hence the remainder R2r+2 cannot tend to zero
as r → ∞. The infinite Euler–Maclaurin expansion, where all terms but two are
zero, is convergent but is not valid. Recall the distinction between the convergence
and the validity of an infinite expansion, made in Sec. 3.1.2.

In this case f(x) is not completely monotonic; for example, f ′′(x) changes sign
at x = 1. With appropriate choice of r, the general error bound (3.4.31) will tell that
the error is very small, but it cannot be used for proving that it is zero—because
this is not true.
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The mysteries of these examples have hopefully raised the appetite for a more
substantial theory, including an error bound for the Euler–Maclaurin formula. We
first need some tools that are interesting in their own right.

The Bernoulli polynomialBn(t) is an n′th degree polynomial defined by the
symbolic relation Bn(t) = (B + t)n, where the exponents of B become subscripts
after the expansion according to the binomial theorem. The Bernoulli numbers Bj

were defined in Example 3.1.5. Their recurrence relation (3.1.16) can be written in
the form

n−1
∑

j=0

(

n

j

)

Bj = 0, n ≥ 2,

or “symbolically” (B + 1)n = Bn = Bn, (for the computation of Bn−1), n 6= 1,
hence B0(t) = 1, B1(t) = t+B1 = t− 1/2 and

Bn(1) = Bn(0) = Bn, n ≥ 2,

The Bernoulli function B̂n(t) is a piecewise polynomial defined for t ∈ R by the
equation B̂n(t) = Bn(t− [t]). (Note that B̂n(t) = Bn(t) if 0 ≤ t < 1.)

Lemma 3.4.2.

(a) B̂′

n+1(t)/(n+ 1)! = B̂n(t)/n!, (n > 0),

B̂n(0) = Bn. (For n = 1 this is the limit from the right.)

∫ 1

0

Bn(t)

n!
dt =

{

1, if n = 0;
0, otherwise.

(b) The piecewise polynomials B̂p(t) are periodic; B̂p(t + 1) = B̂p(t). B̂1(t) is

continuous, except when t is an integer. For n ≥ 2, B̂n ∈ Cn−2(−∞,∞).

(c) The Bernoulli functions have the following (modified) Fourier expansions,
(r ≥ 1),

B̂2r−1(t)

(2r − 1)!
= (−1)r2

∞
∑

n=1

sin 2nπt

(2nπ)2r−1
,

B̂2r(t)

(2r)!
= (−1)r−12

∞
∑

n=1

cos 2nπt

(2nπ)2r
.

Note that B̂n(t) is an even (odd) function, when n is (even odd).

(d) |B̂2r(t)| ≤ |B2r|.

Proof. Statement (a) follows directly from the symbolic binomial expansion of the
Bernoulli polynomials.

The demonstration of statement (b) is left for a problem. The reader is advised
to draw the graphs of a few low order Bernoulli functions.

The Fourier expansion for B̂1(t) follows from the Fourier coefficient formulas
(3.2.7), (modified for the period 1 instead of 2π). The expansions for B̂p(t), are then
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obtained by repeated integrations, term by term, with the use of (a). Statement
(d) then follows from the Fourier expansion, because B̂2r(0) = B2r.

Comments: For t = 0 we obtain an interesting classical formula, together with a
useful asymptotic approximation that was obtained in a different way in Sec. 3.1.

∞
∑

n=1

n−2r =
|B2r|(2π)2r

2(2r)!
;

|B2r|
(2r)!

∼ 2

(2π)2r
. (3.4.26)

Also note, how the rate of decrease of the Fourier coefficients is related to the type
of singularity of the Bernoulli function at the integer points. (It does not help that
the functions are smooth in the interval [0, 1].)

The Bernoulli polynomials have a generating function that is elegantly ob-
tained by means of the following “symbolic” calculation.

∞
∑

0

Bn(y)xn

n!
=

∞
∑

0

(B + y)nxn

n!
= e(B+y)x = eBxeyx =

xeyx

ex − 1
. (3.4.27)

If the series is interpreted as a power series in the complex variable x, the conver-
gence radius is 2π.

Theorem 3.4.3. The Euler–Maclaurin Formula.
Set xi = a+ ih, xn = b, suppose that f ∈ C2r+2(a, b), and let T̂ (a : h : b)f be

the trapezoidal sum

T̂ (a : h : b)f =

n
∑

i=1

h

2

(

f(xi−1)+ f(xi)
)

= h

( n−1
∑

i=0

f(xi)+ 1
2 (f(b)− f(a))

)

. (3.4.28)

Then

T̂ (a : h : b)f −
∫ b

a

f(x) dx =
h2

12

(

f ′(b) − f ′(a)
)

− h4

720

(

f ′′′(b) − f ′′′(a)
)

(3.4.29)

+ . . . +
B2rh

2r

(2r)!

(

f (2r−1)(b) − f (2r−1)(a)
)

+R2r+2(a, h, b)f.

The remainder R2r+2(a, h, b)f is O(h2r+2). It is represented by an integral with
a kernel of constant sign in (3.4.30). An upper bound for the remainder is given
in (3.4.31). The estimation of the remainder is very simple in certain important
particular cases:

• If f (2r+2)(x) does not change sign in the interval [a, b] then R2r+2(a, h, b)f
has the same sign as the first neglected56 term.

• If f (2r+2)(x) and f (2r)(x) have the same constant sign in [a, b], then the value
of the left hand side of (3.4.29) lies between the values of the partial sum of
the expansion displayed in (3.4.29) and the partial sum with one term less.57.

56If r = 0 all terms of the expansion are “neglected”.
57Formally this makes sense for r ≥ 2 only, but if we interpret f

(−1) as “the empty symbol”, it
makes sense also for r = 1. If f is completely monotonic the statement holds for every r ≥ 1. This
is easy to apply, because simple criteria for complete monotonicity etc. are given in Sec. 3.3.6
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In the limit, as b→ ∞, these statements still hold—also for the summation formula
(3.4.25)—provided that the left hand side of (3.4.29) and the derivatives f (ν)(b)
(ν = 1 : 2r + 1) tend to zero, if it is also assumed that

∫

∞

a

|f (2r+2)(x)| dx <∞.

Proof. To begin with we consider a single term of the trapezoidal sum, and set
x = xi−1 + ht, t ∈ [0, 1], f(x) = F (t). Suppose that F ∈ Cp[0, 1], where p is an
even number.

We shall apply repeated integration by parts, Lemma 3.2.7, to the integral
∫ 1

0
F (t) dt =

∫ 1

0
F (t)B0(t) dt. Use statement (a) of Lemma 3.4.2 in the equivalent

form,
∫

Bj(t)/j! dt = (Bj+1(t)/(j + 1)!
Consider the first line of the expansion in the next equation. Recall that

Bν = 0 if ν is odd and ν > 1. Since Bj+1(1) = Bj+1(0) = Bj+1, j will thus be odd
in all non-zero terms, except for j = 0. Then, with no loss of generality, we assume
that p is even.

∫ 1

0

F (t) dt =

p−1
∑

j=0

(−1)jF (j)(t)
Bj+1(t)

(j + 1)!

∣

∣

∣

∣

1

t=0

+ (−1)p

∫ 1

0

F (p)(t)
Bp(t)

p!
dt

=
F (1) + F (0)

2
+

p−1
∑

j=1

−Bj+1

(j + 1)!
(F (j)(1) − F (j)(0)) +

∫ 1

0

F (p)(t)
Bp(t)

p!
dt

=
F (1) + F (0)

2
−

p−3
∑

j=1

Bj+1

(j + 1)!
(F (j)(1) − F (j)(0)) −

∫ 1

0

F (p)(t)
Bp −Bp(t)

p!
dt.

The upper limit of the sum is reduced to p− 3, since the last term (with j = p− 1)
has been moved under the integral sign, and all values of j are odd. Set j + 1 = 2k
and p = 2r + 2. Then k is an integer that runs from 1 to r. Hence

p−3
∑

j=1

Bj+1

(j + 1)!
(F (j)(1) − F (j)(0)) =

r
∑

k=1

B2k

(2k)!
(F (2k−1)(1) − F (2k−1)(0)).

Now set F (t) = f(xi−1 +ht), t ∈ [0, 1]. Then F (2k−1)(t) = h2k−1f (2k−1)(xi−1 +ht),

and make abbreviations like fi = f(xi), f
(j)
i = f (j)(xi) etc..

∫ xi

xi−1

f(x) dx = h

∫ 1

0

F (t) dt =
h(fi−1 + fi)

2
−

r
∑

k=1

B2kh
2k

(2k)!
(f

(2k−1)
i − f

(2k−1)
i−1 ) −R,

where R is the local remainder that is now an integral over [xi−1, xi]. Adding these
equations, for i = 1 : n, yields a result equivalent to (3.4.29), namely

∫ b

a

f(x) dx = T̂ (a : h : b)f −
r
∑

k=1

B2kh
2k

(2k)!
f (2k−1)(x)

∣

∣

∣

∣

b

x=a

−R2r+2(a, h, b)f,
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R2r+2(a, h, b)f = h2r+2

∫ b

a

(

B2r+2 − B̂2r+2((x − a)/h))
)f (2r+2)(x)

(2r + 2)!
dx. (3.4.30)

By Lemma 3.4.2, |B̂2r+2(t)| ≤ |B2r+2|, hence the kernel B2r+2 − B̂2r+2((x − a)/h)
has the same sign as B2r+2. Suppose that f (2r+2)(x) does not change sign on (a, b).
Then

sign f (2r+2)(x) = sign
(

f (2r+1)(b) − f (2r+1)(a)
)

,

hence R2r+2(a, h, b)f has the same sign as the first neglected term.
The second statement about “simple estimation of the remainder” then follows from
Theorem 3.1.3, since the Bernoulli numbers (with even subscripts) have alternating
signs.

If signf (2r+2)(x) is not constant, then we note instead that

|B2r+2 − B̂2r+2((x − a)/h)| ≤ |2B2r+2|,
and hence

|R2r+2(a, h, b)f | ≤ h2r+2 |2B2r+2|
(2r + 2)!

∫ b

a

|f (2r+2)(x)|dx

≈ 2
( h

2π

)2r+2
∫ b

a

|f (2r+2)(x)|dx. (3.4.31)

If
∫

∞

a
|f (2r+2)(x)|dx <∞ this holds also in the limit as b→ ∞.

Note that there are (at least) three parameters here that can be involved in
different natural limit processes: For example, one of the parameters can tend to its
limit, while the two others are kept fixed. The remainder formula (3.4.31) contains
all you need for settling various questions about convergence.

• b → ∞; natural when Euler–Maclaurin’s formula is used as a summation
formula, or for deriving an approximation formula valid when b is large.

• h → 0; natural when Euler–Maclaurin’s formula is used in connection with
numerical integration. You see how the values of derivatives of f at the
endpoints a, b can highly improve the estimate of the integral of f , obtained by
the trapezoidal rule with constant step size. Euler–Maclaurin’s formula is also
useful for the design and analysis of other methods for numerical integration;
see Romberg’s method in the next section.

• r → ∞; limr→∞R2r+2(a, h, b)f = 0 can be satisfied only if f(z) is an entire
function, such that |fn)(a)| = o((2π/h)n) as n → ∞. Fortunately, this type
of convergence is rarely needed in practice. With appropriate choice of b and
h, the expansion is typically rapidly semi-convergent. Since the derivatives of
are typically more expensive to compute than the values of f , one frequently
reduces h (in integration) or increases b (in summation or integration over
an infinite interval), and truncates the expansion several terms before one
has reached the smallest term that is otherwise the standard procedure with
alternating semi-convergent expansion.
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Variations of the Euler–Maclaurin summation formula, with finite differences
instead of derivatives in the expansion, are given in Problem 20, where you also find
a more general form of the formula, and two more variations of it.

Euler–Maclaurin’s formula can also be used for finding an algebraic expression
for a finite sum; see Problem 32 or, as in the following example, for finding an
expansion that determines the asymptotic behavior of a sequence or a function.

Example 3.4.12. An expansion that generalizes Stirling’s formula.
We shall use Euler–Maclaurin formula for f(x) = lnx, a = m > 0, h = 1,

b = n ≥ m. We obtain

T̂ (m : 1 : n)f =

n
∑

i=m+1

ln i− 1
2 lnn+ 1

2 lnm = ln(n!) − 1
2 lnn− ln(m!) + 1

2 lnm,

f (2k−1)(x) = (2k − 2)!x1−2k,

∫ n

m

f(x) dx = n lnn− n−m lnm+m.

Note that T̂ (m : 1 : n)f and
∫ n

m
f(x) dx are unbounded as n → ∞, but their

difference is bounded. Putting these expressions into (3.4.29), and separating the
terms containing n from the terms containing m gives

ln(n!) − (n+ 1
2 ) lnn+ n−

r
∑

k=1

B2k

2k(2k − 1)n2k−1
(3.4.32)

= ln(m!) − (m+ 1
2 ) lnm+m−

r
∑

k=1

B2k

2k(2k − 1)m2k−1
−R2r+2(m : 1 : n).

By (3.4.31), after a translation of the variable of integration,

|R2r+2(m : 1 : n)| ≤
∫ n

m

|2B2r+2|
(2r + 2)x2r+2

dx

≤ |2B2r+2|
(2r + 2)(2r + 1)|m2r+1| ≈

(2r)!

π|2πm|2r+1
. (3.4.33)

Now let n→ ∞ with fixed r, m. First, note that the integral in the error bound con-
verges. Next, in most texts of calculus Stirling’s formula is derived in the following
form:

n! ∼
√

2πnn+
1
2 e−n (n → ∞). (3.4.34)

If you take the natural logarithm of this, it follows that the left hand side of (3.4.32)
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tends to 1
2 ln(2π) 58 , and hence

ln(m!) = (m+ 1
2 ) lnm−m+ 1

2 ln(2π) +

r
∑

k=1

B2k

2k(2k − 1)m2k−1
+R, (3.4.35)

where a bound for R is given by (3.4.33). The numerical values of the coefficients
are found in Table 3.4.4.

Almost the same derivation works also for f(x) = ln(x + z), m = 0, where z
is a complex number, not on the negative real axis. A few basic facts about the
Gamma function are needed; see details in Henrici [26, Sec. 11.11, Example 3].

The result is that you just replace the integer m by the complex number z
in the expansion (3.4.35). According to [1, Sec. 6.1.42] R is to be multiplied by
K(z) = upper boundu≥0|z2/(u2 +z2)|. For z real and positive, K(z) = 1, and since
f ′(x) = (z + x)−1 is completely monotonic, it follows from Theorem 3.4.3 that, in
this case, R is less in absolute value than the first term neglected and has the same
sign.

It is customary to write ln Γ(z + 1) instead of ln(z!). The gamma function is
one of the most important transcendental functions; see, e.g., Handbook [1, Sec. 6.5]
and Lebedev[30].

This formula (withm = z) is useful for the practical computation of ln Γ(z+1).
Its semi-convergence is best if ℜz is large and positive. If this condition is not
satisfied, the situation can easily be improved by means of logarithmic forms of the

• reflection formula: Γ(z)Γ(1 − z) = π/ sinπz,

• recurrence formula: Γ(z + 1) = zΓ(z).

By simple applications of these formulas the computation of ln Γ(z + 1) for
an arbitrary z ∈ C is reduced to the computation of the function for a number z′,
such that |z′| ≥ 17, ℜz′ > 1

2 , for which the total error, if r = 5, becomes typically
less than 10−14. See Problem 24.

Although, in this section, the main emphasis is on the application of the Euler–
Maclaurin formula to the computation of sums and limits, we shall comment a little
on its possibilities for other applications 59.

58You may ask why we refer to (3.4.34). Why not? Well, it is not necessary, because it is easy
to prove that the left hand side of (3.4.32) increases with n and is bounded; it thus tends to some
limit C (say). The proof that C = ln

√
2π exactly is harder, without the Wallis product idea

(from 1655) that is probably used in your calculus text, or something equally ingenious or exotic.
However, if you compute the right hand side of (3.4.32) for m = 17, r = 5 (say), and estimate the
remainder, you will obtain C to a fabulous guaranteed accuracy, in negligible computer time after
a rather short programming time. And you may then replace 1

2
ln 2π by your own C in (3.4.35),

if you like.
59As you may have noted, we write “the Euler–Maclaurin formula” mainly for (3.4.29) that is

used in general theoretical discussions, or if other applications than the summation of an infinite
series are the primary issue. The term “the Euler–Maclaurin summation formula” is mainly used
in connection with (3.4.25), i.e. when the summation of an infinite series is the issue. “The Euler–
Maclaurin expansion” denotes both the right hand side of (3.4.29), except for the remainder, and
for the corresponding terms of (3.4.25). These distinctions are convenient for us, but they are
neither important nor in general use.
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• It shows that the global truncation error of the trapezoidal rule for
∫ b

a
f(x) dx

with step size h, has an expansion into powers of h2. Note that although the
expansion contains derivatives at the boundary points only, the remainder
requires that |f (2r+2)| is integrable in the interval [a, b]. The Euler–Maclaurin
formula is thus the theoretical basis for the application of repeated Richard-
son extrapolation to the results of the trapezoidal rule, known as Romberg’s
method; see Sec5.4.2. Note that the validity depends on the differentiability
properties of f .

• The Euler–Maclaurin formula can be used for highly accurate numerical in-
tegration when the values of some derivatives of f are known at x = a and
x = b. More about this in Chapter 5.

• Theorem 3.3.3 shows that the trapezoidal rule is second order accurate, unless
f ′(a) = f ′(b), but there exist interesting exceptions. Suppose that the function
f is infinitely differentiable for x ∈ R, and that f has [a, b] as an interval of
periodicity, i.e. f(x + b − a) = f(x), ∀x ∈ R. Then f (k)(b) = f (k)(a), for
k = 0, 1, 2, . . ., hence every term in the Euler–Maclaurin expansion is zero for
the integral over the whole period [a, b]. One could be led to believe that the
trapezoidal rule gives the exact value of the integral, but this is usually not
the case; for most periodic functions f , limr→∞R2r+2f 6= 0; the expansion
converges, of course, though not necessarily to the correct result.

We shall illuminate these amazing properties of the trapezoidal rule from
different points of view in several places in this book, e.g. in Sec. 5.3. See also
applications to the so-called bell sums in Problem 30.

3.4.5 Repeated Richardson Extrapolation

Let F (h) denote the value of a certain quantity obtained with step length h. In
many calculations one wants to know the limiting value of F (h) as the step length
approaches zero. However, the work to compute F (h) often increases sharply as
h → 0. In addition, the effects of round-off errors often set a practical bound for
how small h can be chosen.

Often, one has some knowledge of how the truncation error F (h) − F (0) be-
haves when h→ 0. If

F (h) = a0 + a1h
p + O(hr), h→ 0, r > p,

where a0 = F (0) is the quantity we are trying to compute and a1 is unknown, then
a0 and a1 can be estimated if we compute F for two step lengths, h and qh, q > 1:

F (h) = a0 + a1h
p +O(hr),

F (qh) = a0 + a1(qh)p +O(hr),

from which eliminating a1 we get

F (0) = a0 = F (h) +
F (h) − F (qh)

qp − 1
+O(hr). (3.4.36)
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This formula is called Richardson extrapolation, or the deferred approach to
the limit.60 Examples of this were mentioned in Chapter 1—the application of the
above process to the trapezoidal rule for numerical integration (where p = 2, q = 2),
and for differential equations—p = 1, q = 2 for Euler’s method, p = 2, q = 2 for
Runge’s 2nd order method.

The term (F (h) − F (qh))/(qp − 1) is called the Richardson correction. It is
used in in (3.4.36) for improving the result. Sometimes, however, it is used only for
estimating the error. This can make sense, e.g., if the values of F are afflicted by
other errors, usually irregular, suspected to be comparable in size to the correction.
If the irregular errors are negligible, this error estimate is asymptotically correct.
More often, the Richardson correction is used as error estimate for the improved (or
extrapolated) value F (h) + (F (h) − F (qh))/(qp − 1), but this is typically a strong
overestimate; the error estimate is O(hp), while the error is O(hr), (r > p).

Suppose that a more complete expansion of F (h) in powers of h, is known to
exist,

F (h) = a0 + a1h
p1 + a2h

p2 + a3h
p3 + . . . 0 < p1 < p2 < p3 < . . . , (3.4.37)

where the exponents are typically known, while the coefficients are unknown. Then
one can repeat the use of Richardson extrapolation in a way described below. This
process is, in many numerical problems—especially in the numerical treatment of
integral and differential equations—one of the simplest ways to get results which
have tolerable truncation errors. The application of this process becomes especially
simple when the step lengths form a geometric series H,H/q,H/q2, . . ., where q > 1
and H is the basic step length.

Theorem 3.4.4. Suppose that an expansion of the form of (3.4.37), where 0 <
p1 < p2 < p3 < . . ., holds for F (h), and set F1(h) = F (h),

Fk+1(h) =
qpkFk(h) − Fk(qh)

qpk − 1
= Fk(h) +

Fk(h) − Fk(qh)

qpk − 1
, (3.4.38)

for k = 1 : (n− 1), where q > 1. Then Fn(h) has an expansion of the form

Fn(h) = a0 + a(n)
n hpn + a

(n)
n+1h

pn+1 + . . . ; a(n)
ν =

n−1
∏

k=1

qpk − qpν

qpk − 1
aν . (3.4.39)

Note that a
(n)
ν = 0 for ν < n.

Proof. Set temporarily Fk(h) = a0 + a
(k)
1 hp1 + a

(k)
2 hp2 + . . . + a

(k)
ν hpν + . . .. Put

this expansion into the first expression on the right hand side of (3.4.38), and,

60The idea of a deferred approach to the limit is sometimes used also in the experimental
sciences—for example, when some quantity is to be measured in complete vacuum (difficult or
expensive to produce). It can then be more practical to measure the quantity for several different
values of the pressure. Expansions analogous to equation (3.4.37) can sometimes be motivated by
the kinetic theory of gases.
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substituting k+ 1 for k, put it into the left hand side. By matching the coefficients
for hpν we obtain

a(k+1)
ν = a(k)

ν (qpk − qpν )/(q(pk) − 1).

By (3.4.37), the expansion holds for k = 1, with a
(1)
ν = aν . The recursion formula

then yields the product formula for a
(n)
ν . Note that a

(ν+1)
ν = 0, hence a

(n)
ν = 0, ∀ν <

n.

The product formula is for theoretical purpose. The recurrence formula is for
practical use. If an expansion of the form of (3.4.37) is known to exist, the above
theorem gives a way to compute increasingly better estimates of a0. The leading

term of Fn(h) − a0 is a
(n)
n hpn , the exponent of h increases with n. A moment’s

reflection on equation (3.4.38) will convince the reader that (using the notation of
the theorem) Fk+1(h) is determined by the k + 1 values

F1(H), F1(H/q), . . . , F1(H/q
k).

With some changes in notation we obtain the following algorithm.

Algorithm 3.4.2 Repeated Richardson extrapolation

For m = 1 : N , set Tm,1 = F (H/qm−1), and compute, for m = 2 : N, k = 1 : m−1,

Tm,k+1 = Tm,k +
Tm,k − Tm−1,k

qpk − 1
. (3.4.40)

It is sometimes advantageous to write

Tm,k+1 =
qpkTm,k − Tm−1,k

qpk − 1
.

The computations can be set up in a scheme, where an extrapolated value in the
scheme is obtained by using the quantity to its left and the correction diagonally
above. (In a computer the results are simply stored in a lower triangular matrix.)

Suppose that Tol is the permissible error. Then, according to the argument
above, one continues the process, until two values in the same row agree to the
desired accuracy, i.e. |Tm,k − Tm,k−1| < Tol − CU , where CU is an upper bound
of the irregular error, (see below). (Tol should, of course, be larger than CU .) If
no other error estimate is available, mink |Tm,k −Tm,k−1|+CU is usually chosen as
error estimate, even though it is typically a strong overestimate.

Typically k = m, and Tmm is accepted as the numerical result, but this is not
always the case. For instance, if H has been chosen so large that the use of the basic
asymptotic expansion is doubtful, then the uppermost diagonal of the extrapolation
scheme contains nonsense and should be ignored, except for its element in the first
column. Such a case is detected by inspection of the difference quotients in a
column. If for some k, where Tk+2,k has been computed and the modulus of the
relative irregular error of Tk+2,k−Tk+1,k is less than (say) 20%, and, most important,
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Table 3.4.3. Scheme for repeated Richardson extrapolation

∆

qp1 − 1

∆

qp2 − 1

∆

qp3 − 1
T11

T21 T22

T31 T32 T33

T41 T42 T43 T44

the difference quotient (Tk+1,k −Tk,k)/(Tk+2,k −Tk+1,k) is is very different from its
theoretical value qpk , then the uppermost diagonal is to be ignored (except for its
first element). In such a case, one says that H is outside the asymptotic regime.

In this discussion a bound for the inherited irregular error is needed. We shall
now derive such a bound. Fortunately, it turns out that the numerical stability of
the Richardson scheme is typically very satisfactory, (although the total error bound
for Tmk will never be smaller than the largest irregular error in the first column).

Denote by ǫ1 the the column vector with the irregular errors of the initial data.
We neglect the rounding errors committed during the computations. 61 Then the
inherited errors satisfy the same linear recursion formula as the Tm,k, i.e.

ǫm,k+1 =
qpkǫm,k − ǫm−1,k

qpk − 1
.

Denote the k’th column of errors by ǫk, and set ‖ǫk‖ = maxm |ǫm,k|, ‖ǫ1‖ = U .

Then ‖ǫk+1‖ ≤ qp
k +1

qp
k−1‖ǫk‖. Hence, for every k, ‖ǫk+1‖ ≤ C‖ǫ1‖ = CU , where C is

the infinite product

C =
∞
∏

k=1

qpk + 1

qpk − 1
=

∞
∏

k=1

1 + q−pk

1 − q−pk

that converges as fast as
∑

q−pk ; the multiplication of ten factors are thus more
than enough for obtaining a sufficiently accurate value of C.

Example 3.4.13.
The most common special case is an expansion where pk = 2k,

F (h) = a0 + a1h
2 + a2h

4 + a3h
6 + . . . (3.4.41)

The headings of the columns of Table 3.4.5 then become ∆/3,∆/15,∆/63, . . .. In
this case we find that C = 5

3 · 7
15 · · · < 2 (after less than 10 factors).

61They are usually for various reasons of less importance. One can also make them smaller,
in floating-point computation, by subtracting a suitable constant from all initial data. This is
applicable to all linear methods of convergence acceleration.
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For (systems of) ordinary differential equations there exist some general the-
orems, according to which the form of the asymptotic expansion (3.4.37) of the
global error can be found.

• For Numerov’s method for ordinary differential equations, discussed in Exam-
ple 3.3.14 and Problem 28, one can show that we have the same exponents in
the expansion for the global error, but a1 = 0. (and the first heading disap-
pears). We thus have the same product as above, except that the first factor
disappears, hence C < 2 · 3

5 = 1.2.

• For Euler’s method for ordinary differential equations, presented in Sec. 1.4.2,
pk = k; the headings are ∆/1,∆/3,∆/7,∆/15, . . .. Hence C = 3 · 5

3 · 9
7 · · · =

8.25.

• For Runge’s 2nd order method, presented in Sec. 1.4.3, the exponents are the
same, but a1 = 0 (and the first heading disappears). We thus have the same
product as for Euler’s method, except that the first factor disappears, hence
C = 8.25/3 = 2.75.

In the special case that pj = j ·p, j = 1, 2, 3, . . . in (3.4.37), i.e. for expansions
of the form

F (h) = a0 + a1h
p + a2h

2p + a3h
3p + . . . , (3.4.42)

it is not necessary that the step sizes form a geometric progression. We can choose
any increasing sequence of integers q1 = 1, q2, . . . , qk, set hi = H/qi, and use an
algorithm that looks very similar to repeated Richardson extrapolation. In cases
where both are applicable, i.e. if pk = p · k, qi = qi, they are identical, otherwise
they have different areas of application.

Note that the expansion (3.4.42) is a usual power series in the variable x = hp,
which can be approximated by a polynomial in x. Suppose that k + 1 values
F (H), F (H/q2), . . ., F (H/qk) are known. Then by the corollary to Theorem 3.2.1,
a polynomial Q ∈ Pk is uniquely determined by the interpolation conditions

Q(xi) = F (H/qi), xi = (H/qi)
p, i = 1 : k.

Our problem is to find Q(0). Many interpolation formulas can be used for this
extrapolation. Neville’s algorithm, which is derived in Sec. 4.2, is particularly con-
venient in this situation. (4.2.27) yields, after a change of notation, the following
recursion.

Algorithm 3.4.3 Neville’s algorithm
For m = 1 : N , set Tm,1 = F (H/qm), where 1 = q1 < q2 < q3 . . ., is any increasing

sequence of integers, and compute, for m = 2 : N , k = 1 : m− 1,

Tm,k+1 = Tm,k +
Tm,k − Tm−1,k

(qm/qm−k)p − 1
=

(qm/qm−k)pTm,k − Tm−1,k

(qm/qm−k)p − 1
. (3.4.43)

The computations can be set up in a triangle matrix as for repeated Richardson
extrapolations, without headings.
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Example 3.4.14. Computation of π by means of regular polygons.
The ancient Greeks computed approximate values of the circumference of

the unit circle, 2π, by inscribing a regular polygon and computing its perimeter.
Archimedes considered the inscribed 96-sided regular polygon, whose perimeter is
6.28206 = 2 · 3.14103. In general, a regular n-sided polygon inscribed (circum-
scribed) in a circle with radius 1 has circumference 2a (2b), where

an = n sin(π/n), bn = n tan(π/n).

Clearly an < π < bn, and gives lower and upper bounds for π.
Setting h = 1/n, we have

an = a(h) =
1

h
sinπh = π − π3

3!
h2 +

π5

5!
h4 − π7

7!
h6 + . . . ,

bn = b(h) =
1

h
tanπh = π +

π3

3
h2 +

2π5

15
h4 +

17π7

315
h6 − . . . ,

so a(h) and b(h) satisfy the assumptions for repeated Richardson extrapolation with
pk = 2k.

We now try to find a recursion formula that leads from an and bn to a2n and
b2n. Setting nm = n1 · 2m−1, and

sm = 1/ sin(π/nm), tm = 1/ tan(π/nm),

we have anm
= nm/sm, and bnm

= nm/tm. From the trigonometric formula
tan(z/2) = sin z/(1 + cos z), we obtain the recursion

tm = sm−1 + tm−1, sm =
√

t2m + 1, m = 1, 2, . . . . (3.4.44)

Note that no trigonometric functions are used, only the square root, and this
could be computed by Newton’s method. Further, there is no cancellation with
consequential round-off errors in these formulas.

Taking n1 = 6, gives a6 = 6/2 = 3, and b6 = 6/
√

3 = 3.4641 . . .. The following
table gives anm

and bnm
for n1 = 6, m = 1 : 5, computed in IEEE double precision

using the recursion (3.4.44).

m nm anm
bnm

1 6 3.00000000000000 3.46410161513775
2 12 3.10582854123025 3.21539030917347

3 24 3.13262861328124 3.15965994209750

4 48 3.13935020304687 3.14608621513143

5 96 3.14103195089051 3.14271459964537

From this we can deduce that 3.1410 < π < 3.1427, or the famous, slightly weaker,
rational lower and upper bounds of Archimedes 3 10

71 < π < 3 1
7 . A correctly rounded

value of π to twenty digits reads 3.14159 26535 89793 23846 and correct digits in the
table are shown in boldface.
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The following table gives the Richardson scheme applied to anm
, m = 1 : 5,

3.14110472164033

3.14156197063157 3.14159245389765

3.14159073296874 3.14159265045789 3.14159265357789

3.14159253350506 3.14159265354081 3.14159265358975 3.14159265358979

The errors in successive columns decay as 4−2k, 4−3k, 4−4k, and the final number is
correct to all 14 decimals shown. Hence the accuracy used in computing values in
the previous table, which could be thought excessive, has been put to good use!62

Repeated Richardson extrapolation applied to the series bnm
gives the follow-

ing table.

3.13248654051871

3.14108315307218 3.14165626057574

3.14156163947608 3.14159353856967 3.14159254298228

3.14159072781668 3.14159266703939 3.14159265320557 3.14159265363782

The improvement is seen to be not as rapid in this case. Only ten correct digits are
obtained. The explanation for this is that the coefficients in the Taylor expansion
of tanx decay at a lower rate than for sinx.

Example 3.4.15. Application to numerical differentiation.
By Bickley’s table for difference operators, i.e. Table 3.3.1 in Sec. 3.3.2, we

know that

δ

h
=

2 sinh(hD/2)

h
= D + a2h

2D3 + a4h
4D5 + . . . ,

µ = cosh(hD/2) = 1 + b2h
2D2 + b4h

4D4 + . . . ,

where the values of the coefficients are now unimportant to us. Hence

f ′(x) − f(x+ h) − f(x− h)

2h
= Df(x) − µδf(x)

h
and f ′′(x) − δ2f(x)

h2

have expansions into even powers of h. Repeated Richardson extrapolation can thus
be used with step sizes H , H/2, H/4, . . . and headings ∆/3, ∆/15, ∆/63, . . .. For
numerical examples, see Problems of this section.

Richardson extrapolation can be applied in the same way to the computation
of higher derivatives. Because of the division by hk in the difference approxima-
tion of f (k), irregular errors in the values of f(x) are of much greater importance

62An extension of this example was used as a test problem for a package for (in principle)
arbitrarily high precision floating point arithmetic in Matlab for a PC. For instance, π was obtained
to 203 decimal places with 22 polygons and 21 Richardson extrapolations in less than half a minute.
The extrapolations took a small fraction of this time. Nevertheless they increased the number of
correct decimals from approximately 15 to 203.
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in numerical differentiation than in interpolation and integration. It is therefore
important to use high order approximations in numerical differentiation, so that
larger values of h can be used.

Suppose that the irregular errors of the values of f are bounded in magnitude
by erb, these errors are propagated to µδf(x), δ2f(x),. . . with bounds equal to
erb/h, 4erb/h2, . . .. As mentioned earlier, the Richardson scheme (in the version
used here) is no rascal; it multiplies the latter bounds by a factor less than 2.

For applications of repeated Richardson extrapolation to numerical integra-
tion; see Sec. 5.4.

Review Questions

1. Describe three procedures for improving the speed of convergence of certain
series. Give examples of their use.

2. State the original version of Euler’s transformation.

3. (a) What pieces of information appear in the Euler–Maclaurin formula? Give
the generating function for the coefficients. What do you know about the
remainder term?

(b) Give at least three important uses of the Euler–Maclaurin formula.

Problems and Computer Exercises

1. (a) Compute
∑

∞

n=1
1

(n+1)3 to eight decimal places by using
∑

∞

n=N
1

n(n+1)(n+2) ,

for a suitable N , as a comparison series. Estimate roughly how many terms
you would have to add without and with the comparison series.

Hint: You find the exact sum of this comparison series in Problem 3.3.2.

(b) Compute the sum also by Euler–Maclaurin’s formula or one of its variants
in Problem 20(a).

2. Study, or write yourself, programs for some of the following methods: 63

• iterated Aitken acceleration

• modified iterated Aitken, according to (3.4.8) or an a-version.

• generalized Euler transformation

• one of the central difference variants of Euler–Maclaurin’s formula, given
in Problem 20(a)

The programs are needed in two slightly different versions.

Version i: For studies of the convergence rate, for a series (sequence) where

63We have Matlab in mind, or some other language with complex arithmetic and graphical
output.
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one knows a sufficiently accurate value exa of the sum (the limit). The risk of
drowning in figures becomes smaller, if you make graphical output, e.g. like
Figure 3.4.1.

Version ii: For a run controlled by a tolerance, like in Algorithm 3.3.1, appro-
priately modified for the various algorithms. Print also i and, if appropriate,
jj. If exa is known, it should be subtracted from the result, because it is of
interest to compare errest with the actual error.

Comment: If you do not know exa, find a sufficiently good exa by a couple of
runs with very small tolerances, before you study the convergence rates (for
larger tolerances).

3. The formula for Aitken acceleration is sometimes given in the forms

sn − (∆sn)2

∆2sn
or sn − ∆sn∇sn

∆sn −∇sn
.

Show that these are equivalent to s′n+2 or s′n+1, respectively, in the notations
of (3.4.2). Also note that the second formula is limp→∞ s′n (not s′n+1) in the
notation of (3.4.6).

4. (a) Try iterated Aitken with thinning for
∑

∞

1 e−
√

n, according to the sugges-
tions after Example 3.4.3.

(b) Study the effect of small random perturbations to the terms.

5. Oscillatory series of the form
∑

∞

n=1 cnz
n. Suggested examples:

cn = e−
√

n, 1/(1 + n2), 1/n, 1/(2n− 1),

n/(n2 + n+ 1) , 1/
√
n, 1/ ln(n+ 1),

where z = −1, −0.9, ei3π/4, i, eiπ/4, eiπ/16, for the appropriate algorithms
mentioned in Problem 2 above. Apply thinning. Try also classical Euler
transformation on some of the cases.

Study how the convergence ratio depends on z, and compare with theoretical
results. Compare the various methods with each others.

6. Essentially positive series. of the form
∑

∞

n=1 cnz
n, where

cn = e−
√

n, 1/(1 + n2), 1/(5 + 2n+ n2)), (n · ln(n+ 1))−2,

1/
√

n3 + n, n−4/3, 1/((n+ 1)(ln(n+ 1))2);

z = 1, 0.99, 0.9, 0.7, eiπ/16, eiπ/4, i. Use appropriate algorithms from Prob-
lem 2.
Try also Euler–Maclaurin’s summation formula, or one of its variants, if you
can handle the integral with good accuracy. Also try to find a good compari-
son series; it is not always possible.

Study the convergence rate. Try also thinning to the first two methods.

7. Divergent series. Apply, if possible, Aitken acceleration and the generalized
Euler transformation to the following divergent series

∑

∞

1 cnz
n. Compare the

numerical results with the results obtained by analytic continuation, using the
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analytic expression for the sum as a function of z.

(a) cn = 1, z = −1; (b) cn = n, z = −1;

(c) cn is an arbitrary polynomial in n; (d) cn = 1, z = i;

(e) cn = 1, z = 2; (f) cn = 1, z = −2.

8. Let yn be the Fibonacci sequence defined, in Problem 3.3.16 by the recurrence
relation,

yn = yn−1 + yn−2, y0 = 0, y1 = 1.

Show that the sequence {yn+1/yn}∞0 satisfies the sufficient condition for Aitken
acceleration, given in the text. Compute a few terms, compute the limit by
Aitken acceleration(s), and compare with the exact result.

9. When the current through a galvanometer changes suddenly, its indicator
begins to oscillate toward a new stationary value s. The relation between the
successive turning points v0, v1, v2, . . . is vn − s ≈ A · (−k)n, 0 < k < 1.
Determine from the following series of measurements, Aitken extrapolated
values v′2, v

′

3, v
′

4 which are all approximations to s:

v0 = 659, v1 = 236, v2 = 463, v3 = 340, v4 = 406.

10. (a) Show that the a-version of Aitken acceleration can be iterated, for i = 0 :
N − 2,

a
(i+1)
i+1 = 0, a

(i+1)
j = a

(i)
j −∇

(

(a
(i)
j )2/∇a(i)

j

)

, j = i+ 2 : N,

s
(i+1)
N = s

(i)
N − (a

(i)
N )2/∇a(i)

N .

(Note that a
(0)
j = aj , s

(0)
j = sj.) We thus obtain N estimates of the sum s.

We cannot be sure that the last estimate s
(N−1)
N is the best, due to irregular

errors in the terms and during the computations. Accept instead, e.g., the
average of a few estimates that are close to each other, or do you have a
better suggestion? This also gives you a (not quite reliable) error estimate.

(b) Although we may expect that the a-version of Aitken acceleration handles
rounding errors better than the s-version, the rounding errors may set a limit
for the accuracy of the result. It is easy to combine thinning with this version.
How?

(c) Study or write yourself a program for the a-version, and apply it on one
or two problems, where you have used the s-version earlier. Also use thinning
on a problem, where it is needed. We have here considered N as given. Can
you suggest a better termination criterion, or a process for continuing the
computation, if the accuracy obtained is disappointing?

11. A function g(t) has the form

g(t) = c− kt+
∞
∑

n=1

ane
−λnt,

where c, k, an and 0 < λ1 < λ2 < . . . < λn are unknown constants and g(t) is
known numerically for tν = νh, ν = 0, 1, 2, 3, 4.
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Find out how to eliminate c, in such a way that a sufficient condition for
estimating kh by Aitken acceleration is satisfied. Apply this to the following
data, where h = 0.1, gν = g(tν).

g0 = 2.14789, g1 = 1.82207, g2 = 1.59763, g3 = 1.40680, g4 = 1.22784.

Then, estimate also c.

12. Suppose that the sequence {sn} satisfies the condition sn − s = c0n
−p +

c1n
−p−1 +O(n−p−2), p > 0, n→ ∞, and set

s′n = sn − p+ 1

p

∆sn∇sn

∆sn −∇sn
,

It was stated without proof in Sec. 3.3.2 that s′n − s = O(n−p−2).

(a) Design an a-version of this modified Aitken acceleration, or look up in [3].

(b) Since the difference expressions are symmetrical about n one can conjec-
ture that this result would follow from a continuous analogue with deriva-
tives instead of differences. It has been shown [3] that this conjecture is
true, but we shall not prove that. Our (easier) problem is just the continu-
ous analogue: suppose that a function s(t) satisfies the condition s(t) − s =
c0t

−p + c1t
−p−1 +O(t−p−2), p > 0, t→ ∞, and set

y(t) = s(t) − p+ 1

p

s′(t)2

s′′(t)
.

Show that y(t)−s = O(t−p−2). Formulate and prove the continuous analogue
to (3.4.9).

13. (a) Consider as in Example 3.4.5, the sum
∑

n−3/2. Show that the partial
sum sn has an asymptotic expansion of the form needed in that example, with
p = −1/2.

Hint: Apply Euler–Maclaurin’s formula (theoretically).

(b) Suppose that
∑

an is convergent, and that an = a(n). a(z) is analytic
function at z = ∞ (for example a rational function), multiplied by some power
of z− c. Show that such a function has an expansion like (3.4.7), and that the
same holds for a product of such functions.

14. Rewriting a Fourier series for convergence acceleration.

Consider a real function with the Fourier expansion F (φ) =
∑

∞

n=−∞
cne

inφ.
(a) Show that

F (φ) = c0 + 2ℜ
∞
∑

n=1

cnz
n, z = eiφ.

Hint: Show that c−n = c̄n.

(b) Set cn = an − ibn, where an, bn are real. Show that

∞
∑

n=0

(an cosnφ+ bn sinnφ) = ℜ
∞
∑

n=0

cnz
n.
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(c) How would you rewrite the Chebyshev series
∑

∞

n=0 Tn(x)/(1 + n2)?

(d) Consider also how to handle a complex function F (φ).

15. Compute and plot

F (x) =

∞
∑

n=0

Tn(x)/(1 + n2), x ∈ [−1, 1].

Find out experimentally or theoretically how F ′(x) behaves near x = 1 and
x = −1.

16. Compute to (say) 6 decimal places the double sum

S =

∞
∑

m=1

∞
∑

n=1

(−1)m+n

(m2 + n2)
=

∞
∑

n=1

(−1)mf(m),

where

f(m) =

∞
∑

n=1

(−1)n(m2 + n2)−1.

Compute, to begin with, f(m) for m = 1 : 10, by the generalized Euler
transformation. Do you need more values of f(m)?

Comment: There exists an explicit formula for f(m) in this case, but you can
solve this problem easily without using that.

17. We use the notation of Sec. 3.4.3 (the generalized Euler transformation). As-
sume that N ≥ k ≥ 1, and set n = N − k + 1. A sum is equal to zero, if the
upper index is smaller than the lower index.

(a) Prove (3.4.22) that was given without proof in the text, i.e.

MN,k−1 −MN−1,k−1 = znP k−2un+1, (k ≥ 2).

Hint: By subscript transformations in the definition of MN,k, prove that

MN,k−1 −MN−1,k−1 = un+1z
n +

zn

1 − z

k−3
∑

s=0

(zE − 1)P sun+1.

Next, show that zE−1 = (1−z)(P−1), and use this to simplify the expression.

(b) Derive the formulas

Mk−1,k =
1

1 − z

k−2
∑

s=0

P su1; MN,k = Mk−1,k +

n−1
∑

j=0

zjP k−1uj+1.

Comment: The first formula gives the partial sums of the classical Euler trans-
formation. The second formula relates the k’th column to the partial sums of
the power series with the coefficients P k−1uj+1.
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18. (a) If uj = aj, z = eiφ, φ ∈ [0, π], for which real values of a ∈ [0, 1] does the
series on the right of (3.4.15) converge faster than the series on the left?

(b) Find how the classical Euler transformation works if applied to the series

∑

zn, |z| = 1, z 6= 1.

Compare how it works on
∑

unz
n, for un = an, z = z1, and for un = 1,

z = az1.

Consider similar questions for other convergence acceleration methods, that
are primarily invented for oscillating sequences.

19. Compute
∑

∞

k=1 k
1/2/(k2 + 1) with an error of less than 10−6. Sum the first

ten terms directly. Then expand the summand in negative powers of k and
use Euler–Maclaurin’s summation formula. Or try a central difference variant
of Euler–Maclaurin’s summation formula given in the next problem; then you
do not have to compute derivatives.

20. Variations on the Euler–Maclaurin Theme

Set xi = a+ ih, also for non-integer subscripts, and xn = b.

Two variants with central differences instead of derivatives are interesting
alternatives, if the derivatives needed in the Euler–Maclaurin Formula are
hard to compute. Check a few of the coefficients on the right hand side of the
formula

∞
∑

j=1

B2j(hD)2j−1

(2j)!
≈ µδ

12
− 11µδ3

720
+

191µδ5

60480
− 2497µδ7

3628800
+ . . . . (3.4.45)

Use the expansion for computing the sum given in the previous problem. This
formula is given by Fröberg [19, p. 220], who attributes it to Gauss.
Compare the size of its coefficients with the corresponding coefficients of the
Euler–Maclaurin Formula.

Suppose that h = 1, and that the terms of the given series can be evaluated
also for non-integer arguments. Then another variant is to compute the central
differences for (say) h = 1/2 in order to approximate each derivative needed
more accurately by means of (3.3.50). This leads to the formula64

∞
∑

j=1

B2jD
2j−1

(2j)!
∼ µδ

6
− 7µδ3

180
+

71µδ5

7560
− 521µδ7

226800
+ · · · . (3.4.46)

(h = 1/2 for the central differences; h = 1 in the series.) Convince yourself
of the reliability of the formula, either by deriving it or by testing it for (say)
f(x) = e0.1x.
Show that the rounding errors of the function values cause almost no trouble
in the numerical evaluation of these difference corrections.

64The formula is probably very old, but we have not found it in the literature.
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21. (a) Derive formally in a similar way the following formula for an alternating
series. Set xi, h = 1, b = ∞, and assume that limx→∞ f(x) = 0.

∞
∑

i=0

(−1)if(a+i) = 1
2f(a)−1

4
f ′(a)+

1

48
f ′′′(a)−· · ·− (22r − 1)B2r

(2j)!
f (2r−1)(a)−. . . .

(3.4.47)
Of course, the integral of f is not needed in this case65 Compare it with some
of the other methods for alternating series on an example of your own choice.

(b) Derive, e.g. by operators (without the remainder R), the following more
general form of the Euler–Maclaurin Formula ([1, Formula 23.1.32]).

m−1
∑

k=0

hf(a+ kh+ ωh) =

∫ b

a

f(t)d t+

p
∑

j=1

hj

j!
Bj(ω)(f (j−1)(b) − f (j−1)(a)) +R,

R = −h
p

p!

∫ 1

0

B̂p(ω − t)
m−1
∑

k=0

f (p)(a+ kh+ th) dt.

If you use this formula for deriving the midpoint variant in (c), you will find
a quite different expression for the coefficients; nevertheless it is the same
formula. Tell how this is explained by Formula 23.1.10 in Handbook [1], i.e.
by the “Multiplication Theorem”66

Bn(mx) = mn−1
m−1
∑

k=0

Bn(x+ k/m), n = 0, 1, 2, . . . , m = 1, 2, 3, . . .

22. Prove statement (b) of the Lemma 3.4.2. (concerning the periodicity and the
regularity of the Bernoulli functions).

23. Euler’s constant is defined by γ = limN→∞ F (N), where

F (N) = 1 +
1

2
+

1

3
+ . . .+

1

N − 1
+

1

2N
− lnN.

(a) Use the Euler–Maclaurin formula with f(x) = x−1, h = 1, to show that,
for any integer N

γ = F (N) +
1

12
N−2 − 6

720
N−4 +

120

30240
N−6 − · · · ,

where every other partial sum is larger than γ, and every other is smaller.

(b) Compute γ to seven decimal places, usingN = 10,
∑10

n=1 n
−1 = 2.92896825,

ln 10 = 2.30258509.

65Note that the right hand side yields a finite value if f is a constant or, more generally, if f

is a polynomial, although the series on the left hand side diverges. The same happens to other
summation methods; see comments in the last example of Sec. 3.3.2.

66That formula and the remainder R are derived in Nörlund [33], p. 21 and p. 30, respectively.
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(c) Show how repeated Richardson extrapolation can be used to compute γ
from the following values:

N 1 2 4 8

F (N) 0.5 0.55685 0.57204 0.57592

(d) Extend (c) to a computation, where a larger number of values of F (N)
have been computed as accurately as possible, and so that the final accuracy
of γ is limited by the effects of rounding errors. Check the result by looking
up in an accurate table of mathematical constants, e.g., in [1].

(e) Set

S(r) =

r
∑

m=1

r
∑

n=1

(m2 + n2)−1.

By a continuous analog, with a double integral instead of a double sum, you
may conjecture that S(R) ∼ a lnR + b as R → ∞. You may even suggest a
value of the parameter a. Investigate the conjecture, by computing S(R) for
a suitable sequence of values of R. If you find support for it, try to estimate
a and b.

24. A digression about the Gamma function.

(a) The Handbook [1, 6.1.40] gives an expansion for ln Γ(z) that agrees with
formula (3.4.35) for ln z! (if we substitute z for m), except that the handbook
writes (z − 1

2 ) ln z, where we have (m + 1
2 ) lnm. Explain concisely and com-

pletely that there is no contradiction here.

(b) An asymptotic expansion for computing ln Γ(z+1), z ∈ C is derived in Ex-
ample 3.4.12. If r terms are used in the asymptotic expansion, the remainder
reads:

K(z)
(2r)!

π|2πz|2r+1
K(z) = sup

u≥0

|z2|
|u2 + z2| .

Set z = x + iy. Show the following more useful bound for K(z), valid for
x > 0,

K(z) ≤
{

1, if x ≥ |y|;
1
2 (x/|y| + |y|/x), otherwise.

Find a uniform upper bound for the remainder if r = 5, x ≥ 1
2 , |z| ≥ 17.

(c) Write a program, e.g., in Matlab, for the computation of ln Γ(z+1). Use the
reflection and recurrence formulas to transform the input value z, to another
z = x+ iy that satisfies x ≥ 1

2 , |z| ≥ 17, for which this asymptotic expansion
is to be used with r = 5.
Test the program, e.g., by computing the following quantities, and compare
with their exact values, e.g.,

n!, Γ(n+ 1/2)/
√
π, n = 0, 1, 2, 3, 10, 20.

∣

∣Γ(1
2 + iy)

∣

∣

2
=

π

cosh(πy)
, y = ±10,±20.
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If the original input value has a small modulus, there is some cancellation,
when when the output from the asymptotic expansion is transformed to
ln(1 + zinput), resulting in a loss of (say) 1 or 2 decimal digits.

(d) It is often much better to work with ln Γ(z) than with Γ(z). For example,
one can avoid exponent overflow in the calculation of a binomial coefficient or
a value of the beta function, B(z, w) = Γ(z)Γ(w)/Γ(z + w), where (say) the
denominator can become too big, even if the final result is of a normal order
of magnitude.
Another context where the logarithms are much preferable is in connection
with interpolation, numerical differentiation etc.; for |z| ≫ 1 ln Γ(z) is locally
approximated by a polynomial much better than Γ(z). The following is an
example (for a hand held calculator).
Given 10! = 3628800; compute Γ(x) for x = 11 : 15. Compute Γ′(13) by using
either repeated Richardson extrapolation or the central difference expansion,
in two ways:

• Use the values of ln Γ(x), (and multiply the logarithmic derivative by
Γ(13)).

• Use directly the values of Γ(x).

The first alternative requires a few more operations. Were they worthwhile?

25. (a) Show that
(

2n

n

)

∼ 22n

√
πn

, n→ ∞,

and give an asymptotic estimate of the relative error of this approximation.
Check the approximation as well as the error estimate for n = 5 and n = 10.

(b) Random errors in a difference scheme. We know from Example 3.3.3 that
if the items yj of a difference scheme are afflicted with errors less than ǫ in
absolute value, then the inherited error of ∆nyj is at most 2nǫ in absolute
value. If we consider the errors as independent random variables, uniformly
distributed in the interval [−ǫ, ǫ], show that the error of ∆nyj has the variance
(

2n
n

)

1
3ǫ

2, hence the standard deviation is approximately 2nǫ(9πn)−1/4, if n≫
1. Check the result on a particular case by a Monte Carlo study.

Hint: It is known from Probability theory that the variance of
∑n

j=0 ajǫj is

equal to σ2
∑n

j=0 a
2
j , and that a random variable, uniformly distributed in

the interval [−ǫ, ǫ], has the variance σ2 = ǫ2/3. Finally use (3.1.20) with
p = q = n.

26. (a) The following table of values of a function f(x) is given:

x 0.6 0.8 0.9 1.0 1.1 1.2 1.4

f(x) 1.820365 1.501258 1.327313 1.143957 0.951849 0.752084 0.335920

Compute using repeated Richardson extrapolation f ′(1.0) and f ′′(1.0).
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27. Compute an approximation to π using Richardson extrapolation with Neville’s
algorithm, based on three simple polygons, with n = 2, 3 and 6 sides, not in
geometric progression. A 2-sided polygon can be interpreted as a diameter
described up and down. Its “circumference” is thus equal to 4. Show that this
gives even a little better than the result (3.14103) obtained for the 96-sided
polygon without extrapolations.

28. Numerov’s method with Richardson extrapolations67

(a) Show that the formula

h−2(yn+1 − 2yn + yn−1) = y′′n + a(y′′n+1 − 2y′′n + y′′n−1)

is exact for polynomials of as high degree as possible, if a = 1/12. Show
that the error has an expansion into even powers of h, and determine the first
(typically non-vanishing) term of this expansion.

(b) This formula can be applied to the differential equation, y′′ = p(x)y, with
given initial values y(0), y′(0). Show that this yields the recurrence relation

yn+1 =
(2 + 10

12pnh
2)yn − (1 − 1

12pn−1h
2)yn−1

1 − 1
12pn+1h2

.

Comment: If h is small, information about p(t) is lost by outshifting in the
factors 1 − 1

12pn−1h
2 etc. (It is possible to rewrite the formulas in order

to reduce the loss of information.) In the application below this causes no
trouble with the step sizes suggested, in IEEE double precision. If you must
use single precision, however, the outshifting may set a limit to the accuracy
in the repeated Richardson extrapolation.

(c) Apply this method, together with two Richardson extrapolations in (d),
to the problem of Example 3.1.1, i.e. y′′ = −xy with initial values y(0) = 1,
y′(0) = 0, this time over the interval 0 ≤ x ≤ 4.8. Denote the numerical
solution by y(x;h), i.e. yn = y(xn;h).
Compute the seeds y1 = y(h, h) by the Taylor expansion in Example 3.1.1.
The error of y(0.2, 0, 2 should be less than 10−10, since we expect that the
(global) errors after two Richardson extrapolations can be of that order of
magnitude.
Compute y(x;h), x = 0 : h : 4.8, for h = 0.05, h = 0.1, h = 0.2. Store these
data in a 100 × 3 matrix (where you must put zeros into some places). Plot
y(x; 0.05) versus x for x = 0 : 0.05 : 4.8.

(d) You proved in (a) that the local error has an expansion containing even
powers of h only. It can be shown that the same is true for the global error
too. Assume (without proof) that

y(x, h) = y(x) + c1(x)h
4 + c2(x)h

6 + c3(x)h
8 +O(h10).

Perform the adequate repeated Richardson extrapolations to your stored re-
sults. Make semi-logarithmic plots of (the modulus of) the 4th order Richard-
son corrections for x = 0 : 0.1 : 4.8, obtained by means of y(x; 0.05) and

67See also Example 3.3.14.
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y(x; 0.1). Plot in the same fashion the 6th order corrections for x = 0 : 0.2 :
4.8, obtained in the second Richardson extrapolation. The 6th order correc-
tions are used as error estimates for the results from both these Richardson
extrapolations.68

(e) Express, e.g., by the aid of Handbook [1, Sec. 10.4], the solution of this
initial value problem in terms of Airy functions69

y(x) =
Ai(−x) + Bi(−x)/

√
3

2 · 0.3550280539
.

Check a few of your results of the repeated Richardson extrapolation by means
of Table 10.11 in the Handbook that, unfortunately, gives only 8 decimal
places.

Comment: Your results should be more accurate than that. If they are not,
the reason can be that the rounding errors have a large influence, but that is
not the most probable reason in this case, if IEEE double precision is used.
Experience shows that it is hard to avoid programming blunders in this prob-
lem. So do not consider the theory or the rounding errors as the primary
suspects. Programming errors do not always yield results that are obviously
crazy; sometimes the results look reasonable, although the accuracy is much
lower than it should be.

29. (a) Determine the Bernoulli polynomials B2(x) and B3(x), and find the values
and the derivatives at 0 and 1. Factorize the polynomial B3(x). Draw the
graphs of a few periods of B̂i(x), i = 1, 2, 3..

(b) In an old “Cours d’Analyse”, we found a “symbolic” formula, essentially

h

n−1
∑

j=0

g′(a+ jh) = g(b+ hB) − g(a+ hB). (3.4.48)

The expansion of the right hand side into powers of hB, has been followed
by the replacement of the powers of B by Bernoulli numbers, the resulting
expansion is not necessarily convergent, even if the first power series converges
for any complex value of hB.
Show that the second expansion is equivalent to the Euler–Maclaurin formula,
and that it is to be interpreted according to Theorem 3.4.3.

(c) If g is a polynomial, the expansion is finite. Show the following important
formulas, and check them with known results for k = 1 : 3.

n−1
∑

j=0

jk−1 =
(B + n)k −Bk

k
=
Bk(n) −Bk

k
. (3.4.49)

68Although the 6th order correction yields an 8th order accurate result, it is hard to obtain an
error estimate of that order without extra assumptions or extra computation.

69Airy functions are special functions (related to Bessel functions) with many applications to
Mathematical Physics, e.g., the theory of diffraction of radio waves around the earth’s surface.



Problems and Computer Exercises 159

Also find that (3.4.48) makes sense for g(x) = eαx, with the “symbolic” in-
terpretation of the power series for eBx, if you accept the formula e(B+α)x =
eBxeαx.

30. We have called
∑

an a bell sum if an as a function of n has a bell-shaped
graph, and you must add many terms to get the desired accuracy. Under
certain conditions you can get an accurate result by adding (say) every tenth
term, and multiply this sum by 10, because both sums can be interpreted
as trapezoidal approximations to the same integral, with different step size.
Inspired by Euler–Maclaurin’s formula, we may hope to be able to obtain high
accuracy using an integer stepsize h that is (say) one quarter of the half-width
of “the bell”. In other words, we do not have to compute and add more than
every hth term.
We shall study a class of series

S(t) =

∞
∑

n=0

cnt
n/n!, t≫ 1, (3.4.50)

where cn > 0, log cn is rather slowly varying for n large; (say that) ∆p log cn =
O(n−p). Let c(·) be a smooth function such that c(n) = cn. We consider S(t)
as an approximation to the integral

∫

∞

0

c(n)tn/Γ(n+ 1)dn,

with a smooth and bell shaped integrand, almost like the normal frequency
function, with standard deviation σ ≈ k

√
t. .

(a) For p = 1 : 5, t = 4p, plot y =
√

2πte−ttn/n! versus x = n/t, 0 ≤ x ≤ 3;
all 5 curves on the same picture.

(b) For p = 1 : 5, t = 4p, plot y = ln(e−ttn/n!) versus x = (n − t)/
√
t,

max(0, t− 8
√
t) ≤ n ≤ t+ 8

√
t; all 5 curves on the same picture. Give bounds

for the error committed if you neglect the terms of the series e−t
∑

∞

0 tn/n!,
which are cut out in your picture.

(c) With the same notation as in (b), use Stirling’s asymptotic expansion to
show theoretically that

e−ttn

n!
=
e−x2/2

(

1 +O(1/
√
t)
)

√
2πt

, (3.4.51)

for t → ∞, where the O(1/
√
t)-term depends on x. Compare this with the

plots.

Comment: If you are familiar with Probability, you recognize that this is
related to the normal approximation to the Poisson distribution. It is well
known that the mean is t, and the standard deviation is

√
t.

If you are familiar with Mathematical Physics, you see the resemblance to the
saddle point method, if you interpret the sum of terms like the left hand side
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(from n = 0 to ∞) as an approximation to an integral with stepsize ∆n = 1,
i.e.

e−t

∫

∞

0

tn/Γ(n+ 1)dn ∼
∫

∞

−∞

exp(−x2/2)/
√

2πdx = 1, (t → ∞).

(Note that dx = dn/
√
t.) A crude approximation for (3.4.50) is S(t) ≈ c(t)et.

We aim, however, at higher accuracy than is common when these approx-
imations are used in Probability and Mathematical Physics, We think, for
example, of situations where the result is to be used in a calculation where
cancellation causes many digits to be lost and a decent relative accuracy is
needed in what will be left.

(d) Test these ideas by making numerical experiments with the series

e−t
∑

n∈N

tn/n!,

where N = {round(t− 8
√
t) : h : round(t + 8

√
t)}, for some integers h in the

neighborhood of suitable fractions of
√
t, inspired by the outcome of the ex-

periments. Do this for t =1000, 500, 200, 100, 50, 30. Compare with the exact
result, and see how the trapezoidal error depends on h, and try to formulate
an error estimate that can be reasonably reliable, in cases where the answer
is not known. How large must t be, in order that it should be permissible to
choose h > 1 if you want (say) 6 correct decimals?

(e) Compute, with an error estimate, e−t
∑

∞

n=1 t
n/(n ·n!), with 6 correct dec-

imals for the values of t mentioned in (d). You can also check your result with
tables and formulas in the Handbook [1, Ch. 5].

31. If you have a good program for generating primes, denote the nth prime by
pn, and try convergence acceleration to series like

∑ (−1)n

pn
,
∑ 1

p2
n

,

or what have you? Due to the irregularity of the sequence of primes, you
cannot expect the spectacular accuracy of the previous examples, but it can be
fun to see how these methods work, e.g., in combination with some comparison
series derived from asymptotic results about primes. The simplest one reads
pn ∼ n lnn, (n → ∞), which is equivalent to the classical prime number
theorem.

32. A summation formula based on the Euler numbers

(a) The Euler numbers En were introduced by (3.1.19). The first values read
E0 = 1, E2 = −1, E4 = 5, E6 = −61. They are all integers (Problem 3.1.7c).
En = 0 for odd n, and the sign is alternating for even n. Their generating
function reads

1

cosh z
=

∞
∑

j=0

Ejz
j

j!
.
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(a) Show, e.g., by means of operators the following expansion

∞
∑

k=m

(−1)k−mf(k) ≈
q
∑

p=0

E2pf
(2p)(m− 1

2 )

22p+1(2p)!
(3.4.52)

Comment: No discussion of convergence etc. is needed; the expansion behaves
much like the Euler–Maclaurin expansion, and so does the error estimation;
see, e.g., [16].
The coefficient of f (2p)(m − 1

2 ) is approximately 2(−1)p/π2p+1 when p ≫
1, e.g., for p = 3 the approximation yields −6.622 · 10−4, while the exact
coefficient is 61/92160 ≈ 6.619 · 10−4.

(b) Apply (3.4.52) for explaining the following curious observation, reported
by Borwein et al. [6].

50
∑

k=1

4(−1)k

2k − 1
= 3.12159465259 . . .

(π = 3.14159265359 . . .).

Note that only three digits disagree. There are several variations on this
theme. Borwein et al. actually displayed the case with 40 decimal places
based on 50,000 terms. Make “an educated guess” concerning how few digits
disagreed.

3.5 Continued Fractions and Padé Approximants

3.5.1 Continued Fractions

Some functions cannot be well approximated by a power series, but can well be
approximated by a quotient of power series. In order to study such approximations
we first introduce algebraic continued fractions. Let r be a number and set

r = b0 +
a1

b1 +
a2

b2 +
a3

b3+

. . . = b0 +
a1

b1+

a2

b2+

a3

b3+
. . . , (3.5.1)

where the second expression is a convenient compact notation. If the number of
terms is infinite, r is called an infinite continued fraction. The terminating fraction

rn =
pn

qn
= b0 +

a1

b1+

a2

b2+
· · · an

bn
(3.5.2)

is called the nth approximant of the continued fraction. This can be evaluated
backwards in n divisions using the recurrence: Set r = y0, where

yn = bn, yi−1 = bi−1 + ai/yi, i = n : −1 : 1, (3.5.3)
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It can happen that in an intermediate step the denominator yi becomes zero and
yi−1 = ∞. This does no harm if you proceed in the next step when you divide by
yi−1 the result is set equal to 0. If it happens in the last step, the result is ∞.70

A drawback of evaluating an infinite continued fraction expansion by the back-
wards recursion (3.5.3) is that you have decide where to stop in advance. The
following theorem shows how forwards (or top down) evaluation can be achieved.

Theorem 3.5.1.
Consider the continued fraction (3.5.1). For n ≥ 1, rn = pn/qn, where pn, qn

satisfies the recursion formula

pn = bnpn−1 + anpn−2, p−1 = 1, p0 = b0, (3.5.4)

qn = bnqn−1 + anqn−2, q−1 = 0, q0 = 1. (3.5.5)

Another useful formula reads

pnqn−1 − pn−1qn = (−1)n−1a1a2 · · · an. (3.5.6)

Proof. We prove the recursion formulas by induction. First, for n = 1, we obtain

p1

q1
=
b1p0 + a1p−1

b1q0 + a1q−1
=
b1b0 + a1

b1 + 0
= b0 +

a1

b1
= r1.

Next, assume that the formulas are valid up to pn−1, qn−1, for every continued
fraction. Note that pn/qn can be obtained from pn−1/qn−1, by the substitution of
bn−1 + an/bn for bn−1. Hence

pn

qn
=

(bn−1 + an/bn)pn−2 + an−1pn−3

(bn−1 + an/bn)qn−2 + an−1qn−3
=
bn(bn−1pn−2 + an−1pn−3) + anpn−2

bn(bn−1qn−2 + an−1qn−3) + anqn−2

=
bnpn−1 + anpn−2

bnqn−1 + anqn−2
.

This shows that the formulas are valid also for pn, qn. The proof of equation (3.5.6)
is left for Problem 2.

Note that since the denominators and numerators of the approximants satisfy a
three term recurrence relation they can be evaluated by Clenshaw’s algorithm. It is
sometimes convenient to write the recursion formulas in matrix form; see Problem 2.

If we substitute anx for an in (3.5.4)–(3.5.5) then pn(x) and qn(x) become
polynomials in x of degree n and n− 1, respectively.

Example 3.5.1.
Consider the following finite continued fraction

r(x) = 7 − 3

x− 2−
1

x− 7+

10

x− 2−
2

x− 3
.

70Note that this works automatically in IEEE arithmetic, because of the rules of infinite arith-
metic; see Sec. 2.2.3!
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The algorithm in Theorem 3.5.1 can be used to convert this to rational function
form

r(x) =
(((7x − 101)x+ 540)x− 1204)x+ 958

(((x − 14)x+ 72)x− 151)x+ 112
.

As indicated, the numerator and denominator can then be evaluated by Horner’s
rule. The backwards evaluation of the continued fraction form requires fewer oper-
ations than of the rational form. However, there at the four points x = 1, 2, 3, 4 a
division by zero occurs even though r(x) is well defined at these points. However, in
IEEE arithmetic the continued fraction evaluates correctly at these points because
of the rules of infinite arithmetic! Indeed the continued fraction form can be shown
to have smaller errors for x ∈ [0, 4] and to be immune to overflow; see Higham [27,
§ 27.1].

In practice the forward recursion for evaluating a continued fraction often
generates very large or very small values for the numerators and denominators.
There is a risk of overflow or underflow with these formulas. We are usually not
interested in the pn, qn themselves, but in the ratios only. Then we can normalize
pn and qn by multiplying them by the same factor after they have been computed.
If we shall go on and compute pn+1, qn+1, however, we have to multiply pn−1, qn−1

by the same factor also! One must also be careful about the numerical stability of
these recurrence relations.

The formula

a1

b1+

a2

b2+

a3

b3+
· · · =

k1a1

k1b1+

k1k2a2

k2b2+

k2k3a3

k3b3+
· · · , (3.5.7)

where the ki are any non-zero numbers, is known as an equivalence transforma-
tion. The proof of (3.5.7) is left for Problem 5. .

By the following division algorithm, a rational function can be expressed as a
continued fraction that can be evaluated by relatively few arithmetic operations; see
Cheney [12, p. ]. Let R0, R1 be polynomials, and set R = R0/R1. The degree of
a polynomial Rj is denoted by dj . By successive divisions (of Rj−1 by Rj) we obtain
quotients Qj and remainders Rj+1 as follows. For j = 1, 2, . . . , until dj+1 = 0,

Rj−1 = RjQj +Rj+1, dj+1 < dj , (3.5.8)

hence

R =
R0

R1
= Q1 +

1

R1/R2
= . . . = Q1 +

1

Q2+

1

Q3+
. . .

1

Qk
. (3.5.9)

By means of an equivalence transformation; see (3.5.7), this fraction can be trans-
formed into a slightly more economic form, where the polynomials in the denomi-
nators have leading coefficient unity, while the numerators are in general different
from 1.
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Example 3.5.2. Best Rational Approximations to a Real Number.
Every positive number x can be expanded into a continued fraction with in-

teger coefficients of the form,

x = b0 +
1

b1+

1

b2+

1

b3+
· · · . (3.5.10)

Set x0 = x, p−1 = 1, q−1 = 0. For n = 0, 1, 2, . . . we construct a sequence of
numbers,

xn = bn +
1

bn+1+

1

bn+2+

1

bn+3+
· · · .

Evidently bn = ⌊xn⌋, the integer part of xn, and xn+1 = 1/(xn − bn). Compute pn,
qn, according to the recursion formulas of Theorem 3.5.1, which can be written in
vector form,

(pn, qn) = (pn−2, qn−2) + bn(pn−1, qn−1),

(since an = 1). See Figure 4.3.1. Stop when |x − pn/qn| < Tol or n > nmax. The
details are left for Problem 1.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

p

q

(p
0
,q

0
)

(p
2
,q

2
)

(p
4
,q

4
)

(p
−1

,q
−1

)

(p
1
,q

1
)

(p
3
,q

3
)

Figure 3.5.1. Illustration to Example 3.3.2. The dashed line is {(p, q) :
xq = p} for x = 1

2 (
√

5 + 1).

The above algorithm has been used several times in the previous sections,
where some coefficients, known to be rational, has been computed in floating point.
It is also useful for finding near commensurabilities between events with different
periods;71 see Problem 1c

71One of the convergents for log 2/ log 3 reads 12/19. This is in a way basic for Western Music,
where 13 quints make 7 octaves, i.e. (3/2)12 ≈ 27.



3.5. Continued Fractions and Padé Approximants 165

The German mathematician Felix Klein [28]72 gave the following illuminating
description of the sequence {(pn, qn)} obtained by this algorithm (adapted to our
notation):

“Imagine pegs or needles affixed at all the integral points (pn, qn), and
wrap a tightly drawn string about the sets of pegs to the right and to
the left of the ray, p = xq. Then the vertices of the two convex string-
polygons which bound our two point sets will be precisely the points
(pn, qn) . . ., the left polygon having the even convergents, the right one
the odd.”

Klein also points out that “such a ray makes a cut in the set of integral points”
and thus makes Dedekind’s definition of irrational numbers very concrete. This
construction; see Figure 3.5.1, illustrates in a concrete way that the successive
convergents are closer to x than any numbers with smaller denominators, and that
the errors alternate in sign. We omit the details of the proof that this description
is correct.

Note that, since aj = 1, ∀j, equation (3.5.6) reads pnqn−1−pn−1qn = (−1)n−1.
This implies that the triangle with vertices at the points (0, 0), (qn, pn), (qn−1, pn−1)
has the smallest possible area, among triangles with integer coordinates, and hence
there can be no integer points inside or on the sides of this triangle.

Theorem 3.5.2. (Seidel)73

Let all bn be positive in the continued fraction

b0 +
1

b1+

1

b2+

1

b3+
· · · .

Then this converges if and only if the series
∑

bn diverges.

Proof. See Cheney [12, p. 184].

Figure 3.5.1 corresponds to the example, (see also Problem 3),

x = 1 +
1

1+

1

1+

1

1+
· · · (3.5.11)

From Theorem 3.5.2 it follows that this continued fraction is convergent. Then,
note that x = 1+1/x, x > 0, hence x = (

√
5+1)/2. Note also that, by (3.5.6) with

aj = 1,

∣

∣

∣x− pn

qn

∣

∣

∣ ≤
∣

∣

∣

pn+1

qn+1
− pn

qn

∣

∣

∣ =
|pn+1qn − pnqn+1|

qn+1qn
=

1

qn+1qn
<

1

q2n
. (3.5.12)

72Felix Christian Klein (1849–1925). He was born 25/4 1849 and delighted in pointing out that
each of the day 52, month 22, and year 432 was the square of a prime.

73Philipp Ludwig von Seidel (1821–1896) German mathematician and astronomer. In 1846 he
submitted his habilitation dissertation entitled “Untersuchungen über die Konvergenz and Diver-
genz der Kettenbrüche
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Comment: If we know or guess that a result x of a computation is a rational
number with a reasonably sized denominator, although it was practical to compute
it in floating point arithmetic (afflicted by errors of various types), we have a good
chance to reconstruct the exact result by applying the above algorithm as a post-
processing.

If we just know that the exact x is rational, without any bounds for the number
of digits in the denominator and numerator, we must be conservative in claiming
that the last fraction that came out of the above algorithm is the exact value of
x, even if |x − pn/qn| is very small. In fact, the fraction may depend on Tol that
is to be chosen with respect to the expected order of magnitude of the error of x.
If Tol has been chosen smaller than the error of x, it may, e.g., happen that the
last fraction obtained at the termination is wrong, while the correct fraction (with
smaller numerator and denominator) may have appeared earlier in the sequence (or
it may not be there at all).

So a certain judgment is needed at the application of this algorithm. The
smaller the denominator and numerator are, the more likely it is that the fraction
is correct. In a serious context, it is advisable to check the result(s) by using exact
arithmetic. If x is the root of an equation (or a component of the solution of a system
of equations), it is typically much easier to check afterwards that a suggested result
is correct than to perform the whole solution process in exact arithmetic.

Continued fractions have also important applications in Analysis; some of the
best algorithms for the numerical computation of important analytic functions are
based on continued fractions. We shall not give complete proofs but refer to classical
books of Perron [35], Wall [47] and Henrici [25, 26].

A continued fraction is said to be equivalent to a given series, iff the sequence
of convergents is equal to the sequence of partial sums. There is typically an infinite
number of such equivalent fractions. The construction of the continued fraction is
particularly simple if we require that the denominators qn = 1, ∀n ≥ 1. For a power
series we shall thus have

pn = c0 + c1x+ c2x
2 + . . . cnx

n, n ≥ 1.

We must assume that cj 6= 0 ∀j ≥ 1.
We shall determine the the elements an, bn by means of the recursion formulas

of Theorem 3.5.1 (for n ≥ 2) with initial conditions. We thus obtain the following
equations,

pn = bnpn−1 + anpn−2; p0 = b0, p1 = b0b1 + a1,

1 = bn + an; b1 = 1.

The solution reads b0 = p0 = c0, b1 = 1, a1 = p1 − p0 = c1x, and for n ≥ 2,

an = (pn − pn−1)/(pn−2 − pn−1) = −xcn/cn−1;

bn = 1 − an = 1 + xcn/cn−1;

c0 + c1x+ . . .+ cnx
n . . . = c0 +

xc1
1−

xc2/c1
1 + xc2/c1−

. . .
xcn/cn−1

1 + xcn/cn−1−
. . .
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Of course, an equivalent continued fraction gives by itself no convergence ac-
celeration, just because it is equivalent. We shall therefore leave the subject of con-
tinued fractions equivalent to a series, after showing two instances of the numerous
pretty formulas that can be obtained by this construction.

For
f(x) = ex = 1 + x+ x2/2! + x3/3! + . . .

and

f(x) =
arctan

√
x√

x
= 1 − x/3 + x2/5 − x3/7 + . . . ,

we obtain for x = −1 and x = 1, respectively, after simple equivalence transforma-
tions,

e−1 = 1 − 1

1+

1

1 + y
=

1

2 + y
⇒ e = 2 + y, where y =

2

2+

3

3+

4

4+

5

5+
. . . ;

π

4
=

1

1+

1

2+

9

2+

25

2+

49

2+
. . . .

There exist, however, other methods to make a correspondence between a
power series and a continued fraction. Some of them lead to a considerable con-
vergence acceleration that often makes continued fractions very efficient for the
numerical computation of functions. We shall return to such methods in Sec. 3.5.2.

Gauss developed a continued fraction for the ratio of two hypergeometric func-
tions (see (3.1.13))

F (a, b+ 1, c+ 1; z)

F (a, b, c; z)
=

1

1+

a1z

1+

a2z

1+

a3z

1+
. . . , (3.5.13)

a2n+1 =
(a+ n)(c− b+ n)

(c+ 2n)(c+ 2n+ 1)
, a2n =

(b+ n)(c− a+ n)

(c+ 2n− 1)(c+ 2n)
. (3.5.14)

If in (3.5.13) we set b = 0, then F (a, b, c; z) = 1, and we obtain a continued fraction
for F (a, b+1, c+1; z). From this many continued fractions for elementary functions
can be derived, such as

ln(1 + z) =
z

1+

z

2+

z

3+

22z

4+

22z

5+

32z

6+
. . . . (3.5.15)

1

2
ln

(

1 + z

1 − z

)

=
z

1−
z2

3−
22z2

5−
32z2

7−
42z2

9− · · · (3.5.16)

(3.5.17)

arctan z =
z

1+

z2

3+

22z2

5+

32z2

7+

42z2

9+
. . . (3.5.18)

tan z =
z

1−
z2

3−
z2

5−
z2

7− . . . (3.5.19)

tanh z =
e2z − 1

e2z + 1
=

z

1+

z2

3+

z2

5+

z2

7+
. . . . (3.5.20)
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These expansions can be used also for complex values of z. In fact the fraction
for the logarithm can be used in the whole complex plane except in the intervals
(−∞,−1] and [1,∞). For arctan z, there are similar branch cuts on the imaginary
axis. The convergence is slow, when z is near a cut. For an elementary function
like these, a program can use some properties of the functions for moving z to a
domain, where the continued fraction converges rapidly.

The expansion for tan z is valid everywhere, except in the poles. In all these
cases the region of convergence as well as the speed of convergence is considerably
larger than for the power series expansions. For example, the 6’th convergent for
tanπ/4 is almost correct to 11 decimal places.

Example 3.5.3.
Consider the continued fraction for ln(1 + z) and set z = 1. The successive

approximations to ln 2 = 0.69314 71806 are:

1/1 2/3 7/10 36/52 208/300 1572/2268 12876/18576

1.000000 0.66667 0.700000 0.692308 0.69333 0.693122 0.693152

Note that the fraction give alternatively upper and lower bounds for ln 2. It can be
shown that this is the case when the elements of the continued fraction are positive.
To get the accuracy of the last approximation above would require as many as
50,000 terms of the series ln 2 = ln(1 + 1) = 1 − 1/2 + 1/3 − 1/4 + · · ·.

Example 3.5.4.
A collection of formulas concerning the important incomplete Gamma function

is found in Abramowitz and Stegun [1, Sec. 6.5]. For the sake of simplicity we assume
that x > 0, although the formulas can be used also in an appropriately cut complex
plane. The parameter a may be complex in Γ(a, x).74

Γ(a, x) =

∫

∞

x

ta−1e−t dt, Γ(a, 0) = Γ(a),

γ(a, x) = Γ(a) − Γ(a, x) =

∫ x

0

ta−1e−t dt, ℜa > 0,

Γ(a, x) = e−xxa
( 1

x+

1 − a

1+

1

x+

2 − a

1+

2

x+
· · ·
)

, (3.5.21)

γ(a, x) = e−xxaΓ(a)

∞
∑

n=0

xn

Γ(a+ 1 + n)
.

We mention these functions, because they have many applications. Several
other important functions can, by simple transformations, be brought to particular
cases of this function, e.g., the normal probability function, the chi-square proba-
bility function, the exponential integral, and the Poisson distribution.

74There are plenty of other notations for this function.
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Continued fractions like these can often be derived by a theorem of Stieltjes75,
which relates continued fractions to orthogonal polynomials that satisfy a recurrence
relation of the same type as the one given above. Another method of derivation is
the Padé approximation, studied in the next section, that yields a rational function.
Both techniques can be looked upon as a convergence acceleration of an expansion
into powers of z or z−1.

3.5.2 Padé Approximants.

The Padé76 approximants are a particular type of rational approximations to a
function f(z) defined by a power series, The idea is to match the coefficients in the
given series as far as possible with a rational approximation P (x)/Q(x). Consider
the example (Baker [2])

f(x) =

(

1 + 2x

1 + x

)1/2

= 1 +
1

2
x− 5

8
x2 +

13

16
x3 − . . . .

The first three coefficients are matched by the rational approximation

f11(x) =
1 + 7x/4

1 + 5x/4
= 1 +

1

2
x− 5

8
x2 +

25

32
x3 − . . . .

Note that f11(x) has the value 1.4 for x = ∞, which agrees well with the limit
√

2
for f(x). This is in contrast to the behavior of the Taylor series for f(x), which
does not converge for x ≥ 1/2.

We now give a general definition of Padé approximants.

Definition 3.5.3.
The (m,n) Padé approximant associated with

f(z) =
∞
∑

i=0

ciz
i. (3.5.22)

is, if it exists, defined to be a rational function

fm,n(z) =
Pm,n(z)

Qm,n(z)
≡
∑m

j=0 pjz
j

∑n
j=0 qjz

j
, q0 = 1, (3.5.23)

that satisfies
rm,n(z) = f(z) − fm,n(z) = Rzm+n+1 +O(zm+n+2), z → 0. (3.5.24)

The Padé approximants to ez are important because of their relation to meth-
ods for solving differential equations. Padé arranged the approximants fm,n(z),

75Thomas Jan Stieltjes (1856–1894), mathematician born in the Netherlands. On recommenda-
tions from his friend and colleague Charles Hermite in Paris he became docent 1886 and professor
1889 at the university in Toulouse, France.

76Henri Eugène Padé (1863–1953) a French mathematician, wrote his thesis under Charles Her-
mite’s supervision.
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m,n = 0, 1, 2,. . . . in a semi-infinite table. The following is part of the Padé table
for the exponential function f(z) = ez.

1

1

1 + z

1

1 + z + 1
2z

2

1

1

1 − z

1 + 1
2z

1 − 1
2z

1 + 2
3z + 1

6z
2

1 − 1
3z

1

1 − z + 1
2z

2

1 + 1
3z

1 − 2
3z + 1

6z
2

1 + 1
2z + 1

12z
2

1 − 1
2z + 1

12z
2

The Padé approximants for ez were given explicitly by Padé (1892) in his
thesis. They are

Pm,n(z) =
m
∑

j=0

(m+ n− j)!m!

(m+ n)! (m− j)!

zj

j!
, (3.5.25)

Qm,n(z) =

n
∑

j=0

(m+ n− j)!n!

(m+ n)! (n− j)!

(−z)j

j!
, (3.5.26)

with the error

rm,n(z) = ez − Pm,n(z)

Qm,n(z)
= (−1)n m!n!

(m+ n)!(m+ n+ 1)!
zm+n+1 +O(zm+n+2).

(3.5.27)
Note that Pm,n(z) = Qm,n(−z), which reflects the property that e−z = 1/ez. In-
deed, the nominator and denominator polynomials can be shown to approximate
ez/2 and e−z/2, respectively.

There are several reasons for preferring the diagonal Padé approximants (m =
n). For these

pj =
(2m− j)!m!

(2m)! (m− j)!j!
, qj = (−1)jpj, j = 0 : m. (3.5.28)

The coefficients satisfy the recursion

p0 = 1, pj+1 =
(m− j)pj

(2m− j)(j + 1)
, j = 0 : m− 1. (3.5.29)

For the diagonal Padé approximants the error Rm,n(z) satisfy |Rm,n(z)| < 1,
for ℜz < 0. This is an important property in applications to solving differential
equations.77 To evaluate a diagonal Padé approximant of even degree we write

P2m,2m(z) = p2mz
2m + · · · + p2z

2 + p0

+ z(p2m−1z
2m−2 + · · · + p3z

2 + p1) = u(z) + v(z).

77Diagonal Padé approximants are used also for the evaluation of the matrix exponential e
A,

A ∈ Rn×n; see Chapter 9.
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and evaluate u(z) and v(z) separately. Then Q2m(z) = u(z) − v(z). A similar
splitting can be used for an odd degree.

It was remarked in Sec. 2.2.4 that in order to compute the exponential function
a range reduction should first be performed. If an integer k is determined such that

z∗ = z − k ln 2, |z∗| ∈ [0, ln 2] (3.5.30)

then exp(z) = exp(z∗) · 2k. Hence only an approximation of exp(z) for |z| ∈ [0, ln 2]
is needed; see Problem 5.

We now consider how to determine the Padé approximants in the general case.

Theorem 3.5.4.
Let f(z) be a function defined by the power series (3.5.22). The coefficients qj

j = 1 : n, of the denominator of the Padé approximant fm,n(z) are determined by
the linear system,

n
∑

j=1

ci−jqj + ci = 0, i = m+ 1 : m+ n, (3.5.31)

where we set ci = 0 for i < 0, provided that this linear system has a unique solution.
Further, the coefficients of the numerator are

k
∑

j=0

ci−jqj = pi, i = 0 : m, k = min(i, n), (3.5.32)

and the error constant R in (3.5.24) reads

R =

k
∑

j=0

ci−jqj , i = m+ n+ 1.

Proof. Insert (3.5.22) and (3.5.24) into (3.5.23) and multiply both sides by the
denominator:

(

∞
∑

l=0

clz
l +Rzm+n+1 +O(zm+n+2)

)

n
∑

j=0

qjz
j =

m
∑

i=0

piz
i.

Match the coefficients of zi, i = 0 : m+ n+ 1, and remember that q0 = 1:

n
∑

j=0

ci−jqj =

{

pi, if 0 ≤ i ≤ m;
0, if m+ 1 ≤ i ≤ m+ n;
R, if i = m+ n+ 1.

The statements follow from this.

Note that fm,n uses cl for l = 0 : m+ n only; R uses cm+n+1 also. So, if cl is
given for l = 0 : r then fm,n is defined for m+ n ≤ r, m ≥ 0, n ≥ 0.
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There is an ”if” in the theorem. There are in fact simple exceptional situations,
where the linear system (3.5.31) is singular. The system can be written in more
detail as













cm−n+1 cm−n+2 · · · cm

cm−n+2 cm−n+3 · · · cm+1

...
... · · ·

...

cm cm+1 · · · cm+n−1





















qn
qn−1

...
q1









= −









cm+1

cm+2

...
cm+n









where ci = 0, i < 0. Note the system matrix has constant elements along the
anti-diagonals. Such matrices are called Hankel matrices. It can be shown that
singular cases occur in square blocks of the Padé table, where all the approximants
are equal. This property, investigated by Padé, is known as the block structure of
the Padé table. A Padé table where all the approximants are different is called
normal. Otherwise it is called non-normal.

We shall indicate, how such singular situations can often be avoided by a more
reasonable formulation of the request. These matters are discussed more thoroughly,
e.g., in Cheney [12, Chap. 5].

Example 3.5.5.
Let for f(z) = cos z = 1 − 1

2z
2 and try to find

f1,1(z) = (p0 + p1z)/(q0 + q1z), q0 = 1.

The coefficient matching according to the theorem, yields the equations,

p0 = q0 = 1, p1 = q1, −1

2
q0 = 0.

The last equation contradicts the condition that q0 = 1. This single contradictory
equation is in this case the “system” (3.5.31).

If this equation is ignored, we obtain f1,1(z) = (1 + q1z)/(1 + q1z) = 1, with
error ≈ 1

2z
2, in spite that we asked for an error that is O(zm+n+1) = O(z3). If we

instead allow that q0 = 0, then p0 = 0, and we obtain the same final result, since
f1,1(z) = q1z/(q1z) = 1.

In a sense, this singular case corresponds to a rather stupid request: we ask
to approximate the even function cos z by a rational function where the numerator
and the denominator end with odd powers of z. One should, of course, ask for the
approximation by a rational function of z2. What would you do, if f(z) is an odd
function?

Imagine a case where fm−1,n−1(z) happens to be a more accurate approxima-
tion to f(z) than usual, say that fm−1,n−1(z) − f(z) = O(zm+n+1). (For instance,
let f(z) be the ratio of two polynomials of degree m − 1 and n − 1, respectively.)
Let b be an arbitrary number, and choose

Qm,n(z) = (z + b)Qm−1,n−1(z),

Pm,n(z) = (z + b)Pm−1,n−1(z).
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Table 3.5.1. The Coefficients pi and qj of Padé approximations for ez.

m\i 0 1 2 3 4

0 1 0 0 0 0

1 1 1/4 0 0 0

2 1 1/2 1/12 0 0

3 1 3/4 1/4 1/24 0

4 1 1 1/2 1/6 1/24

m\j 0 1 2 3 4

0 1 −1 1/2 −1/6 1/24

1 1 −3/4 1/4 −1/24 0

2 1 −1/2 1/12 0 0

3 1 −1/4 0 0 0

4 1 0 0 0 0

Then

fm,n(z) = Pm,n(z)/Qm,n(z)

= Pm−1,n−1(z)/Qm−1,n−1(z) = fm−1,n−1(z),

which is an O(zm+n+1)-accurate approximation to f(z). Hence our request for this
accuracy is satisfied by more than one pair of polynomials, Pm,n(z), Qm,n(z), since
b is arbitrary. This is impossible, unless the system (3.5.31) (that determines Qm,n)
is singular.

This illustrates another type of situations where the singular case occurs.
Numerically, a similar situation occurs in a natural way, when one wants to approx-
imate f(z) by fm,n(z), although already fm−1,n−1(z) would represent f(z) as well
as possible with the limited precision of the computer. In this case we must expect
the system (3.5.31) to be very close to a singular system. A reasonable procedure
for handling this is to compute the Padé approximants for a sequence of increasing
values of m, n, to estimate the condition numbers and to stop when it approaches
the reciprocal of the machine unit. This illustrates a fact of some generality. Un-
necessary numerical trouble can be avoided by means of a well designed termination
criterion.

For f(z) = − ln(1 − z), we have cl = 1/l, l > 0. When m = n the matrix of
the system (3.5.31) turns out to be the notorious Hilbert matrix (with permuted
columns), for which the condition number grows exponentially; see Example 2.4.7.
(The elements of the usual Hilbert matrix are aij = 1/(i+ j − 1).)

Example 3.5.6.
The Padé approximations fm,n(z) and the corresponding error terms were

computed by a program using the formulas of Theorem 3.5.4 for f(z) = ez, with
0 ≤ m ≤ 4, n = 4 − m. In the Padé table these will be on the fourth diagonal,
perpendicularly to the main diagonal. The input was the Malaurin coefficients of
f4,0. The results were first obtained in floating point arithmetic, but they were
then converted into rational form by the algorithm described in Example 3.5.2.
The coefficients pi of the numerators Pm,4−m and qj of the denominators Qm,4−m

are given in Table 3.5.1. For m = n = 4 the program found that the error term is
−4 · 10−8z9, while the error term of the Maclaurin expansion f8,0 is 3 · 10−6z9.

When m = n = 10 the program gave warnings about divisions by zero, and
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it estimated the condition number of the linear system (3.5.31) to be 1022. The
reciprocal of this number is a measure of how close the matrix of the system is
to a singular matrix, (see Theorem 7.5.3). The computed coefficients of the Padé
approximant had large errors. Nevertheless e was computed with full machine
accuracy (for z = 1), and the error term was estimated to be less than 10−25z21.

Example 3.5.7.
To evaluate ln(1 + x) one can use the relation

ln(1 + x) = ln

(

1 + z

1 − z

)

, z =
x/2

1 + x/2
,

and use the continued fraction expansion given in (3.5.3). The convergents of this
continued fraction are odd functions and Padé approximants. The first few are

s00 = 2z, s01 =
3

3 − z2
, s11 = 2z

15 + 4z2

3(5 − 3z2)
,

s12 =
105 − 55z2

105 − 90z2 + 9z4
, s22 = 2z

945 − 735z2 + 64z4

15(63− 70z2 + 15z4)
.

Here the diagonal approximants smm are most interest. For example, the approx-
imation s22 matches the Taylor series up to the term z8 and the error is approx-
imately equal to the term z10/11. Note that the denominators are the Legendre
polynomials in 1/z,

3.5.3 The Epsilon Algorithm.

We shall here briefly introduce the important ǫ-algorithm and indicate the connec-
tions between Padé approximation, Aitken acceleration, linear difference equations
and this algorithm.

If n is large, the heavy part of the computation of a Padé approximant

fm,n(z) = Pm,n(z)/Qm,n(z)

of f(z) in (3.5.22) is the solution of the linear system (3.5.31). We see that if m or
n is decreased by 1, most of the equations of the system will be the same. There
are therefore relations between the polynomials Qm,n(z) for adjacent values of m,n,
which have been subject to intensive research that has resulted in several interesting
algorithms. See, e.g., the monographs of Brezinski [8, 9] and the literature cited
there.

Here we are primarily interested in the use of Padé approximants as a conver-
gence accelerator in the numerical computation of values of f(z) for (say) z = eiφ, in
particular for z = ±1. A natural question is whether it is possible to omit the calcu-
lation of the coefficients pj , qj , and find a recurrence relation that gives the function
values directly. A very elegant solution to this problem, called the ǫ-algorithm, was
found in 1956 by P. Wynn [48], after complicated calculations. We shall present the
algorithm, but we refer to the original paper of Wynn for the proof.
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A two-dimensional array of numbers ǫ
(p)
k is computed by the recurrence rela-

tion,

ǫ
(p)
k+1 = ǫ

(p+1)
k−1 +

1

ǫ
(p+1)
k − ǫ

(p)
k

, (3.5.33)

which involves quantities in a rhombus

ǫ
(p)
k

ǫ
(p+1)
k−1 ǫ

(p)
k+1

ǫ
(p+1)
k

If the following boundary conditions are used:

ǫ
(p)
−1 = 0,

ǫ
(p)
0 = fp,0(z) =

p
∑

j=0

cjz
j , (3.5.34)

ǫ
(−n)
2n = f0,n(z) =

1
∑n

j=0 djzj
,

this yields for even subscripts

ǫ
(p)
2n = fp+n,n(z), (3.5.35)

The values of ǫ
(p)
2n+1 with odd subscripts are auxiliary quantities only. The polyno-

mials f0,n(z) are obtained from the Taylor expansion of 1/f(z). Several procedures
for obtaining this were given in Sec. 3.1.

It seems easier to program the ǫ-algorithm it after a slight change of notation.

We introduce an r× 2r matrix A = [aij ], aij = ǫ
(p)
k , where k = j − 2, p = i− j + 1.

Conversely, i = k + p+ 1, j = k + 2. The ǫ-algorithm, together with the boundary
conditions now takes the form:

for i = 1 : r

ai,1 = 0; ai,2 = fi−1,0(z); ai,2i = f0,i−1(z);

for j = 2 : 2 ∗ i− 2

ai,j+1 = ai−1,j−1 + 1/(aij − ai−1,j).
end

end

Results:

fm,n(z) = am+n+1,2n+2, (m,n ≥ 0, m+ n+ 1 ≤ r).

The above program sketch must be improved for practical use, e.g., something
should be done about the risk for a division by zero.
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An extension of the Aitken acceleration, due to Shanks [39] 1955, uses a com-
parison series with terms of the form

cj =

p
∑

ν=1

α′

νk
j
ν , j ≥ 0, kν 6= 0. (3.5.36)

Here α′

ν and kν are 2p parameters, to be determined, in principle, by means of cj ,
j = 0 : 2p− 1. The parameters may be complex. The power series becomes

S(z) =

∞
∑

j=0

cjz
j =

p
∑

ν=1

α′

ν

∞
∑

j=0

kj
νz

j =

p
∑

ν=1

α′

ν

1 − kνz
.

This is a rational function of z, and the “Ansatz” of Shanks is thus related to
Padé approximation, but note that the poles at k−1

ν should be simple and that
m < n for S(z), because S(z) → 0, as z → ∞. Recall that the calculations for the
Padé approximation determines the coefficients of S(z) without calculating the 2n
parameters α′

ν and kν . It can happen that m becomes larger than n, and if α′

ν and
kν are afterwards determined, by the expansion of S(z) into partial fractions, it can
turn out that some of the kν are multiple poles.

This suggests a generalization of the Shanks approach but how? If we consider
the coefficients qj , j = 1 : n, occurring in (3.5.31) as known quantities then (3.5.31)
can be interpreted as a linear difference equation78 . The general solution of this is
given by (3.5.36), if the zeros of the polynomial

Q(x) := 1 +

n
∑

j=1

qjx
j

are simple, but if multiple roots are allowed, the general solution reads,

cl =
∑

ν

pν(l)kn
ν ,

where kν runs through the different zeros ofQ(x), and pν is an arbitrary polynomial,
the degree of which equals the multiplicity −1 of the zero kν .

Essentially the same mathematical relations occur in several areas of numerical
analysis, such as interpolation and approximation by a sum of exponentials, and in
the design of quadrature rules with free nodes (see Sec. 5.2). For an application of
the ǫ-algorithm to numerical quadrature, see Sec. 5.3.3.

3.5.4 The QD Algorithm.

Given the continued fraction

c(z) =
a1

1+

a2z

1+

a3z

1+
, (3.5.37)

78This can also be expressed in terms of the z-transform; see § 3.2.3.
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we denote the nth approximant by

wn(z) = Pn(z)/Qn(z), n = 1, 2, . . . . (3.5.38)

This corresponds to the finite continued fraction obtained by setting an+1 = 0.
The sequence of numerators {Pn} and denominators {Qn} in (3.5.38) satisfy the
recurrence relations:

P0 = 0, P1 = 1, Pn = zanPn−2 + Pn−1,

Q0 = Q1 = 1, Qn = zanQn−2 +Qn−1, n ≥ 2,

Hence both Pn and Qn are polynomials in z of degree [(n− 1)/2] and [n/2], respec-
tively. It can be shown that the polynomials Pn and Qn have no common zero for
n = 1, 2, . . . , and for all z.

In the special case that all ai > 0, the continued fraction

c(z) =
a1

1+

a2z

1+

a3z

1+
, (3.5.39)

is called a Stieltjes fraction.79

From the initial conditions and recurrence relations it follows that Qn(0) = 1,
n = 0, 1, 2, . . . . Hence the rational function wn(z) is analytic at z = 0 and thus can
be expanded in a Taylor series

Pn(z)

Qn(z)
= c

(n)
0 + c

(n)
1 z + c

(n)
2 z2 + · · · (3.5.40)

that converges for z sufficiently small. The coefficients c
(n)
k in (3.5.40) can be shown

to be independent of n for k < n. We denote by ck := c
(n+1)
k the ultimate value of

c
(n)
k for increasing values n and let

f(z) = c0 + c1z + c2z
2 + · · · , (3.5.41)

be the formal power series formed with these coefficients. Then the power series
f(z) and the fraction c(z) are said to correspond to each other. Note that the
formal power series f(z) corresponding to a given fraction c(z) converges for any
z 6= 0.

We now consider the converse problem: Given a (formal) power series f(z),
find a continued fraction c(z) of the form (3.5.50) corresponding to it. Note that we
do not require that the formal power series corresponding to the continued fraction
converges, merely that the nth approximant wn of the continued fraction satisfies

f(z)− wn(z) = O(zn).

79The theory of such fractions was first expounded by Stieltjes in a famous memoir, which
appeared in 1894, the year of his death.
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Example 3.5.8.
For |z| < 1,

arctan z = z − 1
3z

3 + 1
5z

5 − 1
7z

7 + · · · .

The corresponding partial numerators and the corresponding continued fractions
are

a2k =
(2k − 1)2

(4k − 3)(4k − 1)
, a2k+1 =

(2k)2

(4k − 1)(4k + 1)
.

The fraction converges for all z such that z2 is not real and z2 ≤ 1. After an
equivalence transformation we obtain

arctan z =
z

1+

z2

3+

4z2

5+

9z2

7+

16z2

9+
(3.5.42)

The convergents of the corresponding continued fractions are equal to Padé approx-
imants.

The qd algorithm80, can be used to compute such a continued fraction, if it
exists.

For arbitrary integers n and k ≥ 0, we define the Hankel matrices

H
(n)
k =













cn cn+1 · · · cn+k−1

cn+1 cn+2 · · · cn+k

... · · · · · ·
...

cn+k−1 cn+k−2 · · · cn+2k−2













∈ Rk×k, (3.5.43)

where we set ck = 0 for k < 0. Further, we define the Hankel determinants

H
(n)
k = det

(

H
(n)
k

)

, k = 1, 2, . . . . (3.5.44)

associated with the formal power series (3.5.41).

Theorem 3.5.5. Henrici [26, Theorem 12.4c]
Given a formal power series (3.5.41), there exists at most one corresponding

continued fraction. It exists precisely one such fraction if and and only if the Hankel

determinants (3.5.44) satisfy H
(n)
k 6= 0 for n = 0, 1 and k = 1, 2, . . . .

The Hankel determinants satisfy the following important identity called Ja-
cobi’s identity:

For all integers n and k ≥ 1

(H
(n)
k )2 −H

(n−1)
k H

(n+1)
k +H

(n−1)
k+1 H

(n+1)
k−1 = 0. (3.5.45)

80The qd algorithm was originally given by the Swiss mathematician Heinz Rutishauser [38]
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If the determinants H
(n)
k are arranged in a triangular array

1

1 H
(0)
1 = c0

1 H
(1)
1 = c1 H

(0)
2

1 H
(2)
1 = c2 H

(1)
2 H

(0)
3

1 H
(3)
1 = c3 H

(2)
2 H

(1)
3 H

(0)
4

then Jacobi’s identity links together the entries in a star like configuration. Since
the two first columns are trivial (3.5.45) may be used to calculate the Hankel de-
terminants recursively from left to right.

The quotient-difference scheme, or qd scheme is a scheme

q
(0)
1

0 e
(0)
1

q
(1)
1 q

(0)
2

0 e
(1)
1 e

(0)
2

q
(2)
1 q

(1)
2 q

(0)
3

0 e
(2)
1 e

(1)
2

q
(3)
1 q

(2)
2 q

(1)
3

0 e
(3)
1 e

(2)
2

... q
(3)
2

...
...

...

,

where the quantities are connected by the two rhombus rules

e(n)
m = q(n+1)

m − q(n)
m + e

(n+1)
m−1 ; m = 1, 2, . . . , n = 0, 1, 2, . . . , (3.5.46)

q
(n)
m+1 =

e
(n+1)
m

e
(n)
m

q(n+1)
m ; m = 1, 2, . . . , n = 0, 1, 2, . . . , (3.5.47)

The qd scheme associated with the formal power series (3.5.41) is obtained by taking
the entries in the second column to be

q
(n)
1 = cn+1/cn, n = 0, 1, 2, . . . , (3.5.48)

The remaining elements in the qd scheme can then be generated column by column

using the rhombus rules. If the columns q
(n)
m+1, m = 1, 2, . . . exist, then the continued

fraction corresponding to f is given by

c =
c0
1−

q
(0)
1 z

1−
e
(0)
1 z

1−
q
(0)
2 z

1−
e
(0)
2 z

1− − · · · , (3.5.49)
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Example 3.5.9.
For the power series c(z) = 0!+1!z+2!z2 +3!z3 + · · ·, the following qd scheme

is obtained:

1

0 1

2 2

0 1 2

3 3 3

0 1 2 3

4 4 4

0 1 2 3

Hence the corresponding continued fraction is

c(z) =
1

1+

z

1+

z

1+

2z

1+

2z

1+

3z

1+
.

It is sometimes convenient to consider continued fractions in z−1

c(z) =
a1

1+

a2z
−1

1+

a3z
−1

1+
, (3.5.50)

that corresponds to the formal series

p = c0 + c1z
−1 + c2z

−2 + · · · .

Review Questions

1. Define a continued fraction. Show how the convergents can be evaluated either
backwards or forwards.

2. Show how any positive number can be expanded into a continued fraction with
integer elements. In what sense are the convergents the best approximations?
How accurate are they?

3. The denominators or numerators of the approximants of a continued fraction
can be evaluated by Clenshaw’s algorithm. Why is that?

4. What is the Padé table? Describe how the Padé approximants can be com-
puted, if they exist. Tell something about singular and almost singular situa-
tions that can be encountered, and how to avoid them.

5. Describe the ǫ-algorithm, and tell something about its background and its
efficiency.
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6. Describe the qd algorithm. What can it be used for?

Problems and Computer Exercises

1. (a) Write a program for the algorithm of Example 3.5.2. Apply it to find a
few coefficients of the continued fractions for

1
2 (
√

5 + 1),
√

2, e, π, log 2/ log 3, 2j/12

for a few integers j, 1 ≤ j ≤ 11.

(b) Check the accuracy of the convergents. What happens when you apply
your program to a rational number, e.g., 729/768 ?

(c) The metonic cycle used for calendrical purposes by the Greeks consists
of 235 lunar month, which nearly equal 19 solar years. Show, using the al-
gorithm in Example 3.5.2, that 235/19 is the sixth convergent of the ratio
365.2495/29.53059 of the Lunar phase synodic) period and solar period

2. A matrix formalism for continued fractions.

(a) We use the same notations as in Sec. 3.4.1, but we set, with no loss of
generality, b0 = 0. Set

P (n) =

(

pn−1 pn

qn−1 qn

)

, A(n) =

(

0 an

1 bn

)

.

Show that P (0) = I,

P (n) = P (n− 1)A(n), P (n) = A(1)A(2) · · ·A(n− 1)A(n), n ≥ 1.

Comment: This does not minimize the number of arithmetic operations but, in
a matrix-oriented programming language, it often gives very simple programs.

(b) Write a program for this with some termination criterion, and test it on a
few cases, e.g.,

1 +
1

1+

1

1+

1

1+
. . . ; 2 +

1

3+

1

2+

1

3+

1

2+

1

3+
. . . ; 2 +

2

2+

3

3+

4

4+
. . . .

As a post-processing, apply in the first two cases, e.g., Aitken acceleration in
order to obtain a very high accuracy. Does the result look familiar in the last
case? See Problem 3 concerning the exact results in the two other cases.

(c) Write a version of the program with some strategy for scaling P (n) in
order to eliminate the risk of overflow and underflow.

Hint: Note that the convergents xn = pn/qn are unchanged if you multiply
the P (n) by arbitrary scalars.

(d) Use this matrix form for working out a short proof of (3.5.6).

Hint: What is the determinant of a matrix product?
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3. (a) Explain that x = 1 + 1/x for the continued fraction in (3.5.11)?

(b) Compute the periodic continued fraction

2 +
1

3+

1

2+

1

3+

1

2+

1

3+
. . .

exactly (by paper and pencil). (The convergence is assured by Seidel’s Theo-
rem 3.5.2.)

(c) Suggest a generalization of (a) and (b), where you can always obtain a
quadratic equation with a positive root.

(d) Show that

1√
x2 − 1

=
1

x−
1
2

x− y
where y =

1
4

x−
1
4

x−
1
4

x− · · · .

4. (a) Prove the equivalence transformation (3.5.7). Show that the errors of the
convergents have alternating signs, if the elements of the continued fraction
are positive.

(b) Show how to bring a general continued fraction to the special form of
equation (3.5.10).

5. Let Pm,m(z)/Qm,m(z) be the diagonal Padé approximants of the exponential
function. Show that the coefficients for Pm,m(z) satisfy the recursion

p0 = 1, pj+1 =
m− j

(2m− j)(j + 1)
pj , j = 0 : m− 1. (3.5.51)

(b) Show that for m = 6 we have

P6,6(z) = 1 +
1

2
z +

5

44
z2 +

1

66
z3 +

1

792
z4 +

1

15840
z5 +

1

665280
z6.

and Q6,6(z) = P6,6(−z). How many operations are needed to evaluate this
approximation for a given z?

(c) Use the error estimate in (3.5.27), neglecting higher order terms, to com-
pute a bound for the relative error of the approximation in (b) when |z| ∈
[0, ln 2]. What degree of the diagonal Padé approximant is needed for the rel-
ative error is required to be of the oder of the unit roundoff 2−53 = 1.11 ·10−16

in IEEE double precision?

6. (a) Write a program for computing a Padé approximant and its error term.
Apply it (perhaps after a transformation), for various values of m, n to, e.g.,
ez, arctan z, tan z. (Note that two of these examples are odd functions.)
Use the algorithm of Example 3.5.2 for expressing the coefficients as rational
numbers. For how large m,n can you (in these examples) use your program
without severe trouble with rounding errors.

(b) (b) Try to determine for which other functions the Padé table has a similar
symmetry as shown in the text for the exponential function ez.
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7. (a) Show that there is at most one rational function R(z), where the degrees
of the numerator and denominator do not exceed, respectively, m and n, such
that

f(z) −R(z) = O(zm+n+1), as z → 0,

even if the system (3.5.31) is singular. (Note, however, that Pm and Qn are
not uniquely determined, if the system is singular; they have common factors.)

(b) Is it true that if f(z) is a rational function of degrees m′, n′, then

fm,n(z) = f(z), ∀ m ≥ m′, n ≥ n′?

8. Write a program for evaluation the incomplete gamma function. Use the
continued fraction (3.5.21) for x greater than about a + 1. For x less than
about a+ 1 use the power series for γ(a, x).

9. Check that the program sketch for the ǫ-algorithm is equivalent with the

scheme with the quantities ǫ
(p)
k given earlier in the text. How do you obtain

the boundary values?

Notes and References

Much work on approximations to special functions, e.g., Gauss hypergeometric func-
tion and the Kummer function, was done around the end of World War II. This
work culminated with the appearance of the classical Handbook of Mathematical
Functions edited by Milton Abramowitz and Irene A. Stegun [1, ]. Chapters
13 and 15 in this handbook contain many useful formulas and tables. Sections 15.1,
15.4, and Table 13.6, show how many other important functions, elementary as well
as advanced special functions, can be expressed in terms of these functions.

The basic properties of these functions are derived in Lebedev’s monograph on
Special Functions [30]. Lebedev’s compact book will often be referred to, because
it provides a good background to the applications of advanced Analysis, that lacks
complete proofs in our book. For example, the chapter on the gamma function con-
tains numerous instances of the use of series expansions and analytic continuation
that are efficient as well as instructive, important and beautiful. Codes and other
interesting information concerning the evaluation of special functions are also found
in a modern classic, Numerical Recipes [36, Chapter 5–6].

The idea of using Cauchy’s formula and FFT for numerical differentiation
seems to have been first suggested by Lyness and Moler [32].

The theory of continued fractions started to develop in the 17th century. The
main contributors were Euler, Lambert and Lagrange; see Brezinski [9]. The ba-
sic algorithmic aspects of what we today call Padé approximants were established
by Frobenius [18]. Padé [34] gave a systematic study of these approximants and
introduced the table named after him. The analytic theory of continued fractions
has earlier origins and contributors include Chebyshev, A. A. Markov and Stielt-
jes. Modern related developments are the epsilon algorithm of P. Wynn and the
quotient-difference algorithm of Rutishauser. An easy to read introduction to con-
tinued fractions and Padé approximations is Baker [2]. Their use in numerical
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computations is surveyed in Blanche [4]. A survey of the more recent developments
of Padé approximations is given by Gragg [22]. Continued fractions of special func-
tions are found in Abramowitz and Stegun [1]. Codes and further references are
given in Numerical Recipes, Press et al. [36, Chapters 5 and 6]. The following
example contains a different type of continued fraction. More information about
arithmetic continued fractions, from a computational point of view is found in Riesel
[37].

More information about the classical methods for polynomial interpolation of
equidistant data is found in, e.g., Fröberg [20] and Steffensen [42], in particular
§ 18 about “the calculus of symbols”. For the history of these matters see, e.g.,
Goldstine [21].

More complete presentation of extrapolation methods is given in the mono-
graph by Claude and Redivo-Zaglia [11], and more recently Sidi [40]. The historical
development of the field is nicely surveyed by Brezinski [10].

A rigorous theory of semi-convergent series was developed by Stieltjes and
Poincaré in 1886.



Bibliography

[1] Milton Abramowitz and Irene A. Stegun (eds.). Handbook of Mathematical
Functions. Dover, New York, NY, 1965.
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zreihen. J. für Math., 90:1–17, 1881.
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Chapter 4

Interpolation and

Approximation

4.1 The Interpolation Problem

4.1.1 Introduction

Polynomials are used as the basic means of approximation in nearly all areas of
numerical analysis. We have previously encountered two types of interpolation

• Piecewise linear interpolation that is commonly used in tables, when the re-
quirements of accuracy are modest. A more modern application is in Com-
puter Graphics.

• Interpolation of the values of a function in n equidistant points by a function
in Pn. Recall that in Sec. 3.2.2, Pn was defined as the space of polynomials in
one variable of degree less than n; n is the number of data required to specify
a polynomial in Pn; the dimension of the linear space Pn is n.1

The formulas with equidistant points, in particular Stirling’s interpolation
formula, given in Sec. 3.2, is mainly used piecewise for small values of n; see
Problem 2.

The first type of interpolation will be generalized in Sec. 4.4, where we shall
study interpolation by piecewise polynomials. Of particular importance are
splines, which are piecewise polynomials, where a few derivatives are required to
be continuous at the joints of the pieces.

In the first two sections we shall go deeper into the following polynomial
interpolation problem for non-equidistant, distinct points:

Find a polynomial p ∈ Pn such that

p(xi) = f(xi), i = 1 : n, xi 6= xj for i 6= j. (4.1.1)

Recall that, by Theorem 3.2.1, the interpolation polynomial p(x) is uniquely deter-
mined for a given grid, (x1, x2, . . . , xn). This theorem is general, although the rest

1Some authors use similar notations, e.g., Pn or Πn, to denote the n + 1-dimensional space of
polynomials of degree less than or equal to n.
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of Sec. 3.2 dealt with interpolation polynomials in the equidistant case only, and
their application to numerical differentiation and integration.2 Also note that the
formulation and the solution of this problem are independent of the ordering of the
points xi.

A set of polynomials p = {p1(x), p2(x), . . . , pn(x)}, such that any polynomial
p ∈ Pn can be expressed as a linear combination

p(x) = c1p1(x) + . . .+ cmpn(x),

is called a basis in Pn. The column vector c = (c1, c2, . . . cn)T can be viewed as a
coordinate vector of p in the space Pn, with respect to this basis. The power basis,
where pj(x) = xj−1, i.e.

p(x) =
n

∑

j=1

cjx
j−1,

is the simplest basis, though not always the best.
The interpolation problem (4.1.1) leads to a linear system of equations

c1p1(xi) + c2p2(xi) + . . .+ cmpn(xi) = f(xi), i = 1 : n. (4.1.2)

If we introduce the matrix
Mp = [pj(xi)]

n
i,j=1, (4.1.3)

and the column vector f̃ =
(

f(x1), f(x2), . . . , f(xn)
)T

,3 then the linear system
becomes

Mpc = f̃ . (4.1.4)

The proof of Theorem 3.2.1 was based on the fact that this matrix is non-singular in
the case of the power basis; in this case Mp = V T , where V is the Vandermonde
matrix4

V = [xi−1
j ]ni,j=1 =









1 1 · · · 1
x1 x2 · · · xn
...

... · · ·
...

xn−1
1 xn−1

2 · · · xn−1
n









. (4.1.5)

In any basis q = {q1(x), q2(x), . . . , qn(x)} for Pn, the qj must be linear com-
binations of the pk, k = 1 : n. This can be expressed in vector-matrix form:

(

q1(x), q2(x), . . . , qn(x)
)

=
(

p1(x), p2(x), . . . , pn(x)
)

A, (4.1.6)

where A is a constant matrix. A must be non-singular; for, if A were singular then
there would exist a non-trivial vector v such that Av = 0, hence

(q1(x), q2(x), . . . , qn(x))v = (p1(x), p2(x), . . . , pn(x))Av = 0 ∀x,
2It is de facto so, although the polynomials are invisible in the derivations of formulas by

operator methods.
3We try to make a distinction between f that is an element in some function space and f̃ ∈ R

n.
4Alexandre Théophile Vandermonde (1735–1796), member of the French Academy of Sciences,

is regarded as the founder of the theory of determinants. What is now referred to as the “Vander-
monde matrix” does not seem to appear in his writings!
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and (q1(x), q2(x), . . . , qn(x)) would thus not be a basis.
Similarly set Mq = [qj(xi)]

n
i,j=1. By putting x = xi, i = 1 : m into (4.1.6),

we see that Mq = MpA, and Mq is non-singular for every basis. If we set p(x) =
∑

djqj(x), the system (4.1.2) becomes for this basis Mqd = f̃ . Then

Mpc = f̃ = Mqd = MpAd, c = M−1
p
f̃ = Ad. (4.1.7)

the matrix A is thus like a coordinate transformation in Geometry; Gander [25]
gives the matrix A for the transformation between various several common repre-
sentations.

Example 4.1.1 (An application to numerical integration).
We shall find a formula for integrals of the form

I =

∫ 1

0

x−1/2f(x) dx

that is exact for f ∈ Pm and uses the values f(xi), i = 1 : m. Such integrals need
a special treatment, due to the integrable singularity at x = 0.

Set µj =
∫ 1

0
x−1/2pj(x) dx, and introduce the row vector µA = (µ1, µ2, . . . , µn).

Then

I ≈
∫ 1

0

x−1/2p(x) dx =

n
∑

j=1

cjµj = µAc = µA(p)M−1
p
f̃ , (4.1.8)

where it is emphasized in the last expression that µA depends on the basis. In
fact µA(q) = µA(p)A, and M−1

q
= A−1M−1

p
; we see that the approximation to I is

independent of the basis, as it should, in view of Theorem 3.2.1.
Another approach is the method of undetermined coefficients, i.e. to

seek a formula

I ≈
n

∑

i=1

bif(xi) ≡ bT f̃ ,

that is exact when f(x) = pj(x), j = 1 : m; then it is exact for all p ∈ Pm These
conditions lead to the linear system

MT
p
b = µ. (4.1.9)

This may be called the adjoint or dual to the system Mpc = f̃ . Using the standard
basis it reads

V b = µ.

From (4.1.9) we get bT = µTM−1
p

, and the final result of this approach becomes

I ≈ bT f̃ = µ(p)TM−1
p
f̃ ,

which is the same as (4.1.8), although interpolation was not mentioned in this
approach. In view of Theorem (3.2.1) this is no surprise, since the same values of
f are used, and both formulas are exact for all f ∈ Pm.

For numerical applications (for the power basis) see Problem 2. Evidently
these two approaches can be used for any linear functional of f .
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4.1.2 Various Bases for P
n

There are many ways of specifying polynomials. If the purpose is to compute
derivatives or integrals of the interpolation polynomial, the power basis or the the
shifted power basis, where

qj(x) = (x− a)j−1,

are usually also convenient. If a shifted power basis is to be used for polynomial
approximation on a certain interval, it is often best to choose a near the midpoint
of the interval.

The power basis has a bad reputation, which is related the ill-conditioning of
the corresponding Vandermonde matrices. Many bounds and asymptotic estimates
for the condition number of the Vandermonde matrix

V = V (x1, x2, . . . , xn)

are known; see [26, Sec. 1.3], [31, Sec. 22.1]. For example, for equidistant points on
[−1.1], i.e. xi = −1 + 2(i− 1)/(n− 1), it holds that

κ∞(V ) = ‖V −1‖∞‖V ‖∞ ∼ π−1eπ/4(3.1)n.

Hence, for n = 20, κ∞(V ) ≈ 1.05 · 109. Other point distributions are even worse,
e.g., for the harmonic points xi = 1/i, i = 1 : n,

κ∞(V ) > nn+1,

which is faster than exponential growth! For the Chebyshev points on [−1, 1]

xi = cos
(2i− 1

n

π

2

)

, i = 1 : n, (4.1.10)

i.e. the zeros of Tn−1(x), the Vandermonde matrix is better conditioned

κ∞(V ) ∼ 0.2533/4(1 +
√

2)n.

It should be stressed that the condition number of the Vandermonde matrix
measures the sensitivity of the coefficients ci in the polynomial p(x) =

∑n
j=1 cjx

j−1

to perturbations in the given data fi. It is possible, that even when these coefficients
are inaccurately determined, the interpolation polynomial p(x) does still reproduce
the true interpolation polynomial well. For further discussion of these points, see
Sec. 4.2.4 and Sec. 4.3.4.

Mathematically, the choice of basis (for a finite-dimensional space) makes no
difference. Computationally, working with rounded values of the coefficients, the
choice of basis can make a great difference. Consider a sequence of polynomials
q1, q2, q3, . . .

q1(x) = a11

q2(x) = a12 + a22x

q3(x) = a13 + a23x+ a33x
2

. . .

qn(x) = a1m + a2mx+ a3mx
2 + . . .+ ammx

n−1

. . .
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where ajj 6= 0 for all j, is defined to be a triangle family of polynomials, i.e. qj(x)
is of (j − 1)’th degree with a non-zero leading coefficient.5.

Conversely, for any j, pj(x) = xj−1 can be expressed recursively and uniquely
as linear combinations of q1(x), q2(x), . . . , qj(x), so that we obtain a triangular
scheme also for the inverse transformation. So every triangle family {q1(x), q2(x), . . .
, qm(x)} is a basis for Pm.

What we has just seen, is indeed a proof of the well known fact that the inverse
of a triangular matrix, (with no zeros in the main diagonal) is also triangular.
Among interesting triangle families we can mention the families where qj+1(x) is
defined by (x− c)j , Tj(x), and many other families of orthogonal polynomials.

Let x1, x2, . . . , xn be n distinct points and consider the Newton polynomials

p1(x) = 1, pj(x) = (x− x1)(x− x2) . . . (x− xj−1), j = 2 : n,

They define a triangle family with unit leading coefficients, and hence form a basis.
The representation

p(x) = c1p1 + c2p2(x) + c3p3(x) + · · · + cnpn(x) (4.1.11)

is often very convenient. Since pj(xk) = 0, if k < j, the coefficients c1, c2, . . . , cn
satisfy the lower triangular system of equations Lc = f , where

L =













1
1 (x2 − x1)
1 (x3 − x1) (x3 − x1)(x3 − x2)
...

...
...

. . .

1 (xn − x1) (xn − x1)(xn − x2) · · · ∏n−1
j=1 (xn − xj)













(4.1.12)

Hence the coefficients can be computed recursively, by forward substitution, with
much less work than the linear system (4.1.4) would require for the power basis,
by standard methods for linear algebra. In the next section we shall see how this
basis leads to Newton’s interpolation formula, which is one of the best interpolation
formulas, with respect to flexibility, computational economy and numerical stability.

If a polynomial p(x) is given in the form (4.1.11) then it can be evaluated
using only n multiplications and 2n additions, for a given numerical value x, from
the nested form

p(x) = (· · · (cm(x− xn−1) + cn−1)(x − xn−2) +

· · · + c3)(x− x2) + c2)(x − x1) + c1.

(Notice that the case, where all the xi = 0, gives Horner’s rule, see Sec. 1.4.2. We
have p(x) = b1, where b1 is computed using the recursion formula:

bn := cn, bi−1 := bi(x− xi−1) + ci−1, i = n : −1 : 2. (4.1.13)

We leave the proof to Problem 4.

5In the terminology used in the previous subsection, this triangular matrix equals A
T ; this

explains the notation for the elements
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Other bases are sometimes more advantageous. A cardinal basis of Pn is
generated by the polynomial

Φn(x) = (x − x1)(x − x2) · · · (x − xn), (4.1.14)

where xi, i = 1 : n, are distinct. The basis used in Lagrange interpolation formula
reads

ℓj(x) =
Φn(x)

(x− xj)Φ′
n(xj)

, j = 1 : n. (4.1.15)

Here ℓj is a polynomial of degree n− 1. By L’Hospital’s rule

ℓj(xi) = δij =

{

1 if i = j;
0 if i 6= j.

(4.1.16)

(This is the property that in a more general context characterizes a cardinal ba-
sis.) This basis directly displays the solution of the interpolation problem for n
distinct points. Lagrange’s interpolation formula6 has been widely regarded as
being of mainly theoretical interest. In Sec. 4.2.2 two modified forms of Lagrange
interpolation formula will be given, which are more computationally attractive.

The matrix approach described in the previous subsections may sometimes be
convenient; a Vandermonde matrix is easily generated, when you work in a matrix-
oriented command language. If you deal with a modest number of polynomials of
low degree, convenience can be given a larger weight than the optimal number of
arithmetical operations and a minimized effect of rounding errors. In the latter
respects, the matrix approach is inferior to Newton’s interpolation formula and the
other formulas and algorithms to be discussed later.

The main reason why we started with such non-optimal procedures, is that
they are easily generalizable to other interpolation problems, e.g., interpolation in
other function spaces than Pn (see Problem 5), or interpolation with other con-
ditions on the function f in addition to function values (see later sections). For
such non-standard interpolation problems—that do occur in practice—the matrix
approach is helpful also for finding out under what conditions the problem has a
unique solution.

4.1.3 Discrete Least Squares Approximation

Let p1(x), p2(x), . . . , pn(x) be a basis for Pn. A natural extension of the interpola-
tion problem is to determine a polynomial

p(x) =

n
∑

j=1

cjpj(x) ∈ Pn,

that, in some sense, best fits to the data (xi, f(xi)), i = 1 : m, where m > n. Since
the number of equations is larger than the number of parameters, the corresponding
linear system Mc = f is overdetermined. and can typically be satisfied only

6Lagrange published his interpolation formula in 1794.
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approximately; see Example 1.2.5, where a straight line could not be made to pass
through the five points.

In discrete least squares approximation on determines the coefficient
vector c that minimizes the sum of squared residuals

S(c) =

m
∑

i=1

(p(xi) − f(xi))
2. (4.1.17)

This can in many applications be motivated by statistical arguments; see Theo-
rem 4.5.19. It also leads to rather simple computations. The conditions for the
minimization are

∂S(c)

∂ck
= 2

m
∑

i=1

pk(xi)
(

p(xi) − f(xi)
)

= 0, k = 1 : n.

These conditions can be written in the form MT (Mc− f) = 0, or

MTMc = MT f, (4.1.18)

Here MTM is a symmetric n× n matrix and (4.1.18) is called the normal equa-
tions; see Sec. 1.6.5. It can be shown that the matrix MTM is non-singular, and
that the system yields the minimum of S(c), unless the columns of M are linearly
dependent.

Overdetermination can be used to attain two different types of smoothing:

(a) to reduce the effect of random or other irregular errors in the values of the
function;

(b) to give the polynomial a smoother behaviour between the grid points.

Note that interpolation is a special case (n = m) of this problem. In this
case the normal equations are mathematically equivalent to the system Mc = f .
Since the condition number of MTM is the square of the condition number of
M , the matrix MTM often is very ill-conditioned even for moderate n. Therefore
forming the normal equations cannot be recommended in general. A stable method
for discrete least squares polynomial approximation is obtained by using a basis
of orthogonal polynomials; see Sec. 4.5.5. Stable methods for more general least
squares problems are treated in Volume II, Chapter 8.

4.1.4 The Runge Phenomenon

Equidistant interpolation can give rise to convergence difficulties when the number
of interpolation points becomes large. This difficulty is often referred to as Runge’s
phenomenon7, and we illustrate it in the following example. A more advanced
discussion is given in Sec. 4.4.3, by means of complex analysis.

7Carl Runge (1856–1927) German mathematician, who held a chair in Applied Mathematics
in Göttingen 1904–1925. Runge’s example is from 1901.
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Example 4.1.2. The graph of the function

f =
1

1 + 25x2
=
i

2

( 1

i+ 5x
+

1

i− 5x

)

,

where i =
√
−1, is the continuous curve shown in Figure 4.2.1, is approximated in

two different ways by a polynomial of degree 10 in [−1, 1].
The dashed curve has been determined by interpolation on the equidistant

grid with m = 11 points

xi = −1 + 2(i− 1)/(m− 1), i = 1 : m. (4.1.19)

The graph of the polynomial so obtained has—unlike the graph of f—a disturbing
course between the grid points. The agreement with f near the ends of the interval
is especially bad, while near the center of the interval [− 1

5 ,
1
5 ] the agreement is fairly

good. Such behavior is typical of equidistant interpolation of fairly high degree, and
can be explained theoretically.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

Figure 4.1.1. Polynomial interpolation of 1/(1+25x2) in two ways by the
use of 11 points: equidistant points (dashed curve), Chebyshev abscissae (dash-dot
curve).

The dotted curve in Figure 4.1.1 has been determined by interpolation at the
Chebyshev points

xi = cos
(2i− 1

m

π

2

)

, i = 1 : m, (4.1.20)

(m = 11). This procedure is studied more closely in a later section. The agreement
with f is now much better than with equidistant interpolation, but still not good.
The function is not at all suited for approximation by one polynomial over the
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entire interval. Here one would get a much better result using approximation with
piecewise polynomials; see Sec. 4.4.

Notice that the difference between the values of the two polynomials is much
smaller at the grid points of the equidistant grid than in certain points between
the grid points, especially in the outer parts of the interval. This intimates that
the values which one gets by equidistant interpolation with a polynomial of high
degree can be very sensitive to disturbances in the given values of the function.
Put another way, equidistant interpolation using polynomials of high degree is in
some cases an ill-conditioned problem, especially in the outer parts of the interval
[x1, xm]. The effect is even worse if one extrapolates—i.e. if one computes values
of the polynomial outside the grid. However, equidistant interpolation works well
near the center of the interval.

Even with equidistant data one can often get a more well-behaved curve by—
instead of interpolating—fitting a polynomial of lower degree using the method of
least squares. Generally, if one chooses n < 2

√
m, then the polynomial fit is quite

well conditioned, but higher values of n should be avoided. In the above example,
however, the agreement would still be quite bad, even at the grid points, when the
degree is chosen to be so low.

If one intends to approximate a function in the entire interval [−1, 1] by a poly-
nomial and can choose the points at which the function is computed or measured,
then one should choose the Chebyshev points. Using these points, interpolation
is a fairly well-conditioned problem in the entire interval. The risk of disturbing
surprises between the grid points is insignificant. One can also conveniently fit a
polynomial of lower degree than n − 1, if one wishes to smooth errors in measure-
ment; see Sec. 4.5.5.

Example 4.1.2 shows how important it is to study the course of the approxi-
mating curve p∗(x) between the points which are used in the calculation before one
accepts the approximation. When one uses procedures for approximation for which
one does not have a complete theoretical analysis, one should make an experimental
perturbational calculation. In the above case such a calculation would very probably
reveal that the interpolation polynomial reacts quite strongly if the values of the
function are disturbed by small amounts, say ±10−3. This would give a basis for
rejecting the unpleasant dashed curve in the example, even if one knew nothing
more about the function than its values at the equidistant grid points.

Review Questions

1. The interpolation problem in Pn leads to a linear system V T c = f̃ , where V
is a Vandermonde matrix. Write down the expression for the element vij .

2. What is meant by the method of undetermined coefficients? Give an example!

3. What is meant by a triangle family q1(x), q2(x), . . . , qn(x) of polynomials? Are
all such families a basis for Pn?

4. What property characterizes a cardinal basis for Pn?
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Problems and Computer Exercises

1. (a) Study experimentally interpolation in Pn, n = 2 : 2 : 16 for f(x) =
(3 + x)−1, x ∈ [−1, 1]. Use the linear system V T c = f̃ and the power basis.
Study both equidistant points and Chebyshev points

xi = −1 + 2
i− 1

n− 1
, xi = cos

(2i− 1

n

π

2

)

, i = 1 : n

respectively. Plot the error curve, y = |f(x)− p(x)| in semi-logarithmic scale.
For the larger values of m, make also experiments to illuminate the effects
from random perturbations of the function values to the values of p(x).

(b) Make also a few experiments with a random vector f̃ , for n = 16 and
n = 8, in order to compare the grid data and the order of magnitude of p(x)
between the grid points.

2. Prove the validity of (4.1.13).

3. A warning for polynomial extrapolation of empirical functions, or . . . ?

(a) Write a program c = polyapp(x, y, n) that finds the coefficient vector c
for a polynomial in p ∈ Pn, in a shifted power basis, such that yi ≈ p(xi),
i = 1 : m, m ≥ n, in the least squares sense, or study a program that does
almost this.8

(b) The following data shows the development of the Swedish GDP, quoted
(with permission) from a table made by a group associated with the Swedish
Employer’s Confederation. (The data are expressed in prices of 1985 and
scaled so that the value for 1950 is 100.)

1950 1955 1960 1965 1970 1975 1980 1985 1990
100.0 117.7 139.3 179.3 219.3 249.1 267.5 291.5 326.4

1952 1957 1962 1967 1972 1977 1982 1987 1992
104.5 124.6 153.5 189.2 226.4 247.7 270.2 307.6 316.6

(a) For the upper pairs of data, compute and plot p(x), x ∈ [1950, 2000] (say).
Mark the given data points. Do this for m = 9, and for (say) n = 9, and
then for n = 8 : −2 : 2. Store the results, so that comparisons can be made
afterwards.

Hint: If you use polyfit first subtract 1970 from the years.

(b) Do the same for the lower pairs of data. Organize the plots, so that
interesting comparisons become convenient, e.g. how well were the data points
of one of the sets interpolated by the results from the other set?

(c) Make forecasts for 1995 and 2000 with both data sets. Then, use a reduced
data set, e.g., for the years 1982 and earlier (so that m = 7), and and compare
the forecasts for 1987 and 1992 with the given data. (Isn’t it a reasonable test
for every suggested forecast model to study its ability to predict the present

8The Matlab command polyfit does almost this.
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from the past?)

(d) See if you obtain better results with the logarithms of the GDP values.

4.2 Interpolation Formulas and Algorithms

4.2.1 Newton’s Interpolation Formula

Let x1, x2, . . . , xn be n distinct points and let p∗ in Pn be the unique solution of
the interpolation problem for f(x) with the basis of (4.1.11). Suppose that

f(x) = c1 + c2(x − x1) + . . .+ cn(x− x1)(x− x2) · · · (x− xn−1) (4.2.1)

+An(x)(x − x1)(x− x2) · · · (x− xn),

If f ∈ Pn, we know from Sec. 4.1.2 that such a formula holds with An(x) ≡ 0. We
shall see that it is correct in general.

For x = x1 we get c1 = f(x1). Set

[x]f = f(x), [x1, x]f =
f(x) − f(x1)

x− x1
.

Then

[x1, x]f = c2 + c3(x− x2) + . . .+ cn(x− x2) · · · (x− xn−1)
+An(x)(x − x2) · · · (x− xn),

and c2 = [x1, x2]f . We now define recursively, for k ≥ 1, divided differences9

[x1, x2, . . . , xk−1, xk, x]f =
[x1, x2, . . . , xk−1, x]f − [x1, x2, . . . , xk−1, xk]f

x− xk
. (4.2.2)

We obtain, for k = 2,

[x1, x2, x]f = c3 + c4(x− x3) + . . .+ cn(x− x3) · · · (x− xn−1)
+An(x)(x − x3) · · · (x− xn),

and c3 = [x1, x2, x3]f . By induction it follows that

ck = [x1, x2, . . . , xk−1, xk]f, k = 1 : m. (4.2.3)

For k = n we obtain, An(x) = [x1, x2, . . . xn, x]f .
We now introduce a notation that is convenient in the following. Set Φ0(x) =

1, and for k = 1 : n,

Φk(x) = Φk−1(x)(x − xk) = (x − x1)(x − x2) · · · (x − xk). (4.2.4)

9We prefer the modern notation [. . .]f to the older notations f [. . .] or f(. . .), since it emphasizes
that [. . .] is an operator. Note that the interpretation [x]f = f(x) is consistent with this.
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For f ∈ Pn we know that (4.2.1) is correct, hence we can trust the coefficients
ck. Moreover, since p∗(xj) = f(xj), j = 1 : n, it follows that [x1, x2, . . . xj ]p

∗ =
[x1, x2, . . . xj ]f . Hence

p(x) =

n
∑

j=1

[x1, . . . , xj ]pΦj−1(x), ∀p ∈ Pn,

p∗(x) =

n
∑

j=1

[x1, . . . , xj ]f Φj−1(x).

For a general function f we do not yet know that (4.2.1) is correct, but after
inserting the only possible values of ck and An(x) in (4.2.1), we can conjecture that
the following is an identity:

f(x) =

n
∑

j=1

[x1, . . . , xj ]f Φj−1(x) + [x1, x2, . . . xn, x]f Φn(x).

We prove this by induction. For n = 1, it is true, because the right hand side
becomes f(x1) + [x1, x]f · (x− x1) = f(x) = the left hand side. Next suppose that
it is true for n = m. The difference between the right hand side for n = m+ 1 and
n = m reads

([x1, . . . , xm+1]f − [x1, x2, . . . xm, x]f)Φm(x) + [x1, x2, . . . xm+1, x]f Φm+1(x)

=
(

[x1, . . . , xm+1]f − [x1, x2, . . . xm, x]f + [x1, x2, . . . xm+1, x]f (x − xm+1)
)

Φm(x)

=
(

[x1, . . . , xm+1, x]f (xm+1 − x) + [x1, x2, . . . xm+1, x]f (x− xm+1)
)

Φm(x)

= 0.

Hence the conjecture is true for n = m+1. We summarize the results in a theorem.

Theorem 4.2.1. Newton’s Interpolation Formula with exact remainder.
The interpolation problem of determining the polynomial p ∈ Pn such that

p(xi) = f(xi), i = 1 : n, where the xi are distinct points, has the solution

p(x) =

n
∑

j=1

[x1, . . . , xj ]f Φj−1(x). (4.2.5)

where Φk(x) is defined by (4.2.4). The formula

f(x) =

n
∑

j=1

[x1, . . . , xj ]f Φj−1(x) + [x1, x2, . . . xn, x]f Φn(x) (4.2.6)

is an identity, i.e. the exact remainder equals

f(x) − p(x) = [x1, x2, . . . xn, x]f Φn(x). (4.2.7)

These formulas are valid also for complex xi and x.
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Note that to obtain the interpolation polynomial of the next higher degree
with Newton’s formula, we need only add a term similar to the last term, but
involving a new divided difference of one higher order.

In particular, if f ∈ Pn then it follows from (4.2.7) that

[x1, x2, . . . , xn, x]f = 0, ∀x.

For x = xn+1, this equation is, by Theorem 3.2.1, the only non-trivial relation of
the form

∑n+1
j=1 ajf(xj) = 0 that holds for all f ∈ Pn,.

Theorem 4.2.2.
For every n, the divided difference [x1, x2, . . . , xn]f is the coefficient of xn−1 in

the interpolation polynomial p∗ ∈ Pn. A divided difference is a symmetric function
of its arguments.

Proof. The first statement follows from (4.2.3). The second statement then holds,
because the interpolation polynomial is uniquely determined and independent of
how the points are ordered.

Assume k > i. By the definition of divided differences,

[xi+1, . . . , xk−1, xk, x]f =
[xi+1, . . . , xk−1, x]f − [xi+1, . . . , xk−1, xk]f

x− xk
.

Now set x = xi and use the symmetry property (Theorem 4.2.2). We obtain the
formula

[xi, xi+1, . . . , xk−1, xk]f =
[xi, xi+1, . . . , xk−1]f − [xi+1, . . . , xk−1, xk]f

xi − xk
. (4.2.8)

This formula can be used recursively to compute the divided differences. The com-
putation is conveniently arranged in a table shown below for n = 5 (recall that
[xi]f = f(xi)).

x1 [x1]f
[x1, x2]f

x2 [x2]f [x1, x2, x3]f
[x2, x3]f [x1, x2, x3, x4]f

x3 [x3]f [x2, x3, x4]f [x1, x2, x3, x4, x5]f
[x3, x4]f [x2, x3, x4, x5]f

x4 [x4]f [x3, x4, x5]f
[x4, x5]f

x5 [x5]f

This table is called a divided-difference table. Note that the points x1, x2, x3 . . .
need not be arranged in increasing order of magnitude. Each entry in the table is
computed from the two entries above and below in the previous column. Hence the
complete table can be constructed, e.g., column by column or diagonal by diagonal.
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The divided differences which occur in Newton’s interpolation formula (4.2.5)
are those in the downward diagonal of the table. However, since the points x1, . . . , xn

can be arbitrarily ordered, we can, for example, also introduce the points in New-
ton’s interpolation formula in backward order xn, . . . , x1. This gives the backward
form for the interpolating polynomial

p∗(x) = f(xn) +

n−1
∑

j=1

[xn, xn−1 . . . , xn−j ]f (x− xn−j+1) · · · (x − xn). (4.2.9)

The divided differences in this formula lie on the upward diagonal starting at fn in
the table.

Theorem 4.2.3. The Remainder Term for Interpolation
Let f be a given real function, with f (n)(x) continuous in int(x, x1, x2, . . . , xn).

Denote by p∗ the polynomial of degree n − 1 for which p(xi) = f(xi), i = 1 : n.
Then

f(x) − p∗(x) = [x1, x2, . . . xn, x]f Φn(x) =
f (n)(ξx)

n!
Φn(x), (4.2.10)

Φn(x) =
∏n

i=1(x− xi), for some point ξx ∈ int(x, x1, x2, . . . , xn), and

[x1, x2, . . . xn, xn+1]f =
f (n)(ξ)

n!
, ξ ∈ int(x1, . . . , xn+1). (4.2.11)

Proof. Following a proof due to Cauchy, we introduce a new variable z, and set

G(z) = f(z) − p∗(z) − [x1, x2, . . . xn, x]f Φn(z).

We know by Theorem 4.2.1 that

f(x) − p∗(x) = [x1, x2, . . . xn, x]f Φn(x). (4.2.12)

hence G(x) = 0. Then G(z) = 0 for z = x, x1, x2 . . . , xn. From repeated use
of Rolle’s theorem it follows that there exists a point ξx ∈ int(x, x1, x2, . . . , xn),

such that G(n)(ξx) = 0. Since p∗(n)(z) = 0 and Φ
(n)
n (z) = n! for all z, G(n)(z) =

f (n)(z) − [x1, x2, . . . xn, x]f n!. If we now put z = ξx, we obtain

[x1, x2, . . . xn, x]f =
f (n)(ξx)

n!
. (4.2.13)

Put this into the definition of G(z), and set z = x. Since G(x) = 0, the first
statement follows. The second statement follows from (4.2.13) for x = xn+1.

In this theorem xi, x, f(x), etc. must be real, while (4.2.12), i.e. Newton’s
interpolation formula with the exact remainder term, is valid also in the complex
plane. Notice the similarity to the remainder term in Taylor’s formula. We shall see
that this can be considered as a limiting case when all the points xi coincide. Notice
also that the right hand side of (4.2.10) is zero at the grid points—as it should be.

We are now in a position to give a short proof of the important formula (3.3.6)
that we now formulate as a theorem.
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Theorem 4.2.4. Assume that f ∈ Ck. Then

∆kf(x) = hkf (k)(ζ), ζ ∈ [x, x + kh]. (4.2.14)

If f ∈ Pk then ∆kf(x) = 0. Analogous results hold, mutatis mutandis, for backward
and central differences.

Proof. Combine the result in Theorem 4.2.5 with (4.2.11), after appropriate sub-
stitutions.

To form the Newton interpolation polynomial we only need one diagonal of
the divided-difference table, and it is not necessary to store the entire table.

Algorithm 4.2.1 Computing the Newton Coefficients

The following program replaces (overwrites) the function values f1, f2, . . . , fn, where
fi = f(xi), i = 1 : n. by the downward diagonal of divided differences

fi = [x1, x2, . . . , xi]f, i = 1 : n

of the divided difference table. At step j the jth column of the table is computed.
Note that it is necessary to proceed from the bottom of each column to avoid
overwriting data needed later! The algorithm uses n(n−1)/2 divisions and n(n−1)
subtractions.

for j = 1 : n− 1

for i = n : −1 : j + 1

fi := (fi − fi−1)/(xi − xi−j);

end

end

The Newton interpolation polynomial is then given by (4.2.9).

If it is not known in advance how many interpolation points that are needed
to achieve the required accuracy one interpolation point can be added at a time:

Algorithm 4.2.2 Divided Difference Table

The following algorithm computes the difference table one diagonal at a time. In
the ith step the entries fi, [xi−1, xi]f, . . . , [x1, x2, . . . , xi]f on the upward diagonal
of the divided-difference table overwrites the function values fi, fi−1, . . . , f1.

for i = 2 : n

for j = i : −1 : 2

fj := (fj − fj−1)/(xi − xj−1);

end

end



16 Chapter 4. Interpolation and Approximation

For the evaluation of the Newton polynomial at a point x = z, we use the
simple Horner-like scheme (4.1.13)

p(x) = c1 +
n

∑

j=2

cjΦj−1(x), φj−1(x) =

j−1
∏

i=1

(x− xi).

We have p(x) = b1, where b1 is computed using the recursion formula:

bn := cn, bi := bi+1(z − xi) + ci, i = n− 1 : −1 : 1. (4.2.15)

It is straightforward to show that the computed result is the exact value correspond-
ing to slightly perturbed divided differences; cf. Problem 2.3.6.

The auxiliary quantities bn, . . . , b2 are of independent interest, since we have

p(x) = b1 + (x − z)

(

b2 +

n−1
∑

j=2

bj+1φj−1(x)

)

. (4.2.16)

Repeated applications of the Horner scheme are useful in the evaluation of deriva-
tives of a Newton polynomial.

Example 4.2.1.
Compute the interpolation polynomial for the following table:

x1 = 1 0
2

x2 = 2 2 1
5 0

x3 = 4 12 1
8

x4 = 5 20

(The entries appearing in the Newton forward interpolation formula are boldface.)
We get two alternative representations

p(x) = 0 + 2(x− 1) + 1(x− 1)(x− 2) + 0(x− 1)(x− 2)(x− 4)

= 20 + 8(x− 5) + 1(x− 5)(x− 4) + 0(x− 5)(x− 4)(x− 2)

= x2 − x,

where the second is obtained from (4.2.9). (Note that for these particular data the
unique interpolation polynomial in P4 actually belongs to the subspace P3.)

The remainder term in interpolation is according to Theorem 4.2.3 equal to

n
∏

i=1

(x− xi)f
(n)(ξx)/n!.
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Here ξx depends on x, but one can say that the error curve behaves for the most part
like a polynomial curve y = c

∏n
i=1(x− xi). A similar curve is also typical for error

curves arising from least squares approximation. This contrasts sharply with the
error curve for Taylor approximation, whose behavior is described approximatively
by y = c(x − x0)

n. It is natural to ask what the optimal placing of the interpo-
lation points x1, . . . , xn should be in order to minimize the maximum magnitude
of Φn(x) =

∏n
i=1(x − xi) in the interval the formula is to be used. For the inter-

val [−1, 1] the answer is given directly by the minimax property (Lemma 3.2.3) of
the Chebyshev polynomials—choose Φn(x) = Tn(x)/2n−1. Thus the interpolation
points should be taken as the zeros of Tn(x). (In case of an interval [a, b] one makes
the linear substitution x = 1

2 (a + b) + 1
2 (b − a)t.) We have already seen examples

of the use of Chebyshev interpolation in the discussion of the Runge phenomenon
in Sec. 4.1.4.
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Figure 4.2.1. Error of interpolation in Pn for f(x) = xn, using equidistant
points and Chebyshev points; n = 8 (left) n = 12 (right).

Example 4.2.2.
Use the same notations as before. For f(x) = xn the interpolation error

becomes f(x) − p∗(x) = Φn(x), because f (n)(x)/n! ≡ 1. Figure 4.2.1 shows the
interpolation error with n equidistant points on [−1, 1] and with n Chebyshev points
on the same interval, i.e.

xi = −1 + 2
i− 1

n− 1
, xi = cos

(2i− 1

n

π

2

)

,

respectively, for n = 6 and n = 12. The behaviour of the error curves are rather
typical for functions where f (n)(x) is slowly varying. Also note that the error
increases rapidly, when x leaves the interval int(x1, x2, . . . , xn). In the equidistant
case, the error is quite large also in the outer parts of the interval.
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Example 4.2.3.
Set f(x; z) = 1/(z − x); x is the variable, z is a parameter; both may be

complex. The following elementary, though remarkable, expansion can be proved
directly by induction (Problem 3a).

1

z − x
=

1

z − x1
+

x− x1

(z − x1)(z − x2)
+ . . .+

(x− x1)(x − x2) · · · (x− xn−1)

(z − x1)(z − x2) · · · (z − xn)

+
(x− x1) · · · (x− xn)

(z − x1) · · · (z − xn)(z − x)

=

n
∑

j=1

Φj−1(x)

Φj(z)
+

Φn(x)

Φn(z)(z − x)
. (4.2.17)

When we match this with Newton’s interpolation formula we find that

[x1, x2, . . . , xj ]f(x; z) =
1

Φj(z)
, [x1, x2, . . . , xj , x]f(x; z) =

1

Φj(z)(z − x)
.

(4.2.18)
These formulas can also be proved by induction, by working algebraically with
1/(z − x) in the divided difference table (Problem 3). See also Problem 3.2.2a for
the equidistant case.

An interesting feature is that these formulas do not require that the points
xi are distinct. (They are consistent with the extension to non-distinct points that
will be made in Sec. 4.3.) Everything is continuous except if z = xi, i = 1 : n, or,
of course if z = x, see Sec. 4.3. If all the xi coincide, we obtain a geometric series
with a remainder.

This is more than a particular example. Since 1/(z − x) is the kernel of
Cauchy’s integral (and several other integral representations), this expansion is
easily generalized to arbitrary analytic functions.

For given interpolation points the divided differences in Newton’s interpola-
tion formula depends on the ordering in which the points xi are introduced. Math-
ematically all orderings give the same unique interpolation polynomial. However,
the condition number for the coefficients c in the Newton polynomial can depend
strongly on the ordering of the interpolation points. For simple everyday interpola-
tion problems the increasing order x1 < x2 < · · · < xn will give satisfactory results.
If the point x̃ where the polynomial is to be evaluated is known, then an ordering
such that

|x̃− x1| ≤ |x̃− x2| ≤ · · · ≤ |x̃− xn|
can be recommended. (In the equidistant case this corresponds to using Stirling’s
or Bessel’s formula.)

Another suitable choice in case convergence is slow and an interpolation poly-
nomial of high order is used, is the Leja ordering defined by

x1 = max
1≤i≤n

|xi|,
j−1
∏

k=1

|xj − xk| = max
i≥j

j−1
∏

k=0

|xi − xk|, j = 2 : n− 1. (4.2.19)
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Note also that the barycentric Lagrange interpolation formula, to be introduced in
Sec. 4.2.2, has very good stability properties.

Let K be a compact set in the complex plane with a connected complement.
Any sequence of points ξ1, ξ2, . . . which satisfies the conditions

|ξ1| = max
ξ∈K

|ξ|,
j−1
∏

k=1

|ξj − ξk| = max
ξ∈K

j−1
∏

k=0

|ξ − ξk|, j = 2, 3, . . . . (4.2.20)

are Leja points for K. The points may not be uniquely defined by (4.2.20). For a
real interval [a, b] the Leja points are distributed similarly to the Chebyshev points.
The main advantage of the Leja points is that it is easy to add new Leja points
successively to an already computed sequence of Leja points.

Theorem 4.2.5. For equidistant points xi = x1 +(i−1)h, fi = f(xi), it holds that

[xi, xi+1, . . . , xi+k]f =
∆kfi

hkk!
. (4.2.21)

Proof. By induction, with the use of equation (4.2.8). The details are left to the
reader.

We have noted above that, in the notation for the equidistant case, ∇kfn ≈
hkf (k), while in the divided difference notation f [xn, xn−1, . . . , xn−k] ≈ f (k)/k!.
For the basis functions of the interpolation formulas, we have, respectively,

(

x

k

)

= O(1), (x − xn)(x − xn−1) · · · (x− xn−k+1) = O(hk),

provided that x− xn−j = O(h), j = 0 : k − 1.
For many applications the quantities used in the equidistant case have a more

appropriate order of magnitude. In some applications to differential equations,
there may even be a risk for overflow or underflow, when divided differences are
used. F. Krogh [35] introduced a scaling for the divided differences with the same
advantage; in the equidistant case these scaled divided differences are identical to
∇kfn. The main application so far has been to multistep methods for ordinary
differential equations.

4.2.2 Lagrange’s Interpolation Formula

A basis that is often advantageous to use is the cardinal basis of Pn generated by
the polynomial

Φn(x) = (x− x1)(x− x2) · · · (x− xn), (4.2.22)

where xi, i = 1 : n are n distinct real numbers. The basis reads,

ℓj(x) =
Φn(x)

(x− xj)Φ′
n(xj)

=

n
∏

i=1

i6=j

(x− xi)

(xj − xi)
, j = 1 : n (4.2.23)
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Here ℓj, the Lagrange polynomials of degree n− 1, satisfy

ℓj(xi) = δij =

{

1 if i = j;
0 if i 6= j.

Theorem 4.2.6 (Lagrange’s interpolation formula).
The unique interpolation polynomial p ∈ Pn interpolating the function f(x) at

the distinct points xi, i = 1 : n, can be written

p(x) =

n
∑

j=1

f(xj)ℓj(x), (4.2.24)

where

ℓj(x) =

n
∏

i=1

i6=j

(x− xi)

(xj − xi)
, j = 1 : n, (4.2.25)

Quite often it is asserted that the Lagrange form is a bad choice for practical
computations10, since for each new value of x the functions ℓi(x) have to be recom-
puted at a cost O(n2). Further, adding a new data point xn+1, fn+1 will require a
new computation from scratch. It is concluded that the expression (4.2.24) is not
as efficient as the Newton formula.

The above assertions are, however, not well-founded. The Lagrange represen-
tation can easily be rewritten in two more attractive forms, which both are eminently
suitable for computation; see Berrut and Trefethen [3]. Taking out the common fac-
tor Φn(x) in (4.2.24) and introducing the support coefficients

wj = 1
/

m
∏

i=1

i6=j

(xj − xi), j = 1 : n, (4.2.26)

Lagrange interpolation formula can be written in the modified form

p(x) = Φn(x)

n
∑

j=1

wj

x− xj
f(xj), (4.2.27)

Here wj depend only on the given points xj , j = 1 : n, and can be computed
in n(n − 1) operations. This is twice the work required to compute the divided
differences for Newton’s interpolation formula. Then, to evaluate p(x) from (4.2.27)
for a new value of x we only need to compute Φn(x) and wj/(x − xj), j = 1 : n,
which requires O(n) operations.

10Steffensen [51, p. 25] “For actual numerical interpolation Lagrange’s formula is, however, as a
rule not very suitable.
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The product factor Φn(x) in (4.2.27) can be eliminated as follows. Since the
interpolation formula is exact for f(x) ≡ 1, we have

1 = Φn(x)

n
∑

j=1

wj

x− xj
.

Substituting this in (4.2.27)

p(x) =

n
∑

j=1

wj

x− xj
f(xj)

n
∑

j=1

wj

x− xj

, if x 6= xj , j = 1 : n, (4.2.28)

which is the barycentric form of Lagrange’s interpolation formula. This expresses
the value p(x) as a weighted mean of the values fi. (Note that the coefficients
wj/(x−xj) need not be positive, so the term “barycentric” is not quite appropriate.)

The barycentric formula (4.2.28) has a beautiful symmetric form and is “em-
inently suitable for machine computation” (Henrici [29, p. 237]) Unlike Newton’s
interpolation formula, it does not depend on the order in which the nodes are or-
dered. The numerical stability of the two modified Lagrange interpolation formulas
is, contrary to what is often stated, very good. Note that interpolation property of
p(x) is preserved even if the coefficients wi are perturbed, but then p(x) is usually
no longer a polynomial but a rational function.

There seems to be a stability problem for the formula (4.2.28) when x is very
close to one of the interpolation points xi. In this case wi/(x − xi) will be very
large and not accurately computed because of the cancellation in the denominator.
However, this is in fact no problem, since there will be exactly the same error in
the denominator. Further, in case ∆i = fl (x − xi) is exactly zero, we simply put
∆i = u (the unit roundoff).

The Lagrange representation of the interpolation formula can be as efficiently

updated. as as Newton’s formula. Suppose the support coefficients w
(k−1)
i , i = 1 :

k − 1 for the points x1, . . . , xk−1 are known. Adding the point xk the first k − 1
new support coefficients can be calculated from

w
(k)
i = w

(k−1)
i /(xi − xk), i = 1 : k − 1,

using (k− 1) divisions and subtractions. Finally we have w
(k)
k = 1

/
∏k−1

i=1 (xk − xi).
The computation of the support coefficients is summarized in the following program:

w1 = 1;

for k = 2 : n

wk = 1;

for i = 1 : k − 1

wi := wi/(xi − xk);

wk = wk/(xk − xi);

end

end



22 Chapter 4. Interpolation and Approximation

Note that the support coefficients wi do not depend on the function to be interpolated.
Once they are known interpolating a new function f only requires O(n) operations.
This contrasts with Newton’s interpolation formula, which requires the calculation
of a new table of divided differences for each new function.

Suppose that we use interpolation points in an interval [a, b] of length 2C.
Then as n → ∞ the scale of the weights will grow or decay exponentially at the
rate C−n. If n is large or C is far from 1, the result may underflow or overflow even
in IEEE double precision. In such cases there may be a need to rescale the support
coefficients.

The computation of the support coefficients can be done in only 1
2n(n− 1) by

using the relation (see Problem 5 and [46, Sec. 3.2.1])

n
∑

i=1

wi = 0, n > 1;

to compute wn =
∑n−1

i=1 wi. However, using this identity destroys the symmetry
and can lead to stability problems for large n. Serious cancellation in the sum will
occur whenever maxi |wi| is much larger than |wn|. Hence the use of this identity
is not recommended in general.

For various important distributions of interpolating points, it is possible to
compute the support coefficients wi analytically.

Example 4.2.4.
For interpolation at the equidistant points x1, xi = x1 + (i − 1)h, i = 2 : n,

the support coefficients are

wi = 1
/

((xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn))

= (−1)n−i
/ (

hn−1(i− 1)! (n− i)!
)

=
(−1)n−i

hn−1(n− 1)!

(

n− 1

i

)

In the barycentric formula (4.2.28) a common factor in the coefficients wi cancels
and we may use instead the modified support coefficients

w∗

i = (−1)i+1

(

n− 1

i

)

. (4.2.29)

For a given n these can be evaluated in only 2n operations using the recursion

w∗

1 = n− 1, w∗

i = w∗

i−1

n− i

i
, i = 2 : n.

Example 4.2.5.
Explicit support coefficients are also known for the Chebyshev points of the

first and second kind on [−1, 1]. For the Chebyshev points

xi = cos
(2i− 1)

n

π

2
, i = 1 : n,
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they are

wi = (−1)i sin
(2i− 1)

n

π

2
. (4.2.30)

For the Chebyshev points of the second kind,

xi = cos
(i− 1)

(n− 1)
π, i = 1 : n

they are

wi = (−1)iδj , δj =

{

1/2 if i = 1 or i = n,
1, otherwise

. (4.2.31)

Note that all but two weights are equal! This will be considered from another point
of view in Sec. 4.6.

For an interval [a, b] the Chebyshev points can be generated by a linear trans-
formation. The corresponding weights wi then gets multiplied by 2n(b− a)n. How-
ever, this factor cancels out in the barycentric formula, and there is no need to
include it. Indeed, by not doing the risk of overflow or underflow, when |b − a| is
far from 1 and n is large, is avoided.

The two examples above show that with equidistant or Chebyshev points only
O(n) operations are needed to get the weights wi. For these cases the barycentric
formula seems superior to all other interpolation formulas.

Lagrange interpolation formula can be used to compute the inverse of the
Vandermonde matrix V in (4.1.5) in O(n2) operations. If we set V −1 = W =
(wij)

n
i,j=1, then WV = I, the ith row of which can be written

n
∑

j=1

wijx
j
k = δik, k = 1 : n.

This is an interpolation problem that is solved by the Lagrange basis polynomial

ℓi(x) =

n
∏

k=1

k 6=i

(x− xk)

(xi − xk)
=

n
∑

j=1

wijx
j , j = 1 : n. (4.2.32)

This shows that V is nonsingular if and only if the points xi are distinct.
The elements wij can be computed as follows. First we compute the coeffi-

cients of the polynomial

Φn(x) = (x− x1)(x− x2) · · · (x− xn) =

n+1
∑

j=1

ajx
j−1.

This can be done by the recursion:

a1 = −x1; a2 = 1;

for k = 2 : n
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ak+1 = 1;

for i = k : −1 : 2

ai = ai−1 − xkai;

end

a1 = −xka1;

end

Next the coefficients of polynomials

qi(x) = Φn(x)/(x − xi), i = 1 : n.

are computed by synthetic division. Finally, the Lagrange polynomials are obtained
from ℓi(x) = qi(x)/qi(xi), where the scalars qi(xi) are computed by Horner’s rule.
The cost of computing the n2 elements inW by this algorithm is only 6n2 operations.

4.2.3 Iterative Linear Interpolation

There are other recursive algorithms for interpolation. Of interest are those based
on successive linear interpolations. The basic formula is given in the following
theorem.

Theorem 4.2.7.
Assume that the two polynomials pn−1(x) and qn−1(x), both in Pn−1 inter-

polate f(x) at the points x1, . . . , xn−1, and x2, . . . , xn, respectively. If the n points
x1, x2, . . . , xn−1, xn are distinct then

pn(x) =
(x − x1)qn−1(x) − (x − xn)pn−1(x)

xn − x1
.

is the unique polynomial in Pn that interpolates f(x) at the m points x1, x2, . . . ,
xn−1, xn.

Proof. Since qn−1(x) and pn−1(x) both interpolate f(x) at the points x2, . . . , xn−1

and
(x− x1) − (x− xn)

xn − x1
= 1,

it follows that also pn(x) interpolates f(x) at these points. Further, pn(x1) =
pn−1(x1) and hence interpolates f(x) at x1. A similar argument shows that, pn(x)
interpolates f(x) at x = xn. Hence pn(x) is the unique polynomial interpolating
f(x) at the distinct points x1, x2, . . . , xn.

Neville’s and Aitken’s algorithms both use Theorem 4.2.7 repeatedly to
construct successively higher order interpolation polynomials. Let pi,k denote the
polynomial interpolating at the k points xi−k+1, . . . , xi. In Neville’s interpolation
algorithm one puts

pi,1 = f(xi), i = 1 : n
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and compute for i = 2 : n

pi,k+1 =
(x− xi−k)pi,k − (x− xi)pi−1,k

xi − xi−k
, k = 1 : i− 1, (4.2.33)

where pi,k+1 interpolates at the points xi−k, . . . , xi−1, xi. The calculations can be
arranged in a table, which for n = 4 has the form

x1 f(x1) = p1,1

p2,2

x2 f(x2) = p2,1 p3,3

p3,2 p4,4

x3 f(x3) = p3,1 p4,3

p4,2

x4 f(x4) = p4,1

Here any entry is obtained as a linear combination of the nearest two entries in
the preceding column. Note that it is easy to add a new interpolation point in this
scheme. To proceed only the last lower diagonal needs to be retained. If it is known
in advance that a fixed number k of points are to be used, then one can instead
generate the table column by column. When one column has been evaluated then
the preceding may be discarded.

These formulas are better than Newton’s only in the case that f(x) is to be
evaluated for the same values of x− xi for several functions (sequences) f . In this
case one should compute

tik =
x− xi−k

xi − xi−k

once and for all.
We saw in Sec. 3.3.5 its application to the extrapolation to x = 0 of a polyno-

mial given at a few positive arguments, a typical example, where it is efficient and
widely used.

Aitken’s scheme is similar to Neville’s, but uses another sequence of inter-
polants. Let pi,k, i ≥ k, denote the polynomial interpolating at the k points
x1, . . . , xk−1 and xi. Set pi,1 = f(xi), as above, and compute for i = 2 : n

pi,k+1 =
(x− xi−1)pi,k − (x− xi)pk,k

xk − xi−1
, k = 1 : i− 1, (4.2.34)

The table can again be generated column by column. To be able to add a new point
the whole upper diagonal pi,i, i = 1 : k, must be saved.

4.2.4 Conditioning of the Interpolation Problem

Consider the problem of finding a polynomial pf = pn(x) ∈ Pn that interpolates
given values fj at distinct points xj , j = 1 : n. With the terminology of Sec. 2.4.3
the input data are fj , j = 1 : n, and the output data is the value of the polynomial
pf evaluated at some fixed point x̃.
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Definition 4.2.8.
The condition number of pf at fixed x̃ and fixed interpolation points but varying

data fj, j = 1 : n is

cond (x̃, f) = lim
ǫ→0

sup

{ |pf+∆f(x̃) − pf(x̃)|
ǫ|pf (x̃)| : |∆f | ≤ ǫ|f |

}

(4.2.35)

Lemma 4.2.9. N. J. Higham [32]
Let ℓj(x) be the Lagrange basis functions. Then the condition number in Def-

inition 4.2.8 is, for pf(x̃) 6= 0,

cond (x̃, f) =

∑n
j=1 |ℓj(x̃)fj |
|pf (x̃)| ≥ 1, (4.2.36)

and for any ∆f with |∆f | ≤ ǫ|∆f | we have

|pf+∆f(x̃) − pf (x̃)|
ǫ|pf (x̃)| ≤ cond (x̃, f)ǫ.

Proof. Using the Lagrange basis,

pf+∆f(x̃) − pf(x̃) =
n

∑

j=1

ℓj(x̃)∆fj ,

It follows immediately that the expression in (4.2.36) is an upper bound for the
condition number and it is clearly at least 1. Equality is attained for ∆fj =
ǫ sign (ℓj(x̃))|fj |. The inequality follows trivially.

Assume that the interpolation points xj , j = 1 : n lie in [−1, 1]. Consider
cond (x, 1), the condition number of interpolating the function f(x) = 1 at these
points. By Lemma 4.2.9 we have

cond (x, 1) =

n
∑

j=1

|ℓj(x)|.

This quantity is related to the so called Lebesgue constant defined by

Λn = sup
x∈[−1,1]

n
∑

j=1

|ℓj(x)| ≥ cond (x, 1). (4.2.37)

For equally spaced point, however, Λn grows at a rate proportional to 2n/(n logn);
see Cheney and Light [12, Chap. 3].
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Theorem 4.2.10 (N. Higham [32]).
Assume that xi, fi and x are floating point numbers. Then the computed value

p̄(x) of the interpolation polynomial using the modified Lagrange formula (4.2.27)
satisfies

p̄(x) = Φn(x)
n

∑

i=1

wi

x− xi
f(xi)

5(n+1)
∏

j=1

(1 + δij)
±1, (4.2.38)

where |δij | ≤ u.
Thus the formula (4.2.27) computes the exact value of an interpolating polyno-

mial corresponding to slightly perturbed function values f(xi). Hence this formula
is backward stable in the sense of Definition 2.4.9.

From this theorem and Lemma 4.2.9 the forward error bound

|pn(x̃) − p̄n(x̃)|
|pn(x̃)| ≤ γ5n+5cond (x̃, f). (4.2.39)

can be obtained.
The barycentric formula is not backward stable. A forward error bound similar

to (4.2.39) but containing an extra term proportional to cond (x̃, 1) =
∑n

j=1 |ℓj(x)|
can be shown. Hence the barycentric formula can be significantly less accurate
than the modified Lagrange formula (4.2.27) only for a poor choice of interpolation
points.

4.2.5 Interpolation by Rational Functions

Rational approximation is often superior to polynomial approximation in the neigh-
borhood of a point at which the function has a singularity. The rational interpola-
tion problem is to determine a rational function

fm,n(z) =
Pm(z)

Qn(z)
≡

∑m
j=0 pjz

j

∑n
j=0 qjz

j
, (4.2.40)

so that
fm,n(xi) = fi, i = 0 : m+ n. (4.2.41)

A necessary condition for (4.2.41) to hold clearly is that

Pm(xi) − fiQn(xi) = 0, i = 0 : m+ n. (4.2.42)

or for i = 0 : m+ n,

p0xi + p1xi + · · · + pmx
m
i − fi(q0xi + q1xi + · · · + qnx

n
i ) = 0, (4.2.43)

This is a homogeneous linear system of (m+ n+ 1) equations for the (m+ n+ 2)
coefficients in Pm,n and Qm,n. Such a system always has a nontrivial solution. The
coefficients are determined only up to a common factor ρ 6= 0.

In contrast to polynomial interpolation a solution to the rational interpolation
problem may not exist as shown in the following example:
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Example 4.2.6.
Assume that we want to interpolate the first four of the points

x 0 1 2 3 4
y 2 3/2 4/5 1/2 6/17

by a rational function

f2,1 =
p0 + p1x+ p2x

2

q0 + q1x
.

Then we must solve the homogeneous linear system







1 0 0
1 1 1
1 2 4
1 3 9











p0

p1

p2



 −







2 0
3/2 3/2
4/5 8/5
1/2 3/2







(

q0
q1

)

= 0.

Setting p2 = 1 we find the solution p0 = 8, p1 = −6, q0 = 4, q1 = −2. The
corresponding rational function

f2,1 =
8 − 6x+ x2

4 − 2x
=

(4 − x)(2 − x)

2(2 − x)

has the common factor (2 − x) and is reducible to f2,1 = (4 − x)/2. The original
form is indeterminate 0/0 at x = 2 while the reduced form does not take on the
prescribed value at x = 2.

An algorithm similar to Newton’s algorithm can be used for finding rational
interpolants in continued fraction form. Set v0(x) = f(x), and use a sequence of
substitutions

vk(x) = vk(xk) +
x− xk

vk+1(x)
, k = 0, 1, 2, . . . . (4.2.44)

The first two substitutions give

f(x) = v0(x) = v0(x1) +
x− x0

v1(x)
= v0(x0) +

x− x0

v1(x1) +
x− x1

v2(x)

.

In general this gives a continued fraction

f(x) = a0 +
x− x0

a1 +
x− x1

a2 +
x− x2

a3+

. . . = a0 +
x− x1

a1+

x− x2

a2+

x− x3

a3+
. . . , (4.2.45)

where ak = vk(xk), and we have used the compact notation introduced in Sec. 3.5.1.
This becomes an identity if the expansion is terminated by replacing an in the last
denominator by an + (x − xn)/vn+1(x). If we set x = xk, k ≤ n, then the fraction
terminates before the the residual (x−xn)/vn+1(x) is introduced. This means that
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setting 1/vk+1 = 0 will give a rational function which agrees with f(x) at the points
xi, i = 0 : k ≤ n, assuming that the constants a0, . . . , ak exist. These continued
fractions give a sequence of rational approximations fk,k, fk+1,k, k = 0, 1, 2, . . ..

Introducing the notation

vk(x) = [x0, x1, . . . , xk−1, x]φ (4.2.46)

we have ak = [x0, x1, . . . , xk−1, xk]φ. Then by (4.2.44) we have

[x]φ = f(x), [x0, x]φ =
x− x0

[x]φ− [x0]φ
=

x− x0

f(x) − f(x0)
,

[x0, x1, x]φ =
x− x1

[x0, x]φ− [x0, x1]φ
,

and in general

[x0, x1, . . . , xk−1, x]φ =
x− xk−1

[x0, . . . , xk−2, x]φ− [x0, . . . , xk−2, xk−1]φ
. (4.2.47)

Therefore we also have

ak =
x− xk−1

[x0, . . . , xk−2, xk]φ− [x0, . . . , xk−2, xk−1]φ
. (4.2.48)

We call the quantity defined by (4.2.48) the kth inverse divided difference of
f(x). Note that certain inverse differences can become infinite if the denominator
vanishes. They are, in general, symmetrical only in their last two arguments11

The inverse divided differences of a function f(x) can conveniently be com-
puted recursively and arrange in a table similar to the divided difference table.

x1 f(x1) [x1]φ
[x1, x2]φ

x2 f(x2) [x2]φ [x1, x2, x3]φ
[x2, x3]φ [x1, x2, x3, x4]φ

x3 f(x3) [x3]φ [x2, x3, x4]φ
[x3, x4]φ

x4 f(x4) [x4]φ

Here the upper diagonal elements are the desired coefficients in the expansion
(4.2.45).

Example 4.2.7.
Assume that we want to interpolate the points given in Example 4.2.7. Form-

11The reciprocal differences of Thiele [55] are symmetric functions of all their arguments; see
Hildebrand [33, pp. 406ff].
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ing the inverse differences we get the table

xi fi φ1 φ2 φ3 φ4

0 2
−2

1 3/2 3
5/3 0

2 4/5 ∞ −5
−2 −1/5

3 1/2 −7
−17/7

4 6/17

This gives a sequence of rational approximations. If we terminate the expansion

f2,2 = 2 +
x

−2+

x− 1

3+

x− 2

0+

x− 3

−5
.

after a3 we recover the solution of the previous example. Note that the the
degeneracy of the approximation is shown by the entry a3 = 0. Adding the last
fraction gives the (degenerate) approximation

f2,2 =
2 + x

1 + x2
.

It is verified directly that this rational function interpolates all the given points.

The formulas using inverse or reciprocal differences are are useful if one wants
to determine the coefficients of the rational approximation, and use it for to compute
approximations for several arguments. If one is only wants the value of the rational
interpolating function for a single argument, then it is more convenient to use
an alternative algorithm of Neville-type. If we consider the sequence of rational
approximations of degrees (m,n)

(0, 0), (0, 1), (1, 1), (1, 2), (2, 2),

the following recursive algorithm results (Stoer and Bulirsch [52, Sec. 2.2]):
For i = 0, 1, 2, . . ., set Ti,−1 = 0, Ti,0 = fi, and

Tik = Ti,k−1 +
Ti,k−1 − Ti−1,k−1

x− xi−k

x− xi

[

1 − Ti,k−1 − Ti−1,k−1

Ti,k−1 − Ti−1,k−2

]

− 1

, 1 ≤ k ≤ i. (4.2.49)
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As in Neville interpolation the calculations can be arranged in a table of the form

(m,n) = (0, 0) (0, 1) (1, 1) (1, 2) · · ·

f1 = T1,0

0 T2,1

f2 = T2,0 T3,2

0 T3,1 −→ T4,3

f3 = T3,0 T4,2

...
. . .

0 T4,1

...

f4 = T4,0

...
...

...

Here any entry is determined by a rhombus rule from three entries in the preceding
two columns. Note that it is easy to add a new interpolation point in this scheme.

Review Questions

1. Prove the theorem which says that the interpolation problem for polynomials
has a unique solution.

2. When is linear interpolation sufficient?

3. Derive Newton’s interpolation formula.

4. Derive Newton’s interpolation formula for the equidistant case, starting from
Newton’s general interpolation formula. How is this formula easily remem-
bered?

5. Discuss how various sources of error influence the choice of step length in
numerical differentiation.

6. Derive the Lagrange interpolation formula. Show how it can be rewritten in
barycentric form. When is the latter form more efficient to use?

Problems and Computer Exercises

1. (a) Compute f(3) by quadratic interpolation in the following table:

x 1 2 4 5
f(x) 0 2 12 21

Use the points 1, 2, and 4, and the points 2, 4, and 5, and compare the results.

(b) Compute f(3) by cubic interpolation.
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2. Compute f(0) using one of the interpolation formulas treated above on the
following table:

x 0.1 0.2 0.4 0.8
f(x) 0.64987 0.62055 0.56074 0.43609

The interpolation formula is here used for extrapolation. Use also Richardson
extrapolation and compare the results.

3. Error in linear interpolation

(a) Suppose we want to compute by linear interpolation the value y(x) at a
point x = x0 + θh, h = x1 − x0. Using (4.2.10) show that for 0 ≤ θ ≤ 1 the
remainder R(x) = f(x) − p(x) satisfies

|R(x)| ≤ h2

8
M2, (4.2.50)

(b) Show that if the values f0 and f1 are given to t correct decimal digits
then the round-off error RT in linear interpolation p(x) = (1− θ)f0 + θf1, for
0 ≤ θ ≤ 1 satisfies |RT | =≤ 1

210−t. Show further that if h2M2 ≤ 4 · 10−t,
then the total error in p(x) is bounded by 10−t twice the round-off error in
the given values of f .

(c) Motivate the rule of thumb that linear interpolation suffices if |∆2fn|/8 is
a tolerable truncation error.

4. Work out the details of Example 4.2.3 (about divided differences etc. for
1/(z − x)).

5. (a) Consider the two polynomials p(x) and q(x), both in Pn, which interpolate
f(x) at the points x1, . . . , xn, and x2, . . . , xn+1, respectively. Assume that
{xi}n+1

i=1 is an increasing sequence, and that f (n)(x) has constant sign in the
interval [x1, xn+1]. Show that f(x) is contained between p(x) and q(x) for all
x ∈ [x1, xn+1].

(b) Suppose that f(x) = f1(x)−f2(x), where both f
(n)
1 (x) and f

(n)
2 (x) have the

same constant sign in [x1, xn+1]. Formulate and prove a kind of generalization
of the result in (a).

6. Using the barycentric formula (4.2.27) the interpolation polynomial can be
written

p(x) =

n
∑

i=1

wif(xi)

m
∏

j=1

j 6=i

(x− xj).

Show by taking f(x) ≡ 1 and equating the coefficients for xn−1 on both sides
that the support coefficients satisfy

∑n
i=1 wi = 0.

7. Show that, if the points xi are distinct,

[x1, x2, . . . , xm]f =

m
∑

i=0

f(xi)

Φ′
m(xi)

,
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where Φm(x) is defined in (4.2.26).

Hint: Compare the coefficients of xn−1 in Newton’s and Lagrange’s expressions
for the interpolation polynomial.

8. (a) Check Table 4.2.1 and the conclusions about the optimal step length in
the text, Investigate how the attainable accuracy varies with u.

(b) Study the analogous question for f ′′(x0) using the formula

f ′′(x0) ≈
(

1 − δ2

12
+
δ4

90
− δ6

560
+

δ8

3, 150
− . . .

)

δ2f0
h2

.

9. Prove the validity of Algorithm 4.2.3

10. Given a backwards (upwards) diagonal in the table of divided differences
(scaled or unscaled), 〈X ;m, i〉Y , i = 1 : k. Find a recurrence formula for
the computation of the next diagonal of the difference scheme for the inter-
polation polynomial P (x;m, k)Y , i.e. if 〈X ;m+ 1, k〉Y = 〈X ;m, k〉Y (why?),
find 〈X ;m+ 1, i〉Y , i = k − 1, k − 2, . . . , 0.

Hint: Look up the equidistant case in Example 3.2.6.

11. (Bulirsch and Rutishauser (1968))
(a) The function cotx has a singularity at x = 0. Use values of cotx for
x = 1◦, 2◦, . . . , 5◦. and rational interpolation of order (2,2) to determine an
approximate value of cotx for x = 2.5◦, and its error.

(b) Use polynomial interpolation for the same problem. Compare the result
with that in (a).

4.3 Generalizations and Applications

4.3.1 Interpolation using Values of Derivatives

The general Hermite interpolation problem is the following: Given n distinct
points {xi}n

i=1, and numbers ri ≥ 1, Find a polynomial p(x) of degree m− 1, where
∑n

i=1 ri = m, so that p(x) and its first ri − 1 derivatives agree with those of f(x)
at xi, i.e.

p(x)(j)(xi) = f(x)(j)(xi), j = 0 : ri − 1,

n
∑

i=1

ri = m, (4.3.1)

i = 1 : n. (We use here the notation f (0)(x) for f(x).)
Hermite interpolation can be viewed as the result of passages to the limit in

interpolation at m points, where for i = 1 : n ri interpolation points coalesce into
the point xi. We say that the point xi has multiplicity ri. For example, the
Taylor polynomial in Pm

p(x) =

m−1
∑

j=0

f (j)(x1)

j!
(x − x0)

j (4.3.2)

interpolates f(x) at the point x1 with multiplicity m (or x1 is repeated m times).
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Note that (4.3.1) are precisely m conditions on p(x), so we can expect that
the Hermite interpolation problem is uniquely solvable.

Theorem 4.3.1.
The problem of finding a polynomial p ∈ Pm that satisfies the Hermite inter-

polation conditions

p(j)(xi) = f (j)(xi), i = 1 : n, j = 0 : ri − 1, (4.3.3)

where ri ≥ 1,
∑

ri = m, has a unique solution.

Proof. The conditions are expressed by a system of m linear equations for the
coefficients of p̂, with respect to some basis. This has a unique solution for any
right hand side, unless the corresponding homogeneous problem has a non-trivial
solution. Suppose that a polynomial p ∈ Pm comes from such a solution of the
homogeneous problem, i.e.

p(j)(xi) = 0, i = 1 : n, j = 0 : ri − 1.

Then, xi must be a zero of multiplicity ri of p(x), hence p(x) must have at least
∑

ri = m zeros (counting the multiplicities). But this is impossible, because the
degree of p is less than m. This contradiction proves the theorem.

Since Hermite interpolation is a boundary case of ordinary interpolation the
remainder term for interpolation given in Theorem 4.2.3 applies. Hence, assuming
that f is a real function, with continuous derivatives of order at least m, the error
in Hermitian interpolation is given by

f(x) − p(x) =
f (m)(ξx)

m!
Φn(x), Φn(x) =

n
∏

i=1

(x− xi)
ri . (4.3.4)

for some point ξx ∈ int(x, x1, x2, . . . , xn).

Example 4.3.1.
Consider the problem of finding a polynomial p(x) ∈ P4 that interpolates the

function f and its first derivative f ′ at the two points x0 and x1, and also its second
derivative at x0. In the notations of Sec. 4.1.1 the linear system for the coefficient
vector c becomes V T c = f̃ , where f̃ = (f(x1), f

′(x1), f
′′(x1), f(x2), f

′(x2))
T , and

V =











1 0 0 1 0
x1 1 0 x2 1
x2

1 2x1 2 x2
2 2x2

x3
1 3x2

1 6x1 x3
2 3x2

2

x4
1 4x3

1 12x2
1 x4

2 4x3
2











(4.3.5)

is a confluent Vandermonde matrix. Note that the second, third, and fifth col-
umn of V is obtained by “differentiating” the previous column. From Theorem 4.3.1
we conclude that such confluent Vandermonde matrices are nonsingular.
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There are explicit formulas, analogous to Lagrange’s formula, for Hermite
interpolation; see [52, Sec. 2.1.5]. The Hermite interpolation polynomial is written
in the form

p(x) =

n
∑

i=1

ri−1
∑

k=0

f (k)(xi)Lik(x), (4.3.6)

where Lik(x) are generalized Lagrange polynomials. These can be defined
starting from the auxiliary polynomials

lik(x) =
(x − xi)

k

k!

n
∏

j=1

j 6=i

(

x− xj

xi − xj

)rj

, i = 1 : n, k = 0 : rj − 1.

Next, put

Li,ri−1 = li,ri−1, i = 1 : n,

and form recursively,

Lik(x) = lik(x) −
ri−1
∑

ν=k+1

l
(ν)
ik (xi)Li,ν(x), k = ri − 2 : −1 : 0.

It can be showed by induction that

L
(σ)
ik (xi) =

{

1, if i = j and k = σ;
0, otherwise.

Hence the Lik are indeed the appropriate polynomials.

Example 4.3.2.
An important special case is when ri = 2, i = 1 : n. Then the Hermite

interpolating polynomial is the osculating polynomial, which agrees with f(x)
and f ′(x) at x = xi, i = 1 : n. In this case we can write

p(x) =

n
∑

i=1

(f(xi)Li0(x) + f ′(xi)Li1(x)).

Here Lik(x) can be written in the form

Li1(x) = (x− xi)li(x)
2, Li0(x) = (1 − 2l′i(xi)(x− xi))li(x)

2,

where li(x), i = 1 : n, are the elementary Lagrange polynomials.

An interpolation problem that contains points of multiplicity greater than one
can be obtained from the case with distinct points by a passage to the limit. New-
ton’s interpolation formula is suitable for handling this case. Since by Theorem 4.2.2
a divided difference is a symmetric function of its arguments these can be permuted
before taking the limit. We can therefore assume, without loss of generality, that
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equal arguments are placed together, and that the values xi for different groups of
arguments are different.

Assume that f (r)(x) is continuous. Then by Theorem 4.2.3,

[x1, x2, . . . xr+1]f = f (r)(ξ)/r!, ξ ∈ int(x1, x2, . . . , xr+1).

If we let xi → x, i = 1 : r + 1, then [x1, x2, . . . xr+1]f → f (r)(x)/r!. Hence the
natural definition of a divided difference with r equal arguments reads

[x, x, . . . , x]f = f (r)(x)/r!, r + 1 equal arguments. (4.3.7)

One may also establish the following more general formula

[x1, . . . , xk, x . . . , x]f =
1

r!

dr

dxr
[x1, . . . , xk, x]f r + 1 equal arguments. (4.3.8)

We now give a representation of the divided differences which allows several multi-
plicities.

Theorem 4.3.2.
Assume that f (n−1)(x) is continuous in [a, b], x1, . . . , xn ∈ [a, b] and x is

distinct from any xi. Then

[x, x1, x2, . . . , xn]f =
[x, x2, . . . , xn]f − [x1, x2, . . . , xn]f

x− x1
, (4.3.9)

gives the unique continuous extension of divided differences no matter what multi-
plicities occur in x1, . . . , xn.

Proof.

This definition and the usual recurrence formula for the divided differences are,
under the above assumptions, sufficient for the construction of a table of divided
differences in the case of multiple points, e.g.,

[x0, x0]f = lim
x1→x0

f(x1) − f(x0)

x1 − x0
= f ′(x0),

[x0, x0, x1]f =
[x0, x0]f − [x0, x1]f

x0 − x1
=
f ′(x0) − [x0, x1]f

x0 − x1
.

It can be shown that if f ∈ Ck, the divided differences belong to Ck+1−max ri ,
and that the interpolation polynomial has this kind of differentiability with respect
to the xi, nota bene if the “groups” do not coalesce further.
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Example 4.3.3. Consider the interpolation problem in Example 4.3.1. For this
we construct the generalized divided-difference table, where x1 6= x0.

x0 f0
f ′

0

x0 f0
1
2f

′′

0

f ′

0 [x0, x0, x0, x1]f
x0 f0 [x0, x0, x1]f [x0, x0, x0, x1, x1]f

[x0, x1]f [x0, x0, x1, x1]f
x1 f1 [x0, x1, x1]f

f ′

1

x1 f1

The interpolating polynomial now reads

p(x) = f0 + (x− x0)f
′

0 + (x− x0)
2 1

2
f ′′

0 + (x− x0)
3[x0, x0, x0, x1]f

+ (x− x0)
3(x− x1)[x0, x0, x0, x1, x1]f.

f(x) − p(x) = [x0, x0, x0, x1, x1, x]f(x− x0)
3(x − x1)

2

= f (5)(ξx)(x− x0)
3(x− x1)

2/5!

For the simplest Hermite interpolation problem, i.e. cubic interpolation,
the given data are fi = f(xi), f

′

i = f ′(xi), i = 0, 1. We can write the interpolation
polynomial

p(x) = f0 + (x− x0)[x0, x1]f + (x− x0)(x− x1)[x0, x0, x1]f

+ (x− x0)
2(x− x1)[x0, x0, x1, x1]f.

Set x1 = x0 + h and x = x0 + θh, and denote the remainder f(x) − p(x) by RT .
Then one can show (Problem 1) that

p(x) = f0 + θ∆f0 + θ(1 − θ)(hf ′

0 − ∆f0)

− θ2(1 − θ)
[

(hf ′

0 − ∆f0) + (hf ′

1 − ∆f0)
]

= (1 − θ)f0 + θf1 + θ(1 − θ)
[

(1 − θ)(hf ′

0 − ∆f0) − θ(hf ′

1 − ∆f0)
]

,(4.3.10)

For x ∈ [x0, x1] we get the error bound

|RT | ≤
h4

384
max

x∈[x0,x1]
|f (4)(x)|. (4.3.11)

In particular, putting t = 1/2, we get the useful formula

f1/2 =
1

2
(f0 + f1) +

1

8
h(f ′

0 − f ′

1) +RT . (4.3.12)
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Sometimes there are gaps in the sequence of derivatives that are numerically
known at a point. The problem is then called Birkhoff interpolation or lacunary
interpolation. We illustrate by two examples that such problems can either have a
unique solution or lead to a singular system of linear equations. See also Problems.
We use the notation of Sec. 4.1.1.

Example 4.3.4. Given f̃ =
(

f(−1), f ′(0), f(1)
)T

. Try to find a polynomial p ∈ P3

that satisfies such data. The new feature is that f(0) is missing.
Set up (4.1.4), i.e. Mpc = f̃ , in the power basis.

Mp =





1 −1 1
0 1 0
1 1 1



 .

The determinant is evidently zero, so there is no solution for most data. An expla-
nation is that hf ′ = µδf for all f ∈ P3.

Example 4.3.5. Given f̃ =
(

f(1), f(−1), f ′′(1), f ′′(−1)
)T

. Try to find a poly-
nomial p∗ ∈ P4 that satisfies such data. The new feature is that there are no first
derivatives. In this case, we obtain for the power basis,

Mp =







1 1 1 1
1 −1 1 −1
0 0 2 6
0 0 2 −6






.

The determinant is 48, and this interpolation problem is uniquely solvable. The
coefficient vector of p is c = M−1

p
f̃ .

The first coordinate of c, i.e. eT
1 c, is an approximation to f(0); this is also a lin-

ear functional of f . Denote by Rf the remainder functional for this approximation,
i.e.

Rf = f(0) − eT
1M

−1
p f̃ . (4.3.13)

4.3.2 Inverse interpolation

It often happens that one has a sequence of pairs {(xi, yi)} and want to determine
a point where y(x) = c. We saw an example as early as in the simulation of the
motion of a ball (Sec. 1.4), when we computed the landing point. We there used
linear interpolation.

In general a natural approach is to reverse the roles of x and y, i.e. to compute
the inverse function x(y) for y = c, by means of Newton’s interpolation formula
with the divided differences [yi, yi+1, . . . yi+j ]x (unscaled or scaled). This is called
inverse interpolation It is convenient to order the points so that . . . < y5 < y3 <
y1 < c < y2 < y4 < . . .. This approach is successful if the function x(y) is suitable
for local approximation by a polynomial.
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Sometimes, however, the function y(x) is much better suited for local approx-
imation by a polynomial than the inverse function x(y). Then we can instead, for
some m, solve the following equation,

y1 + [x1, x2]y · (x− x1) +

n−1
∑

j=2

[x1, x2, . . . xj+1]yΦj(x) = c.

Again it is convenient to order the points so that the root α comes in the middle,
e.g., so that . . . < x5 < x3 < x1 < α < x2 < x4 < . . ..

We write the equation in the form x = x1 + F (x), where

F (x) ≡
(c− y1) −

∑n−1
j=2 [x1, x2, . . . xj+1]yΦj(x)

[x1, x2]y
.

Then we can use iteration. We ignore the sum to get the first guess x0; this means
the same as linear inverse interpolation. We then iterate, xi = x1 + F (xi−1), until
xi and xi−1 are close enough. A more careful termination criterion will be suggested
in Chapter 6, where the effect on the result of errors like the interpolation error is
also discussed.

Suppose that xi − x1 = O(h), i > 1, where h is some small parameter in
the context (usually some step size), then Φj(x) = O(hj), Φ′

j(x) = O(hj−1). The
divided differences are O(1), and we assume that [x1, x2]y is bounded away from
zero. Then the terms of the sum decrease like hj .

By the discussion of iteration in Sec. 1.2, the convergence ratio is F ′(x), and
this is here approximately

Φ′

2(x)[x1, x2, x3]y

[x1, x2]y
= O(h).

So, if h is small enough, the iterations converge rapidly. If more than two iterations
are needed, Aitken acceleration (Sec. 3.3.2) may be practical.

4.3.3 Numerical differentiation

An important problem in many applications is to approximate the derivative of
a function using only given function values. A straightforward solution to this
problem is to use the derivative of the corresponding interpolation polynomial as
the approximation to the derivative of the function. This can also be done for higher
order derivatives.

We shall first study the computation of f ′(x0). By the operator expansion
(3.3.50) derived in Sec. 3.3.4 we have

f ′(x0) =
(

1 − δ2

6
+
δ4

30
− δ6

140
+

δ8

630
− . . .

) 1

h
µδf0, µδf0 =

f1 − f−1

2
. (4.3.14)

By squaring this we obtain

f ′′(x0) ≈
(

1 − δ2

12
+
δ4

90
− δ6

560
+

δ8

3, 150
− δ10

16, 632
± . . .

)

δ2f0
h2

. (4.3.15)
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Suppose that the function values have errors whose magnitude does not exceed 1
2U .

Then the error bound on µδf0 = 1
2 (f1 − f−1) is also equal to 1

2U . Similarly one

can show that the error bounds in µδ(2k+1)f0, for k = 1 : 3 are 1.5U, 5U, 17.5U ,
respectively. Thus one gets the upper bounds U/(2h), 3U/(4h), and 11U/(12h) for
the round-off error RXF if one, two, and three terms in (4.3.14).

The truncation error (called RT ) can be estimated by the first neglected term,
where

1

h
µδ2k+1f0 ≈ h2kf (2k+1)(x0).

It has been mentioned several times (see, e.g., Example 3.3.15 in connection with the
use of Richardson extrapolation for numerical differentiation) that irregular errors
in the values of f(x) are of much greater importance in numerical differentiation
than in interpolation and integration.

Example 4.3.6.
Assume that k terms in the formula above is used to approximate f ′(x0),

where f(x) = lnx, x0 = 3, and U = 10−6. Then f (2k+1)(3) = (2k)!/32k+1, and for
the truncation and round-off errors we get:

k 1 2 3

RT 0.0123h2 0.00329h4 0.00235h6

RXF (1/2h)10−6 (3/4h)10−6 (11/12h)10−6

10
−3

10
−2

10
−1

10
0

10
−25

10
−20

10
−15
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−10
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R
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Figure 4.3.1. Bounds for Truncation error RT and roundoff error RXF

as functions of h for u = 0.5 · 10−6.
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In a log-log diagram the plots of RT and RXF versus h in Figure 4.2.2 are
straight lines that illustrate quantitatively the Scylla and Charybdis situation (see
explanation in Sec. 3.1.4); the truncation error increases, and the effect of the ir-
regular error decreases with h. One sees how the choice of h, which minimizes the
sum of the bounds for the two types of error, depends on u and k, and tells what
accuracy can be obtained. The optimal step-lengths for k = 1, 2, 3 are h = 0.0344,
h = 0.1869, and h = 0.3260, giving error bounds 2.91 · 10−5, 8.03 · 10−6, and
5.64 · 10−6. Note that the optimal error bound with k = 3 is not much better than
that for k = 2.

The effect of the pure rounding errors is important, though it should not be
exaggerated. Using IEEE double precision with u = 1.1 · 10−16, one can obtain the
first two derivatives very accurately by the optimal choice of h. The corresponding
figures are h = 2.08 · 10−5, h = 2.19 · 10−3, and h = 1.36 · 10−2, giving the optimal
errors bounds 1.07 · 10−11, 1.52 · 10−13, and 3.00 · 10−14, respectively.

It is left to the user (Problem 12) to check and modify the experiments and
conclusions indicated in this example. See also the appendix of Chapter 12, where
similar questions are discussed in a more general context, namely differentiation for
vector-valued functions of vector-valued arguments.

4.3.4 Fast Algorithms for Vandermonde Systems

Given distinct scalars x1, x2, . . . , xn, let V be the Vandermonde matrix

V = V (x1, x2, . . . , xn) =









1 1 · · · 1
x1 x2 · · · xn
...

... · · ·
...

xn−1
1 xn−1

2 · · · xn−1
n









. (4.3.16)

As shown in Sec. 4.1.1 the solution a = V −T f of the dual Vandermonde system

V T a = f (4.3.17)

gives the coefficients for the interpolating polynomial in the power basis. This
polynomial can be computed, e.g., by Newton’s interpolation formula in O(n2)
operations. The related primal Vandermonde systems

V y = b (4.3.18)

arises in problems of determining approximation of linear functionals (see Exam-
ple 4.1.1). We would like to have a stable and efficient method also for solving the
primal system. One possibility would be to use the algorithm given in Sec. 4.2.2,
which computes the inverse V −1 in about 6n2 operations and then form the product
V −1b = y.

We shall now derive a more efficient and accurate algorithm for solving primal
Vandermonde systems. We start by expressing the solution of the dual problem
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in terms of a matrix factorization. Using the power basis the unique polynomial
satisfying the interpolation conditions p(xi) = fi, i = 1 : n, is

p(x) = (1, x, . . . , xn−1)a,

where the coefficient vector a satisfies the linear system V Ta = f ,
One of the most efficient ways to compute p(x) is by Newton’s interpolation

formula, which uses the basis polynomials

p1(x) = 1, pk(x) = (x− x1) · · · (x − xk−1), k = 2 : n.

We write the polynomial in the form

p(x) = c1 + c2p2(x) + · · · + cnpn(x).

where cj = [x1, . . . , xj−1]f . These divided differences can be recursively computed
as described in Sec. 4.2.1. Then the coefficient vector a of p(x) in the power basis

p(x) = a1 + a2x+ · · · + anx
n−1,

can be computed by Horner’s rule. This is implemented in the algorithm below.
Note that the matrix V T is never formed and we only need storage for a few vectors.
The operation count is 5

2n(n+ 1) flops.

Algorithm 4.3.1 Fast Dual Vandermonde Solver

function a = dvand(x,f)

% Newton’s method for solving a dual Vandermonde system

% V^T(x_1,x_2,...,x_n)a = f.

n = length(x);

a = f;

for k = 1:n-1

for j = n:(-1):k+1

a(j) = (a(j) - a(j-1))/(x(j) - x(j-k));

end

end

for k = n-1:(-1):1

for j = k:n-1

a(j) = a(j) - x(k)*a(j+1);

end

end

To derive a corresponding algorithm for solving primal Vandermonde systems
the above algorithm can be interpreted as a factorization of the matrix (V T )−1 into
a product of diagonal and lower bidiagonal matrices. Let

Dk = diag (1, . . . , 1, (xk+1 − x1), . . . , (xn − xn−k)).
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and define the matrices

Lk(x) =

(

Ik−1 0
0 Bn−k+1(x)

)

, k = 1 : n− 1, (4.3.19)

where

Bp(x) =









1
−x 1

. . .
. . .

−x 1









∈ Rp×p, (4.3.20)

Then the dual Vandermonde algorithm can be written in matrix terms as c = UT f ,
a = LT c, where

UT = D−1
n−1Ln−1(1) · · ·D−1

1 L1(1), (4.3.21)

LT = LT
1 (x1)L

T
2 (x2) · · ·LT

n−1(xn−1). (4.3.22)

Since a = V −T f = LTUT f , we have V −T = LTUT .
We can now obtain a fast algorithm for solving a primal Vandermonde system

V y = b as follows. Transposing the matrix factorization of V −T gives V −1 = UL.
Hence y = V −1b = U(Lb) and the solution to the primal system can be computed
from d = Lb, y = Ud. Transposing (4.3.21)–(4.3.22) this gives

L = Ln−1(xn−1) · · ·L2(x2)L1(x1)

U = LT
1 (1)D−1

1 · · ·LT
n−1(1)D−1

n−1.

This leads to an algorithm for solving primal Vandermonde systems. The operation
count and storage requirement of this are the same as for dual system algorithm.

Algorithm 4.3.2 Fast Primal Vandermonde Solver

function y = pvand(x,b)

% Newton’s method for solving a primal Vandermonde system

% V(x_1,x_2,...,x_n)y = b.

n = length(x);

y = b;

for k = 1:n-1

for j = n:(-1):k+1

y(j) = y(j) - x(k)*y(j-1);

end

end

for k = n-1:(-1):1

for j = k+1:n

y(j) = y(j)/(x(j) - x(j-k));

end

for j = k:n -1
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y(j) = y(j) - y(j+1);

end

end

The above two algorithms are not only fast. Also they can give almost full
relative accuracy in the solution of some Vandermonde systems, which are so ill-
conditioned that Gaussain elimination with complete pivoting fails to produce a
single correct digit. This was first observed by Björck and Pereyra [4], from which
the following example is taken.

Example 4.3.7.
Consider a primal Vandermonde system Vny = b, with

xi = 1/(i+ 2), bi = 1/2i−1, i = 1 : n.

The exact solution can be shown to be

yi = (−1)i−1

(

n

i

)

(1 + i/2)n−1.

Let ȳi be the solution computed by the primal Vandermonde algorithm and take as
a measure of the relative error

en = max
1≤i≤n

|yi − ȳi|/|yi|.

Using a hexadecimal floating point arithmetic with u = 16−13 = 2.22 · 10−16 the
following results were obtained:

n 5 10 15 20 25
en/u 4 5 10 54 81

The computed solution has small componentwise relative error, which is remarkable
since, e.g., κ(V10) = 9 · 1013.

A forward error analysis given by Higham [30], explains the surprisingly fa-
vorable results. If the points are positive and monotonically ordered

0 < x1 < x2 · · · < xn, (4.3.23)

then the error in the solution ā of a Vandermonde system V y = b computed by the
primal algorithm can be bounded as

|ā− a| ≤ 5u|V −1| |b| +O(u2). (4.3.24)

If the components of the right hand side satisfy (−1)nbi ≥ 0, then |V −1| |b| = |V −1b|,
and this bound reduces to

|ā− a| ≤ 5u|a| +O(u2), (4.3.25)
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i.e. the solution is computed with small relative error indendent of the conditioning
of V . A similar result holds for the dual algorithm. These good results can be shown
to be related to the fact that when (4.3.23) holds, the matrix V (x1, x2, . . . , xn) is
totally positive, i.e. the determinant of every squares submatrix of V is positive;
see [8].

The given algorithms has been generalized to confluent Vandermonde matrices
(see Example 4.3.1) and other classes of Vandermonde-like matrices.

4.3.5 Multidimensional Interpolation

Much of the theory of the introduction can be generalized to other interpolation
problems than problems with polynomials in one variable, but one cannot be sure
that there is unconditionally a unique solution to the problem. It may not be enough
to require that the points are distinct.

Example 4.3.8.
The interpolation by a linear function in two variables,

p(xi, yi; c) = c1 + c2xi + c3yi = fi, i = 1 : 3,

leads to the linear system V c = f , where

V =





1 x1 y1
1 x2 y2
1 x3 y3



 , c =





c1
c2
c3



 , f =





f1
f2
f3



 .

This interpolation problem has exactly one solution if V is nonsingular, i.e. when
det(V ) 6= 0. But 1

2 det(V ) is just the area of the triangle with vertices (xi, yi),
i = 1 : 3. If this area is zero then the three points lie on a line and the problem has
either infinitely many solutions, or no solution.

The simplest way to generalize interpolation to functions of several variables
is to use repeated one-dimensional interpolation, i.e. to work with one variable at
a time. The following formula for bilinear interpolation,

f(x0 + ph, y0 + qh) ≈ (1 − q)ϕ(y0) + qϕ(y0 + k),

ϕ(y) = (1 − p)f(x0, y) + pf(x0 + h, y).

is the simplest example. After simplification it can written as

f(x0 + ph, y0 + qh) ≈ (1 − p)(1 − q)f0,0 + p(1 − q)f1,0 (4.3.26)

+ (1 − p)qf0,1 + pqf1,1,

where we have used the notation fij = f(x0+ih, y0+jk), i, j ∈ {0, 1}. This formula
is exact for functions of the form f(x, y) = a + bx + cy + dxy, and from equation
(4.2.50) we obtain the error bound,

max
(x,y)∈R

1

2

(

p(1 − p)h2|fxx| + q(1 − q)h2|fyy|
)

, 0 ≤ p, q ≤ 1,
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where R = {(x, y) : x0 ≤ x ≤ x0 + h, y0 ≤ y ≤ y0 + k}. The formula for bilinear
interpolation can easily be generalized by using higher order interpolation in the x
and/or y direction.

In the following we consider explicitly only the case of two dimension, since
corresponding formulas for three and more dimensions are analogous.

A rectangular grid in the (x, y)-plane with grid spacings h, k in the x and y
directions, respectively, consists of points xi = x0 +ih, yi = y0+ik. In the following
we use the notation f(xi, yj) = fij .

Central difference approximations for partial derivatives using function values
can be obtained by working with one variable at a time,

∂f

∂x
=

1

2h
(fi+1,j − fi−1,j) +O(h2),

∂f

∂y
=

1

2k
(fi,j+1 − fi,j−1) +O(k2).

For second order derivatives

∂2f

∂x2
=

1

h2
(fi+1,j − 2fij + fi−1,j),

and a similar formula holds for ∂2f/∂y2.
Formulas of higher accuracy can also be obtained by operator techniques,

based on an operator formulation of Taylor’s expansion (see Theorem 4.6.6,

f(x0 + h, y0 + k) = exp

(

h
∂

∂x
+ k

∂

∂y

)

f(x0, y0) (4.3.27)

From this we obtain

f(x0 + h, y0 + k) = f0,0 +
(

h
∂

∂x
+ k

∂

∂y

)

f0,0

+
(

h2 ∂
2

∂x2
+ 2hk

∂2

∂x∂y
+ k2 ∂

2

∂y2

)

f0,0 +O(h2 + k2).

An interpolation formula valid for all quadratic functions can be obtained by re-
placing in Taylor’s formula the derivatives by difference approximations valid for
quadratic polynomials,

f(x0 + ph, y0 + qh) ≈ f0,0 +
1

2
p(f1,0 − f−1,0) +

1

2
q(f0,1 − f0,−1) (4.3.28)

+
1

2
p2(f1,0 − 2f0,0 + f−1,0)

+
1

4
pq(f1,1 − f1,−1 − f−1,1 + f−1,−1)

+
1

2
q2(f0,1 − 2f0,0 + f0,−1).

This formula uses function values in nine points. (The proof of the expression for

approximating the mixed derivative
∂2

∂x∂y
f0,0 is left as an exercise, Problem 2.
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Review Questions

1. What is meant by Hermite interpolation (osculatory interpolation)? Prove
the uniqueness result for the Hermite interpolation problem.

2. (a) Write down the confluent Vandermonde matrix for the Hermite cubic in-
terpolation problem.

(b) Express the divided difference [x0, x0, x1, x1]f in terms of f0, f
′

0,and f1,f
′

1.

3. How is bilinear interpolation performed? What is the order of accuracy?

Problems and Computer Exercises

1. (a) Construct the divided difference scheme (unscaled or scaled) for the sim-
plest Hermite interpolation problem, where the given data are f(xi), f

′(xi),
i = 0, 1; x1 = x0 + h. Prove all the formulas concerning this problem that are
stated at the end of Sec. 4.3.2.

(b) For f(x) = (1 + x)−1, x0 = 1, x1 = 1.5, compute f(1.25) by Hermite
interpolation. Compare the error bound and the actual error.

(c) Show that for Hermite interpolation

|f ′(x) − p′(x)| ≤ h3

72
√

3

(

max
x∈[x0,x1]

|f (iv)(x)| +O(h|f (v)(x)|)
)

.

Hint: d
dx [x0, x0, x1, x1, x]f = [x0, x0, x1, x1, x, x]f ≤ . . ..

2. Given xi, y(xi), y
′(xi), xi = x0 + ih, i = 1, 2, 3. Let p ∈ P6 be the Hermite

interpolation polynomial to these data.

(a) Find the remainder term, and show that the interpolation error for x ∈
[x1, x3] does not exceed h6 max |f (6)(x)|/4860 in magnitude.

(b) Write a program that computes p(x1 + 2jh/k), j = 0 : k.

Comment: This is one of several possible procedures for starting a multistep
method for an ordinary differential equation y′ = f(x, y). Two steps with
an accurate one-step method, provide values of y, y′, and this program then
produces starting values (y only) for the multistep method.

3. Give a short and complete proof of the uniqueness of the interpolation polyno-
mial for distinct points, by the use of the ideas of the proof of Theorem 4.3.1.

4. Derive an approximate formula for f ′(x0) when the values f(x−1), f(x0), f(x1)
are given at three non-equidistant points. Give an approximate remainder
term. Check the formula and the error estimate on an example of your own
choice.

5. (a) Given a sequence of function values f1, f2, f3 . . . at equidistant points xj =
x0 + jh. Assume that min fj = fn, and let p(x) be the quadratic interpolation
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polynomial determined by fn−1, fn, fn+1. Show that

min p(x) = fn − (µδfn)2

2δ2fn
, at x = xn − h

µδfn

δ2fn
,

and that the error of the minimum value can be bounded by max |∆3fj|/
√

243,
where j is in some neighborhood of n. Why and how is the estimate of x less
accurate?

(b) Write a handy program that includes the search all local maxima and
minima. Sketch or work out improvements of this algorithm, perhaps with
ideas of inverse interpolation and with cubic interpolation. And perhaps for
non-equidistant data.

6. (a) Compute by bilinear interpolation f(0.5, 0.25) when

f(0, 0) = 1, f(1, 0) = 2, f(0, 1) = 3, f(1, 1) = 5.

(b) Set c = (c1, c2, c3, c4, c5, c6)
T ,

p(x, y; c) = c1 + c2x+ c3y + c4x
2 + c5xy + c6y

2.

Consider the interpolation problem: Given xi, yi, fi, i = 1 : 6; try to find c,
so that p(xi, yi; c) = fi, i = 1 : 6.
Choose xi, yi, fi, i = 1 : 6 by 18 independent random numbers, solve the
linear system p(xi, yi; c) = fi, i = 1 : 6, look at max |ci|. Repeat this (say) 25
times. You have a fair chance to avoid singular cases, or cases where max |ci|
is very large.

(c) Now choose (xi, yi) as 6 distinct points on some circle in R2, and choose fi

at random. This should theoretically lead to a singular matrix. Explain why,
and find experimentally the rank (if your software has convenient commands or
routines for that). Find a general geometric characterization of the sextuples
of points (xi, yi), i = 1 : 6, that lead to singular interpolation problems.

Hint: Brush up your knowledge of conic sections.

7. Derive a formula for f ′′

xy(0, 0) using fij , |i| ≤ 1, |j| ≤ 1, which is exact for all
quadratic functions.

4.4 Piecewise Polynomial Interpolation

4.4.1 Bernstein Polynomials

Parametric curves are often used to find a functional form of a curve (or surface)
given geometrically by a set of points. Let c(t), t ∈ [0, 1] a parametric curve con-
necting two points p0 and p1 in Rd, so that p0 = c(0) and p1 = c(1). In the simplest
case we can take c(t) to be linear and write

c(t) = (1 − t)p0 + tp1.
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If extended to a set of points p0, . . . , pn, n > 1 this will not give a smooth curve
and is therefore of limited interest. We now generalize this approach and take c(t)
to be a polynomial of degree n.

The Bernstein polynomials12 are defined by

Bn
i (t) =

(

n

i

)

ti(1 − t)n−i, i = 0 : n. (4.4.1)

Using the binomial theorem we have

1 = ((1 − t) + t)n =

n
∑

i=0

(

n

i

)

ti(1 − t)n−i =

n
∑

i=0

Bn
i (t),

that is, the Bernstein polynomials of degree n are nonnegative and give a partition
of unity. The Bernstein polynomials of degree n form a basis for the space of
polynomials of degree ≤ n.

For n = 3 the four cubic Bernstein polynomials are

B3
0 = (1 − t)3, B3

1 = 3t(1 − t)2, B3
2 = 3t2(1 − t), B3

3 = t3. (4.4.2)

are plotted in Figure 4.4.1.
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Figure 4.4.1. Bernstein polynomials.

Some important properties of the Bernstein polynomials are given in the fol-
lowing theorem.

12Sergi NatanovičBernštein (1880–1968) Russian mathematician, who made major contributions
to polynomial approximation. In 1911 he introduced the polynomials named after him.
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Theorem 4.4.1. The Bernstein polynomials Bn
i (t) have the following properties:

1. Bn
i (t) > 0, t ∈ (0, 1) (nonnegativity);

2. Bn
i (t) = Bn

n−i(1 − t) (symmetry);

3. The Bernstein polynomials Bn
i (t) have a unique maximum value at t = i/n

on [0, 1];

4. The Bernstein polynomials satisfy the following recursion formula

Bn
i (t) = (1 − t)Bn−1

i (t) + tBn−1
i−1 (t), i = 0 : n. (4.4.3)

Proof. The first three properties follows directly from the definition (4.4.1). The
recursion formula is a consequence of the relation

(

n

i

)

=

(

n− 1

i

)

+

(

n− 1

i− 1

)

between the binomial coefficients.

Starting with B0
0(t) = 1, and setting Bn

−1(t) = Bn
n+1(t) = 0 this recursion can

be used to evaluate the Bernstein polynomials at a given point t.

4.4.2 Parametric Bézier Curves

Given a set of n+ 1 control points pi, i = 0 : n, the Bézier curve is given by

c(t) =

n
∑

i=0

piB
n
i (t), t ∈ [0, 1]. (4.4.4)

The Bézier curve interpolates the first and last control points p0 and p1. It follows
directly from the form of (4.4.4) that applying an affine transformation to c(t) can be
performed simply by applying the same transformation to the control points. Hence
the Bézier curve has the desirable property that it is invariant under translations
and rotations.

Bézier curves are a major tool in computer graphics, where usually pi ∈ R2

or R3. One important application is in computer aided design (CAD) systems,
used, e.g., in the auto industry. Often a curve is constructed by smoothly patching
together several Bézier curves of lower order.

Example 4.4.1. A quadratic Bézier curve is given by

c(t) = (1 − t)2p0 + 2t(1 − t)p1 + t2p2, t ∈ [0, 1].

Clearly c(0) = p0 and c(1) = p2. For t = 1/2 we get

c(1/2) =
1

2

(p0 + p2

2
+ p1

)

.
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p
0

p
1

p
2

Figure 4.4.2. Quadratic Bézier curve with control points.

Hence we can construct the point c(1/2) geometrically as the intersection between
the the midpoint of the line between p0 and p2 and the point p1; see Figure 4.4.2.

The Bézier polygon is the closed piecewise linear curve connecting the con-
trol points pi and pi+1, i = 0 : n− 1 and finally pn and back to p0. In Figure 4.4.2
this is the polygon formed by the dashed lines. This polygon provides a rough idea
about the shape of the Bézier curve.

p
0

p
1

p
2

p
3

Figure 4.4.3. Cubic Bézier curve with control points P0, . . . , P3.

Definition 4.4.2. A set S in Rd is called convex if for any points x, y ∈ S, the
straight line

{tx+ (1 − t)y | t ∈ (0, 1)}

is also contained in S; The convex hull of a set S in Rd is the smallest convex
subset of Rd, which contains S.
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From the definition (4.4.4) of the Bézier curve it follows that for all t ∈ [0, 1],
the curve c(t) is a convex combination of the control points. Therefore c(t) lies
within the convex hull of the control points. Often, but not always, the convex hull
is the region enclosed Bézier polygon; cf. Figures 4.4.2–3.

The variation of a function in an interval [a, b] is the least upper bound on the
sum of the oscillations in the closed subintervals [a, x1], [x1, x2], . . . , [xn, b], for all
possible such subdivisions. The Bézier curve is variation diminishing. In particular
if the control points pi are monotonic, so is c(t). Further, if pi are convex (concave)
so is c(t).

Usually all control points are not known in advance but the curves shape is
controlled by moving the control points until the curve has the desired shape. For
example, in the quadratic case moving p1 has a direct and intuitive effect on the
curve c(t). An advantage of the Bernstein basis for representing polynomials is that
the coefficients (control points) is closely related to the shape of the curve. This is
not the case when using a monomial or Chebyshev basis.

Theorem 4.4.3. The Bézier curve c(t) is tangent to p1 − p0 and pn − pn−1 for
t = 0 and t = 1, respectively.

Proof. To show this we compute the derivative of the Bernstein polynomial (4.4.1)

d

dt
Bn

i (t) =







−nBn−1
0 (t), if i = 0

n
(

Bn−1
i−1 (t) −Bn−1

i (t)
)

, if 0 < i < n;

nBn−1
n−1(t), if i = n.

This follows from

d

dt
Bn

i (t) =

(

n

i

)

(

iti−1(1 − t)n−i − (n− i)ti(1 − t)n−i−1
)

,

and using the definition of the Bernstein polynomials. Setting t = 0 we find that
d
dtB

n
i (0) = 0, i > 1, and therefore from (4.4.4)

d

dt
c(t) = n(p1 − p0),

which shows the statement for t = 0. The result for t = 1 follows from symmetry.

More generally, at a boundary point the kth derivative of the Bézier curve
depends only on the k closest control points. This fact is useful for smoothly joining
together several pieces of Bézier curves.

To evaluate the Bézier curve at t ∈ [0, 1] we use the recursion formula (4.4.3)
to obtain

c(t) =

n
∑

i=0

piB
n
i (t)
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= (1 − t)

n−1
∑

i=0

piB
n−1
i (t) + t

n
∑

i=1

piB
n−1
i−1 (t)

=

n−1
∑

i=0

(

(1 − t)pi + tpi+1

)

Bn−1
i (t) =

n−1
∑

i=0

p
(1)
i (t)Bn−1

i (t)

where we have introduced the new auxiliary control points

p
(1)
i (t) = (1 − t)pi + tpi+1, i = 0 : n− 1,

as convex combinations (depending on t) of the original control points. Using this
result we can successively lower the grade of the Bernstein polynomial until we
arrive at B0

0 = 1. This gives a recursion scheme for the auxiliary control points due
to de Casteljau:

p
(0)
i (t) = pi, i = 0 : n

p
(r)
i (t) = (1 − t)p

(r−1)
i (t) + tp

(r−1)
i+1 (t), i = 0 : n− r. (4.4.5)

It follows

c(t) =

n−r
∑

i=0

p
(r)
i (t)Bn−r

i (t), r = 0 : n (4.4.6)

and in particular c(t) = p
(n)
0 .

De Casteljau’s algorithm can be arranged in a triangular array

p0 = p
(0)
0

p
(1)
0

p1 = p
(0)
1 p

(2)
0

p
(1)
1

p2 = p
(0)
2

... p
(2)
1

. . .
...

...
...

... p
(n)
0

... p
(1)
n−2

...

pn−1 = p
(0)
n−1 p

(2)
n−2

p
(1)
n−1

pn = p
(0)
n

(4.4.7)

Since at each step the new control points are convex combinations of the
previous control points, de Casteljau’s algorithm is very stable. It uses about n2

operations and so is less efficient than Horner’s algorithm for evaluating a polyno-
mial in the monomial basis.

The kth derivative of c(t) is also available from the de Casteljau scheme. It
holds that

c′(t) = n(pn−1
1 − pn−1

0 ),



54 Chapter 4. Interpolation and Approximation

c′′(t) = n(n− 1)(pn−2
2 − 2pn−2

1 + pn−2
0 ), . . . ,

and in general

c(k)(t) =
n!

(n− k)!
∆kpn−k

0 , 0 ≤ k ≤ n, (4.4.8)

where the difference operates on the lower index i.
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Figure 4.4.4. Casteljau’s algorithm for n = 2, t = 1
2 .

De Casteljau’s algorithm is illustrated for the quadratic case in Figure 4.4.4,
where the following geometric interpretation can be observed. In the interval [0, t]

the Bézier curve is represented by a quadratic spline with control points p0, p
(1)
0 , p

(2)
0 .

In the remaining interval [t, 1] it is represented by a quadratic spline with control

points p
(2)
0 , p

(1)
1 , p2. Note that these two sets of control points lies closer to the curve

c(t). After a few more subdivisions it will be hard to distinguish the polygon joining
the control points form the curve.

4.4.3 Splines

The name spline comes from a very old technique in drawing smooth curves in
which a thin strip of wood, called a draftsman’s spline, is bent so that it passes
trough a given set of points, see Figure 4.5.5. The points of interpolation are called
knots and the spline is secured at the knots by means of lead weights called ducks.
Before the computer age splines were used in ship building and other engineering
designs.

A mathematical model of a spline was given by Daniel Bernoulli (1742) and
Euler (1744)13. By Hamilton’s principle the shape the spline will take is such that its
elastic strain energy is minimized. The strain energy of a spline y = s(x), x ∈ [a, b]
in the plane is given by

E(s) =

∫ b

a

κ(x)2 dx

13Euler derived the differential equation satisfied by the spline using techniques now known as
calculus of variation and Lagrange multipliers. When Euler did this work Lagrange was still a
small child!
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Figure 4.4.5. The original spline.

where

κ(x) =
s′′(x)

(1 + (s′(x))2)3/2
.

is the curvature of the spline. For slowly varying deflections, i.e. when (s′(x))2 is
approximately constant, the approximation

E(s) =≈ const ·
∫ b

a

s′′(x)2 dx,

Under this assumption, according to elasticity theory, s(x) is built up of piecewise
third degree polynomials (cubic polynomials) in such a way that s(x) and its two
first derivatives are everywhere continuous. Let xi, i = 0 : m be the points the
spline is forced to interpolate. Then the third derivative can have discontinuities
at the points xi. Such a function is called a cubic spline function, or shorter, a
cubic spline The points xi, i = 0 : m, are called breakpoints or knots.

The mathematical concept of spline functions was introduced in 1946 by
Schoenberg in the seminal paper [44]. The importance of the B-spline basis for
spline approximation (see Sec. sec4.4.6) was also first appreciated by Schoenberg.
These were not used in practical calculations for general knot sequences until the
early seventies, when a stable recurrence relation was established independently by
de Boor [6] and Cox [17].

Spline functions are now used extensively in computer aided design (CAD),
where curves and surfaces have to be represented mathematically, so that they can
be manipulated and visualized easily. Important applications occur in computer-
aided design, analysis and manufacturing as well as in aircraft and automotive in-
dustries. Spline functions can also be used in the numerical treatment of boundary-
value problems for differential equations.

With the use of splines, there is no reason to fear equidistant data, as opposed
to the situation with higher-degree polynomials. Also, if the function to be approx-
imated is badly behaved somewhere then, using spline approximation with properly
chosen knots, the effect of this can be confined locally, allowing good approximation
elsewhere in the interval. In the following we restrict ourself to consider curves in
the plane. For more information on spline approximations of curves and surfaces the
reader is referred to de Boor [7], where also Fortran programs for computations
with spline functions can be found, and Dierckx [22].
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We have seen that it is often not efficient to approximate a given function
by a single polynomial over its entire range. On the other hand, polynomials of
low degree can give good approximations locally in a small interval. Therefore it is
natural to consider approximations by piecewise polynomials of different degrees of
global continuity.

We first consider the simplest curve interpolating given values yi = f(xi) ∈
[a, b on a grid

∆ = {a = x0 < x1 < · · · < xm = b}
is by a broken line s(x), where

s(x) = qi(x) = yi−1 + di(x− xi), x ∈ [xi−1, xi), i = 1 : m (4.4.9)

Here
hi = xi − xi−1, di = [xi−1, xi]f(x) = (yi − yi−1)/hi. (4.4.10)

i.e. di is the divided difference of f at [xi−1, xi]. If f ∈ C2[a, b] then the error
satisfies (see (4.2.50)).

|f(x) − s(x)| ≤ 1

8
max

i

(

h2
i max

x∈[xi−1,xi]
|f ′′(x)|

)

. (4.4.11)

Hence, we can make the error arbitrary small by decreasing maxi hi. An impor-
tant property of interpolation with a piecewise affine function is that it preserves
monotonicity and convexity of the interpolated function.

The broken line interpolating function has a discontinuous first derivative at
the knots, which makes it unsuitable for many applications. To get better smooth-
ness piecewise polynomials of higher degree need to be used. Although piecewise
quadratic approximation is sometimes useful, piecewise cubic polynomials with con-
tinuous second derivatives are by far the more important (see Figure 4.4.6.
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Figure 4.4.6. Broken line and cubic spline interpolation.



4.4. Piecewise Polynomial Interpolation 57

A cubic polynomial qi(x) on the interval [xi−1, xi) is uniquely determined by
the values of the function and its first derivative at the end points of the interval.
This follows from the more general result on Hermite interpolation in Theorem 4.3.1.
By (4.3.11), translated to the notation in (4.4.10), the cubic qi(x) can be written in
the form

qi(x) = θyi + (1 − θ)yi−1 + hiθ(1 − θ) [(ki−1 − di)(1 − θ) − (ki − di)θ] , (4.4.12)

where hi, di, i = 1 : m, are as in (4.4.10),

θ =
x− xi−1

hi
∈ [0, 1), x ∈ [xi−1, xi), (4.4.13)

is a local variable and ki = q′i(xi).
If the interpolating spline s(x) is to be evaluated at many points, a form that

is more efficient to use than (4.4.12) is the piecewise polynomial form (pp form)

qi(x) = yi−1 + a1i(x− xi−1) + a2i(x− xi−1)
2 + a3i(x − xi−1)

3, (4.4.14)

i = 1 : m. From (4.4.12) we obtain after some calculation

a1i = q′i(xi−1) = ki−1,

a2i = 1
2q

′′

i (xi−1) = (3di − 2ki−1 − ki)/hi, (4.4.15)

a3i = 1
6q

′′′

i (xi−1) = (ki−1 + ki − 2di)/h
2
i .

Using Horner’s scheme qi(x) can be evaluated from (4.4.14) using only four multi-
plication.

With piecewise cubic polynomials we can interpolate given function values and
first derivatives on the grid ∆. By construction the interpolating piecewise cubic
function s(x) will have continuous first derivatives. If f ∈ C4[a, b] then it follows
from the remainder term (4.3.11) that the error satisfies

|f(x) − s(x)| ≤ 1

384
max

i

(

h4
i max

x∈[xi−1,xi]
|f (iv)(x)|

)

. (4.4.16)

It can be shown (Problem1c of Sec. 4.3) that also the first derivative of s(x) is a
good approximation to f ′(x). If f ∈ C5[a, b] we have

|f ′(x) − s′(x)| ≤ 1

72
√

3
max

i

(

h3
i max

x∈[xi,xi+1]
|f (iv)(x) +O(hif

(5)(x))|
)

. (4.4.17)

Sometimes it is useful to consider the values ki, i = 0 : m, as parameters which
are used to give the interpolating function the desired shape. In the next section
we show that it is possible to choose these parameters such that the interpolating
function s(x) also has a continuous second derivative.

We shall now formally define a spline function of order k ≥ 1.

Definition 4.4.4.
Let ∆ = {a = x0 < x1 < · · · < xm = b} be a subdivision of the interval [a, b].

A spline function on ∆ of order k ≥ 1 (degree k − 1 ≥ 0), is a real function s with
properties:
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(a) For x ∈ [xi, xi+1], i = 0 : m− 1, s(x) is a polynomial of degree < k.

(b) For k = 1, s(x) is a piecewise constant function. For k ≥ 2, s(x) and its first
k − 2 derivatives are continuous on [a, b], i.e. s(x) ∈ Ck−2[a, b].

We denote by S∆,k the set of all spline functions of order k on ∆. From the
definition it follows that if s1(x) and s2(x) are spline functions of the same degree,
so is c1s1(x) + c2s2(x). Thus S∆,k is a linear space.

Examples of elements of S∆,k are the truncated power functions

(x− xj)
k−1
+ , j = 1 : m− 1,

and all their linear combinations. Moreover, Pk is a linear subspace of S∆,k.14

Conversely, together these functions span S∆,k. All we need for the first subinterval
is a basis of Pk, e.g., the power basis {1, x, . . . , xk−1}. Further, all we need for
each additional subinterval [xj , xj+1), j = 1 : m − 1, is the new basis function
(x−xj)

k−1
+ . One can show that these k+m− 1 functions are linearly independent.

The dimension of the linear space thus is k +m− 1.

4.4.4 Cubic Spline Interpolation

In the following we shall first study cubic spline functions which interpolate a given
function f(x) at the grid ∆, i.e. the space S∆,4. By definition a cubic spline consists
of cubic polynomials pieced together in such a way that their values and first two
derivatives coincide at the knots. In contrast to Hermite interpolation, the cubic
polynomial in each subinterval will now depend on all data points.

Theorem 4.4.5.
Every cubic spline function, with knots a = x0 < x1 < · · · < xm = b, which

interpolates the function y = f(x),

s(xi) = f(xi) = yi, i = 0 : m,

equals for x ∈ [xi−1, xi), i = 1 : m a third degree polynomial of the form (4.4.12).
The m+ 1 parameters ki, i = 0 : m, satisfy m− 1 linear equations

hi+1ki−1 + 2(hi + hi+1)ki + hiki+1 = 3(hidi+1 + hi+1di), (4.4.18)

i = 1 : m− 1,

where hi = xi − xi−1, di = (yi − yi−1)/hi.

Proof. We require the second derivative of the spline s(x) to be continuous at xi,
i = 1 : m− 1. We have

s(x) =

{

qi(x), x ∈ [xi−1, xi),
qi+1(x), x ∈ [xi, xi+1),

14Recall the notation (x − u)j
+

= max{x − u, 0} that was introduced in Sec. 3.2.3 in connection
with the Peano kernel.
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where qi(x) is given by (4.4.14)–(4.4.15). Differentiating qi(x) twice we get 1
2q

′′

i (x) =
a2,i + 3a3,i(x− xi−1), and putting x = xi

1
2q

′′

i (xi) = a2,i + 3a3,ihi = (ki−1 + 2ki − 3di)/hi. (4.4.19)

Replacing i by i+ 1 we get 1
2q

′′

i+1(x) = a2,i+1 + 3a3,i+1(x− xi), and hence

1
2q

′′

i+1(xi) = a2,i+1 = (3di+1 − 2ki − ki+1)hi+1. (4.4.20)

These last two expressions must be equal, which gives the conditions

1

hi
(ki−1 + 2ki − 3di) =

1

hi+1
(3di+1 − 2ki − ki+1), i = 1 : m− 1. (4.4.21)

Multiplying both sides by hihi+1 we get (4.4.18).

The conditions (4.4.18) are (m − 1) linearly independent15 equations for the
(m+ 1) unknowns ki, i = 0 : m. Two additional conditions are therefore needed to
uniquely determine the interpolating spline. The four most important choices are
discussed below.

(i) If the derivatives at the end points are known we can take

k0 = f ′(a), km = f ′(b). (4.4.22)

The corresponding spline function s(x) is called the complete cubic spline inter-
polant. If k0 and km are determined by numerical differentiation with a truncation
error that is O(h4), we call the spline interpolant almost complete. For example,
k0 and km may be the sum of (at least) four terms of the expansions

Df(x0) =
1

h
ln(1 + ∆)y0, Df(xm) = − 1

h
ln(1 −∇)ym,

into powers of the operators ∆ and ∇, respectively.16

(ii) A physical spline is straight outside the interval [a, b], i.e. s′′(x) = 0 for x ≤ a
or x ≥ b. Thus q′′1 (x0) = q′′m(xm) = 0. From (4.4.20) and (4.4.19) we have

1
2q

′′

i (xi−1) = (3di − 2ki−1 − ki)/hi,
1
2q

′′

i (xi) = −(3di − ki−1 − 2ki)/hi.

Setting i = 1 in the first equation and i = m in the second gives the two conditions

2k0 + k1 = 3d1 (4.4.23)

km−1 + 2km = 3dm.

15The equations are strictly row diagonally dominant (see Sec. 7.4.1) and therefore linearly
independent

16Two terms of the central difference expansion in (3.3.45) or one Richardson extrapolation, see
Example 3.4.16, give higher accuracy, but need extra function values outside the grid ∆.



60 Chapter 4. Interpolation and Approximation

The corresponding approximating spline is called the natural spline interpolant.
It should be stressed that when a cubic spline is used for the approximation of a
smooth function, these boundary conditions are not natural!

(iii) If the end point derivatives are not known, a convenient condition is to require
that s′′′(x) be continuous across the first and last interior knots x1 and xm−1. Hence
q1(x) = q2(x) and qm−1(x) = qm(x). Then x1 and xm−1 are no longer knots, and
these conditions are known as “not a knot” conditions. From (4.4.15) we obtain,

1
6q

′′′

i (x) = a3i = (ki−1 + ki − 2di)/h
2
i , x ∈ [xi−1, xi), i = 1 : m.

Hence the condition q′′′1 = q′′′2 gives (k0 + k1 − 2d1)/h
2
1 = (k1 + k2 − 2d2)/h

2
2, or

h2
2k0 + (h2

2 − h2
1)k1 − h2

1k2 = 2(h2
2d1 − h2

1d2).

Since this equation would destroy the tridiagonal form of the system, we use (4.4.18),
with i = 1 to eliminate k2. This gives the equation

h2k0 + (h2 + h1)k1 = 2h2d1 +
h1(h2d1 + h1d2)

h2 + h1
. (4.4.24)

If the right boundary condition is treated similarly we get

(hm−1 + hm)km−1 + hm−1km = 2hm−1dm +
hm(hm−1dm + hmdm−1)

hm−1 + hm
. (4.4.25)

(iv) If the spline is used to represent a periodic function, then y0 = ym and the
boundary conditions

s′(a) = s′(b), s′′(a) = s′′(b), (4.4.26)

suffice to determine the spline uniquely. From the first condition it follows that
k0 = km, which can be used to eliminate k0 in the equation (4.4.18) for k = 1. The
second condition in (4.4.26) gives using (4.4.21) (k0 + 2k1 − 3d1)/h1 = −(2km−1 +
km − 3dm)/hm, or after eliminating k0,

2hmk1 + 2h1km−1 + (h1 + hm)km = 3(hmd1 + h1dm),

The spline interpolant has the following best approximation property.

Theorem 4.4.6.
Among all functions g that are twice continuously differentiable on [a, b] and

which interpolate f at the points a = x0 < x1 < · · · < xm = b, the natural spline
function minimizes

∫ b

a

(

s′′(t)
)2
dt.

The same minimum property holds for the complete spline interpolant, if the func-
tions g satisfy g′(a) = f ′(a), and g′(b) = f ′(b).
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Proof. See de Boor [7, 1978, Chapter 5].

Due to this property spline functions yield smooth interpolation curves, except
for rather thin oscillatory layers near the boundaries if the “natural” boundary
conditions s′′(a) = s′′(b) = 0 are far from being satisfied. For the complete or
almost complete cubic spline and for cubic splines determined by the “not-a-knot”
conditions, these oscillations are much smaller; see Sec. 4.4.4.17

Equations (4.4.18) together with any of these boundary conditions give rise to
a well-conditioned system of linear equations for determining the derivatives ki. For
the first three boundary conditions the system is tridiagonal. As demonstrated in
Example 1.3.5 such systems can be solved by Gaussian elimination in O(n) flops. It
can be proved that a sufficient condition for the algorithm given there to be stable
is that A is diagonally dominant, i.e.

|b1| > |c1|, |bk| > |ak−1| + |ck|, k = 2 : m− 1, |bn| > |am−1|.

It is also stable for the system resulting from the not-a-knot boundary condition
although this is not diagonally dominant in the first and last row; see Problem 2b.
(Methods for solving general banded linear systems will be studied in more detail
in Volume II, Sec. 7.4).

Example 4.4.2. In the case of spline interpolation with constant stepsize hi = h
equation (4.4.18) becomes

ki−1 + 4ki + ki+1 = 3(di + di+1), i = 1 : m− 1. (4.4.27)

The “not a knot” boundary conditions (4.4.24)–(4.4.25) become

k0 + 2k1 = 1
2 (5d1 + d2), 2km−1 + km = 1

2 (dm−1 + 5dm). (4.4.28)

We obtain a tridiagonal system Tk = g, where,













1 2
1 4 1

. . .
. . .

. . .

1 4 1
2 1

























k0

k1
...

km−1

km













= 3













(5d1 + d2)/6
d1 + d2

...
dm−1 + dm

(dm−1 + 5dm)/6













.

except for the first and last row, the elements of T are constant along the diagonals.
The condition number of T increases very slowly with m; for example, κ(T ) < 16
for m = 100.

Consider now the periodic boundary conditions in (iv). Setting km = k0 in
the last equation we obtain a linear system of equations Tk = g for k1, . . . , km−1

17When a spline is to be used for the approximate representation of a smooth function, the
natural spline is not a natural choice.



62 Chapter 4. Interpolation and Approximation

where

T =



















b1 c1 am

a1 b2 c2 0
. . .

. . .
. . .

...
am−3 bm−2 cm−2 0

am−2 bm−1 cm−1

cm 0 · · · 0 am−1 bm



















. (4.4.29)

Here T is tridiagonal except for its last row and last column, where an extra nonzero
element occurs. Such systems, called arrowhead system, can be solved with about
twice the work of a tridiagonal system; see further Chapter 7.

In some applications one wants to smoothly interpolate given points (xj , yj),
j = 0 : m, where a representation of the form y = f(x) is not suitable. Then
we can use a parametric spline representation x = x(θ), y = y(θ), where the
parameter values 0 = θ0 ≤ θ1 ≤ · · · ≤ θm correspond to the given points. Using
the approach described previously two spline functions sx(t) and sy(t) can then be
determined, that interpolate the points (θi, xi) and (θi, yi), i = 0 : m, respectively.
The parametrization is usually chosen as θi = di/d, i = 1 : m, where d0 = 0,

di = di−1 +
√

(xi − xi−1)2 + (yi − yi−1)2, i = 1 : m.

are the the cumulative distance and d =
∑m

j=1 dj .
For boundary conditions we have the same choices as mentioned previously.

In particular, using periodic boundary conditions for sx(t) and sy(t) allows the
representation of closed curves (see Problem 5).

We will now derive estimates of the error in cubic spline interpolation of a
function with good smoothness properties, f ∈ C5 (say). Let x ∈ Ii = [xi−1, xi],
and set

t = (x− xi−1)/hi, yi = f(xi), y′i = f ′(xi).

The error can be expressed as the sum of two components:

i. The error EH(x) due to Hermite interpolation with correct values of f ′(xi−1),
f ′(xi).

ii. The error ES(x) due to the errors of the slopes ei = ki − y′i, i = 0 : m.

We shall see that the first part is typically the dominant part. For the error EH(x)
we have from equations (4.4.16)–(4.4.17)

max
x∈Ii

|EH(x)| ≤ 1

384
max
x∈Ii

|h4
i f

(iv)(x)|, (4.4.30)

By (4.4.12) the second part of the error is

ES(x) = hit(1 − t)
[

ei−1(1 − t) − eit
]

, x = xi−1 + thi, t ∈ [0, 1).

Since |1 − t| + |t| = 1, it follows easily that

|ES(x)| ≤ 1

4
max

1≤i≤m
|hiej |, j = i− 1, i. (4.4.31)
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We shall estimate |ej| in the case of constant step size. Set

li = 3(di + di+1) − (y′i−1 + 4y′i + y′i+1), i = 1 : m− 1.

Then by (4.4.18) (e1, . . . , em−1) satisfies
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1 4 1
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l2
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lm−2

lm−1
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e0
0
...
0
em













,

or Ae = l − b. We write e = eI − eB, where AeI = l, AeB = b. These two systems
will be treated differently.

We first estimate eI and note that, since the matrix A is diagonally dominant,
we can use Lemma 6.4.1 to obtain18

max
1≤i<m

|eI,i| ≤
1

α
max

1≤i<m
|li|, where α = min

i

(

|aii| −
∑

j 6=i

|aij |
)

= 2.

In order to estimate max1≤i<m |li|, note that the defining relation for li can be
rewritten as

h

3
li = yi+1 − yi−1 −

h

3
(y′i−1 + 4y′i + y′i+1).

The right hand side here equals the local error of Simpson’s formula for computing
the integral of y′ over the interval [xi−1, xi+1], which according to Problem 3.2.12
approximately is h5f (5)(xi)/90. It follows that19

max
1≤i<m

|eI,i| ≤
1

60
max

i
h4

i |f (5)(xi)|.

By (4.4.31) this shows that the contribution of eI to ES is O(h5) if f ∈ C5, while
EH(x) is O(h4). For complete splines e0 = em = 0, and for almost complete splines
e0 = O(h4), em = O(h4). Hence eB,i = O(h4), and its contribution to ES is O(h5).
So if h is sufficiently small, the Hermite interpolation error is, in the whole interval
[a, b], asymptotically, the dominant source of error for complete and almost complete
splines.20

Similar conclusions seem to hold also in the case of variable step size, under the
reasonable assumption that hn+1 − hn = O(h2

n), see Sec. 13.1 (in particular Prob-
lem 11), where variable step size is discussed in the context of ordinary differential
equations.

Finally we discuss the effect of the boundary slope errors for other boundary
conditions. The equation AeB = b can be written as a difference equation

eB,i+1 + 4eB,i + eB,i−1 = 0, i = 1 : m− 1.

18This is typically an overestimate, almost by a factor of 3, see Problem 3.3.37.
19Notice that, if f ∈ P5, the slopes ki becomes exact in complete cubic splines interpolation.
20In the literature the usual (rigorous) error bound for a perfect spline, due to Hall and Meyer,

is five times as large as the bound for the Hermite error. It is valid with h = max hi, independent
of the position of the knots, for all f ∈ C

4, while we require f ∈ C
5.
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Figure 4.4.7. Boundary slope errors eB,i for a cubic spline, e0 = em = −1;
m = 20.

see Sec. 3.4. One can show (Problem 3.4.5) that, for any boundary condition,

eB,i ≈ uie0 + um−iem, u =
√

3 − 2 ≈ −0.268,

if um is negligible. (Here u and u−1 are the roots of the characteristic equation
u2 + 4u+ 1 = 0.)

Figure 4.4.7 shows (for m = 20, e0 = em = −1) how rapidly this error
component dies out, e.g., u4 = 0.005. At the midpoint x = 0.5 the error is 0.3816 ·
10−5.

If m ≫ 1, e0 6= 0, and em 6= 0 it follows that eB is negligible outside thin
oscillatory boundary layers near x = x0 and x = xm. The height and thickness
of the layers depend on e0 and em. We discuss the left boundary; the right one is
analogous. Assume that

e0 = eB,0 6= 0, e1 ≈ eB,1 ≈ ueB,0 ≈ ue0.

We then estimate e0 by putting

k0 = y′0 + e0, k1 = y′1 + e1 ≈ y′1 + ue0,

into the boundary condition at x0, i.e. the first equation of (4.4.23) for the natural
splines and (4.4.24) for the “not a knot” splines. (Complete splines have no oscil-
latory boundary layers; eB = 0.) The peak of the contribution of eB to the spline
interpolation error is then obtained by (4.4.12) for i = 1, and equals

he0 max
0≤t≤1

|t(1 − t(1 − t− ut)| ≈ 0.17he0. (4.4.32)

For the natural splines, this procedure leads to

(2 + u)e0 = 3
1

h
(y1 − y0) − 2y′0 − y′1 −O(h4)
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= 3
(

y′0 +
1

2
hy′′0 + . . .

)

− 3y′0 − hy′′0 + . . . ∼ 1

2
hy′′0 .

Since 2 + u =
√

3, we obtain e0 ≈ 0.29hy′′0 , and, by (4.4.32), the peak near x =
x0 becomes approximately 0.049h2|y′′|, i.e. 40% of the linear interpolation error
(instead of cubic), often clearly visible in a graph of s(x).

For the “not a knot”-splines the procedure leads to

(1 + 2u)e0 =
5

2h
(y1 − y0) +

1

2h
(y2 − y1) − y′0 − 2y′1 −O(h4) ≈ h3

12
y(4);

see Problem 3.2.10. We thus obtain e0 ∼ 0.180h3y(4), and hence by (4.4.32) the
peak near x0 becomes 0.031h4y(4), typically very much smaller than we found for
natural splines. Still it is about 11.5 times as large as the Hermite interpolation
error, but since the oscillations die out by the factor u = 0.29 in each step, we
conclude that the Hermite interpolation is the dominant error source in cubic “not
a knot”-spline interpolation in (say) the interval [a+ 3h, b− 3h] .

For natural splines the boundary layers are much thicker, because the peaks
are much higher.

Example 4.4.3.
For the function f(x) = 1/(1 + 25x2), x ∈ [−1, 1], the maximum norm of the

error is 0.022, in interpolation with a natural cubic spline function at the eleven
equidistant points xi = −1 + 0.2i, i = 0 : 10. This good result contrasts sharply
with the unpleasant experience near the boundaries of interpolation with a tenth-
degree polynomial shown in Figure 4.2.1. An (almost) perfect cubic spline or a “not
a knot”-spline gives even better results near the boundaries.

4.4.5 Computing with B-Splines

It was shown in Sec. 4.4.3 that the set of spline functions of order k, S∆,k, on the
grid

∆ = {a = x0 < x1 < · · · < xm = b}
is a linear space of dimension k +m− 1. A basis was shown to be

{

1, x, . . . , xk−1
}

∪
{

(x − x1)
k−1
+ , (x − x2)

k−1
+ , . . . , (x− xm−1)

k−1
+

}

, (4.4.33)

which is the truncated power basis.

Example 4.4.4. For k = 2 the space S∆,k consists of continuous piecewise affine
(linear) functions also called linear splines. Then a basis is

{1, x} ∪ {l1(x), . . . , lm−1(x)}, li(x) = (x− xi)+.

Another basis for S∆,2 is obtained by introducing an artificial exterior knot x−1 ≤
x0. Then it is easy to see that using the functions li(x), i = −1 : m− 1 every linear
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spline on [x0, xm] can also be written as

s(x) =

m−1
∑

i=−1

cili(x).

The truncated power basis has several disadvantages. The basis functions are
not local; e.g., the monomial basis functions {1, x, . . . , xk−1} are nonzero on the
whole interval [a, b]. Also the basis functions (4.4.33) are almost linearly dependent
when the knots are close. Therefore this basis yields an ill-conditioned linear systems
for various tasks and is not suited for numerical computations. In the following we
will construct a more satisfactory basis for S∆,k.

In anticipation of the fact that it may be desirable to interpolate at other
points than the knots we consider from now on the sequence of knots

∆ = {τ0 ≤ τ1 ≤ · · · ≤ τm}. (4.4.34)

where τi ≤ τi+k, i = 0 : m − k, i.e. at most k successive knots are allowed to
coincide.

We start by considering k = 1. The space S∆,1 consists of piecewise constant
functions. As a basis for S∆,2 we can simply take the functions

Ni,1(x) =
{

1 x ∈ [τi, τi+1);
0 otherwise.

, i = 0 : m− 1. (4.4.35)

The functions Ni,1(x) are arbitrarily chosen to be continuous from the right.
For k = 2 we define the hat functions21 by

Ni,2(x) =







(x− τi)/(τi+1 − τi), x ∈ [τi, τi+1],
(τi+2 − x)/(τi+2 − τi+1), x ∈ [τi+1, τi+2),
0, x 6∈ (τi, τi+2),

i = −1 : m− 1. (4.4.36)

where we have introduced two exterior knots τ−1 ≤ τ0 and τm+1 ≥ τm at the
boundaries. (In the following we refer to the knots τ0, . . . , τm as interior knots.)
Note that for x ∈ (τi, τi+1) we have Nj,2(x) = 0, j 6= i−1, i. Hence, for a fixed value
of x at most two hat functions will be nonzero. The exterior knots are usually taken
to coincide with the boundary so that τ−1 = τ0 and τm+1 = τm; see Figure 4.4.8.
In this case N−1,1 and Nm−1,1 become “half-hats” with a singularity at τ0 and τm,
respectively.

The (m + 1) functions Ni,2(x), i = −1 : m − 1, are B-splines of order two
(degree one). At a distinct knot τi just one hat function is nonzero, Ni+1(x) = 1.
It follows that the spline function of order k = 2 interpolating the points (τi, yi),
i = 0 : m, can uniquely be written as

s(x) =

m−1
∑

i=−1

ciNi,2(x). (4.4.37)

21The generalization of hat function to two dimensions is often called tent function. This concept
is very important in, e.g., in finite element methods;, see Chap. 14.
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Figure 4.4.8. The six hat functions Ni,2(x), i = −1 : 4 (m + k − 1 = 6)
with knots t−1 = t0, t1, . . . , t4, t5 = t6.

with ci = yi+1. This shows that the restriction of the functions Ni,2(x), i = −1 :
m − 1, to the interval [τ0, τm] are (m + 1) linearly independent functions in S∆,2

and form a basis for S∆,2.
If we allow two interior knots coalesce, τi = τi+1, 0 < i < m − 1, then

Ni−1,2(x) and Ni,2(x) will have a discontinuity at τi. This generalizes the concept
of a B-spline of order 2 given in Definition 4.4.4 and allows us to model functions
with discontinuities at certain knots.

It is easily verified that the functions Ni,2(x) can be written as a linear com-
bination of the basis function

li(x) = (x− τi)+, i = 1 : m+ 1,

and it holds that

Ni,2(x) =
(

(x− τi+2)+ − (x− τi+1)+
)

/(τi+2 − τi+1)

−
(

(x− τi+1)+ − (x− τi)+
)

/(τi+1 − τi)

=
(

[τi+1, τi+2]t(t− x)+ − [τi, τi+1]t(t− x)+ (4.4.38)

= (τi+2 − τi)[τi, τi+1, τi+2]t(t− x)+, i = 1 : m.

Here [τi, τi+1, τi+2]t means the second order divided difference functional22 oper-
ating on a function of t, i.e. the values τi etc. are to be substituted for t not
for x. Recall that divided differences are defined also for coincident values of the
argument; see Sec. 4.3.1.

From the definition of the Peano kernel and its basic properties, given in
Sec. 3.2.3 it follows that the last expression in (4.4.38) tells us that Ni,2 is the Peano
kernel of a second order divided difference functional multiplied by the constant
τi+2 − τi. This observation suggests a definition of B-splines of arbitrary order k
and a B-spline basis for the space S∆,k.

Definition 4.4.7.

22The notation is defined in Sec. 4.2.1
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Let ∆ = {τ0 ≤ τ1 ≤ · · · ≤ τm} be an arbitrary sequence of knots such that
τi < τi+k, i = 0 : m− k. Then a B-spline of order k equals (apart from a stepsize
factor) the Peano kernel of a k-th order divided difference functional; more precisely
we define (with the notations used in this chapter)

Ni,k(x) = (τi+k − τi)[τi, τi+1, . . . , τi+k]t(t− x)k−1
+ , (4.4.39)

where [τi, τi+1, . . . , τi+k]lk−1
x denotes the k-th divided difference of the function lk−1

x (·)
with respect to the set of points τi, τi+1, . . . , τi+k.

Since divided differences are defined also for coalescing points (see Sec. 4.4.3),
Definition 4.4.7 remains valid for knots that are not distinct.

Example 4.4.5. For k = 1 (4.4.38) gives (τi 6= τi+1)

Ni,1(x) = (τi+1 − τi)[τi, τi+1]t(t− x)0+.

If τi < x < τi+1, then (τi+1 − x)0+ = 1 and (τi − x)0+ = 0 and hence Ni,1 = 1;
otherwise Ni,1 = 0. This coincides with the piecewise constant functions in (4.4.35).

It can be shown that Ni,k(x) is defined for all x and is a linear combination
of functions (τj − x)k−1

+ . If the knots are distinct then by Problem 4.2.11,

Ni,k(x) = (τi+k − τi)

i+k
∑

j=i

(τj − x)k−1
+

Φ′

i,k(τj)
, Φi,k(x) =

i+k
∏

j=i

(x− τj). (4.4.40)

This shows that Ni,k is a linear combination of functions (τj − x)k−1
+ , j = i : i+ k,

and thus a spline of order k (as anticipated in the terminology).
The B-spline for equidistant knots is related to the probability density of

the sum of k uniformly distributed random variables on [− 1
2 ,

1
2 ]. This was known

already to Laplace.23

Theorem 4.4.8. The B-splines of order k has the following properties:

(i) Positivity: Ni,k(x) > 0, x ∈ (τi, τi+k).

(ii) Compact support: Ni,k(x) = 0, x 6∈ [τi, τi+k].

(iii) Summation property:
∑

iNi,k(x) = 1, ∀x ∈ [τ0, τm].

Proof. A proof can be based on the general facts concerning Peano kernels found
in Sec. 3.2.3, where also an expression for the B-spline (k = 3) is calculated for the
equidistant case. (Unfortunately the symbol x means opposite things here and in
Sec. 3.2.3.)

23Pierre Simon Laplace (1749–1827), French mathematician and astronomer, has also given
important contributions to mathematical physics and probability theory.
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(i) By (4.2.11) Rf = [τi, τi+1, . . . , τi+k]f = f (k)(ξ)/k!, ξ ∈ (τi, τi+k), and
Rp = 0, for p ∈ Pk. It then follows from the corollary of Peano’s remainder
theorem that the Peano kernel does not change sign in [τi, τi+k]. It must then have
the same sign as

∫

K(u) du = R(x − a)k/k! = 1. This proves a somewhat weaker
statement than (i) (Ni,k(x) ≥ 0 instead of Ni,k(x) > 0).

(ii) This property follows since a Peano kernel always vanishes outside its
interval of support of the functional; in this case [τi, τi+k]. (A more general result
concerning the number of zeros is found, e.g., in Powell [38, Theorem 19.1]. Among
other things this theorem implies that the jth derivative of a B-spline, j ≤ k − 2,
changes sign exactly j times. This explains the “bell-shape” of B-splines.)

(iii) For a sketch of a proof of the summation property 24, see Problem 8.
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Figure 4.4.9. The four cubic B-splines nonzero for x ∈ (t0, t1) with coa-
lescing exterior knots t−3 = t−2 = t−1 = t0.

To get a basis of B-splines for the space S∆,k, ∆ = {τ0 ≤ τ1 ≤ · · · ≤ τm},
(m+k−1) B-splines of order k are needed. We therefore choose 2(k−1) additional
knots τ−k+1 ≤ · · · ≤ τ−1 ≤ τ0, and τm+k−1 ≥ · · · ≥ τm+1 ≥ τm, and B-splines
Ni,k(x), i = −k + 1 : m− 1.

It is convenient to let the exterior knots coincide with the end points,

τ−k+1 = · · · = τ−1 = τ0, τm = τm+1 = · · · = τm+k−1.

It can be shown that this choice tends to optimize the conditioning of the B-spline
basis. Figure 4.4.9 shows the first four cubic B-splines for k = 4 (the four last
B-splines are a mirror image of these). We note that N−3,4 is discontinuous, N−2,4

has a non-zero first derivative, and N−2,4 a non-zero second derivative at the left
boundary.

24The B-splines Mi,k originally introduced by Curry and Schoenberg were normalized so that
R

∞

−∞
Mi,k dx = 1.
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Interior knots of multiplicity r > 1 are useful when we want to model a
function, which has less than k − 2 continuous derivatives at a particular knot. If
r ≤ k interior knots coalesce then the spline will only have k − 1 − r continuous
derivatives at this knot.

Lemma 4.4.9. Let τi be a knot of multiplicity r ≤ k, i.e.

τi−1 < τi = · · · = τi+r−1 < τi+r.

Then Ni,k is at least (k − r − 1) times continuously differentiable at τi. For r = k,
the B-spline becomes discontinuous.

Proof. The truncated power (t− τi)
k−1
+ is (k− 2) times continuously differentiable

and [τi, . . . , τi+k]g contains at most the (r − 1)st derivative of g. Hence the lemma
follows.

Consider the spline function

s(x) =

m−1
∑

i=−k+1

ciNi,k(x). (4.4.41)

If s(x) = 0, x ∈ [τ0, τm], then s(τ0) = s′(τ0) = · · · = s(k−1)(τ0) = 0, and s(τi) = 0,
i = 1 : m− 1. From this it can be deduced by induction that in (4.4.41) ci = 0, i =
−k+1 : m−1. This shows that the (m+k−1) B-splines Ni,k(x), i = −k+1 : m−1,
are linearly independent and form a basis for the space S∆,k. (A more general result
is given in de Boor [7, Theorem IX.1].) Thus any spline function s(x) of order k
(degree k − 1) on ∆ can be uniquely written in the form (4.4.41). Note that from
the compact support property it follows that for any fixed value of x ∈ [τ0, τm] at
most k terms will be nonzero in the sum in (4.4.41), so we have

s(x) =

j
∑

i=j−k+1

ciNi,k(x), x ∈ [τj , τj+1). (4.4.42)

For developing a recurrence relation for B-splines we need the following dif-
ference analogue of Leibniz’25 formula.

Theorem 4.4.10.
Let f(x) = g(x)h(x), and xi ≤ xi+1 ≤ . . . ≤ xi+k. Then

[xi, . . . , xi+k]f =

i+k
∑

r=i

[xi, . . . , xr]g · [xr, . . . , xi+k]h, (4.4.43)

provided that g(x) and f(x) are sufficiently many times differentiable so that the
divided differences on the right hand side are defined for any coinciding points xj .

25Gottfried Wilhelm von Leibniz (1646–1716). Leibniz developed his version of calculus at the
same time as Newton. Many of the notations he introduced are still used today.
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Proof. Note that the product polynomial

P (x) =

i+k
∑

r=i

(x− xi) · · · (x− xr−1)[xi, . . . , xr]g

·
i+k
∑

s=i

(x− xs+1) · · · (x− xi+k)[xs, . . . , xi+k]h

agrees with f(x) at xi, . . . , xi+k since by Newton’s interpolation formula the first
factor agrees with g(x) and the second with h(x) there. If we multiply out we can
write P (x) as a sum of two polynomials

P (x) =

i+k
∑

r,s=i

. . . =
∑

r≤s

. . .+
∑

r>s

. . . = P1(x) + P2(x).

Since in P2(x) each term in the sum has
∏i+k

j=i (x − xj) as a factor it follows that
P1(x) will also interpolate f(x) at xi, . . . , xi+k. The theorem now follows since the

leading coefficient of P1(x), which equals
∑i+k

r=i [xi, . . . , xr]g · · · [xr, . . . , xi+k]h, must
equal the leading coefficient of the unique interpolation polynomial of degree k,
which is [xi, . . . , xi+k]f .

Theorem 4.4.11. The B-splines satisfy the recurrence relation

Ni,k(x) =
x− τi

τi+k−1 − τi
Ni,k−1(x) +

τi+k − x

τi+k − τi+1
Ni+1,k−1(x). (4.4.44)

Proof. (de Boor [7, pp. 130–131]) The recurrence is derived by applying Leibniz’
formula for the k-th divided difference to the product

(t− x)k−1
+ = (t− x)(t− x)k−2

+ .

This gives

[τi, . . . , τi+k]t(t− x)k−1
+ = (τi − x)[τi, . . . , τi+k]t(t− x)k−2

+

+ 1 · [τi+1, . . . , τi+k]t(t− x)k−2
+ . (4.4.45)

since [τi]t(t − x) = (τi − x), [τi, τi+1]t(t − x) = 1, and [τi, . . . , τj ]t(t − x) = 0 for
j > i+ 1. By the definition of a divided difference

(τi − x)[τi, . . . , τi+k]t =
τi − x

τi+k − τi
([τi+1, . . . , τi+k]t − [τi, . . . , τi+k−1]t) .

Substitute this in (4.4.45), simplify and apply the definition of B-splines. This yields
(4.4.44).



72 Chapter 4. Interpolation and Approximation

Note that with k multiple knots at the boundaries the denominators in (4.4.44)
can become zero. In this case the corresponding nominator also is zero and the term
should be set equal to zero.

From Property (ii) in Theorem 4.4.8 we conclude that only k B-splines of
order k may be nonzero on a particular interval [τj , τj+1]. Starting from Ni,1(x) =
1, x ∈ [τi, τi+1) and 0 otherwise, cf. (4.4.35), these B-splines of order k can be
simultaneously evaluated using this recurrence by forming successively their values
for order 1 : k in only about 3

2k
2 flops. This recurrence is extremely stable, since

it consists of taking positive (nonnegative) combinations of positive (nonnegative)
numbers.

Suppose that x ∈ [τi, τi+1], and τi 6= τi+1. Then the B-splines of order k =
1, 2, 3, . . ., nonzero at x can be simultaneously evaluated by computing the triangular
array

0
0 . . .

0 Ni−3,4

0 Ni−2,3 . . .
Ni−1,2 Ni−2,4

Ni,1 Ni−1,3 . . .
Ni,2 Ni−1,4

0 Ni,3 . . .
0 Ni,4

0 . . .
0

(4.4.46)

The boundary of zeros in the array is due to the fact that all other B-splines not
mentioned explicitly vanish at x. This array can be generated column by column.
The first column is known from (4.4.35), and each entry in a subsequent column can
be computed as a linear combination with nonnegative coefficients of its two neigh-
bors using (4.4.44). Note that if this is arranged in a suitable order the elements in
the new column can overwrite the elements in the old column.

To evaluate s(x), we first determine the index i such that x ∈ [τi, τi+1) using,
e.g., a linear search or bisection (see Sec. 6.1). The recurrence above is then used
to generate the triangular array (4.4.46), which provides Nj,k(x), j = i− k + 1 : i.
in the sum (4.4.42).

Using the B-spline basis we can formulate a more general interpolation prob-
lem, where the n = m+ k − 1 interpolation points, or nodes, xj do not necessarily
coincide with the knots τi. We consider determining a spline function s(x) ∈ S∆,k,
such that

s(xj) = fj, j = 1 : m+ k − 1.

Since any spline s(x) ∈ S∆,k can be written as a linear combination of B-splines,
the interpolation problem can equivalently be written

m−1
∑

i=−k+1

ciNi,k(xj) = fj , j = 1 : m+ k − 1. (4.4.47)
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These equations form a linear system Ac = f for the coefficients, where

aij = Ni−k,k(xj), i, j = 1 : m+ k − 1, (4.4.48)

and
c = (c−k+1, . . . , cm−1)

T , f = (f1, . . . , fm+k−1)
T .

The elements aij = Ni−k,k(xj) of the matrix A can be evaluated by the recurrence
(4.4.44). The matrix A will have a banded structure since aij = 0 unless xj ∈
[τi, τi+k]. Hence at most k elements are nonzero in each row of A. (Note that if
xj = τi for some i only k−1 elements will be nonzero, which explains why tridiagonal
systems were encountered in cubic spline interpolation in earlier sections.)

Schoenberg and Whitney [45, ] showed that the matrix A is nonsingular
if and only if its diagonal elements are nonzero,

ajj = Nj−k,k(xj) 6= 0, j = 1 : n,

or equivalently if the nodes xj satisfy

τj−k < xj < τj , j = 1 : n. (4.4.49)

Further, the matrix can be shown to be totally nonnegative, i.e. the determinant
of every submatrix is nonnegative. For such systems, if Gaussian elimination is
carried outwithout pivoting, the error bound is particularly favorable. This will also
preserve the banded structure of A during the elimination.

When the B-spline representation (4.4.41) of the interpolant has been deter-
mined it can be evaluated at a given point using the recursion formula (4.4.44).
If it has to be evaluated at many points it is more efficient to first convert the
spline to its polynomial representation (4.4.14). For hints on how to do that see
Problem 9 (b) and (c).

Unless the Schoenberg–Whitney condition (4.4.49) is well-satisfied the system
may become ill-conditioned. For splines of even order k the interior nodes

τ0 = x0, τj+1 = xj+k/2, j = 0 : n− k − 1, τm = xn,

is a good choice in this respect. In the important case of cubic splines this means
that knots are positioned at each data point except the second and next last (cf.
the “not a knot” condition in Sec. 4.4.4.

In some application we are given function values fj = f(xj), j = 1 : n,
that we want to approximate with a spline functions with much fewer knots so
that m + k − 1 ≤ n. Then (4.4.47) is an overdetermined linear system and the
interpolation conditions cannot be satisfied exactly. We therefore consider the linear
least squares spline approximation problem

min

n
∑

j=1

( m−1
∑

i=−k+1

ciNi,k(xj) − fj

)2

. (4.4.50)

Using the same notation as above this can be written in matrix form

min
c

‖Ac− f‖2
2. (4.4.51)
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The matrix A will have full column rank equal to m+ k − 1 if and only if there is
a subset of points τj satisfying the Schoenberg–Whitney conditions (4.4.49).

If A has full column rank then the least squares solution c is unique and is
uniquely determined by the normal equations ATAc = AT f . The matrix ATA
is symmetric and positive definite and hence the normal equations can be solved
using Cholesky factorization of ATA. A will have at most k nonzero elements in
each row and advantage should be taken of the banded form of the matrix ATA;
see Figure 4.4.10. More stable methods for solving linear least squares problems
(4.4.51) will be introduced in Sec. 8.5.7.

0 5 10 15 20

0

5

10

15

20

25

30

35

40

45

50

nz = 191

0 5 10 15 20

0

5

10

15

20

nz = 121

Figure 4.4.10. Structure of the matrices A and ATA arising in cubic
spline approximation of Titanium data.(nonzero elements showed).

Example 4.4.6. (de Boor [7]) Consider experimental data describing a property
of titanium as a function of temperature. Experimental values for ti = 585 + 10i,
i = 1 : 49, are given. We want to fit this data using a least squares cubic spline
Figure 4.4.11 shows results from using a least squares fitted cubic spline with 9 and
17 knots, respectively. The spline with 9 knots shows oscillations near the points
where the curve flattens out and the top of the peak is not well matched. Increasing
the number of knots to 17 we get a very good fit.

We have in the treatment above assumed that the set of (interior) knots {τ0 ≤
τ1 ≤ · · · ≤ τm} is given. In many spline approximation problems it is more realistic
to consider the location of knots to be free and try to determine a small set of knots
such that the given data can be approximated to a some preassigned accuracy.
Several schemes have been developed to treat this problem.

One class of algorithms start with only a few knots and iteratively add more
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Figure 4.4.11. Least squares cubic spline approximation of Titanium data;
the knots are marked on the axes by a “o”; left: 9 knots;left: 17 knots.

knots guided by some measure of the error; see de Boor [6, Chapter XII]. The
placement of the knots are chosen so that the Schoenberg–Whitney conditions are
always satisfied. The iterations are stopped when the approximation is deemed
satisfactory. If a node τ̃ ∈ [τj , τj+1) is inserted then the B-spline series with respect
to the enlarged set of nodes can cheaply and stably be computed from the old one
(see Dierckx [22]).

Other algorithms starts with many knots and successively remove knots, which
are not contributing much to the quality of the approximation. In these two classes
of algorithms one does not seek an optimal knot placement at each step. This is
done in a more recent algorithms; see Schwetlick and Schütze [47].

Review Questions

1. What is meant by a cubic spline function? Give an example where such a
function is better suited than a polynomial for approximation over the whole
interval.

2. (a) What is the dimension of the space S∆,k of spline functions of order k on
a grid ∆ = {x0, x1, . . . , xm}? Give a basis for this space.

(b) Set up the linear system for cubic spline interpolation in the equidistant
case for some common boundary conditions. What does the unknown quan-
tities mean, and what conditions are expressed by the equations? About how
many operations are required to interpolate a cubic spline function to m+ 1,
m≫ 1, given values of a function?

3. What error sources have influence on the results of cubic spline interpolation?
How fast do the boundary errors die out? How do the results in the interior
of the interval depend on the step size (asymptotically)? One of the common
types of boundary conditions yield much larger error than the others. Which
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one? Compare it quantitatively with one of the others.

4. Approximately how many arithmetic operations are required to evaluate the
function values of all cubic B-splines that are nonzero at a given point?

5. Express the restrictions of f(x) = 1 and f(x) = x to the interval [x0, xm] as
linear combinations of the hat functions defined by (4.4.36).

6. The Schoenberg–Whitney conditions give necessary and sufficient conditions
for a certain interpolation problem with B-splines of order k. What is the
interpolation problem and what are the conditions?

Problems and Computer Exercises

1. Consider a cubic Bézier curve defined by the four control points p0, p1, p2 and
p3. Show that at t = 1/2

c(1/2) =
1

4

p0 + p3

2
+

3

4

p1 + p2

2

and interpret this formula geometrically.

2. (G. Eriksson) Approximate the function y = cosx on [−π/2, π/2] by a cubic
Bézier curve. Determine the four control points in such a way that it interpo-
lates cosx and its derivative at −π/2, 0 and π/2.

Hint Use symmetry and the result of Problem 1 to find the y-coordinate of p1

and p2.

3. Suppose that f(x) and the grid ∆ are symmetric around the midpoint of the
interval [a, b]. You can then considerably reduce the amount of computa-
tion needed for the construction of the cubic spline interpolant by replacing
the boundary condition at x = b by an adequate condition at the midpoint.
Which?

(a) Set up the matrix and right hand side for this in the case of constant step
size h.

(b) Do the same for a general case of variable step size.

4. (a) Write a program for solving a tridiagonal linear system by Gaussian elim-
ination without pivoting. Assume that the nonzero diagonals are stored in
three vectors. Adapt it to cubic spline interpolation with equidistant knots
with several types of boundary conditions.

(b) Consider the tridiagonal system resulting from the not-a-knot boundary
conditions. Show that after eliminating k0 between the first two equations
and km between the last two equations the remaining tridiagonal system for
k1, . . . , km−1 is diagonally dominant.

(c) Interpolate a cubic spline s(x) through the points (xi, f(xi)), where

f(x) = (1 + 25x2)−1, xi = −1 +
2

10
(i− 1), i = 1 : 11.

Compute a natural spline, a complete spline (here f ′(x1) and f ′(x11) are
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needed) and a “not a knot” spline. Compute and compare error curves (nat-
ural and logarithmic).

(c) Similar runs as in (b), though for f(x) = 1/x, 1 ≤ x ≤ 2, with h = 0.1
and h = 0.05. Compare the “almost complete”, as described in the text, with
the complete and the natural boundary condition.

5. If f ′′ is known at the boundary points, then the boundary conditions can be
chosen so that f ′′ = s′′ at the boundary points. Show that this leads to the
conditions

2k0 + k1 = 3d1 − h1f
′′(x0),

km−1 + 2km = 3dm + hmf
′′(xm).

6. Show that the formula

∫ xm

x0

s(x)dx =

m
∑

i=1

(1

2
hi(yi−1 + yi) +

1

12
(ki−1 − ki)h

2
i

)

,

is exact for all cubic spline functions s(x). How does the formula simplify if
all hi = h?

Hint: Integrate (4.4.12) from xi−1 to xi.

7. In (4.4.12) the cubic spline qi(x) on the interval [xi−1, xi) is expressed in terms
of function values yi−1, yi, and the first derivatives ki−1, ki.

(a) Show that if Mi = s′′(xi), i = 0 : m, are the second derivatives (also called
moments) of the spline function then

ki − di =
hi

6
(2Mi +Mi−1), ki−1 − di = −hi

6
(Mi + 2Mi−1).

Hence qi(x) can also be uniquely expressed in terms of yi−1, yi and Mi−1,Mi.

(b) Show that, using the parametrization in (a), the continuity of the first
derivative of the spline function at an interior point xi gives the equation

hiMi−1 + 2(hi + hi+1)Mi + hi+1Mi+1 = 6(di+1 − di).

8. (a) Develop an algorithm for solving the arrowhead linear system Tk = g
(4.4.29), using Gaussian elimination without pivoting. Show that about twice
the number of arithmetic operations are needed compared to a tridiagonal
system.

(b) At the end of Sec. 4.4.4 parametric spline interpolation to given points
(xi, yi), i = 0 : m, is briefly mentioned. Work out the details on how to use
this to represent a closed curve. Try it out on a boomerang, an elephant, or
what have you?

9. (a) Compute and plot a B-spline basis of order k = 3 (locally quadratic) and
m = 6 subintervals of equal length.

Hint: In the equidistant case there is some translation invariance and symme-
try, so you do not really need more than essentially three different B-splines.
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You need one spline with triple knot at x0 and a single knot at x1 (very easy
to construct), and two more splines.

(b) Set up a scheme to determine a locally quadratic B-spline, which interpo-
lates given values at the midpoints xi = (τi+1 +τi)/2 (τi+1 6= τi), i = 0 : m−1,
and the boundary points τ0, τm. Show that the spline is uniquely determined
by these interpolation conditions.

10. Derive the usual formula of Leibniz for the kth derivative from (4.4.43) by a
passage to the limit.

11. Use the recurrence (4.4.44)

Ni,k(x) =
x− τi

τi+k−1 − τi
Ni,k−1(x) +

τi+k − x

τi+k − τi+1
Ni+1,k−1(x)

to show that
∑

i

Ni,k(x) =
∑

i

Ni,k−1(x), τ0 ≤ x ≤ τm,

where the sum is taken over all nonzero values. Use this to give an induction
proof of the summation property in Theorem 4.4.8.

12. (a) Using the result
d

dx
(t − x)k−1

+ = −(k − 1)(t − k)k−2
+ , k ≥ 1, show the

formula for differentiating a B-spline

d

dx
Ni,k(x) = (k − 1)

(

Ni,k−1(x)

τi+k−1 − τi
− Ni+1,k−1(x)

τi+k − τi+1

)

.

Then use the relation (4.4.44) to show

d

dx

s
∑

i=r

ciNi,k(x) = (k − 1)

s+1
∑

i=r

ci − ci−1

τi+k−1 − τi
Ni,k−1(x),

where cr−1 := cs+1 := 0.

(b) Given the B-spline representation of a cubic spline function s(x). Show
how to find its polynomial representation (4.4.14) by computing the function
values and first derivatives s(τi), s

′(τi), i = 0 : m.

(c) Apply the idea in (a) recursively to show how to compute all derivatives
of s(x) up to order k − 1. Use this to develop a method for computing the
polynomial representation of a spline of arbitrary order k from its B-spline
representation.

13. Three different bases for the space of cubic polynomials of degree ≤ 3 on
the interval [0, 1] are the monomial basis {1, t, t2, t3}, the Bernstein basis
{B3

0(t), B3
1(t), B3

2(t), B3
3(t)}, and the Hermite basis. Determine the matrices

for these basis changes.

4.5 Approximation and Function Spaces

Function space concepts have been introduced successively in this book. Recall, e.g.,
the discussion of operators and functionals in Sec. 3.2.1, where also the linear space
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Pn, the n-dimensional space of polynomials of degree less than n was introduced.
This terminology was used and extended in Sec. 4.1, in the discussion of various
bases and coordinate transformations in Pn.

For coming applications of functional analysis to interpolation and approxi-
mation it is now time for a digression about:

• distances and norms in function spaces;

• a general error bound that we call the norm and distance formula;

• inner-product spaces and orthogonal systems.

4.5.1 Distance and Norm

For the study of accuracy and convergence of methods of interpolation and approx-
imation we now introduce the concept of a metric space. By this we understand a
set of points S, and a real-valued function d, a distance defined for pairs of points
in S in such a way that the following axioms are satisfied for all x, y, z in S. (Draw
a triangle with vertices at the points x, y, z.)

1. d(x, x) = 0, (reflexivity)

2. d(x, y) > 0 if x 6= y, (posivity)

3. d(x, y) = d(y, x), (symmetry)

4. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

The axioms reflect familiar features of distance concepts used in mathematics
and everyday life, such as the absolute value of complex numbers, the shortest
distance along a geodesic on the surface of the earth, or the shortest distance along
a given road system.26.

Many other natural and useful relations can be derived from these axioms,
e.g.

d(x, y) ≥ |d(x, z) − d(y, z)|, d(x1, xn) ≤
n−1
∑

i=1

d(xi, xi+1), (4.5.1)

where x1, x2, . . . , xn is a sequence of points in S; see Problem 1.

Definition 4.5.1.
A sequence of points {xn} in a metric space S is said to converge to a limit

x∗ ∈ S if d(xn, x
∗) → 0. As n → ∞, we write xn → x∗ or limn→∞ xn = x∗.

A sequence {xn} in S is called a Cauchy sequence, if for every ǫ > 0, there is
an integer N(ǫ) such that d(xm, xn) < ǫ, for all m,n ≥ N(ǫ). Every convergent
sequence is a Cauchy sequence, but the converse is not necessarily true. S is called
a complete space if every Cauchy sequence in S converges to a limit in S.

26If S is a functions space, the points of S are functions with operands in some other space, e.g.,
in R or Rn
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It is well known that R satisfies the characterization of a complete space, but
the set of rational numbers is not complete. For example, the iteration x1 = 1,
xn+1 = 1

2 (xn + 2/xn), studied in Example 1.2.1, defines a sequence of rational

numbers that converges to
√

2, which is not a rational number.
The distance of a point x ∈ S from a subset (subspace) S′ ⊂ S is defined by27

dist (x,S′) = inf
f∈S′

d(f, x). (4.5.2)

Many important problems in Pure and Applied Mathematics can be formulated as
minimization problems. The function space terminology often makes proofs and
algorithms less abstract.

Most spaces that we shall encounter in this book are linear spaces. Their
elements are called vectors, why these spaces also are called vector spaces Two
operations are defined in these spaces, namely the addition of vectors and the mul-
tiplication of a vector by a scalar. They obey the usual rules of algebra.28 The
set of scalars can be either R or C; the vector space is then called real or complex,
respectively.

We shall be concerned with the problem of linear approximation, i.e. a
function f is to be approximated using a function f∗ that can be expressed as a
linear combination

f∗ = c1φ1(x) + c2φ2(x) + · · · + cnφn(x), (4.5.3)

of n given linearly independent functions φ1(x), φ2(x), . . . , φn(x), where c1, c2, . . . , cn
are parameters to be determined.29 They may be considered as coordinates of f∗

in the functions space spanned by φ1(x), φ2(x), . . . , φn(x).
In a vector space the distance of the point f from the origin is called the norm

of f and denoted by ‖f‖, typically with some subscript that more or less cryptically
indicates the relevant space. The definition of the norm depends namely on the
space. The following axioms must be satisfied.

Definition 4.5.2.
A real valued function ‖f‖ is called a norm on a vector space S, if it satisfies

the conditions 1–3 below for all f, g ∈ S, and for all scalars λ

1. ‖f‖ > 0, unless f = 0, (positivity)

2. ‖λf‖ = |λ|‖f‖, (homogeneity)

3. ‖f + g‖ ≤ ‖f‖ + ‖g‖ (triangle inequality)

27inf x denotes the infimum of x, i.e. the greatest lower bound of x. Similarly sup x is short for
supremum, i.e. the least upper bound.

28See Appendix A.1 for a summary about vector spaces. In larger texts on linear algebra
or functional analysis you find a collection of eight axioms (commutativity, associativity, etc.)
required by a linear vector space.

29The functions φj , however, are typically not linear. The term “linear interpolation” is from
our present point of view rather misleading.
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A normed vector space is a metric space; the distance reads

d(x, y) = ‖x− y‖.

If it is also a complete space, it is called a Banach space.30

The most common norms in spaces of (real and complex) infinite sequences
x = (ξ1, ξ2, ξ3, . . .)

T or spaces of functions on a bounded and closed interval [a, b]
and in the spaces Rn and Cn are

‖x‖∞ = max
j

|ξj |, ‖f‖∞ = max
x∈[a,b]

|f(x)|,

‖x‖2 =
(

∞
∑

j=1

|ξj |2
)1/2

, ‖f‖2 = ‖f‖2,[a,b] =
(

∫ b

a

|f(x)|2 dx
)1/2

,

‖x‖2,ω =
(

∞
∑

j=1

ωj |ξj |2
)1/2

, ‖f‖2,ω =
(

∫ b

a

|f(x)|2ω(x) dx
)1/2

,

These norms are called

• the max(imum) norm (or the uniform norm);

• the Euclidean norm (or the L2 norm for integrals and l2 norm for coordinate
sequences);

• the weighted Euclidean norm. Here ω(x) is a weight function, assumed to
be continuous and strictly positive on the open interval (a, b).

We assume that the integrals
∫ b

a

|x|kω(x) dx

exist for all k. Integrable singularities at the end points are permitted; an important
example is ω(x) = (1 − x2)−1/2 on the interval [−1, 1].

The above norms are special cases or limiting cases (p → ∞ gives the max
norm) of the lp or Lp norms and weighted variants of these. They are defined for
p ≥ 1, as follows31

‖x‖p =
(

∞
∑

j=1

|ξj |p
)1/p

, ‖f‖p =
(

∫ b

a

|f(x)|p dx
)1/p

. (4.5.4)

(The sum in the lp norm has a finite number of terms, if the space is finite dimen-
sional.)

30Stefan Banach (1892–1945) Polish mathematician. professor at the University in Lvov. Banach
founded modern Functional Analysis and gave major contributions to the theory of topological
vector spaces, measure theory and related topics. In 1939 he was elected President of the Polish
Mathematical Society.

31The triangle inequality for ‖x‖p is derived from two classical inequalities due to Hölder and
Minkowski. Elegant proofs of these are presented, e.g., in Hairer and Wanner [28, p. 327].
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From the minimax property of Chebyshev polynomials (Lemma 3.2.3) it fol-
lows that the best approximation in the maximum norm to the function f(x) = xn

on [−1, 1] by a polynomial of lower degree is given by xn − 21−nTn(x). The error
assumes its extrema in a sequence of n+ 1 points xi = cos(iπ/n). The sign of the
error alternates at these points.

The above property is generalized in the following theorem, which we give
without proof. It is the basis of many algorithm for computing approximations in
the maximum norm.

Theorem 4.5.3.
Let f be a continuous function on [a, b] and let p̂ be the nth degree polynomial

which best approximates f in the maximum norm. Then p̂ is characterized by the
fact that there exists at least n+ 2 points

a ≤ ζ0 < ζ1 < ζ2 < · · · < ζn+1 ≤ b,

where the error r = p̂ − f takes on its maximal magnitude with alternating signs;
i.e. |r(ζi)| = ‖r‖∞ and

r(ζi+1) = −r(ζi), i = 0 : n.

This characterization constitutes both a necessary and sufficient condition. If
f (n+1)(x) has constant sign in [a, b] then ζ0 = a, ζn+1 = b.

Convergence in a space, equipped with the max norm, means uniform con-
vergence. Therefore, the completeness of the space C[a, b] follows from a classical
theorem of Analysis that tells that the limit of a uniformly convergent sequence is
a continuous function. The generalization of this theorem to several dimensions
implies the completeness of the space of continuous functions, equipped with the
max norm on a closed bounded region in Rn.

Other classes of functions can be normed with the max norm maxx∈[a,b] |f(x)|,
e.g., C1[a, b], but this space is not complete; one can subtract a sequence of functions
in this space with a limit that is not continuous, but one can often live well with
incompleteness.

The notation L2 norm comes from the function space L2[a, b], which is the class

of functions for which the integral
∫ b

a
|f(x)|2 dx exists, in the sense of Lebesgue;32 the

Lebesgue integral was needed in order to make the space complete. No knowledge of
Lebesgue integration is needed for the study of this book, but this particular fact can
be interesting as a background. One can apply this norm also to the (smaller) class
of continuous functions on [a, b]. In this case the Riemannn33 integral is equivalent.
This also yields a normed linear space but it is not complete.

32Henri Léon Lebesgue (1875–1941) French mathematician. His definition of the Lesbegue inte-
gral greatly extended the scope of Fourier analysis.

33George Friedrich Bernhard Riemann (1826–1866) German mathematician. He got his Ph. D.
1951 at Göttingen, supervised by Gauss. In his habilitation lecture on Geometry Riemann intro-
duced the curvature tensor and laid the groundwork for Einstein’s theory of relativity.
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A modification of the L2 norm that also includes higher derivatives of f is used
in the Sobolev spaces, which is a theoretical framework for the study of the prac-
tically very important Finite Element Methods (FEM), used in particular for the
numerical treatment of partial differential equations; see Vol III. Although C[0, 1]
is an infinite-dimensional space, the restriction of the continuous functions f to the
equidistant grid defined by xi = ih, h = 1/n, i = 0 : n, constitute an n+ 1 dimen-
sional space, with the function values on the grid as coordinates. If we choose the
norm

‖f‖2,Gh
=

(

1/h
∑

i=0

h|f(xi)|2
)1/2

,

then

lim
h→0

‖f‖2,Gh
=

(

∫ 1

0

|f(x)|2 dx
)1/2

= ‖f‖2,[0,1].

Limit processes of this type are common in Numerical Analysis.
Notice that even if n+1 functions φ1(x), φ1(x), . . . , φn+1(x) are linearly inde-

pendent on the interval [0, 1] (say), their restrictions to a grid with n points must
be linearly dependent; but if a number of functions are linearly independent on
a set M (a discrete set or continuum), any extensions of these functions to a set
M′ ⊃ M will also be linearly independent.

The class of functions, analytic in a simply connected domain D ⊂ C, normed
with ‖f‖D = maxz∈∂D |f(z)|, is a Banach space denoted by Hol(D). (The explana-
tion to this term is that analytic functions are also called holomorphic.) By the
maximum principle for analytic functions |f(z)| ≤ ‖f‖D for z ∈ D.

4.5.2 Operator Norms and the Distance Formula

The concepts of linear operator and linear functional were introduced in
Sec. 3.2.2. We here extend to a general vector space B some definitions for a fi-
nite dimensional vector space given in Appendix A.

Next we shall generalize the concept operator norm that we have previously
used for matrices. Consider an arbitrary bounded linear operator A : S1 7→ S2 in a
normed vector space S.

‖A‖ = sup
‖f‖S1

‖Af‖S2
(4.5.5)

Note that ‖A‖ depends on the vector norm in both S1 and S2. It follows that
‖Af‖ ≤ ‖A‖‖f‖. Moreover, whenever the ranges of the operators A1, A2 are such
that A1 +A2 and A1A2 are defined

‖λA‖ ≤ |λ|‖A‖, ‖A1+A2‖ ≤ ‖A1‖+‖A2‖, ‖A1 ·A2‖ ≤ ‖A1‖·‖A2‖. (4.5.6)

Similarly for sums with an arbitrary number of terms and for integrals, etc. It
follows that ‖An‖ ≤ ‖A‖n, n = 2, 3, . . ..
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Example 4.5.1.
Let f ∈ C[0, 1], ‖f‖ = ‖f‖∞,

Af =
m

∑

i=1

aif(xi) ⇒ ‖A‖ =
m

∑

i=1

|ai|,

Af =

∫ 1

0

e−xf(x) dx ⇒ ‖A‖ =

∫ 1

0

e−x dx = 1 − e−1,

B =

m
∑

i=1

aiA
i ⇒ ‖B‖ ≤

m
∑

i=1

|ai|‖A‖i, (ai ∈ C),

Kf =

∫ 1

0

k(x, t)f(t) dt ⇒ ‖K‖∞ ≤ sup
x∈[0,1]

∫ 1

0

|k(x, t)| dt.

The proofs of these results are left as a problem. In the last example, approximate
the unit square by a uniform grid (xi, tj)

m
i,j=1, h = 1/m, and approximate the

integrals by Riemann sums. Then approximate ‖K‖∞ by the max norm for the
matrix with the elements ki,j = hk(xi, tj), see Appendix A.8.

The integral operator K can thus be considered as an analogue of a matrix.
This is a useful point of view also for the numerical treatment of linear integral
equations, e.g., equations of the form f − λKf = g, g given, see Volume III.

Example 4.5.2.
For the forward difference operator ∆ we obtain ‖∆‖∞ = 2, hence ‖∆k‖∞ ≤

2k. In fact ‖∆k‖∞ = 2k, because the upper bound 2k is attained by the sequence
{(−1)n}∞0 . The same holds for ∇k, δk, and µδk.

Example 4.5.3.
Let D be a domain in C, the interior of which contains the closed interval

[a, b]. Define the mapping Dk: HolD ⇒ C[a, b] (with maxnorm), by

Dkf(x) =
∂k

∂xk

1

2πi

∫

∂

Df(z)
1

(z − x)
dz =

1

2πi

∫

∂

D k!f(z)

(z − x)k+1
dz.

supx∈[a,b]‖Dkf(x)‖ ≤ max
z∈∂D

|f(z)| · sup
x∈[a,b]

k!

2π

∫

∂D

|dz|
|z − x|k+1

<∞.

Note that Dk is in this setting a bounded operator, while if we had considered Dk

to be a mapping from Ck[a, b] to C[a, b], where both spaces are normed with the
max norm in [a, b], Dk would have been an unbounded operator.

Many of the procedures for the approximate computation of integrals, deriva-
tives, etc. that encounter in this book, may be characterized as follows. Let A be a
linear functional, such that Af cannot be easily computed for an arbitrary function
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f , but it can be approximated by another linear functional Ãk, more easily com-
putable, such that Ãkf = Af ∀f ∈ Pk. A general error bound to such procedures
was given in Sec. 3.2.3 by the Peano Remainder Theorem, in terms of an integral,

∫

f (k)(u)K(u) du

where the Peano kernel K(u) is determined by the functional R = Ã−A.
Now we shall give a different type of error bound for more general approxi-

mation problems, where other classes of functions and operators may be involved.
Furthermore, no estimate of f (k)(u) is required. It is based on the following almost
trivial theorem. It yields, however, often less sharp bounds than the Peano formula,
in situations when the latter can be applied.

Theorem 4.5.4. The Norm and Distance Formula
Let A, Ã be a two linear operators bounded in a Banach space B, such that

for any vector s in a certain linear subspace S, Ãs = As. Then

‖Ãf −Af‖ ≤ ‖Ã−A‖ dist(f,S) ∀f ∈ B.

Proof. Set R = Ã−A. For any positive ǫ, there exists a vector sǫ ∈ S such that

‖f − sǫ‖ = dist(f, sǫ) < inf
s∈S)

dist(f, s) + ǫ = dist(f,S) + ǫ.

Then ‖Rf‖ = ‖Rf−Rsǫ‖ = ‖R(f−sǫ)‖ ≤ ‖R‖‖f−sǫ‖ < (dist(f,S)+ǫ)‖R‖.
The theorem follows, since this holds for every ǫ > 0.

The following is a common particular case of the theorem. If A, Ak are linear
functionals such that Akp = Ap ∀p ∈ Pk, then

|Akf −Af | ≤ (‖Ak‖ + ‖A‖)dist(f,Pk). (4.5.7)

Another important particular case of the theorem concerns projections P
from a function space to a finite dimensional subspace, Sk, e.g., interpolation and
series truncation operators, A = I, Ã = P , see the beginning of Sec. 4.5.2. Then

‖Pf − f‖ ≤ ‖(P − I)f‖ ≤ (‖P‖ + 1)dist(f,Sk). (4.5.8)

The Norm and Distance Formula requires bounds for ‖Ã‖, ‖A‖ and dist(f,S).
We have seen examples above, how to obtain bounds for operator norms. Now we
shall exemplify how to obtain bounds for the distance of f from some relevant
subspace S, in particular spaces of polynomials or trigonometric polynomials re-
stricted to some real interval [a, b]. For the efficient estimation of dist(f,S) it may
be important, e.g., to take into account that f is analytic in a larger domain than
[a, b].
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Theorem 4.5.5. Estimation of dist∞(f,Pk) in terms of ‖f (k)‖∞.

Let f ∈ Ck[a, b] ⊂ R, ‖g‖ = maxt∈[a,b] |g(t)|, ∀g ∈ C[a, b]. Then

dist∞,[a,b](f,Pk) ≤ 2‖f (k)‖∞,[a,b]

k!

(b− a

4

)k

.

Proof. Let p(t) be the polynomial which interpolates f(t) at the points tj ∈ [a, b],
j = 1 : k. By the remainder term in interpolation, (4.2.6),

|f(t) − p(t)| ≤ max
ξ∈[a,b]

|f (k)(ξ)|
k!

k
∏

j=1

|t− tj |.

Set t = 1
2 (b + a) + 1

2 (b − a)x, and choose tj = 1
2 (b + a) + 1

2 (b − a)xj where xj are
the zeros of the Chebyshev polynomial Tk(x), i.e. p is the Chebyshev interpolation
polynomial for f on the interval [a, b]. Set M = ‖f (k)‖/k!. Then

|f(t) − p(t)| ≤M
k

∏

j=1

(b − a)|x− xj |
2

, x ∈ [−1, 1].

Since the leading coefficient of Tk(x) is 2k−1, and |Tk(x)| ≤ 1, we have, for t ∈ [a, b],

|f(t) − p(t)| ≤M

(

b− a

2

)k
1

2k−1
|Tk(x)| ≤M

(

b− a

2

)k
1

2k−1
,

The bound stated for dist∞(f,Pk) is thus satisfied.

Example 4.5.4.
By the above theorem, the function et can be approximated on the interval

[0, 1] by a polynomial in P6 with the error bound 2e·4−6/6! ≈ 2· 10−6. According
to the proof this accuracy is attained by Chebyshev interpolation on [0, 1].

If one instead uses the Maclaurin series, truncated to P6, then the remainder
is eθ/(6!) ≥ 1.3 · 10−3. Similarly, with the truncated Taylor series about t =
1
2 the remainder is eθ/(266!) ≥ 2 · 10−5, still significantly less accurate than the
Chebyshev interpolation. Economization of power series (see Problem 3.2.4), yields
approximately the same accuracy as Chebyshev interpolation.

If we do these things on an interval of length h (instead of the interval [0, 1])
all the bounds are to multiplied by h6.

Example 4.5.5. The use of analyticity in estimates for dist∞(f,Pk) etc.
Denote by ER an ellipse in C with foci at −1 and 1; R is equal to the sum

of the semi-axes. Theorem 3.2.3 gives the following truncation error bound for the
Chebyshev expansion for a function f ∈ Hol(ER) and real-valued on [−1, 1].

∣

∣

∣
f(x) −

k−1
∑

j=0

cjTj(x)
∣

∣

∣
≤ 2‖f‖ER

R−k

1 −R−1
, x ∈ [−1, 1].
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This implies that, on the same assumptions concerning f ,

dist∞,[−1,1](f,Pk) ≤ 2‖f‖ER
R−k

1 −R−1
.

Suppose that f ∈ Hol(D), where D ⊇ b+ a

2
+
b− a

2
ER. Then transforming

from [−1, 1] to a general interval [a, b] ⊂ R, we have

dist∞,[a,b](f,Pk) ≤ 2‖f‖D
(

b− a

2R

)k
2R

2R− (b− a)
.

Example 4.5.6.
As a first simple example we shall derive an error bound for one step with the

trapezoidal rule. Set

Af =

∫ h

0

f(x) dx, A2f =
h

2

(

f(0) + f(h)).

We know that A2p = Ap if p ∈ P2. By Theorem 4.5.5, dist∞(f,P2) ≤ ‖f ′′‖∞h2/16.

Furthermore, ‖A‖∞ =
∫ h

0
dx = h, ‖A2‖∞ = h, hence by (4.5.7). the requested

error bound becomes

‖A2f −Af‖∞ ≤ 2h · ‖f ′′‖∞h2/16 = ‖f ′′‖∞h3/8.

This general method does not always give the best possible bounds but, typically,
it gives no gross overestimate. For the trapezoidal rule we know by Peano’s method
(Example 3.4.7) that ‖f ′′‖h3/12 is the best possible estimate, so we now obtained
a 50% overestimate of the error.

The norm and distance formula can also be written in the form

dist(f,S) ≥ |Af − Ãf |/‖A− Ã‖.

This can be used for finding a simple lower bound for dist (f,Pk) in terms of an
easily computed functional that vanishes on Pk.

Example 4.5.7.
Let Ã = 0. The functional Af = f(1)− 2f(0)+ f(−1) vanishes for f ∈ P2. If

the maximum norm is used on [-1,1], then ‖A‖ = 1 + 2 + 1 = 4. Thus

dist(f,P2)∞,[−1,1] ≥
|Af |
‖A‖ =

1

4
|f(1) − 2f(0) + f(−1)|.

It follows, e.g., that the curve y = ex cannot be approximated by a straight line
in [−1, 1] with an error less than (e − 2 + e−1)/4 ≈ 0.271. (This can also be seen
without the use of the Norm and Distance Formula.)
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It is harder to derive the following generalization without the Norm and Dis-
tance Formula. By Example 4.5.2, ‖∆k‖ = 2k, ∆kp = 0 if p ∈ Pk, hence

dist(f,Pk)∞,[x0,xk] ≥ 2−k|∆kf(x0)|. (4.5.9)

There is another inequality that is usually sharper but less convenient to use. (It
follows from the discrete orthogonality property of the Chebyshev polynomials, see
Sec. 4.6.)

dist(f,Pk)∞,[x0,xk] ≥
1

k

∣

∣

∣

∣

∣

∣

k
∑

j=0

(−1)jajf

(

cos
jπ

k

)

∣

∣

∣

∣

∣

∣

, (4.5.10)

where aj = 1
2 , j = 0, k and aj = 1 otherwise. Inequalities of this type can reveal

when one had better using piecewise polynomial approximation of a function on
an interval instead of using a single polynomial over the whole interval. See also
Sec. 4.4.

One of the fundamental theorems in approximations theory is Weierstrass’34

approximation theorem.

Theorem 4.5.6. Weierstrass’ Approximation Theorem
For every continuous function f defined on a closed, bounded interval [a, b] it

holds that
lim

n→∞

dist(f,Pn)∞,[a,b] = 0.

Proof. For an elegant proof due to S. Bernstein using Bernstein polynomials; see
Davis [19, Sec. 6.2].

The smoother f is, the quicker dist(f, Pn) decreases, and the narrower the
interval is, the less dist(f, Pn) becomes. In many cases dist(f, Pn) decreases so
slowly toward zero (as n grows) that it is impractical to attempt to approximate f
with only one polynomial in the entire interval [a, b].

In infinite-dimensional spaces, certain operators may not be defined every-
where, but only in a set that is everywhere dense in the space. For example, in
the space C[a, b] of continuous functions on a bounded interval (with the maximum
norm), the operator A = d/dx is not defined everywhere, since there are continuous
functions, which are not differentiable. By Weierstrass’ Approximation Theorem
any continuous function can be approximated uniformly to arbitrary accuracy by a
polynomial. In other words: the set of polynomials is everywhere dense in C, and
hence the set of differentiable functions is so too. Moreover, even if Au exists, A2u
may not exist. That A−1 may not exist, is no novel feature of infinite-dimensional
spaces. In C[a, b] the norm of A = d/dx is infinite. This operator is said to be
unbounded.

34Kurt Theodor Wilhelm Weierstrass (1815–1897) German mathematician, whose lectures at
Berlin University attracted students from all over the world. He set high standards of rigor in his
work and is known as the father of modern analysis.
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4.5.3 Inner Product Spaces and Orthogonal Systems

An abstract foundation for least squares approximation is furnished by the theory
of inner product spaces, which we now introduce.

Definition 4.5.7.
A normed linear space S will be called an inner product space, if for each two

elements f, g in S there is a scalar designated by (f, g) with the following properties

1. (f + g, h) = (f, h) + (g, h) (linearity)

2. (f, g) = (g, f) (symmetry)
3. (αf, g) = α(f, g), α scalar (homogeneity)
4. (f, f) ≥ 0, (f, f) = 0, iff f = 0 (positivity)

The inner product (f, g) is scalar, i.e. real in a real space and complex in a
complex space. The norm is defined as

‖f‖ = (f, f)1/2.

We shall show below that the triangle inequality is satisfied. (The other axioms
for a norm are obvious.) The standard inner products introduced in § 1.6.2, are
particular cases, if we set (x, y) = yTx in Rn, and (x, y) = yHx in Cn. A complete
inner-product space is called a Hilbert space and is often denoted H in this book.

One can make computations using the more general definition of (f, g) given
above in the same way that one does with scalar products in linear algebra. Note,
however, the conjugations necessary in a complex space, e.g.,

(f, αg) = ᾱ(f, g), (4.5.11)

because, by the axioms, (f, αg) = (αg, f) = α(g, f) = ᾱ(g, f) = ᾱ(f, g). By the
axioms it follows by induction that

(

φk,

n
∑

j=1

cjφj

)

=

n
∑

j=1

(φk, cjφj) =

n
∑

j=1

c̄j(φk, φj). (4.5.12)

Theorem 4.5.8.
The Cauchy–Schwarz inequality in a complex space

|(f, g)| ≤ ‖f‖ ‖g‖.

Proof. Let f , g be two arbitrary elements in an inner-product space. Then35, for
every real number λ,

0 ≤ (f + λ(f, g)g, f + λ(f, g)g) = (f, f) + 2λ|(f, g)|2 + λ2|(f, g)|2(g, g).
35We found this proof in [41, n

◦83]. The application of the same idea in a real space can be
made simpler, see Problem X.
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This polynomial in λ with real coefficients cannot have two distinct zeros, hence
the discriminant cannot be positive, i.e.

|(f, g)|4 − (f, f)|(f, g)|2(g, g) ≤ 0.

So, even if (f, g) = 0), |(f, g)|2 ≤ (f, f)(g, g).

By the definition and the Cauchy–Schwarz inequality,

‖f + g‖2 = (f + g, f + g) = (f, f) + (f, g) + (g, f) + (g, g)

≤ ‖f‖2 + ‖f‖ ‖g‖+ ‖g‖ ‖f‖+ ‖g‖2 = (‖f‖ + ‖g‖)2.

This shows that the triangle inequality is satisfied by the norm defined above.

Example 4.5.8.
The set of all complex infinite sequences {xi} for which

∑

∞

i=1 |xi|2 < ∞ and
equipped with the inner product

(x, y) =
∞
∑

i=1

xiyi,

constitutes a Hilbert space.

Definition 4.5.9.
Two functions f and g are said to be orthogonal if (f, g) = 0. A finite or

infinite sequence of functions φ0, φ1, . . . , φn constitutes an orthogonal system, if

(φi, φj) = 0, i 6= j, and ‖φi‖ 6= 0, ∀i. (4.5.13)

If, in addition, ‖φi‖ = 1∀i, then the sequence is called an orthonormal system.

Theorem 4.5.10 (Pythagoras’ theorem).
Let {φ1, φ2, . . . , φn} be an orthogonal system in an inner-product space. Then

∥

∥

∥

n
∑

j=1

cjφj

∥

∥

∥

2

=

n
∑

j=1

|cj |2‖φj‖2.

The elements of an orthogonal system are linearly independent.

Proof. We start as in the proof of the triangle inequality:

‖f + g‖2 = (f, f) + (f, g) + (g, f) + (g, g) = (f, f) + (g, g) = ‖f‖2 + ‖g‖2.

Using this result and induction the first stement follwos. The second statement
then follows because

∑

cjφj = 0 ⇒ |cj | = 0, ∀j.
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Theorem 4.5.11.
A linear operator P is called a projection (or projector) if P = P 2. Let V be

the range of the operator P . Then P is a projection if and only Pv = v if for each
v ∈ V.

Proof. If P is a projection, then v = Px for some x ∈ B, hence Pv = P 2x = Px =
v. Conversely, if Q is a linear operator, such that Qx ∈ V , ∀x ∈ B, and v = Qv,
∀v ∈ V , then Q is a projection, in fact Q = P .

Note that I − P is also a projection, because

(I − P )(I − P ) = I − 2P + P 2 = I − P.

Every vector x ∈ B can be written uniquely in the form x = u+ w, where u = Px,
w = (I − P )x, so that u ∈ range (P ), w ∈ range (I − P ).

Important examples of projections in function spaces are interpolation oper-
ators, e.g., the mapping of C[a, b] into Pk by Newton or Lagrange interpolation,
because each polynomial is mapped to itself. The two types of interpolation are
the same projection, although they use different bases in Pk. Another example is
the mapping of a linear space of functions, analytic on the unit circle, into Pk so
that each function is mapped to its Maclaurin expansion truncated to Pk. There are
analogous projections where, e.g., periodic functions and trigonometric polynomials
are involved, or functions in C3 and cubic splines.

In an inner product space, the adjoint operator A∗ of a linear operator A
is defined by the requirement that

(A∗u, v) = (u,Av), ∀ u, v. (4.5.14)

An operator A is called self-adjoint if A = A∗. In Rn, we define (u, v) = uvT ,
i.e. the standard scalar product. Then (A∗u)T v = uTAv, i.e. uT ((A∗)T v = uTAv
hence (A∗)T = A. It follows that symmetric matrices are self-adjoint. Similarly, in
Cn, we define (u, v) = uvH . It follows that A∗ = AH and that Hermitean matrices
are self-adjoint. An operator B is positive definite if (u,Bu) > 0 ∀ u 6= 0.

Example 4.5.9.
An important example of an orthogonal system is the sequence of trigonomet-

ric functions φj(x) = cos jx, j = 0 : m. These form an orthogonal system, with the
either of the two inner products

(f, g) =

∫ π

0

f(x)g(x) dx (continuous case, m = ∞),

(f, g) =

m
∑

i=0

f(xµ)g(xµ), xµ =
2µ+ 1

m+ 1

π

2
(discrete case).

Moreover, it holds that

‖φj‖2 =
1

2
π, j > 0, ‖φ0‖2 = π, (continuous case),



92 Chapter 4. Interpolation and Approximation

‖φj‖2 =
1

2
(m+ 1), 1 ≤ j ≤ m, ‖φ0‖2 = m+ 1. (discrete case).

These results are closely related to the orthogonality of the Chebyshev polynomials;
see Theorem 4.5.17.

Trigonometric interpolation and Fourier analysis will be treated in Sec. 4.6.

There are many other examples of orthogonal systems. Orthogonal systems
of polynomials play an important role in approximation and numerical integration.
Orthogonal systems also occur in a natural way in connection with eigenvalue prob-
lems for differential equations, which are quite common in mathematical physics.

4.5.4 Solution of the Approximation Problem

Orthogonal systems give rise to extraordinary formal simplifications in many situa-
tions. We now consider the least squares approximation problem of minimizing the
norm of the error function ‖f∗ − f‖ over all functions f∗ =

∑n
j=0 cjφj .

Theorem 4.5.12.
If φ0, φ1, . . . , φn are linearly independent, then the least squares approximation

problem has a unique solution,

f∗ =

n
∑

j=0

c∗jφj , (4.5.15)

which is characterized by the orthogonality property that f∗ − f is orthogonal to all
φj, j = 0 : n. The coefficients c∗j , which are called orthogonal coefficients (or
Fourier coefficients), satisfy the linear system of equations

n
∑

j=0

(φj , φk)c∗j = (f, φk). (4.5.16)

called normal equations. In the important special case when φ0, φ1, . . . , φn form an
orthogonal system, the coefficients are computed more simply by

c∗j = (f, φj)/(φj , φj), j = 0 : n. (4.5.17)

Proof. Let (c0, c1, . . . , cn) be a sequence of coefficients with cj 6= c∗j for at least one
j. Then

n
∑

j=0

cjφj − f =
n

∑

j=0

(cj − c∗j )φj + (f∗ − f).

If f∗ − f is orthogonal to all the φj , then it is also orthogonal to the linear combi-
nation

∑n
j=0(cj − c∗j )φj , and according to the Pythagorean Theorem

∥

∥

∥

n
∑

j=0

cjφj − f
∥

∥

∥

2

=
∥

∥

∥

n
∑

j=0

(cj − c∗j )φj

∥

∥

∥

2

+ ‖(f∗ − f)‖2 > ‖(f∗ − f)‖2.
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Thus if f∗ − f is orthogonal to all φk, then f∗ is a solution to the approximation
problem. It remains to show that the orthogonality conditions

(

n
∑

j=0

c∗jφj − f, φk

)

= 0, k = 0 : n,

can be fulfilled. The above conditions are equivalent to the normal equations in
(4.5.16). If {φj}n

j=0 constitutes an orthogonal system, then the system can be
solved immediately, since in each equation all the terms with j 6= k are zero. The
formula in (4.5.17) then follows immediately.

Suppose now that we know only that {φj}n
j=0 are linearly independent. The

solution to the normal equations exists and is unique, unless the homogeneous
system,

n
∑

j=0

(φj , φk)c∗j = 0, k = 0 : n

has a solution c0, c1, . . . , cn, with at least one ci 6= 0. But this would imply

∥

∥

∥

n
∑

j=0

cjφj

∥

∥

∥

2

=
(

n
∑

j=0

cjφj ,

n
∑

k=0

ckφk

)

=

n
∑

k=0

n
∑

j=0

(φj , φk)cjck =

n
∑

k=0

0 · ck = 0,

which contradicts that the φj were linearly independent.

In the case where {φj}n
j=0 form an orthogonal system, the Fourier coefficients

c∗j are independent of n (see formula (4.5.17)). This has the important advan-
tage that one can increase the total number of parameters without recalculating
any previous ones. Orthogonal systems are advantageous not only because they
greatly simplify calculations; using them, one can often avoid numerical difficulties
with round-off error which may occur when one solves the normal equations for a
nonorthogonal set of basis functions.

With every continuous function f one can associate an infinite series,

f ∼
∞
∑

j=0

c∗jφj , c∗j =
(f, φj)

(φj , φj)
.

Such a series is called an orthogonal expansion. For certain orthogonal systems
this series converges with very mild restrictions on the function f .

Theorem 4.5.13.
If f∗ is defined by formulas (4.5.15) and (4.5.17), then

‖f∗ − f‖2 = ‖f‖2 − ‖f∗‖2 = ‖f‖2 −
n

∑

j=0

(c∗j )
2‖φj‖2.

Proof. Since f∗ − f is, according to Theorem 4.5.12, orthogonal to all φj , 0 ≤
j ≤ n, then f∗ − f is orthogonal to f∗. The theorem then follows directly from the
Pythagorean Theorem and Theorem 4.5.10.
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We obtain as corollary Bessel’s inequality:

n
∑

j=0

(c∗j )
2‖φj‖2 ≤ ‖f‖2. (4.5.18)

The series
∑

∞

j=0(c
∗

j )
2‖φj‖2 is convergent. If ‖f∗− f‖ → 0 as n→ ∞, then the sum

of the latter series is equal to ‖f‖2, which is Parseval’s identity.

Theorem 4.5.14.
If {φj}m

j=0 are linearly independent on the grid {xi}m
j=0, then the interpolation

problem of determining the coefficients {ci}m
j=0 such that

m
∑

j=0

cjφj(xi) = f(xi), i = 0 : m, (4.5.19)

has exactly one solution. Interpolation is a special case (n = m) of the method of
least squares. If {φj}m

j=0 is an orthogonal system, then the coefficients cj are equal
to the orthogonal coefficients in (4.5.17).

Proof. The system of equations (4.5.19) has a unique solution, since its column
vectors are the vectors φj(G), j = 0 : n, which are linearly independent. For the
solution of the interpolation problem it holds that ‖cjφj − f‖ = 0; that is, the error
function has the least possible semi-norm. The remainder of the theorem follows
from Theorem 4.5.12.

The following collection of important and equivalent properties is named
the Fundamental theorem of orthonormal expansions, by Davis [19, The-
orem8.9.1], whom we follow closely at this point.

Theorem 4.5.15.
Let φ1, φ2, · · ·, be a sequence of orthonormal elements in in a complete inner

product space H. The following seven statements are equivalent: 36

(A) The φj is a complete orthonormal system in H.

(B) The orthonormal expansion of any element y ∈ H converges in norm to y; i.e.

lim
n→∞

∥

∥

∥y −
n

∑

j=1

(y, φj)φj

∥

∥

∥. (4.5.20)

(C) Parseval’s identity holds for every y ∈ H, i.e.

‖y‖2 =

∞
∑

j=1

|(y, φj)|2. (4.5.21)

36We assume that H is not finite-dimensional, in order to simplify the formulations. Only minor
changes are needed in order to cover the finite-dimensional case.
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(C’) The extended Parseval’s identity holds for every x, y ∈ H, i.e.

(x, y) =

∞
∑

j=1

(x, φj)(φj , y). (4.5.22)

(D) There is no strictly larger orthonormal system containing φ1, φ2, · · ·

(E) If y ∈ H and (y, φj) = 0, j = 1, 2, . . . , then y = 0.

(F) An element of H is determined uniquely by its Fourier coefficients, i.e. if
(w, φj) = (y, φj), j = 1, 2, · · ·, then w = y.

Proof. For the rest of the proof, See Davis [19, pp. 192ff].

Theorem 4.5.16.
The converse of statement (F) holds, i.e. let H be a complete inner product

space, and let aj be constants such that
∑

∞

j=1 |aj |2 < ∞. Then there exists an

y ∈ H, such that y =
∑

∞

j=1 ajφj and (y, φj) = aj ∀ j.

Proof. Omitted.

4.5.5 Orthogonal Polynomials and Least Squares Approximation

By a family of orthogonal polynomials we mean a triangle family of polynomials,
which (in the continuous case) is an orthogonal system with respect to a given inner
product Expansions of functions in terms of orthogonal polynomials are very useful.
They are easy to manipulate, have good convergence properties and usually give
a well conditioned representation. The theory of orthogonal polynomials is also of
fundamental importance for many problems, which at first sight seem to have little
connection with approximation (e.g., numerical integration, continued fractions,
and the algebraic eigenvalue problem).

Perhaps the most important example of a family of orthogonal polynomials
is the Chebyshev polynomials Tn(x) = cos(n arccos(x)) introduced in Sec. 3.2.3.
These are are orthogonal on [−1, 1] with respect to the weight function (1−x2)−1/2

and also with respect to a discrete inner product. Their properties can be derived
by rather simple methods.

Theorem 4.5.17.
The Chebyshev polynomials have the following two orthogonality properties.

Set

(f, g) =

∫ 1

−1

f(x)g(x)(1 − x2)−1/2 dx (4.5.23)



96 Chapter 4. Interpolation and Approximation

(the continuous case). Then (T0, T0) = π, and

(Tj , Tk) =

{

0 if j 6= k,
π/2 if j = k 6= 0.

(4.5.24)

Let xk be the zeros of Tm+1(x) and set

(f, g) =

m
∑

k=0

f(xk)g(xk), xk = cos
(2k + 1

m+ 1

π

2

)

(4.5.25)

(the discrete case). Then (T0, T0) = m+ 1, and

(Tj , Tk) =

{

0 if j 6= k,
(m+ 1)/2 if j = k 6= 0.

(4.5.26)

Proof. In the continuous case, let j 6= k, j ≥ 0, k ≥ 0. From x = cosφ it follows
that dx = sinφdφ = (1 − x2)1/2dφ. Hence

(Tj, Tk) =

∫ π

0

cos jx cos kx dx =

∫ π

0

1

2

(

cos(j − k)x+ cos(j + k)x
)

dx

=
1

2

( sin(j − k)π

j − k
+

sin(j + k)π

j + k

)

= 0,

whereby orthogonality is proved.
In the discrete case, set h = ∂µ/(m+ 1), xµ = h/2 + µh,

(Tj , Tk) =
m

∑

µ=0

cos jxµ cos kxµ =
1

2

m
∑

µ=0

(

cos(j − k)xµ + cos(j + k)xµ

)

.

Using notation from complex numbers (i =
√
−1) we have

(Tj , Tk) =
1

2
Re

(

m
∑

µ=0

ei(j−k)h(1/2+µ) +
m

∑

µ=0

ei(j+k)h(1/2+µ)
)

. (4.5.27)

The sums in (4.5.27) are geometric series with ratios ei(j−k)h and ei(j+k)h, respec-
tively. If j 6= k, 0 ≤ j ≤ m, 0 ≤ k ≤ m, then the ratios are never equal to 1,
since

0 < | (j ± k)h| ≤ 2m

m+ 1
π < π.

The first sum in (4.5.27) is, then, using the formula for the sum of a geometric series

ei(j−k)(h/2) e
i(j−k)(m+1)h − 1

ei(j−k)h − 1
=

ei(j−k)π − 1

ei(j−k)(h/2) − e−i(j−k)(h/2) − 1
=

(−1)j−k − 1

2i sin(j − k)h/2
.

The real part of the last expression is clearly zero. An analogous computation shows
that the real part of the other sum in (4.5.27) is also zero. Thus the orthogonality
property holds in the discrete case also. It is left to the reader to show that the
expressions when j = k given in the theorem are correct.
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Example 4.5.10. Chebyshev interpolation
Let p(x) denote the Chebyshev interpolation polynomial of degree m. For

many reasons it is practical to write this interpolation polynomial in the form

p(x) =

m
∑

i=0

ciTi(x). (4.5.28)

Then using the discrete orthogonality property (4.5.26)

ci =
(f, Ti)

‖Ti‖2
=

1

‖Ti‖2

m
∑

k=0

f(xk)Ti(xk), (4.5.29)

where
‖T0‖2 = m+ 1, ‖Ti‖2 = 1

2 (m+ 1), i > 0.

The recursion formula (3.2.20) can be used for calculating the orthogonal coefficients
according to (4.5.29). For computing p(x) with (4.5.28) Clenshaw’s algorithm (The-
orem 3.2.5) can be used.

Occasionally on is interested in the partial sums of (4.5.28). For example, if
the values of f(x) are afflicted with statistically independent errors with standard
deviation σ, then the series can be broken off when for the first time

∥

∥

∥f −
p

∑

i=0

ciTi(x)
∥

∥

∥ < σm1/2.

We assume in the following that in the continuous case the weight function
w(x) ≥ 0 is such that the moments

µk = (xk, 1) =

∫ b

a

xkw(x) dx. (4.5.30)

are defined for all k ≥ 0, and µ0 > 0. Note that the inner product (4.5.38) has the
property that

(xf, g) = (f, xg). (4.5.31)

Given a linearly independent sequence of vectors in an inner-product space an
orthogonal system can be derived by a process analogous to Gram–Schmidt orthog-
onalization. The proof below is constructive and leads to a unique construction of
the sequence of orthogonal polynomials φk, n ≥ 1, with leading coefficients equal
to 1.

Theorem 4.5.18.
In an inner product space with the inner product (4.5.38), there is a triangle

family of orthogonal polynomials φk(x), k = 1, 2, 3, . . ., such that φk+1(x) has exact
degree k, and is orthogonal to all polynomials of degree less than k. The family is
uniquely determined apart from the fact that the leading coefficients can be given
arbitrary positive values.
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The monic orthogonal polynomials satisfy the three-term recurrence formula,

φk+1(x) = (x− βk)φk(x) − γ2
k−1φk−1(x), k ≥ 1, (4.5.32)

with initial values φ0(x) = 0, φ1(x) = 1. The recurrence coefficients are given by

βk =
(xφk, φk)

‖φk‖2
, γk−1 =

‖φk‖
‖φk−1‖

. (4.5.33)

If the weight distribution is symmetric about x = β, then βk = β for all k.

Proof. By induction: Suppose that the φj 6= 0 have been constructed for 1 ≤ j ≤ k.
We now seek a polynomial φk+1 of degree k with leading coefficient equal to 1,
which is orthogonal to all polynomials in Pk. Since {φj}k

j=1 is a triangle family,
every polynomial of degree k − 1 can be expressed as a linear combination of these
polynomials. Therefore we can write

φk+1 = xφk −
k

∑

i=1

ck,iφi. (4.5.34)

Clearly φk+1 has leading coefficient one. The orthogonality condition is fulfilled if
and only if

(xφk, φj) −
k

∑

i=1

ck,i(φi, φj) = 0, j = 1 : k.

But (φi, φj) = 0 for i 6= j, and thus ck,j‖φj‖2 = (xφk, φj). From the definition of
inner product (4.5.38), it follows that

(xφk, φj) = (φk, xφj).

But xφj is a polynomial of degree j. Thus if j < k, then it is orthogonal to φk. So
ckj = 0 for j < k − 1. From (4.5.34) it then follows that

φk+1 = xφk − ck,kφk − ck,k−1φk−1, (4.5.35)

which has the same form as the original assertion of the theorem if, we set

βk = ck,k =
(xφk, φk)

‖φk‖2
, γ2

k−1 = ck,k−1 =
(φk, xφk−1)

‖φk−1‖2
. k ≥ 1.

This shows the first part of (4.5.33).
The expression for γk−1 can be written in another way. If we scalar-multiply

(4.5.34) by φk+1 we get

(φk+1, φk+1) = (φk+1, xφk) −
k

∑

i=1

ck,i(φk+1, φi) = (φk+1, xφk).

Thus (φk+1, xφk) = ‖φk+1‖2, or if we decrease all indices by 1, (φk, xφk−1) = ‖φk‖2.
Substituting this in the expression for γk−1 gives the second part of (4.5.33)



4.5. Approximation and Function Spaces 99

Sometimes it is advantageous to consider corresponding orthonormal polyno-
mials φ̂k(x), which satisfy ‖φ̂k‖ = 1. Setting φ̂1 = c, we find

‖φ̂1‖ =

∫ b

a

c2w(x) dx = c2µ0 = 1,

and thus φ̂1 = 1/
√
µ0. If we scale the monic orthogonal polynomials according to

φk = (γ1 · · · γk−1)φ̂k, k > 1, (4.5.36)

then we find using (4.5.33) that

‖φ̂k‖
‖φ̂k−1‖

=
γ1 · · · γk−2

γ1 · · · γk−1

‖φk‖
‖φk−1‖

= 1.

Substituting (4.5.36) in (4.5.32) we obtain a recurrence relation for the orthonormal
polynomials

γkφ̂k+1(x) = (x − βk)φ̂k(x) − γk−1φ̂k−1(x), k ≥ 1, (4.5.37)

Let p̂n denote the polynomial of degree n for which

‖f − p̂n‖∞ = En(f) = min
p∈Pn+1

‖f − p‖∞.

Set pn =
∑n

j=0 cjφj , where cj is the jth Fourier coefficient of f and {φj} are the
orthogonal polynomials with respect to the inner product

(f, g)w =

∫ b

a

f(x)g(x)w(x) dx, w(x) ≥ 0. (4.5.38)

If we use the weighted Euclidian norm, p̂n is of course not a better approximation
than pn. In fact

‖f − p‖2
w =

∫ b

a

|f(x) − pn(x)|2w(x) dx

≤
∫ b

a

|f(x) − p̂n(x)|2w(x) dx ≤ En(f)2
∫ b

a

w(x) dx. (4.5.39)

This can be interpreted as saying that a kind of weighted mean of |f(x)− pn(x)| is
less than or equal to En(f), which is about as good result as one could demand. The
error curve has an oscillatory behavior. In small subintervals |f(x)− pn(x)| can be
significantly greater than En(f). This is usually near the ends of the intervals or in
subintervals where w(x) is relatively small. Note that from (4.5.39) and Weierstrass
approximation theorem it follows that

lim
n→∞

‖f − p‖2
2,w = 0
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for every continuous function f . From (4.5.39) one gets after some calculations

∞
∑

j=n+1

‖φj‖2 = ‖f − p‖2
2,w ≤ En(f)2

∫ b

a

w(x) dx,

which gives one an idea of how quickly the terms in the orthogonal expansion
decrease.

In Sec. 4.1.3 we considered the discrete least squares approximation problem

f(x) ≈ p(x) =

n
∑

j=1

cjpj(x) ∈ Pn,

where p1(x), p2(x), . . . , pn(x) is a basis for Pn. Then S(c) = ‖p − f‖2, the least
squares problem to minimize S(c) is equivalent to minimizing the norm of the
error function p − f . Thus, if we could determine the basis functions so that they
constitute an orthogonal system, i.e.

(pi, pk) =

{

0, i 6= k,
‖pi‖2 6= 0, i = k,

then by Theorem 4.5.12 the coefficients of the least squares approximations are

cj = (f, pj)/(pj , pj), j = 1 : n. (4.5.40)

Example 4.5.11.
For the case n = 1, p1(x) = 1, the normal equations reduce to the single

equation (p0, p0)c0 = (f, p0). Hence using the discrete inner product we get

c1 =
1

ω

m
∑

i=0

wif(xi), ω =
m

∑

i=0

wi.

Here c1 is said to be a weighted mean of the values of the function.

Let {xi}m
i=1 ∈ (a, b) be distinct points and {wi}m

i=1 a set of weights and define
the weighted discrete inner product of two real-valued functions f and g on the grid
{xi}m

j=1 by

(f, g) =

m
∑

i=1

wif(xi)g(xi). (4.5.41)

From Theorem 4.5.18 it follows that there is a unique associated triangle family of
orthogonal polynomials p0, p1, . . . , pm−1, with leading coefficients equal to one, that
satisfy the three-term recurrence

p−1(x) = 0, p0(x) = 1, (4.5.42)

pk+1(x) = (x− αk)pk(x) − βkpk−1(x), k = 0, 1, 2, . . . , (4.5.43)
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where

αk =
(xpk, pk)

‖pk‖2
, βk =

‖pk‖2

‖pk−1‖2
(k > 0). (4.5.44)

If the weight distribution is symmetric about x = α, then αk = α for all k.
For a discrete weight distribution on a grid with m points, the family ends

with pm(x); pm+1(x) becomes zero at each grid point. In the continuous case, the
family has infinitely many members.

Using (4.5.33 the coefficients αk and βk and the value of the polynomials pk

at the grid points xi can be recursively computed, in the order

α0, p1(xi), α1, β1, p2(xi), . . . .

(Note that β0 is not needed since p−1 = 0.) This procedure is called the Stieltjes
procedure37

For k = m the constructed polynomial pm must be equal to

(x− x0)(x− x1) · · · (x− xm),

because this polynomial is zero at all the grid points, and thus orthogonal to all
functions. From this it follows that ‖pm+1‖ = 0; thus the computation of αk cannot
be carried out for k = m+ 1 and the construction stops at k = m. This is natural,
since there cannot be more than m + 1 orthogonal (or even linearly independent)
functions on a grid with m+ 1 points.

There are many computational advantages of using the recurrence relation
(4.5.43) for discrete least squares data fitting. In a least squares approximation of
the form

p(x) =
n

∑

k=0

ckpk,

the coefficients

ck = (p, pk)/‖pk‖2,

are independent of n. In the computation of the coefficients ck one can make
use of the recursion formula (4.5.43). approximations of increasing degree can be
recursively generated as follows. Suppose that pi, i = 0 : k − 1, and the least
squares approximation pk of degree k have been computed. In the next step the
coefficients βk, γk are computed from (4.5.44) and then pk+1 by (4.5.43). The next
approximation of f can now be obtained by

pk+1 = pk + ck+1pk+1, ck+1 = (f, pk+1)/‖pk+1‖2. (4.5.45)

Since pk+1 is orthogonal to pk, an alternative expression for the new coefficient is

ck+1 = (rk, pk+1)/‖pk+1‖2, rk = f − pk. (4.5.46)

37Thomas Jan Stieltjes (1856–1894), was born in the Netherlands. After working with astro-
nomical calculations at the Observatory in Leiden he got a university position in Toulouse, France.
His work on continued fractions and the moment problem and invented a new concept of integral.
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Assuming unit weights and that the grid is symmetric the coefficients αk, ck
and the orthogonal functions pk at the grid points can be using the Stieltjes proce-
dure in about 4mn flops. If there are differing weights, then about mn additional
operations are needed; similarly, mn additional operations are required if the grid
is not symmetric. If the orthogonal coefficients are determined simultaneously for
several functions on the same grid, then only about mn additional operations per
function are required. (In the above, we assume m≫ 1, n ≫ 1.) Hence the proce-
dure is much more economical than the general methods based on normal equations
which require O(mn2) flops.

Mathematically the two formulas (4.5.45) and (4.5.46) for ck+1 are equivalent.
In finite precision, as higher degree polynomials pk+1 are computed, they will grad-
ually lose orthogonality to previously computed pj , j ≤ k. In practice there is an
advantage in using (4.5.46) since cancellation then will mostly take place in com-
puting the residual rk = f − pk, and then the inner product (rk, pk+1) is computed
accurately. Theoretically the error ‖pk − f‖ must be a non-increasing function of k.
I However, when using the first formula one sometimes finds that the residual norm
increases when the degree of the approximation is increased! With the modified
formula (4.5.46) this is very unlikely to happen; see Problem 8.

Note that for n = m we obtain the (unique) interpolation polynomial for the
given points. Often the error decreases rapidly with k and then pk provides a good
representation of f already for small values of k. With some nets e.g., equidis-
tant nets, one should choose n less than 2

√
m, since otherwise the approximation

polynomial will have large oscillatory behavior between the grid points.
When the coefficients cj in the orthogonal expansion are known, then the eas-

iest way to compute the numerical values of p(x) is to use Clenshaw’s algorithm;
see Theorem 3.2.4.

For equidistant data, the Gram polynomials {Pn,m}m
n=0 are of interest.38

These polynomials are orthogonal with respect to the inner product

(f, g) =
1

m

m
∑

i=1

f(xi)g(xi), xi = −1 + (2i− 1)/m.

The weight distribution is symmetric around the origin αk = 0. and for the monic
Gram polynomials the recursion formula is (see [2])

P−1,m(x) = 0, P0,m = 1,

Pn+1,m(x) = xPn,m(x) − βn,mPn−1,m(x), n = 0 : m− 1,

where (n < m)

βn,m =
n2

4n2 − 1

(

1 − n2

m2

)

.

When n ≪ m1/2, these polynomials are well behaved. However, when n ≥
m1/2, the Gram polynomials have very large oscillations between the grid points,

38Jørgen Pedersen Gram (1850–1916), Danish mathematician, worked on probability and nu-
merical analysis. Gram is now best remembered for the Gram–Schmidt orthogonalization process.
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and a large maximum norm in [−1, 1]. This fact is related to the recommendation
that when fitting a polynomial to equidistant data, one should never choose n larger
than about 2m1/2.

4.5.6 Statistical Aspects of the Method of Least Squares

One of the motivations for the method of least squares is that it effectively re-
duces the influence of random errors in measurements. Let f ∈ Rm be a vector of
observations that is related to a parameter vector c ∈ Rn by the linear relation

f = Ac+ ǫ, A ∈ Rm×n, (4.5.47)

where A is known matrix of full column rank and ǫ ∈ Rm is a vector of random
errors. We assume here that ǫi, i = 1 : m has zero mean and covariance equal to
σ2, and that ǫi and ǫi are uncorrelated if i 6= j, that is

E(ǫ) = 0, var(ǫ) = σ2I,

(Recall the definitions of mean value and correlation in Sec. 1.5.1.) The parameter c
is then a random vector, which we want to estimate in terms of the known quantities
A and f .

Let yT c be a linear functional of the parameter c in (4.5.47). We say that
θ = θ(A, f) is an unbiased linear estimator of yT c if E(θ) = yT c. It is a best
linear unbiased estimator (BLUE) if θ) has the smallest variance among all
such estimators.

The Gauss–Markov theorem39 places the method of least squares on a
sound theoretical basis.

Theorem 4.5.19.
Consider a linear model (4.5.47), where ǫ is an uncorrelated random vector

with zero mean and variance equal to σI. Then the best linear unbiased estimator
of any linear functional yT c is yT ĉ, where

c̄ = (ATA)−1AT f

is the least squares estimator obtained by minimizing the sum of squares ‖f −Ac‖2
2.

The covariance matrix of the least squares estimate ĉ equals

var(ĉ) = σ2(ATA)−1. (4.5.48)

Furthermore, the quadratic form

s2 = ‖f −Aĉ‖2
2/(m− n). (4.5.49)

is an unbiased estimate of σ2, i.e. E(s2) = σ2.

39This theorem is originally due to C. F. Gauss 1821. His contribution was somewhat neglected
until rediscovered by the Russian mathematician A. A Markov in 1912.
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Proof. See Zelen [58, pp. 560–561].

Suppose that the values of a function have been measured in the points
x1, x2, . . . , xm. Let f(xp) be the measured value, and let f̄(xp) be the “true” (un-
known) function value, which is assumed to be the same as the expected value of
the measured value. Thus no systematic errors are assumed to be present. Sup-
pose further that the errors in measurement at the various points are statistically
independent. Then we have a linear model f(xp) = f̄(xp) + ǫ, where

E(ǫ) = 0, var(ǫ) = diag (σ2
1 , . . . , σ

2
n), (4.5.50)

where E denotes expected value and var variance. The problem is to use the
measured data to estimate the coefficients in the series

f(x) =

n
∑

j=1

cjφ(x), n ≤ m.

where φ1, φ2, . . . , φn are known functions. According to Theorem 4.5.19 the esti-
mates c∗j , which one gets by minimizing the sum

m
∑

p=1

wp

(

f(xp) −
n

∑

j=1

cjφj(xp)
)2

, wp = σ−2
p ,

have a smaller variance than the values one gets by any other linear unbiased es-
timation method. This minimum property holds not only for the estimates of the
coefficients cj , but also for every linear functional of the coefficients, e.g., the esti-
mate

f∗

n(α) =

n
∑

j=1

c∗jφ(α)

of the value f(α) at an arbitrary point α.
Suppose now that σp = σ for all p and that the functions {φj}n

j=1 form an
orthonormal system with respect to the discrete inner product

(f, g) =
m

∑

p=1

f(xp)g(xp).

Then the least squares estimates are c∗j = (f, φj), j = 1 : n. By Theorem 4.5.19 the
estimates c∗j and c∗k are uncorrelated if j 6= k and

E{(c∗j − c̄j)(c
∗

k − c̄k)} =

{

0, if j 6= k;
σ2 if j = k,

From this it follows that

var{f∗

n(α)} = var
{

n
∑

j=1

c∗jφj(α)
}

=
n

∑

j=1

var{c∗j}|φj(α)|2 = σ2
n

∑

j=1

|φj(α)|2.
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As an average, taken over the grid of measurement points, the variance of the
smoothed function values is

1

m

n
∑

j=1

var{f∗

n(xi)} =
σ2

m

n
∑

j=1

m
∑

i=1

|φj(xi)|2 = σ2 n

m
.

Between the grid points, however, the variance can in many cases be signifi-
cantly larger. For example, when fitting a polynomial to measurements in equidis-
tant points, the Gram polynomial Pn,m can be much larger between the grid points
when n > 2m1/2. Set

σ2
I = σ2

n
∑

j=1

1
2

∫ 1

−1

|φ(x)|2 dx.

Thus σ2
I is an average variance for f∗

n(x) taken over the entire interval [−1, 1]. The
following values for the ratio ρ between σ2

I and σ2(n + 1)/(m + 1) when m = 42
were obtained by H. Björk:

n+ 1 5 10 15 20 25 30 35
ρ 1.0 1.1 1.7 26 7 · 103 1.7 · 107 8 · 1011

These results are related to the recommendation that one should choose n < 2m1/2

when fitting a polynomial to equidistant data. This recommendation seems to
contradict the Gauss–Markov theorem, but in fact it just means that one gives up
the requirement that there be no systematic errors. Still it is remarkable that this
can lead to such a drastic reduction of the variance of the estimates.

If the measurement points are the Chebyshev abscissae, then no difficulties
arise in fitting polynomials to data. The Chebyshev polynomials have a magnitude
between grid points not much larger than their magnitude at the grid points. In
this case the choice of n when m is given, is a question of compromising between
taking into account the truncation errors (which decreases as n increases) and the
random errors (which grow when n increases). If f is a sufficiently smooth function
then in the Chebyshev case |cj | decreases quickly with j. In contrast the part of
cj which comes from errors in measurements varies randomly with a magnitude of
about σ(2/(m+1)1/2, using (4.5.25)) and ‖Tj‖2 = (m+1)/2. The expansion should
be broken off when the coefficients begin to “behave randomly”. An expansion in
terms of Chebyshev polynomials can hence be used for filtering away the “noise”
from the signal, even when σ is initially unknown.

Example 4.5.12.
Fifty-one equidistant values of a certain analytic function were rounded to four

decimals. In Figure 4.5.?, a semilog diagram is given which shows haw |ci| varies
in an expansion in terms of the Chebyshev polynomials for this data. For i > 20
(approximately) the contribution due to noise dominates the contribution due to
signal. Thus it is sufficient to break off the series at n = 20.
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Figure 4.5.1. Magnitude of coefficients ci in a Chebyshev expansion of an
analytic function contaminated with roundoff noise.

Review Questions

1. State the axioms that any norm must satisfy. Define the maximum norm and
the Euclidean norm for a continuous function f on a closed interval.

2. Define dist(f, Pn), and state Weierstrass’ approximation theorem.

3. Prove the Pythagorean theorem in an inner product space.

4. Define and give examples of orthogonal systems of functions.

5. Formulate and prove Bessel’s inequality and Parseval’s identity, and interpret
them geometrically.

6. (a) Give some reasons for using orthogonal polynomials in polynomial approx-
imation with the method of least squares.

(b) Give some argument against the assertion that orthogonal polynomials are
difficult to work with.

7. The Gram polynomials are examples of orthogonal polynomials. With respect
to what inner product are they orthogonal?

Problems and Computer Exercises

1. Compute ‖f‖∞ and ‖f‖2 for the function f(x) = (1 + x)−1 on the interval
[0, 1].

2. Determine straight lines which approximate the curve y = ex such that

(a) the discrete Euclidean norm of the error function on the grid (−1,−0.5, 0, 0.5, 1)
is as small as possible;
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(b) the Euclidean norm of the error function on the interval [−1, 1] is as small
as possible.

(c) the line is tangent to y = ex at the point (0, 1), i.e. the Taylor approxima-
tion at the midpoint of the interval.

3. Determine, for f(x) = π2 − x2, the “cosine polynomial” f∗ =
∑n

j=0 cj cos jx,
which makes ‖f∗ − f‖2 on the interval [0, π] as small as possible.

4. (a) Show that on any interval containing the points −1,−1/3, 1/3, 1,

E2(f) ≥ 1

8

∣

∣

∣
f(1) − 3f(1/3) + 3f(−1/3)− f(−1)

∣

∣

∣
.

(b) Compute the above bound and the actual value of E2(f) for f(x) = x3.

5. (a) Let a scalar product be defined by (f, g) =
∫ b

a
f(x)g(x) dx. Calculate the

matrix of normal equations, when φj(x) = xj , j = 0 : n, when a = 0, b = 1.

(b) Do the same when a = −1, b = 1. Show how in this case the normal
equations can be easily decomposed into two systems, with approximately
(n+ 1)/2 equations in each.

6. Verify the formulas for ‖φj‖2 given in Example 4.5.9.

7. (a) Show that ‖f − g‖ ge‖f‖ − ‖g‖ for all norms. (use the axioms mentioned
in Sec. 4.5.1.)

(b) Show that if {cj}n
0 is a set of real numbers and if {fj}n

0 is a set of vectors,
then ‖

∑

cjfj‖ ≤
∑

|cj |‖fj‖.
8. Let G ∈ Rn×n be a symmetric positive definite matrix. Show that an inner

product is defined by the formula (u, v) = uTGv. Show that A∗ = G−1ATG.

9. In a space of complex-valued twice differentiable functions of t, which vanish
at t=0 and t=1, let the inner product be:

(u, v) =

∫ 1

0

u(t)v̄(t) dt.

What is the adjoint of the operator A = d/dt? Is it true that the operator iA
is self-adjoint, and that −A2 is self-adjoint and positive definite?

10. a) Show that, in a real inner-product space,

4(u, v) = ‖u+ v‖2 − ‖u− v‖2.

In a complex space this gives only the real part of the inner product. Show
that one has to add ‖u− iv‖2 − ‖u+ iv‖2.

(b) This can be used to reduce many questions concerning inner-products to
questions concerning norms. For example, in a general inner product space a
unitary operator is defined by the requirement that ‖Au‖ = ‖u‖ ∀u. Show
that (Au,Av) = (u, v) ∀u, v.
Note, however, that the relation (u,Au) = (Au, u) ∀u, which, in a real space,
holds for every operator A, does not imply that (u,Av) = (Au, v) ∀u, v. The
latter holds only if A is self-adjoint.
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11. Show that (AB)∗ = B∗A∗. Also show that if C is self-adjoint and positive
definite, then A∗CA is so too. (A is not assumed to be self-adjoint.)

12. Show that
(A−1)∗ = ((A∗))−1, (Ap)∗ = ((A∗))p,

for all integers p, provided that the operators mentioned exist. Is it true that
Cp is self-adjoint and positive definite, if C is so?

13. Show the following minimum property of orthogonal polynomials: Among
all nthe degree polynomials pn with leading coefficient 1, the smallest value of

‖pn‖2 =

∫ b

a

p2
n(x)w(x)dx, w(x) ≥ 0

is obtained for pn = φn/An, where φn is the orthogonal polynomial with
leading coefficient An associated with the weight distribution w(x).

Hint: Determine the best approximation to xn in the above norm or consider
the expansion pn = φn/An +

∑n−1
j=0 cjφj .

14. Verify the formulas for ‖Tj‖2 given in Theorem 4.5.17.

14. (a) Write a Matlab function c = stieltjes(x,y,w,n) that computes the
least squares polynomial fit to data (xi, fi) and weights wi, i = 1 : n, using
the Stieltjes procedure. Compute the orthogonal polynomials pj, from the
recursion (4.5.43) and the coefficients cj , j = 1 : n, from (4.5.45) or (4.5.45).

(b) (L. F. Shampine) Apply the function in (a) to the case when fi = x7
i ,

wi = 1/(fi)
2, and n = 20. Compute and print the error ‖p−f‖, for n = 1 : 10

using the expression (4.5.45) for ck+1. Note that the fits for k > 7 should be
exact!

(c) Repeat the calculations, now using the modified formula (4.5.45). Compare
the error for n = 1 : 10 with the results in (a).

4.6 Trigonometric Interpolation and Fourier
Transforms

Many natural phenomena, e.g., acoustical and optical, are of a periodic character.
For instance, it is known that a musical sound is composed of regular oscillations,
partly a fundamental tone with a certain frequency f , and partly overtones with
frequencies 2f , 3f , 4f ,. . . . The ratio of the strength of the fundamental tone to
that of the overtones is decisive for our impression of the sound. Sounds, which are
free from overtones occur, for instance, in electronic music, where they are called
pure sine tones.

In an electronic oscillator, a current is generated whose strength at time t
varies according to the formula r sin(ωt+ v), where r is called the amplitude of the
oscillation; ω is called the angular frequency, and is equal to 2π times the frequency;
v is a constant which defines the state at the time t = 0. In a loudspeaker, variations
of current are converted into variations in air pressure which, under ideal conditions,
are described by the same function. In practice, however, there is always a certain
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distortion, overtones occur. The variations in air pressure which reach the ear can,
from this viewpoint, be described as a sum of the form

∞
∑

k=0

rk sin(kωt+ vk). (4.6.1)

The separation of a periodic phenomenon into a fundamental tone and over-
tones permeates not only acoustics, but also many other areas. It is related to
an important, purely mathematical theorem, first given by Fourier40 According to
this theorem, every function f(t) with period 2π/ω can, under certain very general
conditions, be expanded in a series of the form (4.6.1). (A function has period p
if f(t + p) = f(t), for all t.) A more precise formulation will be given later in
Theorem 4.6.2.

An expansion of the form of (4.6.1) can be expressed in many equivalent ways.
If we set ak = rk sin vk, bk = rk cos vk, then using the addition theorem for the sine
function we can write

f(t) =

∞
∑

k=0

(ak cos kωt+ bk sin kωt), (4.6.2)

where ak, bk are real constants. Another form, which is often the most convenient,
can be found with the help of Euler’s formulas,

cosx =
1

2
(eix + e−ix), sinx =

1

2i
(eix − e−ix), (i =

√
−1).

Then one gets

f(t) =

∞
∑

k=−∞

cke
ikωt, (4.6.3)

where

c0 = a0, ck =
1

2
(ak − ibk), c−k =

1

2
(ak + ibk), k = 1, 2, 3, . . . . (4.6.4)

In the rest of this chapter we shall use the term Fourier series to denote an
expansion of the form of (4.6.3) or (4.6.4). We shall call the partial sums of the
form of these series trigonometric polynomials. Sometimes the term spectral
analysis is used to describe the above methods.

Fourier series are valuable aids in the study of phenomena which are periodic in
time (vibrations, sound, light, alternating currents, etc.) or in space (waves, crystal
structure, etc.). One very important area of applications is in digital signal and
image processing, which is used in interpreting radar and sonar signals. Another
is statistical time series, which are used in communications theory, control theory,
and the study of turbulence. For the numerical analyst, Fourier analysis is partly

40Jean Baptist Joseph Fourier (1768–1830), French mathematician and engineer. In 1807 Fourier
presented before the French Academy his famous theorem.



110 Chapter 4. Interpolation and Approximation

a very common computational task and partly an important aid in the analysis of
properties of numerical methods.

Basic formulas and theorems are derived in Sec. 4.6.1, which relies to a great
extent on the theory in Sec. 4.5. Modifications of pure Fourier methods are used
as a means of analyzing nonperiodic phenomena; see, e.g., Sec. 4.6.2 (periodic con-
tinuation of functions) and Sec. 4.6.3 (Fourier transforms). The approximation of
Fourier transforms using sampled data and discrete Fourier transforms are treated
in Sec. 4.6.4. FFT (Fast Fourier Transforms) algorithms have had an enormous
impact and have caused a complete change of attitude toward what can be done
using discrete Fourier methods. Sec. 4.7 treats the computational aspects of the
basic FFT algorithms.

4.6.1 Basic Formulas and Theorems

We shall study functions with period 2π. If a function of t has period L, then the
substitution x = 2πt/L transforms the function to a function of x with period 2π.
We assume that the function can have complex values, since the complex exponential
function is convenient for manipulations.

The inner product of two complex-valued functions f and g of period 2π is
defined in the following way (the bar over g indicates complex conjugation)

(f, g) =

∫ π

−π

f(x)ḡ(x)dx, (continuous case). (4.6.5)

(It makes no difference what interval one uses, as long as it has length 2π—the
value of the inner product is unchanged.) Often the function f is known only at
equidistant arguments xα = 2πα/N , α = 0 : N − 1. In this case we define

(f, g) =

N−1
∑

α=0

f(xα)ḡ(xα), xα =
2πα

N
(discrete case). (4.6.6)

As usual the norm of the function f is defined by ‖f‖ = (f, f)1/2. One can make
computations with these inner products in the same way as with the inner products
defined in Sec. 4.3.1, with certain obvious modifications. Notice especially that
(g, f) = (f, g). In the continuous case,

Theorem 4.6.1.
The following orthogonality relations hold for the functions

φj(x) = eijx, j = 0,±1,±2, . . . .

Continuous case:

(φj , φk) =

{

2π, if j = k,
0, if j 6= k.

Discrete case:

(φj , φk) =

{

N, if (j − k)/N is an integer,
0, otherwise.
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Proof. In the continuous case, if j 6= k, it holds that

(φj , φk) =

∫ π

−π

eijxe−ikxdx =
∣

∣

∣

π

−π

ei(j−k)x

i(j − k)
=

(−1)j−k − (−1)j−k

i(j − k)
= 0.

whereby orthogonality is proved. For j = k

(φk, φk) =

∫ π

−π

eikxe−ikxdx =

∫ π

−π

1 dx = 2π.

In the discrete case, set h = 2π/N , xα = hα,

(φj , φk) =
N−1
∑

α=0

eijxαe−ikxα =
N−1
∑

α=0

ei(j−k)hα.

This is a geometric series with ratio q = ei(j−k)h. If (j − k)/N is an integer, then
q = 1 and the sum is N . Otherwise q 6= 1, but qN = ei(j−k)2π = 1. From the
summation formula of a geometric series

(φj , φk) = (qN − 1)/(q − 1) = 0.

If one knows that the function f(x) has an expansion of the form

f =

b
∑

j=a

cjφj ,

where a = −∞, b = ∞ in the continuous case and a = 0, b = N − 1 in the discrete
case, then it follows formally that

(f, φk) =

b
∑

j=a

cj(φj , φk) = ck(φk, φk), a ≤ k ≤ b,

since (φj , φk) = 0 for j 6= k. Thus, changing k to j, we have

cj =
(f, φj)

(φj , φj)
=



















1

2π

∫ π

−π

f(x)e−ijxdx, in the continuous case;

1

N

N−1
∑

α=0

f(xα)e−ijxα , in the discrete case).

(4.6.7)

These coefficients are called Fourier coefficients, see the more general case in
Theorem 4.3.??. The purely formal treatment given above is, in the discrete case,
justified by Theorem 4.3.??. In the continuous case, more advanced methods are
required, but we shall not go into this further.
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Now consider the continuous case. From a generalization of Theorem 4.3.??,
we know that

∥

∥

∥f −
n

∑

j=−n

kjφj

∥

∥

∥, n <∞,

becomes as small as possible if we choose kj = cj , −n ≤ j ≤ n.
In accordance with (4.6.4), set aj = cj + c−j , bj = i(cj − c−j). Then with

a0 = 2c0,

aj =
1

π

∫ π

−π

f(x) cos jx dx, bj =
1

π

∫ π

−π

f(x) sin jx dx, j ≥ 0, (4.6.8)

N
∑

j=−N

cje
ijx = c0 +

N
∑

j=1

(

cj(cos jx+ i sin jx) + c−j(cos jx− i sin jx)
)

=
1

2
a0 +

N
∑

j=1

(aj cos jx+ bj sin jx).

(Notice that the factors preceding the integral are different in the expressions for cj
and for aj , bj, respectively.)

Theorem 4.6.2. Fourier Analysis, Continuous Case.
Every piecewise continuous function f with period 2π can be associated with

a Fourier series in the following two ways:

1

2
a0 +

∞
∑

j=1

(aj cos jx+ bj sin jx),

∞
∑

j=−∞

cje
ijx.

The coefficients aj, bj, and cj can be computed using (4.6.8) in the first case and
(4.6.7) in the second case. If f and its first derivative are everywhere continuous,
then the series is everywhere convergent to f(x). If f and f ′ have a finite number
of jump discontinuities in each period, the series gives the mean of the limiting
values on the right and on the left of the relevant point. The partial sums of the
above expansions give the best possible approximations to f(x) by trigonometric
polynomials, in the least squares sense.

The proof of the convergence results is outside the scope of this book (see,
however, the beginning of Sec. 4.7; see also Courant and Hilbert [16].) The rest of
the assertions follow from previously made calculations in Theorem 4.6.1 and the
comments following; see also the proof of Theorem 4.3.??.

The more regular a function is, the faster its Fourier series converges.
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Theorem 4.6.3.
If f and its derivatives up to and including order k are periodic and everywhere

continuous, and if f (k+1) is piecewise continuous, then

|cj | ≤ j−(k+1)‖f (k+1)‖∞. (4.6.9)

This useful result is relatively easy to prove using (4.6.7) and integrating by
parts k + 1 times.

Theorem 4.6.4.
If f is an even function, i.e. if

f(x) = f(−x) ∀x,

then bj = 0 for all j; thus the Fourier series becomes a cosine series.
If f is an odd function, i.e. if

f(x) = −f(−x) ∀x,

then aj = 0 for all j; thus the Fourier series becomes a sine series.
The proof is left as an exercise to the reader (use the formulas in (4.6.10)).

Example 4.6.1. Fourier Expansion of a Rectangular Wave
Make a periodic continuation outside the interval (−π, π) of the function

f(x) =

{

−1, −π < x < 0,
1, 0 < x < π,

,

see Figure 4.6.3.

−π 0 π

Figure 4.6.1. Rectangular wave

The function f is odd, so aj = 0 for all j, and

bj =
2

π

∫ π

0

sin jx dx =
2

jπ
(1 − cos jπ).

Hence bj = 0 if j is even, and bj = 4/(jπ) if j is odd, and

f(x) =
4

π

(

sinx+
sin 3x

3
+

sin 5x

5
+ · · ·

)

.
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Notice that the coefficients cj decay as j−1 in agreement with Theorem 4.6.3. The
sum of the series is zero at the points where f has a jump discontinuity; this agrees
with the fact that the sum should equal the average of the limiting values to the
left and to the right of the discontinuity. The Euler transformation can be used
for accelerating the convergence of such series, except in the immediate vicinity of
singular points, see Problem 3 of Sec. 4.6.

Theorem 4.5.13 and its corollary, Parseval’s identity

2π

∞
∑

j=−∞

|cj |2 = ‖f‖2 =

∫ π

−π

|f(x)|2 dx, (4.6.10)

are of great importance in many applications of Fourier analysis. The integral in
(4.6.10) can be interpreted as the “energy” of the function f(x).

Although the data to be treated in Fourier analysis are often continuous in
the time or space domain, for computational purposes this data must usually be
represented in terms of a finite discrete sequence. For example, a function f(t) of
time, is recorded at evenly spaced intervals ∆ in time fi = f(i∆), i = 0, 1, 2,. . . .
Such data can be analyzed by discrete Fourier analysis.

Theorem 4.6.5. Fourier Analysis, Discrete Case
Every function, defined on the equidistant grid {x0, x1, . . . , xN−1}, where xα =

2πα/N , can be interpolated by the trigonometric polynomial

f(x) =



























k+θ
∑

j=−k

cje
ijx,

1
2a0 +

k
∑

j=1

(aj cos jx+ bj sin jx) +
1

2
θak+1 cos(k + 1)x,

(4.6.11)

Here

θ =

{

1, if N even,
0, if N odd,

, k =

{

N/2 − 1, if N even,
(N − 1)/2, if N odd,

(4.6.12)

and

cj =
1

N

N−1
∑

α=0

f(xα)e−ijxα , (4.6.13)

aj =
2

N

N−1
∑

α=0

f(xα) cos jxα, bj =
2

N

N−1
∑

α=0

f(xα) sin jxα. (4.6.14)

If the sums in (4.6.11) are terminated when |j| < k + θ, then one obtains the
trigonometric polynomial which is the best least squares approximation, among all
trigonometric polynomials with the same number of terms, to f on the grid.
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Proof. The expression for cj was formally derived previously, see (4.6.7), and the
derivation is justified by Theorem 4.3.??. By Eqs. (4.6.13)–(4.6.14)

aj = cj + c−j , bj = i(cj − c−j), ck+1 =
1

2
ak+1.

The two expressions for f(x) are equivalent, because

k+θ
∑

j=−k

cje
ijx = c0 +

k
∑

j=1

(

cj(cos jx+ i sin jx) + c−j(cos jx− i sin jx)
)

+ θck+1 cos(k + 1)x

= c0 +

k
∑

j=1

(aj cos jx+ bj sin jx) +
1

2
θak+1 cos(k + 1)x.

The function f(x) coincides on the grid with the function

f∗(x) =

N−1
∑

j=0

cje
ijx, (4.6.15)

because e−i(N−j)xα = eijxα , c−j = cN−j. The functions f and f∗ are, however, not
identical between the grid points.

Notice that the calculations required to compute the coefficients cj according
to (4.6.13), Fourier analysis, are of essentially the same type as the calculations
needed to compute f∗(x) at the grid points

xα = 2πα/N, α = 0 : N − 1,

when the expansion in (4.6.15) is known, so-called Fourier synthesis. Both cal-
culations can be performed very efficiently using FFT algorithms; see Sec. 4.7.

Functions of several variables are treated analogously. Quite simply, one takes
one variable at a time. As an example, consider the discrete case, with two variables.
Set

xα = 2πα/N, yβ = 2πβ/N,

and assume that f(xα, yβ) is known for α = 0 : N − 1, β = 0 : N − 1. Set

cj(yβ) =
1

N

N−1
∑

α=0

f(xα, yβ)e−ijxα ,

cj,k =
1

N

N−1
∑

β=0

cj(yβ)e−ikyβ .
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From Theorem 4.6.5, then (with obvious changes in notations),

cj(yβ) =

N−1
∑

k=0

cj,ke
ikyβ ,

f(xα, yβ) =

N−1
∑

j=0

cj(yβ)eijxα =

N−1
∑

j=0

N−1
∑

k=0

cj,ke
(ijxα+ikyβ).

The above expansion is of considerable importance, e.g., in crystallography.

4.6.2 Periodic Continuation of a Function

Sometimes Fourier series are used for functions which are defined only on the interval
(−π, π). The series then defines a periodic continuation of the function outside the
interval (see Figure 4.6.2). Thus the definition is extended so that f(x) = f(x+2π)
for all x.

−3π −π π 3π 5π

Figure 4.6.2. Periodic continuation of a function outside [−π, π].

With this method, discontinuities in the values of the function or its derivatives
can occur at x = π. This singularity can give rise to a slow rate of convergence,
even for a function with good regularity properties in the open interval (−π, π); cf.
Theorem 4.6.3.

There are other ways to make a continuation of a function outside its interval
of definition. If the function is defined in [0, π], and if f(0) = f(π) = 0, then
one can continue f to the interval [−π, 0] by making the definition f(x) = f(−x);
thereafter the function is periodically continued outside [−π, π] by f(x) = f(x+2π),
see Figure 4.6.3. Since the resulting function is an odd function, by Theorems 4.6.4

−π 0 π 2π

Figure 4.6.3. Periodic continuation of f outside [0, π] as an odd function.

and 4.6.5, its Fourier expansion becomes a sine series:
Continuous case:

∞
∑

j=1

bj sin jx, bj =
2

π

∫ π

0

f(x) sin jx dx. (4.6.16)
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Discrete case: (xα = πα/N)

N−1
∑

j=1

bj sin jx, bj =
2

N

N−1
∑

α=1

f(xα) sin jxα. (4.6.17)

If f(0) 6= 0 or f(π) 6= 0, one can still use such an expansion, but it will converge
slowly.

If the function is defined in [0, π], and if f ′(0) = f ′(π) = 0, then one can make
a continuation of f into an even function on [−π, π]. Outside [−π, π] the function
is continued periodically. Its Fourier series then becomes a pure cosine series:

Continuous case:

1

2
a0 +

∞
∑

j=1

aj cos jx, aj =
2

π

∫ π

0

f(x) cos jx dx, (4.6.18)

Discrete case: (xα = πα/N

1

2
a0 +

N−1
∑

j=1

aj cos jx, aj =
2

N

N−1
∑

α=0

f(xα) cos jxα. (4.6.19)

4.6.3 The Fourier Integral Theorem

In Sec. 4.6.2 we showed how Fourier methods can be used on a nonperiodic function
defined on a finite interval. Suppose now that the function f(x) is defined on the
entire real axis, and that it satisfies the regularity properties which we required in
Theorem 4.6.2. Set

ϕ(ξ) = f(x), ξ = 2πx/L ∈ [−π, π],

and continue ϕ(ξ) outside [−π, π] so that it has period 2π. By Theorem 4.6.2, if

cj =
1

2π

∫ π

−π

ϕ(ξ)e−ijξ dξ =
1

L

∫ L/2

−L/2

f(x)e−2πixj/L dx, (4.6.20)

then ϕ(ξ) =
∑

∞

j=−∞
cje

ijξ , ξ ∈ (−π, π), and hence

f(x) =

∞
∑

j=−∞

cje
2πixj/L, x ∈ (−L/2, L/2).

If we set

gL(ω) =

∫ L/2

−L/2

f(x)e−2πixω dx, ω = j/L, (4.6.21)

then by (4.6.20) we have cj = (1/L)gL(ω), and hence

f(x) =
1

L

∞
∑

j=−∞

gL(ω)e2πixω, x ∈ (−L/2, L/2). (4.6.22)
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Now by passing to the limit L → ∞, one avoids making an artificial periodic
continuation outside a finite interval. The sum in (4.6.22) is a “sum of rectangles”
similar to the sum which appears in the definition of a definite integral. However,
here the argument varies from −∞ to +∞, and the function gL(t) depends on L.
By a somewhat dubious passage to the limit, then, the pair of formulas of (4.6.21)
and (4.6.22) becomes the pair

g(ω) =

∫

∞

−∞

f(x)e−2πixω dx ⇐⇒ f(x) =

∫

∞

−∞

g(ω)e2πixω dω. (4.6.23)

One can, in fact, after a rather complicated analysis, show that the above result is
correct; see, e.g., Courant–Hilbert [16]. The proof requires, besides the previously
mentioned “local” regularity conditions on f , the “global” assumption that

∫

∞

−∞

|f(x)| dx

is convergent. The beautiful, almost symmetric relation of (4.6.23) is called the
Fourier integral theorem. This theorem, and other versions of it, with varying
assumptions under which they are valid, is one of the most important aids in both
pure and applied mathematics. The function g is called the Fourier transform41

of f .
Clearly the Fourier transform is a linear operator. Two other elementary

properties that can easily be verified are:

f(ax) ⇐⇒ 1

|a|g(ω/a), (4.6.24)

1

|b|f(x/b) ⇐⇒ g(bω). (4.6.25)

If the function f(x) has even or odd symmetry and is real or pure imaginary
this leads to relations between g(ω) and g(−ω) that can be used to increase com-
putational efficiency. Some of these properties are summarized in the table below.

Example 4.6.2.
The function f(x) = e−|x| has Fourier transform

g(ω) =

∫

∞

−∞

e−|x|e−2πixω dx =

∫

∞

0

(

e−(1+2πiω)x + e−(1−2πiω)x
)

dx

=
1

1 + 2πiω
+

1

1 − 2πiω
=

2

1 + 4π2ω2
.

Here f(x) is real and an even function. In agreement with the table above the
Fourier transform is also real and even.

41The terminology in the literature varies somewhat as to the placement of the factor 2π—e.g.,
it can be taken out of the exponent by a simple change of variable.
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Function Fourier transform

f(x) real g(−ω) = g(ω)

f(x) imaginary g(−ω) = −g(ω)

f(x) even g(−ω) = g(ω)

f(x) odd g(−ω) = −g(ω)

f(x) real even g(ω) real even

f(x) imaginary odd g(ω) real odd

Table 4.6.1. Useful symmetry properties of Fourier transforms.

From (4.6.23) it follows that

e−|x| =

∫

∞

−∞

2

1 + 4π2ω2
e2πixω dω =

2

π

∫

∞

0

1

1 + x2
cosπxdx, (2πω = x).

It is not so easy to prove this formula directly.

Many applications of the Fourier transform involve the use of convolutions.

Definition 4.6.6.
The convolution of f1 and f2 is the function

h(ξ) = conv (f1, f2) =

∫

∞

−∞

f1(x)f2(ξ − x) dx. (4.6.26)

It is not difficult to verify that conv (f1, f2) = conv (f2, f1). The following
theorem states that the convolution of f1 and f2 can be computed as the inverse
Fourier transform of the product g1(ω)g2(ω). This fact is of great importance in the
application of Fourier analysis, e.g., to differential equations and probability theory.

Theorem 4.6.7.
Let f1 and f2 have Fourier transforms g1 and g2, respectively. Then the

Fourier transform g of the convolution of f1 and f2, is the product g(ω) = g1(ω)g2(ω).

Proof. By definition the Fourier transform of the convolution is

g(ω) =

∫

∞

−∞

e−2πiξω

(∫

∞

−∞

f1(x)f2(ξ − x) dx

)

dξ

=

∫

∞

−∞

∫

∞

−∞

e−2πi(x+ξ−x)ωf1(x)f2(ξ − x) dx dξ

=

∫

∞

−∞

e−2πixωf1(x) dx

∫

∞

−∞

e−2πi(ξ−x)ωf2(ξ − x) dξ

=

∫

∞

−∞

e−2πixωf1(ξ) dx

∫

∞

−∞

e−2πixωf2(x) dx = g1(ω)g2(ω)
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The legitimacy of changing the order of integration is here taken for granted.

In many physical applications, the following relation, analogous to Parseval’s
identity (corollary to Theorem 4.5.13), is of great importance. If g is the Fourier
transform of f , then

∫

∞

−∞

|g(ω)| dω =

∫

∞

−∞

|f(ξ)| dξ. (4.6.27)

In signal processing this can be interpreted to mean that the total power in a signal
is the same whether computed in the time domain or the frequency domain.

4.6.4 Sampled Data and Aliasing

Consider a function f(x) which is zero outside the interval [0, L]. The Fourier
transform of f(x) is then given by

g(ω) =

∫ L

0

f(x)e−2πiωx dx. (4.6.28)

We want to approximate g(ω) using values of f(x) sampled at intervals ∆x,

fj = f(j∆x), 0 < j < N − 1, L = N∆x.

The integral (4.6.28) can be approximated by

g(ω) ≈ L

N

N−1
∑

j=0

fje
−2πiωj∆x dx. (4.6.29)

Since only N values of fj are used as input and we want the computed values to be
linearly independent, we cannot approximate g(ω) at more thanN points. The wave
of lowest frequency associated with the interval [0, L] is ω = 1/L = 1/(N∆x), since
then [0, L] corresponds to one full period of the wave. We therefore choose in the
frequency space points ωk = k∆ω, i = 0 : N , such that the following reciprocity
relations hold:

LW = N, ∆x∆ω = 1/N (4.6.30)

With this choice it holds that

W = N∆ω = 1/∆x, L = N∆x = 1/∆ω. (4.6.31)

Noting that (j∆x)(k∆ω) = jk/N we get from the trapezoidal approximation

g(ωk) ≈ L

N

N−1
∑

j=0

fje
−2πikj/N dx = Lck, k = 0 : N − 1,

where ck is the coefficient of the discrete Fourier transform.
The frequency ωc = 1/(2∆x) = ∆ω/2 is the so called Nyquist critical

frequency. Sampling the wave sin(2πωcx) with sampling interval ∆x will sample
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exactly two points per cycle. It is a remarkable fact that if a function f(x), defined
on [−∞,∞], is band-width limited to frequencies smaller or equal to ωc, then f(x)
is completely determined by its sample values j∆x, ∞ ≤ j ≤ ∞; see the Sampling
Theorem Sec. 4.8.3.

If the function is not band-width limited the spectral density outside the
critical frequency is moved into that range. This is called aliasing. The rela-
tionship between the Fourier transform g(ω) and the discrete Fourier transform
of a finite sampled representation can be characterized as follows. Assuming that
the reciprocity relations (4.6.30) are satisfied, the discrete Fourier transform of
fj = f̃(j∆x), 0 ≤ j < N , will approximate the periodic aliased function

g̃k = g̃(k∆ω), 0 ≤ j < N. (4.6.32)

where

g̃(ω) = g(ω) +
∞
∑

k=1

(g(ω + kW ) + g(ω − kW )) , ω ∈ [0,W ] (4.6.33)

Since by (4.6.31) W = 1/∆x, we can increase the frequency range [0,W ] covered
by decreasing ∆x.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

Figure 4.6.4. The real (top) and imaginary (bottom) parts of the Fourier
transform of e−x and the corresponding DFT with N = 32, T = 8.

Example 4.6.3.
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The function f(x) = e−x, x > 0, f(x) = 0, x < 0, has Fourier transform

g(ω) = 1/(1 + 2πiω) =
1 − i2πω

1 + 4π2ω2

(cf. Example 4.6.2. Set f(0) = 1/2, the average of f(−0) and f(+0), which is the
value given by the inverse Fourier transform at a discontinuity.

Set N = 32, T = 8, and sample the f in the interval [0, T ], at equidistant
points j∆x, j = 0 : N −1. Note that T is so large that the aliased function (4.6.32)
is nearly equal to f . This sampling rate corresponds to ∆x = 8/32 = 1/4 and
W = 4.

The effect of aliasing in the frequency domain is evident. The error is signifi-
cant for frequencies larger than the critical frequencyW/2. To increase the accuracy
W can be increased by decreasing the sampling interval ∆x.

Review Questions

1. Derive the orthogonality properties and coefficient formulas which are funda-
mental to Fourier analysis, for both the continuous and the discrete case.

2. Under what conditions does the Fourier series of the function f converge to f
in the continuous case?

3. How does one compute a Fourier expansion of a function of two variables?

4. Explain what a periodic continuation of a function is. What disadvantage for
Fourier analysis is incurred if the periodic continuation has a discontinuity in
its function value or derivatives at certain points?

5. Formulate the Fourier integral theorem.

6. (a) Explain what a periodic continuation of a function is.

(b) What disadvantage (for Fourier analysis) is incurred if the periodic con-
tinuation has a discontinuity—e.g., in its derivative at certain points?

Problems and Computer Exercises

1. Give a simple characterization of the functions which have a sine expansion
containing odd terms only.

2. Let f be an even function, with period 2π, such that

f(x) = π − x, 0 ≤ x ≤ π.

(a) Plot the function y = f(x) for −3π ≤ x ≤ 3π. Expand f in a Fourier
series.

(b) Use this series to show that 1 + 3−2] + 5−2] + 7−2] + · · · = π2/8.

(c) Compute the sum 1 + 2−2] + 3−2] + 4−2] + 5−2] + · · ·.
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(d) Compute, using (4.6.10), the sum 1 + 3−4] + 5−4] + 7−4] + · · ·.
(e) Differentiate the Fourier series term by term, and compare with the result
in Example 4.6.1.

3. Show that the function G1(t) = t− 1/2, 0 < t < 1, has the expansion

G1(t) = −
∞
∑

n=1

sin 2nπt

nπ
.

Derive by term-wise integration, the expansion for the functions Gp(t), and
show the statement (made in Sec. 10.3.1) that cp − Gp(t) has the same sign
as cp. Show also that

∑

∞

n=1 n
−p = 1

2 |cp|(2π)p, p even.

4. (a) Prove that
N−1
∑

k=1

sin
πk

N
= cot

π

2N
.

Hint: sinx is the imaginary part of eix.

(b) Determine a sine polynomial
∑n−1

j=1 bj sin jx, which takes on the value 1 at
the points xα = πα/n, α = 1 : n− 1.

Hint: Use (4.6.16) or recall that the sine polynomial is an odd function.

(c) Compare the limiting value for bj as n → ∞ with the result in Exam-
ple 9.6.2.

5. (a) Prove the inequality in (4.6.9)!

(b) Show, under the assumptions on f which hold in (4.6.9), that, for k ≥ 1,
f can be approximated by a trigonometric polynomial such that

∥

∥

∥f −
n

∑

j=−n

cje
ijx

∥

∥

∥

∞

<
2

knk
‖f (k+1)‖∞.

In the following problems, we do not require any investigation of whether it is
permissible to change the order of summations, integrations, differentiations,
etc.; it is sufficient to treat the problems in a purely formal way.

6. The partial differential equation
∂u

∂t
=
∂2u

∂x2
is called the heat equation. Show

that the function

u(x, t) =
4

π

∞
∑

k=0

sin(2k + 1)x

2k + 1
e−(2k+1)2t,

satisfies the differential equation for t > 0, 0 < x < π, with boundary con-
ditions u(0, t) = u(π, t) = 0 for t > 0, and initial condition u(x, 0) = 1 for
0 < x < π (see Example 4.6.1).

7. Show that if g(t) is the Fourier transform of f(x), then

(a) e2παt]g(t) is the Fourier transform of f(x+ α).

(b) (2πit)kg(t) is the Fourier transform of f (k)](x), assuming that f(x) and
its derivatives up to the kth order tend to zero, as x→ ∞.
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8. The correlation of f1(x) and f2(x) is defined by

c(ξ) =

∫

∞

−∞

φ1(x + ξ)φ2(x) dx. (4.6.34)

Show that if f1(x) and f2(x) have Fourier transforms g1(t) and g2(t), respec-
tively, then the Fourier transform of c(ξ) is h(t) = g1(t)g2(−t).
Hint: Compare Theorem 4.6.7.

9. Derive Parseval’s identities (4.6.27) and (4.6.10)

4.7 The Fast Fourier Transform

4.7.1 The Fast Fourier Algorithm

Consider the problem to compute the discrete Fourier coefficients {cj}N−1
j=0

f(x) =

N−1
∑

j=0

cje
ijx,

for a function, whose values fα are known at the points xα = 2πα/N , α = 0 : N−1.
According to Theorem 4.6.5

cj =
1

N

N−1
∑

α=0

fαe
−ijxα , j = 0 : N − 1.

Setting ωN = e−2πi/N (i.e. ω is an Nth root of unity, ωN = 1), we can rewrite the
problem as follows: compute

cj =
1

N

N−1
∑

α=0

ωjα
N fα, j = 0 : N − 1. (4.7.1)

It seems from (4.7.1) that to compute the discrete Fourier coefficients would
require N2 complex multiplications and additions. As we shall see, with the Fast
Fourier Transform (FFT) one needs only aboutN log2N complex multiplications
and additions if N = 2k. For example, when N = 220 = 1 048 576 the FFT
algorithm is theoretically a factor of 84 000 faster than the “conventional” O(N2)
algorithm. On a 266 MHz Pentium laptop, a real FFT of this size takes about 1.2
seconds using Matlab 6, whereas 28 hours would be required by the conventional
algorithm! The FFT not only uses fewer operations to evaluate the DFT, it also
is more accurate. Whereas using the conventional method the roundoff error is
proportional to N , for the FFT algorithm it is proportional to log2N .

In many areas of application (digital signal and image processing, time-series
analysis, to name a few) the FFT has caused a complete change of attitude toward
what can be done using discrete Fourier methods. Without the FFT many mod-
ern devices like cell phones, digital cameras, CAT scans and DVDs would not be
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possible. Some future applications considered in astronomy are expected to require
FFTs of several gigapoints

Similar ideas were used already by Gauss and several other mathematicians,
e.g., Danielson and Lanczos [18].42.

In the following we will use the common convention not to scale the sum in
(4.7.1) by 1/N .

Definition 4.7.1.
The Discrete Fourier Transform (DFT) of the vector f ∈ CN is

y = FNf. (4.7.2)

where Fn ∈ RN×N is the DFT matrix with elements

(FN )jα = ωjα
N , j, α = 0 : N − 1, (4.7.3)

where ωN = e−2πi/N .

From the definition it follows that the Fourier matrix FN is a complex Van-
dermonde matrix. Since ωjα

N = ωαj
N , FN is symmetric. By Theorem 4.6.5

1

N
F ∗

NFN = I,

where F ∗

N is the complex conjugate transpose of FN . Hence the inverse transform
can be written

f =
1

N
F ∗

Ny.

Example 4.7.1.
For n = 22 = 4, the DFT matrix is

F4 =









1 1 1 1
1 ω4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4









=









1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i









. (4.7.4)

where ω4 = e−2πi/4, and ω4
4 = 1.

We now describe the central idea of the FFT algorithm. Let N = 2k and set

α =

{

2α1, if α is even,
2α1 + 1 if α is odd,

, 0 ≤ α1 ≤ m− 1.

42The modern usage of FFT started in 1965 with the publication of the [15] by James W.
Cooley of IBM Research and John W. Tukey, Princeton University. Tukey came up with the
basic algorithm at a meeting of President Kennedy’s Science Advisory Committee. One problem
discussed at this meeting was that the ratification of a US–Sovjet Union nuclear test ban depended
on a fast method to detect nuclear tests by analyzing seismological time-series data.
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where m = N/2 = 2k−1. Split the DFT sum in an even and an odd part

yj =
m−1
∑

α1=0

(ω2
N)jα1f2α1

+ ωj
N

m−1
∑

α1=0

(ω2
N )jα1f2α1+1, j = 0 : N − 1,

Let β be the quotient and j1 the remainder when j is divided by m, i.e. j = βm+j1.
Then, since ωN

N = 1,

(ω2
N )jα1 = (ω2

N )βmα1(ω2
N )j1α1 = (ωN

N )βα1(ω2
N )j1α1 = ωj1α1

m .

Thus if, for j1 = 0 : m− 1, we set

φj1 =

m−1
∑

α1=0

f2α1
ωj1α1

m , ψj1 =

m−1
∑

α1=0

f2α1+1ω
j1α1

m . (4.7.5)

then, yj = φj1 + ωj
Nψj1 , The two sums on the right are elements of the DFTs of

length N/2 applied to the parts of f with odd and even subscripts. The entire DFT
of length N is obtained by combining these two DFTs! Since ωm

N = −1 we have

yj1 = φj1 + ωj1
Nψj1 , (4.7.6)

yj1+N/2 = φj1 − ωj1
Nψj1 , j1 = 0 : N/2 − 1. (4.7.7)

These expressions, noted already by Danielson and Lanczos [18], are often called
butterfly relations because of the data flow pattern. Note that these can be
performed in place, i.e. no extra vector storage is needed.

The computation of φj1 and ψj1 means that one does two Fourier transforms
with m = N/2 terms instead of one with N terms. If N/2 is even the same idea can
be applied to these two Fourier transforms. One then gets four Fourier transforms,
each of with has N/4 terms; If N = 2k this reduction can be continued recursively
until we get N DFTs with 1 term. But F1 = I, the identity.

The number of complex operations required to compute {yj} from the but-
terfly relations when {φj1} and {ψj1} have been computed is 2k, assuming that the
powers of ω are precomputed and stored. Thus, if we denote by pk the total number
of operations needed to compute the DFT when N = 2k, we have

pk ≤ 2pk−1 + 2k, k ≥ 1.

Since p0 = 0, it follows by induction that pk ≤ k ·2k = N · log2N . Hence, when N is
a power of two, the fast Fourier transform solves the problem with at most N ·log2N
operations. The FFT is an example of the general technique of divide-and-conquer
algorithms (see Sec. 1.3.2). For a recursive implementation of the FFT algorithm,
see Problem 11.

Example 4.7.2.
Let N = 24 = 16. Then the 16-point DFT (0:1:15) can be split into two

8-points DFTs (0:2:14) and (1:2:15), which each can be split in two 4-point DFTs.
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[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ]

ւց
[ 0 2 4 6 8 10 12 14 ]

ւց
[ 1 3 5 7 9 11 13 ]

ւց
[ 0 4 8 12 ]

ւց
[ 2 6 10 14 ]

ւց
[ 1 5 9 13 ]

ւց
[ 3 7 11 15 ]

ւց
[ 0 8 ]

ւց
[ 4 12 ]

ւց
[ 2 10 ]

ւց
[ 6 14 ]

ւց
[ 1 9 ]

ւց
[ 5 13 ]

ւց
[ 3 11 ]

ւց
[ 7 15 ]

ւց
[0] [8] [4] [12] [2] [10] [6] [14] [1] [9] [5] [13] [3] [11] [7] [15]

Figure 4.7.1. The structure of an 24 = 16-point FFT.

Repeating these splittings we finally get 16 one-point DFTs, which are the identity
F1 = 1; see Figure 4.6.1.

In most implementations the explicit recursion is avoided. Instead the FFT
algorithm is implemented in two stages:

• a reordering stage in which the data vector f is permuted;

• a second stage in which first N/2 FFT transforms of length 2 are computed on
adjacent elements, next N/4 transforms of length 4, etc, until the final result
is obtained by merging two FFTs of length N/2.

We now consider each stage in turn.
Each step of the recursion involves an even-odd permutations. In the first

step the points with last digit equal to 0 are ordered first and those with last digit
equal to 1 last. In the next step the two resulting subsequences of length N/2 are
reordered according to the second binary digit, etc. It is not difficult to see that
the combined effect of the reorderings in stage 1 is a bit-reversal permutation
of the data points. For i = 0 : N − 1, let the index i have the binary expansion

i = b0 + b1 · 2 + · · · + bt−1 · 2t−1

and set
r(i) = bt−1 + · · · + b1 · 2t−2 + b0 · 2t−1.

That is, r(i) is the index obtained by reversing the order of the binary digits. If
i < r(i) then exchange fi and fr(i). This reordering is illustrated for N = 16 in
Figure 4.7.1.

We denote the permutation matrix corresponding to bit-reversal ordering by
PN . Note that if an index is reversed twice we end up with the original index. This
means that P−1

N = PT
N = PN , that is PN is symmetric. The permutation can be

carried out “in place” by a sequence of pairwise interchanges or transpositions of
the data points. For example, for N = 16 the pairs (1,8), (2,4), (3,12), (5,10), (7,14)
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Decimal Binary

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

=⇒

Decimal Binary
0 0000
8 1000
4 0100

12 1100
2 0010

10 1010
6 0110

14 1110
1 0001
9 1001
5 0101

13 1101
3 0011

11 1011
7 0111

15 1111

Figure 4.7.2. Bit-reversal ordering. The original order left and the bit-
reversal order right.

and (11,13) are interchanged. The bit-reversal permutation can take a substantial
fraction of the total time to do the FFT. Which implementation is best depends
strongly on the computer architecture.

We now consider the second stage of the FFT. The key observation to develop
a matrix-oriented description of this stage is to note that the Fourier matrices FN

after an odd-even permutation of the columns can be expressed as a 2 × 2 block
matrix, where each block is either FN/2 or a diagonal scaling of FN/2.

Theorem 4.7.2. Van Loan [56, Theorem1.2.1]
Let ΠT

N be the permutation matrix, which applied to a vector groups the even-
indexed components first and the odd-indexed last.43 If N = 2m then

FNΠN =

(

Fm ΩmFm

Fm −ΩmFm

)

=

(

Im Ωm

Im −Ωm

) (

Fm 0
0 Fm

)

,

Ωm = diag (1, ωN , . . . , ω
m−1
N ), ωN = e−2πi/N . (4.7.8)

Proof. The proof essentially follows from the derivation of the butterfly relations
(4.7.6)–(4.7.7).

43Note that ΠT
N = Π−1

N is the so called perfect shuffle permutation. In this the permuted

vector ΠT
N f is obtained by splitting f in half and then “shuffling” the top and bottom halves.
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Example 4.7.3.
We illustrate Theorem 4.7.2 for N = 22 = 4. The DFT matrix F4 is given in

Example 4.7.3. After a permutation of the columns F4 can be written as a 2 × 2
block-matrix

F4Π
T
4 =









1 1 1 1
1 −1 −i i
1 1 −1 −1
1 −1 i −i









=

(

F2 Ω2F2

F2 −Ω2F2

)

,

where

F2 =

(

1 1
1 −1

)

, Ω2 = diag (1,−i).

When N = 2k the FFT algorithm can be interpreted as a sparse factorization
of the DFT matrix

FN = Ak · · ·A2PN , (4.7.9)

where PN is the bit-reversal permutation matrix and

Aq = diag (BL, . . . , BL
︸ ︷︷ ︸

r

), L = 2q, r = n/L. (4.7.10)

Here Bk ∈ CL×L is the radix-2 butterfly matrix defined by

BL =

(

IL/2 ΩL/2

IL/2 −ΩL/2

)

, (4.7.11)

ΩL/2 = diag (1, ωL, . . . , ω
L/2−1
L ), ωL = e−2πi/L. (4.7.12)

The FFT algorithm described above is usually referred to as the Cooley–Tukey
FFT algorithm. Using the fact that both PN and the DFT matrix Fn is symmetric,
we obtain by transposing (4.7.9) the factorization

FN = FT
N = PNA

T
1 A

T
2 · · ·AT

k . (4.7.13)

This gives rise to a “dual” FFT algorithm, referred to as the Gentleman–Sande
algorithm [27]. In this the bit-reversal permutation comes after the other compu-
tations. In many important applications such as convolution and the solution of
discrete Poisson equation, this permits the design of in-place FFT solutions that
avoid bit-reversal altogether.

In the operation count for the FFT above we assumed that the weights ωj
L,

j = 1 : L− 1, ωL = e−2πi/L are precomputed. To do this one could use at

ωj
L = cos(jθ) − i sin(jθ), θ = 2π/L.

for L = 2q, q = 2 : k. This is accurate, but expensive, since it involves L − 1
trigonometric functions calls. An alternative is to compute ω = cos(θ) − i sin(θ)
and use repeated multiplication,

ωj = ωωj−1, j = 2 : L− 1.

This replaces one sine/cosine call with a single complex multiplication, but has the
drawback that accumulation of roundoff errors will give an error in ωj

L of order ju.
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4.7.2 FFTs and Discrete Convolutions

Many applications of the FFT involve the use of a discrete version of the convolution,

Definition 4.7.3.
Given two sequences fi and gi, i = 0 : N − 1. Then the convolution of f and

g is the sequence defined by

hk = conv (f, g) =

N−1
∑

i=0

figk−i, i = 0 : N − 1, (4.7.14)

where the sequences are extended to have period N , by setting fi = fi+jN , gi =
gi+jN , for all integers i, j.

The discrete convolution can be used to approximate the convolution defined
for continuous functions in Definition 4.6.6 in a similar way as the Fourier transform
was approximated Using sampled values in Sec. 4.6.4.

We can write the sum in (4.7.14) as a matrix-vector multiplication h = Gf ,
or writing out components













h0

h1

h2
...

hN−1













=













g0 gN−1 gN−2 · · · g1
g1 g0 gN−1 · · · g2
g2 g1 g0 · · · g3
...

...
... · · ·

gN−1 gN−2 gN−3 · · · g0

























f0
f1
f2
...

fN−1













.

Note that each column in G is a cyclic down-shifted version of the previous column.
Such a matrix is called a circulant matrix. We have

G = [ g RNg R2
Ng · · · RN−1

N g ] ,

and RN is a circulant permutation matrix. For example,

R4 =







0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0







(see Problem 11).

Theorem 4.7.4.
Let fi and gi, i = 0 : N − 1 be two sequences with DFTs equal to FNf and

FNg. Then the DFT of the convolution of f and g, is FNf. ∗ FNg, where .∗
denotes elementwise product.

Proof. The proof depends on the fact that the circulant matrix G is diagonalized
by the DFT matrix FN , i.e.

G = F−1
N diag (FNg)FN ;
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see Problem 15. (Here diag (x), where x is a vector, denotes a diagonal matrix with
diagonal elements equal to x.) It follows that

h = Gf = F−1
N diag (FNg)FNf = F−1

N ((FNg). ∗ (FNf)). (4.7.15)

It follows from (4.7.15) that conv (f, g) = conv (g, f).

This shows that using the FFT algorithm the discrete convolution can be
computed in order N log2N operations as follows. First the two FFTs of f and
g are computed and multiplied (pointwise) together. Then the inverse DFT of
this product is computed. This is one of the most useful properties of the FFT.
Computing convolutions is of great importance in signal processing.

Using the Gentleman–Sande algorithm FN = PNA
T for the forward DFT and

the Cooley–Tukey algorithm for the inverse DFT, F−1 = (1/N)F̄N = (1/N)ĀPN/N ,
we get from (4.7.15)

f =
1

N
ĀPN ((PNA

Th). ∗ (PNA
T g)) =

1

N
Ā((ATh). ∗ (AT g)). (4.7.16)

This shows that h can be computed without the bit-reversal permutation PN , which
typically can save 10–30 percent of the overall computation time.

4.7.3 Real Data and Fast Trigonometric Transforms

Frequently the FFT of a real data vector is required. The complex FFT algorithm
can still be used, but is inefficient both in terms of storage and operations. Better
alternatives can be found by using symmetries in the DFT, which correspond to
the symmetries noted in the Fourier transform in Table 4.6.1.

We first show that the conjugate transpose of the DFT matrix FN can be
obtained by reversing the order of the last N − 1 rows.

Lemma 4.7.5. Van Loan [56, Theorem4.3.1]
Let TN be the N×N permutation matrix which reverses the last N−1 elements.

Then FN = TNFN = FNTN .

Proof. To verify that FN = TNFN , observe that

[TNFN ]jα = ω
(N−j)α
N = ω−jα

N = ωjα
N = [FN ]jα, 1 ≤ j ≤ N − 1.

Since FN and TN are both symmetric, we also have FN = (TNFN )T = FNTN .

We say that a vector x ∈ CN is conjugate even if x̄ = TNy, and conjugate
odd if x̄ = TNy. Suppose now that f is real and u = FNf . Then it follows that

u = FNf = TNFNf = TNu,

i.e. u is conjugate even. If a vector u of even length N = 2m is conjugate even, this
implies that

uj = ūN−j, j = 1 : m.
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In particular uj is real for j = 0,m.
For purely imaginary data g and v = FNg, we have

v = FNg = −FNg = −TNFNg = −TNv,

i.e. v is conjugate odd. Some other useful symmetry properties are given in the
table below, where EN denotes the N × N permutation matrix which reverses all
elements in an N -vector.

Data f Definition DFT FNf

real conjugate even

imaginary conjugate odd

real even f = Tnf real

real odd f = −Tnf imaginary

conjugate even f = Tnf real

conjugate odd f = −Tnf imaginary

Table 4.7.1. Useful symmetry properties of DFTs.

We now outline how symmetries can be used to compute the DFTs u = FNf
and v = FNg of two real functions f and g simultaneously. First form the complex
function f + ig and compute its DFT

w = FN (f + ig) = u+ iv

by any complex FFT algorithm. Multiplying by TN we have

TNw = TNFN (f + ig) = TN (u+ iv) = ū+ iv̄,

where we have used that u and v are conjugate even. Adding and subtracting these
two equations we obtain

w + TNw = (u+ ū) + i(v + v̄),

w − TNw = (u− ū) + i(v − v̄).

We can now retrieve the two DFTs from

u = FNf =
1

2

[

Re(w + TNw) + i Im(w − TNw)
]

, (4.7.17)

v = FNg =
1

2

[

Im(w + TNw) − iRe(w − TNw)
]

. (4.7.18)

Note that because of the conjugate even property of u and v there is no need to
save the entire transforms.

The above scheme is convenient when, as for convolutions, two real transforms
are involved. It can also be used to efficiently compute the DFT of a single real
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function of length N = 2k. First express this DFT as a combination of the two real
FFTs of length N/2 corresponding to even and odd numbered data points (see as
in (4.7.5)). Then apply the procedure above to simultaneously compute these two
real FFTs.

Two more real transforms, the discrete sine transform (DST) and dis-
crete cosine transform (DCT), are of interest. These are defined as follows:

• Given real fj, j = 1 : m− 1 compute

yk =

m−1
∑

j=1

sin (kjπ/m) fj (DST). (4.7.19)

• Given real fj, j = 0 : m compute

yk =
1

2
(f0 + (−1)kfm) +

m−1
∑

j=1

sin (kjπ/m) fj (DCT). (4.7.20)

These can be computed by applying the FFT algorithm (for real data) to an aux-
iliary vector formed by extending the given data f either into an odd or even
sequence.

For the DST the fj, j = 1 : m − 1 is extended to an odd sequence of length
N = 2m by setting

f0 = fm = 0, f2m−j ≡ −fj, j = 1 : m− 1.

For example, the data {f1, f2, f3}, (m = 22) is extended to

f̃ = {f0, f1, f2, f3, f0,−f3,−f2,−f1}.

The extended vector satisfies f̃ = −TN f̃ , and thus by Table 4.6.2 the DFT of f̃ will
imaginary.

For the DCT the data fj , j = 0 : m is extended to an even sequence of length
N = 2m by setting

f0 = fm = 0, f2m−j ≡ fj , j = 1 : m− 1.

For example, the data {f0, f1, f2, f3, f4}, (m = 22) is extended to

f̃ = {f0, f1, f2, f3, f4, f3, f2, f1}.

so that f̃ = TN f̃ . By Table 4.6.2 the DFT of f̃ will then be real.

Theorem 4.7.6. Van Loan [56, Sec. . 4.4]
Let fj, j = 1 : m − 1 form a real data vector f and extend it to a vector f̃

with f̃0 = f̃m = 0, so that f̃ = −TN f̃ . Then y(1 : m− 1) is the DST of f , where

y =
i

2
F2mf̃ .
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Let fj, j = 0 : m form a real data vector f and extend it to an vector f̃ so

that f̃ = TN f̃ . Then y(0 : m) is the DST of f , where

y =
1

2
F2mf̃ .

There is an inefficiency factor of two in the above procedure. This can be
eliminated by using a different auxiliary vector. For details we refer to [39, p. 420–
421] and [56, Sec. 4.4.].

4.7.4 The General Case FFT

It can be argued ([39, p. 409]) that one should always choose N = 2k when using the
FFT. If necessary the data can be padded with zeros to achieve this. To introduce
an odd factor s, let N = sr, where r is a power of two. Then one can combine the
power of two algorithm for the r-point subseries with a special algorithm for the
s-point subseries. If s is a small number then one could generate the DFT matrix
Fs and use matrix-vector multiplication; see Problem 10. However, the general case
when if N is not a power of two, is at least of theoretical interest.

Suppose that N = r1r2 · · · rp. We will describe an FFT algorithm which
requires N(r1 + r2 + · · · + rp) operations. Set

Nν =

p
∏

i=ν+1

ri, ν = 0 : p− 1, Np = 1.

Thus
N = r1r2 · · · rνNν , N0 = N.

The algorithm is based on two representations of integers, which are generalizations
of the position principle (see Sec. 2.2.1).

I. Every integer j, 0 ≤ j ≤ N − 1 has a unique representation of the form

j = α1N1 + α2N2 + · · · + αp−1Np−1 + αp, 0 ≤ αi ≤ ri − 1. (4.7.21)

II. For every integer β, 0 ≤ β ≤ N − 1, β/N has a unique representation of the
form

β

N
=

k1

N0
+
k2

N1
+ · · · + kp

Np−1
, 0 ≤ ki ≤ ri − 1. (4.7.22)

Set

jν =

p
∑

i=ν+1

αiNi,
αν

Nν
=

p−1
∑

i=ν

ki+1

Ni
, (jν < Nν). (4.7.23)

As an exercise, the reader can verify that the coefficients in the above representations
can be recursively determined from the following algorithms: 44

j0 = j, ji−1/Ni = αi + ji/Ni, i = 1 : p;

44These algorithms can, in the special case that ri = B for all i, be used for converting integers
or fractions to the number system whose base is B; see Algorithm 2.2.1.
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β0 = β, βi−1/ri = βi + ki/ri, i = 1 : p.

From (4.7.21)–(4.7.23), it follows that, since Ni is divisible by Nν for i ≤ ν,

jβ

N
= integer +

p−1
∑

ν=0

kν+1

Nν

(

p
∑

i=ν+1

αiNi

)

=

p−1
∑

ν=0

kν+1jν
Nν

+ integer.

From this, it follows that

ωjβ = e2πijβ/N =

p−1
∏

ν=0

ekν+1jν2πi/Nν =

p−1
∏

ν=0

ωjνkν+1

ν , (4.7.24)

where ων = e2πi/Nν , ω0 = ω.
We now give an illustration of how the factorization in (4.7.24) can be utilized

in fast Fourier transform for the case p = 3. Set, in accordance with (4.7.22),

fβ = c(0)(k1, k2, k3).

We have then

cj =

N−1
∑

β=0

fβω
jβ =

r1−1
∑

k1=0

r2−1
∑

k2=0

r3−1
∑

k3=0

c(0)(k1, k2, k3)ω
j2k3

2 ωj1k2

1 ωjk1 .

One can thus compute successively (see (4.7.23))

c(1)(k1, k2, α3) =

r3−1
∑

k3=0

c(0)(k1, k2, k3)ω
j2k3

2 (j2 depends only on α3),

c(2)(k1, α2, α3) =

r2−1
∑

k2=0

c(1)(k1, k2, α3)ω
j1k2

1 (j1 depends only on α2, α3),

cj = c(3)(α1, α2, α3) =

r1−1
∑

k1=0

c(2)(k1, α2, α3)ω
jk1 (j depends on α1, α2, α3).

The quantities c(i) are computed for all r1r2r3 = N combinations of the values of
the arguments. Thus the total number of operations for the entire Fourier analysis
becomes at most N(r3 + r2 + r1). The generalization to arbitrary p is obvious.

Review Questions

1. Suppose we want to compute the DFT for N = 210. Roughly how much faster
is the FFT algorithm compared to the straightforward O(N) algorithm?

2. Show that the matrix U = 1
√

N
FN is unitary, i.e. U∗U = I, where U∗ = (U)T .
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3. Show that the DFT matrix F4 can be written as a 2 × 2 block matrix where
each block is related to F2. Give a generalization of this for FN , N = 2m, that
holds for arbitrary m..

4. Work out on your own the bit-reversal permutation of the vector [0 : N − 1]
for the case N = 24 = 16. How many exchanges need to be performed?

Problems and Computer Exercises

1. The following Matlab script uses an algorithm due to Cooley et al. to per-
mute the vector x(1 : 2m), in bit-reversal order:

n = 2^m;

nv2 = n/2; nm1 = n - 1;

j = 1;

for i = 1:nm1

if i < j

t = x(j); x(j) = x(i); x(i) = t;

end

k = nv2;

while k < j

j = j - k; k = k/2;

end

j = j + k;

end

Plot the time taking by this algorithm on your computer for m = 5 : 10. Does
the execution time depend linearly on N = 2m?

2. The following Matlab program (C. Moler and S. Eddins [37]) demonstrates
how the FFT idea can be implemented in a simple but efficient recursive
Matlab program. The program uses the fast recursion as long as n is a
power of two. When it reaches an odd length it sets up the Fourier matrix
and uses matrix vector multiplication.

function y = fftx(x);

% FFT computes the Fast Fourier Transform of x(1:n)

x = x(:);

n = length(x);

omega = exp(-2*pi*i/n);

if rem(n,2) == 0

% Recursive divide and conquer

k = (0:n/2-1)

w = omega.^k;

u = fftx(x(1:2:n-1));

v = w.*fftx(x(2:2:n));

y = [u+v; u-v];
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else

% Generate the Fourier matrix

j = 0:n-1;

k = j’;

F = omega.^(k*j);

y = F*x;

end

Apply this program to compute DFT of the function treated in Example 4.6.1
sampled at the points 2πα/N , α = 0 : N − 1. Choose, for instance, N =
32, 64, 128.

3. Write an efficient Matlab program for computing the DFT of a real data vector
of length N = 2m. As outlined in Sec. 4.7.3, first split the data in odd and even
data points. Compute the corresponding DFTs using one call of the function
fftx in Problem 10 with complex data of length N/2.

4. Verify the last four symmetry properties of DFTs in Table 4.6.2.

5. Let C be the square matrix

Cn =

(

0T
n−1 1
In−1 0n−1

)

=















0 0 · · · 0 1
1 0

1
...

. . . 0
1 0















∈ Rn×n.

Show that the effect of CnA and ACn, respectively, is a circular shift down-
wards of the rows and a shift to the left of the columns in A ∈ Rn×n. What
about CT ?

6. A circulant matrix A ∈ Rn×n generated by (a1, a2, . . . , an−1, an) has the form

A =













a0 an−1 · · · a2 a1

a1 a0 · · · a3 a2
...

...
...

...
an−2 an−3 · · · a0 an−1

an−1 an−2 · · · a1 a0













.

(a) Show that A = a0I + a1C + . . . + an−1C
n−1, where C is the circulant

matrix in Problem 6.

(b) Show that the eigenvalues and eigenvectors of A are given by

λj = a0 + a1ωj + . . .+ an−1ω
n−1
j , xj =

1√
n

(1, ωj, . . . , ω
n−1
j )T ,

where ωj = e2πj/n, j = 1 : n are the n roots of unity ωn = 1.

(c) Show that the result in (b) implies that C = FΛFH , where

Λ = diag (λ1, . . . , λn), F = (x1, . . . , xn)
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is the matrix of the discrete Fourier transform, and the eigenvalues are given
by the Fourier transform of its first column

F (a0, an−1, . . . , a2, a1)
T = (λ1, . . . , λn)T .

4.8 Complex Analysis in Interpolation

In this section we make a more detailed theoretical and experimental study of
interpolation of an analytic function f(z) on a real interval. including an analysis
of the Runge phenomenon (see Sec. 4.1.4). We then study interpolation at an
infinite equidistant point set from the point of view of Complex Analysis. This
interpolation problem, which was studied by Whittaker and others at the beginning
of the century, became revived at the middle of the century under the name of the
Shannon sampling theorem, with important applications to Communication
Theory.

We shall encounter multi-valued functions: the logarithm and the square root.
For each of these we choose that branch, which is positive for large positive values
of the argument. They will appear in such contexts that we can then keep them
non-ambiguous by forbidding z to pass the interval [−1, 1]. (We can, however, allow
z to approach that interval.)

4.8.1 Interpolation of Analytic Functions

We first consider the general problem of polynomial interpolation of an analytic
function, at an arbitrary sequence of points in C. Multiple points are allowed.
Set45

Φ(z) = (z − u1)(z − u2) · · · (z − un), z, uj ∈ C.

Let D be a simply connected open domain in C that contains the point u and the
nodes u1, u2, . . . , un. We consider the interpolation problem to find the polynomial
p∗ ∈ Pn that is determined by the conditions p∗(uj) = f(uj), j = 1 : n, or the
appropriate Hermite interpolation problem in the case of multiple nodes. We know
that p∗ depends linearly on f , that is there exists a linear mapping Ln from some
appropriate function space so that p∗ = Lnf .

Assume that f is an analytic function in the closure of D, perhaps except for a
finite number of poles p. A pole must not be a node. Recall the elementary identity

1

z − u
=

n
∑

j=1

Φj−1(u)

Φj(z)
+

Φn(u)

Φn(z)(z − u)
, (4.8.1)

which is valid also for multiple nodes. Introduce the linear operator Kn,

(Knf)(u) =
1

2πi

∫

∂D

Φn(u)f(z)

Φn(z)(z − u)
, (4.8.2)

45We use the notation u, ui instead of x, xi here, since x is traditionally associated with the real
part of a complex variable z.
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multiply the above identity by f(z)/(2πi), and integrate along the boundary of D:

1

2πi

∫

∂D

f(z)

z − u
=

n
∑

j=1

Φj−1(u)
1

2πi

∫

∂D

f(z)

Φj(z)
dz + (Knf)(u). (4.8.3)

The following theorem is valid, when the interpolation points xj are in the
complex plane, although we shall here mainly apply it to the case, when they are
located in the interval [−1, 1].

Theorem 4.8.1.
Assume that f(z) is analytic in a domain D that contains the points x1, x2, . . . xn,

as well as the point u ∈ C. Let Lnf be the solution of the interpolation problem
(Lnf)(xj) = f(xj), j = 1 : n. Then the interpolation error can be expressed as a
complex integral, f(u) − (Lnf)(u) = In(u), where

In(u) =
1

2πi

∫

∂D

Φ(u)f(z)

Φ(z)(z − u)
dz.

Proof. By the residue theorem,

In(u) =

n
∑

j=1

Φ(u)f(xj)

(u− xj)Φ′(xj)
+ f(u),

where the sum, with reversed sign, is Lagrange’s form of the interpolation polyno-
mial.

(Note the relation between the Lagrange interpolation formula and the expan-
sion of f(z)/Φ(z) into partial fractions, when, e.g., f(z) is a polynomial.)

We now proceed to Chebyshev interpolation, i.e. interpolation at the the zeros
of the Chebyshev polynomials. We shall show that it is almost as efficient as the
truncation of a Chebyshev expansion. In this case, Φ(z) = 21−nTn(z). Let D = ER,
x ∈ [−1, 1], z ∈ ∂ER, where ER is the ellipse

ER = {z : |z − 1| + |z + 1| ≤ R+R−1},

introduced in Sec. 3.5.1 (see (3.2.24). Consider the integral in Theorem 4.8.1 and
assume that |f(z)| ≤M for z ∈ ∂ER. It can be shown (Problem 2) that |Tn(x)| ≤ 1
and

|Tn(z)| ≥ 1
2 (Rn −R−n), |z − x| ≥ a− 1,

∫

∂ER

|dz| ≤ 2πa,

where a is the major semi-axis of ER, i.e. a = 1
2 (R+R−1). Then, by a straightfor-

ward calculation,

|f(x) − (Lnf)(x)| ≤ 2MR−na

(1 −R−2n)(a− 1)
. (4.8.4)
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This is somewhat less sharp than the result obtained by the Chebyshev expansion,
in particular when R ≈ 1. The details are left for Problem 2.

Note that f(z) is allowed to have a singularity arbitrarily close to the interval
[−1, 1], and the convergence of Chebyshev interpolation will still be exponential. Of
course, the exponential rate will be very poor, when R ≈ 1.

4.8.2 Analysis of a Generalized Runge Phenomenon

It is well known that the Taylor series of an analytic function converges at an expo-
nential rate inside its circle of convergence, while it diverges at an exponential rate
outside. We shall see that a similar result holds for certain interpolation processes.
In general, the domains of convergence are not disks but bounded by level curves of
a logarithmic potential, related to the asymptotic distribution of the interpolation
points.

For the sake of simplicity, we now confine the discussion to the case, when the
points of interpolation are located in the standard interval [−1, 1], but we are still
interested in the evaluation of the polynomials in the complex domain. Part of the
discussion can, however, be generalized to a case, when the interpolation points are
on an arc in the complex plane.

Let q : [a, b] 7→ [−1, 1] be an increasing and continuously differentiable func-
tion. Set tn,j = a+ (b − a)j/n, j = 0 : n, and let the interpolation points be xn,j ,
j = 1 : n, where q(tn,j−1) < xn,j ≤ q(tn,j), i.e. one interpolation point in each of n
subintervals of [−1, 1]. In the definition of Φ, we now write xn,j , Φn instead of xj ,
Φ. Note that, as n→ ∞,

1

n
ln Φn(z) =

1

n

n
∑

j=1

ln (z − xn,j) → ψ(z) :=
1

b− a

∫ b

a

ln (z − q(t)) dt, z /∈ [−1, 1].

(4.8.5)
Put x = q(t), and introduce a density function w(x), x ∈]−1, 1[ that is the derivative
of the inverse function of q, i.e. w(x) = 1/

(

q′(t(x))(b − a)
)

> 0. Then

ψ(z) =

∫ 1

−1

ln(z − x)w(x) dx, w(x) > 0,

∫ 1

−1

w(x) dx = 1, (4.8.6)

and ψ(z) is analytic in the whole plane outside the interval [−1, 1]. Its real part
P (z) is the logarithmic potential of a weight distribution,

P (z) = ℜψ(z) =

∫ 1

−1

ln |z − x|w(x) dx, w(x) > 0. (4.8.7)

The function 1
n ln |Φn(z)| is itself the logarithmic potential of a discrete distribution

of equal weights 1
n , at the interpolation points xj,n. This function is less pleasant

to deal with than P (z), since it becomes −∞ at the interpolation points while,
according to classical results of potential theory, P (z) is continuous everywhere,
also on the interval [−1, 1]. If we set z = x + iy, ∂P (z)/∂x is also continuous for
z ∈] − 1, 1[, while ∂P (z)/∂y has a jump there. We write it thus,

ψ′(x − 0i)− ψ′(x+ 0i) = 2πiw(x). (4.8.8)
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Figure 4.8.1. Figure to be made.

By (4.8.6), ψ(z) = ln z+O(z−1), |z| → ∞, or even O(z−2), if the weight distribution
is symmetric around the origin.

We make the definition

D(v) = {z ∈ C : P (z) < P (v)}.
and set P ∗ = maxx∈[−1,1] P (x). It can be shown that D(v) is a simply connected
domain if P (v) > P ∗. The level curve ∂D(v) = {z : P (z) = P (v)} then encloses
[−1, 1]. A level curve {z : P (z) = a} is strictly inside the level curve {z : P (z) = a′}
if a ≤ P ∗ < a′. (The proof of these statements essentially utilizes the minimum
principle for harmonic functions and the fact that P (z) is a regular harmonic func-
tion outside [−1, 1] that grows to ∞ with |z|.)

We now consider two examples.

Example 4.8.1. Equidistant interpolation
In this case we may take q(t) = t, t ∈ [−1, 1], hence w(x) = 1/2. For the

equidistant case we have if z /∈ [−1, 1],

P (z) = 1
2ℜ

∫ 1

−1

ln(z − x) dx = 1
2ℜ

(

(1 − z) ln(z − 1) + (1 + z) ln(z + 1)
)

− 1.

The upper half of the level curves may look something like Figure 4.8.1.:
On the imaginary axis,

P (iy) = 1
2 ln(1 + y2) + y(1

2π − arctan y) − 1.

When z → x ∈ [−1, 1], from any direction, P (z) tends to

P (x) = 1
2

(

(1 − x) ln(1 − x) + (1 + x) ln(1 + x)
)

− 1. (4.8.9)

P ′(x) is continuous in the interior, but becomes infinite at x = ±1. The imaginary
part of ψ(z) has, however, different limits, when the interval is approached from
above and below: ℑ(ψ(x ± 0i)) = ±π(1 − x).
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The level curve of P (z) that passes through the points ±1, intersects the
imaginary axis at the points ±iy, determined by the equation P (iy) = P (1) = ln 2−
1, with the root y = 0.5255. Theorem 4.8.2 (below) will tell us that Lnf(x) → f(x),
∀x ∈] − 1, 1[, if f(z) is analytic inside and on this contour.

In the classical example of Runge, f(z) = 1/(1 + 25z2) has poles inside this
contour at z = ±0.2i. Proposition 4.8.3 will tell us that the level curve of P (z) that
passes through these poles will separate between the points, where the interpolation
process converges and diverges. Its intersections with the real axis is determined
by the equation P (x) = P (0.2i) = −1.41142. The roots are x = ±0.72668.

Example 4.8.2. Chebyshev interpolation
In this example we have

q(t) = cos(π(1 − t)), t ∈ [0, 1], w(x) =
1

π
(1 − x2)−

1
2 .

Moreover (see Sec. 3.5.1) substitute s for w,

Φn(z) = 21−nTn(z) = 2−n(sn + s−n),

where z = 1
2 (s + s−1), s = z +

√
z2 − 1. Note that |s| ≥ 1, according to our

convention about the choice of branch for the square root. Hence,

P (z) = lim
1

n
ln |Φn(z)| − ln 2 = ln

|s|
2

= ln |z +
√

z2 − 1| − ln 2.

Therefore, the family of confocal ellipses ∂ER are, in this example, the level curves
of P (z). In fact, by (1.3’) and the formula for P (z), the interior of ER equals
D(lnR− ln 2). The family includes, as a limit case (R = 1), the interval [−1, 1], in
which P (z) = − ln 2.

Our problem is related to a more conventional application of potential theory,
namely the problem of finding the electrical charge distribution of a long insulated
charged metallic plate in the strip

{(x, y) ∈ R2 : − 1 < x < 1,−L < y < L}, L≫ 1.

Such a plate will be equipotential. The charge density at the point (x, y) is then
proportional to

w(x) =
1

π
(1 − x2)−1/2;

a fascinating relationship between electricity and approximation.

Note that if z /∈ [−1, 1], we can, by the definition of P (z) as a Riemann sum
(see (4.1)) find a sequence {ǫn} that decreases monotonically to zero, such that

1

n
| ln Φn(z) − ψ(z)| < ǫn, z /∈ [−1, 1]. (4.8.10)
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It is conceivable that the same sequence can be used for all z on a curve that does
not touch the interval [−1, 1]. (The proof is omitted.)

We can only claim a one-sided inequality, if we allow that u ∈ [−1, 1].

1

n
(ℜ ln Φn(u) − ψ(u)) < ǫn, u ∈ C. (4.8.11)

(Recall that ℜ ln Φn(u) = −∞ at the interpolation points.) We can use the same
sequence for z and u. We can also say that |Φn(u)| behaves like exp

(

(P (u) ± δ)n
)

outside the immediate vicinity of the interpolation points.

Theorem 4.8.2.
Assume that [−1, 1] is strictly inside a simply connected domain D ⊇ D(v). If

f(ζ) is analytic in the closure of D, then the interpolation error (Lnf)(u) − f(u)
converges like an exponential to 0 for any u ∈ D(v).

Proof. By Theorem 4.8.1, f(u) − (Lnf)(u) = In(u), where

In(u) =
1

2πi

∫

∂D

Φn(u)f(z)

Φn(z)(z − u)
dz. (4.8.12)

Note that P (z) ≥ P (v), because D ⊇ D(v). Then, by (4.8.10) and (4.8.11),

|Φn(u)/Φn(z)| < expn
(

P (u) − P (v) + 2ǫn
)

Let |f(z)| ≤M . For any u ∈ D(v), we can choose δ > 0, such that P (u) < P (v)−3δ,
|z − u| > δ. Next, choose n large enough so that ǫn < δ. Then

|f(u) − (Lnf)(u)| < 1

2π
M expn(−3δ + 2δ)

∫

∂D(v)

|dz|
δ

≤ K exp(−nδ)
δ

.

where K = K(v) does not depend on n, δ and u, hence the convergence is expo-
nential.

Remark 4.8.1. If u is away from the boundary ∂D(v), more realistic estimates of
the interpolation error and the speed of convergence is for n≫ 1 given by

K1(v)|Φn(u)|e(−P (v)+δ)n ≤ K1(v)e
(P (u)−P (v)+δ)n,

where K1(v) is another constant. The latter estimate is realistic outside the imme-
diate vicinity of the interpolation points.

It seems, as if one should choose |v| as large as possible, in order to increase
P (v). A bound for P (v) is usually set by the singularities of f(z). If f(z) is an
entire function, the growth of the maximum modulus of |f(z)|, |z| ∈ D(v), hidden
in K1(v), sets a bound for P (v) that usually increases with n.

We shall now derive a complement and a kind of converse to Theorem 4.8.2,
for functions f(z) that have simple poles in D(v).
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Proposition 4.8.3.
Assume that [−1, 1] is strictly inside a domain D ⊃ D(v), and that f(ζ) is

analytic in the closure of D, except for a finite number of simple poles p in the
interior, all with the same value of P (p).

Outside the interval [−1, 1], the curve ∂D(p) then separates the points, where
the sequence {(Lnf)(u)} converges, from the points, where it diverges. The behavior
of |(Lnf)(u) − f(u)|, when u ∈ D(v), n≫ 1 is roughly described by the formula,

|(f − Lnf)(u)| ≈ K|Φn(u)|e(−P (p)±δ)n/max
p

(1/|p− u|). (4.8.13)

This can be further simplified, if u is not in immediate vicinity of the interpolation
points, see (4.8.14).

Proof. (Sketch:) At the application of the residue theorem to the integral In(u),
see (4.8.12), we must this time also consider the poles of f(z). We obtain

In(u)

Φn(u)
=

(f − Lnf)(u)

Φn(u)
+

∑

p

resf(p)

Φn(p)(p− u)
,

where resf(p) is the residue of f at the pole p ∈ D(v). Roughly speaking, for n≫ 1,

In(u) = O
(

e−P (v)+δ)n
)

,
∑

p

= O
(

e(−P (p)±δ)n/max
p

(1/|p− u|), P (v) > P (p).

It follows that |In| ≪
∑

, unless there is a cancellation of terms in
∑

. For fixed
n,

∑

= 0 is equivalent to an algebraic equation of degree less than the number of
poles, and the roots will depend on n. We conclude that the case of cancellation can
be ignored, and hence we obtain (4.8.13), and the following simplified version, valid
if u is not in the immediate vicinity of the interpolation points. |Φn(u)| behaves
like exp(P (u) ± δ)n.

|(f − Lnf)(u)| ≈ Ke(P (u)−P (p)±δ)n/max
p

(1/|p− u|). (4.8.14)

The separation statement follows from this.

There are several interpolation processes with interpolation points in [−1, 1]
that converge for all u ∈ [−1, 1], when the condition of analyticity is replaced by
a more modest smoothness assumption, e.g., f ∈ Cp. This is the case, when the
sequence of interpolation points are the zeros of the orthogonal polynomials which
belong to a density function that is continuous and strictly positive in ]− 1, 1[. We
shall prove the following result.

Proposition 4.8.4.
Consider an interpolation process where the interpolation points has a (perhaps

unknown) asymptotic density function w(x), x ∈ [−1, 1]. Assume that

(Lnf − f)(x) → 0, ∀x ∈ [−1, 1], ∀f ∈ Ck[−1, 1],
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as n→ ∞, for some k ≥ 1. Then the logarithmic potential P (x) must be constant in
[−1, 1], and the density function must be the same as for Chebyshev interpolation,
i.e. w(x) = 1

π (1 − x2)−1/2.

Proof. Let f(z) be analytic in some neighborhood of [−1, 1], e.g. any function with
a pole at a point p (arbitrarily) close to this interval. A fortiori, for such a function
our interpolation process must converge at all points u in some neighborhood of the
interval [−1, 1].

Suppose that P (x) is not constant, and let x1, x2 be points, such that P (x1) <
P (x2). We can then choose the pole p so that P (x1) + δ < P (p) < P (x2) − δ. By
Proposition 4.8.3, the process would then diverge at some points u arbitrarily close
to x2. This contradiction shows that P (x) must be constant in [−1, 1], P (x) = a,
(say).

This gives a Dirichlet problem for the harmonic function P (z), z /∈ [−1, 1],
which has a unique solution, and one can verify that the harmonic function P (z) =
a+ ℜ ln(z +

√
z2 − 1) satisfies the boundary condition. We must also determine a.

This is done by means of the behaviour as z → ∞. We find that

P (z) = a+ ℜ ln(z + z(1 − z−2)1/2)

= a+ ℜ ln(2z −O(z−1) = a+ ℜ ln z + ln 2 −O(z−2).

This is to be matched with the result of the discussion of the general logarithmic
potential in the beginning of Sec. 4.8.2. In our case, where we have a symmetric

distribution, and
∫ 1

1 w(x) dx = 1, we obtain P (z) = ℜψ(z) = ℜ ln z + O(z−2). The
matching yields a = − ln 2.

Finally, by (4.8.6), we obtain after some calculation, w(x) = (1−x2)−1/2. The
details are left for Problem 3.

Compare the above discussion with the derivations and results concerning
the asymptotic distribution of the zeros of orthogonal polynomials, given in the
standard monograph G. Szegö [54].

4.8.3 The Sampling Theorem

The ideas of this paper can be applied to other interpolation problems than polyno-
mial interpolation. We shall apply them to a derivation of the celebrated sampling
theorem which is an interpolation formula that expresses a function that is band-
limited to the frequency interval [−W, W ], i.e. a function that has a Fourier
representation of the following form (see also Strang [53, p. 325].

f(z) =
1

2π

∫ W

−W

f̂(k)eikz dk, |f̂(k)| ≤M, (4.8.15)

in terms of its values at all integer points. The Shannon Sampling Theorem
reads,

f(z) =
∞
∑

j=−∞

f

(

jπ

W

)

sin(Wz − jπ)

(Wz − jπ)
. (4.8.16)
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This is, like Lagrange’s interpolation formula, a so-called cardinal interpolation for-
mula. As Wz/π tends to an integer m, all terms except one on the right hand side
become zero; for j = m the term becomes f(mπ/W ).

We shall sketch a derivation of this for W = π. We first note that (4.8.15)
shows that f(z) is analytic for all z. Then we consider the same Cauchy integral as
many times before,

In(u) =
1

2πi

∫

∂Dn

Φ(u)f(z)

Φ(z)(z − u)
dz, u ∈ Dn.

Here Φ(z) = sinπz, which vanishes at all integer points, and Dn is the open rectangle
with vertices at ±(n + 1/2) ± bi. By the residue theorem, we obtain after a short
calculation,

In(u) = f(u) +

n
∑

j=−n

Φ(u)f(j)

Φ′(j)(j − u)
= f(u) −

n
∑

j=−n

f(j) sinπ(j − u)

π(j − u)
.

Set z = x+ iy. Note that

|f(z)| ≤ 1

2π

∫ π

−π

Me−kydk ≤ M(e|πy| − e−|πy|)

|2πy| , |Φ(z)| ≥ e|πy|.

These inequalities, applied for y = b, allow us to let b → ∞; (2b is the height
of the symmetric rectangular contour). Then it can be shown that In(u) → 0 as
n → ∞, which establishes the sampling theorem for W = π. The general result is
then obtained by ”regula de tri”, but it is sometimes hard to get it right Strang [53]
gives an entirely different derivation, based on Fourier analysis.

Problems and Computer Exercises

1. We use the notations and assumptions of Theorem 4.8.1. (a) Using the repre-
sentation of the interpolation operator as an integral operator, show that

(Lnf)(x) =
1

2πi

∫

∂D

K(x, z)
f(z)

Φ(z)
dz, K(x, z) =

Φ(x) − Φ(z)

(x − z)
,

also if x /∈ D. Note that K(x, z) is a polynomial, symmetric in the two
variables x, z.

(b) A formula for the divided difference. Show that

[x1, x2, . . . , xn]f =
1

2πi

∫

∂D

f(z)

Φ(z)
dz.

Hint: Look at the leading term of the polynomial (Lnf)(x).

2. Check the omitted details of the derivations in Sec. 4.8.3.



Problems and Computer Exercises 147

3. Check the validity of (4.8.6) on the Chebyshev and the equidistant cases. Also

show that
∫ 1

−1
w(x) dx = 1, and check the statements about the behaviour of

P (z) for |z| ≫ 1.

4. (a) Work out the details of the proof of the Sampling Theorem.

(b) The formulation of the Sampling Theorem with a general W in Strang [53]
does not agree with ours in (4.8.16). Who is right?

5. (a) Write a program for solving equations of the form ψ(z) = c, where c runs
through a rectangular grid in a complex plane, not necessarily equidistant.
You may assume that ψ is defined in such a way, that that its derivative is
rather easily computed. When applicable, compute also the intersections of
two families of level curves, i.e. with constant ℜc and constant ℑc, with the
real axis.

(b) Apply your program(s) to the plotting of these level curves in the two cases
of the text, (related to, respectively, equidistant and Chebyshev interpolation).
Due to the symmetry it is sufficient to draw the curves in a quarter-plane.
Think of the ”aspect” of the plotting so that the conformality of the mappings
becomes visible.
If the scanning of the grid (of c) leads z to cross the forbidden interval [−1, 1],
or to some other exceptional situation, the program should return a nice mes-
sage, and continue the scanning without interrupt, with more fruitful values
of c, so that nothing is lost. By the way, find out, how the system you work
with, handles the logarithm and square root in the complex domain. It may
not be entirely according to our conventions, but it almost certainly produces
some value that your own program can modify appropriately.

(c) If ℜc≫ 1, the level curve for the real part is, close to a circle (why?). Use
equidistant values of ℑc ∈ [0, 1

2π]. The values of ℜc are to be chosen so that
the drawings become intellectually interesting and/or visually pleasing. You
are then likely to find that the density of the level curves for the imaginary
part, when they approach the interval [0, 1] is different for the Chebyshev case
and the equidistant case. Explain theoretically how this is related to the den-
sity function w in the text.

(d) The level curves of the imaginary part intersect the interval [0, 1], at dif-
ferent angles in the Chebyshev and the equidistant cases. Give a theoretical
analysis of this.

6. (a) (After Meray (1884) and Cheney [11, p. 65]. Let Lnf be the polynomial
of degree < n, which interpolates to the function f(z) = 1/z at the n’th roots
of unity. Show that (Lnf)(z) = zn−1, and that

lim
n→∞

max
|u|=1

|(Lnf − f)(u)| > 0.

Hint: Solve this directly, without the use of the previous theory.

(b) Modify the theory of Sec. 4.8.1 to the case in (a) with equidistant interpo-
lation points on the unit circle, and make an application to f(z) = 1/(z − a),
a > 0, a 6= 1. Here, Φn(z) = zn − 1. What is ψ(z), P (z)? The density
function? (The integral for ψ(z) is a little tricky, but you may find it in a
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table. There are, however, simpler alternatives to the integral, see the end of
Sec. 4.8.1. Check your result by thinking like Faraday.) Find out for which
values of a, u, (|u| 6= 1, |u| 6= a), (Lnf − f)(u) → 0, and estimate the speed of
convergence (divergence).

(c) What can be said about the cases excluded above, i.e. |u| = 1, |u| = a?
Also look at the case, when |a| = 1, (a 6= 1).

(d) Is the equidistant interpolation on the unit circle identical to the Cauchy
FFT method (with a = 0, R = 1) for the approximate computation of the
coefficients in a power series? See, in particular (3.1.10).

7. (a) We saw in 6 (b) that the equidistant interpolation on the unit circle gives
no good polynomial approximation when the pole is inside the unit circle.
The coefficients computed by the Cauchy FFT are however useful with a
different interpretation, namely as coefficients in an interpolation polynomial
p(z−1) for f(z) = 1/(z− a), or as approximate coefficients in a Laurent series
1/(z − a) =

∑

∞

j=1 cjz
−j, that converges for |z > a|. Note that the Cauchy

integral, (3.1.8), is valid also for the coefficients of a Laurent expansion. Now
consider

f(z) =
−5

(3 − z)(1 − 2z)
=

1

3 − z
− 2

1 − 2z
.

This has three Laurent expansions, i.e. an ordinary Taylor series for |z| < 1
2 ,

an expansion into negative powers for |z| > 3, and a mixed expansion for the
annulus 1

2 < |z| < 3. It is conceivable that the the first two expansions can be
found by FFT, with different interpretations of the results, but what about
the annulus case? It is easily seen from the above partial fraction form of f(z)
what the Laurent expansion should be. When the FFT is applied to f(z),
it does therefore, in principle, find a coefficient by adding a coefficient of a
negative power of z from the first term of the partial fraction decomposition,
to the coefficient of a positive power of z from the second term. Can this really
work?
Explain, why things go so well with a careful treatment, in spite that we almost
tried to convince you above that it would not work. Also try to formulate what
”careful treatment” means in this case.

Hint: Generalize to the case of a Laurent expansion the relation between the
FFT output and the series coefficients given (for a Taylor series) in (3.1.11).
Also read in Strang [53, Chapter 4] or somewhere else about ”aliasing”.

Notes and Further Reading

The problem of choosing a good orderings of points in Newton and Lagrange in-
terpolations is discussed in [57]. Newton interpolation using the Leja ordering of
points has been analyzed by Reichel [40]. The barycentric form of Lagrange’s in-
terpolation formula was advocated in lecture notes by Rutishauser [43] already in
the 1960’s. Berrut and Trefethen [3] argue convincingly that this should be the
standard method of polynomial interpolation, and in historical notes discuss why
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it is not better known. The scheme for computing the inverse of a Vandermonde
matrix is due to Higham [31, Sec. 22.1].

The O(n2) algorithm for solving primal Vandermonde systems decribed in
Sec. 4.3.4 is due to Björck and Pereyra [4]. It has been generalized to yield fast
algorithm for Vandermonde-like matrices defined by V = (vij) = ((pi(xj)), where
pi is a polynomial of degree n that satisfies a thre term recurrence relation; see
Higham [31, Sec. 22.2]. Also so called Cauchy linear systems can be solved with a
Björck–Pereyra-type algorithm; see Boros, Kailath and Olshevsky [8].

The computational advantage of the Stieltjes approach for discrete least squares
fitting was pointed out by Forsythe [24, ]. Shampine [48, ] established the
advantage in using the alternative formula involving the residual rk.

Working for the French car companies Renault and Citroën, Bézier and de Castel-
jau, independently in 1962 developed the Bézier curve as a tool in Computer Aided
Design (CAD) for fitting curves and surfaces. A more geometric view of spline
functions is taken in Farin [23]. Several packages are available for computing with
splines, e.g., the spline toolbox in Matlab and FITPACK Dierckx [20]–[21].

The FFT algorithm algorithm has been discovered independently by several
people. Indeed the idea was published in a paper by Gauss and the doubling
algorithm is contained in a textbook by Runge and König [42]. The modern usage of
FFT started in 1965 with the publication of the papers [15, 14] by James W. Cooley
of IBM Research and John W. Tukey, Princeton University. The re-discovery of the
FFT algorithm is surveyed by James W. Cooley in [13]. Applications are surveyed
in [10] and [9]. The matrix-oriented framework for the FFT used in this book is
developed in [56]). A roundoff error analysis is given in [1].) Algorithms for the
bit-reversal permutation are reviewed in [34].

Ideas related to those in Sec. 4.8.2 were applied in the thesis of Lothar Reichel
at KTH. He studied the Helmholtz equation in 2D, with a regionally constant com-
plex coefficient, with potential applications (excuse our pun!), e.g., to the microwave
heating of cheeseburgers. Since one can find nice bases of particular solutions of
the Helmholtz equation in different regions, i.e. bread, meat and cheese, one may
try boundary collocation, to express the appropriate continuity conditions at the
interfaces between meat and cheese etc. in a finite number of points.
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divided difference table, 15
Newton coefficients, 15
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in maximum norm, 81
arrowhead system, 61

B-spline, 64–74
basis, 68
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exterior knots, 65
hat function, 65
multiple knots, 68
properties, 67
recurrence relation, 69

Bézier
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Banach space, 80
Bernstein polynomials, 47–49

derivatives, 51
Bessel’s inequality, 93
bilinear interpolation, 44
Björck–Pereyra algorithm, 43
butterfly relations, 125

cardinal basis, 6
Cauchy sequence, 78
Cauchy–Schwarz inequality, 88
Chebyshev

interpolation, 8, 10, 17, 22, 96,
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points, 4, 17
support coefficients, 22

circulant matrix, 129
complete space, 78
complex analysis, 137–145
computer aided design, 49
continued fraction, 28
control points, 49
convex

hull, 50
set, 50

convolution, 118
discrete, 129

correlation, 123
cubic spline

‘not a knot’ condition, 59
complete interpolant, 58
interpolation error, 61–64
natural interpolant, 59
periodic boundary conditions, 59,

60
tridiagonal system, 57

de Casteljau’s algorithm, 52
discrete

cosine transform (DCT), 132
sine transform (DST), 132

distance, 78
divided difference, 11

inverse, 29
reciprocal, 29
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table, 13

Euclidean norm, 80
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weighted, 80
Euler’s formulas, 108

Fast Fourier Transform, 123–134
FFT, see Fast Fourier Transform

Cooley–Tukey, 128
Gentleman–Sande, 128

Fourier, 108
analysis

continuous case, 111
discrete case, 113

coefficients, 91, 110
matrix, 124
series, 108

function
aliased, 120
analytic, 137–145

Gauss–Markov theorem, 102
Gram polynomials, 101

Hermite interpolation, 33–38
Hilbert space, 88

inner product space, 88–91
interpolation

Birkhoff, 37
broken line, 55
condition number, 25
error in linear, 32
Hermite, 33–38
inverse, 38–39
iterative linear, 24–25
lacunary, 37
of analytic functions, 137–139
osculatory, 33–38
piecewise cubic, 56
rational, 27–30
remainder term, 14
with derivatives, 33–38

interpolation formula
barycentric form, 21
Hermite’s, 33
Lagrange’s, 6, 19–24
Newton’s, 12

inverse divided difference, 29

inverse interpolation, 38–39

knot, 54

Lagrange
interpolation, 6
polynomial

generalized, 34
Lagrange’s

interpolation formula, 19–24
polynomials, 20

least squares, 7
approximation, 6–7
data fitting, 100
statistical aspects, 102–104

Lebesgue constant, 26
Leibniz’ formula, 69
Leja

ordering, 18
points, 19

linear approximation, 79
linear space, 79
linear system

overdetermined, 7
logarithmic potential, 139

matrix
circulant, 136
shift, 136
totally nonnegative, 72

maximum norm, 80
metric space, 78
multidimensional interpolation, 44–46
multiplicity

of interpolation point, 33

Neville’s algorithm, 24–25
Newton polynomials, 5
Newton’s interpolation formula, 12
norm, 79

Lp, 80
lp, 80
of operator, 82–83

norm and distance formula, 84–87
normal equations, 7, 91
numerical differentiation, 40
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operator
norm, 82–83
positive definite, 90
self-adjoint, 90

orthogonal
coefficients, 91
expansion, 92
function, 89
polynomials, 94–102

construction, 96
system, 88–91

orthonormal system, 89
osculating polynomial, 33
osculatory interpolation, 33–38

parametric spline, 61
Parseval’s identity, 93, 113
Peano kernel, 68
permutation

bit-reversal, 126
perfect shuffle, 127

polynomial interpolation, 137–145
power basis, 2

shifted, 4
truncated, 64

projection, 90
Pythagoras’ theorem, 89

rational interpolation, 27–30
Neville-type, 30

reciprocity relations, 119
remainder term

interpolation, 14
Runge’s phenomenon, 7–9

sampling theorem, 137–145
Schoenberg–Whitney condition, 72
Scylla and Charybdis, 40
self-adjoint operator, 90
Shannon’s sampling theorem, 144
smoothing, 7
spectral analysis, 108
spline

best approximation property, 59

function, 57–74
definition, 56

interpolation, 53–72
closed curves, 61

least squares, 72–74
parametric, 61
truncated power basis, 64
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Chapter 5

Numerical Integration

5.1 Interpolatory Quadrature Rules

5.1.1 Introduction

As is well known, even many relatively simple integrals cannot be expressed in finite
terms of elementary functions, and must be evaluated by numerical methods. The
problem to calculate the definite integral of a given function over a finite interval
is often called numerical quadrature, since it relates to the ancient problem of
the quadrature of the circle, i.e., constructing a square with equal area to that of a
circle.

In this chapter we study the problem of how to find the parameters in a formula
for the approximate calculation integrals

I(f) =

∫ b

a

f(x) dx.

Note that I(f) is a linear functional and hence the problem is a special case of
approximating a linear functional considered in Sec. 3.3.4. The quadrature rules
considered will be of the form

∫ b

a

f(x) dx ≈
n

∑

i=1

wif(xi), (5.1.1)

where the nodes x1 < x2 < · · · < xn are distinct and weights w1, w2, . . . , wn.
Often (but not always) all nodes lie in [a, b].

The weights wi are usually determined so that the formula (5.1.1) is exact for
polynomials of as high degree as possible.

Definition 5.1.1. A quadrature rule (5.1.1) has order of accuracy (or degree
of exactness) equal to d if it is exact for all polynomials of degree ≤ d, i.e. for all
p ∈ Pd+1.

1
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The coefficients wi depend only on the distribution of the points {xi}n
i=1. Note

that the relation
∫ b

a

dx =

n
∑

i=1

wi = (b − a) (5.1.2)

follows from the requirement that the formula is exact for f(x) ≡ 1. Suppose that
the function values f(xi) is evaluated with an error ei, such that |ei| ≤ ǫ, for all
i = 1 : n. Then, if wi ≥ 0, the related error in the quadrature formula satisfies

∣

∣

∣

n
∑

i=1

wiei

∣

∣

∣ ≤ ǫ

n
∑

i=1

|wi| ≤ ǫ(b − a). (5.1.3)

However, this upper bound does not hold if some weights in the quadrature rules
are negative.

In an interpolatory quadrature formula the integral is approximated by
∫ b

a w(x)p(x) dx, where p(x) is the unique polynomial of degree n − 1 interpolat-
ing f(x) at the distinct points x1, x2, . . . , xn. By Lagrange’s interpolation formula
(Theorem 4.2.6)

p(x) =

n
∑

i=1

f(xi)ℓi(x), ℓi(x) =

n
∏

j=1

j 6=i

(x − xj)

(xi − xj)
,

where ℓi(x) are the elementary Lagrange polynomials associated with the nodes
x1, x2, . . . , xn. It follows that the weights are given by

wi =

∫ b

a

ℓi(x) dx. (5.1.4)

In practice, the coefficients are often more easily computed using the method of
undetermined coefficients rather than by integrating ℓi(x).

An expression for the truncation error is obtained by integrating the remainder
(see Theorems 4.2.3 and 4.2.4)

Rn(f) =

∫ b

a

[x1, . . . , xn, x]f

n
∏

i=1

(x − xi) dx

=
1

n!

∫ b

a

f (n)(ξx)

n
∏

i=1

(x − xi) dx, ξx ∈ [a, b]. (5.1.5)

where the second expression holds if f (n) is continuous in [a, b].

Theorem 5.1.2. For any given set of nodes x1, x2, . . . , xn an interpolatory quadra-
ture formula with weights (5.1.4) has order of exactness equal to at least d = n− 1.
Conversely, if the formula has degree of exactness n− 1, then the formula is inter-
polatory.
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Proof. For any f ∈ Pn we have p(x) = f , and hence (5.1.4) has degree of exactness
at least equal to n − 1. On the other hand, if the degree of exactness of (5.1.4) is
n − 1, then putting f = ℓi(x) shows that the weights wi satisfy (5.1.4), i.e. the
formula is interpolatory.

5.1.2 Some Classical Formulas

Interpolatory quadrature formulas, where the nodes are constrained to be equally
spaced, are called Newton–Cotes’1 formulas. These are especially suited for in-
tegrating a tabulated function, a task that was more common before the computer
age. The midpoint, trapezoidal and Simpson’s formula, to be described here, are
all special cases of Newton–Cotes’ formulas.

The trapezoidal rule (cf. Figure 1.2.5) is based on linear interpolation of
f(x) at x1 = a and x2 = b, that is f(x) is approximated by

p(x) = f(a) + (x − a)[a, b]f = f(a) + (x − a)
f(b) − f(a)

b − a
.

The integral of p(x) equals the area of a trapezoid with base (b − a) times the
average height 1

2 (f(a) + f(b)). Hence

∫ b

a

f(x) dx ≈ (b − a)

2
(f(a) + f(b)).

To increase the accuracy we subdivide the interval [a, b] and assume that
fi = f(xi) is known on a grid of equidistant points

x0 = a, xi = x0 + ih, xn = b. (5.1.6)

where h = (b−a)/n is the step length. The trapezoidal approximation for the ith
subinterval is

∫ xi+1

xi

f(x) dx = T (h) + Ri, T (h) =
h

2
(fi + fi+1), (5.1.7)

which is the composite trapezoidal rule
Assume now that f ′′(x) is continuous in [a, b]. Using the exact remainder in

Newton’s interpolation formula (see Theorem 4.2.3) we have

Ri =

∫ xi+1

xi

(f(x) − p2(x)) dx =

∫ xi+1

xi

(x − xi)(x − xi+1) [xi, xi+1, x]f dx. (5.1.8)

Since [xi, xi+1, x]f is a continuous function of x and (x−xi)(x−xi+1) has constant
(negative) sign for x ∈ [xi, xi+1], the mean-value theorem of integral calculus gives

Ri = [xi, xi+1, ξi]f

∫ xi+1

xi

(x − xi)(x − xi+1) dx, ξi ∈ [xi, xi+1].

1Roger Cotes (1682–1716) was a highly appreciated young colleague of Isaac Newton. He was
entrusted with the preparation of of the second edition of Newton’s Principia. He worked and
published the coefficients for Newton’s formulas for numerical integration for n ≤ 11.
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Setting x = xi + ht, and using the Theorem 4.2.4, we get

Ri = −1

2
f ′′(ζi)

∫ 1

0

h2t(t − 1)h dt = − 1

12
h3f ′′(ζi), ζi ∈ [xi, xi+1]. (5.1.9)

For another proof of this result using the Peano kernel, see Example 3.2.7.
Summing the contributions for each subinterval [xi, xi+1], i = 0 : n. gives

∫ b

a

f(x) dx = T (h) + ET , T (h) =
h

2
(f0 + fn) + h

n−1
∑

i=2

fi, (5.1.10)

where the global truncation error is

ET = −h3

12

n−1
∑

i=0

f ′′(ζi) = − 1

12
(b − a)h2f ′′(ξ), ξ ∈ [a, b]. (5.1.11)

(The last equality follows since f ′′ was assumed to be continuous on the interval
[a, b].) This shows that by choosing h small enough we can make the truncation
error arbitrary small. In other words we have asymptotic convergence when
h → 0.

In the midpoint rule f(x) is approximated on [xi, xi+1] by its value fi+1/2 =
f((xi + xi+1)/2 at the midpoint of the interval. This leads to the approximation

∫ xi+1

xi

f(x) dx = M(h) + Ri, M(h) = hfi+1/2 (5.1.12)

The midpoint rule approximation can be interpreted as the area of the trapezium
defined by the tangent of f at the midpoint xi− 1

2

.
The remainder term in Taylor’s formula gives

f(x) − fi− 1

2

= (x − xi− 1

2

)f ′

i− 1

2

+ 1
2 (x − xi− 1

2

)2f ′′(ζx), ζx ∈ [xi−1, xi].

By symmetry the integral over [xi−1, xi] of the linear term vanishes. We can use
the mean value theorem, to show that

Ri =

∫ xi+1

xi

1
2f ′′(ζx)(x − xi− 1

2

)2 dx = 1
2f ′′(ζi)

∫ 1

2

−
1

2

h3t2 dt =
h3

24
f ′′(ζi).

Although it uses just one function value the midpoint rule, like the trapezoidal
rule, is exact when f(x) is a linear function. Summing the contributions for each
subinterval we obtain the composite midpoint rule

∫ b

a

f(x) dx = R(h) + EM , R(h) = h

n−1
∑

i=0

fi+1/2, (5.1.13)

(Compare the above approximation with the Riemann sum in the definition of a
definite integral.) For the global error we have

EM =
(b − a)h2

24
f ′′(ζ), ζ ∈ [a, b]. (5.1.14)
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The trapezoidal rule is called a closed rule because values of f at both
endpoints are used. It is not uncommon that f has an integrable singularity at an
endpoint. In that case an open rule, like the midpoint rule, can still be applied.

If f ′′(x) has constant sign in each subinterval then the error in the midpoint
rule is approximately half as large as that for the trapezoidal rule and has the
opposite sign. However, the trapezoidal rule is more economical to use when a
sequence of approximations for h, h/2, h/4, . . . is to be computed, since about half
of the values needed for h/2 were already computed and used for h, etc. indeed, it
is easy to verify the following useful relation between the trapezoidal and midpoint
rules:

T (h/2) =
1

2
(T (h) + M(h)). (5.1.15)

If the magnitude of the error in the function values does not exceed 1
2U , then

for the trapezoidal and midpoint rules the magnitude of the propagated error in the
approximation is bounded by (b− a)1

2U , independent of h. Note that this holds for
any quadrature formula (5.1.1), provided that all weights wi are positive.

If the rounding error is negligible and h sufficiently small, then it follows
from (5.1.11) that the error in T (h/2) is about 1/4-th of that in T (h). Hence
the magnitude of the error in T (h/2) can be estimated by 1

3 |T (h/2) − T (h)|, or
more conservatively by |T (h/2) − T (h)|. (A more systematic use of Richardson
extrapolation is made in Romberg’s method; see Sec. 5.3.2.)

Example 5.1.1.

Compute approximately

∫ 0.8

0

sinx

x
dx. As an exercise the reader should check

some of the midpoint and trapezoidal sums given below, which are correct to ten
decimals. (Use (5.1.15).)

h M(h) T (h)

0.8 0.77883 66846 0.75867 80454
0.4 0.77376 69772 0.76875 73650
0.2 0.77251 27162 0.77126 21711
0.1 0.77188 74437

The correct value, to six decimals, is 0.772096. Verify that in this example the
error is approximately proportional to h2 for both M(h) and T (h). We estimate
the error in T (0.1) to be 1

36.26 · 10−4 ≤ 2.1 · 10−4.

From the error analysis above we note that the error in the midpoint rule is
roughly half the size of the error in the trapezoidal rule and of opposite sign. Hence
it seems that the linear combination

S(h) =
1

3
(T (h) + 2M(h)). (5.1.16)

should be a better approximation. This is indeed the case and (5.1.16) is equiva-
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lent to Simpson’s rule2, one of the most famous classical formulas for numerical
integration.

Another way to derive Simpson’s rule is to approximate f(x) by a piecewise
polynomial of third degree. It is convenient to shift the origin to the midpoint of
the interval and consider the integral over the interval [xi−h, xi +h]. From Taylor’s
formula we have

f(x) = fi + (x − xi)f
′

i +
(x − xi)

2

2
f ′′

i +
(x − xi)

3

3!
f ′′′

i + O(h4),

where the remainder is zero for all polynomials of degree 3 or less. Integrating term
by term, the integrals of the second and fourth term vanishes giving

∫ xi+h

xi−h

f(x) dx = 2hfi + 0 +
1

3
h3f ′′

i + 0 + O(h5).

Using h2f ′′

i = (fi−1 − 2fi + fi+1) + O(h4) (see (4.7.5)) we have that

∫ xi+h

xi−h

f(x) dx = 2hfi +
1

3
h(fi−1 − 2fi + fi+1) + O(h5) (5.1.17)

=
1

3
h(fi−1 + 4fi + fi+1) + O(h5),

where the remainder term is zero for all third-degree polynomials. We now deter-
mine the error term for f(x) = (x − xi)

4, which is

RT =
1

3
h(h4 + 0 + h4) −

∫ xi+h

xi−h

x4 dx = (2/3 − 2/5)h5 =
4

15
h5.

It follows that an asymptotic error estimate is

RT = h5 4

15

f (4)(xi)

4!
+ O(h6) =

h5

90
f (4)(xi) + O(h6).

A strict error estimate for Simpson’s rule is more difficult to obtain. As
for the midpoint formula the midpoint xi can be considered as a double point of
interpolation; see Problem 3. The general error formula (5.1.5) then gives

R(f) =
1

4!

∫ xi+1

xi−1

f (4)(ξx)(x − xi−1)(x − xi)
2(x + xi+1) dx.

where (x − xi−1)(x − xi)
2(x + xi+1) has constant sign on [xi−1, xi+1]. If 2h is the

length of the interval of integration Using the mean value theorem gives the error

− 1

90
f (4)(ξ)h5, |ξ| < h. (5.1.18)

2The English mathematician Thomas Simpson (1710–1761) is best known for his work on
interpolation and quadrature. He also worked on probability theory.
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The remainder can also be obtained from Peano’s error representation It can
be shown (see Stoer [32, p. 152ff]) that for Simpson’s rule

Rf =

∫

R

f (4)(u)K(u) du,

where the kernel equals

K(u) = − 1

72
(h − u)3(3u + h)2, 0 ≤ u ≤ h,

and K(u) = K(|u|) for u < 0, K(u) = 0 for |u| > h. This again gives (5.1.18).
In the composite Simpson’s formula one divides the interval [a, b] into an

even number n = 2m steps of length h, and use the formula (5.1.17) on each of m
double steps, giving

∫ b

a

f(x) dx =
h

3
(f0 + 4U + 2E + fn) + RT , (5.1.19)

where
U = f1 + f3 + · · · + fn−1, E = f2 + f4 + · · · + fn−2.

The remainder is

RT =

m−1
∑

i=0

h5

90
f (4)(ξi) =

(b − a)

180
h4f (4)(ξ), ξ ∈ [a, b]. (5.1.20)

This shows that wee have gained two orders of accuracy compared to the trapezoidal
rule, without using more function evaluations. This is why Simpson’s rule is such a
popular general-purpose quadrature rule.

5.1.3 Higher Order Newton–Cotes’ Formulas

The classical Newton–Cotes’ quadrature rules, are interpolatory rules obtained for
w(x) = 1 and equidistant points in [0, 1]. There are two classes: closed formulas,
where the end points of the interval belong to the nodes; open formulas, where all
nodes lie strictly in the interior of the interval. The closed Newton–Cotes’ formulas
are usually written

∫ nh

0

f(x) dx = h

n
∑

j=0

wjf(jh) + Rn(f) wj = wn−j , (5.1.21)

where, in principle, the weights wi can be determined from (5.1.4). By (5.1.2) they
satisfy

n
∑

j=0

hwj = nh. (5.1.22)

(Note that we here sum over n+1 points in contrast to our previous notation.) The
closed Newton–Cotes’ rule for n = 1 and n = 2 are equivalent to the trapezoidal
rule and Simpson’s rule, respectively.
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In general it can be shown that the closed Newton–Cotes’ formula integrate
all polynomials of degree d exactly, where d = n for n odd and d = n + 1 for n
even. The extra accuracy for n even is, as in Simpson’s rule, due to symmetry. For
n ≤ 7 the coefficients wi are positive, but for n = 8 and n ≥ 10 negative coefficients
appear. Such formulas may still be useful, but since

∑n
j=0 h|wj | > nh, they are less

robust with respect to errors in the function values fi.
Similarly the open Newton–Cotes’ formulas are usually written as

∫ nh

0

f(x) dx = h

n−1
∑

i=1

wif(ih) + Rn−1,n(h), w−j = wn−j .

The simplest open Newton–Cotes’ formula for n = 2 is the midpoint rule with step
size 2h. The open formulas have order d = n − 1 for n even and n − 2 for n odd.
For the open formulas negative coefficients occur already for n = 4 and n = 6.

The Peano kernels for both the open and the closed formulas can be shown
to have constant sign (see Steffensen [31]). Thus the local truncation error can be
written as

Rn(h) = cn,dh
d+1f (d)(ζ), ζ ∈ [0, nh], (5.1.23)

It is easily shown that the Peano kernels for the corresponding composite formulas
also have constant sign.

The Newton–Cotes’ closed formulas for n ≤ 6 and open formulas for n ≤ 5,
with error terms, are given in Tables 5.1.1 and 5.1.2, respectively. Note that the
sign of the error coefficients in the open rules are opposite the sign in the closed
rules. Higher order Newton–Cotes’ formulas are given in Abramowitz and Stegun [1,
pp. 886–887],

Table 5.1.1. The coefficients wi = Aci in the n-points closed Newton–
Cotes’ formulas.

n d A c0 c1 c2 c3 c4 c5 c6 cn

1 1 1/2 1 1 −1/12

2 3 1/3 1 4 1 −1/90

3 3 3/8 1 3 3 1 −3/80

4 5 2/45 7 32 12 32 7 −8/945

5 5 5/288 19 75 50 50 75 19 −275/12 096

6 7 1/140 41 236 27 272 27 236 41 −9/1400

We now show how the classical Newton–Cotes formulas for w(x) = 1 can be
derived using the operator methods developed in Sec. 3.3. Let m, n be given integers
and let h be a positive step size. In order to utilize the symmetry of the problem
easier, we move the origin to the midpoint of the interval of integration. If we set

xj = jh, fj = f(jh), j = −n/2 : 1 : n/2,
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Table 5.1.2. The coefficients wi = Aci in the n-points open Newton–Cotes’
formulas.

n d A c1 c2 c3 c4 c5 cn.

2 1 2 1 1/24

3 1 3/2 1 1 1/4

4 3 4/3 2 −1 2 14/45

5 3 5/24 11 1 1 11 95/144

6 5 3/10 11 −14 26 −14 11 41/140

7 5 7/1440 611 −453 562 562 −453 611 5257/8640

the Newton–Cotes formula now reads

∫ mh/2

−mh/2

f(x) dx = h

n/2
∑

j=−n/2

wjfj + Rm,n(h), w−j = wj . (5.1.24)

Note that j, n/2 and m/2 are not necessarily integers. For a Newton–Cotes formula
n/2 − j and m/2 − j are evidently integers. Hence (m − n)/2 is an integer too,
but there may be other formulas, perhaps almost as good, where this is not the
case. The coefficients wj = wj;m,n are to be determined so that the remainder
Rm,n vanishes if f ∈ Pq, with q as large as possible for given m, n. The left hand
side of (5.1.24), divided by h, reads in operator form,

(ehDm/2 − e−hDm/2)(hD)−1f(x0),

which is an even function of hD. By (3.3.38), hD is an odd function of δ. It follows
that the left hand side is an even function of δ, hence we can, for every m, write

(ehDm/2 − e−hDm/2)(hD)−1 7→ Am(δ2) = a1m + a2mδ2 + . . . + ak+1,mδ2k . . .
(5.1.25)

We truncate after (say) δ2k; the first neglected term is then ak+2,mδ2k+2. We saw
in Sec. 3.3.4 how to bring a truncated δ2-expansion to B(E)-form

b1 + b2(E + E−1) + b3(E
2 + E−2) + . . . + bk(Ek + E−k).

by matrix multiplication with a matrix M of the form given in (3.3.45). By com-
parison with (5.1.24), we conclude that n/2 = k, that the indices j are integers, and
that wj = bj+1 (if j ≥ 0). If m is even, this becomes a Newton–Cotes formula. If m
is odd, it may still be a useful formula, but it does not belong to the Newton–Cotes
family, because (m − n)/2 = m/2 − k is no integer.

If n = m a formula is of the closed type. Its remainder term is the first
neglected term of the operator series, truncated after δ2k, 2k = n = m (and multi-
plied by h). Hence the remainder of (5.1.24) can be estimated by a2+m/2δ

m+2f0.
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or (better)
Rm,m ∼ (am/2+2/m)H(hD)m+2f0.

where we call H = mh the “bigstep”.
If the integral is computed over [a, b] by means of a sequence of “bigsteps”,

each of length H , an estimate of the global error has the same form, except that H
is replaced by b− a, and f0 is replaced by maxx∈[a,b] |f(x)|. The exponent of hD in
an error estimate that contains H or b− a, is known as the global order of accuracy
of the method.

If n < m, a formula of the open type is obtained. Among the open formulas
we shall only consider the case that n = m − 2, which are the open Newton–Cotes
formula. The operator expansion is truncated after δm−2, and we obtain

Rm−2,m ∼ (am/2+1/m)H(hD)mf0.

Formulas with n > m are rarely mentioned in the literature (except for m = 1).
We do not understand why; it is rather common that an integrand has a smooth
continuation outside the interval of integration.

Example 5.1.2.
The coefficients aim in the expansion (5.1.25) can be computed by means of the

Cauchy+FFT method. In this way extensive algebraic calculations are avoided3. It
can be shown that the exact coefficients are rational numbers, though it is sometimes
hard to estimate in advance the order of magnitude of the denominators. The
algorithm must be used with judgment.

The coefficients are first obtained in floating point representation. The trans-
formation to rational form is obtained by a continued fraction algorithm, described
in Example 3.4.1.

For the case m = 8 the result reads,

A8(δ
2) = 8 +

64

3
δ2 +

688

45
δ4 +

736

189
δ6 +

3956

14175
δ8 − 2368

467775
δ10 + . . . (5.1.26)

The closed integration formula becomes

∫ x4

−x4

f(x)dx =
4h

14175

(

−4540f0 + 10496(f1 + f−1) − 928(f2 + f−2)

+ 5888(f3 + f−3)) + 989(f4 + f−4)
)

+ R, (5.1.27)

R ∼ 296

467775
Hh10f (10)(x0). (5.1.28)

It goes without saying that this is not how Newton and Cotes found their
methods. Our method may seem complicated, but the Matlab programs for this
are rather short, and to a large extent useful for other purposes. The computation
of about 150 Cotes-coefficients and 25 remainders (m = 2 : 14), took less than two
seconds on a PC. This includes the calculation of several alternatives for rational

3These could, however, be carried out using a system like Maple.
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approximations to the floating-point results. For a small number of the 150 coeffi-
cients the judicious choice among the alternatives took, however, much more than
2 (human) seconds; this detail is both science and art.

It was mentioned that, if m is odd, (5.1.25) does not provide formulas of the
Newton–Cotes family, since (m−n)/2 is no integer, nor are the indices j in (5.1.24)
integers. So, the operator associated with the right hand side of (5.1.24) is of the
form

c1(E
1/2 + E−1/2) + c2(E

3/2 + E−3/2) + c3(E
5/2 + E−5/2) + . . . .

If it is divided algebraically by µ = 1
2 (E1/2 + E−1/2), however, it becomes of the

B(E)-form (say)

b′1 + b′2(E + E−1) + b′3(E
2 + E−2) + . . . + bk(Ek + E−k).

If m is odd we therefore expand

(ehDm/2 − e−hDm/2)(hD)−1/µ, µ =
√

1 + δ2/4,

into a δ2-series, with coefficients a′

j . Again this can be done numerically by the

Cauchy+FFT method. For each m two truncated δ2-series, one for the closed an
one for the open case, are then transformed into B(E)-expressions numerically by
means of the matrix M , as described above. The expressions are then multiplied
algebraically by µ = 1

2 (E1/2 + E−1/2). We then have the coefficients of a Newton–
Cotes formula with m odd.

The asymptotic error is

a′

m/2+1H(hD)m+1 and a′

m/2−1H(hD)m−1

for the closed type, and open type, respectively (2k = m − 1). The global orders
of accuracy for Newton–Cotes methods with odd m are thus the same as for the
methods, where m is one less.

5.1.4 Weighted Quadrature Rules

Newton–Cotes’ quadrature rules consist of approximating the integrand by a poly-
nomial and then integrate the polynomial exactly. Thus the accuracy depends on
how well the function f(x) can (locally) be approximated by a polynomial. A
sufficient condition that the method converges as h → 0 is that the integrand be
continuous, but to get rapid convergence more is required.

If the integrand becomes infinite at a point, some modification is necessary.
Even if some low-order derivative of the function is infinite at some point in or near
the interval of integration, one should make such a modification. It is not uncommon
that, when using a constant step-size, a single step taken close to a point where,
for example, the derivative of the integrand is infinite, gives a larger error than all
other steps combined.
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It is often advantageous to consider quadrature rules of the form

∫ b

a

f(x)w(x) dx ≈
n

∑

i=1

wif(xi). (5.1.29)

Here w(x) ≥ 0 is a given weight function (or density function) chosen so that f(x)
can be well approximated by a polynomial. To assure that the integral (5.1.29) is
well defined when f(x) is a polynomial, we assume in the following that the integrals

µk =

∫ b

a

xkw(x) dx, k = 1, 2, . . . , , (5.1.30)

are defined for all k ≥ 0, and µ0 > 0. The limits (a, b) of integration are here
allowed to be infinite. Since the formula should be exact for f(x) = 1 it holds that

µ0 =

∫ b

a

1 · w(x) dx =

n
∑

i=1

wi. (5.1.31)

The quantity µk is called the kth (ordinary) moment with respect to the weight
function w(x). For an interpolatory quadrature formula the weights are given by

wi =

∫ b

a

ℓi(x)w(x) dx. (5.1.32)

Example 5.1.3.
Newton–Cotes formulas with weight functions other than w(x) = 1 are useful,

e.g., when the integrand has a singularity. Such formulas can be derived by the
method of undetermined coefficients. Consider the formula

1√
2h

∫ 2h

0

x−1/2f(x) dx ≈ C0f(0) + C1f(h) + C2f(2h),

which is to be exact for any second-degree polynomial f(x). Equating the left and
right hand sides for f(x) = 1, x, x2 we obtain

C0 + C1 + C2 = 2,
1

2
C1 + C2 =

2

3
,

1

4
C1 + C2

2

5
.

This linear system is easily solved, giving C0 = 12/15, C1 = 16/15, C2 = 2/15.

There are also other possibilities to treat integrals, where the integrand has a
singularity or is “almost singular”.

Example 5.1.4.
In the integral

I =

∫ 1

0

1√
x

ex dx
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the integrand is infinite at the origin. By the substitution x = t2 we get I =

2
∫ 1

0 et2 dt, which can be treated without difficulty.
Another possibility is to use integration by parts.

I =

∫ 1

0

x−1/2ex dx = 2x1/2ex
∣

∣

1

0
− 2

∫ 1

0

x1/2ex dx

= 2e − 2
2

3
x3/2ex

∣

∣

1

0
+

4

3

∫ 1

0

x3/2ex dx =
2

3
e +

4

3

∫ 1

0

x3/2ex dx.

The last integral has a mild singularity at the origin. If one wants high accuracy,
then it is advisable to integrate by parts a few more times before the numerical
treatment.

It is often profitable to investigate whether or not one can transform or modify
the given problem in some way to make it more suitable for numerical integration.
Below we give give some selected examples.

Example 5.1.5. (Simple Comparison Problem)

In I =
∫ 1

0.1
x−3ex dx the integrand is infinite near the left end point. If we

write

I =

∫ 1

0.1

x−3
(

1 + x +
x2

2

)

dx +

∫ 1

0.1

x−3
(

ex − 1 − x − x2

2

)

dx

the first integral can be computed analytically. The second integrand can be treated
numerically. The integer and its derivatives are of moderate size. Note, however,
the cancellation in the evaluation of the integrand.

For integrals over an infinite interval one can try some substitution which
maps the interval (0,∞) to (0, 1), e.g., t = e−x of t = 1/(1 + x). However, in
such cases one must be careful not to introduce an unpleasant singularity into the
integrand instead.

Example 5.1.6.
Consider the integral I =

∫

∞

0
(1 + x2)−4/3 dx. If one wants five decimal digits

in the result then
∫

∞

R is not negligible until R ≈ 103. But one can expand the
integrand in powers of x−1 and integrate term-wise,

∫

∞

R

(1 + x2)−4/3 dx =

∫

∞

R

x−8/3(1 + x−2)−4/3 dx

=

∫

∞

R

(

x−8/3 − 4

3
x−14/3 +

14

9
x−20/3 − · · ·

)

= R−5/3
(3

5
− 4

11
R−2 +

14

51
R−4 − · · ·

)

.

If this expansion is used, then one needs only apply numerical integration to the
interval [0, 8].
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Example 5.1.7.
With the substitution t = 1/(1 + x) the integral in the previous example

becomes

I =

∫ 1

0

(t2 + (1 − t)2)−4/3t2/3 dt.

The integrand now has an infinite derivative at the origin. This can be eliminated
by making the substitution t = u3, to get

I =

∫ 1

0

(u6 + (1 − u3)2)−4/33u4 du,

which can be computed with, for example, a Newton–Cotes’ method.

If the integrand is oscillating, then with ordinary integration methods one
must choose a step size which is small with respect to the wave length; this is often
an irritating limitation in many applications. The techniques previously mentioned
(simple comparison problem, special integration formula, etc.) are sometimes effec-
tive in such situations. In addition, the following method can be used on integrals
of the form

I =

∫

∞

0

f(x) sin(g(x)) dx,

where g(x) is an increasing function, and both f(x) and g(x) can be approximated
by a polynomial. Set

I =

∞
∑

n=0

(−1)nun, un =

∫ xn+1

xn

f(x)| sin(g(x))| dx,

where x0, x1, x2, . . . are the successive zeros of sin(g(x)). The convergence of this
alternating series can then be improved with the help of repeated averaging, see
Sec. 3.2.1.

Review Questions

1. Why is a weight function w(x) > 0 included in many quadrature rules?

2. What is meant by the order of accuracy of a quadrature formula? Name three
classical quadrature methods and give their order of accuracy.

3. What is meant by a composite quadrature rule? What is the difference be-
tween local and global error?

4. Give an account of the theoretical background of the classical Newton–Cotes
rules.

5. Describe some possibilities for treating integrals, where the integrand has a
singularity or is “almost singular”.
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Problems and Computer Exercises

1. (a) Derive the closed Newton–Cotes rule for m = 3,

I =
3h

8
(f0 + 3f1 + 3f2 + f3) + RT , h = (b − a)/3,

also known as Simpson’s (3/8)-rule.

(b) Derive the open Newton–Cotes rule for m = 4,

I =
4h

3
(2f1 − f2 + 2f3) + RT , h = (b − a)/4.

(c) Find asymptotic error estimates for the formulas in (a) and (b) by applying
them to suitable polynomials.

2. (a) Show that Simpson’s formula is the unique quadrature formula of the form

∫ h

−h

f(x) dx ≈ h(a−1f(−h) + a0f(0) + a1f(h))

that is exact whenever f ∈ P4. Try to find several derivations of Simpson’s
formula, with or without the use of difference operators.

(b) Find the Peano kernel K2(u), such that Rf =
∫

R
f ′′(u)K2(u) du, and find

the best constants c, p, such that

|Rf | ≤ chp max |f ′′(u)|, ∀f ∈ C2[−h, h].

If you are going to deal with functions that are not in C3, would you still
prefer Simpson’s formula to the trapezoidal rule?

3. The quadrature formula

∫ xi+1

xi−1

f(x) dx ≈ h
(

af(xi−1) + bf(xi) + cf(xi+1)
)

+ h2df ′(xi),

can be interpreted as a Hermite interpolatory formula with a double point at
xi. Show that d = 0 and that this formula is identical to Simpson’s rule. Then
show that the error can be written as

R(f) =
1

4!

∫ xi+1

xi−1

f (4)(ξx)(x − xi−1)(x − xi)
2(x − xi+1) dx,

where f (4)(ξx) is a continuous function of x. Deduce the error formula for
Simpson’s rule. Setting x = xi + ht, we get

R(f) =
h4

24
f (4)(ξi)

∫ 1

−1

(t + 1)t2(t − 1)h dt =
h5

90
f (4)(ξi).
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4. A second kind of Newton–Cotes” open quadrature rule uses the midpoints of
the equidistant grid xi = ih, i = 1 : n, i.e.

∫ xn

x0

f(x) dx =

n
∑

i=1

wifi−1/2, xi−1/2 = 1
2 (xi−1 + xi).

(a) For n = 1 we get the midpoint rule. Determine the weights in this formula
for n = 3 and n = 5. (Use symmetry!)

(b) What is the order of accuracy of these two rules?

5. Derive Simpson’s formula with end corrections, i.e. a formula of the form

∫ h

−h

f(x) dx ≈ h
(

af(−h) + bf(0) + af(h)
)

+ h2c(f ′(−h) − f ′(h)),

that is exact for polynomials of degree five. What is the corresponding com-
posite formula for the interval [a, b] with b − a = 2nh?

6. Compute the integral

1

2π

∫ 2π

0

e
1

√

2
sin x

dx

by the trapezoidal rule, using h = π/2 and h = π/4.

7. Compute the integral

∫

∞

0

(1 + x2)−4/3 dx with five correct decimals. Expand

the integrand in powers of x−1 and integrate term-wise over the interval [R,∞],
for a suitable value of R. Then use a Newton–Cotes’ rule on the remaining
interval [0, R].

8. Write a program for the derivation of a formula for integrals of the form

I =
∫ 1

0 x−1/2f(x) dx that is exact for f ∈ Pn and uses the values f(xi),
i = 1 : n, by means of the power basis.

(a) Compute the coefficients bi for n = 6 : 8 with equidistant points, xi =
(i − 1)/(n − 1), i = 1 : n. Apply the formulas to the integrals

∫ 1

0

x−1/2e−x dx;

∫ 1

0

dx

sin
√

x
;

∫ 1

0

(1 − t3)−1/2 dt.

In the first of the integrals compare with the result obtained by series expan-
sion in Problem 3.1.1. In the last integral a substitution is needed for bringing
it to the right form.
(b) Do the same for the case, where the step size xi+1−xi grows proportionally
to i; x1 = 0; xn = 1. Is the accuracy significantly different compared to (a),
for the same number of points?

(c) Make some very small random perturbations of the xi, i = 1 : n in (a),
(say) of the order of 10−13. Of which order of magnitude are the changes in
the coefficients bi , and the changes in the results for the first of the integrals?
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9. Propose a suitable plan (using a computer) for computing the following inte-
grals, for s = 0.5, 0.6, 0.7, . . . , 3.0:

(a)

∫

∞

0

(x3 + sx)−1/2 dx; (b)

∫

∞

0

(x2 + 1)−1/2e−sx dx, error < 10−6;

(c)

∫

∞

π

(s + x)−1/3 sin xdx.

10. It is not true that any degree of accuracy can be obtained by using a Newton–
Cotes’ formula of sufficiently high order. To show this, Compute approxima-
tions to the integral

∫ 4

−4

dx

1 + x2
= 2 tan−1 4 ≈ 2.6516353 . . . .

using the closed Newton–Cotes’ formula with n = 2, 4, 6, 8. Which formula
gives the smallest error?

11. For expressing integrals appearing in the solution of certain integral equations
the following modification of the midpoint rule is often used:

∫ xn

x0

K(xj , x)y(x) dx =

n−1
∑

i=0

mijyi+1/2,

where yi+1/2 = y(1
2 (xi + xi+1)) and mij is the moment integral

mij =

∫ xi+1

xi

K(xj , x) dx.

Derive an error estimate for this formula.

12. (a) Suppose that you have found a truncated δ2-expansion, (say) A(δ2) ≡
a1 + a2δ

2 + . . . + ak+1δ
2k. Then an equivalent symmetric expression of the

form B(E) ≡ b1 + b2(E + E−1) + . . . + bk+1(E
k + E−k) can be obtained as

b = Mk+1a, where a, b are column vectors for the coefficients, and Mk+1 is
the (k + 1) × (k + 1) submatrix of the matrix M given in (3.2.45).
Use this for deriving (5.1.27) from (5.1.26). How do you obtain the remainder
term? If you obtain the coefficients as decimal fractions, multiply them by
14175/4 in order to check that they agree with (5.1.27).

(b) Use Cauchy+FFT for deriving (5.1.26), and the open formula and the
remainder for the same interval.

(c) Set zn = ∇−1yn−∆−1y0. We have, in the literature, seen the interpretation
that zn =

∑n
j=0 yj if n ≥ 0. It seems to require some extra conditions to be

true. Investigate if the conditions z−1 = y−1 = 0 are necessary and sufficient.
Can you suggest better conditions? (The equations ∆∆−1 = ∇∇−1 = 1
mentioned earlier are assumed to be true.)

13. (a) Write a program for the derivation of quadrature formulas and error esti-
mates according to Example 5.1.2 for m = n − 1, n, n + 1. Test the formulas
and the error estimates for some m, n on some simple (though not too simple)
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examples. Some of these formulas are listed in Handbook of Mathematical
Functions [1, Sec. 25.4]. In particular, check the closed Newton–Cotes’ 9-point
formula (n = 8). .

(b) Sketch a program for the case that h = 1/(2n + 1), with the computation
of f at 2m symmetrical points.

(c) Abramowitz–Stegun [1, Sec. 25.4] gives several Newton–Cotes formulas of
closed and open types, with remainders. Try to reproduce and extend their
tables with techniques related to Example 5.2.2.

5.2 Quadrature Rules with Free Nodes

Previously we have assumed that all nodes xi of the quadrature formula are given.
A natural questions is whether we can do better by a judicious choice of the free
nodes. This question is answered in the following theorem, which shows that by
a careful choice of grid points the order of accuracy of the quadrature rule can
substantially improved.

Theorem 5.2.1 (Gautschi [16] Theorem 3.2.1).
Let k be an integer such that 0 ≤ k ≤ n. Consider the quadrature rule (5.1.1)

and let
s(x) = (x − x1)(x − x2) · · · (x − xn) (5.2.1)

be the corresponding node polynomial. Then the quadrature rule has degree of
exactness equal to d = n + k − 1, if and only if the following two conditions are
satisfied:

(a) The quadrature rule (5.1.1) is interpolatory, i.e. the coefficients Ci are given
by (5.1.4).

(b) The node polynomial satisfies

∫ b

a

p(x)s(x)w(x) dx = 0, (5.2.2)

for all polynomials p ∈ Pk.

Proof. We first prove the necessity of the conditions (a) and (b). Since the degree
of exactness is d = n+k−1 ≥ n−1, the condition (a) follows immediately. Further,
for any p ∈ Pk the product p(x)s(x) is in Pn+k. Hence

∫ b

a

p(x)s(x)w(x) dx =

n
∑

j=1

wkf(xk)s(xk) = 0.

since s(xk) = 0, k = 1 : n, so that (b) holds.
To prove the sufficiency, let p(x) be any polynomial of degree n + k − 1. Let

q(x) and r(x) be the quotient and remainder, respectively, in the division

f(x) = q(x)sn(x) + r(x).
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Then q(x) and r are polynomials of degree k − 1 and n − 1, respectively, and it
holds that

∫ b

a

p(x)w(x) dx =

∫ b

a

q(x)sn(x)w(x) dx +

∫ b

a

r(x)w(x) dx.

Here the first integral is zero because of the orthogonality property of s(x). For the
second we have

n
∑

i=1

wip(xi) =
n

∑

i=1

wiq(xi)sn(xi) +
n

∑

i=1

wir(xi) =
n

∑

i=1

wir(xi),

since sn(xi) = 0, i = 1 : n. But

∫ b

a

r(x)w(x) dx =

n
∑

i=1

wir(xi),

since the weights were chosen such that the formula was interpolatory and therefore
exact for all polynomials of degree n − 1.

In the previous section we derived Newton–Cotes’ quadrature rules using La-
grange interpolation or operator series. We now outline another general technique,
the method of undetermined coefficients, for determining approximate quadrature
formulas of maximum order.

Let L be a linear functional and consider approximation formulas of the form

Lf ≈ L̃f =

p
∑

i=1

aif(xi) +

q
∑

j=1

bjf(zj), (5.2.3)

where the xi are p given nodes, while the zj are q free nodes. The latter are to be
determined together with the weight factors ai, bj . The altogether p+2q parameters
in the formula are to be determined, if possible, so that the formula becomes exact
for all polynomials of degree less than p + 2q.

We introduce the two node polynomials

r(x) = (x − x1) · · · (x − xp), s(x) = (x − z1) · · · (x − zq), (5.2.4)

of degree p and q, respectively.
Let φ1, φ2, . . . , φN be a basis of the space of polynomials of degree less than

N . We assume that the quantities Lφk, k = 1 : p + 2q are known. Then we obtain
the non-linear system,

p
∑

i=1

φk(xi)ai +

q
∑

j=1

φk(zj)bj = Lφk(x), k = 1, 2, . . . , p + 2q, (5.2.5)

This is a non-linear system in zj , but of a very special type. Note that the free
nodes zj appear in a symmetric fashion; the system (5.2.5) is invariant with respect
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to permutations of the free nodes together with their weights. We therefore first
ask for their elementary symmetric functions, i.e. for the coefficients gj of the
node polynomial

s(x) = φq+1(x) −
q

∑

j=1

sjφj(x) (5.2.6)

that has the free nodes z1, z2, . . . zq as zeros. We change the basis to the set

φ1(x), . . . φq(x), s(x)φ1(x), . . . , s(x)φp+q(x).

In the system (5.2.5), the equations for k = 1 : q will not be changed, but the
equations for k = 1 + q : p + 2q become,

p
∑

i=1

φk′ (xi)s(xi)ai +

q
∑

j=1

φk′(zj)s(zj)bj = L(sφk′), 1 ≤ k′ ≤ p + q. (5.2.7)

Here the second sum disappears since s(zj) = 0, for all j. (This is the nice feature
of this treatment!) Further by (5.2.6)

L(sφk′ ) = L(φk′φq+1) −
q

∑

j=1

L(φk′φj)sj , 1 ≤ k′ ≤ p + q. (5.2.8)

We thus obtain the following linear system for the computation of the q + p quan-
tities, sj , and Ai = s(xi)ai:

q
∑

j=1

L(φk′φj)sj +

p
∑

i=1

φk′(xi)Ai = L(φk′φq+1), k′ = 1 : p + q. (5.2.9)

The weights of the fixed nodes are ai = Ai/s(xi). The free nodes zj are then
determined by finding the q roots of the polynomial

s(x) = φq+1(x) −
q

∑

j=1

sjφj(x) = 0.

(Methods for computing roots of a polynomial are given in Sec. 6.5.) Finally, with
ai and zj known, the weights bj are obtained by the solution of the first q equations
of the system (5.2.5). which are linear in bj.

Let p = 0, [a, b] = [0, b], (b may be infinite) and consider the monomial
basis. The reader is advised to verify that, when p > 0 the matrix becomes a
kind of combination of a Hankel matrix and a Vandermonde matrix. In this case
the condition number of of the linear system (5.2.5) increases exponentially with
p+2q and the free nodes and corresponding weights may become rather inaccurate.
It is usually found, however, that unless the condition number is so big that the
solution breaks down completely, the computed solution will satisfy equation (5.2.5)
with a small residual. That is what really matters for the application of formula
(5.2.3).
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Example 5.2.1.

Consider the linear functional L(f) =
∫ 1

0 f(x) dx. Set p = 0, q = 3 and choose
the monomial basis φi(x) = xi−1. Introducing the node polynomial

s(x) = (x − z1)(x − z2)(x − z3) = x3 − s3x
2 − s2x − s1,

the linear system (5.2.8) becomes




1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5









s1

s2

s3



 =





1/4
1/5
1/6



 .

The exact solution is s1 = 1/20, s2 = −3/5, and s3 = 3/2. The free nodes thus
are the zeros of s(x) = x3 − 3x2/2 + 3x/5 − 1/20, which are z2 = 1/2 and z1,3 =

1/2 ±
√

3/20. The weights b1, b2, b3 are then found by solving (5.2.5) for k = 1 : 3.

For the purpose of error estimation, we can add the two equations

p
∑

i=1

φk(xi) ai +

q
∑

j=1

φk(zj) bj + (k − 1)!ck−1 = Lφk, (5.2.10)

k = p + 2q + 1, p + 2q + 2,

The remainder term of the method is of the form cN (LfN − L̃fN), where fN is any
monic polynomial of degree N . Normally N = p + 2q, but this is inadequate if
cp+2q = 0. This exceptional case actually happens, if a certain kind of symmetry
is present. The formula is then more accurate than expected, and we take N =
p + 2q + 1 instead. This is why ck is to be computed for two values of k.

For the determination of the error constant we compute, according to the
comments to (5.2.10), the difference between the right hand side and the left hand
side of (5.2.9), and divide by (k′)!, for k′ = p + q + 1, p + q + 2.

From a pure mathematical point of view all bases are equivalent, but equation
(5.2.5) may be better conditioned with some bases than with others, and this turns
out to be an important issue when p + 2q is large. The simplest choice of basis is

φk(x) = xk−1, x ∈ (0, b),

(b may be infinite). For this choice the condition number of (5.2.5), will increase
exponentially with p + 2q.

In the case [a, b] = [−b, b], where the weight function w(x) and the given nodes
xi are symmetrical with respect to the origin it holds that L(φk(x)) = 0, when k is
even. Then the weights ai and bi, and the free nodes zj will also be symmetrically
located. If p = 2p′ is even, the number of parameters will be reduced to p′ + q by
the transformation

x =
√

ξ, ξ ∈ [0, b2].

Note that w(x) will be replaced by w(
√

ξ)/
√

ξ. If p is odd, one node is at the
origin, and one can proceed in an analogous way. This should also reduce the
condition number approximately to its square root, and it is possible to derive in a
numerically stable way formulas with about twice as high order of accuracy as in
the unsymmetric case.
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5.2.1 Gauss–Christoffel Quadrature

By Theorem 5.2.1 if the n nodes in a quadrature formula are chosen so that the
node polynomial s(x) = (x − x1)(x − x2) · · · (x − xn) satisfies

∫ b

a

p(x)s(x)w(x) dx = 0, ∀ p(x) ∈ Pn, (5.2.11)

then the corresponding interpolatory quadrature rule has the maximum possible
order of accuracy 2n− 1. These formulas are called Gauss’ quadrature formulas
associated with the weight function w. The construction of such quadrature rules
is closely related to the theory of orthogonal polynomials. For the weight function
w(x) ≡ 1 they were derived in 1814 by Gauss [11]. Formulas for more general weight
functions were given by Christoffel4 [5] in 1858, which is why these are referred to
as Gauss–Christoffel quadrature formulas.

We denote by

(f, g) =

∫ b

a

f(x)g(x)w(x) dx, (5.2.12)

the inner product with respect to the weight function w(x) ≥ 0 and the interval [a, b].
The corresponding norm is (f, f) = ‖f‖2

2. This inner product has the important
property that

(xf, g) = (f, xg). (5.2.13)

We recall the assumption that w(x) ≥ 0 is a weight function on [a, b] such that
moments

µk = (xk, 1) =

∫ b

a

xkw(x) dx.

are defined for all k ≥ 0, and µ0 > 0.
The zeros of these polynomials then determine the nodes in the corresponding

Gaussian formula. The weights are then determined by integrating the elementary
Lagrange polynomials (5.1.4)

wi =

∫ b

a

ℓi(x)w(x) dx, ℓi(x) =

n
∏

j=1

j 6=i

(x − xj)

(xi − xj)
.

In Sec. 5.2.3 we will discuss a more stable algorithm that determines the nodes and
weights directly from the coefficients in the recurrence relation (??).

The condition (5.2.11) for the node polynomial can now be interpreted to
mean that s(x) is orthogonal to all polynomials in Pn. We shall now prove some
important results from the general theory of orthogonal polynomials.

4Elvin Bruno Christoffel (1829–1900) worked mostly in Strasbourg. He is best known for his
work in geometry and tensor analysis, which Einsten later used in his theory of relativity.
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Theorem 5.2.2.
The roots xi, i = 1 : n, of the orthogonal polynomial polynomial ϕn+1 of

degree n, associated with the weight function w(x) ≥ 0 on [a, b], are real, distinct
and contained in the open interval (a, b).

Proof. Let a < x1 < x2 · · · < xm, be the roots of ϕn+1 of odd multiplicity, which
lie in (a, b). At these roots ϕn changes sign and therefore the polynomial q(x)ϕn+1,
where

q(x) = (x − x1)(x − x2) · · · (x − xm),

has constant sign in [a, b]. Hence,

∫ b

a

ϕn+1q(x)w(x) dx > 0.

But this is possible only if the degree of q(x) is equal to n. Thus m = n and the
theorem follows.

Corollary 5.2.3.
If x1, x2, . . . , xn are chosen as the n distinct zeros of the orthogonal polynomial

ϕn+1 of degree n in the family of orthogonal polynomials associated with w(x), then
the formula

∫ b

a

f(x)w(x) dx ≈ w1f1 + w2f2 + . . . + wnfn, (5.2.14)

wi =

∫ b

a

ℓi(x)w(x) dx, (5.2.15)

is exact for polynomials of degree 2n − 1.

Apart from having optimal degree of exactness equal to 2n − 1, Gaussian
quadrature rules have several important properties, which we now outline.

Theorem 5.2.4.
All weights in a Gaussian quadrature rule are real, distinct and positive.

Proof. Let

ℓi(x) =

n
∏

j=1

j 6=i

(x − xj)

(xi − xj)
, i = 1 : n,

be the Lagrange polynomials. Then the quadrature formula (5.2.14) is exact for
p(x) = (ℓi(x))2, which is of degree 2(n−1). Further ℓi(xj) = 0, j 6= i, and therefore

∫ b

a

(ℓi(x))2w(x) dx = wi(ℓi(xi))
2 = wi.
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Since w(x) > 0 it follows that wi > 0.

Gaussian quadrature formulas can also be derived by Hermite interpolation on
the nodes xk, each counted as a double node, and requiring that coefficients of the
derivative terms should be zero. This interpretation gives a convenient expression
for the error term in Gaussian quadrature.

Theorem 5.2.5.
The remainder term in Gauss’ quadrature is given by the formula

f (2n)(ξ)

(2n)!

∫ b

a

[

n
∏

i=1

(x − xi)
]2

w(x) dx = cnf (2n)(ξ), a < ξ < b. (5.2.16)

The constant cn can be determined by applying the formula to some polynomial of
degree 2n.

Proof. Denote by q(x) the polynomial of degree 2n − 1 which solves the Hermite
interpolation problem (see Sec. 4.3.1)

q(xi) = f(xi), q′(xi) = f ′(xi), i = 1 : n.

The Gauss quadrature formula is exact for q(x), and hence

∫ b

a

q(x)w(x) dx =

n
∑

i=1

wiq(xi) =

n
∑

i=1

wif(xi).

Thus
n

∑

i=1

wif(xi) −
∫ b

a

f(x)w(x) dx =

∫ b

a

(q(x) − f(x))w(x) dx.

Using the remainder term (4.3.4) in Hermite interpolation gives

f(x) − q(x) =
f (2n)(ξ)

(2n)!
(ϕn(x))2, ϕn(x) =

n
∏

i=1

(x − xi).

and the theorem now follows.

5.2.2 Applications of Gauss Quadrature

For the uniform weight distribution w(x) = 1 on [−1, 1] the relevant orthogonal
polynomials are the Legendre polynomials Pn(x). As a historical aside, Gauss
derived his quadrature formula by considering the continued fraction

1
2 ln

(

z + 1

z − 1

)

= 1
2

∫ 1

−1

dx

z − x
=

1

z−
1/3

z− · · · (5.2.17)

=
1

z
+

1

3z3
+

1

5z5
+ · · · (5.2.18)
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The nth convergent of this continued fraction is a rational function with a numer-
ator of degree n− 1 in z and denominator of degree n, which is the (n− 1, n) Padé
approximation to the function. Decomposing this fraction in partial fractions the
residues and the poles can be taken as nodes of a quadrature formula. The denomi-
nators are precisely the Legendre polynomials. Using the accuracy properties of
the Padé approximants Gauss showed that the formula will have order 2n− 1. For
more on this interesting connections between Padé approximants and orthogonal
polynomials see Brezinski [3].

Since the weight distribution is symmetric about the origin the Legendre poly-
nomials have the symmetry property

Pn(−x) = (−1)nPn(x).

They satisfy the three-term recurrence formula P0(x) = 1, P1(x) = x,

Pn+1(x) =
2n + 1

n + 1
xPn(x) − n

n + 1
Pn−1(x), n ≥ 1. (5.2.19)

giving
P2(x) = 1

2 (3x2 − 1), P3(x) = 1
2 (5x3 − 3x), . . . (5.2.20)

The Legendre polynomials have leading coefficient

An =
1

2nn!
2n(2n− 1)(2n − 2) . . . (n + 1).

and ‖Pn‖ = 2/(2n + 1).
The Legendre polynomials can also be defined by

P0(x) = 1, Pn(x) =
1

2nn!

dn

dxn

(

(x2 − 1)n
)

, n = 1, 2, . . . (9.3.21)

Since (x2 − 1)n is a polynomial of degree 2n, Pn(x) is a polynomial of degree n.
The extreme values are

|Pn(x)| ≤ 1, x ∈ [−1, 1].

There seems to be no easy proof for this result; see Henrici [1964, p. 219].

Example 5.2.2.

Derive a two-point Gauss quadrature rule for
∫ 1

−1
f(x) dx. Here w(x) = 1, and

the relevant orthogonal polynomials are the Legendre polynomials Pm+1(x). For
m = 1 we have P2(x) = 1

2 (3x2 − 1), and hence x0 = −3−1/2, x1 = 3−1/2. The
weights can be determined by application of the formula to f(x) = 1 and f(x) = x,
respectively, i.e.,

w0 + w1 = 2, −3−1/2w0 + 3−1/2w1 = 0,

with solution w0 = w1 = 1. Hence the formula

∫ 1

−1

f(x) dx ≈ f(−3−1/2) + f(3−1/2)
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Table 5.2.1. Abscissas and weight factors for Gauss–Legendre quadrature
from Abramowitz–Stegun [1, Table 25.4].

xi wi

n = 4
±0.33998 10435 84856 0.65214 51548 62546
±0.86113 63115 94053 0.34785 48451 37454

n = 5
0.00000 00000 00000 0.56888 88888 88889
±0.53846 93101 05683 0.47862 86704 99366
±0.90617 98459 38664 0.23692 68850 56189

n = 6
±0.23861 91860 83197 0.46791 39345 72691
±0.66120 93864 66265 0.36076 15730 48139
±0.93246 95142 03152 0.17132 44923 79170

Table 5.2.2. Summary of Gaussian quadrature rules

interval weight function abscissas polynomials
[a, b] w(x) zeros of

[−1, 1] 1 Pn(x) Legendre

[−1, 1] (1 − x2)−1/2 Tn(x) Chebyshev 1st kind

[−1, 1] (1 − x)α(1 + x)β Jn(x; α, β) Jacobi

[−1, 1] (1 − x2)1/2 Un(x) Chebyshev, 2nd kind

[0,∞] e−x Ln(x) Laguerre

[−∞,∞] e−x2

Hn(x) Hermite

is exact for polynomials of third degree.

In order to use the Gaussian quadrature rule the abscissas and weight factors
must be known numerically. Note that for w(x) = 1 and the interval [−1, 1] the
abscissas are symmetric with respect to the origin. The two-point formulas was
given above; for the three-point formula see Problem 1 below. In Table 5.2.1 we
give abscissas and weights for some higher order Gauss–Legendre formulas using
n = m + 1 points.

The Jacobi polynomials Jn(x; α, β) arise from the weight function

w(x) = (1 − x)α(1 + x)β , x ∈ [−1, 1], α, β > −1,
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They are special cases of Gauss hypergeometric function F (a, b, c : x)

F (−n, α + 1 + β + n, α + 1; x).

(see (3.1.12)). The Jacobi polynomials are usually defined so that the coefficient
An of xn in Jn(x; α, β) is given by

An =
1

2nn!

Γ(2n + α + β + 1

Γ(n + α + β + 1
.

We obtain the Gauss–Legendre quadrature formula as the special case when
α = β = 0. Further the case α = β = −1/2, which corresponds to w(x) =
1/

√
1 − x2, give the Gauss–Chebyshev quadrature formula. These and some other

important Gaussian quadrature rules are summarized in Table 5.2.2.
The above rules are given for the standard interval [−1, 1]. The corresponding

formula for an integral over the interval [a, b] is obtained by the change of variable
t = 1

2 ((b − a)x + (a + b)), which maps the interval [a, b] onto [−1, 1], so that

∫ b

a

f(t)dt =
b − a

2

∫ 1

−1

g(x) dx, g(x) = f

(

1

2

(

(b − a)x + (a + b)
)

)

.

If f(t) is a polynomial then g(x) will be a polynomial of the same degree, since the
transformation is linear. Hence the order of accuracy of the formula is not affected.

Two other important cases of Gauss quadrature rules are the following: For
the weight function

w(x) = e−x, 0 ≤ x < ∞,

the corresponding orthogonal polynomials are the Laguerre polynomials, which
satisfy

Ln(x) = ex dn

dxn
(xne−x).

The Hermite polynomials are orthogonal with respect to the weight function

w(x) = e−x2

, −∞ < x < ∞.

They satisfy the recurrence relation H0(x) = 1, H1(x) = 2x,

Hn+1(x) = 2xHn(x) − 2nHn−1(x).

The Hermite polynomials can also be defined by the formula.

Hn(x) = (−1)nex2 dn

dxn
e−x2

It can be verified that these polynomials are identical to those defined by the re-
currence relation.

In some situations we want some of the abscissas xi in the quadrature formula
to be fixed; the rest are to be chosen freely to maximize the order of accuracy. In the
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most common cases the preassigned abscissas are at the endpoints of the interval.
We consider here quadrature rules of the form

Lf =

n
∑

i=1

wif(xi) +

m
∑

j=1

bjf(zj) + E(f) (5.2.21)

where zj , j = 1 : m are fixed nodes and the xi, ai and bj are to be determined. By
a generalization of Theorem 5.2.5 the remainder term is given by the formula

E(f) =
f (2n+m)(ξ)

(2n)!

∫ b

a

m
∏

i=1

(x − zi)
[

n
∏

i=1

(x − xi)
]2

w(x) dx, a < ξ < b. (5.2.22)

In Gauss–Lobatto quadrature m = 2, and both endpoints are used as ab-
scissas, z1 = a, z2 = b. Taking [a, b] = [−1, 1] and and the weight function w(x) = 1,
the quadrature formula has the form

∫ 1

−1

f(x) dx = b1f(−1) + b2f(1) +

n
∑

i=1

wif(xi) + EL. (5.2.23)

where
b1 = b2 = 2/((n + 2)(n + 1)).

The remaining n abscissas are the zeros P ′

n+1(x), where Pn(x) denotes the Legendre
polynomial. They lie symmetric with respect to the origin. The corresponding
weights are given by

wi = b1/(Pn+1(xi))
2,

and satisfy wi = wn+1−i. Because two points are fixed we lose two degrees of
accuracy and the Lobatto rule (5.2.23) is exact only for polynomials of order 2m−1.
If f(x) ∈ C2m[−1, 1] then the error term is given by

EL(f) = − (n + 2)(n + 1)322n+3(n!)4

(2n + 3)[(2n + 2)!]3
f (2n+2)(ξ), ξ ∈ (−1, 1). (5.2.24)

Nodes and weights for Lobatto quadrature are found in Abramowitz–Stegun [1,
Table 25.6].

Example 5.2.3.
The simplest Gauss–Lobatto rule is Simpson’s rule with one interior node.

Taking n = 2 the interior nodes are the zeros of φ2(x), where

∫ 1

−1

(1 − x2)φ2(x)p(x) dx = 0, ∀p ∈ P2.

Thus, φ2 is, up to a constant factor, the Jacobi polynomial J2(x, 1, 1) = (x2 − 1/5).
Hence the interior nodes are ±1/

√
5 and the quadrature formula becomes

∫ 1

−1

f(x) dx =
1

6
(f(−1) + f(1)) +

5

6
(f(−1/

√
5) + f(1/

√
5)) + R(f), (5.2.25)
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where R(f) = 0 for f ∈ P6.

In Gauss–Radau quadrature rules one of the endpoints ±1 is taken as ab-
scissa, z0 = −1, say. The quadrature formula has the form

∫ 1

−1

f(x) dx =
2

(n + 1)2
f(−1) +

n
∑

i=1

wif(xi) + ER1. (5.2.26)

The n free abscissas are the zeros of

Pn(x) + Pn+1(x)

x − 1
,

where Pm(x) are the Legendre polynomials. The corresponding weights are given
by

wi =
1

(n + 1)2
1 − xi

(Pn(xi))2
.

The Gauss–Radau quadrature rule is exact for polynomials of order 2n + 1. If
f(x) ∈ C2m−1[−1, 1] then the error term is given by

ER1(f) =
(n + 1)22n+1

[(2n + 1)!]3
(n!)4f (2n+1)(ξ1), ξ1 ∈ (−1, 1). (5.2.27)

A similar formula can be obtained with the fixed point +1 by making the substitu-
tion t = −x. From the error term (5.2.22) it follows that if the derivative f (n+1)(x)
has constant sign in [a, b], then the error will have opposite sign. This can be used
to obtain lower and upper bounds for the true integral.

A drawback with Gaussian rules is that as we increase the order of the formula
all interior abscissas change, except that at the origin. Hence we cannot use the
function values computed for the lower order formula. For this reason Kronrod [21]
considered the following problem: Given an n-point Gaussian quadrature rule

Gn ≈
n−1
∑

i=0

wif(xi),

find a new formula using the n old abscissas xi and n + 1 new abscissas yi

K2n+1 ≈
n−1
∑

i=0

Aif(xi) +
n

∑

i=0

Bif(yi).

The new abscissas and the weights Ai and Bi are to be chosen so that the rule
K2n+1 is exact for polynomials of degree 3n + 1.

The two rules (Gn, K2n+1) are called a Gauss–Kronrod pair. Note that the
number of new function evaluations are the same as for the Gauss rule Gn+1. The
error can be estimated by the difference |Gn − K2n+1|, but this usually severely
overestimates the error.
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Gauss–Kronrod rules is one of most effective methods for calculating integrals.
Often one takes n = 7 and uses the Gauss–Kronrod pair (G7, K15), together with
the realistic but still conservative error estimate (200|Gn−K2n+1|)1.5, see Kahaner,
Moler, and Nash [20].

A Kronrod extension of the Gauss–Lobatto rule (5.2.25) has been given by
Gander and Gautschi [9]:

∫ 1

−1

f(x) dx =
11

210
(f(−1) + f(1)) +

72

245
(f(−

√

2/3) + f(
√

2/3))

+
125

294
(f(−1/

√
5) + f(1/

√
5)) +

16

35
f(0)) + R(f). (5.2.28)

This rule is exact for all f ∈ P10. Note that the Kronrod points ±
√

2/3 and 0
interlace the previous nodes.

5.2.3 Matrix Formulas Related to Gauss Quadrature

We collect here some classical results of Gauss, Christoffel, Chebyshev, Stieltjes and
others, with a few modern aspects and a notations appropriate for our purpose.

Let {p1, p2, . . . , pn} be a basis for the space Pn, of polynomials of degree n−1,
where pj be a polynomial of exact degree j − 1. We introduce the row vector

π(x) = [p1(x), p1(x), . . . , pn(x)], (5.2.29)

containing these basis functions. The modified moments with respect to the basis
π(x) are

νk = (pk, 1) =

∫ b

a

pk(x)w(x) dx, k = 1 : n, (5.2.30)

We define the two symmetric matrices

G =

∫

π(x)T π(x)w(x) dx, Ĝ =

∫

xπ(x)T π(x)w(x) dx. (5.2.31)

associated with the basis defined by π. Here G is the Gram matrix5 with elements
gij = (pi, pj) = (pj , pi),

G =









(p1, p1) (p1, p2) . . . (p1, pn)
(p2, p1) (p2, p2) . . . (p2, pn)

...
...

. . .
...

(pn, p1) (pn, p2) . . . (pn, pn)









. (5.2.32)

Two particularly interesting bases are the power basis and the orthonormal
basis defined, respectively, by

θ(x) = (1, x, x2, . . . , xn−1), (5.2.33)

ϕ(x) = (φ1(x), φ2(x), . . . , φn(x)), (5.2.34)

5Jørgen Pedersen Gram (1850–1916) graduated from Copenhagen University and then worked
as company director for a life insurance company. He introduced the Gram determinant in con-
nection with his study of linear independence and his name is also associated with Gram–Schmidt
orthogonalization.
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where the components of ϕ are orthonormal polynomials with respect to the weight
function w.

Example 5.2.4.
For the power basis θ(x) we have gij = (xi−1, xj−1) = µi+j−2. So the matrices

G and Ĝ become Hankel matrices,

G =









µ0 µ1 · · · µn−1

µ1 µ2 · · · µn
...

... · · ·
...

µn−1 µn · · · µ2n−2









, Ĝ =









µ1 µ2 · · · µn

µ2 µ3 · · · µn+1

...
... · · ·

...
µn µn+1 · · · µ2n−1









.

In particular, for w(x) ≡ 1, and [a, b] = [0, 1] we have µk =
∫ 1

0
xk−1 dx = 1/k and

G is the notoriously ill-conditioned Hilbert matrix, for which the spectral condition
number grows like 0.014 · 101.5n.

Let u, v, be two polynomials in Pn and set

u(x) = π(x)uπ , v(x) = π(x)vπ ,

where uπ, vπ, are column vectors with the coefficients in the representation of u, v
with respect to the basis defined by π. Note that (u, v) = uT

π Gvπ . For u = v 6= 0
we find that

uT
π Guπ = (u, u) > 0,

hence the Gram matrix G is positive definite. (The matrix Ĝ is, however, usually
indefinite.)

A polynomial of degree n that is orthogonal to all polynomials of degree less
than n can be written in the form

φn+1(x) = xpn(x) − π(x)cn, cn ∈ Rn, (5.2.35)

Here cn is determined by the linear equations

−
∫

π(x)T π(x)cnw(x) dx +

∫

xπ(x)T pn(x)w(x) dx = 0,

or in matrix form
Gcn = ĝn, (5.2.36)

where ĝn is the last column of the matrix Ĝ. Further, there are coefficients ckj

depending on the basis only, such that

xpj(x) =

j+1
∑

k=1

ck,jpk(x), j = 1 : n − 1.

Together with (5.2.35) this can be summarized in the vector equation

xπ(x) = π(x)(C, cn) + (0, 0, . . . , φn+1(x)). (5.2.37)



32 Chapter 5. Numerical Integration

Here C ∈ Rn×(n−1] is an upper Hessenberg matrix, which depends on the basis
only, while cn also depends on the weight function. If the basis π(x) is some family
of orthogonal polynomials (with respect to another weight function than w) C is a
tridiagonal matrix, obtained by means of the three-term recurrence relation for this
family.

After multiplication of (5.2.37) by π(x)T w(x) and integration we obtain by
(5.2.31)

GC = Ĝ, C = (C, cn). (5.2.38)

where the last column of this equation is the same as equation (5.2.36). Let G∗,
C∗ be defined like G, C, with n increased by one. Note that G and C are principal
submatrices of G∗ and C ‘. Then Ĝ equals the n first rows of the product G∗C∗. So
no integrations are needed for gn, except for the matrix G.

Theorem 5.2.6.
Denote by R the matrix of coefficients of the expansions of the general basis

functions π(x) = [p1(x), p1(x), . . . , pn(x)] into the orthonormal basis polynomials,
i.e.

π(x) = ϕ(x)R. (5.2.39)

Then G = RT R, i.e. R is the upper triangular Cholesky factor of the Gram matrix
G. Note that this factorization up to the mth row is the same for all n ≥ m. Further
Ĝ = RT JR, where J is a symmetric tridiagonal matrix.

Proof. R is evidently an upper triangular matrix. Further, we have

G =

∫

π(x)T π(x)w(x) dx =

∫

RT ϕ(x)T ϕ(x)Rw(x) dx

= RT IR = RT R,

since the elements of ϕ(x) is an orthonormal system. This shows that R is the
Cholesky factor of G. We similarly find that

Ĝ = RT JR, J =

∫

xϕ(x)T ϕ(x)w(x) dx,

so J clearly is a symmetrical matrix. J is a particular case of Ĝ and from (5.2.38)
and G = I it follows that J = C, a Hessenberg matrix. Hence J is a symmetric
tridiagonal matrix.

From (5.2.38) and Theorem 5.2.6 it follows that

Ĝ = GC = RT RC = RT JR,

Since R is nonsingular we have RC = JR, or

J = RCR−1. (5.2.40)

It follows that, for every choice of basis, the spectrum of C equals the spectrum of
J . We shall see that it is equal to the set of zeros of the orthogonal polynomial φn.
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In particular, for the power basis pj(x) = xj−1, the Hessenberg matrix C is a
shift matrix; the only non-zero elements are ones in the first main subdiagonal.
Further, with cT

n = (a1, a2, . . . , an), (5.2.35) reads

φn+1(x) = xn −
n

∑

k=1

akxk−1,

and

C =















0 a1

1 0 a2

1
. . .

...
. . . 0 an−1

1 an















∈ Rn×n,

which (after a permutation of rows and columns) is the companion matrix of the
polynomial φn+1(x) (see Sec. 6.5.1). Thus the eigenvalues λj, j = 1 : n, of C are
the zeros of φn+1(x), and hence the nodes for the Gauss–Christoffel quadrature
formula. The row eigenvector corresponding to λj is

θ(λj) = (1, λj , λ
2
j , . . . , λ

n−1
j ), (5.2.41)

i.e. it holds that
θ(λj)C = λjθ(λj), j = 1 : n. (5.2.42)

This yields a diagonalization of C, since, by the general theory of orthogonal poly-
nomials (see Theorem 5.2.4) the roots are simple roots, located in the interior of
the smallest interval that contains the weight distribution.

To summarize, we have shown that if C and the Gram matrix G are known,
then cn can be computed by performing the Cholesky decomposition G = RT R
and then solving RT Rcn = ĝn for cn. The zeros of φn+1(x) are then equal to
the eigenvalues of C = (C, cn), or equivalently the eigenvalues of the symmetric
tridiagonal matrix J = RCR−1. This is true for any basis π(x). Note that J can
be computed by solving the matrix equation JR = RC or

RT J = (RC)T . (5.2.43)

Here RT is a lower triangular matrix and the right hand side a lower Hessenberg ma-
trix. This and the tridiagonal structure of J considerably simplifies the calculation
of J .

For the power basis θ(x) we saw in Example 5.2.4 that G is a Hankel matrix.
Hankel matrices play an important role in the classical theory of orthogonal poly-
nomials, Gauss–Christoffel quadrature, the moment problem, continued fractions,
etc. They are less interesting for practical computations since the condition number
of H increases rapidly with n. This is due to the by now familiar fact that, when n
is large, xn can be accurately approximated by a polynomial of lower degree. The
power basis is thus not a good basis for spaces of polynomials. Similarly the mo-
ments for the power basis are not in general a good starting point for the numerical
computation of the matrix J .
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In particular, for the orthonormal basis, for which G = I, and Ĝ = G−1Ĝ = J ,
we obtain

ϕ(λj)J = λjϕ(λj), j = 1 : n. (5.2.44)

where

J =















β1 γ1 0
γ1 β2 γ2

γ2
. . .

. . .
. . . γn−1

0 γn−1 βn















, (5.2.45)

is a symmetric tridiagonal Jacobi matrix with nonzero off-diagonal elements. It
is well known from linear algebra that such a matrix has n real distinct eigenvalues.
Further, the eigenvectors can always be chosen mutually orthogonal.

Setting

Φ = (ϕ(λ1)
T , . . . , ϕ(λn)T ), Φij = (φi−1(λj), Λ = diag (λ1, . . . , λn),

we obtain by (5.2.44) and the symmetry of J the important formula

JΦ = ΦΛ. (5.2.46)

It also follows from (5.2.44) that the equation

xϕ(x)T = Jϕ(x)T + γnφn+1(x)en, en = (0, . . . , 0, 1)T , (5.2.47)

where γn is to be chosen so that ‖φn+1‖ = 1, holds when x = λj , and φn+1(λj) =
0, j = 1 : n. Since the degree of ϕ is less than n, it is easily shown that the
equation (5.2.47) holds for all x. As a by-product we obtain the important three
term recurrence (??)

Let V be an orthogonal matrix that diagonalizes J , i.e.

JV = V Λ, V T V = V V T = I,

where Λ is the diagonal in (5.2.46). It follows that V = ΦD for some diagonal
matrix D = diag (di), and

V = ΦD2ΦT = V V T = I,

that is
n

∑

k=1

φi(λk)d2
kφj(λk) = δij = (φi, φj), i, j = 1 : n.

This equality holds also for i = n + 1, because φn + 1(λk) = 0, for all k, and
(φn+1, φj) = 0, j = 1 : n.

Since every polynomial p of degree less than 2n can be expressed as a linear
combination of polynomials of the form φiφj (in infinitely many ways) it follows
that

n
∑

k=1

d2
kp(λk) =

∫

p(x)w(x) dx, (5.2.48)
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for any polynomial p of degree less than 2n. This yields the Gauss–Christoffel
quadrature rule:

∫

f(x)w(x) dx =

n
∑

k=1

d2
kf(λk) + R, (5.2.49)

where R =
∫

(f(x)−p(x))w(x) dx, for any polynomial p of degree less than 2n, such
that p(λk) = f(λk), k = 1 : n.

The familiar form for the remainder term

R = knf (2n)(ξ)/(2n)!, (5.2.50)

is obtained by choosing a Hermite interpolation polynomial for p and then applying
the mean value theorem. The constant kn is independent of f . The choice f(x) =
A2

nx2n + · · · gives kn = A−2
n . A recurrence relation for the leading coefficient Aj is

obtained by (??). We obtain

A0 = µ
−1/2
0 , Ak+1 = Ak/γk. (5.2.51)

The mean value form for R may be inappropriate, when the interval is infinite.
Some other estimate of the above integral for R may then be more adequate.

A simple formula for the weights d2
k, due to Golub and Welsch [18], is obtained

by matching the first rows of the equality V = ΦD. Since the elements in the first

row are all equal to the constant φ1 = µ
−1/2
0 , we obtain

eT
1 V = µ

−1/2
0 dT , d2

k = µ0v
2
1,k, k = 1 : n. (5.2.52)

The well known fact that the weights are positive and their sum equals µ0, follows
immediately from this simple formula for the weights. We summarize these results
in the following theorem:

Theorem 5.2.7.
Let J be the symmetric tridiagonal n× n matrix that contains the coefficients

in the three term recurrence relation for the orthonormal system of polynomials
associated with the weight function w(x) > 0. Let f be an analytic function in a
domain that contains the spectrum of J .

Then the following concise formula, is exact when f is a polynomial of degree
less than 2n,

1

µ0

∫

f(x)w(x) dx ≈ eT
1 V T f(Λ)V e1, (5.2.53)

where f(Λ) = diag (f(λ1, . . . , f(λn).

Proof. The result follows from the Gauss–Christoffel rule (5.2.49) and (5.2.52).

When the three-term recurrence relation for the orthonormal polynomials as-
sociated with the weight function w(x) is known, the Gauss–Christoffel rule can
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elegantly be obtained as follows. The eigenvalues of J are the nodes of the Gauss–
Christoffel rule and the weights are obtained from (5.2.52) as the first components
of the corresponding eigenvectors.. These quantities can be computed in a stable
and efficient way by the QR-algorithm; see Volume II, Sec. 9.7.4. We remark that
Golub [17] has shown how to extend this scheme to the computation of nodes and
weights for Gauss–Radau and Gauss–Lobatto quadrature rules.

When the coefficients in the three-term relation cannot be obtained by the-
oretical analysis or numerical computation, we consider the matrices C and G as
given data about the basis and weight function. As described above R, cn, and J can
then be computed by means of (5.2.40). The nodes and weights are then computed
according to the previous case. Note that R and J are determined simultaneously
for all k ≤ n; just take the submatrices of the largest ones.

The computations are most straightforward for the power basis, i.e. with the
moments of the weight function as the initial data. Unfortunately, the condition
number of this problem increases rapidly with n, which results in inaccurate nodes
and weights. Nevertheless, as long as the Choleski factorization of the Gram matrix
G does not break down because of a negative pivot, the values of the integral give
by the Gauss–Christoffel formula may be much more accurate than the nodes and
weights obtained.

5.2.4 Symmetric Weight Functions

In many important cases the weight function w(x) is symmetric about the origin.
Then the moments of odd order are zero, and the orthogonal polynomials of odd
(even) degree are odd (even) functions. The eigenvalues will appear in pairs, ±λk.
If n is odd, there is also a simple zero eigenvalue. The weights are symmetric so
that the weights corresponding to the two eigenvalues ±λi are the same.

We shall see that in the symmetric case the eigenvalue problem for the tridi-
agonal matrix J ∈ Rn×n can be reduced to a singular value problem for smaller
bidiagonal matrix B, where

B ∈
{

Rn/2×n/2, if n even;
R(n+1)/2×(n−1)/2, if n odd.

We permute rows and columns in J , by an odd-even permutation, e.g., if n = 7
then (1, 2, 3, 4, 5, 6, 7) 7→ (1, 3, 5, 7, 2, 4, 6), and

J̃ = T−1JT =

(

0 B
BT 0

)

, B =







β1 0 0
β2 β3 0
0 β4 β5

0 0 β6






,

where T be the permutation matrix effecting the odd-even permutation. Then, if the
orthogonal matrix V diagonalizes J , i.e. J = V ΛV T , then Ṽ = T−1V , diagonalizes
J̃ = T T JT , i.e. J̃ = T−1JT = T−1V λV T T . Note that the first row of V is just a
permutation of Ṽ . We can therefore substitute Ṽ for V in equation (5.2.52) that
gives the weights in the Gauss–Christoffel formula.
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The following relationship between the SVD and a Hermitian eigenvalue prob-
lem, exploited by Lanczos [22, Chap. 3] can easily be verified.

Theorem 5.2.8.
Let the singular value decomposition of B ∈ Rm×n (m ≥ n) be B = PΣQT ,

where
Σ = diag (Σ1, 0), Σ1 = diag (σ1, σ2, . . . , σn),

and
P = (P1, P2) ∈ Cm×m, P1 ∈ Cm×n, Q ∈ Cn×n.

Then the symmetric matrix C ∈ R(m+n)×(m+n) has the eigendecomposition

C =

(

0 B
BT 0

)

= V





Σ1 0 0
0 0 0
0 0 −Σ1



 V T , (5.2.54)

where V ∈ is orthogonal

V =
1√
2

(

P1

√
2P2 P1

Q 0 −Q

)T

. (5.2.55)

Hence the eigenvalues of C are ±σ1,±σ2, . . . ,±σr, and zero repeated (m−n) times.

The QR-algorithm for symmetric tridiagonal matrices can be adopted to com-
pute the singular values σi and the first components of the matrix P of singular
vectors of the bidiagonal matrix B; see Vol. II, Sec. 9.7.6.

Review Questions

1. What are orthogonal polynomials? Give a few examples of families of orthog-
onal polynomials together with the three-term recursion formula, which its
members satisfy.

2. Formulate and prove a theorem concerning the location of zeros of orthogonal
polynomials.

3. Give an account of Gauss quadrature formulas: accuracy, how the nodes
and weights are determined. What important properties are satisfied by the
weights?

4. What is the orthogonality property of the Legendre polynomials?

Problems and Computer Exercises

1. Prove that the three-point quadrature formula
∫ 1

−1

f(x) dx ≈ 1

9

(

5f(−
√

3/5) + 8f(0) + 5f(
√

3/5)
)

,
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is exact for polynomials of degree 5. Apply it to the computation of

∫ 1

0

sin x

1 + x
dx,

and estimate the error in the result.

2. (a) Calculate the Hermite polynomials Hn for n ≤ 4 using the recurrence
relation.

(b) Express, conversely, 1, x, x2, x3, x4 in terms of the Hermite polynomials.

3. Determine the orthogonal polynomials φn(x), n = 1, 2, 3, with leading coeffi-
cient 1, for the weight function w(x) = 1 + x2, x ∈ [−1, 1].

(b) Give a two-point Gaussian quadrature formula for integrals of the form

∫ 1

−1

f(x)(1 + x2) dx,

which is exact when f(x) is a polynomial of degree three.

Hint: Either use the method of undetermined coefficients taking advantage of
symmetry, or the three term recurrence relation in Theorem ??.

4. (W. Gautschi) (a) Construct the quadratic polynomial φ2 orthogonal on [0,∞]
with respect to the weight function w(x) = e−x. Hint: Use

∫

∞

0 tme−t dt = m!.

(b) Obtain the two-point Gauss–Laguerre quadrature formula

∫

∞

0

f(x)e−x dx = w1f(x1) + w2f(x2) + E2(f),

including a representation for the remainder E2(f).

(c) Apply the formula in (b) to approximate

I =

∫

∞

0

(x + 1)−1e−x dx.

Use the remainder term to estimate the error, and compare your estimate with
the true error (I = 0.596347361 . . .).

5. Show that the formula

∫ 1

−1

f(x)(1 − x2)−1/2 dx =
π

n

n
∑

k=1

f
(

cos
2k − 1

2n
π
)

is exact for all polynomials of degree 2n− 1.

6. Derive the Gauss–Lobatto quadrature rule in Example 5.2.3, with two interior
points by using the Ansatz

∫ 1

−1

f(x) dx = w1(f(−1) + f(1)) + w2(f(−x1) + f(x1),

and requiring that it be exact for f(x) = 1, x2, x4.
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7. Compute an approximate value of

∫ 1

−1

x4 sin2 πxdx = 2

∫ 1

0

x4 sin2 πxdx,

using the 5 point Gauss–Legendre quadrature rule on [0, 1] for the weight
function w(x) = 1. For nodes and weights see Table 5.2.1. (The true value of
the integral is 0.11407 77897 39689.)

8. Let µj =
∫ b

a xjw(x) dx be the jth moment of the weight distribution w. Show
that the system of equations









µ0 µ1 · · · µn−1

µ1 µ2 · · · µn
...

... · · ·
...

µn−1 µn · · · µ2n−2

















c0

c1
...

cn−1









= −









µn

µn+1

...
µ2n−1









has as solution the coefficient of a polynomial xn +
∑n

j=1 ajx
j−1, which is a

member of the family of orthogonal polynomials associated with the weight
function w.

9. (a) Determine exactly the Lobatto formulas with given nodes at −1 and 1,

(and the remaining nodes free), for the weight functions w(x) = (1 − x2)−
1
2 ,

x ∈ [−1, 1]. Determine for this weight function also the nodes and weights for
the Gauss quadrature formula (i.e. when all nodes are free).

Hint: Set x = cosφ, and formulate equivalent problems on the unit circle.
Note that you obtain (at least) two different discrete orthogonality properties
of the Chebyshev polynomials this way.

(b) Lobatto–Kronrod pairs are useful when a long interval has been divided
into several shorter intervals (cf. Example 5.2.28). Determine Lobatto–

Kronrod pairs (exactly) for w(x) = (1 − x2)−
1
2 .

10. Apply the formulas in Problem 9 to the case w(x) = 1, x ∈ [−1, 1] and some
of the following functions:

(a) f(x) = ekx, k = 1, 2, 4, 8, . . .; (b) f(x) = 1/(k + x), k = 1, 2, 1.1, 1.01;

(c) f(x) = k/(1 + k2x2), k = 1, 4, 16, 64.

Compare the actual errors with the error estimates.

11. Write a Matlab function for the evaluation of the Sievert6 integral,

S(x, θ) =

∫ θ

0

e−x/ cos φ dφ,

for any x ≥ 0, x ≤ θ ≤ 90◦, with at least six decimals relative accuracy. There
may be useful hints in Abramowitz–Stegun [1, § 27.4].

6Sievert was a Swedish radio-physicist, who was so great that doses of radiation are measured
in millisievert, or even microsievert, all over the world.
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5.3 Extrapolation Methods

5.3.1 Euler–Maclaurin Formula

Although Newton–Cotes’ rules of high orders of accuracy are known, they have the
drawback that they do not provide a convenient way of estimating the error. Also,
for high order rules negative weights appear. In this section we will derive formulas
of high order, based on Euler–Maclaurin’s formula (see Sec. 3.5), which do not share
these drawbacks.

According to Theorem 3.5.2, if f ∈ C2r+2[a, b], then

T (a : h : b)f −
∫ b

a

f(x) dx =
h2

12

(

f ′(b) − f ′(a)
)

− h4

720

(

f ′′′(b) − f ′′′(a)
)

+ . . . +
B2rh

2r

(2r)!

(

f (2r−1)(b) − f (2r−1)(a)
)

+ R2r+2(a, h, b)f.

Here xi = a + ih, xn = b, and T (a : h : b)f denotes the trapezoidal sum

T (a : h : b)f =
n

∑

i=1

h

2

(

f(xi−1) + f(xi)
)

.

The remainder R2r+2(a, h, b)f is O(h2r+2) is represented by an integral with a kernel
of constant sign in (3.5.8). The estimation of the remainder is very simple in certain
important particular cases. Note that although the expansion contains derivatives
at the boundary points only, the remainder requires tha |f (2r+2)| is integrable on
the interval [a, b].

One easily shows the following simple and useful relation of the trapezoidal
sum to the midpoint sum

R(a, h, b)f =

n
∑

i=1

hf(xi−1/2) = 2T (a : 1
2h : b)f − T (a : h : b)f. (5.3.1)

From this one easily derives the expansion

R(a, h, b)f =

∫ b

a

f(x) dx − h2

24

(

f ′(b) − f ′(a)
)

+
7h4

5760

(

f ′′′(b) − f ′′′(a)
)

+ . . . +
( 1

22r−1
− 1

)B2rh
2r

(2r)!

(

f (2r−1)(b) − f (2r−1)(a)
)

+ . . . ,

which has the same relation to the midpoint sum as the Euler–Maclaurin Formula
has to the trapezoidal sum.

The Euler–Maclaurin formulas can be used for highly accurate numerical in-
tegration when the values of derivatives of f are known at x = a and x = b. It
also possible to use difference approximations to estimate the derivatives needed.
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A variant with uncentered differences, is Gregory’s7 quadrature formula

∫ b

a

f(x) dx = h
En − 1

hD
f0 = h

(

fn

− ln(1 −∇)
− f0

ln(1 + ∆)

)

= T (a; h; b) + h

∞
∑

j=1

aj+1(∇jfn + (−∆)jf0),

where T (a : h : b) is the trapezoidal sum, as defined in the Euler–Maclaurin Formula.
The operator expansion must be truncated at ∇kfn and ∆lf0, where k ≤ n, l ≤ n.
Concerning the interpretation of ∇−1 and ∆−1, see Problem 3.2.13(d).

5.3.2 Romberg’s Method

The Euler–Maclaurin formula is the theoretical basis for the application of repeated
Richardson extrapolation (see Sec. 3.5.2) to the results of the trapezoidal rule. This
method, introduced in [29], is known as Romberg’s method. It is one of the
most widely used methods, because it allows a simple strategy for the automatic
determination of a suitable step size and order. A thorough analysis of Romberg’s
method was carried out by Bauer, Rutishauser and Stiefel [2, 1963] that we shall
refer to for proof details.

Let f ∈ C2m+2[a, b] be a real function to be integrated over [a, b]. Set xi =
a + ih, xn = b, and denote by

T (h)f =
n

∑

i=1

h

2

(

f(xi−1) + f(xi)
)

.

the trapezoidal. Then by the Euler–Maclaurin’s formula it follows that

T (h) −
∫ b

a

f(x) dx = c2h
2 + c4h

4 + · · · + cmh2m + τm+1(h)h2m+2,

where ck = 0 if f ∈ Pk. This suggests the use of Repeated Richardson extrapolation
applied to the trapezoidal sums computed with step lengths

h0 =
b − a

n0
, h1 =

h0

n0
, . . . , hm =

hm−1

nm
, (5.3.2)

where n1, n2, . . . , nm are strictly increasing positive integers. Romberg used the
special sequence

hi = (b − a)/2i.

In this case Richardson extrapolation can be used with headings ∆/3, ∆/15, ∆/63, . . ..

7James Gregory (1638–1675), Scotch mathematician. This formula was discovered long before
the Euler–Maclaurin formula, and seems to have been primarily used for numerical quadrature.
It can be used also for summation, but the variants with central differences are typically more
efficient.
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By (5.3.1) we have the relation

T (h/2) =
1

2
(T (h) + R(h)), R(h)f =

n
∑

i=1

hf(xi−1/2) (5.3.3)

where R(h) is he midpoint sum. This makes it possible to reuse the function values
that have been computed earlier.

For practical numerical calculations the values of the coefficients ck are not
needed, but they are used, e.g., in the derivation of an error bound, see Theo-
rem 5.3.1. It is also important to remember that the coefficients depend on deriva-
tives of increasing order; the success of repeated Richardson extrapolations is thus
related to the behavior in [a, b] of the higher derivatives of the integrand.

According to the discussion of repeated Richardson extrapolation in Sec. 3.5.2,
one continues the process, until two values in the same row agree to the desired
accuracy. If no other error estimate is available, mink |Tm,k − Tm,k−1| is usually
chosen as an estimate of the truncation error, even though it is usually a strong
overestimate. A feature of the Romberg algorithm is that it also contains exits with
lower accuracy at a lower cost.

If the use of the basic asymptotic expansion is doubtful, then the uppermost
diagonal of the extrapolation scheme should be ignored, except for its element in
the first column. Such a case is detected by inspection of the difference quotients in
a column. If for some k, where Tk+2,k has been computed and the modulus of the
relative irregular error of Tk+2,k−Tk+1,k is less than (say) 20%, and, most important,
the difference quotient (Tk+1,k −Tk,k)/(Tk+2,k −Tk+1,k) is is very different from its
theoretical value qpk , then the uppermost diagonal is to be ignored (except for its
first element).

Example 5.3.1. A numerical illustration to Romberg’s method.
Use Romberg’s method to compute the integral (cf. Example 5.1.1)

∫ 0.8

0

sinx

x
dx.

The correct value, to ten decimals, is 0.7720957855.
The midpoint and trapezoidal sums computed using IEEE double precision

are given below

h R(h)f T (h)f

0.8 0.77883 66846 1730 0.75867 80454 4976
0.4 0.77376 69771 8681 0.76875 73650 3353
0.2 0.77251 27161 1197 0.77126 21711 1017
0.1 0.77188 74436 5335

It can be verified that in this example the error is approximately proportional to
h2 for both R(h) and T (h). We estimate the error in T (0.1) to be 1

36.26 · 10−4 ≤
2.1 · 10−4.
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The trapezoidal sums are then copied to the first column of the Romberg
scheme, and repeated extrapolation is applied using the following Matlab program
with tol = 0.5 · 10−10 and q = 5.

function [I, T, md] = romberg(f,a,b,tol,q)

%

% Romberg’s method for computing the integral of f over [a,b].

% Stop when two adjacent values in the same column differ by

% less than tol.

%

T = zeros(q+2,q+1);

h = b - a; m = 1; P = 1;

T(1,1) = h*(feval(f,a) + feval(f,b))/2;

for i = 2:q+1

h = h/2; m = 2*m;

% Compute midpoint sum

s = 0;

for j = 1:2:m

s = s + feval(f, a+j*h)

end

R(i-1,1) = 2*h*s;

T(i,1) = (T(i-1,1) + R(i-1,1))/2;

% Richardson extrapolation

jmax = min(i-1,q);

for j = 1:jmax

T(i,j+1) = T(i,j) + (T(i,j) - T(i-1,j))/(2^(2*j) - 1)

end

% Check accuracy

[md, jb] = min(abs(T(i,1:jmax) - T(i-1,1:jmax)));

I = T(i,jb);

if md <= tol

T = T(1:i,1:jmax+1); % return active part of T

return

end

end

\vspace{-4mm}

The result is given in the table below:

m Tm1 ∆/3 Tm2 ∆/15 Tm3 T44

1 0.7586780454
33597732

2 0.7687573650 0.7721171382
8349354 13355

3 0.7712621711 0.7720971065 0.7720957710
2084242 826

4 0.7718874437 0.7720958678 0.7720957853 0.7720957855
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Ti1 Ti2 Ti3 Ti4 Ti5

0.758678045450
0.768757365034 0.772117138228
0.771262171110 0.772097106469 0.772095771018
0.771887443653 0.772095867834 0.772095785259 0.772095785485
0.772043703883 0.772095790626 0.772095785479 0.772095785482 0.772095785482

Since none of the differences |T44 − T43| = 2 · 10−10, the termination criterion
mentioned above requires that the row with m = 5 must be computed. Then, the
termination criterion is satisfied with a wide margin, since |T55 −T54| = 2.8 · 10−12,
and the irregular errors are less than 10−12. T55 is even better than this error
bound indicates; the correct result agrees with T55 = 0.772095785482 to all twelve
displayed decimal places.

In cases where the cost of evaluating F (h) is proportional to 1/h, the standard
sequence

hi = (b − a)/ni, with ni = {1, 2, 4, 8, 16. . . .}
has the drawback that step sizes decrease rapidly. Bulirsch [4] has proposed the
alternative sequence

ni = {1, 2, 3, 4, 6, 8, 12, 16, 24, . . .},

for which similar savings can be realized.
In the general case, with Ti0 = T (hi) and step lengths given by (5.3.2), re-

peated Richardson extrapolation using the Neville interpolation scheme takes the
form

Tik = Ti,k−1 +
Ti,k−1 − Ti−1,k−1

(hi−k/hi)2 − 1
, 1 ≤ k ≤ i ≤ m.

Sometimes rational extrapolation is preferred. This gives rise to a recursion of
similar form (see Stoer and Bulirsch [32, Sec. 3.4])

Tik = Ti,k−1 +
Ti,k−1 − Ti−1,k−1

(hi−k/hi)2
[

1 − Ti,k−1 − Ti−1,k−1

Ti,k−1 − Ti−1,k−2

]

− 1

, 1 ≤ k ≤ i ≤ m.

Theorem 5.3.1. Error bound for Romberg’s method.

The items Tmk in Romberg’s method are estimates of the integral
∫ a+h

a
f(x) dx,

that can be expressed as a linear functional,

Tmk = (b − a)
n

∑

j=1

α
(k)
m,jf(a + jh), (5.3.4)

where n = 2m−1, h = (b − a)/n, and

n
∑

j=1

α
(k)
m,j = 1, α

(k)
m,j > 0. (5.3.5)
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The remainder functional for Tmk is zero for f ∈ P2k, and its Peano kernel is
positive in the interval (a, b). The truncation error of Tmk reads

Tmk −
∫ b

a

f(x)dx = rkh2k(b − a)f (2k)(1
2 (a + b)) + O(h2k+2(b − a)f (2k+2))

= rkh2k(b − a)f (2k)(ξ), ξ ∈ (a, b), (5.3.6)

rk = 2k(k−1)|B2k|/(2k)!, h = 21−m(b − a).

Proof. Sketch: Equation (5.3.4) follows directly from the construction of the
Romberg scheme. (It is for theoretical use only; the recursion formulas are bet-
ter for practical use.) The first formula in (5.3.5) holds, because Tmk is exact if
f = 1. The second formula is easily proved for low values of k. The general proof
is more complicated; see [2, Theorem 4].

The Peano kernel for m = k = 1 (trapezoidal rule) was constructed in Sec. 3.2.
For m = k = 2 (Simpson’s rule), see Sec. 5.1.2. The general case is more compli-
cated. Recall that, by Corollary 3.3.9 of Peano’s Remainder Theorem, a remainder
formula with a mean value ξ ∈ (a, a+H), exists iff the Peano kernel does not change
sign.

Bauer, Rutishauser and Stiefel [2, pp. 207–210], constructed a recursion for-
mula for the kernels, and succeeded in proving that they are all positive, by an
ingenious use of the recursion. The expression for rk is also derived there, although
with a different notation; see also Problem 3.

From (5.3.5) it follows that if the magnitude of the irregular error in f(a+ jh)
is at most ǫ, then the magnitude of the inherited irregular error in Tmk is at most
ǫ(b − a).

There is another way of finding rk. Note that for each value of k, the error of
Tkk for f(x) = x2k can be determined numerically. Then rk can be obtained from
(5.3.6). Tmk is the same formula as Tkk, although with a different h.

Sometimes several of the uppermost diagonals are to be ignored. It was men-
tioned that for the integration of a class of periodic functions the trapezoidal rule
is superconvergent. In this case all the difference quotients in the first column are
much larger than qp1 = q2. According to the rule just formulated, every element of
the Romberg scheme, outside the first column should be ignored. It is all right; in
superconvergent cases Romberg’s method is of no use; it deteriorates the excellent
results that the trapezoidal rule has produced. The value Tm,k is usually accepted
as an estimate of a0 when |Tm,k − Tm−1,k| < δ, where δ is the permissible error.
Thus one extrapolates until two values in the same column agree to the desired
accuracy. In most situations, the magnitude of the difference between two values
in the same column gives, if h is sufficiently small, with a large margin a bound
for the truncation error in the lower of the two values. One cannot, however, get
a guaranteed error bound in all situations. Often instead the subdiagonal error
criterion |Tm,m−1 − Tm,m| < δ is used, and Tmm taken as the numerical result.

The remainder for the closed Newton–Cotes formulas (with an odd number of
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points, i.e., for k > 0 in our case), reads

dkh2k+2(b − a)f (2k+2)(ξ);

for k = 0 we have the trapezoidal rule with remainder d0h
2Hf (2)(ξ). It follows

that for k = {0, 1, 2} both methods give, with k′ = {2, 3, 5}, function values, exact
results for f ∈ Pk′ .8

By working algebraically in the Romberg scheme, we obtain the following
relations between Romberg’s and Newton–Cotes’ methods:

T11 = 1
2 (b − a) (f(a) + f(b)) ,

T21 =
1

4
(b − a)

(

f(a) + f(1
2 (a + b)) + f(1

2 (a + b)) + f(b)
)

= 1
2 (b − a)

(

1
2f(a) + f(1

2 (a + b)) + 1
2f(b)

)

,

T22 =
1

3
(4T21 − T11) =

1

6
(b − a)

(

f(a) + 4f(1
2 (a + b)) + f(b)

)

. (5.3.7)

We see that T22 is the same as Simpson’s formula. It can also be shown in this way
that T33 is the same as the five point closed Newton–Cotes formula.

Table 5.3.1. Data concerning some Romberg and Newton–Cotes formulas.

order order error const. error const.

m = k n Tkk Cn rk cn

1 1 2 2 1/12 1/12

2 2 4 4 1/180 1/180

3 4 6 6 2/945 2/945

4 8 8 10 16/4725 296/467775

This equivalence can also be proved by the following argument. By Corol-
lary 3.3.8, there is only one linear combination of the values of the function f at

n + 1 given points that can yield
∫ b

a f(x) dx exactly for all polynomials f ∈ Pn+1.
It follows that the methods of Cotes and Romberg Tkk are identical for k = 0, 1, 2,
but for k > 2, 2k + 2 > 2k + 2, and the methods are not identical. For k = 3 (9
function values), Cotes is exact in P10, while T33 is exact in P8. For k = 4 (17
function values), Cotes is exact in P18, while T44 is exact in P10; see Table 5.3.1.
This sounds like an advantage for Cotes, but one has to be sceptical about formulas
that use equidistant points in polynomial approximation of very high degree; see
Problem 5 and the discussion of Runge’s phenomena in Chapter 4.

Note that the remainder of T44 is

r4h
8(b − a)f (8)(ξ) ≈ r4(b − a)∆8f(a),

where ∆8f(a) uses the same function values as T44 and C8. So we can use
r4(b − a)∆8f(a) as an asymptotically correct error estimate for T44.

8For k = 2, 3, the results are exact even in Pk′+1, due to the symmetry discussed in Example
3.2.7.
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When the values in a row of a Richardson scheme converge fast, it is worth to
try, e.g., Aitken extrapolation to this row, in order to improve the error estimate of
the diagonal element Tm,m. It is important that the irregular errors of the values
are small compared to the last Richardson correction. The theoretical support to
this is usually rather poor, and the row should therefore contain at least four items,
so that one can obtain two Aitken accelerated values. These should not be accepted
as results, but they provide two error estimates for Tm,m. The largest absolute value
of these error estimates indicates the order of magnitude of the error of Tm,m, but
it is not a guaranteed error bound. If you want to calculate the indefinite integral
of f(x), it may be irritating that the improvements are made only at the endpoints;
H may be too big for the application of interpolation of the results afterwards or
for graphical output. An idea how to get denser output is developed in [23].

If the function to be integrated has a singularity in the interval. then the
expansion no longer is a series in h2 and Romberg’s metod has to be modified.

For example, if the integrand f(x) has an algebraic end-point singularity,

f(x) = xβh(x), −1 < β ≤ 0,

where h(x) ∈ Cp+1[a, b], then an asymptotic expansion of the form

R =

p
∑

q=1

aqk
−β−q +

p
∑

q=1

bqk
−q + O(k−p−1) (5.3.8)

can be shown to hold for a trapezoidal sum. Similar, but more complicated, expan-
sions can be obtained for other classes of singularities.

The case when the error expansion for the trapezoidal sum has the form

T (h) = I +

n
∑

m=1

amem(h) + Rn(h), (5.3.9)

where ej(h), j = 1, 2, . . . are known functions satisfying limh→0 em+1(h)/em(h) = 0
and the error term satisfies Rn(h) = O(en+1(h)) has been treated by H̊avie [19].

Suppose we have computed the trapezoidal sums T
(k)
0 = T (hk), for a sequence

of steplengths h0 > h1 > h2 · · · > hn > 0. We want to compute the “best” possible

approximation T
(0)
n to I = limh→0 T (h), defined by the equations

T (h) = T (0)
n +

n
∑

m=1

a′

mem(hk), k = 0 : n. (5.3.10)

H̊avie showed how the approximations can be computed by a special recurrence
relation. Set

E
(n)
1 =

e1(hn+1)Tn − e1(hn)Tn+1

e1(hn+1) − e1(hn)
.

Replacing Tn and Tn+1 by their expansion, we obtain

e
(n)
1,i =

e1(hn+1)ei(hn) − e1(hn)ei(hn+1)

e1(hn+1) − e1(hn)
.
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The same process can be repeated for eliminating e
(n)
1,2 in the expansion of E

(n)
1 , and

so on. This gives the E-algorithm

E
(n)
k =

e
(n+1)
k−1.kE

(n)
k−1 − e

(n)
k−1.kE

(n+1)
k−1

e
(n+1)
k−1.k − e

(n)
k−1.k

. (5.3.11)

The auxiliary quantities e
(n)
k.i are recursively computed by a similar rule

e
(n)
k,i =

e
(n+1)
k−1.ke

(n)
k−1,i − e

(n)
k−1.ke

(n+1)
k−1,i

e
(n+1)
k−1.k − e

(n)
k−1.k

, (5.3.12)

with e
(n)
0.i = ei(hn). The algorithm can be interpreted in terms of Gaussian elimi-

nation for solving the system

E
(n)
k + b1g(hn+i) + · · · + bkg(hn+i) = Tn+i, i = 0 : k,

for the unknown E
(n)
k .

5.3.3 The Epsilon Algorithm

Richardson extrapolation as used in Romberg’s method can only be used to ac-
celerate the rate of convergence if the exponents in the asymptotic expansions are
known explicitly. In cases when the exponents are unknown a nonlinear extrap-
olation scheme, like the ǫ-algorithm (see Sec. 3.3.5) has to be used. This is the
most important convergence acceleration scheme besides Richardson extrapolation
in numerical quadrature.

In the ǫ algorithm a two-dimensional array of numbers ǫ
(p)
k is computed by

the recurrence relation,

ǫ
(p)
k+1 = ǫ

(p+1)
k−1 +

1

ǫ
(p+1)
k − ǫ

(p)
k

. (5.3.13)

using the following boundary conditions

ǫ
(p)
−1 = 0, p = 1, 2, 3, . . . ,

ǫ
(p)
0 = sp, p = 0, 1, 2, . . .

Example 5.3.2.
Consider the integral

∫ √
xdx = 2/3.

If Romberg’s method is applied to this integral the convergence is very slow. In
contrast the ǫ-algorithm is well adapted to accelerating convergence when an asymp-
totic error expansion of the form (5.3.8) holds.
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In the figure below the results from Romberg’s method applied to the trape-
zoidal rule for. This is compared with the results from applying the ǫ-algorithm to

the same trapezoidal sums used in Romberg’s method. Already for ǫ
(0)
5 the order of

magnitude of the error is the same as the accumulated rounding error using IEEE
double precision.

5.3.4 Infinite Intervals

In general the trapezoidal rule is second order accurate, unless f ′(a) = f ′(b), but
there exist interesting exceptions. Suppose that the function f is infinitely differen-
tiable for x ∈ R, and that f has [a, b] as an interval of periodicity, i.e.,

f(x + (b − a)) = f(x), ∀ x ∈ R.

Then f (k)(b) = f (k)(a), for k = 0, 1, 2, . . ., hence every term in the Euler–Maclaurin
expansion is zero for the integral over the whole period [a, b]. One could be led
to believe that the trapezoidal rule gives the exact value of the integral, but this
is usually not the case; for most periodic functions f , limr→∞ R2r+2f 6= 0; the
expansion converges, of course, though not necessarily to the correct result.

On the other hand, the convergence as h → 0 for a fixed (though arbitrary) r
is a different story; the error bound (5.3.6) shows that

|R2r+2(a, h, b)f | = O(h2r+2).

Since r is arbitrary, this means that for this class of functions, the trapezoidal
error tends to zero faster than any power of h, as h → 0 . We may call this
superconvergence. The application of the trapezoidal rule to an integral over
[0,∞) of a function f ∈ C∞(0,∞) often yields similar features, sometimes even
more striking.

Suppose that the periodic function f(z), z = x + iy, is analytic in a strip,
|y| < c, around the real axis. It can then be shown that the error of the trapezoidal
rule is O(e−η/h) as h ↓ 0; η is related to the width of the strip. A similar result will
be obtained in Example 5.3.3, for an annulus instead of a strip.

As a rule, this discussion does not apply to periodic functions which are defined
by periodic continuation of a function originally defined on [a, b] (like the Bernoulli
functions). They usually become non-analytic at a and b, and at all points a + (b−
a)n, n = 0,±1,±2, . . ..

The Poisson summation formula is, even better than the Euler–Maclaurin
formula for the quantitative study of the trapezoidal truncation error on an infinite
interval. For convenient reference we now formulate the following surprising result:

Theorem 5.3.2. Suppose that the trapezoidal rule (or, equivalently, the rectangle
rule) is applied with constant step size h to

∫

∞

−∞
f(x) dx. The Fourier transform of

f reads

f̂(ω) =

∫

∞

−∞

f(x)e−iωt dt.
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Then the integration error decreases like 2f̂(2π/h) as h ↓ 0.

Example 5.3.3.
For the normal probability density, we have

f(x) =
1

σ
√

2π
e−

1
2 (t/σ)2 , f̂(ω) = e−

1
2 (ωσ)2 .

The integration error is thus approximately 2 exp(−2(πσ/h)2). Roughly speaking,
the number of correct digits is doubled if h is divided by

√
2, e.g., the error is

approximately 5.4 10−9 for h = σ, and 1.4 10−17 for h = σ/
√

2.

The application of the trapezoidal rule to an integral over [0,∞) of a function
f ∈ C∞(0,∞) often yields similar features, sometimes even more striking. Suppose
that, for k = 1, 2, 3, . . .,

f (2k−1)(0) = 0 and f (2k−1)(x) → 0, x → ∞,

and
∫

∞

0 |f (2k)(x)| dx < ∞. (Note that for any function g ∈ C∞(−∞,∞) the
function f(x) = g(x) + g(−x) satisfies such conditions at the origin.) Then all
terms of the Euler–Maclaurin expansion are zero, and one can be misled to believe
that the trapezoidal sum gives

∫

∞

0
f(x) dx exactly for any step size h! We have

already seen an example of this in Example 3.5.3. See also Theorem 5.3.2 and
Problem 3. The explanation is that the remainder R2r+2(a, h,∞) will typically not
tend to zero, as r → ∞ for fixed h. On the other hand: if we consider the behavior
of the truncation error as h → 0 for given r, we find that it is o(h2r) for any r, just
like the case of a periodic unction.

For a finite subinterval of [0,∞), however, the remainder is still typically
O(h2), and for each step the remainder is typically O(h3). So, there is an enormous
cancellation of the local truncation errors, when a C∞-function, with vanishing
odd-order derivatives at the origin, is integrated by the trapezoidal rule over [0,∞).

Example 5.3.4.
Infinite intervals of integration occur often in practical problems. For integrals

of the form
∫

∞

−∞
f(x) dx, the trapezoidal rule (or the midpoint rule) often gives good

accuracy if one integrates over the interval [−R1, R2], assuming that f(x) and its
lower derivatives are small for x ≤ −R1 and x ≥ R2.

The correct value to six decimal digits of the integral
∫

∞

−∞
e−x2

dx is π1/2 =

1.772454. For x± 4, the integrand is less than 0.5 10−6. Using the trapezoidal rule
for the integral over [−4, 4] we get the estimate 1.772453 with h = 1/2, an amazingly
good result. (The values of the function have been taken from a six-place table.)
The truncation error in the value of the integral is here less than 1/10,000 of the
truncation error in the largest term of the trapezoidal sum—a superb example of
“cancellation of truncation error”. The error that is which is committed when we
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replace ∞ by 4 can be estimated in the following way:

|R| = 2

∫

∞

4

e−x2

dx = 2

∫

∞

16

e−t0.5t−1/2 dt

= 2 · 0.516−1/2

∫

∞

16

e−t0.5 dt =
1

4
e−16 < 10−7.

5.3.5 Adaptive Quadrature

It is often the case that the integrand f(x) (or its derivatives) has strongly varying
orders of magnitude in different parts of the interval of integration [a, b]. One should
then choose different step sizes in different parts of the integration interval. Since

∫ b

a

=

∫ c1

a

+

∫ c2

c1

+ · · ·+
∫ b

c1

,

the integrals on the right hand side can be treated as independent subproblems.
Indeed, it is possible to perform the subdivision recursively in several levels. In
adaptive quadrature methods step sizes are automatically adapts so that the
approximation satisfies a prescribed error tolerance

∣

∣

∣I −
∫ b

a

f(x) dx
∣

∣

∣ ≤ ǫ. (5.3.14)

We first remark that evaluation of the integral (??) is equivalent to solving

dy

dx
= f(x), y(a) = 0, (5.3.15)

and taking I = y(b). This is a special case of an initial value problem for an or-
dinary differential equation, and the methods described in Chapter 13 can be used
to solve the problem (5.3.15). These algorithms have been developed to include so-
phisticated techniques for adaptively choosing step size and order in the integration
(see Sec. 13.2), and may therefore be a good choice for handling difficult cases.

We consider first a fixed order adaptive method based on Simpson’s rule. For
a subinterval [a, b], set h=(b − a) and compute the trapezoidal approximations

T00 = T (h), T10 = T (h/2), T20 = T (h/4).

The extrapolated values

T11 = (4T10 − T00)/3, T21 = (4T20 − T10)/3,

are equivalent to (the composite) Simpson’s rule with step length h/2 and h/4,
respectively. We can also calculate

T22 = (16T21 − T11)/15,
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which is Milne’s method with step length h/4 with remainder equal to
(2/945)(h/4)6(b − a)f (6)(ξ).

For T22 we use the error estimate Rj = |T22 − T21|, which often is a crude
overestimate.

We accept the approximation Ij if

|T21 − T11| <
hjǫ

b − a
, (5.3.16)

that is we require the error to be less than ǫ/(b − a) per unit step. Otherwise we
reject the approximation, and subdivide the interval in two intervals [aj,

1
2 (aj +bj)],

[ 12 (aj + bj), bj ]. The same rule is now applied to these two subintervals.
Note that if the function values computed previously are we have saved, these

can be reused for the new intervals. Only We start with one interval [a, b] and
carry on subdivisions until the error criterion in (5.3.16) is satisfied for all intervals.
Since the total error is the sum of errors for all subintervals we then have the error
estimate

RT <
∑

j

hjǫ

b − a
= ǫ

as required.
Many adaptive quadrature schemes exits. Here we shall only illustrate one

simple scheme based on a five point closed Newton–Cotes rule, which applies bisec-
tion in a locally adaptive strategy. All function evaluations contribute to the final
estimate.

Algorithm 5.3.1 Adaptive Simpson.

Let f be a given function to be integrated over [a, b] The algorithm adaptsimp uses a
recursive to compute an approximation with an error less than a specified tolerance
τ > 0. The parameter is is a crude a priori estimation of I, used in the stopping
criterion.

function [I,nf] = adaptsimp(f,a,b,tol);

% ADAPTSIMP computes the integral of the

% function vector valued function f over [a,b];

% tol is the desired absolute accuracy

% nf is the number of function evaluations

%

% Initial Simpson approximation

ff = feval(f,[a, (a+b)/2, b]); nf = 3;

I1 = (b - a)*[1, 4, 1]*ff’/6;

% Recursive computation

[I,nf] = adaptrec(f,a,b,ff,I1,tol,nf);

function [I,nf] = adaptrec(f,a,b,ff,I1,tol,nf);

h = (b - a)/2;

fm = feval(f, [a + h/2, b - h/2]); nf = nf + 2;
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% Simpson approximations from left and right subinterval

fL = [ff(1); fm(1); ff(2)];

fR = [ff(2); fm(2); ff(3)];

IL = h*[1, 4, 1]*fL/6;

IR = h*[1, 4, 1]*fR/6;;

% Compute Extrapolated approximation

I2 = IL + IR;

I = I2 + (I2 - I1)/15;

if abs(I - I2) > tol

% Refine both subintervals

[IL,nf] = adaptrec(f,a,a+h,fL,IL,tol/2,nf);

[IR,nf] = adaptrec(f,b-h,b,fR,IR,tol/2,nf);

I = IL + IR;!

end

In many situations it might be preferable to specify a relative error tolerance

tol = η
∣

∣

∣

∫ b

a

f(x) dx
∣

∣

∣.

Note that in a locally adaptive algorithm using a recursive partitioning scheme,
the subintervals are processed from left to right until the integral over each subin-
terval satisfies some error requirement. This means that an a priori initial estimate
of the whole integral, needed for use in a relative local error estimate cannot be up-
dated until all subintervals are processed and the computation is finished. Hence,
if a relative tolerance is specified then a estimate of the integral is needed before
the recursion starts. This is complicated by the fact that the initial estimate might
be zero, e.g. if a periodic integrand is sampled at equidistant intervals. Hence a
combination of relative and absolute criterion might be preferable.

Example 5.3.5.
This algorithm was used to compute the integral

∫ 4

−4

dx

1 + x2
= 2.65163532733607.

with an absolute tolerance 10−p, p = 4, 5, 6. The following approximations were
obtained.

I tol n error
2.65162 50211 10−4 41 1.0 10−5

2.65163 52064 10−5 81 1.2 10−7

2.65163 5327353 10−6 153 −1.7 10−11

Note that the actual error is much smaller than the required tolerance.

The possibility that a user might try to integrate a non-integrable function
(e.g., f(x) = x−1 on [0, 1]) cannot be neglected. In principle it is not possible to
decide whether or not a function f(x) is integrable on the basis of a finite sample
f(x1), . . . , f(xN ) of function values. Therefore it is necessary to impose
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1. an upper limit on the computational effort, i.e. the number of function eval-
uation.

2. a lower limit on the size of the subregions

This means that premature termination may occur even when the function is close
to being non-integrable, e.g., f(x) = x−0.99.

So far we have considered adaptive routines, which use fixed quadrature rules
on each subinterval but where the partition of the interval depends on the integrand.
Such an algorithm is said to be partition adaptive. We can also consider doubly
adaptive integration algorithms. These can choose from a sequence of increasingly
higher order rules to be applied to the current subinterval. Such algorithms uses a
selection criterion to decide to decide at each stage whether to subdivide the current
subinterval or to apply a higher order rule. Doubly adaptive routines copes more
efficiently with smooth integrands.

Many variations on the simple scheme outlined above are possible. For exam-
ple, we could base the method on a higher order Romberg scheme, or even try to
choose an optimal order for each subinterval. Adaptive methods work even when
the integrand f(x) is badly behaved. However, if f has singularities or unbounded
derivatives, the error criterion may never be satisfied. For guard against such cases
it is necessary to include some bound of the number of recursion levels that are
allowed. It should be kept in mind that although adaptive quadrature algorithms
are convenient to use they are in general less efficient than methods which have
been specially adapted for a particular problem.

A collection of computer subroutines for adaptive quadrature is given by
Piessens et al. [28]. We finally warn the reader that no automatic quadrature

routine can be guaranteed always to work. Indeed any estimate of
∫ b

a
f(x) dx based

solely on the value of f(x) on finitely many points can fail. The integrand f(x)
may, for example, be nonzero only on a small subset of [a, b]. An adaptive quadra-
ture rule based only on samples f(x) in a finite number of points theoretically may
return the value zero in such a case!

Review Questions

1. Give an account of the theoretical background of Romberg’s method and its
use.

2. Romberg’s method uses extrapolation of a sequence of trapezoidal approxi-
mations computed for a sequence of step sizes h0, h1, h2, . . . . What sequences
have been suggested and what are their relative merits?

Problems and Computer Exercises

1. Is it true that (the short version of) Simpson’s formula is a particular case of
Gregory’s formula? (Simpson lived 1710-1761.)
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2. Use Romberg’s method to compute the integral
∫ 4

0
f(x) dx, using the following

(correctly rounded) values of f(x). Need all the values be used?

x 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

f(x) −4271 −2522 −499 1795 4358 7187 10279 13633 17247

3. (a) Suppose that the form of the error of Romberg’s method is known, but
the error constant rk is not known. Determine rk numerically for K = 3 and
k = 4, by computing the Romberg scheme for f(x) = x2k.

(b) Prove the formula for the error constant of Romberg’s method.

4. Compute by the Euler–Maclaurin formula, or rather the trapezoidal rule,

(a)

∫

∞

0

e−x2/2dx, (b)

∫

∞

0

dx

cosh(πx)
,

as accurately as you can with the normal precision of your computer (or soft-
ware). Then find out empirically how the error depends on h. Make semi-
logarithmic plots on the same screen. How long range of integration do you
need?
goodbreak

5. (a) Compute
∫

∞

1
(1 + x2)−1 dx. In the notation of Example 5.3.5, compute

∫ 2

1 ,
∫ 4

2 ,
∫ 8

4 , . . .; choose yourself where to stop. Use, e.g., Aitken acceleration

to find
∫

∞

1
. Compare with the exact result; and think of an error estimate

that can be used if the exact result is not known.

(b)Romberg+Aitken Treat in the same way
∫

∞

1
1

√
x+x3

. Compare the compu-

tational effort for the computation of the tail
∫

∞

R by acceleration and by series
expansion with the same accuracy.

6. Compute the integral
1

2π

∫ 2π

0

e
1

√

2
sin x

dx

by the trapezoidal rule, using h = π/2 and h = π/4 (for hand-held calculator).
Continue on a computer with smaller values of h, until the error is on the level
of the rounding errors. Observe how the number of correct digits vary with
h? Notice that Romberg is of no use in this problem.

7. (a) Show that the trapezoidal rule, with h = 2π/(n + 1), is exact for all
trigonometric polynomials of period 2π—i.e., for functions of the type

n
∑

k=−n

ckeikt, i2 = −1.

—when it is used for integration over a whole period.

(b) Show that if f(x) can be approximated by a trigonometric polynomial
of degree n so that the magnitude of the error is less than ǫ, in the interval
(0, 2π), then the error with the use of the trapezoidal rule with h = 2π/(n+1)
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on the integral (2π)−1
∫ 2π

0
f(x) dx is less than 2ǫ.

(c) Use the above to explain the sensationally good result in Problem 2 above,
when h = π/4.

Hint: First estimate how well the function g(x) = ex/
√

2 can be approxi-
mated by a polynomial in P8 for x ∈ [−1, 1]. The estimate found by the
truncated Maclaurin expansion is not quite good enough. Theorem 3.1.5 pro-
vides a sharper estimate with an appropriate choice of R; remember Scylla
and Charybdis.

8. (J. N. Lyness) The integral

I(f, g) =

∫ nh

0

f(x)g′(x) dx (5.3.17)

is called a Stieltjes integral. An approximation related to the trapezoidal
rule is

Sm = 1
2

n−1
∑

j=0

(

f(jh) + f((j + 1)h))(g((j + 1)h) − (g(jh)
)

,

which requires 2(m + 1) function evaluations. Similarly an analogue to the
“mid-point rule” is

Rm = 1
2

n−1
∑

j=0

′′f(jh)
(

g((j + 1)h) − (g((j − 1)h)
)

,

where the double prime on the summation indicates that the extreme values
j = 0 and j = m are assigned a weighting factor 1

2 . This rule requires 2(m+2)
function evaluations, two of which lie outside the interval of integration.
(a) Show that the difference S − m − Rm is of order O(h2).

9. Apply the programs handed out for Romberg’s method (also longromb) and
repeated averages on the integral

∫ 1000

0

x cos(x3) dx.

Try to obtain the results with 10 decimal places.

5.4 Multiple Integrals

5.4.1 Product Rules

The ideas of numerical quadrature can be generalized to multiple integrals. Consider
the two-dimensional integral

I =

∫

D

f(x, y) dxdy (5.4.1)
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For regions D, such as a square, cube, cylinder, etc., which are the Cartesian product
of lower dimensional regions, integration rules can be developed by multiplying
together the lower dimensional rules. For example, if

∫ 1

0

f(x) dx =
n

∑

i=1

wif(xi)

is a one dimensional rule, then

∫ 1

0

∫ 1

0

f(x, y) dxdy =

n
∑

i,j=1

wiwjf(xi, yj)

is a two-dimensional rule for a square. Such rules are not necessarily the most
economical rules.

Example 5.4.1.
Consider a quadrature rule of the form

∫ h

−h

∫ h

−h

f(x, y) dxdy = 4h2
n

∑

i,j=1

wif(xi, yi).

The product Simpson’s rule uses 9 function values, with abscissas and weights given
by

(xi, yi) (0,0) (±h,±h) (±h, 0) (0,±h)
wi 4/9 1/36 1/9 1/9

A more efficient rule is the product 2-point Legendre rule, using the four points

(xi, yi) =
(

± h√
3
,± h√

3

)

wi = 1/4.

For both rules the error is O(h4). Some quadrature rules for circles, triangles,
hexagons, spheres, cubes, etc., are given in Abramowitz–Stegun [1, § 25].

Since the amount of work will increase rapidly with the number of dimensions.
It is therefore advisable to try to reduce the number of dimensions by applying
analytic techniques to parts of the task.

Example 5.4.2.
The following triple integral can be reduced to a single integral:

∫

∞

0

∫

∞

0

∫

∞

0

e−(x+y+z) sin(xz) sin(yz) dxdydz

∫

∞

0

e−x dx

∫

∞

0

e−y sin(yx)dy

∫

∞

0

e−z sin(zx) =

∫

∞

0

( x

1 + x2

)2

e−x dx,

because
∫

∞

0

e−z sin(zx)dz =

∫

∞

0

e−y sin(yx)dz =
x

1 + x2
.
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The remaining single integral is simply evaluated by the techniques previously stud-
ied.

Often a transformation of variable is needed for such a reduction (see Problem
1 at the end of this section), but sometimes that does not help either. Several
approaches are then possible:

(a) numerical integration in one direction at a time—see Sec. 5.4.2;

(b) the use of a rectangular grid, mainly if the boundary of the region is composed
of straight lines–see Sec. 5.4.3.

(c) the use of an irregular triangular grid—possible for more general boundaries—
see Sec. 5.4.4.

(d) Monte Carlo methods, mainly for problems with complicated boundaries and
a large number of dimensions—see Sec. 5.4.5.

5.4.2 Successive One-Dimensional Quadrature

For simplicity we restrict ourselves below to the two-dimensional case, although the
ideas are more general. Consider the integral (5.4.1) where D is a domain in the
x-y plane. The simplest way to compute an approximation to I is by repeated use
of one dimensional quadrature rules. If lines parallel with the x-axis have at most
one segment in common with D, then I can be written in the form

I =

∫ b

a

(

∫ d(x)

c(x)

f(x, y)dy
)

dx,

or

I =

∫ b

a

ϕ(x) dx, ϕ(x) =

∫ d(x)

c(x)

f(x, y)dy. (5.4.2)

For a sequence of values xi, i = 1, . . . , n we can evaluate the function ϕ(x) by the
one-dimensional quadrature methods described previously. These function values
are then used in another one-dimensional quadrature rule to evaluate I. Note that
if D is a more general domain, it might be possible to decompose D into the union
of simpler domains on which these methods can be used.

Figure 5.4.1. Region D of integration.
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Example 5.4.3.
Compute

I =

∫ ∫

D

sin2 y sin2 x(1 + x2 + y2)−1/2 dxdy,

where

D = {(x, y) | x2 + y2 ≤ 1} ∪ {(x, y) | 1 ≤ x ≤ 3, |y| ≤ 0.5}.

is the composite region shown in Fig. 8.4.1. Then

I =

∫ 3

−1

ϕ(x) sin2 xdx, (5.4.3)

ϕ(x) =

∫ c(x)

−c(x)

sin2 y(1 + x2 + y2)−1/2dy, (5.4.4)

where

c(x) =

{

(1 − x2)1/2, x ≤ 1
2

√
3;

1
2 , x ≥ 1

2

√
3.

Values of ϕ(x) were obtained by the application of Romberg’s method to (5.4.4)
and numerical integration applied to the integral (5.4.3) yielded the value of I =
0.13202± 10−5. Ninety-six values of x were needed, and for each value of x, twenty
function evaluations used, on the average. The grid is chosen so that x = 1

2

√
3,

where ϕ′(x) is discontinuous, is a grid point.

5.4.3 Product Rules

Consider a double integral over a rectangular region D = {(x, y) | a ≤ x ≤ b, c ≤ y ≤
d}. Decomposing the integral as in (5.4.2) and using one-dimensional quadrature
rules we can write

I ≈
n

∑

i=1

uiϕ(xi), ϕ(xi) ≈
n

∑

j=1

vjf(xi, yj),

or, combining the rules

I ≈
n

∑

i=1

n
∑

j=1

wijf(xi, yj), wij = uivj . (5.4.5)

This is called a product rule for the double integral I, and it uses mn function
values fij = f(xi, yj).

In particular we can use values of f and an equidistant rectangular grid in
the (x, y)-plane with grid spacings h and k in the x and y directions, respectively.
Let x0 = a, h = (b−a)/n, y0 = c, k = (d− c)/m, and use the notation xi = x0 + ih,
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yj = y0 + jk. Then the following formulas can be used, generalizing the compound
rectangle rule and trapezoidal rule, respectively:

I ≈ hk
M
∑

i=1

N
∑

j=1

fi− 1

2
,j− 1

2

, (5.4.6)

I ≈ hk

M
∑

i=1

N
∑

j=1

wijfij (5.4.7)

Here, for the trapezoidal rule wij = 1 for the interior grid points—i.e., when 0 < i <
M and 0 < j < N , wij = 1

4 for the four corner points, while wij = 1
2 for the other

boundary points. Both formulas are exact for bilinear functions, and the error can
be expanded in even powers of h, k so that repeated Richardson extrapolation can
be used.

Formulas of higher accuracy can also be obtained by using Gaussian quadra-
ture rules in the x and y direction. Note that if the one-dimensional formulas are
exact for polynomials of degree d1 and d2, respectively, then the product rule will
be exact for bivariate polynomials xpyq where p ≤ d1 and q ≤ d2.

Higher accuracy formulas can also be derived by operator techniques, based
on an operator formulation of Taylor’s expansion, see equation (4.8.2),

u(x0 + h, y0 + k) = e(hDx+kDy)u(x0, y0). (5.4.8)

It is possible to use product rules on non-rectangular regions, if these can be
mapped into a rectangle. This can be done, e.g., for a triangle. For nonrectangular
regions, the rectangular lattice may also be bordered by triangles or “triangles”
with one curved side, which may be treated with the techniques outlined in the
next section.

5.4.4 Irregular Triangular Grids

A grid of triangles of arbitrary form is a convenient means for approximating a
complicated plane region. It is fairly easy to program a computer to refine a coarse
triangular grid automatically; see Fig. 8.4.2. It is also easy to adapt the density of
points to the behavior of the function.

Triangular grids are thus more flexible than rectangular ones. On the other
hand, the administration of a rectangular grid requires less storage and a simpler
program. Sometimes the approximation formulas are also a little simpler. Trian-
gular grids have an important application in the finite element method (FEM)
for problems in continuum mechanics and other applications of partial differential
equations; see Chapter 14.

Let Pi = (xi, yi), i = 1, 2, 3, be the vertices of a triangle T . Then any point
P = (x, y) in the plane can be uniquely expressed by the vector equation

P = θ1P1 + θ2P2 + θ3P3, θ1 + θ1 + θ1 = 1. (5.4.9)
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Figure 5.4.2. Refinement of a triangular grid.

In fact, the θi, which are called barycentric coordinates of P , are determined
from the following nonsingular set of equations:

θ1x1 + θ2x2 + θ3x3 = x, (5.4.10)

θ1y1 + θ2y2 + θ3y3 = y,

θ1 + θ2 + θ3 = 1,

The interior of the triangle is characterized by the inequalities θi > 0, i = 1, 2, 3.
In this case P is the center of mass (centroid) of the three masses θ1, θ2, θ3 located
at the vertices of the triangle (see Fig. 8.4.3). This explains the term “barycentric
coordinates”. θ1 = 0 is the equation for the side P2P3, and similarly for the other
sides.

Figure 5.4.3. Center of mass of a triangle.

If f is a nonhomogeneous linear function of P , i.e., if f(P ) = aT P + b, then
the reader can verify that

f(P ) = θ1f(P1) + θ2f(P2) + θ3f(P3). (5.4.11)

this is a form of linear interpolation on triangular grids. In order to obtain quadratic
interpolation, we define

∆′′ = f(Pi) + f(Pj) − 2f
(1

2
(Pi + Pj)

)

, i 6= j. (5.4.12)

Theorem 5.4.1.
The interpolation formula

f(P ) = θ1f1 + θ2f2 + θ3f3 − 2(θ2θ3∆
′′

23 + θ3θ1∆
′′

31 + θ1θ2∆
′′

12)



62 Chapter 5. Numerical Integration

where fi = f(Pi), is exact for all quadratic functions.

Proof. The right-hand is a quadratic function of P , since it follows from (5.4.10)
that the θi are (nonhomogeneous) linear functions of x, y. (See also Problem 8.)
It remains to show that the right hand side is equal to f(P ) for P = Pi, and
P = (Pi + Pj)/2, i, j = 1, 2, 3.

For P = Pi, θi = 1, θj = 0, i 6= j, hence the right hand side equals fi. For
P = (Pi + Pj)/2,

θi = θj =
1

2
, θk = 0, k 6= i, k 6= j,

and hence the right hand side becomes

1

2
fi +

1

2
fj + −2 · 1

2

(

fi + fj − 2u
(1

2
(Pi + Pj)

)

)

= f
(1

2
(Pi + Pj)

)

.

The following theorem is equivalent to a rule which has been used in mechanics
for the computation of moments of inertia since the nineteenth century:

Theorem 5.4.2.
Let A be the area of a triangle T , with vertices P1, P2, P3. Then the quadrature

formula
∫ ∫

T

f(x, y) dxdy (5.4.13)

=
1

3
A

(

f
(1

2
(P1 + P2)

)

+ f
(1

2
(P2 + P3)

)

+ f
(1

2
(P3 + P1)

)

is exact for all quadratic functions.

Proof: By symmetry,
∫

T

∫

θi dxdy is the same for i = 1, 2, 3. Similarly
∫

T

∫

θiθj dxdy is the same for all three (i, j)-combinations. Hence for the quadratic
function

∫

T

∫

f(x, y) dxdy = a(f1 + f2 + f3) − 2b(∆′′

23 + ∆′′

31 + ∆′′

12)

= (a − 4b)(f1 + f2 + f3)

+ 4b
(

f
(1

2
(P1 + P2)

)

+ f
(1

2
(P2 + P3)

)

+ f
(1

2
(P3 + P1)

)

)

,

where

a =

∫

T

∫

θ1 dxdy, b =

∫

T

∫

θ1θ2 dxdy.

Using θ1, θ2 as new variables of integration, we get by (5.4.10) and the relation
θ3 = 1 − θ1 − θ2,

x = θ1(x1 − x3) + θ1(x1 − x3) + x3,

y = θ1(y1 − y3) + θ1(y1 − y3) + y3.
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Figure 5.4.4. Correction for curved boundary segment.

Hence the functional determinant is equal to

∣

∣

∣

∣

x1 − x3 x2 − x3

y1 − y3 y2 − y3

∣

∣

∣

∣

= 2A,

and (check the limits of integration!)

a =

∫ 1

θ1=0

∫ 1−θ1

θ2=0

2θ1dθ1dθ2 = 2A

∫ 1

0

θ1(1 − θ1)dθ1 =
A

3
,

b =

∫ 1

θ1=0

∫ 1−θ1

θ2=0

2θ1θ2dθ1dθ2 = 2A

∫ 1

0

θ1
(1 − θ1)

2

2
dθ1 =

A

3
.

The results now follows by insertion of this into (5.4.13).

A numerical method can be based on Theorem 5.4.1, by covering the domain
D by triangles. For each curved boundary segment (Fig. 8.4.4) the correction

4

3
f(S)A(PRQ) (5.4.14)

is to be added, where A(PRQ) is the area of the triangle with vertices P, R, Q. The
error of the correction can be shown to be O(‖Q − P‖5) for each segment, if R is
close to the midpoint of the arc PQ. If the boundary is given in parametric form,
x = x(x), y = y(x), where x and y are twice differentiable on the arc PQ, then one
should choose tR = 1

2 (tP + tQ). Richardson extrapolation can be used to increase
the accuracy, see the examples.

Figure 5.4.5. The grids for I4 and I16.
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Example 5.4.4.
Consider the integral

I =

∫ ∫

D

(x2 + y2)k dxdy

where D is the region shown in Fig. 8.4.5. Let In be the result obtained with n
triangles. The grids for I4 and I16 are shown in Fig. 8.4.5. Put

R′

n = I4n +
1

15
(I4n − In), R′′

n = R′

4n +
1

63
(R′

4n − R′

n).

The following results were obtained. In this case the work could be reduced by a
factor of 4, because of symmetry.

k I4 I16 I64 R′

4 R′

16 R′′

4

2 0.250000 0.307291 0.310872 0.311111 0.311111 0.311111

3 0.104167 0.161784 0.170741 0.165625 0.171338 0.171429

4 0.046875 0.090678 0.104094 0.093598 0.104988 0.105169

The exact values are 0.311111, 0.171429, and 0.105397. It is seen that R′-
values have full accuracy for k = 2 and the R′′-values have high accuracy even for
k = 4. In fact, it can be shown that R′-values are exact for any fourth-degree
polynomial and R′′-values are exact for any sixth-degree polynomial, when the
region is covered exactly by the triangles.

Example 5.4.5.
The integral

a

∫ ∫

(a2 − y2)−1/2 dxdy

over a quarter of the unit circle is computed with the grids shown in Fig. 8.4.2,
and with boundary corrections according to (5.4.9). The following results, using
the notation of the previous example, were obtained and compared with the exact
values:

a I8 I32 R′

8 Exact

2 0.351995 0.352077 0.352082 0.352082
4 0.337492 0.337608 0.337615 0.337616
6 0.335084 0.335200 0.335207 0.335208
8 0.334259 0.334374 0.334382 0.334382

Note, however, that Richardson extrapolation may not always give improve-
ment, e.g., when the rate of convergence of the basic method is more rapid than
usual.
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We mention also that some progress has been made in developing quadra-
ture rules of optimal order for rectangles and triangles. In one dimension this led
to Gaussian quadrature rules. In two dimensions the problem is much more diffi-
cult. Non-product rules for simple regions like a circle, equilateral triangle, regular
hexagon, etc., can be found in Abramowitz and Stegun [1, pp. 891–895]. For a thor-
ough treatment of multiple integrals the reader is referred to the book by Stroud
[33].

5.4.5 Monte Carlo Methods

Quasi-Monte Carlo methods for numerical integration; see Niederreiter [27] Low
discrepancy sequences

Lattice rules are equal weight rules for integration of periodic functions over
the d-dimensional unit cube [0, 1]d. Thus the problem is to approximate the integral

If =

∫ 1

0

· · ·
∫ 1

0

f(x1, . . . , xd) dx1 . . . dxd, (5.4.15)

by a rule

QNf =
1

N

N−1
∑

j=0

f

({

j

N
g

})

, (5.4.16)

where g is an d-dimensional integer vector that does not have N as a factor and by
{x} = {x1, . . . , xd we denote the vector whose jth component is the fractional part
of xj .

For numerical integration in high dimensions the number of function values
needed to obtain an acceptable approximation tends to increase exponentially in the
number of dimensions d. This is often referred to as the curse of dimensionality, a
phrase coined by Richard Bellman. The exponential increase is clearly inevitable
with any form of product integration rule. Recently it has been shown that the curse
can be lifted by using a class of randomly shifted lattice rules by Ian H. Sloane.

One of the most important application of the Monte Carlo method described
in Section 1.4.2 is in the numerical calculation of multiple integrals. If we use
product rules to evaluate a multiple integral in d dimensions the work will depend
exponentially on d. This means that the problem may quickly becomes intractable
when d increases. On the other hand, for the Monte Carlo method the complexity
always is proportional to 1/ǫ, where ǫ is the required tolerance independent of the
dimension d. Hence the Monte Carlo method can be said to break “the curse of
dimension” inherent in other approaches!

We shall briefly describe some ideas used in integration by the Monte Carlo
method. For simplicity, we first consider integrals in one dimension, even though
the Monte Carlo method cannot really compete with traditional numerical methods
for this problem.

Let R1, R2, . . . , Rn be a sequence of random numbers rectangularly distributed
on [0, 1], and set

I =

∫ 1

0

f(x) dx ≈ I1 =
1

n

n
∑

i=1

f(Ri).
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This generalizes to multiple integrals. For example, to approximate a two dimen-
sional integral over the domain 0 ≤ x, y ≤ 1, we sample the integrand f(x, y) in
points (R2i−1, R2i), for i = 1, 2, . . . , n. The technique can be applied to an integral
over a general region D, provided that we can sample the integrand f randomly
over D.

One can show that the expectation of the variable I1 is I and that the standard
deviation of this estimate decreases in proportion to n−1/2. This is very slow even
compared to the trapezoidal rule—where the error decreases as n−2. To get one
extra decimal place of accuracy we must increase the number of points by a factor
of 100. To get three digit accuracy the order of one million points may be required!
However, if we consider, e.g., a six-dimensional integral this is not exorbitant. Using
a product rule with 10 subdivisions in each dimension would also require 106 points.

The above estimate is a special case of a more general one. Suppose Xi

i = 1, 2, . . . , n, has density function g(x). Then

I2 =
1

n

n
∑

i=1

f(Xi)

g(Xi)

has expected value I, since

E

(

f(Xi)

g(Xi)

)

=

∫ 1

0

f(x)

g(x)
f(x) dx =

∫ 1

0

f(x) dx = I.

If one can find a frequency function g(x) such that f(x)/g(x) fluctuates less than
f(x), then I2 will have smaller variance than I1. This procedure is called im-
portance sampling; it has proved very useful in particle-physics problems, where
important phenomena (e.g., dangerous radiation which penetrates a shield) are as-
sociated with certain events of low probability.

We have previously mentioned the method of using a simple comparison
problem. The Monte Carlo variant of this method is called the control vari-
ate method. Suppose that ϕ(x) is a function whose integral has a known value
K, and suppose that f(x) − ϕ(x) fluctuates much less than f(x). Then

I = K +

∫ 1

0

(f(x) − ϕ(x)) dx ≈ K + I3, I3 =
1

n

n
∑

i=1

(f(Ri) − ϕ(Ri)),

where I3 has less variance than I1.

Review Questions

1. How is bilinear interpolation performed? What is the order of accuracy?

2. Define barycentric coordinates, and give the formula for linear interpolation
on a triangular grid.
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3. Describe the methods for numerical integration with rectangular or triangular
grids.

Problems

1. Let D be the unit circle. Introduce polar coordinates in the integral

I =

∫ ∫

D

y sin(ky)

x2 + y2
dxdy

and reduce it analytically to a single integral.

2. Let E be the ellipse {(x, y) | (x/a)2 + (y/b)2 ≤ 1}. Transform

I =

∫ ∫

E

f(x, y) dxdy

into an integral over a rectangle in the (r, t)-plane with the transformation
x = ar cos t, y = br sin t.

3. Compute by bilinear interpolation u(0.5, 0.25) when

u(0, 0) = 1, u(1, 0) = 2, u(0, 1) = 3, u(1, 1) = 5.

4. Show that, using the notation for equidistant rectangular grids, the formula
∫ x0+h

x0−h

∫ y0+k

y0−k

f(x, y) dxdy =
4hk

6
(f1,0 + f0,1 + f−1,0 + f0,−1 + 2f0,0)

is exact for all cubic polynomials.

5. Is a quadratic polynomial uniquely determined, given six functions values at
the vertices and midpoints of the sides of a triangle?

6. Show that the boundary correction of (5.4.9) is exact if f ≡ 1, and if the arc
is a parabola where the tangent at R is parallel to PQ.

7. Formulate generalizations to several dimensions of the integral formula of The-
orem 5.4.1, and convince yourself of their validity.

Hint: The formula is most simply expressed in terms of the values in the
vertices and in the centroid of a simplex.

8. (a) Write a program which uses the Monte Carlo method to compute
∫ 1

0
ex dx.

Take 25, 100, 225, 400 and 635 points. Plot the error on a loglog-scale. How
does the error depend (approximately) on the number of points?

(b) Compute the integral in (a) using the control variate method. Take ϕ(x) =
1 + x + x2/2. Use the same number of points as in (a).

Notes and References

A comprehensive treatment of the numerical evaluation of integrals is given in Davis
and Rabinowitz [6]. Alternatively the Newton–Cotes and other quadrature rules can
be derived using computer algebra systems, see [10].



68 Chapter 5. Numerical Integration

For a history of Gauss-type quadrature rules, see Gautschi [13]. Gaussian
quadrature rules were derived by Gauss in 1814 using a continued fraction expansion
related to the hypergeometric series. In 1826 Jacobi showed that the nodes were the
zeros of the Legendre polynomials and that they were real, simple and in [−1, 1].
The convergence of Gaussian quadrature methods was first studied by Stieltjes in
1884. A software package in the public domain by Gautschi [14] includes routines for
generating Gauss-type formulas and orthogonal polynomials not only for classical
but also for essentially arbitrary weight functions. The presentation in Sec. 5.2.3
is inspired by the work of Gautschi [12], [15], Golub and co-authors. Related ideas
can be traced to Mysovskih [26].

The classical reference on orthogonal polynomials is Szegö [35]. Tables of ab-
scissas and weights for Gaussian quadrature rules with various weight functions are
given in Abramowitz and Stegun [1, Sec. 25] and in Gautschi [13]. A computer pack-
age for computing the tridiagonal Jacobi matrix and generating the corresponding
Gauss quadrature rule has been developed by Gautschi [14]. Maple programs for
Gauss quadrature rules ar given by von Matt [25].

The idea of adaptive Simpson quadrature is old and treated fully by Ly-
ness [24]. Further schemes, computer programs and examples are given in Davis
and Rabinowitz [6]. For a recent discussion of error estimates and reliability of
different codes see Espelid [8].

Multivariate integration formulas and lattice rules are discussed in [36].
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171. Birkhäuser Verlag, 1988.

[28] R. Piessens, E. de Doncker, C. W. Überhuber, and D. K. Kahaner. QUAD-
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For the derivation of error estimates for numerical integration we shall require
the following result on the continuity of divided differences. For this purpose the
following representation of divided differences is useful. If x, x1, . . . , xn be n+1 are
distinct points, then

[x1, . . . , xn, x]f =

n
∑

j=1

[x, xj ]f
n

∏

k=1

k 6=j

(xj − xk)

. (5.4.17)

This formula follows by substituting the Lagrange form of the interpolation poly-
nomial into the exact remainder (4.2.19) in Newton’s interpolation formula.

Lemma 5.4.3.
Let f(x) be continuous on [a, b] and let f ′(x) be continuous in arbitrary small

intervals about some distinct fixed points xi ∈ [a, b], i = 1 : n. Then

[x1, . . . , xn, x]f

is a continuous function of x in [a, b].
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Chapter 6

Solving Scalar Nonlinear

Equations

6.1 Some Basic Concepts and Methods

6.1.1 Introduction

In this chapter we study numerical methods for computing accurate approximations
to the roots of a scalar nonlinear equation

f(x) = 0, (6.1.1)

where f(x) is a real-valued function of one variable. This problem has occupied
mathematicians for many centuries and many of the basic methods date back a
long time. In general the roots of (6.1.1) cannot be expressed in closed form. Even
when an explicit solution is available (as, e.g., for the reduced cubic equation), this
is often so complicated that using, e.g., Newton’s method, is more practical; see
Problem 2.3.8.

Numerical methods are iterative in nature. Starting from one or more ini-
tial approximations, they produce a sequence of approximations, which presumably
converges to the desired root. Note that the function f(x) need not be known by a
closed analytical expression. For numerical methods to be applicable it suffices that
f(x), and preferably some of its derivatives, can be evaluated for given numerical
values of x. It is not uncommon with applications where each function value is
obtained by a complicated computation, e.g., by the numerical solution of a differ-
ential equation. The object is then to use as few function evaluations as possible in
order to approximate the root with a prescribed accuracy.

Iterative methods have to be truncated after a finite number of steps and
therefore can yield only approximations to the desired roots. Further, the roundoff
errors that occur in the evaluation of f(x) will limit the accuracy attainable by any
numerical method. The effect of such rounding errors depends on the conditioning
of the roots and is discussed in Section 6.1.3.

With certain methods it is sufficient for convergence to know an initial interval
[a, b], which contains the desired root (and no other root). An important example

1



2 Chapter 6. Solving Scalar Nonlinear Equations

is the bisection method described in Section 6.1.2. It is often suitable to use a
hybrid method in which the bisection method is used to roughly locate the root. A
more rapidly convergent method is then used to refine this approximation. These
latter methods make more use of regularity assumptions about f(x), and usually
also require an initial approximation close to the desired root.

The theory of fixed point iteration methods is treated in Sec. 6.1.4 and the
concepts of convergence order and efficiency introduced in Sec. 6.1.5. The secant
method, and other methods based on interpolation are described in Sec. 6.2. In
Sec. 6.4 we briefly consider methods for solving the related problem of finding the
minimum or maximum of a real-valued function g(x). Newton’s method and other
methods of higher order are analyzed in Sections 6.3. A classical problem is that of
determining all real or complex roots of a algebraic equation. Special features and
methods for this problem are taken up in Section 6.5.

Many of the methods for a single equation, such as Newton’s method, are
easily generalized for systems of nonlinear equations. However, unless good approx-
imations to the roots are known, several modifications of the basic methods are
required, see Vol. II, Chapter 11.

6.1.2 The Bisection Method

It is often advisable to start with collecting some qualitative information about the
roots to be computed. One should try to determine how many roots there are and
their approximate location. Such information can often be obtained by graphing
the function f(x). This can be a useful tool for determining the number of roots
and intervals containing each root.

Example 6.1.1.
Consider the equation

f(x) = (x/2)2 − sinx = 0.

In Figure 6.1.2 the graphs of y = (x/2)2 and y = sinx are shown. Observing the
intersection of these we find that the unique positive root lies in the interval (1.8, 2),
probably close to α ≈ x0 = 1.9.

The following intermediate-value theorem can be used to infer that an
interval [a, b] contains at least one root of f(x) = 0.

Theorem 6.1.1.
Assume that the function f(x) is continuous for a ≤ x ≤ b, f(a) 6= f(b), and

k is between f(a) and f(b). Then there is a point ξ ∈ (a, b), such that f(ξ) = k. In
particular, if f(a)f(b) < 0 then the equation f(x) = 0 has at least one root in the
interval (a, b).

A systematic use of the intermediate-value theorem is made in the bisec-
tion method. Assume that f(x) is continuous in the interval (a0, b0) and that
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Figure 6.1.1. Graph of curve y = (x/2)2 − sinx.

f(a0)f(b0) < 0. We shall determine a nested sequence of intervals Ik = (ak, bk),
k = 1, 2, 3, . . ., such that

(a0, b0) ⊃ (a1, b1) ⊃ (a2, b2) ⊂ · · ·

and which all contain a root of the equation f(x) = 0. The intervals are determined
recursively as follows. Given Ik = (ak, bk) compute the midpoint

mk =
1

2
(ak + bk) = ak + 1

2 (bk − ak).. (6.1.2)

and f(mk). The latter expression has the advantage that using this to compute the
midpoint no rounding error occurs in the subtraction (see Theorem 2.2.2).

We can assume that f(mk) 6= 0, since otherwise we have found a root. The
new interval Ik+1 = (ak+1, bk+1) is then determined by the rule

(ak+1, bk+1) =

{

(mk, bk), if f(mk)f(ak) > 0;
(ak,mk), if f(mk)f(ak) < 0.

(6.1.3)

From the construction it follows immediately that f(ak+1)f(bk+1) < 0 (see also
Figure 6.1.2) and therefore the interval Ik+1 also contains a root of f(x) = 0.

After n bisection steps we have contained a root in the interval (an, bn) of
length 2−n(b0 − a0). If we take mn as an estimate of the root α, we have the error
estimate

|α−mn| < 2−(n+1)(b0 − a0). (6.1.4)

At each step we gain one binary digit in accuracy or, since 10−1 ≈ 2−3.3, on the
average one decimal digit per 3.3 steps. To find an interval of length δ which includes
a root will require about log2((b − a)/δ) evaluations of f . Note that the bisection
algorithm makes no quantitative use of the magnitude of computed function values.
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Figure 6.1.2. The bisection method.

Example 6.1.2.
The bisection method applied to the equation (x/2)2 − sinx = 0, with I0 =

(1.8, 2) gives the sequence of intervals [an, bn], where:

k ak bk mk f(mk)

1 1.8 2 1.9 <0
2 1.9 2 1.95 >0
3 1.9 1.95 1.925 <0
4 1.925 1.95 1.9375 >0
5 1.925 1.9375 1.93125 <0
6 1.93125 1.9375 1.934375 >0

Here after six function evaluations we have α ∈ (1.93125, 1.934375) an interval of
length 0.2 · 2−6 = 0.003125.

Example 6.1.3.
The inequalities a ≤ 1

2 (a + b) ≤ b, where a and b are floating point numbers
with a ≤ b can be violated in base 10 arithmetic. For example, assume that floating
point arithmetic with six decimal digits is used. Taking a = 0.742531 and b =
0.742533 we obtain fl(a+ b) = 1.48506 (rounded) and 1

2 (a+ b) = 0.742530. On the
other hand the inequalities a ≤ a+ 1

2 (b − a) ≤ b are true in base β arithmetic, for
any β. With a and p as given we get the correct value 0.742532.

An algorithmic description of the bisection method is given below. In this
the tolerance τ is increased by the amount umax(|a|, |b|), where u is the machine
precision. This is to guard against the possibility that δ has been chosen smaller
than the spacing between the floating point numbers between a and b.



6.1. Some Basic Concepts and Methods 5

Algorithm 6.1.1 The Bisection Method.

Let f be a given function and I = [a, b] an interval such that b > a and f(a)f(b) ≤ 0.
The algorithm bisect attempts to compute an approximation to a root m ∈ I of
f(x) = 0, with an error less than a specified tolerance τ > 0.

function r = bisect(f, a, b, τ);

fa = f(a);

fb = f(b);

while |b− a| > τ + u · max((|a|, |b|);
m = a+ (b− a)/2;

fm = f(m);

if fm · fa ≤ 0

b = m; fb = fm;

else

a = m; fa = fm;

end;

end;

r = a+ (b− a)/2;

The time required by the bisection algorithm is typically proportional to the
number of function evaluations, other arithmetic operations being insignificant. The
correct subinterval will be chosen in the algorithm as long as the sign of the com-
puted function value f(m) is correctly determined. If the tolerance τ is taken too
“small” or the root is ill-conditioned this may fail to be true in the later steps. Even
then the computed midpoints will stay within a certain domain of uncertainty. Due
to rounding errors there is a limiting accuracy, with which a root can be determined
from approximate function values; see in Section 6.1.3.

The bisection method is optimal for the class of functions that changes sign
on [a, b] in the sense that it minimizes the maximum number of steps over all such
functions. The convergence is rather slow, but independent of the regularity of
f(x). For other classes of functions, e.g., functions that continuously differentiable
on [a, b], methods like Newton’s method, which assume some regularity of f(x) can
achieve significantly faster convergence.

If f(a)f(b) < 0 then by the intermediate value theorem the interval (a, b)
contains at least one root of f(x) = 0. If the interval (a, b) contains several roots of
f(x) = 0, then the bisection method will converge to just one of these. (Note that
there may be one or several roots in (a, b), also in case f(a)f(b) > 0.)

If we only know (say) a lower bound a < α for the root to be determined we
can proceed as follows. We choose an initial steplength d and in the first hunting
phase compute successively function values f(a+ h), f(a+ 2h), f(a+ 4h), . . ., i.e.
we double the step, until a function value is found such that f(a)f(a + 2kh) < 0.
At this point we have bracketed a root and can initiate the bisection algorithm.

In the bisection method the interval of interest is in each step split into two
subintervals. An obvious generalization is to partition instead into k subintervals,
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for p ≥ 2. In such a multi-section method of order p the interval I = [a, b] is
divided into k subintervals Ii = [xi, xi+1], where

xi = a+ i [(b− a)/p], i = 0 : p.

If there exists only one root in the interval I and we wish to compute it with an
absolute error ǫ, then it is necessary to perform

nk = log2

(b− a

2ǫ

)/

log2(p)

multi-sections of order p. Thus, the efficiency of multi-section of order p compared
to bisection (p = 2) is

n2/(pnp) = log2(p)/p.

Hence if there is a single root in the interval bisection is always preferable. If there
are several roots in the interval multi-section may perform better if the subintervals
can be processed in parallel.

There are several other applications of the bisection algorithm. For example,
in Section 4.4.5 we considered evaluating the nonzero B-splines for a given argument
x. Then we first have to search an ordered sequence of knots τ0, . . . , τm to find the
interval such that τj ≤ x < τj+1. This can be achieved by a slight modification
of the bisection method. A similar problem, important in computer science, is
searching in an ordered register, e.g., a register of employees ordered according to
increasing Social Security number. If the nth number in the register is denoted by
f(n), then searching for a certain number a means that an equation f(n) = a is to
be solved (here f is an increasing, discontinuous function). The bisection method
can also be used in searching an alphabetically ordered register.

In later sections we will study methods for solving a nonlinear equation, which
make more efficient use of computed function values than the bisection method and
possibly also use values of derivatives of f(x). If f(x) is sufficiently regular such
methods can achieve significantly faster convergence.

6.1.3 Attainable Accuracy and Termination Criteria

In the following we denote by f(x) = fl(f(x)) the limited-precision approximation
obtained when f(x) is evaluated in floating point arithmetic. When a monotone
function f(x) is evaluated in floating point arithmetic the resulting approximation
f(x) is not in general monotone. The effect of rounding errors in evaluating a certain
polynomial of fifth degree with a simple zero at x = 1 is illustrated in Figure 6.1.4.
Note the loss of monotonicity caused by rounding errors. This figure also shows
that even if f(a)f(b) < 0, the true equation f(x) = 0 may not have a zero in [a, b]!

Even if the true function value |f(xn)| is “small” one cannot deduce that xn

is close to a zero of f(x) without some assumption about the size of the derivative
of f . We recall some basic results from analysis; for proofs see, e.g., Ostrowski [19,
Chapter 2].
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Figure 6.1.3. Limited-precision approximation of a continuous function.

Theorem 6.1.2.
Let f(x) be continuous and differentiable in the interval J = [xn − η, xn + η]

for some η > 0. If |f ′(x)| ≥ m1 for all x ∈ J and |f(xn)| ≤ ηm1 then f(x) has
exactly one zero in J .

A root α of f(x) = 0 is said to be simple root if f ′(α) 6= 0. We now derive
an error estimate for a simple root α of f(x), which takes into account errors in the
computed values of f(x). Assume that

f(x) = f(x) + δ(x), |δ(x)| ≤ δ, x ∈ J, (6.1.5)

where δ is an upper bound for rounding and other errors in computed function
values of f(x). Using Theorem 6.1.2 we obtain

|xn − α| ≤ η = (|f(xn)| + δ)/m1, |f ′(x)| ≥ m1, x ∈ J. (6.1.6)

Obviously the best we can hope for is to find an approximation xn such that the
computed function value f(xn) = 0. It follows that for any numerical method,
δ/m1 is an approximate limit for the accuracy with which a simple zero α can be
determined. If f ′(x) does not vary much near xn = α, then we have the approximate
error bound

|xn − α| ≤ δ/m1 ≈ ǫα, ǫα = δ/|f ′(α)|. (6.1.7)

Since this is the best error bound for any method, we call ǫα, the attainable
accuracy for the simple root α, and the interval [α − ǫα, α + ǫα] the domain of
uncertainty for the root α. If |f ′(α)| is small, then ǫα is large and the problem of
computing the root α is ill-conditioned (see again Figure 6.1.3).
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Example 6.1.4.
Suppose we have computed the approximation x = 1.93375 to the positive

root to the equation f(x) = sinx − (x/2)2. We have f ′(x) = cosx − x/2 and
it is easily verified that |f(x)| > 1.31 = m1, x ∈ [1.93, 1.94]. Further, using six
decimals we have sin 1.93375 = 0.934852 ± 0.510−6, and (x/2)2 = 0.966875)2 =
0.934847± 0.510−6. Then from (6.1.6) follows the strict error estimate

|x− α| < 6 · 10−6/1.31 < 5.6 · 10−6.

Using the following theorem, an analogous result can be shown for zeros of a
complex function f(z) of a complex variable z.

Theorem 6.1.3.
Let f(z) be analytic in the disc K = {z | |z − z0| ≤ η} for some η > 0. If

|f ′(z)| ≥ m in K and |f(z0)| ≤ ηm then f(z) has a zero inside K.

The multiplicity of a root is defined as follows:

Definition 6.1.4.
Suppose that f(x) is q times continuously differentiable in a neighborhood of

a root α to the equation f(x) = 0. Then α is said to have multiplicity q if

0 6= lim
x→α

|f(x)/(x − α)q| <∞. (6.1.8)

If a root α has multiplicity q then by (6.1.8) f (j)(α) = 0, j < q and from
Taylor’s formula

f(x) =
1

q!
(x− α)qf (q)(ξ), ξ ∈ int(x, α). (6.1.9)

Assuming that |f (q)(x)| ≥ mq, x ∈ J , and proceeding as before, we find that the
attainable accuracy for a root of multiplicity q is given by

|xn − α| ≤ (q! δ/mq)
1/q ≈ ǫα, ǫα = (q! δ/|f (q)(α)|)1/q . (6.1.10)

Comparing this with (6.1.7), we see that because of the exponent 1/q multiple roots
are in general very ill-conditioned. A similar behavior can be expected also when
there are several distinct but “close” roots. An instructive example is the Wilkinson
polynomial, studied in Example 6.5.1.

Example 6.1.5.
The equation f(x) = (x − 2)x + 1 = 0 has a double root x = 1. The (exact)

value of the function at x = 1 + ǫ is

f(x+ ǫ) = (ǫ− 1)(1 + ǫ) + 1 = −(1 − ǫ2) + 1 = ǫ2.
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Now, suppose that we use a floating point arithmetic with eight decimal digits in
the mantissa. Then

fl(1 − ǫ2) = 1, |ǫ| < 1

2

√
2· 10−4,

and for 0.99992929 ≤ x ≤ 1.0000707, the computed value of f(x) will be zero when
f(x) is evaluated using Horner’s rule. Hence the root can only be computed with
about four correct digits, that is, with a relative error equal to the square root of
the machine precision.

Suppose that we want to compute an approximation to a simple root α to
a prescribed accuracy. Provided that the absolute value of the derivative is easy
to estimate it may be possible to interrupt the iterations on the basis of the error
estimate (6.1.7). However, on a computer it is usually more effective to iterate
a few extra times, rather than make the effort to use a special formula for error
estimation.

In subroutines for solving a nonlinear equation it is common practice to use
a termination criterion of the following form. Assuming the method produces a
seqeunce of bracketing intervals [ak, bk] the iterations are terminated if

|bk − ak| ≤ 2u|xn| + τ, (6.1.11)

where τ is a user specified absolute tolerance and u is the rounding unit (see Sec-
tion 2.2).

We must also deal with the possibility that the user specified tolerance is too
small and cannot be attained. If this is the case, then from some step onwards
rounding errors will dominate in the evaluation of f(xn) and the computed values
of f(x) may vary quasi-randomly in the interval (−δ, δ) of attainable accuracy. If
we are using a method like the bisection method, the iterations will continue until
the criterion (6.1.11) is satisfied, but this, of course, does not ensure that the root
actually has been determined to this precision!

The following alternative termination criterion can be used for superlinearly
convergent methods:1 Accept the approximation xn when for the first time the fol-
lowing two conditions are satisfied:

|xn+1 − xn| ≥ |xn − xn−1|, |xn − xn−1| < tol. (6.1.12)

Here tol is a coarse tolerance, used only to prevent the iterations from being termi-
nated before xn even has come close to α. When (6.1.12) is satisfied the attainable
accuracy has been reached and the quantity |xn+1 − xn| usually is a good estimate
of the error |xn − α|. Using this criterion the risk of never terminating the itera-
tions for an ill-conditioned root is quite small. Note also that iteration methods of
superlinear convergence ultimately converge so fast that the cost of always iterating
until the attainable accuracy is obtained may be small, even if the user specified
tolerance is much larger than ǫα.

1This criterion was suggested by the Norwegian computer scientist Jan Garwick.
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6.1.4 Fixed-Point Iteration

We now introduce a very general class of iteration methods, which includes many
important root finding methods as special cases.

Let φ be a continuous function and {xn} the sequence generated by

xn+1 = φ(xn), n = 0, 1, 2, . . . . (6.1.13)

for some initial value x0. Assuming that limn→∞ xn = α, it follows that

α = lim
n→∞

xn = lim
n→∞

φ(xn) = φ(α), (6.1.14)

i.e., the limiting value α is a root of the equation x = φ(x). We call α a fixed point
of the mapping x→ φ(x) and the iteration (6.1.13) a fixed point iteration.

An iterative method for solving an equation f(x) = 0 can be constructed
by rewriting it in the equivalent form x = φ(x), which then defines a fixed point
iteration (6.1.13). Clearly this can be done in many ways. For example, let g(x) be
any function such that g(α) 6= 0 and set

φ(x) = x− f(x)g(x). (6.1.15)

Then α is a solution to f(x) = 0 if, and only if, α is a fixed point of φ
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Figure 6.1.4. The fixed point iteration xk+1 = e−xk , x0 = 0.3.

Example 6.1.6.
The equation x+ lnx = 0 can, for example, be written as:

(i) x = − lnx; (ii) x = e−x; (iii) x = (x+ e−x)/2.

Each of these give rise to a different fixed point iteration. Results from the first
eight iterations

xn+1 = e−xn , x0 = 0.3,
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are pictured in Figure 6.2.1. The convergence is slow and we get x9 = 0.5641
(correct value 0.567143).

As was shown already in Section 1.2, the iteration (6.1.13) may not converge
even if the initial value x0 is chosen arbitrarily close to a root. If limn→∞ xn = α for
all x0 in a sufficiently close neighborhood of α the α is called a point of attraction
otherwise α is a point of repulsion.

We shall see that under certain conditions the fixed-point problem has a unique
solution and that the iteration defined by (6.1.13) converges to this solution. A
sufficient condition for (6.1.13) to generate a convergent sequence is given in the
following theorem.

Theorem 6.1.5.
Suppose that the function φ(x) has a real fixed point α, and that in the closed

interval
J = {x | |x− α| ≤ ρ}

x→ φ(x) is a contraction mapping, i.e.,

|φ(s) − φ(t)| ≤ C|s− t|, 0 ≤ C < 1, (6.1.16)

for arbitrary points s and t in J . Then for all x0 ∈ J the fixed-point iteration
xn = φ(xn−1), generates a sequence {xn} such that:

(a) xn ∈ J , n = 1, 2, . . .;

(b) limn→∞ xn = α,

(c) α is the only root in J of x = φ(x).

Proof. We first prove assertion (a), by induction. Suppose that xn−1 ∈ J . Then
by (6.1.16) it follows that

|xn − α| = |φ(xn−1) − φ(α)| ≤ C|xn−1 − α| ≤ Cρ.

Hence xn ∈ J and (a) is proved. Repeated use of the inequality above gives

|xn − α| ≤ C|xn−1 − α| ≤ · · · ≤ Cn|x0 − α|,

and since C < 1, the result (b) follows. Suppose, finally, that x = φ(x) has another
root β ∈ J , β 6= α. Then, by (6.1.16)

|α− β| = |φ(α) − φ(β)| < |α− β|,

a contradiction; thus (c) follows.

Observe that the contractive Lipschitz condition (6.1.16) implies the continuity
of φ. If φ′(x) exists, then a sufficient condition for (6.1.16) to hold is that

|φ′(x)| ≤ C < 1, ∀ x ∈ J, (6.1.17)
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since then by the mean value theorem we have for x, y ∈ J that

|φ(x) − φ(y)| = |φ′(ζn)||x− y| < |x− y|, ζn ∈ J.

On the other hand if |φ′(α)| > 1 then the iterative method (6.1.13) diverges. The
four different cases that occur, depending on the sign and magnitude of φ′(α) were
illustrated in Figures 1.2.1a–d.

There is an analogue result valid for functions φ(z) of a complex variable z.
Assume that φ(z) is defined and analytic in the circle

K = {z | |z − α| ≤ ρ},

where α is a fixed point. Then if |φ′(z)| ≤ C < 1, for all z ∈ K, the fixed point
iteration

z0 ∈ K, zn = φ(zn−1), n = 1, 2, . . .

converges to α, which is the only fixed point in K.
In Theorem 6.1.5 we assumed the existence of a fixed point α of φ(x). It is

remarkable that the theorem can be modified so that it can be used to prove the
existence of a fixed point, and hence of a root of the equation x = φ(x).

Theorem 6.1.6.
Let x0 be a starting point, and consider the fixed point iteration xn+1 = φ(xn),

n = 1, 2, . . .. Assume that J is a closed interval such that x0 ∈ J and

|φ(s) − φ(t)| ≤ C|s− t|, 0 ≤ C < 1, (6.1.18)

for all s, t ∈ J . Then if

x1 +
C

1 − C
(x1 − x0) ∈ J, (6.1.19)

(a), (b) and (c) of Theorem 6.1.5 are true.

Proof. The theorem will be proved in a more general setting in Vol. II, Chapter 11
(see Theorem 11.2.1).

We remark that (6.1.18) is satisfied if |φ(x)| ≤ C < 1 in J . Further, there
is an analogue of this theorem also for complex functions φ(z) analytic in a circle
K = {z | |z − α| ≤ ρ} containing the initial approximation z0.

An estimate of the error in xn, which depends only on x0, x1 and the Lipschitz
constant m, may be derived as follows. For arbitrary positive integers m and n we
have

xm+n − xn = (xm+n − xm+n−1) + · · · (xn+2 − xn+1) + (xn+1 − xn).

From the Lipschitz condition we conclude that |xi+1 − xi| ≤ Ci|x1 − x0|, and hence

|xm+n − xn| ≤ (Cm−1 + · · · + C + 1)|xn+1 − xn|.
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Summing the geometric series and letting m→ ∞ we obtain

|α− xn| ≤
1

1 − C
|xn+1 − xn| ≤

Cn

1 − C
|x1 − x0|. (6.1.20)

Note that if C is close to unity, then the error in xn can be much larger than
|xn+1−xn|. Clearly it is not always safe to terminate the iterations when |xn+1−xn|
is less than the required tolerance!

Example 6.1.7.
For a linearly convergent fixed point iteration the sequence {xj − α} approx-

imately forms a geometric series. Then, as seen in Sec. 3.3.2, a more rapidly con-
vergent sequence {x′j} can be obtained by Aitken extrapolation,

x′j = xj − (∇xj)
2/∇2xj . (6.1.21)

Note that if the convergence is not linear, then the sequence {x′n} will usually
converge slower than {xn}!

The equation x = e−x has one root α ≈ 0.567. Using the fixed point iteration
xn+1 = e−xn combined with Aitken extrapolation we obtain the result shown in the
table below.

j xj ∇xj ∇2xj x′

j

0 0.56700 00000

1 0.56722 45624 2245624

2 0.56709 71994 -1273630 -3519254 0.56714 32925

3 0.56716 94312 722318 1995948 0.56714 32911

It is seen that in this example the extrapolated sequence {x′j} converges much more
rapidly, and nine correct decimals are obtained.

In the above example Aitken extrapolation was used in a passive way to trans-
form the sequence {xn} into {x′j}. It is also possible to use Aitken extrapolation
in an active way (cf. Example 3.3.6). We start as before by computing x1 = φ(x0),
x2 = φ(x1) and apply the formula (6.3.22) to compute x′2. Next we continue the
iterations from x′2, i.e., compute x3 = φ(x′2), x4 = φ(x3). We can now extrapolate
from x′2, x3 and x4 to get x′4, etc. It is easily verified that the sequence zn = x′2n is
generated by the fixed-point iteration

zn+1 = ψ(zn), ψ(z) = z − (φ(z) − z)2

(φ(φ(z)) − φ(z)) − (φ(z) − z)
.

This iteration may converge even when the basic iteration xn+1 = φ(xn) diverges!

6.1.5 Convergence Order and Efficiency

In general we will be given an equation f(x) = 0 to solve and want to construct a
fixed point iteration such converges rapidly. Basic concepts to quantify the rate of
convergence will now be introduced.
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Definition 6.1.7.
Consider a sequence {xn}∞0 with limn→∞ xn = α, and xn 6= α for n <∞. The

sequence is said to have convergence order equal to q ≥ 1 if for some constant
0 < C <∞ it holds that

lim
n→∞

|xn+1 − α|
|xn − α|q = C. (6.1.22)

Here C is called the asymptotic error constant.
If q = 1 then we require that C < 1 and then {xn} is said to converge linearly

and C is the rate of linear convergence. For q = 2, 3 the convergence is called
quadratic, and cubic, but q need not be an integer.

More precisely, the order q in Theorem 6.1.7 is called the Q-order of con-
vergence, where Q stands for quotient. The same definitions can be used also for
vector-valued sequences. Then absolute values in (6.1.22) are replaced by a vector
norm.

There are types of convergence that are not covered by the above definition
of order. A sequence may converge more slowly than linear so that (6.1.22) holds
with q = 1 and C = 1. Then convergence is called sublinear. If (6.1.22) holds
with q = 1 and C = 0, but not for any value of q > 1 then convergence is called
superlinear.

Example 6.1.8.
Examples of sublinear, linear and superlinear convergence are

xn = 1/n, xn = 2−n, and xn = n−n,

respectively.

Alternative definitions of convergence order are considered by Ortega and
Rheinboldt [18, Chap. 9] and Brent [2, Sec. 3.2]. For example, if

lim
n→∞

inf(− log |xn − α|)1/n = q, (6.1.23)

then q is called weak order of convergence for xn, since (6.1.22) implies (6.1.23), but
not vice versa. For example, the sequence xn = exp(−pn)(2 + (−1)n) converges to
0 with weak order p. However, the limit in (6.1.22) does not exist if q = p, is zero
if q < p and infinite if q > p.

Consider a fixed point iteration xn+1 = φ(xn). Assume that φ′(x) exists and
is continuous in a neighborhood α. It then follows from the proof of Theorem 6.1.5,
that if 0 < |φ′(α)| < 1 and x0 is chosen sufficiently close to α, then the sequence xn

generated by xn+1 = φ(xn) satisfies (6.1.22) with q = 1 and C = |φ′(α)|.
The number of accurate decimal places in the approximation xn equals δn =

− log10 |xn − α|. Equation (6.1.22) implies that

δn+1 ≈ qδn − log10 |C|.
Hence for linear convergence (q = 1) as n → ∞ each iteration gives a fixed (frac-
tional) number of additional decimal places. For a method with convergence of
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order q > 1 each iteration increases the number of correct decimal places q-fold as
n→ ∞. This shows that eventually a method with larger order of convergence will
converge faster.

Example 6.1.9.
Consider a sequence xn with quadratic convergence with C = 1. Set ǫn =

|xn − α| and assume that ǫ0 = 0.9. From ǫn+1 ≤ Cǫ2n, it follows that ǫn, for
n = 2, 3, . . . , is bounded by

0.81, 0.66, 0.43, 0.19, 0.034, 0.0012, 1.4 · 10−6, 1.9 · 10−12, . . . ,

respectively. For n ≥ 6 the number of significant digits is approximately doubled
at each iteration!

Consider an iteration method with convergence order q ≥ 1. If each iteration
requires m units of work (usually the work involved in computing a function value
or a value of one of its derivatives) then the efficiency index of the iteration is
defined as

E = q1/m. (6.1.24)

The efficiency index gives a basis for comparing the efficiency of iterative methods
of different order of superlinear convergence. Assuming that the cost of evaluating
f(xn) and f ′(xn) is two units the efficiency index for Newton’s method is E =
21/2 =

√
2. (Methods that converge linearly all have E = 1.)

The order of the fixed-point iteration xn+1 = φ(xn) can be determined if φ(x)
is sufficiently many times continuously differentiable in a neighborhood of α.

Theorem 6.1.8. Assume that φ(x) is p times continuously differentiable. Then
the iteration method xn+1 = φ(xn) is of order p for the root α if and only if

φ(j)(α) = 0, j = 1 : p− 1, φ(p)(α) 6= 0. (6.1.25)

Proof. If equation (6.1.25) holds, then according to Taylor’s theorem we have

xn+1 = φ(xn) = α+
1

p!
φ(p)(ζn)(xn − α)p, ζn ∈ int(xn, α).

Hence for a convergent sequence xn the error ǫn = xn − α satisfies

lim
n→∞

|ǫn+1|/|ǫn|p = |φ(p)(α)|/p! 6= 0,

and the order of convergence equals p. It also follows that if φ(j)(α) 6= 0 for some
j, 1 ≤ j < p, or if φ(p)(α) = 0, then the iteration cannot be of order p.
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Example 6.1.10.
We remarked before that to compute a root α of f(x) = 0, we can use a fixed

point iteration with φ(x) = x− f(x)g(x), where g(x) is an arbitrary function such
that g(α) 6= 0. we evaluate the derivative

φ′(x) = 1 − f ′(x)g(x) − f(x)g′(x).

To achieve quadratic convergence we take g(x) = 1/f ′(x). Assuming that f ′(α = 6= 0
we find, using f(α) = 0, that φ′(α) = 1 − f ′(α)g(α) = 0, Hence the iteration

xn+1 = xn − f(xn)/f ′(xn), (6.1.26)

achieves quadratic convergence. This is Newton’s method, which will be treated at
length in Sec. 6.3

Review Questions

1. What does limit the final accuracy of a root computed by the bisection algo-
rithm? Discuss suitable termination criteria.

2. (a) Given a nonlinear scalar equation f(x) = 0 with a simple root α. How can
a fixed point iteration xn+1 = φ(xn) be constructed, which converges to α?

(b) Assuming that a fixed point α exists for the mapping x = φ(x). Give
sufficient conditions for convergence of the sequence generated by xn+1 =
φ(xn).

(c) How can the conditions in (b) be modified so that the existence of a fixed
point can be proved?

3. (a) Define the concepts order of convergence and asymptotic error constant
for a convergent sequence {xn} with limn→∞ xn = α.

(b) What is meant by sublinear and superlinear convergence? Give examples
of sequences with sublinear and superlinear convergence.

4. (a) Define the efficiency index of a given iterative method of order p and
asymptotic error constant C 6= 0.

(b) Determine the order of a new iterative method consisting of m consecutive
steps of the method in (a). What is the order and error constant of this new
method? Show that it has the same efficiency index as the first method.

5. (a) When can (passive) Aitken extrapolation be applied to speed up the con-
vergence of sequence.

(b) Describe the difference between active and passive Aitken extrapolation?

6. What two quantities determines the attainable accuracy of a simple root α to
the equation f(x) = 0. Give an example of an ill-conditioned root.

7. Discuss the choice of termination criteria for iterative methods.
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Problems and Computer Exercises

1. Use graphic representation to determine the zeros of the following functions
to one correct decimal:

(a) 4 sinx+ 1 − x; (b) 1 − x− e−2x; (c) (x+ 1)ex−1 − 1;

(d) x4 − 4x3 + 2x2 − 8; (e) ex + x2 + x; (f) ex − x2 − 2x− 2;

(g) 3x2 + tanx.

2. Show analytically that the equation xe−x = γ has exactly two real roots when
γ < e−1.

3. Plot the functions f(x) = coshx and g(x) = 1/ cosx and deduce that the equa-
tion coshx cosx = 1 has its smallest positive root in the interval (3π/2, 2π).
Determine this root using the bisection method.

4. The following equations all have a root in the interval (0, 1.6) Determine these
with an error less than 10−8 using the bisection method.

(a) x cosx = lnx; (b) 2x = e−x; (c) e−2x = 1 − x.

5. Locate the real root of the equation

ex(x− 1) = e−x(x+ 1),

by graphing both sides. Then compute the root with an error less than 10−8

using bisection. How many bisection steps are needed?

6. Let k be a given non-negative number and consider the equation sinx =
−k cosx. This equation has infinitely many roots. Separate the roots, i.e.,
partition the real axis into intervals which contain exactly one root.

7. The choice of mk as the arithmetic mean of ak−1 and bk−1 in the bisection
method minimizes the worst case maximum absolute error. If in the case that
ab > 0 we take instead

mk =
√

akbk

i.e., the geometric mean, then the worst case relative error is minimized. Do
Example 6.1.2 using this variation of the bisection method.

8. In Example 6.1.6 three different fixed point iterations were suggested for solv-
ing the equation x+ lnx = 0. (a) Which of the formulas can be used?

(b) Which of the formulas should be used?

(c) Give an even better formula!

9. Investigate if and to what limit the iteration xn+1 = 2xn−1 sequence converges
for various choices of x0.

10. (L. Wittmeyer-Koch) (a) A fixed point iteration xn+1 = φ(xn) can converge
also when |φ′(α)| = 1. Verify this by graphing the iteration for φ(x) = x +
(x− 1)2, x0 = 0.6. which has the fixed point α = 1.

(b) Show that for the iteration in (a) if xn = 1 − ǫ, then

|xn+1 − 1|
|xn − 1| = 1 − ǫ,
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i.e. the asymptotic rate of convergence is sublinear.

11. (a) Consider the fixed point iteration xn+1 = φ(xn), where φ(x) = x+(x−1)2.
Show that this has a fixed point for α = 1 and that φ′(α) = 1.

(b) Show that the iteration in (a) is convergent for x0 < 1.

12. Consider the iteration xn+1 = 1−λx2
n. Illustrate graphically how the iteration

for λ = 0.7, 0.9, 2. (For λ = 2 the iteration is chaotic.)

13. Use active Aitken extrapolation on the (divergent) iterative method xn+1 =
5 lnxn to compute the smallest root of the equation x = 5 lnx. Start with
x0 = 1.3.

6.2 Methods Based on Interpolation

6.2.1 The Method of False Position

Assume that we have two initial approximations a0 = a and b0 = b such that
f(a)f(b) < 0. As in the bisection method we generate a nested sequence of intervals
(a0, b0) ⊃ (a1, b1) ⊃ (a2, b2) ⊂ · · · such that f(an)f(bn) < 0, n = 0, 1, 2, . . . .
Given (an, bn), we take xn+1 to be the intersection of the secant through the point
(an, f(an)) and (bn, f(bn)). Then by Newton’s interpolation formula xn+1 satisfies

0 = f(an) + (xn+1 − an)
f(an) − f(bn)

an − bn

giving

xn+1 = an − f(an)
an − bn

f(an) − f(bn)
. (6.2.1)

If f(xn+1)f(an) > 0, set an+1 = xn+1 and bn+1 = bn; otherwise set bn+1 = xn+1

and an+1 = an. This is the false-position method or in Latin regula falsi.2

Note that if f(x) is linear we obtain the root in just one step, but sometimes the
rate of convergence can be much slower than for bisection.

Suppose now that f(x) is convex on [a, b], f(a) < 0, and f(b) > 0, as in
Figure 6.2.1. Then the secant through x = a and x = b will lie above the curve and
hence intersect the x-axis to the left of α. The same is true for all subsequent secants
and therefore the right endpoint b will be kept. The approximations x1, x2, x3, . . .
will all lie on the convex side of the curve and cannot go beyond the root α. A
similar behavior, with monotone convergence and one of the points a or b fixed, will
occur whenever f ′′(x) exists and has constant sign on [a, b].

Example 6.2.1.
We apply the method of false position to the f(x) = (x/2)2 − sinx = 0 from

Example 6.1.2 with initial approximations a0 = 1.5, b1 = 2. We have f(1.5) =
−0.434995 < 0 and f(2.0) = +0.090703 > 0 and successive iterates are

2The method of regula falsi is very old, originating in 5th century Indian texts, and was used
in medieval Arabic mathematics. It got its name from the Italian mathematician Leonardi Pisano
in the 13th century.
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Figure 6.2.1. The false-position method.

n xn f(xn) hn

1 1.913731 221035 −0.026180060742 −0.019322989205

2 1.933054 210240 −0.000924399645 −0.000675397892

3 1.933729 608132 −0.000031930094 −0.000023321005

4 1.933752 929137 −0.000001102069 −0.000000804916

5 1.933753 734053

Note that f(xn) < 0 for all n ≥ 0 and consequently bn = 2 is fixed. In the limit
convergence is linear with rate approximately equal to C ≈ 0.034.

If f is twice continuously differentiable and f ′′(α) 6= 0, then eventually an
interval will be reached on which f ′′(x) does not change sign. Then, as in the
example above, one of the endpoints (say b) will be retained and an = xn in all
future steps. By (6.2.1) the successive iterations are

xn+1 = xn − f(xn)
xn − b

f(xn) − f(b)
.

To determine the speed of convergence subtract α and divide by ǫn = xn −α to get

ǫn+1

ǫn
= 1 − f(xn)

xn − α

xn − b

f(xn) − f(b)
.

Since limn→∞ xn = α and f(α) = 0, it follows that

lim
n→∞

ǫn+1

ǫn
= C = 1 − (b − α)

f ′(α)

f(b)
, (6.2.2)

which shows that convergence is linear. Convergence will be very slow if f(x) is
very flat near the root α, f(b) is large, and α near b since then (b−α)f ′(α) ≪ f(b)
and C ≈ 1.
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6.2.2 The Secant Method

A serious drawback with the method of false position is that ultimately one endpoint
of the sequence of bracketing intervals will become fixed and therefore the length
(bn − an) will not tend to zero. This can be avoided and convergence substantially
improved by always using the secant through the last two points (xn−1, f(xn−1))
and (xn, f(xn)). The next approximation xn+1 is determined as the abscissa of the
point of intersection between this secant and the x-axis; see Figure 6.2.2.

Given initial approximations x−1 = a and x0 = b, approximations x1, x2, , x3, . . .
are computed by

xn+1 = xn + hn, hn = −f(xn)
xn − xn−1

f(xn) − f(xn−1)
, n ≥ 1, (6.2.3)

assuming that f(xn) 6= f(xn−1). This is the secant method, which historically
predates Newton’s method.
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Figure 6.2.2. The secant method.

Notice that although regula falsi and the secant method require two initial
approximations to the root, only one function evaluation per step is needed. The
iteration, which is of the form xn+1 = φ(xn;xn−1), is not a fixed point iteration as
defined in Section 6.1.4. Sometimes methods of this form, which use old information
at xn1

, are called fixed point iterations with memory.
When the secant method converges |xn − xn−1| will eventually become small.

The quotient (xn−xn−1)/(f(xn)−f(xn−1)) will then be determined with poor rela-
tive accuracy. If xn and xn−1 both are very close to the root α and not bracketing α,
then the resulting rounding error in xn+1 can then become very large. Fortunately,
from the error analysis below it follows that the approximations in general are such
that |xn − xn−1| ≫ |xn − α| and the dominant contribution to the round-off error
in xn+1 comes from the error in f(xn). Note that (6.2.3) should not be rewritten
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in the form

xn+1 =
xn−1f(xn) − xnf(xn−1)

f(xn) − f(xn−1)
,

since this formula can give rise to severe difficulties with cancellation when xn ≈
xn−1 and f(xn)f(xn−1) > 0. Even (6.2.3) is not always safe to use. We must take
care to avoid overflow or division by zero. Without restriction we can assume that
|f(xn−1)| ≥ |f(xn)| > 0 (otherwise renumber the two points). Then, sn can be
computed without risk of overflow from

xn+1 = xn +
sn

1 − sn
(xn − xn−1), sn =

f(xn)

f(xn−1)
. (6.2.4)

where the division with 1 − sn is only carried out if 1 − sn is large enough.

Example 6.2.2.
To illustrate the improved convergence of the secant method we consider once

again the equation f(x) = (x/2)2 − sinx = 0 with initial approximations x0 = 1.5,
x1 = 2. The result is:

n xn f(xn) hn

-1 1.5 −0.434994 986604

0 2.0 +0.090702 573174 −0.086268 778965

1 1.913731 221035 −0.026180 060742 +0.019322 989205

2 1.933054 210240 −0.000924 399645 +0.000707 253882

3 1.933761 464122 +0.000010 180519 −0.000007 704220

4 1.933753 759902 −0.000000 003867 +0.000000 002925

5 1.933753 762827

Note that the approximations x1 and x2 are the same as for the false position.
method, but here x4 is correct to eight decimals and x5 to twelve decimals. The
rapid convergence is partly because x1 = 2 is quite a good initial approximation.
However, note that although the root is bracketed by the initial intervals [x0, x1]
and [x1, x2] it lies outside the interval [x2, x3].

Assume that f is twice continuously differentiable. Then according to New-
ton’s interpolation formula with error term (Theorem 4.3.1) we have

f(x) = f(xn) + (x− xn)[xn−1, xn]f + (x− xn−1)(x− xn)
f ′′(ζn)

2
, (6.2.5)

where ζn ∈ int(x, xn−1, xn)

f [xn−1, xn] =
f(xn) − f(xn−1)

xn − xn−1
.

To derive an asymptotic formula for the secant method we put x = α in (6.2.5) and
subtract the secant equation 0 = f(xn) + (xn+1 − xn)[xn−1, xn]f . Since f(α) = 0
we get

(α− xn+1)[xn−1, xn]f + (α − xn−1)(α − xn)f ′′(ζn)/2 = 0,



22 Chapter 6. Solving Scalar Nonlinear Equations

where ζn ∈ int(α, xn−1, xn). According to the mean-value theorem, we have

[xn−1, xn]f = f ′(ζ′n), ζ′n ∈ int(xn−1, xn),

and it follows that

ǫn+1 =
1

2

f ′′(ζn)

f ′(ζ′n)
ǫnǫn−1. (6.2.6)

Example 6.2.3.
The ratios ǫn+1/(ǫnǫn−1) in Example 6.2.2 are equal to 0.697, 0.527, 0.550,

n = 1 : 3, which compares well with the limiting value 0.543 of 1
2f

′′(α)/f ′(α).

From (6.2.6) it can be deduced that the secant method always converges from
starting values x0, x1 sufficiently close to α. For this to be true it suffices that the
first derivative f ′(x) is continuous, since then

ǫn+1 =

(

1 − f ′(ξn)

f ′(ζn)

)

ǫn, ξn ∈ int(xn−1, α), ζn ∈ int(xn, xn−1).

However, in the secant method there is no guarantee that the computed sequence of
approximations stay in the initial interval [x0, x1]. Unlike the steady convergence
of the bisection method things can go seriously wrong using the secant method! A
remedy will be discussed in Sec. 6.2.4.

The following theorem gives the order of convergence for the secant method.

Theorem 6.2.1. Suppose that f(x) is twice continuously differentiable and that
in a neighborhood I of the root α, containing x0, x1, x2, . . . , xn, we have

1

2

∣

∣

∣

∣

f ′′(y)

f ′(x)

∣

∣

∣

∣

≤M, x, y ∈ I.

Let q = (1+
√

5)/2 = 1.618 . . . be the unique positive root of the equation µ2−µ−1 =
0 and set

K = max
(

M |ǫ0|, (M |ǫ1|)1/q
)

, n = 0, 1, 2, . . . . (6.2.7)

Then it holds that

|ǫn| ≤
1

M
Kqn

, (6.2.8)

i.e., the iteration has convergence order q.

Proof. The proof is by induction. From the choice of K it follows that (6.2.8) is
trivially true for n = 0, 1. Suppose that (6.2.8) holds for n and n − 1. Then since
q2 = q + 1 it follows using the assumption and (6.2.6) that

|ǫn+1| ≤M |ǫn||ǫn−1| ≤
1

M
Kqn

Kqn−1

=
1

M
Kqn+qn−1

=
1

M
Kqn+1

. (6.2.9)
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To compare the efficiency of the secant method and Newton’s method, which
is quadratically convergent, we use the efficiency index introduced in Section 6.1.5.
Assume that the work to compute f ′(x) is θ times the amount of work required
to compute f(x). Then, with the same amount of work we can perform k(1 + θ)
iterations with the secant method and k iterations with Newton’s method. Equating

the errors we get (mǫ0)
2k

= (mǫ0)
pk(1+θ)

, where q = 1.618 . . .. Hence the errors are
the same for both methods when pk(1+θ) = 2k or

(1 + θ) log
(

1
2 (1 +

√
5)
)

= log 2,

which gives θ = 0.4404 . . .. Thus, from this analysis we conclude that if θ > 0.44,
then the secant method is asymptotically more efficient than Newton’s method.

In Example 6.2.2 we can observe that the error ǫn = xn − αn changes sign at
every third step. Hence, in this example,

α ∈ int(xn+1 − xn), n = 0, 1, 3, 4, . . . .

That is, the root α is bracketed by xn and xn+1 except for every third step. We shall
show that this is no coincidence. Assume that xn ∈ (a, b), n = 0, 1, 2, . . ., and that
f ′(x) 6= 0 and f ′′(x) does not change sign in (a, b). Then from (6.2.6) it follows
that the ration

ǫn+1

ǫnǫn−1

will have constant sign for all n. Then if α ∈ int(x0, x1) and ǫ0ǫ1 < 0, and it follows
that the sign of ǫn must change every third step according to one of the following
two schemes (verify this!):

· · · + − + + − + + − + + · · ·
· · · + −− + −− + −− + · · ·

Hence convergence for the secant method, if it occurs, will take place in a waltz
rhythm! This means that at every third step the last two iterates xn−1 and xn will
not always bracket the root.

6.2.3 Higher Order Interpolating Methods

In the secant method linear interpolation through (xn−1,fn−1) and (xn, fn) is used
to determine the next approximation to the root. A natural generalization is to use
an interpolating method of higher order. Let xn−r , . . . , xn−1, xn be r + 1 distinct
approximations and determine the (unique) polynomial p(x) of degree r interpolat-
ing (xn−j , f(xn−j)), j = 0 : r. By Newton’s interpolation formula (Sec. 4.2.1) the
interpolating polynomial is

p(x) = fn + [xn, xn−1]f · (x− xn) +

r
∑

j=2

[xn, xn−1, . . . , xn−j ]f Φj(x),

where
Φj(x) = (x− xn)(x− xn−1) · · · (x− xn−j).
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The next approximation xn+1 is taken as the real root to the equation p(x) = 0
closest to xn and xn−r is deleted. Suppose the interpolation points lie in an interval
J , which contains the root α and in which f ′(x) 6= 0. It can be shown that if there
is at least one interpolation point on each side of α then p(x) = 0 has a real root
in J . Further the following formula for the error holds (Traub [25, pp. 67–75])

ǫn+1 = − f (r+1)(ζn)

(r + 1)!p′(ηn)

r
∏

i=0

ǫn−i, (6.2.10)

where ζn ∈ int (α, xn−1, xn) and ηn ∈ int (α, xn+1).
In the special case r = 2 we get the quadratic equation

p(x) = fn + (x − xn)[xn, xn−1]f + (x− xn)(x− xn−1)[xn, xn−1, xn−2]f. (6.2.11)

We assume that [xn, xn−1, xn−2]f 6= 0 since otherwise the method degenerates into
the secant method. Setting hn = (x−xn) and writing (x−xn−1) = hn+(xn−xn−1),
this equation becomes

h2
n[xn, xn−1, xn−2]f + ωhn + fn = 0, (6.2.12)

where

ω = [xn, xn−1]f + (xn − xn−1)[xn, xn−1, xn−2]f. (6.2.13)

The root closest to xn corresponds to the root hn of smallest absolute value to the
equation (6.2.12). To express this root in a numerically stable way the standard
formula for the roots of a quadratic equation should be multiplied by its conjugate
quantity (see Example 2.3.3). Using this formula we get

xn+1 = xn + hn, hn = − 2fn

ω ±
√

ω2 − 4fn [xn, xn−1, xn−2]f
, (6.2.14)

where the sign in the denominator should be chosen so as to minimize |hn|. This is
the Muller–Traub method.

A drawback is that the equation (6.2.12) may not have a real root even if a
real zero is being sought. On the other hand, this means that the Muller–Traub
method has the useful property that complex roots may be found from real starting
approximations.

By (6.2.10) it follows that

ǫn+1 = − f ′′′(ζn)

3! p′(ηn)
ǫnǫn−1ǫn. (6.2.15)

It can be shown that the convergence order for the Muller–Traub method is at
least q = 1.839 . . ., which equals the largest root of the equation µ3 − µ2 − µ −
1 = 0 (cf.Theorem 6.2.1). Hence this method does not quite achieve quadratic
convergence. In fact, it can be shown under very weak restrictions that no iterative
method using only one function evaluation can have q ≥ 2.
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For r > 2 there are no useful explicit formulas for determining the zeros of
the interpolating polynomial p(x). Then we can proceed as follows. We write the
equation p(x) = 0 in the form x = xn + F (x), where

F (x) ≡
−fn −∑r

j=2[xn, xn−1, . . . xn−j ]f Φj(x)

[xn, xn−1]f

(cf. Sec. 4.2.4). Then a fixed point iteration can be used to solve for x. To get the
first guess x0 we ignore the sum (this means using the secant method) and then
iterate, xi = xn + F (xi−1), i = 1, 2, . . . until xi and xi−1 are close enough.

Suppose that xn−j −xn = O(h), j = 1 : r, where h is some small parameter in
the context (usually some step size). Then Φj(x) = O(hj), Φ′

j(x) = O(hj−1). The
divided differences are O(1), and we assume that [xn, xn−1]f is bounded away from
zero. Then the terms of the sum decrease like hj. The convergence ratio F ′(x) is
here approximately

Φ′

2(x)[xn, xn−1, xn−2]f

[xn, xn−1]f
= O(h).

So, if h is small enough, the iterations converge rapidly.
A different way to extend the secant method is to use inverse interpolation.

Assume that yn, yn−1, . . . , yn−r are distinct and let q(y) be the unique polynomial
in y interpolating the values xn, xn−1, . . . , xn−r. Reversing the rule of x and y and
using Newton’s interpolation formula this interpolating polynomial is

q(y) = xn + [yn, yn−1]g · (y − yn) +

r
∑

j=2

[yn, yn−1, . . . , yn−j]f Ψj(y),

where g(yn−j) = xn−j , j = 0 : r.

Ψj(y) = (y − yn)(y − yn−1) · · · (y − yn−j).

The next approximation is then taken to be xn+1 = q(0), that is

xn+1 = xn − yn [yn, yn−1]g +

r
∑

j=2

[yn, yn−1, . . . , yn−j]gΨj(0),

For r = 1 there is no difference between direct and inverse interpolation and we
recover the secant method. For r > 1 inverse interpolation as a rule gives different
results. Inverse interpolation has the advantage of not requiring the solution of a
polynomial equation. (For other ways of avoiding this see Problems 3 and 4.) The
case r = 2 corresponds to inverse quadratic interpolation

xn+1 = xn − yn [yn, yn−1]g + ynyn−1 [yn, yn−1, yn−2]g, (6.2.16)

This method has the same order of convergence as the Muller–Traub method.
Note that this method requires that yn, yn−1, and yn−2 are distinct. Even if

this is the case it is not always safe to compute xn+1 from (6.2.16). Care has to be
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taken in order to avoid overflow and possibly division by zero. If we assume that
0 6= |yn| ≤ |yn−1| ≤ |yn−2| then it is safe to compute

sn = yn/yn−1, sn−1 = yn−1/yn−2, rn = yn/yn−2 = snsn−1.

We can rewrite (6.2.16) in the form xn+1 = xn + pn/qn, where

pn = sn[(1 − rn)(xn − xn−1) − sn−1(sn−1 − rn)(xn − xn−2)],

qn = (1 − sn)(1 − sn−1)(1 − rn).

The final division pn/qn is only carried out if the correction is sufficiently small.

6.2.4 A Robust Hybrid Method

Efficient and robust root finders can be constructed by combining the secant method
(or some higher order interpolation method) with bisection, A simple combination
of Newton method with bisection will be discussed in Section 6.3.2.

A particularly elegant combination of bisection and the secant method was
developed in the 1960s by van Wijngaarden, Dekker and others at the Mathematical
Center in Amsterdam. A related algorithm, called zeroin, which combines bisection,
the secant method and inverse quadratic interpolation, was developed by Brent [2].
The Matlab function “fzero”, which finds a zero near a given approximation x0, is
based on Zeroin. A discussion of a slightly simplified version of fzero is given in
Moler [16, Ch. 4.7].

We now outline the basic ideas used in zeroin. Start with a and b such that
f(a)f(b) < 0 and use a secant step to get c in (a, b). We the repeat the following
steps until |b− a| < tol or f(b) = 0:

• Arrange a, b, and c so that f(a) and f(b) have opposite sign, |f(b)| ≤ |f(a)|,
and c is the value of b in the previous step.

• If c 6= a compute the step using inverse quadratic interpolation; otherwise
compute a secant step.

• If the computed step gives an approximation in [a, b] take it; otherwise take a
bisection step.

Review Questions

1. Sketch a function f(x) with a root in (a, b), such that regula falsi converges
very slowly.

2. Outline how the secant method can be safeguarded by combining it with the
bisection method.

3. What property should the function f(x) have to be unimodal on the interval
[a, b]?
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4. Discuss root finding methods based on quadratic interpolation (Muller–Traub’s
method) and inverse quadratic interpolation. What are the merits of these two
approaches?

Problems and Computer Exercises

1. Use the secant method to determine the roots of the following equations to
six correct decimals

(a) 2x = e−x; (b) tanx+ coshx = 0.

2. Assume that we have fnfn−1 < 0, and have computed xn+1. If fn+1fn < 0
then in the next step we compute xn+2 by a secant step otherwise we use
a line through (xn+1, fn+1) and (xn−1, θfn−1), where 0 < θ < 1. Clearly,
θ = 1 corresponds to a step with the method of false position and will usually
give fn+2fn+1 > 0. On the other hand, θ = 0 gives xn+1 = xn, and thus
fn+1fn < 0. Hence a suitable choice of θ will always give fn+2fn+1 < 0.
Show that with θ = 0.5 in a modified step it holds asymptotically ǫn+1 ≈
−ǫn. Deduce that the resulting algorithm gives cubic convergence with three
function evaluations and hence has efficiency index E = 31/3 = 1.4422 . . .. 3

3. Another modification of the secant method can be derived by estimating
f ′(xn) in Newton’s method by quadratic interpolation through the points
xn, xn−1, xn−2. Show that the resulting method can be written xn+1 =
xn − f(xn)/ω, where

ω = f [xn, xn−1] + (xn − xn−1)f [xn, xn−1, xn−2].

4. The Muller–Traubś method uses three points to determine the coefficient of
an interpolating parabola. The same points can also be interpolated by a
rational function of the form

g(x) =
x− a

bx+ c
.

An iterative method is devised by taking xn+1 equal to the root a of g(x) = 0.

(a) Show that this is equivalent to calculating xn+1 from the ”modified secant
formula”

xn+1 = xn − fn
xn − xn−2

fn − f̃n−2

, f̃n−2 = fn−2
f [xn, xn−1]

f [xn−1, xn−2]
.

Hint: Use a theorem in projective geometry, according to which the cross ratio
of any four values of x is equal to the cross ratio of the corresponding values
of g(x) (see Householder [10, p. 159]). Hence

(0 − fn)/(0 − fn−2)

(yn−1 − fn)/(yn−1 − fn−2)
=

(xn+1 − xn)/(xn+1 − xn−2)

(xn−1 − xn)/(xn−1 − xn−2)
.

3The resulting modified rule of false position is often called after its origin the Illinois method.
It is due originally to the staff of the computer center at the University of Illinois in the early 1950’s.
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(b) Use the result in (a) to show that xn−1 ∈ int(xn−2, xn) if

sign(yn) = −sign(yn−2), sign(y[xn, xn−1]) = sign(y[xn−1, xn−2]).

5. The result in Problem 4 suggests that the Illinois method in Problem 2 is
modified by taking

β = f [xn+1, xn]/f [xn, xn−1], θ =

{

β, if β > 0;
1
2 , if β ≤ 0.

.

Implement this modified method. Compare it with the unmodified Illinois
method and with the safeguarded secant algorithm. As test equations use the
following:

(a) A curve with one inflection point on [0, 1]:

f(x) = x2 − (1 − x)n, a = 25, b = 1, n = 2, 5, 10.

(b) A family of curves which lie increasingly close to the x-axis for large n:

f(x) = e−nx(x− 1) + xn, a = 0.25, b = 1, n = 5, 10, 15.

(c) A family of curves with the y-axis asymptotic:

f(x) = (nx− 1)/((n− 1)x), a = 0.01, b = 1, n = 2, 5, 10.

6.3 Methods Using Derivatives

6.3.1 Newton’s method

When f ′(x) is available then Newton’s method4 (6.1.26) is usually the method
of choice for solving an equation f(x) = 0. As shown already in Section 1.2.1,
Newton’s method is based on approximating the curve y = f(x) by its tangent at
the point (xn, f(xn)), where xn is the current approximation to the root. Assuming
that f ′(xn) 6= 0, the next approximation xn+1 is determined as the abscissa of
the point of intersection of the tangent with the x-axis (see Figure 1.2.3). This is
equivalent to replacing the equation f(x) = 0 by

Tn(x) = f(xn) + (x− xn)f ′(xn) = 0, (6.3.1)

where Tn(x) is obtained by truncating the Taylor expansion of f(x) at xn after the
first two terms. Hence xn+1 is determined from

xn+1 = xn + hn, hn = −f(xn)/f ′(xn). (6.3.2)

Clearly Newton’s method can be viewed as the limit of the secant method when the
interpolation points coalesce,

4Newton’s original method was more complicated and not very similar to what is now known
as his method.
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Figure 6.3.1. Newton’s method for the equation f(x) = (x/2)2 − sinx = 0.

Example 6.3.1.
We want to compute the unique positive root of the equation f(x) = (x/2)2−

sinx = 0 (cf. Example 6.2.2) for which f ′(x) = x/2− cosx. Starting from x0 = 1.8
the first step of Newton’s method is illustrated in Figure 6.3.1. The following
Newton iterates are given in the table below (correct digits in xn shown in bold):

n xn f(xn) f ′
(xn) hn

0 1.8 −0.163847 630878 1.127202 094693 −0.145357 812631

1 1.945357 812631 0.015436 106659 1.338543 359427 0.011532 018406

2 1.933825 794225 0.000095 223283 1.322020 778469 0.000072 028582

3 1.933753 765643 0.000000 003722 1.3219174 29113 0.000000 002816

4 1.933753 762827

The number of correct digits approximately double in each iteration until the
limiting precision is reached. Although the initial approximation is not very good,
already x4 is correct to twelve decimals!

If the iterations are broken off when |hn| < δ it can be shown (see the error
analysis below) that the truncation error is less than δ, provided that |Khn| ≤ 1/2,
where K is an upper bound for |f ′′/f ′| in the neighborhood of the root. This
restriction is seldom of practical importance. However, rounding errors made in
computing hn must also be taken into account.

Note that when we approach the root, the relative precision in the computed
values of f(xn) usually becomes less and less. Since f ′(xn) is only used for com-
puting hn it need not be computed to much greater relative precision than f(xn),
In the above example we could have used f ′(x2) instead of f ′(xn) instead for n > 2
without much affecting the convergence. Such a simplification is of great impor-
tance when Newton’s method is used on systems of nonlinear equations; see Volume
II, Section 11.2.4.
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We first consider the local convergence of Newton’s method, that is the con-
vergence in a neighborhood of a root α. Assume that f ′(x) is continuous in a
neighborhood of α and that f ′(α) 6= 0. Expanding f in a Taylor series about x0 we
get

0 = f(α) = f(xn) + (α− xn)f ′(ξn), ξn ∈ int(xn, α).

We let ǫn = xn − α denote the error in the approximation xn. Subtracting (6.3.1)
with x = xn+1 and using xn+1 − xn = ǫn+1 − ǫn, we have

−ǫnf ′(ξn) = (ǫn+1 − ǫn)f ′(xn),

or after dividing by f ′(xn)

ǫn+1 =

(

1 − f ′(ξn)

f ′(xn)

)

ǫn, n = 0, 1, 2, . . . .

Hence, if x0 is sufficiently close to α, then limn→∞ xn = α. In other words α is a
point of attraction of the Newton iteration and Newton’s method always converges
(to a simple root) from a sufficiently good starting approximation.

For convergence f need only have one continuous derivative. To get a more
precise relation between ǫn+1 and ǫn we assume in what follows that f has two
continuous derivatives.

Theorem 6.3.1. Assume that α is a simple root of the equation f(x) = 0, i.e.,
f ′(α) 6= 0. If f ′ exists and is continuous in a neighborhood of α, then the conver-
gence order of Newton’s method is at least equal to two.

Proof. A Taylor expansion of f yields

0 = f(α) = f(xn) + (α − xn)f ′(xn) +
1

2
(α − xn)2f ′′(ζn), ζn ∈ int(xn, α).

Subtracting f(xn) + (xn+1 − xn)f ′(xn) = 0 and solving for ǫn+1 = xn+1 −α we get

ǫn+1 =
1

2
ǫ2n
f ′′(ζn)

f ′(xn)
, ζn ∈ int(xn, α). (6.3.3)

Provided that f ′(α) 6= 0, it follows that (6.1.22) is satisfied with p = 2 and the
asymptotic error constant is

C =
1

2

∣

∣

∣

∣

f ′′(α)

f ′(α)

∣

∣

∣

∣

. (6.3.4)

If f ′′(α) 6= 0, then C > 0 and the rate of convergence is quadratic.

Note that the relation (6.3.3) between the errors only holds as long as the
round-off errors in the calculations can be ignored. As pointed out in Section 6.1.3,
the limiting factor for the accuracy, which can be achieved in calculating the root,
is always limited by the accuracy of the computed values of f(x).
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So far we have assumed that α is a simple root. Suppose now that α is a root
of multiplicity q > 1. Then by Taylor’s formula we have (cf. (6.1.9))

f ′(x) =
1

(q − 1)!
(x− α)q−1f (q)(ξ′), ξ′ ∈ int(x, α).

It follows that if xn is close to α, then the Newton correction will satisfy

hn =
f(xn)

f ′(xn)
≈ 1

q
(xn − α) = ǫn/q.

For the corresponding errors we have

ǫn+1 = ǫn − ǫn/q = (1 − 1/q)ǫn,

which shows that for a root of multiplicity q > 1 Newton’s method only converges
linearly with rate C = 1 − 1/q. (The same is true of other methods which have
quadratic or higher rate of convergence for simple roots.) For q > 2 this is much
slower even than for the bisection method! Note also that when xn → α both
f(xn) → 0 and f ′(xn) → 0. Therefore rounding errors may seriously affect the
Newton correction when evaluated close to α, and some safeguarding is essential;
see Section 6.3.2.

When the multiplicity p of a root is known a priori the modified Newton’s
method

xn+1 = xn − p
f(xn)

f ′(xn)
, (6.3.5)

is easily shown to have quadratic convergence. For a root of unknown multiplicity
we can use the following observation. From (6.1.9) it follows that the equation
u(x) = 0, where

u(x) = f(x)/f ′(x), (6.3.6)

always has a simple root at x = α. Hence if Newton’s method is applied to this equa-
tion it will retain its quadratic rate of convergence independent of the multiplicity
of α as a root to f(x) = 0. The iteration becomes

xn+1 = xn − f(xn)f ′(xn)

(f ′(xn))2 − f(xn)f ′′(xn)
, (6.3.7)

and thus requires the evaluation also of f ′′(xn).
Newton’s method applied to the equation f(x) = xp − c = 0 can be used

to compute c1/p, p = ±1,±2, . . .. The sequence x1, x2, x3, . . ., is then computed
recursively from

xn+1 = xn − xp
n − c

pxp−1
n

,

which can be written as

xn+1 =
1

p

(

(p− 1)xn +
c

xp−1
n

)

=
xn

(−p) [(1 − p) − cx−p
n ]. (6.3.8)
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It is convenient to use the first expression in (6.3.8) when p > 0 and the second
when p < 0. This iteration formula is often used for calculating, e.g.,

√
c, 3
√
c, and

1/
√
c, corresponding to p = 2, 3, and −2 respectively. Note also that 1/c, (p = −1)

can be computed by the iteration

xn+1 = xn + xn(1 − cxn) = xn(2 − cxn),

using only multiplications and addition. In some early computers, which lacked
built-in division, this iteration was used to implement division, i.e. b/c was com-
puted as b× (1/c).

Example 6.3.2.
We want to construct an algorithm based on Newton’s method for efficiently

computing the square root of any given floating point number a. If we first shift
the mantissa so that the exponent becomes even, a = c · 22e, and 1/2 ≤ c < 2, then

√
a =

√
c· 2e.

We need only consider the reduced range 1/2 ≤ c ≤ 1 since for 1 < c ≤ 2 we can
compute

√

1/c and invert.
To find an initial approximation x0 to start the Newton iterations when 1/2 ≤

c < 1, we can use linear interpolation of x =
√
c between the endpoints 1/2, 1, giving

x0(c) =
√

2(1 − c) + 2(c− 1/2)

(
√

2 is precomputed). The iteration then proceeds with

xn+1 =
1

2

(

xn +
c

xn

)

, n = 0, 1, 2, . . . . (6.3.9)

For c = 3/4 (
√
c = 0.86602540378444) the result is x0 = (

√
2 + 2)/4 and (correct

digits in boldface)

x0 = 0.85355339059327, x1 = 0.86611652351682,

x2 = 0.86602540857756, x3 = 0.86602540378444,

Three iterations suffice to give full IEEE double precision accuracy and the quadratic
rate of convergence is apparent.

6.3.2 Global Convergence of Newton’s Method

It is easy to construct examples where Newton’s method converges very slowly or
not at all. Recall, e.g., that for a root of multiplicity q > 1 convergence is linear
with rate 1 − 1/q. For q = 20 it will take 45 iterations to gain one more decimal
digit.
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Example 6.3.3.
The equation f(x) = sinx = 0, has exactly one root α = 0 in the interval

|x| < π/2. Newton’s method becomes

xn+1 = xn − tanxn, n = 0, 1, 2, . . . .

If we choose the initial value x0 = x∗ such that tanx∗ = 2x∗, then x1 = −x0,
x2 = −x1 = x0. Hence the successive approximations show a cyclic behavior!

Newton’s method will converge for any starting value such that |x0| < x∗.
The critical value can be shown to be x∗ = 1.16556 . . ..

In some simple cases the global convergence of Newton’s method may be easy
to verify. Two examples are given in the following theorems.

Theorem 6.3.2. Suppose that f ′(x)f ′′(x) 6= 0 in an interval [a, b], where f ′′(x) is
continuous and f(a)f(b) < 0. Then if

∣

∣

∣

∣

f(a)

f ′(a)

∣

∣

∣

∣

< b− a,

∣

∣

∣

∣

f(b)

f ′(b)

∣

∣

∣

∣

< b− a,

Newton’s method converges from an arbitrary x0 ∈ [a, b].

Proof. The theorem follows easily by inspecting Figure 6.4.2.
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Figure 6.3.2. A situation where Newton’s method converges from any x0 ∈ [a, b].

Lemma 6.3.3. Let [a, b] be an interval such that f(a)f(b) < 0. Assume that the
so-called Fourier conditions are satisfied, i.e., f ′(x)f ′′(x) 6= 0 in [a, b], with f ′′(x)
continuous and f(x0)f

′′(x0) > 0, for x0 ∈ [a, b]. Then the sequence {x0, x1, x2, . . .}
generated by Newton’s method converges monotonically to a root α ∈ [a, b].
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Proof. We can assume that f ′′(x) > 0; otherwise consider the equation −f(x) = 0.
Assume first that f ′(x) < 0 in the interval. Since by assumption f(x0) ≥ 0, this
corresponds to the situation in Figure 6.4.2, with b = x0 > α. Clearly it holds that
x1 > x0 and since the curve lies to the left of the tangent in x0 we also have x1 > α.
The case when f ′(x) < 0 can be treated similarly. The theorem now follows by
induction.

Newton’s method can be safeguarded by taking a bisection step whenever a
Newton step “fails” in some sense. Assume that initially a < b and f(a)f(b) < 0
and x is either equal to a or b. At each step a new approximation x′ is computed
and a, b are updated to a′, b′ as follows:

• If the Newton iterate x′ = x−f(x)/f ′(x) lies in (a, b), then accept x′; otherwise
take a bisection step, i.e. set x′ = (a+ b)/2.

• Set either a′ = x, b′ = b or a′ = a, b′ = x, where the choice is made so that
f(a′)f(b′) ≤ 0.

This ensures that at each step the interval [a′, b′] contains a root.
When checking if z ∈ (a, b), it is important to avoid division by f ′(x), since

this may cause overflow or division by zero. Hence, we note z ∈ (a, b) if and only if

b− z = b− x+ f(x)/f ′(x) > 0 and z − a = x− a− f(x)/f ′(x) ≥ 0.

If f ′(x) > 0 these two inequalities are equivalent to

(b − x)f ′(x) > −f(x) and (x− a)f ′(x) > f(x).

The case when f ′(x) < 0 is analyzed similarly, giving

(b − x)f ′(x) < −f(x) and (x− a)f ′(x) < f(x).

In either case only one of the inequalities will be nontrivial depending on whether
f(x) > 0 or not.

6.3.3 Newton Method for Complex Roots

Newton’s method is based on approximating f with the linear part of its Taylor
expansion. Taylor’s theorem is valid for a complex function f(z) around a point of
analyticity a (see Sec. 3.1.3). Hence Newton’s method applies also to an equation
f(z) = 0, where f(z) is a complex function, analytic in a neighborhood of a root α.
An important example is when f is a polynomial; see Sec. 6.5.

Let z = x + iy, f(z) = u(x, y) + iv(x, y), and consider the absolute value of
f(z)

φ(x, y) = |f(x+ iy)| =
√

u(x, y)2 + v(x, y)2.

This is a differentiable function as a function of (x, y), except where f(z) = 0. The
gradient of φ(x, y) is

gradφ = (φx, φy) =
1

φ
(uux + vvx, uuy + vvy) (6.3.10)
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where ux = ∂u/∂x, uy = ∂u/∂y, etc. Using the Cauchy–Riemann equations ux =
vy, uy = −vx we calculate (see Henrici [9, §6.1.4]).

f(z)

f ′(z)
=

u+ iv

ux + ivx
=

(uux + vvx) + i(uuy + vvy)

u2
x + v2

x

,

A comparison with (6.3.10) shows that the Newton step

zk+1 − zk = −f(zk)/f ′(zk), (6.3.11)

is in the direction of the negative gradient of |f(zk)|, i.e., in the direction of strongest
decrease of |f(z)|.

The geometry of the complex Newton iteration is considered in [29].

Theorem 6.3.4.
Let the function f(z) = f(x + iy) be analytic and zk = xk + iyk be a point

such that f(zk)f ′(zk) 6= 0. Let zk+1 be the next iterate of Newton’s method (6.3.11).
Then zk+1 − zk is in the direction of the negative gradient of φ(x, y) = |f(x + iy)|
and therefore orthogonal to the level set of |f | at (xk, yk). If Tk is the tangent plane
of φ(x, y) at (xk, yk) and Lk is the line of intersection of Tk with the xy-plane then
(xk+1, yk+1) is the point on Lk closest to (xk, yk).

Proof. See [29].

Newton’s method is very efficient if started from an initial approximation
sufficiently close to a simple zero. If this is not the case Newton’s method may
converge slowly or even diverge. In general, there is no guarantee that zn+1 is
closer to the root than zn, and if f ′(zn) = 0 the next iterate is not even defined.

The following important theorem gives rigorous sufficient conditions for the
global convergence of Newton’s method. For generality we formulate it for complex
zeros of a complex valued function f(z).

Theorem 6.3.5.
Let f(z) be a complex function of a complex variable. Let f(z0)f

′(z0) 6= 0
and set h0 = −f(z0)/f

′(z0), x1 = x0 + h0. Assume that f(z) is twice continuously
differentiable in the disk K0 : |z − z1| ≤ |h0|, and that

2 |h0|M2 ≤ |f ′(z0)|, M2 = max
z∈K0

|f ′′(x)|. (6.3.12)

Let zk be generated by Newton’s method

zk+1 = zk − f(zk)

f ′(zk)
, k = 1, 2, . . . .

Then zk ∈ K0 and we have limk→∞ zk = ζ, where ζ is the only zero of f(z) in
K0. Unless ζ lies on the boundary of K0, ζ is a simple zero. Further we have the
relations

|ζ − zk+1| ≤
M2

2|f ′(zk)| |zk − zk−1|2, k = 1, 2, . . . . (6.3.13)
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In case of a real function f(x) of a real variable the disk K0 can be replaced by the
closed interval K0 = int [x0, x0 + 2h0].

Proof. See Ostrowski [19, Theorem 7.2]

A generalization of this result, Theorem 11.1.7 (the Newton–Kantorovich The-
orem), for the multivariate Newton method, will be proved in Volume II.

Since the Newton step is in the direction of the negative gradient of |f(z)|
at z = zk, it will necessarily give a decrease in |f(zk)| if a short enough step in
this direction is taken. A modified Newton method based on the descent property
and switching to standard Newton when the condition (6.3.12) is satisfied, will be
described in Sec. 6.5.6.

6.3.4 An Interval Newton Method

.
Sometimes it is desired to compute a tiny interval that is guaranteed to enclose

a real simple root x∗ of f(x), even when rounding errors are taken into account.
This can be done using an adaptation of Newton’s method to interval arithmetic
method due to Moore [17].

Suppose that the function f(x) is continuously differentiable. Using the nota-
tion in Sec. 2.3.7, let f ′([x0]) denote an interval containing f ′(x) for all x in a finite
interval [x] := [a, b]. Define the Newton operator on N [x] by

N([x]) := m− f(m)

f ′([x])
. (6.3.14)

where m = mid ([x]) = 1
2 (a+ b).

Theorem 6.3.6.
If α ∈ [x] is a zero of f(x), then α ∈ N([x]). If N([x]) ⊆ [x], then f(x) has

one and only one zero in N([x]).

Proof. Suppose α is a zero of f(x) in [x]. If 0 ∈ f ′([x]) then N([x]) = [−∞,∞].
Otherwise, by the mean value theorem

0 = f(α) = f(m) + f ′(ξ)(α −m), ξ ∈ int [α,m] ⊆ [x].

This implies that α = m− f(m)/f ′(ξ) ⊆ N([x]), which proves the first statement.
If N([x]) ⊆ [x] then f ′([x]) 6= 0 on [x]. Then by the mean value theory there

are ξ1 and ξ2 in [x] such that

(m− f(m)/f ′(ξ1)) − a = −f(a)/f ′(ξ1),

b− (m− f(m)/f ′(ξ2)) = f(b)/f ′(ξ2).

Because N([x]) ⊆ [a, b], the product of the left sides is positive. But since f ′(ξ1)
and f ′(ξ2) have the same sign this means that f(a)f(b) < 0 and f has therefore a
zero in [x].
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Finally, there cannot be two or more zeros in [x], because then we would have
f ′(c) = 0 for some c ∈ [x].

In the interval Newton method, a starting interval [x0] is chosen, and we
compute for k = 0, 1, 2, . . . a sequence of intervals [xk+1] given by

N([xk]) = mid ([xk]) − f(mid [xk])

f ′([xk])
.

If N([xk]) ⊂ [xk] we set [xk+1] = N([xk]) ∩ [xk]. Otherwise, if N([xk]) ∩ [xk] is
empty, we know that [xk] does not contain a root and stop. In neither condition
holds we stop, subdivide the initial interval and start again. It can be shown that
if [x0] does not contain a root then after a finite number of steps the iteration will
stop with an empty interval.

If we are close enough to a zero, then the length of the intervals [xk] will
converge quadratically to zero, just as the standard Newton method.

Example 6.3.4.
Take f(x) = x2 − 2 and [x0] = [1, 2]. Using interval Newton method

N([xk]) = mid ([xk]) − (mid [xk])2 − 2

2 [xk]
, [xk+1] = N([xk]) ∩ [xk].

we obtain the sequence of intervals

[x1] = N([x0]) = 1.5 − 2.25 − 2

2[1, 2]
= [22/16, 23/16] = [1.375, 1.4375] ,

[x2] = N([x1]) =
45

32
− (45/32)2 − 2

2[22/16, 23/16]
=

45

32
− (45)2 − 2(32)2

128 [22, 23]
⊂ [1.41406, 1.41442].

The quadratic convergence of the radius of the intervals is evident:

0.5, 0.03125, 0.00036, . . . .

The interval Newton method, is well suited to determine all zeros in a given
interval. Divide the given interval into subintervals and for each subinterval [x]
check whether the condition N([x]) ⊆ [x] in Theorem 6.3.6 holds. If this is the case,
we continue the interval Newton iterations, and if we are close enough the iterations
converge towards a root. If the condition is not satisfied but N([x]) ∩ [x] is empty
then there is no zero in the subinterval and this can be discarded. If the condition
fails but N([x]) ∩ [x] is not empty, then subdivide the interval and try again. The
calculations can be organized so that we have a queue of intervals waiting to be
precessed. Intervals may be added or removed form the queue. When the queue is
empty we are done.

The above procedure may not always work. Its performance will depend
among other things on the sharpness of the inclusion of the derivative f ′([x]). Things
will go wrong, e.g., in case of multiple roots where N([x]) = [−∞,∞].
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6.3.5 Higher Order Methods

Newton’s method has quadratic convergence, which means that the number of sig-
nificant digits approximately doubles in each iteration. Although there is rarely
any practical need for methods of higher order of convergence such methods may
be useful in special applications.

For the following discussion we assume that α is a simple zero of f and that
f has a sufficient number of continuous derivatives in a neighborhood of α. We
first briefly review some famous methods with cubic convergence for simple roots
of f(x) = 0.

Newton’s method was derived by approximating the function f(x) with its
linear Taylor approximation. Higher order iteration methods can be constructed by
including more terms from the Taylor expansion. The quadratic Taylor approxima-
tion of the equation f(xn + h) = 0 is

f(xn) + hf ′(xn) +
h2

2
f ′′(xn) = 0, h = x− xn. (6.3.15)

Assuming that f ′(xn)2 ≥ 2f(xn)f ′′(xn), the solutions of this quadratic equation
are real and equal to

hn = − f ′(xn)

f ′′(xn)

(

1 ±
√

1 − 2
f(xn)f ′′(xn)

(f ′(xn))2

)

.

Rearranging and taking the solution of smallest absolute value we get

xn+1 = xn − u(xn) · 2

1 +
√

1 − 2t(xn)
, (6.3.16)

where we have introduced the notation

u(x) =
f(x)

f ′(x)
, t(x) = u(x)

f ′′(x)

f ′(x)
. (6.3.17)

The iteration (6.3.16) is Euler’s iteration method.
Assuming that |t(xn)| ≪ 1 and using the approximation

2

1 +
√

1 − 2t(xn)
≈ 1 + 1

2 t(xn), (6.3.18)

valid for |t| ≪ 1, we obtain another third order iteration method usually also at-
tributed to Euler

xn+1 = xn − u(xn)
(

1 + 1
2 t(xn)

)

. (6.3.19)

A different method of cubic convergence is obtained by using a rational approxima-
tion of (6.3.18)

xn+1 = xn − u(xn) · 1

1 − 1
2 t(xn)

= xn − f(xk)

f ′(xk) − f ′′(xk)

2f ′(xk)
f(xk)

. (6.3.20)
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This is Halley’s5 iteration method [8], which has the distinction of being the most
frequently rediscovered iteration method. Halley’s method has a simple geometric
interpretation. Consider a hyperbola

h(x) = b+
a

x− c
,

where a, b, c are determined so that h(x) is osculatory to f at x = xn, i.e., is
tangent to the curve at this point and has the same curvature there. Then xn+1 is
the intersection of this hyperbola with the x-axis.

The methods (6.3.19) and (6.3.20) correspond to the (1,0) and (0,1) Padé
approximations of Euler’s method. We now show that both are of third order for
simple zeros. Following Gander [6] we consider an iteration function of the general
form

φ(x) = x− u(x)H(t(x)), (6.3.21)

where u(x) and t(x) are defined by (6.3.17). Differentiating (6.3.21) and using
u′(x) = 1 − t(x) we get

φ′(x) = 1 − (1 − t(x))H(t) − u(x)H ′(t)t′(x).

Since u(α) = t(α) = 0 it follows that φ′(α) = 1 − H(0). Hence if H(0) = 1 then
φ′(α) = 0 and the iteration function (6.3.21) is at least of second order. Differenti-
ating once more and putting x = α we get

φ′′(α) = t′(α)H(0) − 2u′(α)H ′(0)t′(α) = t′(α)(H(0) − 2H ′(0)).

Hence φ′(α) = φ′′(α) = 0 and the method (6.3.21) at least of third order if the
conditions

H(0) = 1, H ′(0) = 1/2 (6.3.22)

are satisfied. For Euler’s and Halley’s method we have

H(t) = 2
(

1 +
√

1 − 2t
)−1

, H(t) = (1 − 1
2 t)

−1,

respectively, and both these methods satisfy the conditions in (6.3.22). (Verify this!)

Example 6.3.5.
Using (6.3.20) a short calculation shows that Halley’s method for solving the

equation f(x) = x2 − c = 0 can be written

xn+1 = xn − 2xn
xn − c/xn

3xn + c/xn
, n = 0, 1, 2, . . . . (6.3.23)

(see Problem 10). For c = 3/4 we and using the initial approximation x0 = (
√

2 +
2)/4 obtained by linear interpolation in Example 6.3.2 we obtain the following result
(correct digits in boldface)

x0 = 0.85355339059327, x1 = 0.86602474293290, x2 = 0.86602540378444.
5Edmund Halley (1656–1742), an English astronomer, who predicted the periodic reappearance

(c:a 75 years) of a comet named after him.
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Already two iterations give a result correct to 14 digits. Compared to Newton’s
method we have gained one iteration, but each iteration is more costly.

It is not difficult to construct iteration methods of arbitrarily high order for
solving f(x) = 0. It can be shown ([25, Theorem5.3]) that any iteration function
of order p must depend explicitly on the first p − 1 derivatives of f . Consider the
Taylor expansion at xn

0 = f(xn + h) = f(xn) + hf ′(xn) +

p−1
∑

k=2

hk

k!
f (k)(xn) +O(hp). (6.3.24)

Neglecting the O(hp)-term this is a polynomial equation of degree p−1 in h. Assum-
ing that f ′(xn) 6= 0 we could solve this by the fixed point iteration hi = F (hi−1),
where

F (h) = −f(xn) +
∑p−1

k=2 h
kf (k)(xn)/k!

f ′(xn)
,

taking h0 to be the Newton correction.
To get an explicit method of order p we write

f(xn)

f ′(xn)
≡ u = −h−

p−1
∑

k=2

akh
k, (6.3.25)

where

ak =
f (k)(xn)

k!f ′(xn)
, k ≥ 2. (6.3.26)

This can be interpreted as a formal power series in h (cf. Sec. 3.1.5). Reversing this
series we can express h as a formal power series in u

h = −u−
p−1
∑

k=2

cku
k + · · · , (6.3.27)

c2 = a2, c3 = 2a2
2 − a3, c4 = 5a3

2 − 5a2a3 + a4, (6.3.28)

c5 = 14a4
2 − 21a2

2a3 + 6a2a4 + 3a2
3 − a5, . . . .

More coefficients can easily be determined; see Problem 3.1.12. This leads to the
Schröder family of iteration methods

xn+1 = xn − u(xn) −
p−1
∑

k=2

ck(xn)uk(xn), (6.3.29)

(E. Schröder [22]). If f is analytic these can be shown to have convergence order p
for simple roots. For a proof see Henrici [9, p. 529].

Setting p = 2 gives Newton’s method and for p = 3 we get the third order
method of Euler (6.3.19). The family (6.3.29) of high order methods makes use of
polynomials in u. As for the case p = 3, variants of these using rational expressions
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in u can be derived from Padé approximants of these polynomials; see Traub [25,
Sec. 5.2]. There are indications that methods which use rational approximations
with about equal degree of nominator and denominator are best. For example, for
p = 4, the rational approximation

1 + c2u+ c3u
2 =

c2 + (c22 − c3)u

c2 − c3u
+ O(u3)

can be used to derive an alternative method of order 4.
We now introduce a rational family of iteration methods of arbitrary order,

which is very convenient to use. First note that Halley’s method can also be derived
as follows. Starting from (6.3.15) we get

hn = −f(xn)
/(

f ′(xn) +
hn

2
f ′′(xn)

)

.

Replacing hn in the denominator by the Newton correction −f(xn)/f ′(xn), does
not change the order of the method and leads to (6.3.20). We note that this can be
written xn+1 = xn +B2(xn), where

B2(x) = −f(x)
f ′(x)

det

(

f ′(x) f ′′(x)
2!

f(x) f ′(x)

) .

This method belongs to a rational family of iteration function of arbitrary order,
which we now give. Set Dp(x) = det(Fp), where

Fp(x) =





















f ′(x) f ′′(x)
2! . . . f(p−1)(x)

(p−1)!
f(p)(x)

(p)!

f(x) f ′(x)
. . .

. . . f(p−1)(x)
(p−1)!

0 f(x)
. . .

. . .
...

...
...

. . .
. . . f ′′(x)

2!
0 0 . . . f(x) f ′(x)





















∈ Rp×p, (6.3.30)

is a Toeplitz upper Hessenberg matrix defined with respect to the normalized deriva-
tives of f(x). (Recall that a square matrix is called Toeplitz if its elements are
identical along each diagonal.) The iteration

xn+1 = xn +Bp(xn), Bp(x) = −f(x)
det(Fp−2(x))

det(Fp−1(x))
(6.3.31)

can be shown to be of order p for simple roots.
The determinant formula (6.3.31) is attractive since it leads to a simple imple-

mentation. To evaluate det(Fp(x)) we use Gaussian elimination (without pivoting)
to compute the LU factorization

Fp(xn) = LpUp, diag (Up) = (u11, u22, . . . , upp).
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where Lp is unit lower triangular and Up upper triangular; see Sec. 1.3.4. Then
det(Fp) = u11u22 . . . upp. Hence the ratio det(Fp(x))/ det(Fp−1(x)) equals the last
diagonal element upp in Up. It follows that

xn+1 = xn − f(xn)/ukk(xn), k = 1 : p, (6.3.32)

gives the result of a sequence of iteration formulas of order 2 : p+ 1.
Note that the Gaussian elimination is simplified by the fact that Fp(xn) is

Hessenberg. Only the p − 1 subdiagonal elements need to be eliminated, which
requires 1

2p
2 flops. Further, it is possible to implement the computation of diag (Up)

using only two row vectors; see Problem 14.
The main drawback to the use of higher order iteration methods is the com-

putational cost of evaluating higher derivatives of f . However, if f satisfies a dif-
ferential equation higher order derivatives can be calculated by differentiating the
differential equation.

Example 6.3.6.
Methods using high order derivatives are useful in particular when seeking

zeros of a function satisfying a (usually second order) differential equation. The
Bessel functions of the first kind Jν(x) satisfies the differential equation

x2y′′ + xy′ + (x2 − ν2)y = 0.

The smallest zero ξ of J0(x) is close to x0 = 2.40, and

J0(x0) = 0.00250 76832 9724, J ′

0(x0) = −J1(x) = −0.52018 52681 8193.

Differentiating the differential equation for J0(x) we get

xy(k+1) + ky(k) + xy(k−1) + (k − 1)y = 0, k ≥ 1,

which gives a recursion for computing higher derivatives. Taking p = 5

y′′(x0)/2! = 0.10711 80892 2261, y′′′(x0)/3! = 0.05676 83752 3951,

yiv(x0)/4! = −0.00860 46362 1903.

Forming the Toeplitz matrix F4 and computing the diagonal elements of U in the
LU factorization, we obtain using (6.3.32) the following sequence of approximations
to ξ:

2.4048207503 2.4048255406 2.40482555767553, 2.40482555769573

(correct digits shown in boldface).

Review Questions
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1. (a) Under what assumptions is convergence of Newton’s method quadratic?

(b) Device an example where Newton’s method diverges, even though the
equation has real roots.

2. Describe an iteration for the division-free computation of the reciprocal of a
positive number c. Determine the largest set of starting values x0 such that
the iterates converge to 1/c.

3. The equation f(x) = sinx = 0 has one trivial root x = 0 in the interval
(−π/2, π/2). Show that for an initial approximation x0 chosen so that tanx0 =
2x0 Newton’s method cycles, and x2k = x0 for all k ≥ 0!

4. (a) Assume that f is continuously differentiable in a neighborhood of a double
root α of the equation f(x) = 0. Describe how the equation can be converted
to one with a simple root α.

(b) Discuss the case when f(x) = 0 has two distinct roots which nearly coin-
cide.

Problems and Computer Exercises

1. (a) Compute ǫn+1/ǫ
2
n for n = 0, 1, 2, and the limit, as n → ∞, in Exam-

ple 6.3.1.

(b) Treat the equation in Example 6.3.1 using f ′(x2) as a fixed approximation
to f ′(xn) for n > 2. Compare the convergence of this simplified method with
the true Newton method..

2. The equation x3−2x−5 = 0 is of historical interest because it was the one used
by Wallis6 to present Newton’s method to the French Academy. Determine
the roots of this equation.

Hint: It has one real and two complex roots.

3. Use Newton’s method to determine the positive root of the equation to six
correct decimals: (a) x = 1 − e−2x; (b) x lnx− 1 = 0

4. Determine the unique positive real root of the equation xq − x − 1 = 0 for
q = 2 : 8.

5. (a) Consider the Newton iteration used in Example 6.3.2 for computing square
root. Show that the iterations satisfy

xn+1 −
√
c =

1

2xn
(xn −

√
c)2.

Use this relation to show that, for all x0 > 0, convergence is monotone x1 ≥
x2 ≥ x3 ≥ · · · ≥ √

c and that limn→∞ =
√
c (compare Figure 1.2.5).

(b) In Example 6.3.2 Newton’s method was used to compute
√
c for 1/2 ≤

c ≤ 1. Determine the maximum error of the linear initial approximation used
there. Then use the expression for the error in (a) to determine the number
of iterations that suffices to give

√
c with an error less than 10−14 for all c in

6John Wallis (1616–1703) the most influential English mathematician before Newton.
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[1/2, 1] using this initial approximation. Show that the influence of rounding
errors is negligible.

6. Determine p, q and r so that the order of the iterative method

xn+1 = pxn + qc/x2
n + rc2/x5

n

for computing 3
√
c becomes as high as possible. For this choice of p, q and r,

give a relation between the error in xn+1 and the error in xn.

7. (A. Ben Israel) The function f(x) = xe−x has a unique zero α = 0. Show that
for any x0 > 1 the Newton iterates move away from the zero.

8. The Cartesian coordinates of a planet in elliptic orbit at time t are equal to
ea(sin(x), cos(x)), where a is the semi-major axis, and e the eccentricity of
the ellipse. Using Kepler’s laws of planetary motion it can be shown that the
angle x, called the eccentric anomaly, satisfies Kepler’s equation

x− e sinx = M, 0 < |e| < 1,

where M = 2πt/T is the mean anomaly and T the orbital period.

(a) Newton used his method to solve Kepler’s equation. Show that for each e,
M there is one unique real solution x = α, such that M − |e| ≤ α < M + |e|.
(b) Show that the simple fixed-point iteration method

xn+1 = e sinxn +M, x0 = 0,

is convergent.

(c) Study the convergence of Newton’s method

xn+1 = xn +
e sinxn − xn +M

1 − e sinxn
.

8. Determine the multiple root α = 1 of the equation p(x) = (1− x)5 = 0, when
the function is evaluated using Horner’s scheme, i.e.,

p(x) = (((((x − 5)x+ 10)x− 10)x+ 5)x− 1 = 0.

(a) Use bisection (cf. Algorithm 6.1.1) with initial interval (0.9, 1.1) and tol-
erance τ = 10−8. What final accuracy is achieved?

(b) Use Newton’s method, starting from x0 = 1.1 and evaluating p′(x) using
Horner’s scheme. Terminate the iterations when for the first time |xn+1−1| >
|xn−1|. How many iterations are performed before termination? Repeat with
a couple of other starting values!

(c) Same as (b), but perform one step of the modified Newton’s method (6.3.5)
with x0 = 1.1 and q = 5. How do you explain that the achieved accuracy is
much better than predicted by (6.1.10)?
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9. Show that if Newton’s method applied to the equation u(x) = 0, where u(x) =
f(x)/f ′(x), then

xn+1 = xn − u(xn)

1 − t(xn)
, t(xn) =

f(xn)f ′′(xn)

(f ′(xn))2
. (6.3.33)

This transformation is most useful if an analytical simplification can be done
such that u(x) can be evaluated accurately also in a neighborhood of α.

10. (a) Show that Halley’s method can also be derived by applying Newton’s
method to the equation f(x)(f ′(x))−1/2 = 0.

(b) What is the efficiency index of Newton’s and Halley’s method, respectively,
if it is assumed that evaluating each of f , f ′ and f ′′ takes one unit of work.

(c) Show that Halley’s method applied to f(x) = x2 − c = 0, c > 0, gives rise
to the iteration

xn+1 = xn
x2

n + 3c

3x2
n + c

= xn − 2xn(x2
n − c)

3x2
n + c

.

Apply Halley’s method to f(x) = xk − c = 0, c > 0.

11. (A. Ben Israel) Consider the quasi-Halley method

xn+1 = xn − f(xk)

f ′(xk) − f ′(xk) − f ′(xk−1)

2(xk − xk−1)f ′(xk)
f(xk)

where the second derivative f ′′(xk) has been approximated by a divided dif-
ference. Show that if f ′′ is Lipschitz continuous near a root α then

|α− xk+1| = O(|α − xk|γ ,

where γ satisfies the quadratic equation γ2 − 2γ − 1 = 0. Conclude that
the order of this method is approximately 2.41 as compared to 3 for Halley’s
method.

12. (Bailey et al. [1]) In 1976 Brent and Salamin independently discovered the
following iteration, which generates a sequence {pk} converging quadratically
to π:
Set a0 = 1, b0 = 1/

√
2, and s0 = 1/2. For k = 1, 2, 3, . . . compute

ak = (ak−1 + bk−1)/2, bk =
√

ak−1bk−1,

ck = a2
k − b2k, sk = sk−1 − 2kck, pk = 2a2

k/sk.

Perform this iteration in IEEE 754 double precision. Verify the quadratic
convergence by listing the errors in |pk − π| in successive iterations. How
many iterations can you do before the error starts to grow? What is the best
accuracy achieved?

13. In Example 6.3.4 the first two steps in the interval Newton method for solving
the equation x2 − 2 = 0 are shown. Implement this method and carry out the
iterations until convergence.
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14. (a) Compute det(Fp(x)) in (6.3.30) for p = 3 and write down the corresponding
rational fourth order iteration method in terms of u, a2, a3 in (6.3.28).

(b) Implement in Matlab the iteration method (6.3.31) for arbitrary order p.
Input should be an approximation xn to the root, f(xn) and the row vector
of scaled derivatives

(

f ′(x),
f ′′(x)

2!
, . . . ,

f (p−1)(x)

(p− 1)!
,
f (p)(x)

p!

)

evaluated at x = xn. Output should be the diagonal elements of Up in the
LU factorization of Fp(xn) and the sequence of approximations xn+1,k = xn +
f(xn)/ukk(xn), k = 1 : p. Try to economize on memory requirement.

15. Write a program that computes the inverse of the error function erf(x) by
solving the equation erf(x) − y = 0, 0 ≤ y < 1. Use Newton’s method and
the series expansion given in Example 1.3.4 to compute values of erf(x) and
its derivative. Note that for large values of x erf(x) ≈ 1 − 1/(

√
πx).

16. (a) Given σ1 ≥ σ1 ≥ . . . ≥ σn > 0, c1, c2, . . . cn, and α > 0, consider the
secular equation φ(λ) = α, where

φ2(λ) =

n
∑

i=1

(

σici
σ2

i + λ

)2

.

Show that φ(λ) is a convex and strictly decreasing function of λ. Conclude
that if φ(0) > α, this equation has a unique root λ > 0 of smallest magnitude.

(b) Newton’s method for solving φ(λ) − α = 0 is

λk+1 = λk − hk, hk =
φ(λk) − α

φ′(λk)
.

Show that with λ0 = 0 this method produces a strictly increasing sequence λk

converging to the solution. Derive an explicit expression for hk.

(c) The Newton iteration in (b) often converges very slowly. A more efficient
method is obtained by instead applying Newton’s method to the equation
h(λ) = 1/φ(λ) = 1/α. Show that this iteration can be written

λk+1 = λk − hk
φ(λk)

α
,

where hk is the Newton step in (b).

(d) Let σi = 1/i2, ci = 1/i2+0.001, i = 1, 2, . . . , 20. Plot the function f(λ) for
λ ∈ (0, 0.0005). Solve the equation φ(λ) = α = 2.5, using λ0 = 0, comparing
the two methods in (b) and (c).

6.4 Local Minimum of a Scalar Function

In this section we consider the problem of finding the minimum (maximum) of a
real-valued function

min g(x), x ∈ [a, b], (6.4.1)
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which is closely related to that of solving a scalar equation. Problem (6.4.1) occurs as
an important subproblem in methods for minimizing a function φ(z) of n variables,
z ∈ Rn, and for solving systems of nonlinear equation. For example, if zk is the
current approximation to the optimal point, the next approximation is often found
by minimizing a function

g(λ) = φ(xk + λdk),

where dk is a search direction, and the steplength λ is to be determined.
If g is differentiable in [a, b], a necessary condition for an interior point of

τ ∈ I to be a local minimum is that g′(τ) = 0. If g′ does not change sign on I it is
also possible that the minimum is at a or b. If this is checked for separately, then
it is possible to reduce the problem to a zero-finding problem for g′. Since g′ also
vanishes at a point of maximum and inflection, it is however necessary to check if
the point found really is a minimum.

Most algorithms for minimizing a nonlinear function of one (or more) variables
find at best a local minimum. For a function with several local minima, there is
no guarantee that the global (lowest local) minimum in [a, b] will be found. One
obvious remedy is to try several different starting points and hope that the lowest
of the local minima found is also the global minimum. This approach is neither
efficient or safe. In practice we have to be content with algorithms which nearly
always give correct results in most practical applications.

6.4.1 Unimodal Functions

A condition which ensures that a function g has a unique global minimum τ in [a, b]
is that g(x) is strictly decreasing for a ≤ x < τ and strictly increasing for τ < x ≤ b.
Such a function is called unimodal.

Definition 6.4.1.
The function g(x) is unimodal on [a, b] if there exists a unique τ ∈ [a, b] such

that, given any c, d ∈ [a, b] for which c < d

d < τ ⇒ g(c) > g(d); c > τ ⇒ g(c) < g(d). (6.4.2)

This condition does not assume that g is differentiable or even continuous on
[a, b]. For example, |x| is unimodal on [−1, 1].

6.4.2 Golden Section Search

We now describe an interval reduction method for finding the local minimum
of a unimodal function, which only uses function values of g. It is based on the
following lemma.

Lemma 6.4.2. Suppose that g is unimodal on [a, b], and τ is the point in Defini-
tion 6.4.1. Let c and d be points such that a ≤ c < d ≤ b. If g(c) ≤ g(d) then τ ≤ d,
and if g(c) ≥ g(d) then τ ≥ c.
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Proof. If d < τ then g(c) > g(d). Thus, if g(c) ≤ g(d) then τ ≤ d. The other part
follows similarly.

Assume that g is unimodal in [a, b]. Then using Lemma 6.4.2 it is possible to
find a reduced interval on which g is unimodal by evaluating g(x) at two interior
points c and d such that c < d. Setting

[a′, b′] =

{

[c, b], if g(c) > g(d);
[a, d], if g(c) < g(d).

we can enclose x∗ in an interval of length at most equal to max(b − c, d − a). (If
g(c) = g(d) then τ ∈ [c, d], but we ignore this possibility.) To minimize this length
one should take c and d so that b− c = d−a. Hence c+d = a+ b, and we can write

c = a+ t(b− a), d = b− t(b − a), 0 < t < 1/2.

Then d− a = b− c = (1 − t)(b− a), and by choosing t ≈ 1/2 we can almost reduce
the length of the interval by a factor 1/2. However, d − c = (1 − 2t)(b − a) must
not be too small for the available precision in evaluating g(x).
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Figure 6.4.1. One step of interval reduction, g(ck) ≥ g(dk).

If we only consider one step the above choice would be optimal. Note that this
step requires two function evaluations. A clever way to save function evaluations
is to arrange it so that if [c, b] is the new interval then d can be used as one of the
points in the next step; similarly if [a, d] is the new interval then c can be used at the
next step. Suppose this can be achieved with a fixed value of t. Since c+ d = a+ b
the points lie symmetric with respect to the midpoint 1

2 (a + b) and we need only
consider the the first case. Then t must satisfy the following relation (cf. above and
Figure 6.7.1)

d− c = (1 − 2t)(b− a) = (1 − t)t(b − a).
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Hence t should equal the root in the interval (0, 1/2) of the quadratic equation
1− 3t+ t2 = 0, which is t = (3−

√
5)/2. With this choice the length of the interval

will be reduced by the factor

1 − t = 2/(
√

5 + 1) = 0.618034 . . .

at each step, which is the golden section ratio. For example, 20 steps gives a
reduction of the interval with a factor (0.618034 . . .)20 ≈ 0.661 · 10−5.

Algorithm 6.4.1 Golden Section Search.

Let g be a given continuous function and I = [a, b] an interval. The following
algorithm computes an approximation m ∈ I to a local minimum of g(x), with an
error less than a specified tolerance τ .

xmin = goldsec(g, a, b, τ);

t = 2/(3 +
√

5);

c = a+ t · (b− a);

d = b− t · (b− a);

gc = g(c); gd = g(d);

while (d− c) > τ · max(|c|, |d|)
if gc ≥ gd %Keep right endpoint b

a = c; c = d;

d = b− t · (b− a);

gc = gd; gd = g(d);

else %Keep left endpoint a

b = d; d = c;

c = a+ t · (b− a);

gd = gc; gc = g(c);

end;

end;

xmin = (c+ d)/2;

Rounding errors will interfere when determining the minimum of a scalar
function g(x). Because of rounding errors the computed approximation fl(g(x)) of
a unimodal function g(x) is not in general unimodal; cf. Figure 6.4.2. However, if
we assume that in Definition 6.4.1 the points c and d satisfy |c − d| > τ for some
small τ , the condition (6.4.2) will hold also for the computed function. For any
method using only computed values of g there is a fundamental limitation in the
accuracy of the computed location of the minimum point τ in [a, b]. The best we
can hope for is to find xk ∈ [a, b] such that

g(xk) ≤ g(x∗) + δ,
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Figure 6.4.2. The effect of rounding errors on minimizing a function.

where δ is an upper bound of rounding and other errors in the computed function
values ḡ(x) = fl (g(x)); If g is twice differentiable in a neighborhood of a minimum
point τ then by Taylor’s theorem

g(τ + h) ≈ g(τ) + 1
2h

2g′′(τ).

This means that there is no difference in the floating point representation of g(τ+h)
unless h is of the order of

√
u. Hence we can not expect τ to be determined with

an error less than
ǫα =

√

2 δ/|g′′(x∗)|, (6.4.3)

unless we can also use values of g′ or the function has some special form.

6.4.3 Minimization by Interpolation

For finding the minimum of a unimodal function g golden section search method has
the advantage that linear convergence is guaranteed. In that respect it corresponds
to the bisection method for finding a zero of a function. If the function is sufficiently
smooth and we have a good initial approximation, then a process with superlinear
convergence will be much faster. Such methods can be devised using interpolation by
a polynomial or rational function, chosen so that its minimum is easy to determine.
Since these methods do not always converge they should be combined with golden
section search. There is a close analogy with robust methods for solving a nonlinear
equation, where a combination of inverse interpolation and bisection can be used;
see Section 6.2.4.

Since a linear function in general has no minimum the simplest choice is to
use a second degree polynomial, i.e. a parabola. Suppose that at step n we have



6.4. Local Minimum of a Scalar Function 51

three distinct points in u, v and w. The quadratic polynomial interpolating g(x) at
these points is (cf. (6.2.11))

p(x) = g(v) + (x− v)[u, v]g + (x− v)(x− u)[u, v, w]g.

Setting the derivative of p(x) equal to zero gives

0 = [u, v]g + (v − u)[u, v, w]g + 2(x− v)[u, v, w]g.

and solving for x

x = v + d, d = − [u, v]g + (v − u)[u, v, w]g

2[u, v, w]g
. (6.4.4)

This is a minimum point of p(x) if [u, v, w]g > 0. We assume that of all the points
where g has been evaluated v is the one with least function value. Therefore d should
be small, so the effect of rounding errors in computing d is minimized. Initially we
can take u = a, w = b, and if g(c) < g(d) then v = c otherwise v = d, where c and
d are the two golden section points.

Multiplying the nominator and denominator of d by (v − u)(w − v)(w − u), a
short calculation shows that d = −s1/s2, where

r1 = (w − v)(g(v) − g(u)), r2 = (v − u)(g(w) − g(v)),

s1 = (w − v)r1 + (v − u)r2, s2 = 2(r2 − r1). (6.4.5)

Consider parabolic interpolation at the points xi−2, xi−1, xi, i = 2, 3, . . . and
let ǫi = xi − τ . Assuming that g(x) is sufficiently smooth in a neighborhood of τ it
can be shown that asymptotically the relation

ǫi+1 ∼ c3
2c2

ǫi−1ǫi−2, cr =
1

k!
g(k)(ζr), (6.4.6)

holds between successive errors. Hence the convergence order equals the real root
p = 1.3247 . . . of the equation x3 − x− 1 = 0.

If two or more of the points u, v, w coincide, or if the parabola degenerates
into a straight line, then s2 = 0. The parabolic interpolation step is only taken if
the following inequalities are true:

|d| < 1
2 |e|, s2 6= 0, v + d ∈ [a, b],

where e is the value of the second last cycle and, as before, tol is a combination of
absolute and relative tolerance is used

tol = ǫ|x| + τ.

Otherwise a golden section step is taken, i.e.,

x =

{

(1 − t)v + ta, if v ≥ 1
2 (a+ b);

(1 − t)v + tb, if v < 1
2 (a+ b),



52 Chapter 6. Solving Scalar Nonlinear Equations

where 1 − t = 2/(
√

5 + 1).
The combination of inverse quadratic interpolation and golden section search

has been suggested by Brent [2, ,Ch. 5],where the many delicate points to con-
sider in an implementation are discussed. At a typical step there are six significant
points a, b, u, v, w and x, not all distinct. The position of these points are updated
at each step. Initially [a, b] is an interval known to contain a local minimum point.
At a later point in the algorithm they have the following significance: A local min-
imum lies in [a, b]; of all the points at which g has been evaluated v is the one with
the least value of g; w is the point with the next lowest value of g; u is the previous
value of w, and x is the last point at which g has been evaluated.

The Matlab function fminbnd is based on the Fortran implementation FMIN
of Brent’s algorithm given in Forsythe, Malcolm, and Moler [5, pp.184–187].

Review Questions

1. How many steps in needed in golden section search to reduce an initial interval
[a, b] by a factor of 10−6?

2. Suppose the twice differentiable function f(x) has a local minimum at a point
x∗. What approximate limiting accuracy can you expect in a method for
computing x∗ which uses only function values?

3. The algorithm FMIN is a standard method for finding the minimum of a
function. It uses a combination of two methods. Which?

Problems and Computer Exercises

1. Use the algorithm goldsec to find the minimum of the quadratic function
f(x) = (x− 1/2)2 starting from a = 0.25, b = 1. Plot the successive inclusion
intervals.

2. Modify the algorithm goldsec to use parabolic interpolation instead of golden
section if this gives a point within the interval.

3. (a) Plot the function

g(x) =
1

(x− 0.3)2 + 0.01
+

1

(x− 0.9)2 + 0.04
,

and show that it has a local minimum in each of the intervals [0.2, 0.4] and
[0.8, 1.0].

(b) Use your algorithm from Problem 2 to determine the location of the two
minima of g(x) in (a).

(c) Matlab includes a function fminbnd, that also uses a combination of
golden section search and parabolic interpolation to find a local minimum.
Compare the result using this function with the result from (b).
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4. (Brent [2, Sec. 5.6]) The function

g(x) =

20
∑

i=1

(

2i− 5

x− i2

)2

,

has poles at x = 12, 22, . . . , 202. Restricted to the open interval (i2, (i+ 1)2),
i = 1 : 19, it is unimodal. Determine the minimum points in these intervals
and the corresponding values of g(x).

6.5 Zeros of Polynomials

6.5.1 Introduction

The problem of solving a polynomial equation

p(z) = a0z
n + a1z

n−1 + · · · + an = 0, (a0 6= 0), (6.5.1)

has played a major role in the development of mathematical concepts for many
centuries. Even the “high school formula” for solving a quadratic equations requires
the introduction of irrational and complex numbers. There is a long history of
investigations into algebraic expressions for the zeros of equations of higher degree.
In the 16th century Cardano published formulas for the roots of a cubic equation
(see Problem 2.3.8). Formulas for the roots when n = 4 are also known. In 1826
Abel proved that it is not possible to find algebraic expressions for the roots for the
class of polynomial equations of degree n > 4. However, even the existing formulas
for n ≤ 4 are not in general suitable for numerical evaluation of the roots. In
Section 2.3.2, it was shown that care must be taken to ensure numerical stability
also for the simple formulas in the quadratic case (see also Problem 2)!

Despite the absence of closed solution formulas the fundamental theorem
of algebra states for any algebraic equation p(z) = 0 of degree n > 0, there
exists at least one complex number z1 such that p(z1) = 0. Hence we can write
p(z) = p0(z) = (z−z1)p1(z), where p1(z) is a polynomial of degree n−1. Now p1(z)
must have at least one root z2, and we write p1(z) = (z− z2)p2(z), where p2(z) has
degree n− 2. Continuing this reasoning pn−1(z) = (z − zn)pn, where pn = an is a
constant. It follows that, counting multiplicities, the equation (6.5.1) has exactly n
(real or complex) roots z1, z2, . . . , zn, and

p(z) = a0(z − z1)(z − z2) · · · (z − zn). (6.5.2)

By this representation it also follows that if the coefficients a0, a1, . . . , an are real,
then eventual complex roots must occur in conjugate pairs.

Solving polynomial equations of high degree does not play a central role in
scientific computing. Usually the applications involve only equations of moderate
degree, say 10–20, for which acceptable subroutines exist. Polynomial equations of
high degree play a major role also as a computational task in the area of computer
algebra, where one need to solve (6.5.1) for n > 100. This in general requires high
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multiple precision computations and algorithm for such problems are still a subject
of research.

It should be emphasized that although a problem may be given in the form
(6.5.1), it could be that the coefficients of p(z) are not the original data. Then it
may be better to avoid computing them. An important example of this is when the
polynomial is the characteristic polynomial

p(z) = det(zI −A)

of a matrix A ∈ An×n. Then it is an eigenvalue problem in disguise, and the n
roots of pA(z) = 0 are the eigenvalues of A. Here the original data are the elements
of the matrix A and numerical values of p(z) can then in general be evaluated much
more accurately directly from the matrix elements, see Chapter 9. Even when the
eigenvalues are well determined by the elements of A and appear to be well sepa-
rated, they can be extraordinary sensitive to to small relative perturbations in the
coefficients coefficients of pA(z). In the following we discuss a famous example, due
to Wilkinson [28, 1984]. This paper7 contains an extensive discussion of numerical
problems in determining roots of polynomial equations.

Example 6.5.1.
Consider the Wilkinson polynomial

p(z) = (z − 1)(z − 2) · · · (z − 20) = z20 − 210z19 + . . .+ 20!,

with zeros 1, 2, . . . , 20. Let p̄(z) be the polynomial which is obtained when the
coefficient a1 = 210 in p(z) is replaced by

−(210 + 2−23) = −210.000000119 . . . ,

while the rest of the coefficients remain unchanged. Even though the relative per-
turbation in a1 is of order 10−10, many of the zeros of the perturbed polynomial
p̄(z) deviate greatly from those of p(z). In fact, correct to nine decimal places, the
perturbed zeroes are

1.000000000 10.095266145± 0.643500904i
2.000000000
3.000000000 11.793633881± 1.652329728i
4.000000000
4.999999928 13.992358137± 2.518830070i
6.000006944
6.999697234 16.730737466± 2.812624894i
8.007267603
8.917250249 19.502439400± 1.940330347i

20.846908101

For example, the two zeros 16, 17 have not only changed substantially, but have
become a complex pair. It should be emphasized that this behavior is quite typical

7Wilkinson received the Chauvenet Prize of the Mathematical Association of America for this
exposition of the ill-conditioning of polynomial zeros.
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of polynomials with real coefficients and real roots. Indeed, many polynomials which
arise in practice behave much worse than this.

If we assume that the coefficients ai of a polynomial are given with full machine
accuracy, then the error δ in computed values of p(x) (for real x) is bounded by

δ < 1.06u

n
∑

i=0

|(2i+ 1)an−ix
i| < γ2n+1

n
∑

i=0

|an−i||x|i,

see Section 2.4. Hence by (6.1.7) the attainable accuracy of a zero α is equal to

ǫα =
δ

|p′(α)| =

∑n
i=0 |(2i+ 1)an−iα

i|
|p′(α)| .

In particular for the root α = 14 in the above example we get ǫα = 1.89 · 1016.
However, the changes in this example are so large that this linearized perturbation
theory does not apply!

As the above example emphasizes, computing the characteristic polynomial is
not, as is sometimes thought, a simplification of the eigenvalue problem. Eigenvalue
problems should be solved with one of the highly developed modern eigenvalue
algorithms; consult Chapter 9, Volume II, and references therein! Note also that if
the coefficients of the characteristic polynomial det(A− zI) are required, these are
best computed by first computing the eigenvalues λi of A are computed and then
forming

p(z) =

n
∏

i=1

(z − λi). (6.5.3)

The companion matrix of the polynomial p(z) in (6.5.1), normalized so that
a0 = 1, is defined as

C =













−a1 −a2 · · · −an−1 −an

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0













. (6.5.4)

(Sometimes the companion matrix is defined slightly differently, e.g., with the coef-
ficients of the polynomial in the last row or in the last column.) Using the definition
(1.6.4) it can be verified that the characteristic polynomial of C equals

pC(z) = det(zI − C) = zn + a1z
n−1 + · · · + an−1z + an.

Hence the the eigenvalues of C are the roots of p(z) = 0 and turning the tables,
algorithms for solving eigenvalue problems can be used for solving polynomial equa-
tions. In Matlab the function roots(p) computes the roots of a polynomial p(z)
using the QR algorithm to solve the eigenvalue problem for the companion matrix.
Although the operation count for this QR algorithm is O(n3) and the storage re-
quirement 1.5n2 experiments suggest that for small and moderate values of n it is as
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as fast as competing algorithms and can be more accurate. Further problems with
overflow or underflow are avoided. However, it seems less suitable for applications
where n is large and the roots are wanted to multiple precision accuracy.

If the coefficients are known (and stored) exactly, then by using multiple-
precision arithmetic the accuracy in the zeros can be increased. It is generally true
that the solution of polynomial equations of high degree requires the use of multiple
precision floating-point arithmetic in order to achieve high accuracy.

Example 6.5.2.
The largest positive root of the equation

p(x) = (x+ 2)(x2 − 1)6 − 3 · 10−6 · x11 = 0

is to be computed. Here p(z) is a polynomial of degree 13. If the coefficients
are computed using decimal floating point arithmetic with seven digits, then the
coefficient of x11 which is (12 − 3 · 10−6) will be rounded to 12.00000. Thus the
machine will treat the equation (x+2)(x2 − 1)6 = 0, whose exact positive root is 1.

This is a poor result. One can get the root α = 1.053416973823 to full accuracy
for example by writing the equation in the form

x = φ(x), φ(x) = 1 +
0.1

x+ 1

(

3x11

x+ 2

)1/6

,

and solving this by the iteration x0 = 1, xk+1 = φ(xk). Hence the relative error in
the previous result is greater then 5%.

6.5.2 Some Basic Formulas

Comparing the coefficients of zn−k in the representations (6.5.1) and (6.5.2) of p(z)
we find that (−1)kak/a0 is the sum of the

(

n
k

)

products of the roots taken k at a
time. Thus we obtain the following relations between the coefficients and zeros of
a polynomial

∑

i

zi = −a1/a0,
∑

i<j

zizj = a2/a0,
∑

i<j<k

zizjzk = a3/a0, · · ·

· · · z1z2 · · · zn = (−1)nan/a0. (6.5.5)

The functions on the left side are called elementary symmetric functions of the
variables z1, z2, . . . , zn, since interchanging any of the variable will not change the
functions.

If an 6= 0 then the reciprocal polynomial is

q(y) = ynp(1/y) = any
n + · · · + a1y + a0. (6.5.6)

The zeros of the reciprocal polynomial are 1/z1, 1/z2, . . . , 1/zn and from (6.5.5) we
have the relations,

∑

i

1/zi = −an−1/an, etc..
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Function values of the polynomial p(z) in (6.5.1) at a (real or complex) point w
can conveniently be computed by repeated synthetic division of p(z) with z−w;
cf. Section 1.3.1. Let

p(z) = (z − w)q(z) + bn, (6.5.7)

q(z) = b0z
n−1 + b1z

n−2 + . . .+ bn−1.

Then the sequence {bi}n
i=0 is defined by the recursion

b0 = a0, bi = bi−1w + ai, i = 1 : n. (6.5.8)

Setting z = w we we see that p(w) = bn is the remainder and q(z) is the quotient
polynomial when dividing p(z) with (z − w). Differentiating (6.5.7) we get

p′(z) = (z − w)q′(z) + q(z), (6.5.9)

and setting z = w we find that p′(w) = q(w). We can evaluate q(w) by synthetic
division of q(z) with (z − w),

q(z) = (z − w)r(z) + cn−1,

r(z) = c0z
n−2 + c1z

n−3 + . . .+ cn−2.

Now p′(w) = q(w) = cn−1, where

c0 = b0, ci = ci−1w + bi, i = 1 : n− 1.

Higher derivatives can be computed in the same fashion. Differentiating once
more gives

p′′(z) = (z − w)q′′(z) + 2q′(z),

and so 1
2p

′′(w) = q′(w) = dn−2, where

d0 = c0, di = di−1w + ci, i = 1 : n− 2.

To compute p(i)(w) using these formulas requires n−i additions and multiplications.
In the important special case where all the coefficients a0, a1, . . . , an are real,

the above formulas are somewhat inefficient, and one can save operations by per-
forming synthetic division with the quadratic factor

(z − w)(z − w̄) = z2 − 2zRe(w) + |w|2,

which has real coefficients (see Problem 1).
Synthetic division can also be used to shift the origin of a polynomial p(z).

Given a0, a1, . . . , an and s, we then want to find coefficients c0, c1, . . . , cn so that

p(w + s) = q(s) = c0s
n + c1s

n−1 + · · · + cn. (6.5.10)

Clearly this is the Taylor expansion of p(z) at z = w. It follows that

cn = p(w), cn−1 = p′(w), cn−1 =
1

2
p′′(w), . . . , c0 =

1

n!
p(n)(w),
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and the coefficients ci can be computed by repeated synthetic division of p(z) by
(z − w) as described above in about n2/2 multiplications.

It is often desirable to obtain some preliminary information as to where the
zeros of a polynomial p(z) are located. Some information about the location of real
roots can be obtained from a simple examination of the sign of the coefficients of
the polynomial. A simple observation is that if ai > 0, i = 1 : n, then p(x) can have
no real positive zero. A generalization of this result, known as Descartes’ rule
of sign, 8 states that the number of positive roots is either given by the number
of variations in sign in the sequence a0, a1, . . . , an, or is less than that by an even
number. (Multiple roots are counted with their multiplicity.) By considering the
sign variations for the polynomial p(−z) we similarly get an upper bound on the
number of negative roots. By shifting the origin, we can get bounds on the number
of roots larger and smaller than a given number. In Sec. 6.5.3 we give a method to
obtain precise information about the number of real roots in any given interval.

Many classical results are known about the number of real or complex roots
in a disk or half plane. It is outside the scope of this presentation and we refer to
surveys in the literature.

6.5.3 Sturm Sequences

Precise information about the number of real roots in an interval can be obtained
from a Sturm sequence9 for p(x).

Definition 6.5.1.
A sequence of real polynomials p0(x), p1(x), . . . , pm(x) is a strict Sturm se-

quence for p(x) = p0(x) on the interval [a, b] if the following conditions hold:

(i) No two consecutive polynomials in the sequence vanish simultaneously on the
interval [a, b].

(ii) If pj(r) = 0 for j < m, then pj−1(r)pj+1(r) < 0.

(iii) Throughout the interval [a, b], pm(x) 6= 0.

(iv) If p0(r) = 0, then p′0(r)p1(r) > 0.

Given a polynomial p1(x) of degree not greater than that of p0(x) a Sturm
sequence can be constructed by the Euclidean algorithm as follows. Let q1(x) be
the quotient polynomial and −p2(x) the remainder in the quotient p0(x)/p1(x), i.e.
p0(x) = q1(x)p1(x) − p2(x), where the degree of p2(x) is strictly less than that of
p1(x). Continuing in this way, we compute p2(x),. . . , pm(x) by

pk+1(x) = qk(x)pk(x) − pk−1(x), k = 1 : m− 1, (6.5.11)

8René Descartes (1596–1650) French philosopher and mathematician.
9J. C. F. Sturm (1803–1855) a Swiss mathematician best known for his theorem on Sturm se-

quences, discovered in 1829 and his theory of Sturm–Liouville differential equations. He succeeded
Poisson in the chair of mechanics at the École Polytechnique in Paris 1839.
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where qk(x) is the quotient and −pk+1 the remainder in the quotient pk−1(x)/pk(x).
We stop when pm(x) nowhere vanishes on the interval [a, b]. Clearly, if pi(r) = 0,
then pj+1(r) = −pj−1(r) < 0, so condition (ii) is satisfied.

Let V (x) denote the number of variations in sign in the Sturm sequence at x.
If p0(x) and p1(x) have only simple zeros that separate each other, then it can be
shown that the number of zeros of p0(x) on [a, b] is equal to |V (a) − V (b)|.

Theorem 6.5.2.
Take p1(x) = p′0(x) and define p2(x), . . . , pm(x) by (6.5.11), where pm(x) has

a fixed sign on the interval [a, b] (p0(a) 6= 0 and p0(b) 6= 0). Let V(r) denote
the number of variations of sign in the sequence of values p0(r), p1(r), . . . , pm(r),
vanishing terms not being counted. Then the number of roots of p0(x) in [a, b], each
multiple root being counted once, is exactly equal to |V (a) − V (b)|.

Note that if all real zeros of p0(x) are simple and p1(x) = p′0(x), then (6.5.11)
generates a Sturm sequence. If p0(x) has multiple zeros, then p0(x) and p′0(x) have
a common divisor, which divides every pi(x) in the sequence, and this will not affect
V (r).

Example 6.5.3.
The equation p(x) = p0 = x5 − 3x− 1 = 0 has three real roots z1 = −1.21465,

z2 = −0.33473, and z3 = 1.38879 and two complex roots. The derivative equals
p′(x) = p1 = 5x4 − 3, and the rest of the Sturm chain is given by

p2 =
12

5
x+ 1, p3 =

59083

20736
.

Here p2 is a polynomial of degree one and the Sturm chain ends with s = 3 < n.
We denote by [lk, uk] an interval containing the zero xk. Evaluating the sign

changes of the Sturm sequence at x = −2 and x = 2 shows that there are 3− 0 = 3
roots xk, k = 1, 2, 3, in the interval [−2, 2] Counting the number of sign changes
at the midpoint x = 0 allows us to deduce that uk = 0, k = 1, 2 and l3 = 0;
see Table 6.5.1. The interval [−2, 0] contains two roots so we determine next the
number of sign changes at the midpoint x = −1.

At this point we have determined three disjoint intervals [−2,−1], [−1, 0], and
[0, 2], which each contain one root. We continue bisecting each of these intervals,
which can be performed in parallel.

Methods based on Sturm sequences can can be competitive, when only a
relatively small number of real roots in an given interval are of interest. Consider a
real symmetric tridiagonal matrix,

A =













α1 β2

β2 α2 β3

. . .
. . .

. . .

βn−1 αn−1 βn

βn αn













,



60 Chapter 6. Solving Scalar Nonlinear Equations

Table 6.5.1. Left: Sign variations in the Sturm sequence. Right: Intervals
[lk, uk] containing the zero xk.

x p0 p1 p2 p3 δ
−2 − + − + 3
+2 + + + + 0

0 − − + + 1
−1 + + − + 2

1 − + + + 1

l1 u1 l2 u2 l3 u3

−2 2 −2 2 −2 2
0 0 0

−1 −1
1

such that βk 6= 0, k = 2 : n has only simple eigenvalues. Let pk(λ) be the character-
istic polynomial of the kth leading principal minor of (A − λI). Define p0(λ) = 1,
and pk(λ) by the three-term recursion

p1(λ) = α1 − λ, pk(λ) = (αk − λ)pk−1(λ) − β2
kpk−2(λ), k = 2 : n. (6.5.12)

Then the sequence
1, p0(λ), . . . , pn(λ) = det(A− λI)

is known to form a Sturm sequence. Combined with the bisection method, this
recursion can be used to develop an efficient numerical method for determining the
eigenvalues of a symmetric tridiagonal matrix A in a given interval [a, b] without
reference to any of the others; see Vol. II, Sec. 9.6.6. It can also be used for
determining the singular values of a bidiagonal matrix in a given interval; see Vol.
II, Sec. 9.7.7.

The Sturm sequence algorithm only works when f(x) is a real function of a
real variable. To determine complex zeros an algorithm that performs a search and
exclusion of the complex plane can be used. The quadtree exclusion algorithm, due
to H. Weyl [27], and illustrated in Figure 6.5.1, is such a “two-dimensional bisection
algorithm”.10 It was one of the first algorithms with guaranteed convergence to
all n zeros of a polynomial of degree n. The algorithm is based on a exclusion
test applied to squares in the complex plane. For example, assuming that f(z) is
analytic in K then if |f ′(z)| ≤M for all z ∈ K and |f(z0)| > ηM there is no zero of
f(z) in K. Any square that does not pass the test and thus may contain a root is
called suspect. (Note that it is not required that a suspect square actually contains
a root.)

The computations begin with an initial suspect square S containing all the
zeros of p(x). This square can be found from an upper bound on the absolute
value of the zeros of p(x). In the algorithm, as soon as we have a suspect square,
this is partitioned into four congruent subsquares. At the center of each of them
a test estimating the distance to the closest zero of p(x) is performed. (A relative
error within, say, 40% will suffice.) If the test guarantees that this distance exceeds
half of the length of the diagonal of the square then the square cannot contain any

10In general a quadtree is a tree where each node is split along d dimensions giving 2d children.
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Figure 6.5.1. Suspect squares computed by Weyl’s quadtree method. Their
centers (marked by ×) approximate the five zeros marked by ∗.

zero and is discarded. Each remaining suspect square undergoes the same recursive
partitioning into four subsquares and the test. The zeros lying in a suspect square
are approximated by its center with errors bounded by half the length of its diagonal.
Each iteration step decreases the diagonal of the remaining squares by a factor of
two so the errors will decrease by a factor of 1/2.

6.5.4 Deflation and Zero Suppression

Suppose we have found a root α to the equation p(z) = 0. Then taking zk = α in
(6.5.8)–(6.5.7) we have bn = p(α) = 0 and the remaining roots of p(z) are also roots
of the polynomial equation

q(z) =
p(z)

z − α
= 0

Hence we can continue the iterations with the quotient polynomial q(z) of degree
n − 1. This process is called deflation and can be repeated; as soon as a root
has been found it is factored out. Proceeding like this, all roots are eventually
found. Since we work with polynomials of lower and lower degree, deflation saves
arithmetic operations. More important is that it prevents the iterations to converge
to the same simple root more than once.

So far we have ignored that roots which are factored out are only known with
finite accuracy. Also rounding errors occur in the computation of the coefficients of
the quotient polynomial q(x). Clearly there is a risk that both these types of errors
can have the effect that the zeros of the successive quotient polynomials deviate
more and more from those of p(z). Indeed, deflation is not unconditionally a stable
numerical process. A closer analysis performed by Wilkinson [28, ]11 shows

11James Hardy Wilkinson, English mathematician 1919–1986. From 1946 Wilkinson he worked
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that if the coefficients of the quotient polynomials are computed by the recursion
(6.5.8), then errors resulting from deflation are negligible provided that:

1. the roots are determined in order of increasing magnitude;

2. each root is determined to its limiting accuracy.

Note that if the above procedure is applied to the reciprocal polynomial
znp(1/z) we obtain the zeros of p(z) in order of decreasing magnitude.

With Laguerre’s method it is quite probable that we get convergence to the
root of smallest magnitude from the initial value z0 = 0. However, this cannot be
guaranteed and therefore one often proceeds in two steps. First, all n roots are
determined using deflation in the process. Next, each root found in the first step
is refined by doing one or several Newton iterations using the original polynomial
p(z).

Deflation can be avoided by using a zero suppression technique suggested
by Maehly [1954]. He notes that the derivative of the reduced polynomial q(z) =
p(z)/(z − ξ1) can be expressed as

q′(z) =
p′(z)

z − ξ1
− p(z)

(z − ξ1)2
.

More generally, assume that we have determined approximations ξ1, . . . , ξj to j
roots of p(z) = 0. Then the the first derivative of the reduced polynomial qj(z) =
p(z)/[(z − ξ1) · · · (z − ξj)] can be expressed as

q′j(z) =
p′(z)

(z − ξ1) · · · (z − ξj)
− p(z)

(z − ξ1) · · · (z − ξj)

j
∑

i=1

1

z − ξi
.

Hence Newton’s method applied to qj(z) can be written

zk+1 = zk − p(zk)

p′(zk) −∑j
i=1 p(zk)/(zk − ξi)

, (6.5.13)

which is the Newton–Maehly method. This iteration has the advantage that it
is not sensitive to the accuracy in the approximations to the previous roots ξ1, . . . , ξj .
Indeed, the iteration (6.5.13) is locally quadratically convergent to simple zeros of
p(z) for arbitrary values of ξ1, . . . , ξj .

6.5.5 Simultaneous Determination of Roots

For the removal of a linear factor by deflation it is necessary that the zero has been
computed to full working accuracy, since otherwise the remaining approximative
zeros can be meaningless. This is a disadvantage if only low accuracy is required.

on the group that built the Pilot ACE computer at National Physical Laboratory, first as Turing’s
assistant and later as manager of the group. He later contributed greatly to the development of
reliable software for matrix computations.
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An alternative to deflation is to use an iterative methods that, under appropriate
separation assumptions, allows for the simultaneous determination of all the roots

of a polynomial equation. Suppose that the numbers ξ
(k)
i , i = 1 : n are a set of

n distinct approximations to the of p(z). A new set of approximations are then
computed from

ξ
(k+1)
i = ξ

(k)
i − p(ξ

(k)
i )
/[

a0

n
∏

j=1

j 6=i

(ξ
(k)
i − ξ

(k)
j )
]

, i = 1 : n. (6.5.14)

This is Weierstrass’ method,12 introduced in 1891 in connection with a new con-
structive proof of the fundamental theorem of algebra. The method was rediscovered
and analyzed in the 1960s by Durand and is also known as the Durand–Kerner
method.

With q(z) = (z − ξ
(k)
1 )(z − ξ

(k)
2 ) · · · (z − ξ

(k)
n ) the formula may also be written

ξ
(k+1)
i = ξ

(k)
i − p(ξ

(k)
i )/q′(ξ

(k)
i ),

which shows that to first approximation the method is identical to Newton’s method.
This relation can be used to prove that for simple (real or complex) zeros the
asymptotic order of convergence of the Weierstrass method equals 2. (For multiple
zeros the method will only converge linearly.) The relation

n
∑

i=1

ξ
(k)
i =

n
∑

i=1

αi = −a1, k ≥ 1,

which holds independent of the initial approximations, can be used as a control; see
Kjellberg [12].

It is possible to accelerate Weierstrass method by using the new approxima-
tions of the roots in (6.5.14) as they become available. This leads to the iteration

ξ
(k+1)
i = ξ

(k)
i − p(ξ

(k)
i )
/[

a0

∏

j<i

(ξ
(k)
i − ξ

(k+1)
j )

∏

j>i

(ξ
(k)
i − ξ

(k)
j )
]

, i = 1 : n.

This serial version of the Weierstrass method can be shown to have an order of
convergence at least 1 + σn, where 1 < σn < 2 is the unique positive root to
σn − σ − 1 = 0.

If no a priori information about the roots is available then the initial approx-

imations ξ
(0)
i can be chosen equidistantly on a circle |z| = ρ, centered at the origin,

which encloses all the zeros of p(z). Such a circle can be found, e.g., by using the
result that all the roots of the polynomial p(z) lie in the disk |z| ≤ ρ, where

ρ = max
1≤k≤n

2

( |ak|
|a0|

)1/k

.

Note that this is (6.5.15) applied to the reciprocal polynomial.
12Karl Theodor Wilhelm Weierstrass (1815–1897) influential German mathematician, often said

to be the father of modern analysis.
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6.5.6 A Modified Newton Method

Most of the iteration methods described in earlier sections can be applied to polyno-
mial root finding. Note that if p(z) has real coefficients, then p(z) and p′(z) are real
for real values of z. This means that Newton’s method cannot converge to a com-
plex root from a real initial approximation. The same holds for the secant method
and its variants. The Muller–Traub method (see Section 6.2.3) can also converge
to complex roots from real approximations. It requires only one evaluation of p(z)
per step, and has therefore become popular.

If we have sufficiently good initial approximations to a (real or complex) zero
of p(z), this can be computed by Newton’s method. It is desirable to find the zeros
in roughly increasing order of magnitude, since this leads to stable deflation; see
Sec. 6.5.4. We now describe a modified Newton method due to Madsen [14], which
has been shown to be very competitive. By including a one-dimensional search along
the Newton direction this method achieves good global convergence properties and
is effective also for multiple roots.

To initialize let z0 = 0,

δz0 =

{

−p(0)/p′(0) = −an/an−1, if an−1 6= 0
1 otherwise,

and take

z1 =
1

2ρ

δz0
|δz0|

, ρ = max
1≤k≤n

( |an−k|
|an|

)1/k

. (6.5.15)

This assures that |z1| is less than the modulus of any zero of p(z) (see [10, Exercise
2.2.11]). Further, if p′(0) 6= 0, it is in the direction of steepest descent of |p(z)| from
the origin (see Sec. 6.3.2). This choice makes it likely that convergence will take
place to a root of near minimal modulus.

The general idea of the algorithm is that given zk, a tentative step hk is
computed by Newton’s method. The next iterate is found by taking the best point
(in terms of minimizing |f(z)|) found by a short search along the line through zk

and zk + hk. When the search yields no better value than at zk we take zk+1 = zk

and make sure that the next search is shorter and in a different direction. Since
the line searches will be wasteful if we are near a simple root, we then switch to the
standard Newton’s method.

In the first stage of the algorithm, when searches are being performed, new
iterates zk+1 are computed as follows:

1. If the last iteration was successful (zk 6= zk−1) then the Newton correction

hk = −p(zk)/p′(zk), (6.5.16)

is computed and the next tentative step is taken as

δzk =

{

hk, if |hk| ≤ 3|zk − zk−1|;
3|zk − zk−1|eiθhk/|hk| otherwise.

Here θ is chosen rather arbitrarily as arctan(3/4). This change of direction is
included because if a saddle point is being approached, the direction hk may
be a bad choice.
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2. If the last step was unsuccessful (zk = zk−1) we change the search direction
and reduce the step size. In this case the tentative step is chosen to be

δzk = − 1
2e

iθδzk−1.

Repeated use of this is sure to yield a good search direction.

3. Once the tentative step δzk has been found we test the inequality
|p(zk + δzk)| < |p(zk)|. If this is satisfied we calculate the numbers

|p(zk + p δzk)|, p = 1, 2, . . . , n,

as long as these are strictly decreasing. Note that, if we are close to a multiple
root of multiplicity m, then we will find the estimate zk + mhk, which gives
quadratic convergence to this root. A similar situation will hold if we are at
a fair distance from a cluster of m zeros and other zeros are further away.

If |p(zk + δzk)| ≥ |p(zk)|, we calculate the numbers

|p(zk + 2−pδzk)|, p = 0, 1, 2,

again continuing until the sequence ceases to decrease.

A switch to standard Newton is made if in the previous iteration a standard
Newton step zk+1 = zk + hk was taken and Theorem 6.3.2 ensures the convergence
of Newton’s method with initial value zk+1, i.e., when f(zk)f ′(zk) 6= 0 and

2 |f(zk)| max
z∈Kk

|f ′′(z)| ≤ |f ′(zk)|2, Kk : |z − zk| ≤ |hk|,

is satisfied, cf. (6.3.12). This inequality can be approximated using already com-
puted quantities by

2 |f(zk)||f ′(zk) − f ′(zk−1)| ≤ |f ′(zk)|2|zk−1 − zk|. (6.5.17)

The iterations are terminated and zk+1 accepted as a root whenever zk+1 6= zk

and

|zk+1 − zk| < u|zk|,

holds, where u is the unit roundoff. The iterations are also terminated if

|p(zk+1)| = |p(zk)| < 16nu|an|,

where the right hand side is a generous overestimate of the final roundoff made
in computing p(z) at the root of the smallest magnitude. The polynomial is then
deflated as described in the previous section.

More details about this algorithm and methods for computing error bounds
can be found in [14] and [15].
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6.5.7 Laguerre’s Method

In Laguerre’s method13 the polynomial p(z) of degree n is approximated in the
neighborhood of the point zk by a special polynomial of the form

r(z) = a(z − w1)(z − w2)
n−1,

where the parameters a,w1 and w2 are determined so that

p(zk) = r(zk), p′(zk) = r′(zk), p′′(zk) = r′′(zk). (6.5.18)

If zk is an approximation to a simple zero, α then the simple zero w1 of r(z) is
taken as the new approximation zk+1 of α. Laguerre’s method has very good global
convergence properties for polynomial equations, and with cubic convergence for
simple roots (real or complex). For multiple roots convergence is only linear.

In order to derive Laguerre’s method we note that the logarithmic derivative
of p(z) = (z − α1) · · · (z − αn) is

S1(z) =
p′(z)

p(z)
=

n
∑

i=1

1

z − αi
.

Taking the derivative of this expression we obtain

−dS1(z)

dz
= S2(z) =

(

p′(z)

p(z)

)2

− p′′(z)

p(z)
=

n
∑

i=1

1

(z − αi)2
.

Using (6.5.18) to determine the parameters of the approximating polynomial r(z)
we obtain the equations

S1(zk) =
1

zk − w1
+

(n− 1)

zk − w2
, S2(zk) =

1

(zk − w1)2
+

(n− 1)

(zk − w2)2
.

Eliminating zk−w2 gives a quadratic equation for the correction zk−w1 = zk−zk+1.
After some algebra we obtain (check this!)

zk+1 = zk − np(zk)

p′(zk) ±
√

H(zk)
, (6.5.19)

where
H(zk) = (n− 1)2[p′(zk)]2 − n(n− 1)p(zk)p′′(zk).

The sign in the denominator in (6.5.19) should be chosen so that the magnitude of
the correction |zk+1 − zk| becomes as small as possible.

For polynomial equations with only real roots, Laguerre’s method is globally
convergent, i.e., it converges for every choice of real initial estimate z0. Suppose the
roots are ordered such that α1 ≤ α2 ≤ · · · ≤ αn. If z0 ∈ (αj−1, αj), j = 2 : n, then

13Edmund Nicolas Laguerre, 1834–1886, French mathematician at École Polytechnique, Paris
and best known for his work on orthogonal polynomials.
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Laguerre’s method converges to one of the roots αj−1, αj ; if z0 < α1 or z0 > αn

then convergence is to α1 or αn respectively.
For polynomial equations with complex roots, Laguerre’s method no longer

converges for every choice of initial estimate. However, experience has shown that
the global convergence properties are good also in this case. In particular, if we take
z0 = 0, then Laguerre’s method will usually converge to the root of smallest mod-
ulus. We finally remark that, as might be expected, for multiple roots convergence
of Laguerre’s method is only linear.

Consider the polynomial equation p(z) = 0 and assume that an 6= 0 so that
α = 0 is not a root. Now suppose that an−2an−1 6= 0, and take z0 = 0 in Laguerre’s
method. A simple calculation gives

z1 =
−nan

an−1 ±
√

H(z0)
, H(z0) = (n− 1)2a2

n−1 − 2n(n− 1)anan−2, (6.5.20)

where the sign is to be chosen so the the |z1| is minimized. In particular, for n = 2,
H(z0) is the discriminant of p(z) and z1 is the root of smallest modulus.

Example 6.5.4.
If there are complex roots, then there may be several distinct roots of smallest

modulus. For example, the equation

p(z) = z3 − 2z2 + z − 2,

has roots ±i and 2. Using the above formula (6.5.20) for z1 with n = 3, we get

z1 =
6

1 ± 2i
√

11
=

2

15
± i

4
√

11

15
= 0.06666666667± 0.88443327743i.

Continuing the iterations with Newton’s method we get convergence to one of the
two roots ±i,

z2 = −0.00849761051+ 1.01435422762i, z3 = −0.00011503062+ 1.00018804502i

z4 = −0.00000002143+ 1.00000003279i, z5 = −0.00000000000+ 1.00000000000i

Review Questions

1. Describe the method of iterated successive synthetic division for computing
function values and derivatives of a polynomial.

2. Consider the polynomial p(z) = z4 − 2z3 − 4z2 + z + 1. Using Descartes’ rule
of sign what can you deduce about the number of real positive roots?

3. Suppose that all roots of a polynomial equation are to be determined. Describe
two methods to avoid the problem of repeatedly converging to roots already
found.
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4. Discuss the ill-conditioning of roots of polynomial equations. What famous
polynomial did J. H. Wilkinson use as an example?

5. (a) What is the companion matrix of a polynomial p(x) = xn +a1x
n−1 + · · ·+

an−1x+ an?

(b) One approach to computing the eigenvalues of a matrix A is to find the
coefficients of the characteristic polynomial pA(λ) = det(λI − A), and then
solve the algebraic equation pA(λ) = 0. Why should such a method usually
be avoided?

6. What properties are satisfied by a Sturm sequence of real polynomials p0(x),
p1(x), . . . , pm(x)? Describe one way of generating a Sturm sequence using the
Euclidian algorithm.

Problems and Computer Exercises

1. Apply Newton’s method to determine one of the complex roots of the equation
z2 + 1 = 0. Start with z0 = 1 + i.

2. Consider a polynomial with real coefficients

p(z) = a0z
n + a1z

n−1 + · · · + an, ai 6= 0, i = 0 : n.

(a) Count the number of (real) additions and multiplications needed to com-
pute a value p(z0) by synthetic division of p(z) by (z − z0), when z0 is a real
and complex number, respectively.

(b) For a complex number z0 = x0 + iy0, p(z0) can also be computed by
performing the synthetic division of p(z) with the real quadratic factor

d(z) = (z − z0)(z − z̄0) = z2 − 2x0z + (x2
0 + y2

0).

Derive a recursion for computing the quotient polynomial q(z) and p(z0) =
bn−1z0 + bn, where

q(z) = b0z
n−2 + b1z

n−3 + . . .+ bn−2,

p(z) = q(z)d(z) + bn−1z + bn.

Count the number of real additions and multiplications needed to compute
p(z0) and also show how to compute p′(z0).

3. (a) Using the Cardano–Tartaglia formula the real root α to the equation x3 =
x+ 4 can be written in the form

α =
3

√

2 +
1

9

√
321 +

3

√

2 − 1

9

√
321.

Use this expression to compute α. Discuss the loss of accuracy due to cancel-
lation.

(b) Compute α to the same accuracy by Newton’s method using the initial
approximation x0 = 2.
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4. A method due to D. Bernouilli for obtaining roots of the algebraic equation

p(x) = xn + a1x
n−1 + · · · + an−1x+ an = 0

is based on the related linear difference equation

µk + a1µk−1 + · · · + an−1µk−n+1 + anµk−n = 0,

having the same coefficients as the algebraic equation.

(a) Show that the general solution to the difference equation is

µk = c1α
k
1 + c2α

k
2 + · · · + cnα

k
n,

where αk, k = 1 : n, are the roots of the algebraic equation.

(b) Assume that the roots are ordered after decreasing magnitude and that
|α1| > |α2|. Show that if α1 is real, then for almost all choices of initial values
µ0, . . . , µn−1, it holds that

lim
k→∞

µk

µk−1
= α1.

(c) Let C be the companion matrix of p(x). Show that the sequence µk can
be generated by forming successive matrix-vector products

mk = Cmk−1, mk = (µk+n−1 . . . µk+1 µk )
T
.

Show that mk = Ckm0.

Comment: When applied to a general matrix C this is known as the power
method for computing eigenvalues.

5. In Graeffe’s root-squaring method one separates even and odd powers of the
polynomial p(z) and squares the equation as follows

(a0z
n + a2z

n−2 + a4z
n−4 + · · ·)2 = (a1z

n−1 + a3z
n−3 + a5z

n−5 + · · ·)2.

Putting u = z2 the resulting equation becomes

q(u) = p(−z)p(z) = b0u
n + b1u

n−1 + · · · + bn = 0.

This has roots equal to the squares of the roots of the original equation.

(a) Show that the coefficients bk of q(u) can be computed from

b0 = a2
0, (−1)kbk = a2

k +

k
∑

j=1

(−1)j2ak−jak+j , k = 1, 2, . . . , n.

(b) After squaring m times we obtain (after normalizing A0 = 1) an equation
in u = z2m

un + A1u
n−1 +A2u

n−2 + · · · +An = 0,
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with roots βk = α2m
k . Assume that the roots αk of the original equation

p(z) = 0 are real and distinct. Use the relations between coefficients and roots
of an algebraic equation to show that for m large enough we have

β1 ≈ −A1, β2 ≈ −A2/A1, β3 ≈ −A3/A2, . . . .

(c) Square the polynomial z3 − 8z2 + 17z − 10 three times, and then use the
relations in (b) to compute approximations to its three real roots.

6. Consider the iteration zn+1 = z2
n + c, where c = p + iq is a fixed complex

number. For a given z0 the sequence of iterates zn = xn + iyn, n = 0, 1, 2, . . .
may either converge to one of the two roots of the quadratic equation z2 −
z + c = 0 or diverge to infinity. Consider z0 chosen, e.g., in the unit square of
the complex plane. The boundary separating the region of convergence from
other points in the plane is a very complex fractal curve know as the Julia
set. The Mandelbrot set is obtained by fixing z0 = 0 and sweeping over
values of c in a region of the complex plane.

(a) Picture the Julia set as follows. Set c = 0.27334 + 0.000742i. Sweep over
points of z0 in the region −1 ≤ ℜz0 ≤ 1, −1.3 ≤ ℑz0 ≤ 1.3. If |zN | < R, for
N = 100 and R = 10 color the point z0 black. otherwise color the point from
hot (red) to cool (blue) according to how fast the iteration is diverging, i.e.
according to how fast the inequality |zn| > R becomes satisfied.

(b) Picture the Mandelbrot set in a similar way. Sweep over values of c in the
region −2.25 ≤ ℜc ≤ 0.75, −1.5 ≤ ℑc ≤ 1.5.

Notes and References

An interesting historical account of Newton’s method is given in Ypma [30]. New-
ton’s method is contained in his book “Method of Fluxions” written 1671, but not
published until 1736. Joseph Raphson was allowed to see Newton’s work and New-
ton’s method first was first published in a book by Raphson 1690. This is why the
method in English literature is often called the Newton–Raphson method. The first
to give a modern description of Newton’s method using derivatives seems to have
been Thomas Simpson 1740. Edmund Halley was contemporary with Isaac Newton
and his third order method was published more than 300 years ago [8].

Halley’s method has been rediscovered by J. H. Lambert [13] and numerous
other people; see Traub [25, Sec. 5.22]. A nice exposition of this and other third
order methods is given by Gander [6]. Families of iteration methods of arbitrary
order ar studied in a remarkable paper by Schröder [22]. An English translation
of this paper is given by G. W. Stewart [23]. The determinant family of iteration
functions Bp(x) is a special case of a parametrized family of iteration functions for
polynomials given by Traub [26]; see also [10, Sec. 4.4]. This family was derived
independently by Kalantari et al. [11].

One of the best algorithms to combine bisection and interpolation was devel-
oped by van Wijngaarden and Dekker at Mathematical Center in Amsterdam in the
1960s; see [3]. It was taken up and improved by Brent [2]; see also [5], Section 7.2.
Brent’s new algorithm, in contrast to Dekker’s, never converges much more slowly
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than bisection. Fortran and C versions of some of the zero-finding and minimization
routines given in the book are available from Netlib.

Several comprehensive monographs dealing with methods for solving scalar
nonlinear equations are available. Traub [25, ] gives an exhaustive enumeration
of iteration methods with and without memory, with their order of convergence and
efficiency index. Much classical material is also found in Ostrowski [19, 1973]. The
elegant treatment by Householder [10, ] also deserves special mention.

The recently reprinted book by Brent [2] deals exclusively with methods which
only uses function values for finding zeros and minima of functions of a single
variable. It is unique in the careful treatment of algorithmic details that are crucial
when developing reliable computer codes.

There is is a vast literature on methods for solving algebraic equations. An
excellent introduction is given by Householder [10] and detailed surveys found, e.g.,
in Durand [4] and Sendov et al. [24]. The modified Newton method is due to
Madsen [14] Another much used method for computing polynomial roots is the
Jenkins–Traub method, which is included in the IMSL library. A good discussion
of this rather complex method is found in Ralston and Rabinowitz [21, Sec. 8.11].
An evaluation of the speed and accuracy of the QR algorithm, used in Matlab has
been given by [7].

The theory of Sturm sequences are treated in [10, Sec. 2.5]. The quadtree
method was used by Weyl [27] to give a constructive proof of the fundamental
theorem of algebra. An interesting analysis of the efficient implementation of this
method is given by Pan [20], who also gives a brief account of the history of algo-
rithms for solving polynomial equations.
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Chapter 7

Direct Methods for

Solving Linear System

The problem treated in this chapter is the numerical solution of a system Ax = b of
m linear equations in n variables. Systems of linear equations enters at some stage
in almost every scientific computing problem. Often their solution is the dominating
part of the work to solve the problem. Also the solution of a nonlinear problem
is usually accomplished by solving a sequence of linear systems obtained, e.g., by
Newton’s method. Since algorithms for solving linear systems are perhaps the most
widely used in scientific computing, it is of great importance that they are efficient
and reliable.

The linear system Ax = b has a unique solution for all vectors b only if the
matrix A has full row and column rank. If rank (A) < n the system either has many
solutions (is underdetermined) or no solution (is overdetermined). Note that due
to inaccuracy of the elements of A the rank may not be well defined. Under- and
overdetermined systems will be treated in Chapter 8.

Two quite different classes of methods for solving systems of linear equations
are of interest: direct methods and iterative methods. In a direct method the
system is transformed by a sequence of elementary transformed into a system of
simpler form, e.g., triangular or diagonal form, which can be solved in an elementary
way. The most important direct method is Gaussian elimination, which is the
method of choice when the matrix A is of full rank and has no special structure.

Disregarding rounding errors, direct methods give the exact solution after a
finite number of arithmetic operations. Iterative methods, on the other hand, com-
pute a sequence of approximate solutions, which (assuming exact arithmetic) in the
limit converges to the exact solution x. Iterative methods have the advantage that
in general they only require a subroutine for computing the matrix-vector product
Ax for any given vector x. Hence they may be much more efficient than direct
methods when the matrix A is large and matrix-vector multiplication cheap. The
distinction is not sharp since iterative methods are usually applied to a so called
preconditioned version of the system that may involve the solution of a sequence of
simpler auxiliary systems by a direct method. Iterative methods and precondition-
ing techniques are treated in Chapter 11.

1
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Many applications give rise to linear systems where the matrix has some special
property that can be used to achieve savings in work and storage. An important
case is when A is symmetric positive definite, when about half the work and storage
can be saved; see Section 7.3. If only a small fraction of the elements in A are
nonzero the linear system Ax = b is called sparse. The simplest case is when A has
a banded structure, but also more general sparsity patterns can be taken advantage
of; see Section 7.8. Indeed, without the exploitation of sparsity many important
problems would be intractable!

There are also some classes of structured matrices, which although not sparse,
have a structure, which can be used to develop fast solution methods. One example
is Vandermonde matrices, which are related to polynomial interpolation. Other
important examples of structured matrices are Toeplitz and Hankel matrices. In
all these instances the n2 elements in the matrix are derived from only (n − 1)
quantities.

Numerical methods for linear systems are a good illustration of the difference
between classical mathematics and practical numerical analysis. Even though the
mathematical theory is simple and the algorithms have been known for centuries,
decisive progress in the development of algorithms has been made during the last few
decades. It is important to note that methods, which are perfectly acceptable for
theoretical use, may be useless for the numerical solution. For example, the explicit
determinant formula (Cramer’s rule) for the inverse matrix and for the solution of
linear systems of equations is extremely uneconomical except for matrices of order
two or three, and matrices of very special structure.

Since critical details in the algorithms can influence the efficiency and accuracy
in a way the beginner can hardly expect the reader is strongly advised to use the
efficient and well-tested software available in the public domain; see Section 7.7.3.

The emphasis in this chapter will be on algorithms for real linear systems,
since (with the exception for Hermitian systems) these occur most commonly in ap-
plications. However, all algorithms given can readily be generalized to the complex
case.

7.1 Linear Algebra and Matrix Analysis

7.1.1 Linear Vector Spaces

We denote the field of real numbers by R and Rn is the vector space of n-tuples of
real numbers. The operation addition and scalar multiplication are defined for all
v ∈ Rn, and have the following properties:

1. the following distributive properties hold:

α(v + w) = αv + αw, (α+ β)v = αv + βv,

for all α, β ∈ K and v, w ∈ W.

2. there is an element 0 ∈ W called the null vector such that v + 0 = v for all
v ∈ Rn;
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3. for each vector v there exists a vector −v such that v + (−v) = 0;

4. 0 · v = 0 and 1 · v = v where 0 and 1 are the zero and unity in K.

Similar properties hold for the vector space Cn of n-tuples of elements of the field
of complex numbers by C.

If W ⊂ V is a vector space then W is called a vector subspace of V. The
set of all linear combinations of v1, . . . , vk ∈ V form a vector subspace denoted by

span {v1, . . . , vk} =

k
∑

i=1

αivi, αi ∈ K, i = 1 : k.

If S1, . . . ,Sk are vector subspaces of V then their sum defined by

S = {v1 + · · · + vk| vi ∈ Si, i = 1 : k}
is also a vector subspace. The intersection T of a set of vector subspaces is also a
subspace,

T = S1 ∩ S2 · · · ∩ Sk.

(The union of vector spaces is generally no vector space.) If the intersection of the
subspaces are empty, Si ∩ Sj = 0, i 6= j, then the sum of the subspaces is called
their direct sum and denoted by

S = S1 ⊕ S2 · · · ⊕ Sk.

A set of vectors {v1, v2, . . . , vk} in V is said to be linearly independent if

k
∑

i=1

civi = 0, ⇒ c1 = c2 = · · · = ck = 0.

Otherwise, if a nontrivial linear combination of v1, . . . , vk is zero, the vectors are said
to be linearly dependent. Then at least one vector vi will be a linear combination
of the rest.

A basis in V is any set of linearly independent vectors v1, v2, . . . , vn ∈ V such
that all vectors v ∈ V can be uniquely decomposed as

v =

n
∑

i=1

ξivi.

The scalars ξi are called the components or coordinates of v with respect to the
basis {vi}.

If the vector space V has a basis of k vectors, then every system of linearly
independent vectors of V has at most k elements and any other basis of V has
the same number k of elements. The number k is called the dimension of V and
denoted by dim(V).

The standard basis for Cn is the set of unit vectors e1, e2, ..., en, where the
jth component of ei equals 1 if j = i, and 0 otherwise. We shall use the same name
for a vector as for its coordinate representation by a column vector, with respect to
the standard basis. For the the vector space Pn of polynomials of degree less than
n monomials 1, x, . . . , xn−1 form a basis.
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7.1.2 Matrix and Vector Algebra

A matrix A is a collection of m× n numbers ordered in m rows and n columns

A = (aij) =









a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn









.

We write A ∈ Rm×n, where Rm×n denotes the set of all real m × n matrices. If
m = n, then the matrix A is said to be square and of order n. If m 6= n, then A is
said to be rectangular. The empty matrix is a matrix of dimension 0 × 0 with no
columns and no rows. Empty matrices are convenient to use as place holders.

A column vector is a matrix consisting of just one column and we write
x ∈ Rm instead of x ∈ Rm×1. Similarly a row vector is a matrix consisting of
just one row.

A linear map from the vector space Cn to Cm is a function f such that

f(αv + βw) = αf(u) + βf(v)

for all α, β ∈ K and u, v ∈ Cn. Let x and y be the column vectors representing the
vectors v and f(v), respectively , using the standard basis of the two spaces. Then
there is a unique matrix A ∈ Cm×n representing this map such that

y = Ax.

This gives a link between linear maps and matrices.
We will follow a convention introduced by Householder1 and use capital letters

(e.g. A,B) to denote matrices. The corresponding lower case letters with subscripts
ij then refer to the (i, j) component of the matrix (e.g. aij , bij). Greek letters
α, β, . . . are usually used to denote scalars. Column vectors are usually denoted by
lower case letters (e.g. x, y).

Two matrices in Rm×n are said to be equal, A = B, if

aij = bij , i = 1 : m, j = 1 : n.

The basic operations with matrices are defined as follows. The product of a matrix
A with a scalar α is

B = αA, bij = αaij .

The sum of two matrices A and B in Rm×n is

C = A+B, cij = aij + bij . (7.1.1)

As a special case of the multiplication rule, if A ∈ Rm×n, x ∈ Rn, then

y = Ax ∈ Rm, yi =
n

∑

j=1

aijxj , i = 1 : m.

1A. S. Householder 1904–1993, American mathematician at Oak Ridge National Laboratory
and University of Tennessee. He pioneered the use of matrix factorization and orthogonal trans-
formations in numerical linear algebra.
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The product of two matrices A and B is defined if and only if the number of
columns in A equals the number of rows in B. If A ∈ Rm×n and B ∈ Rn×p then

C = AB ∈ Rm×p, cij =

n
∑

k=1

aikbkj , (7.1.2)

and can be computed with mnp multiplications.
Matrix multiplication is associative and distributive,

A(BC) = (AB)C, A(B + C) = AB +AC,

but not not commutative. The product BA is not even defined unless p = m.
Then the matrices AB ∈ Rm×m and BA ∈ Rn×n are both square, but if m 6= n of
different orders. In general, AB 6= BA even when m = n. If AB = BA the matrices
are said to commute.

Example 7.1.1.
If A ∈ Rm×n, B ∈ Rn×p and C ∈ Rp×q, then the productM = ABC ∈ Rm×q

is defined. computing M as (AB)C requires mp(n + q) operations, whereas using
A(BC) requires nq(m + p) operations. These numbers can be very different! For
example, if A and B are square n × n matrices and x a column vector of length n
then computing the product ABx as (AB)x requires n3 + n2 operations whereas
A(Bx) only requires 2n2 operations. When n≫ 1 this makes a great difference!

It is useful to define also array operations, which are carried out element-by-
element on vectors and matrices. Following the convention in Matlab we denote
array multiplication and division by .∗ and ./, respectively. If A and B have the
same dimensions A . ∗ B is the matrix with elements equal to aij · bij and A ./B
has elements aij/bij. (Note that for +,− array operations coincides with matrix
operations so no distinction is necessary.)

The transpose AT of a matrix A = (aij) is the matrix whose rows are the
columns of A, i.e., if C = AT then cij = aji. For a complex matrix we denote by
AH the complex conjugate transpose of A

A = (aij), AH = (āji),

and it holds that (AB)H = BHAH .
Row vectors are obtained by transposing column vectors (e.g. xT , yT ). For

the transpose of a product we have

(AB)T = BTAT ,

i.e., the product of the transposed matrices in reverse order.
We recall that r = rank (A) is the number of linearly independent columns

which is the same as the number of linearly independent rows of A. A square matrix
A of order n is said to nonsingular if rank (A) = n. It is left as an exercise to
show that the rank of a sum of two matrices satisfies

rank (A+ B) ≤ rank (A) + rank (B), (7.1.3)
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and the rank of a product of two matrices satisfies

rank (AB) ≤ min{rank (A), rank (B)}. (7.1.4)

If A is square and nonsingular there exists an inverse matrix denoted by
A−1 with the property that

A−1A = AA−1 = I.

By A−T we will denote the matrix (A−1)T = (AT )−1. For the inverse of a product
of two matrices we have

(AB)−1 = B−1A−1,

where the product of the inverse matrices are taken in reverse order.
The absolute value of a matrix A and vector b is defined by

|A|ij = (|aij |), |b|i = (|bi|).

We also introduce the partial ordering “≤” for matrices A,B and vectors x, y, which
is to be interpreted component-wise2

A ≤ B ⇐⇒ aij ≤ bij , x ≤ y ⇐⇒ xi ≤ yi.

Further, it is easy to show that if C = AB, then

|cij | ≤
n

∑

k=1

|aik| |bkj |,

and hence |C| ≤ |A| |B|. A similar rule holds for matrix-vector multiplication.
The Euclidean inner product of two vectors x and y in Rn is given by

xT y =

n
∑

i=1

xiyi = yTx, (7.1.5)

and the Euclidian length of the vector x is

‖x‖2 = (xTx)1/2 =

( n
∑

i=1

|xi|2
)1/2

. (7.1.6)

The outer product of x ∈ Rm and y ∈ Rn is the matrix

xyT =







x1y1 . . . x1yn
...

...
xmy1 . . . xmyn






∈ Rm×n. (7.1.7)

For some problems it is more relevant and convenient to work with complex
vectors and matrices. We denote by Cn×m the vector space of all complex n ×m

2Note that A ≤ B in other contexts means that B − A is positive semidefinite.
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matrices whose components are complex numbers.3 Most concepts introduced here
carry over to complex matrices. Addition and multiplication of vectors and matrices
follow the same rules as before. The Hermitian inner product of two vectors x
and y in Cn is defined by

xHy =

n
∑

k=1

x̄kyk, (7.1.8)

where xH = (x̄1, . . . , x̄n) and x̄k denotes the complex conjugate of xk. Hence

xHy = yHx and xHx is a real number.
Any matrix D for which dij = 0 if i 6= j is called a diagonal matrix. If

x ∈ Rn is a vector then D = diag (x) ∈ Rn×n is the diagonal matrix formed by the
elements of x. For a matrix A ∈ Rn×n the elements aii, i = 1 : n, form the main
diagonal of A, and we write

diag (A) = diag (a11, a22, . . . , ann).

For k = 1 : n − 1 the elements ai,i+k (ai+k,i), i = 1 : n − k form the kth super-
diagonal (subdiagonal) of A. The elements ai,n−i+1, i = 1 : n form the (main)
antidiagonal of A.

The unit matrix In ∈ Rn×n is defined by

In = diag (1, 1, . . . , 1) = (e1, e2, . . . , en),

and the k-th column of In is denoted by ek. We have that In = (δij), where δij is
the Kronecker symbol δij = 0, i 6= j, and δij = 1, i = j. For all square matrices
of order n it holds AIn = InA = A. If the size of the unit matrix is obvious we
delete the subscript and just write I.

Definition 7.1.1.
A matrix A is said to have upper bandwidth r and lower bandwidth s if

aij = 0, j > i+ r, aij = 0, i > j + s,

respectively. This means that the number of non-zero diagonals above and below the
main diagonal are r and s respectively. The maximum number of nonzero elements
in any row is then w = r + s+ 1, which is the bandwidth of A.

For a matrix A ∈ Rm×n which is not square we define the bandwidth as

w = max
1≤i≤m

{j − k + 1 | aijaik 6= 0}.

Note that the bandwidth of a matrix depends on the ordering of its rows and
columns. An important, but hard, problem is to find an optimal ordering of columns
that minimize the bandwidth. However, there are good heuristic algorithms that
can be used in practice and give almost optimal results; see Section 7.6.3.

3In Matlab the only data type used is a matrix with either real or complex elements.
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Several classes of band matrices that occur frequently have special names.
Thus, a matrix for which r = s = 1 is called tridiagonal, if r = 0, s = 1 (r = 1,
s = 0) it is called lower (upper) bidiagonal etc. A matrix with s = 1 (r = 1) is
called an upper (lower) Hessenberg matrix.

A matrix A is called symmetric if its elements are symmetric about its main
diagonal, i.e. aij = aji, 1 ≤ i < j ≤ n, or equivalently AT = A. A complex matrix
A is called Hermitian if AH = A and skew-Hermitian if AH = −A. The
product of two Hermitian matrices is symmetric if and only if A and B commute,
that is, AB = BA. If AT = −A, then A is called skew-symmetric.

A square matrix A is called persymmetric if it is symmetric about its an-
tidiagonal, i.e., aij = an−j+1,n−i+1.

7.1.3 Determinants and Permutations

The classical definition of the determinant requires some elementary facts about
permutations, which we now state. Let α = {α1, α2, . . . , αn} be a permutation of
the integers {1, 2, . . . , n}. The pair αr, αs, r < s is said to form an inversion in the
permutation if αr > αs. For example, in the permutation {2, . . . , n, 1} there are
(n − 1) inversions (2, 1), (3, 1), . . . , (n, 1). A permutation α is said to be even and
sign (α) = 1 if it contains an even number of inversions; otherwise the permutation
is odd and sign (α) = −1. The product of two permutations σ and τ is the
composition στ defined by

στ(i) = σ[τ(i)], i = 1 : n.

A transposition τ is a permutation which only interchanges two elements. Any
permutation can be decomposed into a sequence of transpositions, but this decom-
position is not unique.

Lemma 7.1.2.
A transposition τ of a permutation will change the number of inversions in

the permutation by an odd number and thus sign (τ) = −1.

Proof. If τ interchanges two adjacent elements αr and αr+1 in the permutation
{α1, α2, . . . , αn}, this will not affect inversions in other elements. Hence the number
of inversions increases by 1 if αr < αr+1 and decreases by 1 otherwise. Suppose
now that τ interchanges αr and αr+q. This can be achieved by first successively
interchanging αr with αr+1, then with αr+2, and finally with αr+q. This takes q
steps. Next the element αr+q is moved in q − 1 steps to the position which αr

previously had. In all it takes an odd number 2q − 1 of transpositions of adjacent
elements, in each of which the sign of the permutation changes.

Definition 7.1.3.
The determinant of a square matrix A ∈ Rn×n is the scalar

det(A) =
∑

α∈Sn

sign (α) a1,α1
a2,α2

· · · an,αn
, (7.1.9)
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where the sum is over all permutations of the set {1, . . . , n} and sign (α) = ±1
according to whether α is an even or odd permutation.

Note that there are n! terms in (7.1.9) and each term contains exactly one
factor from each row and each column in A. It follows easily that det(αA) =
αn det(A) and det(AT ) = det(A). The matrix A is nonsingular if and only if
det(A) 6= 0.

Theorem 7.1.4.
Let the matrix A be nonsingular. Then the solution of the linear system Ax = b

can be expressed as
xi = det(Aj)/ det(A), i = 1 : n, (7.1.10)

where Aj is the matrix A where the jth column has been replaced by the right hand
side b.

The expression (7.1.10) is known as Cramer’s rule.4 Although elegant, it is
both computationally expensive and numerically instable. It should not be used for
numerical computation except in very special cases.

The direct use of the definition (7.1.9) to evaluate det(A) would require about
nn! operations, which rapidly becomes infeasible as n increases. A much more
efficient way to compute det(A) is by repeatedly using the following properties:

Theorem 7.1.5.

(i) The value of the det(A) is unchanged if a row (column) in A multiplied by a
scalar is added to another row (column).

(ii) The determinant of a triangular matrix equals the product of the elements in
the main diagonal, i.e., if U is upper triangular

det(U) = u11u22 · · ·unn.

(iii) If two rows (columns) in A are interchanged the value of det(A) is multiplied
by (−1).

(iv) The product rule det(AB) = det(A) det(B).

For a linear system Ax = b there are three possibilities: it may have no solu-
tion, one unique solution, or an infinite set of solutions. If b ∈ R(A), or equivalently
rank (A, b) = rank (A), the system is said to be consistent. If r = m then R(A)
equals Rm and the system is consistent for all b. Clearly a consistent linear system
always has at least one solution x.

The corresponding homogeneous linear system Ax = 0 is satisfied by any
x ∈ N (A) and thus has (n − r) linearly independent solutions. It follows that if
a solution to an inhomogeneous system Ax = b exists, it is unique only if r = n,
whence N (A) = {0}.

4Named after the Swiss mathematician Gabriel Cramer 1704–1752.
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7.1.4 Partitioning and Block Matrices

A matrix formed by the elements at the intersection of a set of rows and columns
of a matrix A is called a submatrix. For example, the matrices

(

a22 a24

a42 a44

)

,

(

a22 a23

a32 a33

)

,

are submatrices of A. The second submatrix is called a contiguous submatrix since
it is formed by contiguous elements of A.

Definition 7.1.6.
A submatrix of A = (aij) ∈ Rm×n, is a matrix B ∈ Rp×q formed by selecting

p rows and q columns of A,

B =











ai1j1 ai1j2 · · · ai1jq

ai2j1 ai2j2 · · · ai2jq

...
...

. . .
...

aipj1 aipj2 · · · aipjq











,

where
1 ≤ i1 ≤ i2 ≤ · · · ≤ ip ≤ m, 1 ≤ j1 ≤ j2 ≤ · · · ≤ jq ≤ n.

If p = q and ik = jk, k = 1 : p, then B is a principal submatrix of A. If in
addition, ik = jk = k, k = 1 : p, then B is a leading principal submatrix of A.

It is often convenient to think of a matrix (vector) as being built up of con-
tiguous submatrices (subvectors) of lower dimensions. This can be achieved by
partitioning the matrix or vector into blocks. We write, e.g.,

A =











q1 q2 . . . qN

p1 { A11 A12 . . . A1N

p2 { A21 A22 . . . A2N

...
...

...
. . .

...
pM { AM1 AM2 . . . AMN











, x =











p1 { x1

p2 { x2

...
...

pM { xM











(7.1.11)

where AIJ is a matrix of dimension pI ×qJ . We call such a matrix a block matrix.
The partitioning can be carried out in many ways, and is often suggested by the
structure of the underlying problem. For square matrices the most important case
is when M = N , and pI = qI , I = 1 : N . Then the diagonal blocks AII , I = 1 : N ,
are square matrices.

The great convenience of block matrices lies in the fact that the operations
of addition and multiplication can be performed by treating the blocks AIJ as
non-commuting scalars and applying the definitions (7.1.1) and (7.1.2). Therefore
many algorithms defined for matrices with scalar elements have another simple
generalization to partitioned matrices. Of course the dimensions of the blocks must
correspond in such a way that the operations can be performed. When this is the
case, the matrices are said to be partitioned conformally.
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Let A = (AIK) and B = (BKJ) be two block matrices of block dimensions
M ×N and N × P respectively, where the partitioning corresponding to the index
K is the same for each matrix. Then we have C = AB = (CIJ ), where

CIJ =

N
∑

K=1

AIKBKJ , 1 ≤ I ≤M, 1 ≤ J ≤ P.

Often it is convenient to partition a matrix into rows or columns. Let A ∈
Rm×n, B ∈ Rn×p. Then the matrix product C = AB ∈ Rm×p can be written

C = AB = (a1 a2 · · · an)









bT1
bT2
...
bTn









=

n
∑

k=1

akb
T
k , (7.1.12)

where ak ∈ Rm are the columns of A and bTk ∈ Rp the rows in B. Note that each
term in the sum of (7.1.12) is an outer product. The more common inner product
formula is obtained from the partitioning

C = AB =









aT
1

aT
2
...
aT

m









(b1 b2 · · · bp) = (cij), cij = aT
i bj. (7.1.13)

with ai, bj ∈ Rn. Note that when the matrices A and B only have relatively
few nonzero elements the outer product formula (7.1.12) is a more efficient way to
compute AB! Further, if A and x are as in (7.1.11) then the product z = Ax is a
block vector with blocks

zI =
N

∑

K=1

AIKxK , I = 1 : M.

Example 7.1.2.
Assume that the matrices A and B are conformally partitioned into 2×2 block

form. Then
(

A11 A12

A21 A22

) (

B11 B12

B21 B22

)

=

(

A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

)

.

(7.1.14)
Be careful to note that since matrix multiplication is not commutative the order of
the factors in the products cannot be changed! In the special case of block upper
triangular matrices this reduces to

(

R11 R12

0 R22

) (

S11 S12

0 S22

)

=

(

R11S11 R11S12 +R12S22

0 R22S22

)

.
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Note that the product is again block upper triangular and its block diagonal simply
equals the products of the diagonal blocks of the factors.

Let

L =

(

L11 0
L21 L22

)

, U =

(

U11 U12

0 U22

)

, (7.1.15)

be 2×2 block lower and upper triangular matrices, respectively. For an upper block
triangular matrix with square diagonal blocks UII , I = 1 : N we have

det(U) = det(U11) det(U22) · · · det(UNN ), (7.1.16)

Hence U is nonsingular if and only if all its diagonal blocks are nonsingular. Since
det(L) = det(LT ), a similar result holds for a lower block triangular matrix.

If L and U in (7.1.15) are nonsingular with square diagonal blocks, then their
inverses are given by

L−1 =

(

L−1
11 0

−L−1
22 L21L

−1
11 L−1

22

)

, U−1 =

(

U−1
11 −U−1

11 U12U
−1
22

0 U−1
22

)

. (7.1.17)

This can be verified by forming the products L−1L and U−1U using the rule for
multiplying partitioned matrices.

7.1.5 Modified Linear Systems

Consider the block 2 × 2 linear system

(

A B
C D

) (

x
y

)

=

(

b
c

)

.

where A and D are square matrices, and A nonsingular. We can eliminate the
x variables by premultiplying the first block by CA−1 and subtracting from the
second block equations, giving

Sy = c− CA−1b, S = D − CA−1B. (7.1.18)

The matrix S is called the Schur complementof A.5

The elimination can be expressed in matrix form as

(

I 0
−CA−1 I

) (

A B
C D

)

=

(

A B
0 S

)

, (7.1.19)

Inverting the block lower triangular matrix on the left hand side using (7.1.17) we
obtain the block LU factorization

M =

(

A B
C D

)

=

(

I 0
CA−1 I

) (

A B
0 S

)

. (7.1.20)

5Issai Schur (1875–1941) was born in Russia but studied at the University of Berlin, where he
became full professor in 1919. Schur is mainly known for his fundamental work on the theory of
groups but he also worked in the field of matrices.
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From M−1 = (LU)−1 = U−1L−1 using the formulas (7.1.17) for the inverses of
2× 2 block triangular matrices we get the Schur–Banachiewicz inverse formula6

M−1 =

(

A−1 −A−1BS−1

0 S−1

)(

I 0
−CA−1 I

)

=

(

A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)

. (7.1.21)

Similarly, assuming that D is nonsingular, we can factor M into a product of
a block upper and a block lower triangular matrix

M =

(

I BD−1

0 I

) (

T 0
C D

)

, T = A−BD−1C, (7.1.22)

where T is the Schur complement of D in M . (This is equivalent to block Gaussian
elimination in reverse order.) From this factorization an alternative expression of
M−1 can be derived,

M−1 =

(

T−1 −T−1BD−1

−D−1CT−1 D−1 +D−1CT−1BD−1

)

. (7.1.23)

If A and D are nonsingular the two triangular factorizations (7.1.20) and
(7.1.22) both exist. Then, using (7.1.16), it follows that

det(M) = det(A−BD−1C) det(D) = det(A) det(D − CA−1B).

In the special case that D−1 = λ, B = x, and B = y, this gives

det(A− λxyT ) = det(A)(1 − λyTA−1x). (7.1.24)

This shows that det(A− λxyT ) = 0 if λ = 1/yTA−1x, a fact which is useful for the
solution of eigenvalue problems.

The following formula gives an expression for the inverse of a matrix A after
it is modified by a matrix of rank p, and is very useful in situations where p≪ n.

Theorem 7.1.7. [Max A. Woodbury [69]]
Let A and D be square nonsingular matrices and let B and C be matrices of

appropriate dimensions such that (A−BD−1C) exists and is nonsingular. Then

(A−BD−1C)−1 = A−1 +A−1B(D − CA−1B)−1CA−1, (7.1.25)

which is the Woodbury formula.

Proof. The result follows directly by equating the (1, 1) blocks in the inverse M−1

in (7.1.21) and (7.1.23).

6Tadeusz Banachiewicz (1882–1954) Polish astronomer and mathematician. In 1919 he became
the director Cracow Observatory. He developed in 1925 a special kind of matrix algebra for
“cracovians”, which brought him international recognition.
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If we specialize the Woodbury formula to the case where D is a scalar we get
the well known Sherman–Morrison formula

(A− σbcT )−1 = A−1 + αA−1bcTA−1, α = 1/(σ−1 − cTA−1b). (7.1.26)

It follows that (A−σbcT ) is nonsingular if and only if σ 6= 1/cTA−1b. This formula
can be used to cheaply compute the new inverse when a matrix A is modified by
a matrix of rank one. Such formulas are called updating formulas and are widely
used in many contexts.

Frequently it is required to solve a linear problem, where the matrix has been
modified by a correction of low rank. Consider first a linear system Ax = b, where
A ∈ Rn×n is modified by a correction of rank one,

(A− σuvT )x̂ = b. (7.1.27)

Using the Sherman–Morrison formula the solution can be written

(A− σuvT )−1b = A−1b+ αA−1u(vTA−1b), α = 1/(σ−1 − vTA−1u), (7.1.28)

Here x = A−1b is the solution to the original system and vTA−1b = vTx is a scalar.
Hence

x̂ = x+ βw, β = vTx/(σ−1 − vTw), w = A−1u, (7.1.29)

which shows that the solution x̂ can be obtained from x by solving the system
Aw = u. Note that computing A−1 can be avoided.

More generally, consider a linear system where the matrix has been modified
with a matrix of rank p > 1,

(A+ UΣV T )x̂ = b, U, V ∈ Rn×p, (7.1.30)

with Σ ∈ Rp×p nonsingular. Using now the Woodbury formula, we can write

(A− UΣV T )−1b = x+A−1U(Σ−1 − V TA−1U)−1V Tx. (7.1.31)

This formula first requires the solution of the linear systems AW = U with p right
hand sides. The correction is then obtained by solving the linear system of size p×p

(Σ−1 − V TW )z = V Tx,

and forming Wz. If p ≪ n and the solution x = A−1b has been computed by a
direct method it is this scheme is very efficient.

We end this with a note of caution that the updating methods given here can
not be expected to be numerically stable in all cases. In particular, problems will
arise when the initial problem is more illconditioned than the modified one.

7.1.6 The Singular Value Decomposition

The singular value decomposition (SVD) of a matrix A ∈ Rm×n is of great
theoretical and practical importance. Although its history goes back more than a
century its use in numerical computations is much more recent.
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Theorem 7.1.8. (Singular Value Decomposition.)
Every matrix A ∈ Rm×n of rank r can be written

A = UΣV T , Σ =

(

Σ1 0
0 0

)

∈ Rm×n, (7.1.32)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal, Σ1 = diag (σ1, σ2, . . . , σr), and

σ1 ≥ σ2 ≥ . . . ≥ σr > 0.

(Note that if r = n and/or r = m, some of the zero submatrices in Σ disappear.)
The σi are called the singular values of A and if we write

U = (u1, . . . , um), V = (v1, . . . , vn),

the ui, i = 1, . . . ,m, and vi, i = 1, . . . , n, are left and right singular vectors ,
respectively.

Proof. Let f(x) = ‖Ax‖2 = (xTATAx)1/2, the Euclidian length of the vector
y = Ax, and consider the problem

σ1 := max
x

{f(x) | x ∈ Rn, ‖x‖2 ≤ 1}.

Here f(x) is a convex function7 defined on a convex, compact set. It is well known
(see, e.g., Ciarlet [13, Sec. 7.4]) that the maximum σ1 is then attained on an extreme
point of the set. Let v1 be such a point with σ1 = ‖Av1‖, ‖v1‖2 = 1. If σ1 = 0 then
A = 0, and (7.1.32) holds with Σ = 0, and U and V arbitrary orthogonal matrices.
Therefore, assume that σ1 > 0, and set u1 = (1/σ1)Av1 ∈ Rm, ‖u1‖2 = 1. Let the
matrices

V = (v1, V1) ∈ Rn×n, U = (u1, U1) ∈ Rm×m

be orthogonal. (Recall that it is always possible to extend an orthogonal set of
vectors to an orthonormal basis for the whole space.) Since UT

1 Av1 = σ1U
T
1 u1 = 0

it follows that UTAV has the following structure:

A1 ≡ UTAV =

(

σ1 wT

0 B

)

,

where wT = uT
1 AV1 and B = UT

1 AV1 ∈ R(m−1)×(n−1).

∥

∥

∥

∥

A1

(

σ1

w

)∥

∥

∥

∥

2

=

∥

∥

∥

∥

(

σ2
1 + wTw
Bw

)∥

∥

∥

∥

2

≥ σ2
1 + wTw.

We have UA1y = AV y = Ax and, since U and V are orthogonal, it follows that

σ1 = max
‖x‖2=1

‖Ax‖2 = max
‖y‖2=1

‖A1y‖2,

7A function f(x) is convex on a convex set S if for any x1 and x2 in S and any λ with 0 < λ < 1,
we have f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2).
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and hence,

σ1(σ
2
1 + wTw)1/2 ≥

∥

∥

∥

∥

A1

(

σ1

w

)∥

∥

∥

∥

2

.

Combining these two inequalities gives σ1 ≥ (σ2
1 + wTw)1/2, and it follows that

w = 0. The proof can now be completed by an induction argument on the smallest
dimension min(m,n).

The geometrical significance of this theorem is as follows. The rectangular
matrix A represents a mapping from Rn to Rm. The theorem shows that there is
an orthogonal basis in each of these two spaces, with respect to which this mapping
is represented by a generalized diagonal matrix Σ. We remark that a singular value
decomposition A = UΣV H , with U and V unitary, and Σ real diagonal, holds for
any complex matrix A ∈ Cm×n.

The singular values of A are uniquely determined. The singular vector vj ,
j ≤ r, is unique (up to a factor ±1) if σ2

j is a simple eigenvalue of ATA. For
multiple singular values, the corresponding singular vectors can be chosen as any
orthonormal basis for the unique subspace that they span. Once the singular vectors
vj , 1 ≤ j ≤ r have been chosen, the vectors uj, 1 ≤ j ≤ r are uniquely determined,
and vice versa, using

Avj = σjuj , ATuj = σjvj , j = 1, . . . , r. (7.1.33)

If U and V are partitioned according to

U = (U1, U2), U1 ∈ Rm×r, V = (V1, V2), V1 ∈ Rn×r. (7.1.34)

then the SVD can be written in the compact form

A = U1Σ1V
T
1 =

r
∑

i=1

σiuiv
T
i . (7.1.35)

The last expression expresses A as a sum of matrices of rank one.
From (6.2.20) it follows that

ATA = V ΣT ΣV T , AAT = UΣΣTUT .

Thus σ2
j , j = 1, . . . , r are the nonzero eigenvalues of the symmetric and positive

semidefinite matrices ATA and AAT , and vj and uj are the corresponding eigen-
vectors. Hence in principle the SVD can be reduced to the eigenvalue problem for
symmetric matrices. For a proof of the SVD using this relationship see Stewart
[1973, p. 319]. However, this does not lead to a numerically stable way to compute
the SVD, since the singular values are square roots of the eigenvalues.

Definition 7.1.9.
The range of the matrix A ∈ Rm× n, denoted by R(A), is the subspace of

Rm of dimension r = rank (A)

R(A) = {y ∈ Rm| y = Ax, x ∈ Rn}. (7.1.36)
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The null space N (A) of A is a subspace of Rn of dimension n− r:

N (A) = {x ∈ Rn| Ax = 0}. (7.1.37)

The SVD gives complete information about the four fundamental subspaces
associated with A and AT . It is easy to verify that the range of A and nullspace of
AT are given by

R(A) = R(U1) N (AT ) = R(U2) (7.1.38)

Since AT = V ΣTUT it follows that also

R(AT ) = R(V1) N (A) = R(V2). (7.1.39)

We immediately find the well-known relations

R(A)⊥ = N (AT ), N (A)⊥ = R(AT ),

7.1.7 Norms of Vectors and Matrices

In perturbation theory as well as in the analysis of errors in matrix computation it
is useful to have a measure of the size of a vector or a matrix. Such measures are
provided by vector and matrix norms, which can be regarded as generalizations of
the absolute value function on R.

Definition 7.1.10.
A norm on a vector space V ∈ Cn is a function V → R denoted by ‖ · ‖ that

satisfies the following three conditions:

1. ‖x‖ > 0, ∀x ∈ V, x 6= 0 (definiteness)

2. ‖αx‖ = |α| ‖x‖, ∀α ∈ C, x ∈ Cn (homogeneity)

3. ‖x+ y‖ ≤ ‖x‖ + ‖y‖ ∀x, y ∈ V (triangle inequality)

The triangle inequality is often used in the form (see Problem 11)

‖x± y‖ ≥
∣

∣ ‖x‖ − ‖y‖
∣

∣.

The most common vector norms are special cases of the family of Hölder
norms or p-norms

‖x‖p = (|x1|p + |x2|p + · · · + |xn|p)1/p, 1 ≤ p <∞. (7.1.40)

The three most important particular cases are p = 1, 2 and the limit when p→ ∞:

‖x‖1 = |x1| + · · · + |xn|,
‖x‖2 = (|x1|2 + · · · + |xn|2)1/2 = (xHx)1/2, (7.1.41)

‖x‖∞ = max
1≤i≤n

|xi|.
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A vector norm‖ · ‖ is called absolute if ‖x‖ = ‖ |x| ‖, and monotone if
|x| ≤ |y| ⇒ ‖x‖ ≤ ‖y‖. It can be shown that a vector norm is monotone if and
only if it is absolute; see Stewart and Sun [61, Theorem II.1.3]. Clearly the vector
p-norms are absolute for all 1 ≤ p <∞.

The vector 2-norm is also called the Euclidean norm. It is invariant under
unitary (orthogonal) transformations since

‖Qx‖2
2 = xHQHQx = xHx = ‖x‖2

2

if Q is orthogonal.
The proof that the triangle inequality is satisfied for the p-norms depends on

the following inequality. Let p > 1 and q satisfy 1/p+ 1/q = 1. Then it holds that

αβ ≤ αp

p
+
βp

q
.

Indeed, let x and y be any real number and λ satisfy 0 < λ < 1. Then by the
convexity of the exponential function it holds that

eλx+(1−λ)y ≤ λex + (1 − λ)ey.

We obqatin the desired result by setting λ = 1/p, x = p logα and x = q log β.
Another important property of the p-norms is the Hölder inequality

|xHy| ≤ ‖x‖p‖y‖q,
1

p
+

1

q
= 1, p ≥ 1. (7.1.42)

For p = q = 2 this becomes the well known Cauchy–Schwarz inequality

|xHy| ≤ ‖x‖2‖y‖2.

Another special case is p = 1 for which we have

|xHy| =

∣

∣

∣

∣

n
∑

i=1

xH
i yi

∣

∣

∣

∣

≤
n

∑

i=1

|xH
i yi| ≤ max

i
|yi|

n
∑

i=1

|xi| = ‖x‖1‖y‖∞. (7.1.43)

Definition 7.1.11.
For any given vector norm ‖ · ‖ on Cn the dual norm ‖ · ‖D is defined by

‖x‖D = max
y 6=0

|xHy|/‖y‖. (7.1.44)

The vectors in the set

{y ∈ Cn | ‖y‖D‖x‖ = yHx = 1}. (7.1.45)

are said to be dual vectors to x with respect to ‖ · ‖.
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It can be shown that the dual of the dual norm is the original norm (see [61,
Theorem II.1.12]). It follows from the Hölder inequality that the dual of the p-norm
is the q-norm, where

1/p+ 1/q = 1.

The dual of the 2-norm can be seen to be itself. It can be shown to be the only
norm with this property (see [42, Theorem5.4.16]).

The vector 2-norm can be generalized by taking

‖x‖2
2,G = (x, x) = xHGx, (7.1.46)

where G is a Hermitian positive definite matrix. It can be shown that the unit ball
{x : ‖x‖ ≤ 1} corresponding to this norm is an ellipsoid, and hence they are also
called elliptic norms. Other generalized norms are the scaled p-norms defined by

‖x‖p,D = ‖Dx‖p, D = diag (d1, . . . , dn), di 6= 0, i = 1 : n. (7.1.47)

All norms on Cn are equivalent in the following sense: For each pair of norms
‖ · ‖ and ‖ · ‖′ there are positive constants c and c′ such that

1

c
‖x‖′ ≤ ‖x‖ ≤ c′‖x‖′, ∀x ∈ Cn. (7.1.48)

In particular, it can be shown that for the p-norms we have

‖x‖q ≤ ‖x‖p ≤ n(1/p−1/q)‖x‖q, 1 ≤ p ≤ q ≤ ∞. (7.1.49)

For example, setting p = 2 and q = ∞ we obtain

‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞,

We now consider matrix norms. Given any vector norm, we can construct
a matrix norm by defining

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖ = sup

‖x‖=1

‖Ax‖. (7.1.50)

This norm is called the operator norm, or the matrix norm subordinate to the
vector norm. From the definition it follows directly that

‖Ax‖ ≤ ‖A‖ ‖x‖, ∀x ∈ Cn. (7.1.51)

Whenever this inequality holds, we say that the matrix norm is consistent with
the vector norm.

It is an easy exercise to show that operator norms are submultiplicative,
i.e., whenever the product AB is defined it satisfies the condition

4. N(AB) ≤ N(A)N(B)

Explicit expressions for the matrix norms subordinate to the vector p-norms
are known only for p = 1, 2,∞:
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Theorem 7.1.12.
For p = 1, 2 ∞ the matrix subordinate p-norm are given by

‖A‖1 = max
1≤j≤n

m
∑

i=1

|aij |, (7.1.52)

‖A‖2 = max
‖x‖=1

(xHAHAx)1/2 = σ1(A), (7.1.53)

‖A‖∞ = max
1≤i≤m

n
∑

j=1

|aij |. (7.1.54)

Proof. To prove the result for p = 1 we partition A = (a1, . . . , an) by columns For
any x = (x1, . . . , xn)T 6= 0 we have

‖Ax‖1 =

∥

∥

∥

∥

n
∑

j=1

xjaj

∥

∥

∥

∥

1

≤
n

∑

j=1

|xj |‖aj‖1 ≤ max
1≤j≤n

‖aj‖1‖|x‖1.

It follows that ‖Ax‖1 ≤ max
1≤j≤n

‖aj‖1 = ‖ak‖1, for some 1 ≤ k ≤ n. But then

‖Aek‖1 = ‖ak‖1 = max
1≤j≤n

‖aj‖1,

and hence ‖A‖1 ≥ max
1≤j≤n

‖aj‖1. This implies (7.1.52). The formula (7.1.54) for

the matrix ∞-norm is proved in a similar fashion. The expression for the 2-norm
follows from the extremal property

max
‖x‖=1

‖Ax‖2 = max
‖x‖=1

‖UΣV Tx‖2 = σ1(A)

of the singular vector x = v1.

For p = 1 and p = ∞ the matrix subordinate norms are easily computable.
Note that the 1-norm is the maximal column sum and the ∞-norm is the maximal
row sum of the magnitude of the elements. It follows that ‖A‖1 = ‖AH‖∞.

The 2-norm, also called the spectral norm, equals the largest singular value
σ1(A) of A. It has the drawback that it is expensive to compute. but is a useful
analytical tool. Since the nonzero eigenvalues of AHA and AAH are the same it
follows that ‖A‖2 = ‖AH‖2. An upper bound for the matrix 2-norm is

‖A‖2 ≤ (‖A‖1‖A‖∞)1/2. (7.1.55)

The proof of this bound is given as an exercise in Problem 16.
Another way to proceed in defining norms for matrices is to regard Cm×n as

an mn-dimensional vector space and apply a vector norm over that space.
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Definition 7.1.13.
The Frobenius norm8 is derived from the vector 2-norm

‖A‖F =
(

m
∑

i=1

n
∑

j=1

|aij |2
)1/2

(7.1.56)

The Frobenius norm is submultiplicative, but is often larger than necessary,
e.g., ‖In‖F = n1/2. This tends to make bounds derived in terms of the Frobenius
norm not as sharp as they might be. From (7.1.58) it follows that

1√
n
‖A‖F ≤ ‖A‖2 ≤ ‖A‖F , k = min(m,n). (7.1.57)

Note that ‖AH‖F = ‖A‖F . Useful alternative characterizations of the Frobenius
norm are

‖A‖2
F = trace (AHA) =

k
∑

i=1

σ2
i (A), k = min(m,n), (7.1.58)

where σi(A) are the nonzero singular values of A. Of the matrix norms the 1-,∞-
and the Frobenius norm are absolute, but for the 2-norm the best result is

‖ |A| ‖2 ≤ n1/2‖A‖2.

Table 7.1.1. Numbers γpq such that ‖A‖p ≤ γpq‖A‖q, where A ∈ Cm×n

and rank (A) = r.

p\q 1 2 ∞ F
1 1

√
m m

√
m

2
√
n 1

√
m

√
mn

∞ n
√
n 1

√
n

F
√
n

√
r

√
m 1

The Frobenius norm shares with the 2-norm the property of being invariant
with respect to unitary (orthogonal) transformations

‖QAP‖ = ‖A‖. (7.1.59)

Such norms are called unitarily invariant and have an interesting history; see
Stewart and Sun [61, Sec. II.3].

8Ferdinand George Frobenius (1849–1917) German mathematician, professor at ETH Zürich
(1875–1892) before he succeeded Weierstrass at Berlin University.
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Theorem 7.1.14.
Let ‖ · ‖ be a unitarily invariant norm. Then ‖A‖ is a symmetric function of

the singular values
‖A‖ = Φ(σ1, . . . , σn).

Proof. Let the singular value decomposition of A be A = UΣV T . Then the
invariance implies that ‖A‖ = ‖Σ‖, which shows that Φ(A) only depends on Σ.
Since the ordering of the singular values in Σ is arbitrary Φ must be symmetric in
σi, i = 1 : n.

Unitarily invariant norms were characterized by John von Neumann [52], who
showed that the converse of Theorem 7.1.14 is true: A function Φ(σ1, . . . , σn)
which is symmetric in its arguments and satisfies the three properties in the Def-
inition 7.1.10 of a vector norm defines a unitarily invariant matrix norm. In this
connection such functions are called symmetric gauge functions. Two examples
are

‖A‖2 = max
i
σi, ‖A‖F =

( n
∑

i=1

σ2
i

)1/2

.

One use of norms is the study of limits of sequences of vectors and matrices
(see Sec. 9.2.4). Consider an infinite sequence x1, x2, . . . of elements of a vector
space V and let ‖ · ‖ be a norm on V. The sequence is said to converge (strongly if
V is infinite dimensional) to a limit x ∈ V, and we write limk→∞ xk = x if

lim
k→∞

‖xk − x‖ = 0,

For a finite dimensional vector space it follows from the equivalence of norms
that convergence is independent of the choice of norm. The particular choice ‖ ·
‖∞ shows that convergence of vectors in Cn is equivalent to convergence of the
n sequences of scalars formed by the components of the vectors. By considering
matrices in Cm×n as vectors in Cmn the same conclusion holds for matrices.

7.1.8 Conditioning of Linear Systems

Consider a linear system Ax = b where A is nonsingular and b 6= 0. The sensitivity
of the solution x and the inverse A−1 to perturbations in A and b is of practical
importance, since the matrix A and vector b are rarely known exactly. They may be
subject to observational errors, or given by formulas which involve roundoff errors
in their evaluation. (Even if they were known exactly, they may not be represented
exactly as floating-point numbers in the computer.)

We start with deriving some results that are needed in the analysis.

Lemma 7.1.15.
Let E ∈ Rn×n be a matrix for which ‖E‖ < 1. Then the matrix (I − E) is

nonsingular and for its inverse we have the estimate

‖(I − E)−1‖ ≤ 1/(1 − ‖E‖). (7.1.60)
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Proof. If (I − E) is singular there exists a vector x 6= 0 such that (I − E)x = 0.
Then x = Ex and ‖x‖ = ‖Ex‖ ≤ ‖E‖ ‖x‖ < ‖x‖, which is a contradiction since
‖x‖ 6= 0. Hence (I − E) is nonsingular.

Next consider the identity (I − E)(I − E)−1 = I or

(I − E)−1 = I + E(I − E)−1.

Taking norms we get

‖(I − E)−1‖ ≤ 1 + ‖E‖ ‖(I − E)−1‖,

and (7.1.60) follows. (For another proof, see hint in Problem 7.2.19.)

Corollary 7.1.16.
Assume that ‖B −A‖‖B−1‖ = η < 1. Then it holds that

‖A−1‖ ≤ 1

1 − η
‖B−1‖, ‖A−1 −B−1‖ ≤ η

1 − η
‖B−1‖.

Proof. We have ‖A−1‖ = ‖A−1BB−1‖ ≤ ‖A−1B‖ ‖B−1‖. The first inequality
then follows by taking E = B−1(B − A) = I − B−1A in Lemma 7.1.15. From the
identity

A−1 −B−1 = A−1(B −A)B−1 (7.1.61)

we have ‖A−1 −B−1‖ ≤ ‖A−1‖ ‖B−A‖ ‖B−1‖. The second inequality now follows
from the first.

Let x be the solution x to a system of linear equations Ax = b, and let x+ δx
satisfy the perturbed system

(A+ δA)(x + δx) = b+ δb,

where δA and δb are perturbations in A and b. Subtracting out Ax = b we get

(A+ δA)δx = −δAx+ δb.

Assuming that A and A + δA are nonsingular, we can multiply by A−1 and solve
for δx. This yields

δx = (I +A−1δA)−1A−1(−δAx+ δb), (7.1.62)

which is the basic identity for the perturbation analysis.
In the simple case that δA = 0, we have δx = A−1δb, which implies that

|δx| = |A−1| |δb|, Taking norms

‖δx‖ ≤ ‖A−1‖ ‖δb‖.
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Usually it is more appropriate to consider relative perturbations,

‖δx‖
‖x‖ ≤ κ(A, x)

‖δb‖
‖b‖ , κ(A, x) :=

‖Ax‖
‖x‖ ‖A−1‖. (7.1.63)

Here κ(A, x) is the condition number with respect to perturbations in b. It is
important to note that this implies that the size of the residual vector r = b − Ax̄
gives no direct indication of the error in an approximate solution x̄. For this we
need information about A−1 or the condition number κ(A, x).

The inequality (7.1.63) is sharp in the sense that for any matrix norm and
for any A and b there exists a perturbation δb, such that equality holds. From
‖b‖ = ‖Ax‖ ≤ ‖A‖ ‖x‖ it follows that

κ(A, x) ≤ ‖A‖ ‖A−1‖, (7.1.64)

but here equality will hold only for rather special right hand sides b. Equation
(7.1.64) motivates the following definition:

Definition 7.1.17. For a square nonsingular matrix A the condition number is

κ = κ(A) = ‖A‖ ‖A−1‖. (7.1.65)

where ‖ · ‖ denotes any matrix norm.

Clearly κ(A) depends on the chosen matrix norm. If we want to indicate that
a particular norm is used, then we write, e.g., κ∞(A) etc. For the 2-norm we have
using the SVD that ‖A‖2 = σ1 and ‖A−1‖ = 1/σn, where σ1 and σn are the largest
and smallest singular values of A. Hence

κ2(A) = σ1/σn. (7.1.66)

Note that κ(αA) = κ(A), i.e., the condition number is invariant under multiplication
of A by a scalar. From the definition it also follows easily that

κ(AB) ≤ κ(A)κ(B).

Further, for all p-norms it follows from the identity AA−1 = I that

κp(A) = ‖A‖p‖A−1‖p ≥ ‖I‖p = 1,

that is, the condition number is always greater or equal to one.
We now show that κ(A) also is the condition number with respect to pertur-

bations in A.

Theorem 7.1.18.
Consider the linear system Ax = b, where the matrix A ∈ Rn×n is nonsingu-

lar. Let (A+ δA)(x + δx) = b+ δb be a perturbed system and assume that

η = ‖A−1‖ ‖δA‖ < 1.
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Then (A+ δA) is nonsingular and the norm of the perturbation δx is bounded by

‖δx‖ ≤ ‖A−1‖
1 − η

(‖δA‖ ‖x‖ + ‖δb‖) . (7.1.67)

Proof. Taking norms in equation (7.1.62) gives

‖δx‖ ≤ ‖(I +A−1δA)−1‖ ‖A−1‖
(

‖δA‖ ‖x‖ + ‖δb‖
)

.

By assumption ‖A−1δA‖ ≤ ‖A−1‖ ‖δA‖ = η < 1. Using Lemma 7.1.15 it follows
that (I +A−1δA) is nonsingular and

‖(I +A−1δA)−1‖ ≤ 1/(1 − η),

which proves the result.

In most practical situations it holds that η ≪ 1 and therefore 1/(1 − η] ≈ 1.
Therefore, if upper bounds

‖δA‖ ≤ ǫA‖A‖, ‖δb‖ ≤ ǫb‖b‖, (7.1.68)

for ‖δA‖ and ‖δb‖ are known, then for the normwise relative perturbation it holds
that

‖δx‖
‖x‖ / κ(A)

(

ǫA + ǫb
‖b‖

‖A‖‖x‖

)

.

Substituting b = I, δb = 0 and x = A−1 in (7.1.67) and proceeding similarly
from (A+ δA)(X + δX) = I, we obtain the perturbation bound for X = A−1

‖δX‖
‖X‖ ≤ κ(A)

1 − η

‖δA‖
‖A‖ . (7.1.69)

This shows that κ(A) is indeed the condition number of A with respect to inversion.
The relative distance of a matrix A to the set of singular matrices in some

norm is defined as

dist (A) := min

{‖δA‖
‖A‖ | (A+ δA) singular

}

. (7.1.70)

The following theorem shows that the reciprocal of the condition number κ(A) can
be interpreted as a measure of the nearness to singularity of a matrix A.

Theorem 7.1.19 (Kahan [47]).
Let A ∈ Cn×n be a nonsingular matrix and κ(A) = ‖A‖‖A−1‖ the condition

number with respect to a norm ‖ · ‖ subordinate to some vector norm. Then

dist (A) = κ−1(A). (7.1.71)
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Proof. If (A+δA) is singular, then there is a vector x 6= 0 such that (A+δA)x = 0.
Then, setting y = Ax, it follows that

‖δA‖ ≥ ‖δAx‖
‖x‖ =

‖Ax‖
‖x‖ =

‖y‖
‖A−1y‖ ≥ 1

‖A−1‖ =
‖A‖
κ(A)

,

or ‖δA‖/‖A‖ ≥ 1/κ(A).
Now let x be a vector with ‖x‖ = 1 such that ‖A−1x‖ = ‖A−1‖. Set y =

A−1x/‖A−1‖ so that ‖y‖ = 1 and Ay = x/‖A−1‖. Let z be a dual vector to y so
that (see Definition 7.1.11) ‖z‖D‖y‖ = zHy = 1, where ‖ · ‖D is the dual norm.
Then ‖z‖D = 1, and if we take

δA = −xzH/‖A−1‖,

it follows that

(A+ δA)y = Ay − xzHy/‖A−1‖ = (x− x)/‖A−1‖ = 0.

Hence (A+ δA) is singular. Further

‖δA‖‖A−1‖ = ‖xzH‖ = max
‖v‖=1

‖(xzH)v‖ = ‖x‖ max
‖v‖=1

|zHv| = ‖z‖D = 1,

and thus ‖δA‖ = 1/‖A−1‖, which proves the theorem.

The result in Theorem 7.1.19 can be used to get a lower bound for the condition
number κ(A), see, Problem 21. For the 2-norm the result follows directly from the
SVD A = UΣV H . The closest singular matrix then equals A+ δA, where

δA = −σnunv
H
n , ‖δA‖2 = σn = 1/‖A−1‖2. (7.1.72)

Matrices with small condition numbers are said to be well-conditioned. For
any real, orthogonal matrix Q we have κ2(Q) = ‖Q‖2‖Q−1‖2 = 1, so Q is perfectly
conditioned in the 2-norm. Furthermore, for any orthogonal P and Q, we have
κ2(PAQ) = κ2(A), i.e., κ2(A) is invariant under orthogonal transformations.

When a linear system is ill-conditioned, i.e. κ(A) ≫ 1, roundoff errors will in
general cause a computed solution to have a large error. It is often possible to show
that a small backward error in the following sense:

Definition 7.1.20.
An algorithm for solving a linear system Ax = b is said to be (normwise)

backward stable if, for any data A ∈ Rn×n and b ∈ Rn, there exist perturbation
matrices and vectors δA and δb, such that the solution x̄ computed by the algorithm
is the exact solution to a neighbouring system

(A+ δA)x̄ = (b+ δb), (7.1.73)

where
‖δA‖ ≤ c1(n)u‖A‖, ‖δb‖ ≤ c2(n)u‖b‖.
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A computed solution x̄ is called a (normwise) stable solution if it satisfies (7.1.73).

Since the data A and b usually are subject to errors and not exact, it is
reasonable to be satisfied with the computed solution x̄ if the backward errors δA
and δb are small in comparison to the uncertainties in A and b. As seen from
(7.1.64), this does not mean that x̄ is close to the exact solution x.

Review Questions

1. Define the concepts:

(i) Real symmetric matrix. (ii) Real orthogonal matrix.

(iii) Real skew-symmetric matrix. (iv) Triangular matrix.

(v) Hessenberg matrix.

2. (a) Given a vector norm define the matrix subordinate norm.

(b) Give explicit expressions for the matrix p norms for p = 1, 2,∞.

3. Define the p norm of a vector x. Show that

1

n
‖x‖1 ≤ 1√

n
‖x‖2 ≤ ‖x‖∞,

which are special cases of (7.1.49).

4. Verify the formulas (7.1.21) for the inverse of a 2×2 block triangular matrices.

Problems

1. Show that if R ∈ Rn×n is strictly upper triangular, then Rn = 0.

2. If A and B are square upper triangular matrices show that AB is upper
triangular, and that A−1 is upper triangular if it exists. Is the same true for
lower triangular matrices?

3. To solve a linear system Ax = b, where A ∈ Rn, by Cramer’s rule (see
Equation (7.1.10) requires the evaluation of n + 1 determinants of order n.
Estimate the number of multiplications needed for n = 50 if the determinants
are evaluated in the naive way. Estimate the time it will take on a computer
performing 109 floating point operations per second!

4. Show that if the complex matrix U = Q1+iQ2 is unitary, then the real matrix

Ũ =

(

Q1 −Q2

Q2 Q1

)

is orthogonal.

5. Let A ∈ Rn×n be a given matrix. Show that if Ax = y has at least one solution
for any y ∈ Rn, then it has exactly one solution for any y ∈ Rn. (This is a
useful formulation for showing uniqueness of approximation formulas.)
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6. Let A ∈ Rm×n have rows aT
i , i.e., AT = (a1, . . . , am). Show that

ATA =
m

∑

i=1

aia
T
i .

What is the corresponding expression for ATA if A is instead partitioned into
columns?

7. Let S ∈ Rn×n be skew-Hermitian, i.e. SH = −S.

(a) Show that I − S is nonsingular.

(b) Show that the matrix Q = (I−S)−1(I+S), known as the Cayley trans-
form9 is unitary, i.e., QHQ = I.

8. Show that for x ∈ Rn,
lim

p→∞

‖x‖p = max
1≤i≤n

|xi|.

9. Prove that the following inequalities are valid and best possible:

‖x‖2 ≤ ‖x‖1 ≤ n1/2‖x‖2, ‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞.

Derive similar inequalities for the comparison of the operator norms ‖A‖1,
‖A‖2, and ‖A‖∞.

10. Show that any vector norm is uniformly continuous by proving the inequality

| ‖x‖ − ‖y‖ | ≤ ‖x− y‖, x, y ∈ Rn.

11. Show that for any matrix norm there exists a consistent vector norm.

Hint: Take ‖x‖ = ‖xyT ‖ for any vector y ∈ Rn, y 6= 0.

12. Derive the formula for ‖A‖∞ given in Theorem 7.1.12.

13. Make a table corresponding to Table 7.1.1 for the vector norms p = 1, 2,∞.

14. Prove that for any subordinate matrix norm

‖A+B‖ ≤ ‖A‖ + ‖B‖, ‖AB‖ ≤ ‖A‖‖B‖.

15. Show that ‖A‖2 = ‖PAQ‖2 if P and Q are orthogonal matrices.

16. Use the result ‖A‖2
2 = ρ(ATA) ≤ ‖ATA‖, valid for any matrix operator norm

‖ · ‖, where ρ(ATA) denotes the spectral radius of ATA, to deduce the upper
bound in (7.1.55).

17. Prove the expression (7.1.54) for the matrix norm subordinate to the vector
∞-norm.

18. (a) Let T be a nonsingular matrix, and let ‖ · ‖ be a given vector norm. Show
that the function N(x) = ‖Tx‖ is a vector norm.

(b) What is the matrix norm subordinate to N(x)?

(c) If N(x) = maxi |kixi|, what is the subordinate matrix norm?
9Arthur Cayley (1821–1895), English mathematician, is credited with developing the algebra

of matrices. Although he worked as a lawyer for many years before he became Sadlerian professor
at Cambridge in 1863, he has authored more than 900 papers.
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19. Consider an upper block triangular matrix

R =

(

R11 R12

0 R22

)

,

and suppose that R−1
11 and R−1

22 exists. Show that R−1 exists.

20. Use the Woodbury formula to prove the identity

(I −AB)−1 = I +A(I −BA)−1B.

21. (a) Let A−1 be known and let B be a matrix coinciding with A except in one
row. Show that if B is nonsingular then B−1 can be computed by about 2n2

multiplications using the Sherman–Morrison formula (7.1.26).

(b) Use the Sherman–Morrison formula to compute B−1 if

A =







1 0 −2 0
−5 1 11 −1
287 −67 −630 65
−416 97 913 −94






, A−1 =







13 14 6 4
8 −1 13 9
6 7 3 2
9 5 16 11






,

and B equals A except that the element 913 has been changed to 913.01.

22. Use the result in Theorem 7.1.19 to obtain the lower bound κ∞(A) ≥ 3/(2|ǫ|) =
1.5|ǫ|−1 for the matrix

A =





1 −1 1
−1 ǫ ǫ
1 ǫ ǫ



 , 0 < |ǫ| < 1.

(The true value is κ∞(A) = 1.5(1 + |ǫ|−1).)

7.2 Elimination Methods

7.2.1 Triangular Matrices

An upper triangular matrix is a matrix U for which uij = 0 whenever i > j. A
square upper triangular matrix has form

U =









u11 u12 . . . u1n

u22 . . . u2n

. . .
...

. . . unn









.

If also uij = 0 when i = j then U is strictly upper triangular. Similarly a matrix
L is lower triangular if lij = 0, i < j, and strictly lower triangular if lij = 0,
i ≤ j. Clearly the transpose of an upper triangular matrix is lower triangular and
vice versa.
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Triangular matrices have several nice properties. It is easy to verify that
sums, products and inverses of square upper (lower) triangular matrices are again
triangular matrices of the same type. The diagonal elements of the product U =
U1U2 of two triangular matrices are just the product of the diagonal elements in U1

and U2. From this it follows that the diagonal elements in U−1 are the inverse of
the diagonal elements in U .

Triangular linear systems are easy to solve. In an upper triangular linear
system Ux = b, the unknowns can be computed recursively from

xn = bn/unn xi =
(

bi −
n

∑

k=i+1

uikxk

)/

uii, i = n− 1 : 1. (7.2.1)

Since the unknowns are solved for in backward order, this is called back-substitution.
Similarly, in a lower triangular linear system Ly = c, the unknowns can be computed
by forward-substitution.

y1 = c1/u11 yi =
(

ci −
i−1
∑

k=1

likyk

)/

lii, i = 2 : n. (7.2.2)

When implementing a matrix algorithm such as (7.2.1) or (7.2.2) on a com-
puter, the order of operations in matrix algorithms may be important. One reason
for this is the economizing of storage, since even matrices of moderate dimensions
have a large number of elements. When the initial data is not needed for future
use, computed quantities may overwrite data. To resolve such ambiguities in the
description of matrix algorithms it is important to be able to describe computa-
tions in a more precise form. For this purpose we will use an informal programming
language, which is sufficiently precise for our purpose but allows the suppression
of cumbersome details. These concepts are illustrated for the back-substitution
(7.2.1). in the following program where the solution vector x overwrites the data
vector b.

Algorithm 7.2.1 Back-substitution.
Given an upper triangular matrix U ∈ Rn×n and a vector b ∈ Rn, the following

algorithm computes x ∈ Rn such that Ux = b:

for i = n : −1 : 1

s :=

n
∑

k=i+1

uikbk;

bi := (bi − s)/uii;

end

Here := is the assignment symbol and x := y means that the value of y is assigned
to x. Note that in order to minimize round-off errors bi is added last to the sum;
compare the error bound (2.4.3).
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Another possible sequencing of the operations is:

for k = n : −1 : 1

bk := bk/ukk;

for i = k − 1 : −1 : 1

bi := bi − uikbk;

end

end

Here the elements in U are accessed column-wise instead of row-wise as in the
previous algorithm. Such differences can influence the efficiency when implementing
matrix algorithms. For example, if U is stored column-wise as is the convention in
Fortran, the second version is to be preferred.

We will often use the concept of a flop, to mean roughly the amount of work
associated with the computation

s := s+ aikbkj ,

i.e., one floating point addition and multiplication and some related subscript com-
putation.10 With this notation solving a triangular system requires 1

2n
2 flam.

7.2.2 Gaussian Elimination

Consider a linear system Ax = b, where the matrix A ∈ Rm×n, and vector b ∈ Rm

are given and the vector x ∈ Rn is to be determined, i.e.,









a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

















x1

x2
...
xn









=









b1
b2
...
bm









. (7.2.3)

A fundamental observation is that the following elementary operation can be per-
formed on the system without changing the set of solutions:

• Adding a multiple of the ith equation to the jth equation.

• Interchange two equations.

These correspond in an obvious way to row operations on the augmented matrix
(A, b). It is also possible to interchange two columns in A provided we make the
corresponding interchanges in the components of the solution vector x.

The idea behind Gaussian elimination11 is to use such elementary opera-
tions to eliminate the unknowns in the system Ax = b in a systematic way, so that

10Note that in older textbooks this was called a flop. However, in more recent books (e.g.,
Higham [41, ]) a flop is instead defined as a floating point add or multiply.

11Named after Carl Friedrich Gauss (1777–1855), but known already in China as early as the
first century BC.



32 Chapter 7. Direct Methods for Solving Linear System

at the end an equivalent upper triangular system is produced, which is then solved
by back-substitution. If a11 6= 0, then in the first step we eliminate x1 from the last
(n− 1) equations by subtracting the multiple

li1 = ai1/a11, i = 2 : n,

of the first equation from the ith equation. This produces a reduce system of (n−1)
equations in the (n− 1) unknowns x2 : xn, where the new coefficients are given by

a
(2)
ij = aij − li1a1j , b

(2)
i = bi − li1b1, i = 2 : n.

If a
(2)
22 6= 0, we can next in a similar way eliminate x2 from the last (n− 2) of these

equations. After k − 1 steps, k ≤ min(m,n), of Gaussian elimination the matrix A
has been reduced to the form

A(k) =





















a
(1)
11 a

(1)
12 · · · a

(1)
1k · · · a

(1)
1n

a
(2)
22 · · · a

(2)
2k · · · a

(2)
2n

. . .
...

...
a
(k)
kk · · · a

(k)
kn

...
...

a
(k)
mk · · · a

(k)
mn





















, b(k) =

















b
(1)
1

b
(2)
2

b
(k)
k
...
b
(k)
m

















, (7.2.4)

where we have put A(1) = A, b(1) = b. The diagonal elements a11, a
(2)
22 , a

(3)
33 , . . . ,

which appear during the elimination are called pivotal elements.
Let Ak denote the kth leading principal submatrix of A. Since the determinant

of a matrix does not change under row operations the determinant of Ak equals the
product of the diagonal elements then by (7.2.5)

det(Ak) = a
(1)
11 · · · a(k)

kk , k = 1 : n.

For a square system, i.e. m = n, this implies that all pivotal elements a
(i)
ii , i = 1 : n,

in Gaussian elimination are nonzero if and only if det(Ak) 6= 0, k = 1 : n. In this
case we can continue the elimination until after (n − 1) steps we get the single
equation

a(n)
nn xn = b(n)

n (a(n)
nn 6= 0).

We have now obtained an upper triangular system A(n)x = b(n), which can be
solved recursively by back-substitution (7.2.1). We also have

det(A) = a
(1)
11 a

(2)
22 · · ·a(n)

nn . (7.2.5)

We have seen that if in Gaussian elimination a zero pivotal element is en-

countered, i.e., a
(k)
kk = 0 for some k ≤ n, then we cannot proceed and it seems the

algorithm breaks down.
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Example 7.2.1. Consider the system
(

ǫ 1
1 1

) (

x1

x2

)

=

(

1
0

)

.

For ǫ 6= 1 this system is nonsingular and has the unique solution x1 = −x2 =
−1/(1 − ǫ). However, when a11 = ǫ = 0 the first step in Gaussian elimination
cannot be carried through. The remedy here is obviously to interchange the two
equations, which directly gives an upper triangular system.

Suppose that in step k of Gaussian elimination we have a
(k)
kk = 0. (The equa-

tions may have been reordered in previous steps, but we assume that the notations
have been changed accordingly.) If A is nonsingular, then in particular its first k
columns are linearly independent. This must also be true for the first k columns

of the reduced matrix. Hence some element a
(k)
ik , i = k : n must be nonzero, say

a
(k)
pk 6= 0. By interchanging rows k and p this element can be taken as pivot and

it is possible to proceed with the elimination. The important conclusion is that
any nonsingular system of equations can be reduced to triangular form by Gaussian
elimination if appropriate row interchanges are used.

Note that when rows are interchanged in A the same interchanges must be
made in the elements of the vector b. Note also that the determinant formula (7.2.5)
must be modified to

det(A) = (−1)sa
(1)
11 a

(2)
22 · · · a(n)

nn , (7.2.6)

where s denotes the total number of row and columns interchanges performed.

If rank (A) < n then it is possible that at some step k we have a
(k)
ik = 0,

i = k : n. If the entire submatrix a
(k)
ij , i, j = k : n, is zero, then rank (A) = k and

we stop. Otherwise there is a nonzero element, say a
(k)
pq 6= 0, which can be brought

into pivoting position by interchanging rows k and p and columns k and q. (Note
that when columns are interchanged in A the same interchanges must be made in
the elements of the solution vector x.) Proceeding in this way any matrix A can
always be reduced to upper trapezoidal form,

A(r) =

























a
(1)
11 · · · a

(1)
1r a

(1)
1,r+1 · · · a

(1)
1n

0
. . .

...
...

...
... a

(r)
rr a

(r)
r,r+1 · · · a

(r)
rn

0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 0 · · · 0

























, b(r) =























b
(1)
1
...

b
(r)
r

b
(r+1)
r+1

...

b
(r+1)
m























. (7.2.7)

Here the number r of linearly independent rows in a matrix A equals the number
of independent columns in A is the rank of A.

From the reduced form (7.2.7) we can read off the rank of A. The two rect-
angular zero blocks in A(r) have dimensions (m − r) × r and (m − r) × (n − r),
respectively. We deduce the following:
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1. The system Ax = b has a unique solution if and only if r = m = n.

2. If b
(r+1)
k = 0, k = r + 1 : m, then the system Ax = b is consistent and

has an infinite number of solutions. We can assign arbitrary values to the
last n − r components of (the possibly permuted) solution vector x. The
first r components are then uniquely determined and obtained using back-
substitution with the nonsingular triangular matrix in the upper left corner.

3. If b
(r+1)
k 6= 0, for some k > r, the the system Ax = b is inconsistent and has

no solution. Then we have to be content with finding x such that the residual
vector r = b−Ax is small in some sense.

In principle, the reduced trapezoidal form (7.2.7) obtained by Gaussian elimi-
nation yields the rank of a the matrix A, and also answers the question whether the
given system is consistent or not. However, this is the case only if exact arithmetic
is used. In floating point calculations it may be difficult to decide if a pivot element,
or an element in the transformed right hand side, should be considered as zero or
nonzero. For example, a zero pivot in exact arithmetic will almost invariably be
polluted by roundoff errors in such a way that it equals some small nonzero number.
What tolerance to use to decide when a pivot should be taken to be zero will depend
on the context. In order to treat this question in a satisfactory way we need the
concept numerical rank, which will be introduced in Section 8.3.3.

Another question, which we have to leave unanswered for a while, concerns
underdetermined and overdetermined systems, which arise quite frequently in prac-
tice! Problems where there are more parameters than needed to span the right hand
side lead to underdetermined systems. In this case we need additional information
in order to decide which solution to pick. On the other hand, overdetermined sys-
tems arise when there is more data than needed to determine the solution. In this
case the system usually is inconsistent and there is no solution. Now the question
can be posed, how to find a solution, which in some sense best approximates the
right hand side? These questions are related, are best treated using orthogonal
transformations rather than GE. This topic is again deferred to Chapter 8.

When the matrix A is square and of a full rank Gaussian Elimination can be
described as follows:

Algorithm 7.2.2 Gaussian Elimination; square case.

Given a matrix A = A(1) ∈ Rn×n and a vector b = b(1) ∈ Rn, the following
algorithm reduces the system Ax = b to the upper triangular form, provided that

the pivotal elements a
(k)
kk 6= 0, k = 1 : n:

for k = 1 : n− 1

for i = k + 1 : n

lik := a
(k)
ik /a

(k)
kk ;

for j = k + 1 : n

a
(k+1)
ij := a

(k)
ij − lika

(k)
kj ;



7.2. Elimination Methods 35

end

b
(k+1)
i := b

(k)
i − likb

(k)
k ;

end

end

Note that when lik is computed the element a
(k)
ik is put equal to zero. Thus

memory space can be saved by storing the multipliers in the lower triangular part
of the matrix. If the multipliers lik are saved, then the operations on the vector b
can be deferred to a later stage. This observation is important in that it shows that
when solving a sequence of linear systems

Axi = bi, i = 1 : p,

with the same matrix A but different right hand sides, the operations on A only have
to be carried out once!

From Algorithm 7.2.2 it follows that (n − k) divisions and (n − k)2 multipli-
cations and additions are used in step k to transform the elements of A. A further
(n−k) multiplications and additions are used to transform the elements of b. Sum-
ming over k and neglecting low order terms we find that the total number of flams
required by Gaussian elimination is

∑n−1
k=1 (n− k)2 ≈ n3/3,

∑n−1
k=1 (n− k) ≈ n2/2

for A and each right hand side respectively. Comparing with the approximately
1
2n

2 flops needed to solve a triangular system we conclude that, except for very
small values of n, the reduction of A to triangular form dominates the work.12 (see
Sections 7.4 and 7.8, respectively). Operation counts like these are meant only
as a rough appraisal of the work and one should not assign too much meaning to
their precise value. On modern computer architectures the rate of transfer of data
between different levels of memory often limits the actual performance.

Algorithm 7.2.2 for Gaussian Elimination algorithm has three nested loops. It
is possible to reorder these loops in 3 · 2 · 1 = 6 ways. In each of those version the
operations does the basic operation

a
(k+1)
ij := a

(k)
ij − a

(k)
kj a

(k)
ik /a

(k)
kk ,

and only the ordering in which they are done differs. The version given above uses
row operations and may be called the “kij” variant, where k refers to step number,
i to row index, and j to column index. This version is not suitable for Fortran 77,
and other languages in which matrix elements are stored and accessed sequentially
by columns. In such a language the form “kji” should be preferred, which is the
column oriented variant of Algorithm 7.2.2 (see Problem 5).

We now show that Gaussian elimination can be interpreted as computing the
matrix factorization A = LU . The LU factorization is a prime example of the

12This conclusion is not in general true for banded and sparse systems
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decompositional approach to matrix computation. This approach came into favor
in the 1950s and early 1960s and has been named as one of the ten algorithms with
most influence on science and engineering in the 20th century.

For simplicity we assume that m = n and that GE can be carried out without
pivoting. We will show that in this case GE provides a factorization of A into the
product of a unit lower triangular matrix L and an upper triangular matrix U .
Depending on whether the element aij lies on or above or below the principal
diagonal we have

a
(n)
ij =

{

. . . = a
(i+1)
ij = a

(i)
ij , i ≤ j;

. . . = a
(j+1)
ij = 0, i > j.

Thus in GE the elements aij , 1 ≤ i, j ≤ n, are transformed according to

a
(k+1)
ij = a

(k)
ij − lika

(k)
kj , k = 1 : p, p = min(i− 1, j). (7.2.8)

If these equations are summed for k = 1 : p, we obtain

p
∑

k=1

(a
(k+1)
ij − a

(k)
ij ) = a

(p+1)
ij − aij = −

p
∑

k=1

lika
(k)
kj .

This can also be written

aij =























a
(i)
ij +

i−1
∑

k=1

lika
(k)
kj , i ≤ j;

0 +

j
∑

k=1

lika
(k)
kj , i > j,

or, if we define lii = 1, i = 1 : n,

aij =
r

∑

k=1

likukj , ukj = a
(k)
kj , r = min(i, j). (7.2.9)

However, these equations are equivalent to the matrix equation A = LU , where
L = (lik) and U = (ukj) are lower and upper triangular matrices, respectively.
Hence GE computes a factorization of A into a product of a lower and an upper
triangular matrix, the LU factorization of A.

It was shown in Section 7.2.2 that if A is nonsingular, then Gaussian elimi-
nation can always be carried through provided row interchanges are allowed. Also,
such row interchanges are in general needed to ensure the numerical stability of
Gaussian elimination. We now consider how the LU factorization has to be modi-
fied when such interchanges are incorporated.

Row interchanges and row permutations can be expressed as pre-multiplication
with certain matrices, which we now introduce. A matrix

Iij = (. . . , ei−1, ej , ei+1, . . . , ej−1, ei, ej+1),
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which is equal to the identity matrix except that columns i and j have been in-
terchanged is called a transposition matrix. If a matrix A is premultiplied by
Iij this results in the interchange of rows i and j. Similarly post-multiplication
results in the interchange of columns i and j. IT

ij = Iij , and by its construction it

immediately follows that I2
ij = I and hence I−1

ij = Iij .

A permutation matrix P ∈ Rn×n is a matrix whose columns are a permu-
tation of the columns of the unit matrix, that is,

P = (ep1
, . . . , epn

),

where (p1, . . . , pn) is a permutation of (1, . . . , n). Notice that in a permutation
matrix every row and every column contains just one unity element. The transpose
PT of a permutation matrix is therefore again a permutation matrix Since P is
uniquely represented by the integer vector (p1, . . . , pn) it need never be explicitly
stored.

If P is a permutation matrix then PA is the matrix A with its rows permuted
and AP is A with its columns permuted. Any permutation may be expressed as
a sequence of transposition matrices. Therefore any permutation matrix can be
expressed as a product of transposition matrices P = Ii1,j1Ii2,j2 · · · Iik,jk

. Since
I−1
ip,jp

= Iip,jp
, we have

P−1 = Iik,jk
· · · Ii2,j2Ii1,j1 = PT ,

that is permutation matrices are orthogonal and PT effects the reverse permutation.
Assume that in the kth step, k = 1 : n − 1, we select the pivot element from

row pk, and interchange the rows k and pk. Notice that in these row interchanges
also previously computed multipliers lij must take part. At completion of the
elimination, we have obtained lower and upper triangular matrices L and U . We
now make the important observation that these are the same triangular factors that
are obtained if we first carry out the row interchanges k ↔ pk, k = 1 : n − 1, on
the original matrix A to get a matrix PA, where P is a permutation matrix, and
then perform Gaussian elimination on PA without any interchanges. This means
that Gaussian elimination with row interchanges computes the LU factors of the
matrix PA. We now summarize the results and prove the uniqueness of the LU
factorization:

Theorem 7.2.1. The LU factorization
Let A ∈ Rn×n be a given nonsingular matrix. Then there is a permutation

matrix P such that Gaussian elimination on the matrix Ã = PA can be carried out
without pivoting giving the factorization

PA = LU, (7.2.10)

where L = (lij) is a unit lower triangular matrix and U = (uij) an upper triangular
matrix. The elements in L and U are given by

uij = ã
(i)
ij , 1 ≤ i ≤ j ≤ n,
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and
lij = l̃ij , lii = 1, 1 ≤ j < i ≤ n,

where l̃ij are the multipliers occurring in the reduction of Ã = PA. For a fixed
permutation matrix P , this factorization is uniquely determined.

Proof. We prove the uniqueness. Suppose we have two factorizations

PA = L1U1 = L2U2.

Since PA is nonsingular so are the factors, and it follows that L−1
2 L1 = U2U

−1
1 .

The left-hand matrix is the product of two unit lower triangular matrices and is
therefore unit lower triangular, while the right hand matrix is upper triangular. It
follows that both sides must be the identity matrix. Hence L2 = L1, and U2 = U1.

Writing PAx = LUx = L(Ux) = Pb it follows that if the LU factorization of
PA is known, then the solution x can be computed by solving the two triangular
systems

Ly = Pb, Ux = y, (7.2.11)

which involves about 2 · 1
2n

2 = n2 flops.
Although the LU factorization is just a different interpretation of Gaussian

elimination it turns out to have important conceptual advantages. It divides the
solution of a linear system into two independent steps:

1. The factorization PA = LU .

2. Solution of the systems Ly = Pb and Ux = y.

As an example of the use of the factorization consider the problem of solving
the transposed system ATx = b. Since PTP = I, and

(PA)T = ATPT = (LU)T = UTLT ,

we have that ATPTPx = UT (LTPx) = b. It follows that x̃ = Px can be computed
by solving the two triangular systems

UT c = b, LT x̃ = c. (7.2.12)

We then obtain x = P−1x̃ by applying the interchanges k ↔ pk, in reverse order
k = n − 1 : 1 to x̃. Note that it is not at all trivial to derive this algorithm from
the presentation of Gaussian elimination in the previous section!

In the general case when A ∈ Rm×n of rank (A) = r ≤ min{m,n}, it can
be shown that matrix PrAPc ∈ Rm×n can be factored into a product of a unit
lower trapezoidal matrix L ∈ Rm×r and an upper trapezoidal matrix U ∈ Rr×n.
Here Pr and Pc are permutation matrices performing the necessary row and column
permutations, respectively. The factorization can be written in block form as

PrAPc = LU =

(

L11

L21

)

(U11 U12 ) , (7.2.13)
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where the matrices L11 and U11 are triangular and non-singular. Note that the
block L21 is empty if the matrix A has full row rank, i.e. r = m; the block U12 is
empty if the matrix A has full column rank, i.e. r = n.

To solve the system

PrAPc(P
T
c x) = LUx̃ = Prb = b̃, x = Pcx̃,

using this factorization we set y = Ux and consider

(

L11

L21

)

y =

(

b̃1
b̃2

)

.

This uniquely determines y as the solution to L11y = b̃1. Hence the system is
consistent if and only if L21y = b̃2. Further, we have Ux̃ = y, or

(U11 U12 )

(

x̃1

x̃2

)

= y.

For an arbitrary x̃2 this system uniquely determines x̃1 as the solution to the tri-
angular system

U11x̃1 = y − U12x̃2.

Thus, if consistent the system has a unique solution only if A has full column rank.

7.2.3 Elementary Elimination Matrices

The reduction of a matrix to triangular form by Gaussian elimination can be ex-
pressed entirely in matrix notations using elementary elimination matrices.
This way of looking at Gaussian elimination, first systematically exploited by J.
H. Wilkinson,13 has the advantage that it suggests ways of deriving other matrix
factorization

Elementary elimination matrices are lower triangular matrices of the form

Lj = I + lje
T
j =



















1
. . .

1
lj+1,j 1

...
. . .

ln,j 1



















, (7.2.14)

where only the elements below the main diagonal in the jth column differ from the

13James Hardy Wilkinson (1919–1986) English mathematician graduated from Trinity College,
Cambridge. He became Alan Turing’s assistant at the National Physical Laboratory in London
in 1946, where he worked on the ACE computer project. He did pioneering work on numerical
methods for solving linear systems and eigenvalue problems and developed software and libraries
of numerical routines.
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unit matrix. If a vector x is premultiplied by Lj we get

Ljx = (I + lje
T
j )x = x+ ljxj =



















x1
...
xj

xj+1 + lj+1,jxj

...
xn + ln,jxj



















,

i.e., to the last n − j components of x are added multiples of the component xj .
Since eT

j lj = 0 it follows that

(I − lje
T
j )(I + lje

T
j ) = I + lje

T
j − lje

T
j − lj(e

T
j lj)e

T
j = I

so we have
L−1

j = I − lje
T
j .

The computational significance of elementary elimination matrices is that they
can be used to introduce zero components in a column vector x. Assume that
eT

k x = xk 6= 0. We show that there is a unique elementary elimination matrix
L−1

k = I − lke
T
k such that

L−1
k (x1, . . . , xk, xk+1, . . . , xn)T = (x1, . . . , xk, 0, . . . , 0)T .

Since the last n−k components of L−1
k x are to be zero it follows that we must have

xi − li,kxk = 0, i = k + 1 : n, and hence

lk = (0, . . . , 0, xk+1/xk, . . . , xn/xk)T .

The product of two elementary elimination matrices LjLk is a lower triangular
matrix which differs from the unit matrix in the two columns j and k below the
main diagonal,

LjLk = (I + lje
T
j )(I + lke

T
k ) = I + lje

T
j + lke

T
k + lj(e

T
j lk)eT

k .

If j ≤ k, then eT
j lk = 0, and the following simple multiplication rule holds:

LjLk = I + lje
T
j + lke

T
k , j ≤ k. (7.2.15)

Note that no products of the elements lij occur! However, if j > k, then in general
eT

j lk 6= 0, and the product LjLk has a more complex structure.
We now show that Gaussian elimination with partial pivoting can be accom-

plished by premultiplication of A by a sequence of elementary elimination matrices
combined with transposition matrices to express the interchange of rows. For sim-
plicity we first consider the case when rank (A) = m = n. In the first step assume
that ap1,1 6= 0 is the pivot element. We then interchange rows 1 and p1 in A by
premultiplication of A by a transposition matrix,

Ã = P1A, P1 = I1,p1
.
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If we next premultiply Ã by the elementary elimination matrix

L−1
1 = I − l1e

T
1 , li1 = ãi1/ã11, i = 2 : n,

this will zero out the elements under the main diagonal in the first column, i.e.

A(2)e1 = L−1
1 P1Ae1 = ã11e1.

All remaining elimination steps are similar to this first one. The second step is
achieved by forming Ã(2) = P2A

(2) and

A(3) = L−1
2 P2A

(2) = L−1
2 P2L

−1
1 P1A.

Here P2 = I2,p2
, where a

(2)
p2,2 is the pivot element from the second column and

L−1
2 = I − l2e

T
2 is an elementary elimination matrix with nontrivial elements equal

to li2 = ã
(2)
i2 /ã

(2)
22 , i = 3 : n. Continuing, we have after n − 1 steps reduced A to

upper triangular form

U = L−1
n−1Pn−1 · · ·L−1

2 P2L
−1
1 P1A. (7.2.16)

To see that (7.2.16) is equivalent with the LU factorization of PA we first note that
since P 2

2 = I we have after the first two steps that

A(3) = L−1
2 L̃−1

1 P2P1A

where
L̃−1

1 = P2L
−1
1 P2 = I − (P2l1)(e

T
1 P2) = I − l̃1e

T
1 .

Hence L̃−1
1 is again an elementary elimination matrix of the same type as L−1

1 ,
except that two elements in l1 have been interchanged. Premultiplying by L̃1L2 we
get

L̃1L2A
(3) = P2P1A,

where the two elementary elimination matrices on the left hand side combine triv-
ially. Proceeding in a similar way it can be shown that (7.2.16) implies

L̃1L̃2 . . . L̃n−1U = Pn−1 . . . P2P1A,

where L̃n−1 = Ln−1 and

L̃j = I + l̃je
T
j , l̃j = Pn−1 · · ·Pj+1lj, j = 1 : n− 2.

Using the result in (7.2.15), the elimination matrices can trivially be multiplied
together and it follows that

PA = LU, P = Pn−1 · · ·P2P1,

where the elements in L are given by lij = l̃ij , lii = 1, 1 ≤ j < i ≤ n. This is the LU
factorization of Theorem 7.2.1. It is important to note that nothing new, except
the notations, has been introduced. In particular, the transposition matrices and
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elimination matrices used here are, of course, never explicitly stored in a computer
implementation.

In Gaussian elimination we use in the kth step the pivot row to eliminate
elements below the main diagonal in column k. In Gauss–Jordan elimination14

the elements above the main diagonal are eliminated simultaneously. After n − 1
steps the matrix A has then been transformed into a diagonal matrix containing the
nonzero pivot elements. Gauss–Jordan elimination was used in many early versions
of linear programming and also for implementing stepwise regression in statistics.

Gauss–Jordan elimination can be described by introducing the elementary
matrices

Mj =

























1 l1j

. . .
...

1 lj−1,j

1
lj+1,j 1

...
. . .

ln,j 1

























. (7.2.17)

If partial pivoting is carried out we can write, cf. (7.2.16)

D = MnM
−1
n−1Pn−1 · · ·M−1

2 P2M
−1
1 P1A,

where the lij are chosen to annihilate the (i, j)th element. Multiplying by D−1 we
get

A−1 = D−1MnM
−1
n−1Pn−1 · · ·M−1

2 P2M
−1
1 P1. (7.2.18)

This expresses the inverse of A as a product of elimination and transposition ma-
trices, and is called the product form of the inverse. The operation count for
this elimination process is ≈ n3/2 flops, i.e., higher than for the LU factorization by
Gaussian elimination. For some parallel implementations Gauss–Jordan elimination
may still have advantages.

To solve a linear system Ax = b we apply these transformations to the vector
b to obtain

x = A−1b = D−1M−1
n−1Pn−1 · · ·M−1

2 P2M
−1
1 P1b. (7.2.19)

This requires n2 flops. Note that no back-substitution is needed!
The stability of Gauss–Jordan elimination has been analyzed by Peters and

Wilkinson [53]. They remark that the residuals b−Ax̄ corresponding to the Gauss–
Jordan solution x̄ can be a larger by a factor κ(A) than those corresponding to the
solution by Gaussian elimination. Although the method is not backward stable in
general it can be shown to be stable for so called diagonally dominant matrices (see
Definition 7.2.4). It is also forward stable, i.e., will give about the same numerical
accuracy in the computed solution x̄ as Gaussian elimination.

14Named after Wilhelm Jordan (1842–1899), who used this method to compute the covariance
matrix in least squares problems.
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7.2.4 Pivoting Strategies

We saw that in Gaussian elimination row and column interchanges were needed in
case a zero pivot was encountered. A basic rule of numerical computation says that
if an algorithm breaks down when a zero element is encountered, then we can expect
some form of instability and loss of precision also for nonzero but small elements!
Again, this is related to the fact that in floating point computation the difference
between a zero and nonzero number becomes fuzzy because of the effect of rounding
errors.

Example 7.2.2. For ǫ 6= 1 the system
(

ǫ 1
1 1

) (

x1

x2

)

=

(

1
0

)

,

is nonsingular and has the unique solution x1 = −x2 = −1/(1 − ǫ). Suppose
ǫ = 10−6 is accepted as pivot in Gaussian elimination. Multiplying the first equation
by 106 and subtracting from the second we obtain (1−106)x2 = −106. By rounding
this could give x2 = 1, which is correct to six digits. However, back-substituting to
obtain x1 we get 10−6x1 = 1 − 1, or x1 = 0, which is completely wrong.

The simple example above illustrates that in general it is necessary to perform
row (and/or column) interchanges not only when a pivotal element is exactly zero,
but also when it is small. The two most common pivoting strategies are partial
pivoting and complete pivoting. In partial pivoting the pivot is taken as the
largest element in magnitude in the unreduced part of the kth column. In com-
plete pivoting the pivot is taken as the largest element in magnitude in the whole
unreduced part of the matrix.

Partial Pivoting. At the start of the kth stage choose interchange rows k and r,
where r is the smallest integer for which

|a(k)
rk | = max

k≤i≤n
|a(k)

ik |. (7.2.20)

Complete Pivoting. At the start of the kth stage interchange rows k and r and
columns k and s, where r and s are the smallest integers for which

|a(k)
rs | = max

k≤i,j≤n
|a(k)

ij |. (7.2.21)

Complete pivoting requires O(n3) in total compared with only O(n2) for par-
tial pivoting. Hence, complete pivoting involves a fairly high overhead since about
as many arithmetic comparisons as floating point operations has to be performed.
Since practical experience shows that partial pivoting works well, this is the stan-
dard choice. Note, however, that when rank (A) < n then complete pivoting must
be used

A major breakthrough in the understanding of GE came with the famous back-
ward rounding error analysis of Wilkinson [65, ]. Using the standard model for
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floating point computation Wilkinson showed that the computed triangular factors
L̄ and Ū of A, obtained by Gaussian elimination are the exact triangular factors of
a perturbed matrix

L̄Ū = A+ E, E = (eij)

where, since eij is the sum of min(i− 1, j) rounding errors

|eij | ≤ 3umin(i− 1, j)max
k

|ā(k)
ij |. (7.2.22)

Note that the above result holds without any assumption about the size of the
multipliers. This shows that the purpose of any pivotal strategy is to avoid growth

in the size of the computed elements ā
(k)
ij , and that the size of the multipliers is of

no consequence (see the remark on possible large multipliers for positive-definite
matrices, Section 7.4.2).

The growth of elements during the elimination is usually measured by the
growth ratio.

Definition 7.2.2.
Let a

(k)
ij , k = 2 : n, be the elements in the kth stage of Gaussian elimination

applied to the matrix A = (aij). Then the growth ratio in the elimination is

ρn = max
i,j,k

|a(k)
ij |/max

i,j
|aij |. (7.2.23)

It follows that E = (eij) can be bounded component-wise by

|E| ≤ 3ρnumax
ij

|aij |F. (7.2.24)

where F the matrix with elements fi,j = min{i− 1, j}. Strictly speaking this is not
correct unless we use the growth factor ρ̄n for the computed elements. Since this
quantity differs insignificantly from the theoretical growth factor ρn in (7.2.23), we
ignore this difference here and in the following. Slightly refining the estimate

‖F‖∞ ≤ (1 + 2 + · · · + n) − 1 ≤ 1

2
n(n+ 1) − 1

and using maxij |aij | ≤ ‖A‖∞, we get the normwise backward error bound:

Theorem 7.2.3.
Let L̄ and Ū be the computed triangular factors of A, obtained by GE with

floating-point arithmetic with unit roundoff u has been used, there is a matrix E
such that

L̄Ū = A+ E, ‖E‖∞ ≤ 1.5n2ρnu‖A‖∞. (7.2.25)

If pivoting is employed so that the computed multipliers satisfy the inequality

|lik| ≤ 1, i = k + 1 : n.
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Then it can be shown that an estimate similar to (7.2.25) holds with the constant
1 instead of 1.5. For both partial and complete pivoting it holds that

|a(k+1)
ij | < |a(k)

ij | + |lik||a(k)
kj | ≤ |a(k)

ij | + |a(k)
kj | ≤ 2 max

i,j
|a(k)

ij |,

and the bound ρn ≤ 2n−1 follows by induction. For partial pivoting this bound is
the best possible, and can be attained for special matrices. For complete pivoting a
much better bound can be proved, and in practice the growth very seldom exceeds
n; see Section 7.6.2.

A pivoting scheme that gives a pivot of size between that of partial and com-
plete pivoting is rook pivoting. In this scheme we pick a pivot element which is
largest in magnitude in both its column and its row.

Rook Pivoting. At the start of the kth stage rows k and r and columns k and s are
interchanged, where

|a(k)
rs | = max

k≤i≤n
|a(k)

ij | = max
k≤j≤n

|a(k)
ij |. (7.2.26)

We start by finding the element of maximum magnitude in the first column. If this
element is also of maximum magnitude in its row we accept it as pivot. Otherwise
we compare the element of maximum magnitude in the row with other elements in
its column, etc. The name derives from the fact that the pivot search resembles the
moves of a rook in chess; see Figure 7.2.1..

1

0

3

2

1

10

5

0

2

4

1

2

4

5

3

2

9

1

6

2

4

8

7

1

3

•

• •

• •

•

Figure 7.2.1. Illustration of rook pivoting in a 5 × 5 matrix with positive
integer entries as shown. The (2, 4) element 9 is chosen as pivot.

Rook pivoting involves at least twice as many comparisons as partial pivoting.
In the worst case it can take O(n3) comparisons, i.e., the same order of magnitude
as for complete pivoting. Numerical experience shows that the cost of rook pivoting
usually equals a small multiple of the cost for partial pivoting. A pivoting related to
rook pivoting is used in the solution of symmetric indefinite systems; see Sec. 7.3.4.

It is important to realize that the choice of pivots is influenced by the scaling
of equations and unknowns. If, for example, the unknowns are physical quantities a
different choices of units will correspond to a different scaling of the unknowns and
the columns in A. Partial pivoting has the important property of being invariant
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under column scalings. In theory we could perform partial pivoting by column
interchanges, which then would be invariant under row scalings. but in practice
this turns out to be less satisfactory. Likewise, an unsuitable column scaling can
also make complete pivoting behave badly.

For certain important classes of matrices a bound independent of n can be
given for the growth ratio in Gaussian elimination without pivoting or with partial
pivoting. For these Gaussian elimination is backward stable.

• If A is real symmetric matrix A = AT and positive definite (i.e. xTAx > 0
for all x 6= 0) then ρn(A) ≤ 1 with no pivoting (see Theorem 7.3.7).

• If A is row or column diagonally dominant then ρn ≤ 2 with no pivoting.

• If A is Hessenberg then ρn ≤ n with partial pivoting.

• If A is tridiagonal then ρn ≤ 2 with partial pivoting.

For the last two cases we refer to Sec. 7.4. We now consider the case when A
is diagonally dominant.

Definition 7.2.4. A matrix A is said to be diagonally dominant by rows, if
∑

j 6=i

|aij | ≤ |aii|, i = 1 : n. (7.2.27)

A is diagonally dominant by columns if AT is diagonally dominant by rows.

Theorem 7.2.5.
Let A be nonsingular and diagonally dominant by rows or columns. Then A

has an LU factorization without pivoting and the growth ratio ρn(A) ≤ 2. If A
is diagonally dominant by columns, then the multipliers in this LU factorization
satisfy |lij | ≤ 1, for 1 ≤ j < i ≤ n.

Proof. (Wilkinson [65, pp.288–289])
Assume that A is nonsingular and diagonally dominant by columns. Then

a11 6= 0, since otherwise the first column would be zero and A singular. In the first
stage of Gaussian elimination without pivoting we have Hence

a
(2)
ij = aij − li1a1j , li1 = ai1/a11, i, j ≥ 2, (7.2.28)

where
n

∑

i=2

|li1| ≤
n

∑

i=2

|ai1|/|a11| ≤ 1. (7.2.29)

For j = i, using the definition and (7.2.29), it follows that

|a(2)
ii | ≥ |aii| − |li1| |a1i| ≥

∑

j 6=i

|aji| −
(

1 −
∑

j 6=1,i

|lj1|
)

|a1i|

=
∑

j 6=1,i

(

|aji| + |lj1||a1i|
)

≥
∑

j 6=1,i

|a(2)
ji |.
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Hence the reduced matrix A(2) = (a
(2)
ij ), is also nonsingular and diagonally dominant

by columns. It follows by induction that all matrices A(k) = (a
(k)
ij ), k = 2 : n are

nonsingular and diagonally dominant by columns.
Further using (7.2.28) and (7.2.29), for i ≥ 2,

n
∑

i=2

|a(2)
ij | ≤

n
∑

i=2

(

|aij | + |li1||a1j |
)

≤
n

∑

i=2

|aij | + |a1j |
n

∑

i=2

|li1|

≤
n

∑

i=2

|aij | + |a1j | =

n
∑

i=1

|aij |.

Hence the sum of the moduli of the elements of any column of A(k) does not increase
as k increases. Hence

max
i,j,k

|a(k)
ij | ≤ max

i,k

n
∑

j=k

|a(k)
ij | ≤ max

i

n
∑

j=1

|aij | ≤ 2 max
i

|aii| = 2 max
ij

|aij |.

It follows that

ρn = max
i,j,k

|a(k)
ij |/max

i,j
|aij | ≤ 2.

The proof for matrices which are row diagonally dominant is similar. (No-
tice that Gaussian elimination with pivoting essentially treats rows and columns
symmetrically!)

We conclude that for a row or column diagonally dominant matrix Gaussian
elimination without pivoting is backward stable. IfA is diagonally dominant by rows
then the multipliers can be arbitrarily large, but this does not affect the stability.

If (7.2.27) holds with strict inequality for all i, then A is said to be strictly
diagonally dominant by rows. If A is strictly diagonally dominant, then it can
be shown that all reduced matrices have the same property. In particular, all pivot
elements must then be strictly positive and the nonsingularity of A follows. We
mention a useful result for strictly diagonally dominant matrices.

Lemma 7.2.6.
Let A be strictly diagonally dominant by rows, and set

α = min
i
αi, αi := |aii| −

∑

j 6=i

|aij | > 0, i = 1 : n. (7.2.30)

Then A is nonsingular, and ‖A−1‖∞ ≤ α−1.

Proof. By the definition of a subordinate norm (7.1.50) we have

1

‖A−1‖∞
= inf

y 6=0

‖y‖∞
‖A−1y‖∞

= inf
x 6=0

‖Ax‖∞
‖x‖∞

= min
‖x‖∞=1

‖Ax‖∞.
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Assume that equality holds in (7.2.30) for i = k. Then

1

‖A−1‖∞
= min

‖x‖∞=1
max

i

∣

∣

∣

∑

j

aijxj

∣

∣

∣ ≥ min
‖x‖∞=1

∣

∣

∣

∑

j

akjxj

∣

∣

∣

≥ |akk| −
∑

j,j 6=k

|akj | = α.

If A is strictly diagonally dominant by columns, then since ‖A‖1 = ‖AT ‖∞ it
holds that ‖A−1‖1 ≤ α−1. If A is strictly diagonally dominant in both rows and
columns, then from ‖A‖2 ≤

√

‖A‖1‖A‖∞ it follows that ‖A−1‖2 ≤ α−1.

7.2.5 Computational Variants

In Gaussian Elimination, as described in Sec. 7.2.3, the kth step consists of modify-
ing the unreduced part of the matrix by an outer product of the vector of multipliers
and the pivot row. Using the equivalence of Gaussian elimination and LU factor-
ization it is easy to see that the the calculations can be arranged in several diferent
ways so that the elements in L and U are determined directly.

For simplicity, we first assume that any row or column interchanges on A have
been carried out in advance. The matrix equation A = LU written in component-
wise form (see (7.2.9))

aij =

r
∑

k=1

likukj , 1 ≤ i, j ≤ n, r = min(i, j),

together with the normalization conditions lii = 1, i = 1 : n, can be thought of as
n2 + n equations for the n2 + n unknown elements in L and U . We can solve these
equations in n steps, k = 1 : n, where in the kth step we use the equations

akj =
k

∑

p=1

lkpupj , j ≥ k, aik =
k

∑

p=1

lipupk, i > k (7.2.31)

to determine the kth row of U and the kth column of L. In this algorithm the main
work is performed in matrix-vector multiplications.

Algorithm 7.2.3 Doolittle’s Algorithm.

for k = 1 : n

for j = k : n

ukj = akj −
k−1
∑

p=1

lkpupj ;

end

for i = k + 1 : n
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Figure 7.2.2. Computations in the kth step of Doolittle’s method.

lik =
(

aik −
k−1
∑

p=1

lipupk

)

/ukk;

end

lkk = 1;

end

Since the LU factorization is unique this algorithm produces the same factors
L and U as Gaussian elimination. In fact, successive partial sums in the equations

(7.2.31) equal the elements a
(k)
ij , j > k, in Gaussian elimination. It follows that if

each term in (7.2.31) is rounded separately, the compact algorithm is also numeri-
cally equivalent to Gaussian elimination. If the inner products can be accumulated
in higher precision, then the compact algorithm is less affected by rounding errors.
Algorithm 7.2.3 is usually referred to as Doolittle’s algorithm. In Crout’s algorithm
the upper triangular matrix U is normalized to have a unit diagonal. 15

Algorithm 7.2.5 can be modified to include partial pivoting. Changing the
order of operations, we first calculate l̃ik = likukk, i = k : n, and determine the
element of maximum magnitude. The corresponding row is then permuted to pivotal
position. In this row exchange the already computed part of L and remaining part
of A also take part. Next we normalize by setting lkk = 1, which determines lik,
i = 1 : k, and also ukk. Finally, the remaining part of the kth row in U is computed.

It is possible to sequence the computations in Doolittle’s and Crout’s algo-
rithms in many different ways. Indeed any element in (L\U) can be computed as
soon as the corresponding elements in L to the left and in U above have been deter-

15In the days of hand computations these algorithms had the advantage that they did away with
the necessity in Gaussian elimination to write down ≈ n

3
/3 intermediate results—one for each

multiplication.
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mined. For example, three possible orderings are schematically illustrated below,











1 1 1 1 1
2 3 3 3 3
2 4 5 5 5
2 4 6 7 7
2 4 6 8 9











,











1 3 5 7 9
2 3 5 7 9
2 4 5 7 9
2 4 6 7 9
2 4 6 8 9











,











1 3 5 7 9
2 3 5 7 9
4 4 5 7 9
6 6 6 7 9
8 8 8 8 9











.

Here the entries indicate in which step a certain element lij and rij is computed,
so the first example corresponds to the ordering in the algorithm given above.
(Compare the comments after Algorithm 7.2.2.) Note that it is not easy to do
complete pivoting with any of these variants.

The Bordering Method

Before the kth step, k = 1 : n, of the bordering method we have have computed
the LU-factorization A11 = L11U11 of the leading principal submatrix A11 of order
k − 1 of A. To proceed we seek the LU-factorization

(

A11 a1k

aT
k1 αkk

)

=

(

L11 0
lTk1 1

) (

U11 u1k

0 ukk

)

.

Identifying the (1,2)-blocks we find

L11u1k = a1k, (7.2.32)

which is a lower triangular system for u1k. Identifying the (2,1)-blocks and trans-
posing gives

UT
11lk1 = ak1, (7.2.33)

another lower triangular system for lk1. Finally, from the (2,2)-block we get lTk1u1k+
ukk = αkk, or

ukk = αkk − lTk1u1k. (7.2.34)

Figure 7.2.3. Computations in the kth step of the bordering method.

The main work in this variant is done in solving the triangular systems (7.2.32)
and (7.2.33). A drawback of the bordering method is that it cannot be combined
with partial pivoting.
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The Sweep Methods

In the column sweep method at the kth step the first k columns of L and U in
LU-factorization of A are computed. Assume that we have computed L11, L21, and
U11 in the factorization

(

A11 a1k

A21 a2k

)

=

(

L11 0
L21 l2k

) (

U11 u1k

0 ukk

)

∈ Rn×k.

As in the bordering method, identifying the (1,2)-blocks we find

L11u1k = a1k, (7.2.35)

a lower triangular system for u1k. From the (2,2)-blocks we get L21u1k + l2kukk =
a2k, or

l2kukk = a2k − L21u1k. (7.2.36)

Together with the normalizing condition that the first component in the vector l2k

equals one this determines ukk and l2k.
Partial pivoting can be implemented with this method as follows. When the

right hand side in (7.2.36) has been evaluated we determine the element of maximum
modulus in the vector a2k −L21u1k. We then permute this element to top position
and perform the same row exchanges in LT

21 and the unprocessed part of A.

Figure 7.2.4. Computations in the kth step of the sweep methods. Left:
The column sweep method. Right: The row sweep method.

In the column sweep method L and U are determined column by column. It
possible to determine L and U row by row. In the kth step of this row sweep
method the kth row of A is processed and we write

(

A11 A12

aT
k1 aT

k2

)

=

(

L11 0
lTk1 1

) (

U11 U12

0 uT
2k

)

∈ Rk×n.

Identifying the (2,1)- and (2,2)-blocks we get

UT
11lk1 = ak1, (7.2.37)

and
uT

2k = aT
k2 − lk1U12. (7.2.38)
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Note that Doolittle’s method can be viewed as alternating between the two sweep
methods.

Consider now the case when A ∈ Rm×n is a rectangular matrix with rank (A) =
r = min(m,n). Ifm > n it is advantageous to process the matrix column by column.
Then after n steps we have APc = LU , where L is lower trapezoidal,

L =

(

L11

L21

)

∈ Rm×n, (7.2.39)

and U ∈ Rn×n is square upper triangular. If m < n and the matrix is processed
row by row, we have after n steps an LU factorization with L ∈ Rm×m and

U = (U11 U12 ) ∈ Rm×n

upper trapezoidal.

7.2.6 Computing the Inverse

If the inverse matrix A−1 is known, then the solution of Ax = b can be obtained
through a matrix vector multiplication by x = A−1b. This is theoretically satisfying,
but in most practical computational problems it is unnecessary and inadvisable to
compute A−1. As succinctly expressed by G. E. Forsythe and C. B. Moler [27]:

Almost anything you can do with A−1 can be done without it!

The work required to compute A−1 is about n3 flops, i.e., three times greater
than for computing the LU factorization. (If A is a band matrix, then the savings
can be much more spectacular; see Sec. 7.4.) To solve a linear system Ax = b the
matrix vector multiplication A−1b requires n2 flops. This is exactly the same as for
the solution of the two triangular systems L(Ux) = b resulting from LU factorization
of A. (Note, however, that on some parallel computers matrix multiplication can
be performed much faster than solving triangular systems.)

One advantage of computing the inverse matrix is that A−1 can be used to
get a strictly reliable error estimate for a computed solution x̄. A similar estimate
is not directly available from the LU factorization. However, alternative ways to
obtain error estimates are the use of a condition estimator (Section 7.5.3) or iterative
refinement (Section 7.6.4).

Not only is the inversion approach three times more expensive but if A is
ill-conditioned the solution computed from A−1b usually is much less accurate than
than that computed from the LU factorization. Using LU factorization the residual
vector of the computed solution will usually be of order machine precision even
when A is ill-conditioned.

Nevertheless, there are some applications where A−1 is required, e.g., in some
methods for computing the matrix square root and the logarithm of a matrix; see
Sec. 9.2.4. The inverse of a symmetric positive definite matrix is needed to obtain
estimates of the covariances in regression analysis. However, usually only certain
elements of A−1 are needed and not the whole inverse matrix.
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We first consider computing the inverse of a lower triangular matrix L. Setting
L−1 = Y = (y1, . . . , yn), we have LY = I = (e1, . . . , en). This shows that the
columns of Y satisfy

Lyj = ej , j = 1 : n.

These lower triangular systems can be solved by forward substitution. Since the
vector ej has (j−1) leading zeros the first (j−1) components in yj are zero. Hence
L−1 is also a lower triangular matrix, and its elements can be computed recursively
from

yjj = 1/ljj, yij =
(

−
i−1
∑

k=j

likykj

)/

lii, i = j + 1 : n, (7.2.40)

Note that the diagonal elements in L−1 are just the inverses of the diagonal elements
of L. If the columns are computed in the order j = 1 : n, then Y can overwrite L
in storage.

Similarly, if U is upper triangular matrix then Z = U−1 is an upper triangular
matrix, whose elements can be computed from:

zjj = 1/ujj, zij =
(

−
j

∑

k=i+1

uikzkj

)/

uii, i = j − 1 : −1 : 1. (7.2.41)

If the columns are computed in the order j = n : −1 : 1, the Z can overwrite U
in storage. The number of flops required to compute L−1 or U−1 is approximately
equal to n3/6. Variants of the above algorithm can be obtained by reordering the
loop indices.

Now let A−1 = X = (x1, . . . , xn) and assume that an LU factorizationA = LU
has been computed. Then

Axj = L(Uxj) = ej , j = 1 : n, (7.2.42)

and the columns of A−1 are obtained by solving n linear systems, where the right
hand sides equal the columns in the unit matrix. Setting (7.2.42) is equivalent to

Uxj = yj , Lyj = ej, j = 1 : n. (7.2.43)

This method for inverting A requires n3/6 flops for inverting L and n3/2 flops for
solving the n upper triangular systems giving a total of n3 flops.

A second method uses the relation

A−1 = (LU)−1 = U−1L−1. (7.2.44)

Since the matrix multiplication U−1L−1 requires n3/3 flops (show this!) the total
work to compute A−1 by the second method method (7.2.44) also is n3 flops. If we
take advantage of that yjj = 1/ljj = 1, and carefully sequence the computations
then L−1, U−1 and finally A−1 can overwrite A so that no extra storage is needed.

There are many other varaints of computing the inverse X = A−1. From
XA = I we have

XLU = I or XL = U−1.
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In the Matlab function inv(A), U−1 is first computed by a column oriented algo-
rithm. Then the system XL = U−1 is solved for X . The stability properties of this
and several other different matrix inversion algorithms are analyzed in [21]; see also
Higham [41, Sec. 14.2].

The inverse can also be obtained from the Gauss–Jordan factorization. Using
(7.2.19) where b is taken to be the columns of the unit matrix, we compute

A−1 = D−1M−1
n−1Pn−1 · · ·M−1

2 P2M
−1
1 P1(e1, . . . , en).

Again n3 flops are required if the computations are properly organized. The method
can be arranged so that the inverse emerges in the original array. However, the
numerical properties of this method are not as good as for the methods described
above.

If row interchanges have been performed during the LU factorization, we have
PA = LU , where P = Pn−1 · · ·P2P1 and Pk are transposition matrices. Then
A−1 = (LU)−1P . Hence we obtain A−1 by performing the interchanges in reverse
order on the columns of (LU)−1.

An approximative inverse of a matrix A = I −B can sometimes be computed
from a matrix series expansion. To derive this we form the product

(I −B)(I +B +B2 +B3 + · · · +Bk) = I −Bk+1.

Suppose that ‖B‖ < 1 for some matrix norm. Then it follows that

‖Bk+1‖ ≤ ‖B‖k+1 → 0, k → ∞,

and hence the Neumann expansion

(I −B)−1 = I +B +B2 +B3 + · · · , (7.2.45)

converges to (I−B)−1. (Note the similarity with the Maclaurin series for (1−x)−1.)
Alternatively one can use the more rapidly converging Euler expansion

(I −B)−1 = (I +B)(I +B2)(I +B4) · · · . (7.2.46)

It can be shown by induction that

(I +B)(I +B2) · · · (I +B2k

) = I +B +B2 +B3 + · · ·B2k+1

.

Finally we mention an iterative method for computing the inverse, the Newton–
Schultz iteration

Xk+1 = Xk(2I −AXk) = (2I −AXk)Xk. (7.2.47)

This is an analogue to the iteration xk+1 = xk(2 − axk), for computing the inverse
of a scalar. It can be shown that if X0 = α0A

T and 0 < α0 < 2/‖A‖2
2, then

limk→∞Xk = A−1. Convergence can be slow initially but ultimately quadratic,

Ek+1 = E2
k, Ek = I −AXk or I −XkA.

Since about 2 log2 κ2(A) (see [59]) iterations are needed for convergence it cannot
in general compete with direct methods for dense matrices. However, a few steps
of the iteration (7.2.47) can be used to improve an approximate inverse.



Review Questions 55

Review Questions

1. How many operations are needed (approximately) for

(a) The LU factorization of a square matrix?

(b) The solution of Ax = b, when the triangular factorization of A is known?

2. Show that if the kth diagonal entry of an upper triangular matrix is zero, then
its first k columns are linearly dependent.

3. What is meant by partial and complete pivoting in Gaussian elimination?
Mention two classes of matrices for which Gaussian elimination can be per-
formed stably without any pivoting?

4. What is the LU -decomposition of an n by n matrix A, and how is it related to
Gaussian elimination? Does it always exist? If not, give sufficient conditions
for its existence.

5. How is the LU -decomposition used for solving a linear system? What are the
advantages over using the inverse of A? Give an approximate operation count
for the solution of a dense linear system with p different right hand sides using
the LU -decomposition.

6. Let B be a strictly lower or upper triangular matrix. Prove that the Neumann
and Euler expansions for (I − L)−1 are finite.

Problems

1. (a) Compute the LU factorization of A and det(A), where

A =







1 2 3 4
1 4 9 16
1 8 27 64
1 16 81 256






.

(b) Solve the linear system Ax = b, where b = (2, 10, 44, 190)T .

2. (a) Show that P = (en, . . . , e2, e1) is a permutation matrix and that P =
PT = P−1, and that Px reverses the order of the elements in the vector x.

(b) Let the matrix A have an LU factorization. Show that there is a related
factorization PAP = UL, where U is upper triangular and L lower triangular.

3. In Algorithm 7.2.2 for Gaussian elimination the elements in A are assessed
in row-wise order in the innermost loop over j. If implemented in Fortran
this algorithm may be inefficient since this language stores two-dimensional
arrays by columns. Modify Algorithm 7.2.2 so that the innermost loop instead
involves a fixed column index and a varying row index.

4. What does M−1
j , where Mj is defined in (7.2.17), look like?
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5. Compute the inverse matrix A−1, where

A =





2 1 2
1 2 3
4 1 2



 ,

(a) By solving AX = I, using Gaussian elimination with partial pivoting.

(b) By LU factorization and using A−1 = U−1L−1.

7.3 Symmetric Matrices

7.3.1 Symmetric Positive Definite Matrices

Gaussian elimination can be adopted to several classes of matrices of special struc-
ture. As mentioned in Sec. sec7.2.5, one case when Gaussian elimination can be
performed stably without any pivoting is when A is Hermitian or real symmetric
and positive definite. Solving such systems is one of the most important problems
in scientific computing.

Definition 7.3.1.
A matrix A ∈ Cn×n is called Hermitian if A = AH , the conjugate transpose

of A. If A is Hermitian, then the quadratic form (xHAx)H = xHAx is real and A
is said to be positive definite if

xHAx > 0, ∀x ∈ Cn, x 6= 0, (7.3.1)

and positive semidefinite if xTAx ≥ 0, for all x ∈ Rn. Otherwise it is called
indefinite.

It is well known that all eigenvalues of an Hermitian matrix are real. An
equivalent condition for an Hermitian matrix to be positive definite is that all its
eigenvalues are positive

λk(A) > 0, k = 1 : n.

Since this condition can be difficult to verify the following sufficient condition is use-
ful. A Hermitian matrix A, which has positive diagonal elements and is diagonally
dominant

aii >
∑

j 6=i

|aij |, i = 1 : n,

can be shown to be positive definite, since it follows from Gerschgorin’s Theorem
(Theorem 9.3.1) that the eigenvalues of A are all positive.

Clearly a positive definite matrix is nonsingular, since if it were singular there
should be a null vector x 6= 0 such that Ax = 0 and then xHAx = 0. Positive
definite (semidefinite) matrices have the following important property:

Theorem 7.3.2. Let A ∈ Cn×n be positive definite and let X ∈ Cn×p have full
column rank. Then XHAX is positive definite (semidefinite). In particular any
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principal p× p submatrix

Ã =







ai1i1 . . . ai1ip

...
...

aipi1 . . . aipip






∈ Cp×p, 1 ≤ p < n,

is positive definite definite (semidefinite). In particular, taking p = 1, all diagonal
elements in A are real positive (nonnegative).

Proof. Let x 6= 0 and let y = Xx. Then since X is of full column rank y 6= 0
and xH(XHAX)x = yHAy > 0 by the positive definiteness of A. In particular any
principal submatrix of A can be written as XHAX , where the columns of X are
taken as the columns k = ij, j = 1, . . . , p of the identity matrix. The case when A
is positive semidefinite follows similarly.

A Hermitian or symmetric matrix A of oder n has only 1
2n(n+1) independent

elements. If A also is positive definite then symmetry can be preserved in Gaussian
elimination and the number of operations and storage needed can be reduced by half.
Indeed Gauss’s derived his original algorithm for the symmetric positive definite
systems coming from least squares problems (see Chapter 8). We consider below
the special case when A is real and symmetric but all results are easily generalized
to the complex Hermitian case.

Lemma 7.3.3. Let A be a real symmetric matrix. Then if Gaussian elimination
can be carried trough without pivoting the reduced matrices

A = A(1), A(2), . . . , A(n)

are all symmetric.

Proof. Assume that A(k) is symmetric, for some k, where 1 ≤ k < n. Then by
Algorithm 7.2.2 we have after the k-th elimination step

a
(k+1)
ij = a

(k)
ij − lika

(k)
kj = a

(k)
ij − a

(k)
ik

a
(k)
kk

a
(k)
kj = a

(k)
ji −

a
(k)
jk

a
(k)
kk

a
(k)
ki = a

(k+1)
ji ,

k+ 1 ≤ i, j ≤ n. This shows that A(k+1) is also a symmetric matrix, and the result
follows by induction.

A more general result is the following. Partition the Hermitian positive definite
matrix A as

A =

(

A11 A12

AH
12 A22

)

where A11 is a square matrix, Then by Theorem 7.3.2 both A11 and A22 are Her-
mitian positive definite and therefore nonsingular. It follows that the Schur com-
plement of A11 in A, which is

S = A22 −AH
12A

−1
11 A12
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exists and is Hermitian. Moreover, for x 6= 0, we have

xH(A22 −AH
12A

−1
11 A12)x = ( yH −xH )

(

A11 A12

AH
12 A22

) (

y
−x

)

> 0

where y = A−1
11 A12x, it follows that S is positive definite.

From Lemma 7.3.3 it follows that in Gaussian elimination without pivoting
only the elements in A(k), k = 2 : n, on and below the main diagonal have to
be computed. Since any diagonal element can be brought in pivotal position by
a symmetric row and column interchange, the same conclusion holds if pivots are
chosen arbitrarily along the diagonal.

Assume that the lower triangular part of the symmetric matrix A is given. The
following algorithm computes, if it can be carried through, a unit lower triangular
matrix L = (lik), and a diagonal matrix D = diag(d1, . . . , dn) such that

A = LDLT . (7.3.2)

Algorithm 7.3.1 Symmetric Gaussian Elimination.

for k = 1 : n− 1

dk := a
(k)
kk ;

for i = k + 1 : n

lik := a
(k)
ik /dk;

for j = k + 1 : i

a
(k+1)
ij := a

(k)
ij − likdkljk;

end

end

end

In the last line we have substituted dkljk for a
(k)
jk .

Note that the elements in L and D can overwrite the elements in the lower
triangular part of A, so also the storage requirement is halved to n(n + 1)/2. The
uniqueness of the LDLT factorization follows trivially from the uniqueness of the
LU factorization.

Using the factorization A = LDLT the linear system Ax = b decomposes into
the two triangular systems

Ly = b, LTx = D−1y. (7.3.3)

The cost of solving these triangular systems is about n2 flams.

Example 7.3.1.
It may not always be possible to perform Gaussian elimination on a sym-

metric matrix, using pivots chosen from the diagonal. Consider, for example, the
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nonsingular symmetric matrix

A =

(

0 1
1 ǫ

)

.

If we take ǫ = 0, then both diagonal elements are zero, and symmetric Gaussian
elimination breaks down. If ǫ 6= 0, but |ǫ| ≪ 1, then choosing ǫ as pivot will not be
stable. On the other hand, a row interchange will in general destroy symmetry!

We will prove that Gaussian elimination without pivoting can be carried out
with positive pivot elements if and only if A is real and symmetric positive definite.
(The same result applies to complex Hermitian matrices, but since the modifi-
cations necessary for this case are straightforward, we discuss here only the real
case.) For symmetric semidefinite matrices symmetric pivoting can be used. The
indefinite case requires more substantial modifications, which will be discussed in
Section 7.3.4.

Theorem 7.3.4.
The symmetric matrix A ∈ Rn×n is positive definite if and only if there exists

a unit lower triangular matrix L and a diagonal matrix D with positive elements
such that

A = LDLT , D = diag (d1, . . . , dn),

Proof. Assume first that we are given a symmetric matrix A, for which Algo-
rithm 7.3.1 yields a factorization A = LDLT with positive pivotal elements dk > 0,
k = 1 : n. Then for all x 6= 0 we have y = LTx 6= 0 and

xTAx = xTLDLTx = yTDy > 0.

It follows that A is positive definite.
The proof of the other part of the theorem is by induction on the order n of

A. The result is trivial if n = 1, since then D = d1 = A = a11 > 0 and L = 1. Now
write

A =

(

a11 aT

a Ã

)

= L1D1L
T
1 , L1 =

(

1 0
d−1
1 a I

)

, D1 =

(

d1 0
0 B

)

,

where d1 = a11, B = Ã − d−1
1 aaT . Since A is positive definite it follows that D1

is positive definite, and therefore d1 > 0, and B is positive definite. Since B is of
order (n−1), by the induction hypothesis there exists a unique unit lower triangular
matrix L̃ and diagonal matrix D̃ with positive elements such that B = L̃D̃L̃T . Then
it holds that A = LDLT , where

L =

(

1 0
d−1
1 a L̃

)

, D =

(

d1 0
0 D̃

)

.
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Example 7.3.2. The Hilbert matrix Hn ∈ Rn×n with elements

hij = 1/(i+ j − 1), 1 ≤ i, j ≤ n,

is positive definite. Hence, if Gaussian elimination without pivoting is carried out
then the pivotal elements are all positive. For example, for n = 4, symmetric
Gaussian elimination yields the H4 = LDLT , where

D = diag (1, 1/12, 1/180, 1/2800) , L =







1
1/2 1
1/3 1 1
1/4 9/10 3/2 1






.

Theorem 7.3.4 also yields the following useful characterization of a positive
definite matrix.

Theorem 7.3.5. Sylvester’s Criterion
A symmetric matrix A ∈ Rn×n is positive definite if and only if

det(Ak) > 0, k = 1, 2, . . . , n,

where Ak ∈ Rk×k, k = 1, 2 : n, are the leading principal submatrices of A.

Proof. If symmetric Gaussian elimination is carried out without pivoting then

det(Ak) = d1d2 · · · dk.

Hence det(Ak) > 0, k = 1 : n, if and only if all pivots are positive. However, by
Theorem 7.3.2 this is the case if and only if A is positive definite.

In prove a bound on the growth ratio for the symmetric positive definite we
first show the following

Lemma 7.3.6. For a symmetric positive definite matrix A = (aij) ∈ Rn×n the
maximum element of A lies on the diagonal.

Proof. Theorem 7.3.2 and Sylvester’s criterion imply that

0 < det

(

aii aij

aji ajj

)

= aiiajj − a2
ij , 1 ≤ i, j ≤ n.

Hence

|aij |2 < aiiajj ≤ max
1≤i≤n

a2
ii,

from which the lemma follows.
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Theorem 7.3.7.
Let A be symmetric and positive definite. Then Gaussian elimination without

pivoting is backward stable and the growth ratio satisfies ρn ≤ 1.

Proof. In Algorithm 7.3.1 the diagonal elements are transformed in the k:th step
of Gaussian elimination according to

a
(k+1)
ii = a

(k)
ii − (a

(k)
ki )2/a

(k)
kk = a

(k)
ii

(

1 − (a
(k)
ki )2/

(

a
(k)
ii a

(k)
kk

)

)

.

If A is positive definite so are A(k) and A(k+1). Using Lemma 7.3.6 it follows

that 0 < a
(k+1)
ii ≤ a

(k)
ii , and hence the diagonal elements in the successive reduced

matrices cannot increase. Thus we have

max
i,j,k

|a(k)
ij | = max

i,k
a
(k)
ii ≤ max

i
aii = max

i,j
|aij |,

which implies that ρn ≤ 1.

Any matrix A ∈ Rn×n can be written as the sum of a symmetric and a
skew-symmetric part, A = H + S, where

AH = 1
2 (A+AT ), AS = 1

2 (A−AT ). (7.3.4)

A is symmetric if and only if AS = 0. Sometimes A is called positive definite if its
symmetric part AH is positive definite. If the matrix A has a positive symmetric
part then its leading principal submatrices are nonsingular and Gaussian elimination
can be carried out to completion without pivoting. However, the resulting LU
factorizing may not be stable as shown by the example

(

ǫ 1
−1 ǫ

)

=

(

1
−1/ǫ 1

)(

ǫ 1
ǫ+ 1/ǫ

)

, (ǫ > 0).

These result can be extended to complex matrices with positive definite Hermitian
part AH = 1

2 (A+AH), for which its holds that xHAx > 0, for all nonzero x ∈ Cn.
Of particular interest are complex symmetric matrices, arising in computational
electrodynamics, of the form

A = B + iC, B,C ∈ Rn×n, (7.3.5)

where B = AH and C = AS both are symmetric positive definite. It can be shown
that for this class of matrices ρn < 3, so LU factorization without pivoting is stable
(see [30]).

7.3.2 Cholesky Factorization

Let A be a symmetric positive definite matrix A. Then the LDLT factorization
(7.3.2) exists and D > 0. Hence we can write

A = LDLT = (LD1/2)(LD1/2)T , D1/2 = diag (
√
d1, . . . ,

√
dn). (7.3.6)
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Defining the upper triangular matrix R := D1/2LT we obtain the factorization

A = RTR. (7.3.7)

If we here take the diagonal elements of L to be positive it follows from the unique-
ness of the LDLT factorization that this factorization is unique. The factorization
(7.3.7) is called the Cholesky factorization of A. and R is called the Cholesky
factor of A.16

The Cholesky factorization is obtained if in symmetric Gaussian elimination

(Algorithm 7.3.1) we set dk = lkk = (a
(k)
kk )1/2. This gives the outer product version

of Cholesky factorization in which in the kth step, the reduced matrix is modified
by a rank-one matrix

A(k+1) = A(k) − lkl
T
k ,

where lk denotes the column vector of multipliers.
In analogy to the compact schemes for LU factorization (see Section 7.2.6) it

is possible to arrange the computations so that the elements in the Cholesky factor
R = (rij) are determined directly. The matrix equation A = RTR with R upper
triangular can be written

aij =

i
∑

k=1

rkirkj =

i−1
∑

k=1

rkirkj + riirij , 1 ≤ i ≤ j ≤ n. (7.3.8)

This is n(n + 1)/2 equations for the unknown elements in R. We remark that for
i = j this gives

max
i
r2ij ≤

j
∑

k=1

r2kj = aj ≤ max
i
aii,

which shows that the elements in R are bounded maximum diagonal element in A.
Solving for rij from the corresponding equation in (7.3.8), we obtain

rij =
(

aij −
i−1
∑

k=1

rkirkj

)

/rii, i < j, rjj =
(

ajj −
j−1
∑

k=1

r2kj

)1/2

.

If properly sequenced, these equations can be used in a recursive fashion to compute
the elements in R. For example the elements in R can be determined one row or
one column at a time.

Algorithm 7.3.2 Cholesky Algorithm; column-wise order

for j = 1 : n

for i = 1 : j − 1

16André-Louis Cholesky (1875–1918) was a French military officer involved in geodesy and sur-
veying in Crete and North Africa just before World War I. He developed the algorithm named
after him and his work was posthumously published by a fellow officer, Benoit in 1924.
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rij =
(

aij −
i−1
∑

k=1

rkirkj

)

/rii;

end

rjj =
(

ajj −
j−1
∑

k=1

r2kj

)1/2

;

end

The column-wise ordering has the advantage of giving the Cholesky factors of
all leading principal submatrices of A. An algorithm which computes the elements
of R in row-wise order is obtained by reversing the two loops in the code above.

Algorithm 7.3.3 Cholesky Algorithm; row-wise order.

for i = 1 : n

rii =
(

aii −
i−1
∑

k=1

r2ki

)1/2

;

for j = i+ 1 : n

rij =
(

aij −
i−1
∑

k=1

rkirkj

)

/rii;

end
end

These two versions of the Cholesky algorithm are not only mathematically
equivalent but also numerically equivalent, i.e., they will compute the same Cholesky
factor, taking rounding errors into account. In the Cholesky factorization only
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Figure 7.3.1. The mapping of array-subscript of an upper triangular ma-
trix of order 5.

elements in the upper triangular part of A are referenced and only these elements
need to be stored. Since most programming languages only support rectangular
arrays this means that the lower triangular part of the array holding A is not used.
One possibility is then to use the lower half of the array to store RT and not
overwrite the original data. Another option is to store the elements of the upper
triangular part of A column-wise in a vector, see Fig. 7.3.1. which is known as
packed storage. This data is then and overwritten by the elements of R during
the computations. Using packed storage complicates somewhat index computations
but is useful when economizing storage is worthwhile.
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Some applications lead to a linear systems where A ∈ Rn×n is a symmetric
positive semidefinite matrix (xTAx ≥ 0 ∀x 6= 0) with rank(A) = r < n. One
example is rank deficient least squares problems; see Section 8.5. Another example
is when the finite element method is applied to a problem where rigid body motion
occurs, which implies r ≤ n − 1. In the semidefinite case a Cholesky factorization
still exists, but symmetric pivoting needs to be incorporated. In the kth elimination

step a maximal diagonal element a
(k)
ss in the reduced matrix A(k) is chosen as pivot,

i.e.,

a(k)
ss = max

k≤i≤n
a
(k)
ii . (7.3.9)

This pivoting strategy is easily implemented in Algorithm 7.3.1, the outer product
version. Symmetric pivoting is also beneficial when A is close to a rank deficient
matrix.

Since all reduced matrices are positive semidefinite their largest element lies
on the diagonal. Hence diagonal pivoting is equivalent to complete pivoting in
Gaussian elimination. In exact computation the Cholesky algorithm stops when all
diagonal elements in the reduced matrix are zero. This implies that the reduced
matrix is the zero matrix.

If A has rank r < n the resulting Cholesky factorization has the upper trape-
zoidal form

PTAP = RTR, R = (R11 R12 ) (7.3.10)

where P is a permutation matrix and R11 ∈ Rr×r with positive diagonal elements.
The linear system Ax = b, or PTAP (PTx) = PT b, then becomes

RTRx̃ = b̃, x̃ = PTx, b̃ = PT b.

Setting z = Rx̃ the linear system reads

RT z =

(

RT
11

RT
12

)

z =

(

b̃1
b̃2

)

,

and from the first r equations we obtain z = R−T
11 b̃1. Substituting this in the last

n− r equations we get

0 = RT
12z − b̃2 = (RT

12R
−T
11 −I )

(

b̃1
b̃2

)

.

These equations are equivalent to b ⊥ N (A) and express the condition for the linear
system Ax = b to be consistent. If they are not satisfied a solution does not exist.
It remains to solve LT x̃ = z, which gives

R11x̃1 = z −R12x̃2.

For an arbitrarily chosen x̃2 we can uniquely determine x̃1 so that these equations
are satisfied. This expresses the fact that a consistent singular system has an infinite
number of solutions. Finally the permutations are undone to obtain x = P x̃.
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Rounding errors can cause negative elements to appear on the diagonal in
the Cholesky algorithm even when A is positive semidefinite. Similarly, because of
rounding errors the reduced matrix will in general be nonzero after r steps even when
rank (A) = r. The question arises when to terminate the Cholesky factorization of
a semidefinite matrix. One possibility is to continue until

max
k≤i≤n

a
(k)
ii ≤ 0,

but this may cause unnecessary work in eliminating negligible elements. Further
discussion of this aspect is postponed until Chapter 8.

7.3.3 Inertia of Symmetric Matrices

Let A ∈ Cn×n be an Hermitian matrix. The inertia of A is defined as the number
triple in(A) = (π, ν, δ) of positive, negative, and zero eigenvalues of A. If A is
positive definite matrix and Ax = λx, we have

xHAx = λxHx > 0.

Hence all eigenvalues must be positive and the inertia is (n, 0, 0).
Hermitian matrices arise naturally in the study of quadratic forms ψ(x) =

xHAx. By the coordinate transformation x = Ty this quadratic form is transformed
into

ψ(Ty) = yHÂy, Â = THAT.

The mapping of A onto THAT is called a congruence transformation of A, and
we say that A and Â are congruent. (Notice that a congruence transformation
with a nonsingular matrix means a transformation to a coordinate system which
is usually not rectangular.) Unless T is unitary these transformations do not, in
general, preserve eigenvalues. However, Sylvester’s famous law of inertia says that
the signs of eigenvalues are preserved by congruence transformations.

Theorem 7.3.8. Sylvester’s Law of Inertia If A ∈ Cn×n is symmetric and T ∈
Cn×n is nonsingular then A and Â = THAT have the same inertia.

Proof. Since A and Â are Hermitian there exist unitary matrices U and Û such
that

UHAU = D, ÛHÂÛ = D̂,

where D = diag (λi) and D̂ = diag (λ̂i) are diagonal matrices of eigenvalues. By
definition we have in(A) = in(D), in(Â) = in(D̂), and hence, we want to prove that
in(D) = in(D̂), where

D̂ = SHDS, S = UHT Û.

Assume that π 6= π̂, say π > π̂, and that the eigenvalues are ordered so that
λj > 0 for j ≤ π and λ̂j > 0 for j ≤ π̂. Let x = Sx̂ and consider the quadratic form

ψ(x) = xHDx = x̂HD̂x̂, or

ψ(x) =
n

∑

j=1

λj |ξj |2 =
n

∑

j=1

λ̂j |ξ̂j |2.
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Let x∗ 6= 0 be a solution to the n− π + π̂ < n homogeneous linear relations

ξj = 0, j > π, ξ̂j = (S−1x)j = 0, j ≤ π̂.

Then

ψ(x∗) =

π
∑

j=1

λj |ξ∗j |2 > 0, ψ(x∗) =

n
∑

j=π̂

λ̂j |ξ̂∗j |2 ≤ 0.

This is a contradiction and hence the assumption that π 6= π̂ is false, so A and Â
have the same number of positive eigenvalues. Using the same argument on −A it
follows that also ν = ν̂, and since the number of eigenvalues is the same δ = δ̂.

Let A ∈ Rn×n be a real symmetric matrix and consider the quadratic equation

xTAx− 2bx = c, A 6= 0. (7.3.11)

The solution sets of this equation are sometimes called conical sections. If b = 0,
then the surface has its center at the origin reads xTAx = c. The inertia of A
completely determines the geometric type of the conical section.

Sylvester’s theorem tells that the geometric type of the surface can be de-
termined without computing the eigenvalues? Since we can always multiply the
equation by −1 we can assume that there are at least one positive eigenvalues.
Then, for n = 2 there are three possibilities:

(2, 0, 0) ellipse; (1, 0, 1) parabola; (1, 1, 0) hyperbola.

In n dimensions there will be n(n+1)/2 cases, assuming that at least one eigenvalue
is positive.

7.3.4 Symmetric Indefinite Matrices

As shown by Example 7.3.1, the LDLT factorization of a symmetric indefinite
matrix, although efficient computationally, may not exist and can be unstable. This
is true even when symmetric row and column interchanges are used, to select at
each stage the largest diagonal element in the reduced matrix as pivot. One stable
way of factorizing an indefinite matrix is of course to compute an unsymmetric
LU factorization using Gaussian elimination with partial pivoting. However, this
factorization does not give the inertia of A and we give up the savings of a factor
one half in d storage.

The following example shows that in order to enable a stable LDLT factor-
ization for a symmetric indefinite matrix A, it is necessary to consider a block
factorization where D is block diagonal with also 2 × 2 diagonal blocks..

Example 7.3.3.
The symmetric matrix

A =

(

ǫ 1
1 ǫ

)

, 0 < ǫ≪ 1,
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is indefinite since det(A) = λ1λ2 = ǫ1−1 < 0. If we compute the LDLT factorization
of A without pivoting we obtain

A =

(

1 0
ǫ−1 1

) (

ǫ 0
0 ǫ− ǫ−1

) (

1 ǫ−1

0 1

)

.

which shows that there is unbounded element growth. However, A is well condi-
tioned with inverse

A−1 =
1

ǫ2 − 1

(

ǫ 1
1 ǫ

)

, 0 < ǫ≪ 1.

It is quite straightforward to generalize Gaussian elimination to use any non-
singular 2 × 2 principal submatrix as pivot. By a symmetric permutation this
submatrix is brought to the upper left corner, and the permuted matrix partitioned
as

PAPT =

(

A11 A12

AT
12 A22

)

, A11 =

(

a11 a21

a21 a22

)

.

Then the Schur complement of A11, S = A22 − AT
12A

−1
11 A12, exists where

A−1
11 =

1

δ12

(

a22 −a21

−a21 a11

)

, δ12 = det(A11) = a11a22 − a2
21. (7.3.12)

We obtain the symmetric block factorization

(

A11 A12

AT
12 A22

)

=

(

I 0
L I

) (

A11 0
0 S

) (

I LT

0 I

)

, (7.3.13)

where L = AT
12A

−1
11 . This determines the first two columns of a unit lower triangular

matrix L = L21 = A21A
−1
11 , in an LDLT factorization of A. The block A22 is

transformed into the symmetric matrix A
(3)
22 = A22 − L21A

T
21 with components

a
(3)
ij = aij − li1a1j − li2a2j , 2 ≤ j ≤ i ≤ n. (7.3.14)

It can be shown that A
(3)
22 is the same reduced matrix as if two steps of Gaussian

elimination were taken, first pivoting on the element a12 and then on a21.
A similar reduction is used if 2 × 2 pivots are taken at a later stage in the

factorization. Ultimately a factorization A = LDLT is computed in which D is
block diagonal with in general a mixture of 1 × 1 and 2 × 2 blocks, and L is unit
lower triangular with lk+1,k = 0 when A(k) is reduced by a 2 × 2 pivot. Since the
effect of taking a 2×2 step is to reduce A by the equivalent of two 1×1 pivot steps,
the amount of work must be balanced against that. The part of the calculation
which dominates the operation count is (7.3.14), and this is twice the work as for
an 1 × 1 pivot. Therefore the leading term in the operations count is always n3/6,
whichever type of pivots is used.
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The main issue then is to find a pivotal strategy that will give control of
element growth without requiring too much search. One possible strategy is com-
parable to that of complete pivoting. Consider the first stage of the factorization
and set

µ0 = max
ij

|aij | = |apq|, µ1 = max
i

|aii| = |arr|.

Then if
µ1/µ0 > α = (

√
17 + 1)/8 ≈ 0.6404,

the diagonal element arr is taken as an 1 × 1 pivot. Otherwise the 2 × 2 pivot.
(

app aqp

aqp aqq

)

, p < q,

is chosen. In other words if there is a diagonal element not much smaller than
the element of maximum magnitude this is taken as an 1 × 1 pivot. The magical
number α has been chosen so as to minimize the bound on the growth per stage of
elements of A, allowing for the fact that a 2 × 2 pivot is equivalent to two stages.
The derivation, which is straight forward but tedious (see Higham [41, Sec. 11.1.1])
is omitted here.

With this choice the element growth can be shown to be bounded by

ρn ≤ (1 + 1/ρ)n−1 < (2.57)n−1. (7.3.15)

This exponential growth may seem alarming, but the important fact is that the
reduced matrices cannot grow abruptly from step to step. No example is known
where significant element growth occur at every step. The bound in (7.3.15) can
be compared to the bound 2n−1, which holds for Gaussian elimination with partial
pivoting. The elements in L can be bounded by 1/(1−α) < 2.781 and this pivoting
strategy therefore gives a backward stable factorization.

Since the complete pivoting strategy above requires the whole active submatrix
to be searched in each stage, it requires O(n3) comparisons. The same bound
for element growth (7.3.15) can be achieved using the following partial pivoting
strategy due to Bunch–Kaufman [11]. For simplicity of notations we restrict our
attention to the first stage of the elimination. All later stages proceed similarly.
First determine the off-diagonal element of largest magnitude in the first column,

λ = |ar1| = max
i6=1

|ai1|.

If |a11| ≥ ρλ, then take a11 as pivot. Else, determine the largest off-diagonal element
in column r,

σ = max
1≤i≤n

|air|, i 6= r.

If |a11| ≥ ρλ2/σ, then again take a11 as pivot, else if |arr| ≥ ρσ, take arr as pivot.
Otherwise take as pivot the 2 × 2 principal submatrix

(

a11 a1r

a1r arr

)

.
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Note that at most 2 columns need to be searched in each step, and at most O(n2)
comparisons are needed in all.

Normwise backward stability can be shown to hold also for the Bunch–Kaufman
partial pivoting strategy. However, it is no longer true that the elements of L are
bounded independently of A. The following example (Higham [41, Sec. 11.1.2])
shows that for partial pivoting L is unbounded:

A =





0 ǫ 0
ǫ 0 1
0 1 1



 =





1
0 1
ǫ−1 0 1









0 ǫ
ǫ 0

1









1 0 ǫ−1

1 0
1



 . (7.3.16)

Note that whenever a 2 × 2 pivot is used, we have

a11arr ≤ ρ2|a1r|2 < |a1r|2.

Hence with both pivoting strategies any 2 × 2 block in the block diagonal matrix
D has a negative determinant δ1r = a11arr − a2

1r < 0 and by Sylvester’s Theorem
corresponds to one positive and one negative eigenvalue. Hence a 2×2 pivot cannot
occur if A is positive definite and in this case all pivots chosen by the Bunch–
Kaufman strategy will be 1 × 1.

For solving a linear system Ax = b the LDLT factorization produced by the
Bunch–Kaufman pivoting strategy is satisfactory. For certain other applications
the possibility of a large L factor is not acceptable. A bounded L factor can be
achieved with the modified pivoting strategy suggested in [4]. This symmetric
pivoting is roughly similar to rook pivoting and has a total cost of between O(n2)
and O(n3) comparisons. Probabilistic results suggest that on the average the cost
is only O(n2). In this strategy a search is performed until two indices r and s have
been found such that the element ars bounds in modulus the other off-diagonal
elements in the r and s columns (rows). Then either the 2 × 2 pivot Drs or the
largest in modulus of the two diagonal elements as an 1×1 pivot is taken, according
to the test

max(|arr|, |ass|) ≥ α|ars|.
Aasen [1] has given an algorithm that for a symmetric matrix A ∈ Rn×n

computes the factorization
PAPT = LTLT , (7.3.17)

where L is unit lower triangular and T symmetric tridiagonal.
None of the algorithms described here preserves the band structure of the

matrix A. In this case Gaussian elimination with partial pivoting can be used
but as remarked before this will destroy symmetry and does not reveal the inertia.
For the special case of a tridiagonal symmetric indefinite matrices an algorithm for
computing an LDLT factorization will be given in Sec. 7.4.3.

A block LDLT factorization can also be computed for a real skew-symmetric
matrix A. Note that AT = −A implies that such a matrix has zero diagonal
elements. Further, since

(xTAx)T = xTATx = −xTAx,
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it follows that all nonzero eigenvalues come in pure imaginary complex conjugate
pairs. In the first step of the factorization if the first column is zero there is nothing
to do. Otherwise we look for an off-diagonal element ap,q, p > q such that

|ap,q| = max{ max
1<i≤n

|ai,1|, max
1<i≤n

|ai,2|},

and take the 2 × 2 pivot
(

0 −ap,q

ap,q 0

)

.

It can be shown that this pivoting the growth ratio is bounded by ρn ≤ (
√

3)n−2,
which is smaller than for Gaussian elimination with partial pivoting for a general
matrix.

Review Questions

1. (a) Give two necessary and sufficient conditions for a real symmetric matrix
A to be positive definite.

(b) Show that if A is symmetric positive definite so is its inverse A−1.

2. What simplifications occur in Gaussian elimination applied to a symmetric,
positive definite matrix?

3. What is the relation of Cholesky factorization to Gaussian elimination? Give
an example of a symmetric matrix A for which the Cholesky decomposition
does not exist.

4. Show that if A is skew-symmetric, then iA is Hermitian.

5. Show that the Cholesky factorization is unique for positive definite matrices
provided R is normalized to have positive diagonal entries.

6. (a) Formulate and prove Sylvester’s law of inertia.

(b) Show that for n = 3 there are six different geometric types of conical
sections xTAx− 2bTx = c, provided that A 6= 0 and is normalized to have at
least one positive eigenvalue.

Problems

1. If A is a symmetric positive definite matrix how should you compute xTAx
for a given vector x?

2. Show that if A is symmetric and positive definite then |aij | ≤ (aii + ajj)/2.

3. Show by computing the Cholesky factorization A = LLT that the matrix

A =







10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10
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is positive definite.

4. The Hilbert matrix Hn ∈ Rn×n with elements

aij = 1/(i+ j − 1), 1 ≤ i, j ≤ n,

is symmetric positive definite for all n. Denote by H̄4 the corresponding matrix
with elements rounded to five decimal places, and compute its Cholesky factor
L̄. Then compute the difference (L̄L̄T − Ā) and compare it with (A− Ā).

5. Let A + iB be Hermitian and positive definite, where A,B ∈ Rn×n. Show
that the real matrix

C =

(

A −B
B A

)

is symmetric and positive definite. How can a linear system (A+iB)(x+iy) =
b+ ic be solved using a Cholesky factorization of C?

6. Implement the Cholesky factorization using packed storage for A and R.

7.4 Banded Linear Systems

7.4.1 Banded Matrices

Linear systems Ax = b where the matrix A is banded arise in problems where
each variable xi is coupled by an equation only to a few other variables xj such
that |j − i| is small. We make the following definition (note that it applies also to
matrices which are not square):

We recall from Definition 7.1.1 that a matrixA is said to have upper bandwidth
r and lower bandwidth s if

aij = 0, j > i+ r, aij = 0, i > j + s,

respectively. This means that the number of non-zero diagonals above and below the
main diagonal are r and s respectively. The maximum number of nonzero elements
in any row is then w = r + s+ 1, which is the bandwidth of A.

For a matrix A ∈ Rm×n which is not square we define the bandwidth as

w = max
1≤i≤m

{j − k + 1 | aijaik 6= 0}.

Note that the bandwidth of a matrix depends on the ordering of its rows and
columns. An important, but hard, problem is to find optimal orderings that mini-
mize the bandwidth. However, there are good heuristic algorithms that can be used
in practice and give almost optimal results; see Section 7.6.3.

It is convenient to introduce some additional notations for manipulating band
matrices.17

17These notations are taken from Matlab .
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Definition 7.4.1.
If a = (a1, a2, . . . , an−r)

T is a column vector with n − r components then
A = diag (a, k), |k| < n, denotes a square matrix of order n with the elements of a
on its kth diagonal; k = 0 is the main diagonal; k > 0 is above the main diagonal;
k < 0 is below the main diagonal.

If A is a square matrix of order n, then diag (A, k) ∈ R(n−k), |k| < n, is the
column vector formed from the elements of the kth diagonal of A.

Assume that A and B are banded matrices of order n, which both have a small
bandwidth compared to n. Then, since there are few nonzero elements in the rows
and columns of A and B the usual algorithms for forming the product AB are not
effective on vector computers. We now give an algorithm for multiplying matrices
by diagonals, which overcomes this drawback.

Lemma 7.4.2.
Let A = diag (a, r) and B = diag (b, s) and set C = AB. If |r + s| ≥ n then

C = 0; otherwise C = diag (c, r+s), where the elements of the vector c ∈ R(n−|r+s|)

are obtained by pointwise multiplication of shifted vectors a and b:

c =































(a1br+1, . . . , an−r−sbn−s)
T , if r, s ≥ 0,

(a|s|+1b1, . . . , an−|r|bn−|r+s|)
T , if r, s ≤ 0.

(0, . . . , 0, a1b1, . . . , an−sbn−s)
T , if r < 0, s > 0, r + s ≥ 0.

(0, . . . , 0, a1b1, . . . , an−|r|bn−|r|)
T , if r < 0, s > 0, r + s < 0.

(a1b|r+s|+1, . . . , an−rbn−|s|, 0, . . . , 0)T , if r > 0, s < 0, r + s ≥ 0.
(ar+1b1, . . . , an−rbn−|s|, 0, . . . , 0)T , if r > 0, s < 0, r + s < 0.

(7.4.1)
Note that when rs < 0, zeros are added at the beginning or end to get a vector c of
length n− |r + s|.

The number of cases in this lemma looks a bit forbidding, so to clarify the
situation a bit more we consider a specific case.

Example 7.4.1.
Let A and B be tridiagonal matrices of size 5 × 5

A =











a1 c1
b1 a2 c2

b2 a3 c3
b3 a4 c4

b4 a5











, B =











d1 f1
e1 d2 f2

e2 d3 f3
e3 d4 f4

e4 d5











.

Then C = AB will be a banded matrix with upper and lower bandwidth equal to
two. The five diagonals of C are

diag (C, 0) = (a1d1, a2d2, a3d3, a4d4, a5d5)

+ (0, b1f1, b2f2, b3f3, b4f4)

+ (c1e1, c2e2, c3e3, c4e4, 0),
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diag (C, 1) = (a1f1, a2f2, a3f3, a4f4)

+ (c1d2, c2d3, c3d4, c4d5),

diag (C,−1) = (b1d1, b2d2, b3d3, b4d4)

+ (a2e1, a3e2, a4e3, a5e4),

diag (C, 2) = (c1f2, c2f3, c3f4),

diag (C,−2) = (b2e1, b3e2, b4e3).

The number of operations are exactly the same as in the conventional schemes, but
only 32 = 9 pointwise vector multiplications are required.

Lemma 7.4.3.
Let A,B ∈ Rn×n have lower (upper) bandwidth r and s respectively. Then the

product AB has lower (upper) bandwidth r + s.

7.4.2 LU Factorization of Banded Matrices

A matrix A for which all nonzero elements are located in consecutive diagonals is
called a band matrix.

Many applications give rise to linear systems Ax = b, where the nonzero
elements in the matrix A are located in a band centered along the principal diagonal.
Such matrices are called band matrices and are the simplest examples of sparse
matrices, i.e., matrices where only a small proportion of the n2 elements are nonzero.
Such matrices arise frequently in, for example, the numerical solution of boundary
value problems for ordinary and partial differential equations.

Several classes of band matrices that occur frequently have special names.
Thus, a matrix for which r = s = 1 is called tridiagonal, if r = 0, s = 1 it is
called (lower) bidiagonal etc. For example, the matrix















a11 a12

a21 a22 a23

a31 a32 a33 a34

a42 a43 a44 a45

a53 a54 a55 a56

a64 a65 a66















has r = 1, s = 2 and w = 4.
Band matrices are well-suited for Gaussian elimination, since if no pivoting

is required the band structure is preserved. Recall that pivoting is not needed for
stability, e.g., when A is diagonally dominant.

Theorem 7.4.4. Let A be a band matrix with upper bandwidth r and lower band
width s. If A has an LU -decomposition A = LU , then U has upper bandwidth r
and L lower bandwidth s.
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Proof. The factors L and U are unique and can be computed, for example, by
Doolittle’s method (7.2.15). Assume that the first k − 1 rows of U and columns of
L have bandwidth r and s, that is, for p = 1 : k − 1

lip = 0, i > p+ s, upj = 0, j > p+ r. (7.4.2)

The proof is by induction in k. The assumption is trivially true for k = 1. Since
akj = 0, j > k + r we have from (7.2.9) and (7.4.2)

ukj = akj −
k−1
∑

p=1

lkpupj = 0 − 0 = 0, j > k + r.

Similarly it follows that lik = 0, i > k+ s, which completes the induction step.

A band matrix A ∈ Rn×n may be stored by diagonals in an array of dimension
n× (r + s+ 1) or (r + s+ 1) × n. For example, the matrix above can be stored as

∗ ∗ a11 a12

∗ a21 a22 a23

a31 a32 a33 a34

a42 a43 a44 a45

a53 a54 a55 a56

a64 a65 a66 ∗

, or

∗ a12 a23 a34 a45 a56

a11 a22 a33 a44 a55 a66

a21 a32 a43 a54 a65 ∗
a31 a42 a53 a64 ∗ ∗

.

Notice that except for a few elements indicated by asterisks in the initial and final
rows, only nonzero elements of A are stored. For example, passing along a row in
the second storage scheme above moves along a diagonal of the matrix, and the
columns are aligned.

For a general band matrix Algorithm 7.2.2, Gaussian elimination without
pivoting, should be modified as follows to operate only on nonzero elements: The
algorithms given below are written as if the matrix was conventionally stored. It
is a useful exercise to rewrite them for the case when A, L, and U are stored by
diagonals!

Algorithm 7.4.1 Banded Gaussian Elimination.
Let A =∈ Rn×n be a given matrix with upper bandwidth r and lower bandwidth
s. The following algorithm computes the LU factorization of A, provided it exists.
The element aij is overwritten by lij if i > j and by uij otherwise.

for k = 1 : n− 1

for i = k + 1 : min(k + s, n)

lik := a
(k)
ik /a

(k)
kk ;

for j = k + 1 : min(k + r, n)

a
(k+1)
ij := a

(k)
ij − lika

(k)
kj ;

end

end

end
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An operation count shows that this algorithm requires t flams, where

t =











nr(s+ 1) − 1
2rs

2 − 1
6r

3, if r ≤ s;

ns(s+ 1) − 2
3s

3, if r = s;

ns(r + 1) − 1
2sr

2 − 1
6s

3, if r > s.

Whenever r ≪ n or s≪ n this is much less than the n3/3 flams required in the full
case.

Analogous savings can be made in forward- and back-substitution. Let L and
U be the triangular factors computed by Algorithm 7.4.2. The solution of the two
banded triangular systems Ly = b and Ux = y are obtained from

yi = bi −
i−1
∑

max(1,i−s)

lijyj , i = 1 : n

xi :=
(

yi −
min(i+r,n)

∑

j=i+1

uijxj

)

/uii, i = n : (−1) : 1.

These algorithms require ns− 1
2s

2 and (n− r
2 )(r + 1) flops, respectively. They are

easily modified so that y and x overwrites b in storage.
Unless A is diagonally dominant or symmetric positive definite, partial piv-

oting should be used. The pivoting will cause the introduction of elements outside
the band. This is illustrated below for the case when s = 2 and r = 1 . The first
step of the elimination is shown, where it is assumed that a31 is chosen as pivot and
therefore rows 1 and 3 interchanged:

a31 a32 a33 a34

a21 a22 a23

a11 a12

a42 a43 a44 a45

a53 a54 a55 a56

· · ·

=⇒

u11 u12 u13 u14

l21 a
(2)
22 a

(2)
23 a

(2)
24

l31 a
(2)
32 a

(2)
33 a

(2)
34

a42 a43 a44 a45

a53 a54 a55 a56

· · ·

.

where fill-in elements are shown in boldface. Hence the upper bandwidth of U may
increase to r+s. The matrix L will still have only s elements below the main diago-
nal in all columns but no useful band structure. This can be seen from the example
above where, e.g., the elements l21 and l31 may be subject to later permutations,
destroying the band-structure of the first column.

Example 7.4.2.
A class of matrices with unsymmetric band structure is upper (lower) Hes-

senberg matrices18 for which s = 1 (r = 1). These are of particular interest

18Karl Hessenberg (1904–1959) German mathematician and engineer.
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in connection with unsymmetric eigenproblems. An upper Hessenberg matrix of
order five has the structure

H =











h11 h12 h13 h14 h15

h21 h22 h23 h24 h25

0 h32 h33 h34 h35

0 0 h43 h44 h45

0 0 0 h54 h55











.

Performing Gaussian elimination the first step will only affect the first two rows of
the matrix. The reduced matrix is again Hessenberg and all the remaining steps are
similar to the first. If partial pivoting is used then in the first step either h11 or h21

will be chosen as pivot. Since these rows have the same structure the Hessenberg
form will be preserved during the elimination. Clearly only t = 1

2n(n+ 1) flams are
needed. Note that with partial pivoting the elimination will not give a factorization
PA = LU with L lower bidiagonal. Whenever we pivot, the interchanges should
be applied also to L, which will spread out the elements. Therefore L will be lower
triangular with only one nonzero off-diagonal element in each column. However, it
is more convenient to leave the elements in L in place.

If A ∈ Rn×n is Hessenberg then ρn ≤ n with partial pivoting. This follows
the since at the start of the k stage row k + 1 of the reduced matrix has not been
changed and the elements the pivot row has elements of modulus at most k times
the largest element of H .

In the special case when A is a symmetric positive definite banded matrix with
upper and lower bandwidth r = s, the factor L in the Cholesky factorization A =
LLT has lower bandwidth r. From Algorithm 7.3.2 we easily derive the following
banded version:

Algorithm 7.4.2 Band Cholesky Algorithm, column-wise Order.

for j = 1 : n

p = max(1, j − r);

for i = p : j − 1

rij =
(

aij −
i−1
∑

k=p

rkirkj

)

/rii;

end

rjj =
(

ajj −
j−1
∑

k=p

r2kj

)1/2

;

end

If r ≪ n this algorithm requires about 1
2nr(r+3) flops and n square roots. As input

we just need the upper triangular part of A, which can be stored in an n× (r + 1)
array.
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7.4.3 Tridiagonal Linear Systems

A matrix of the form

A =













a1 c2
b2 a2 c3

. . .
. . .

. . .

bn−1 an−1 cn
bn an













. (7.4.3)

is called tridiagonal. Note that the 3n− 2 nonzero elements in A are conveniently
stored in three vectors a, c, and d. A is said to be irreducible if bi and ci are nonzero
for i = 2 : n. Let A be reducible, say ck = 0. Then A can be written as a lower
block triangular form

A =

(

A1 0
L1 A2

)

,

where A1 and A2 are tridiagonal. If A1 or A2 is reducible then this blocking can be
applied recursively until a block form with irreducible tridiagonal blocks is obtained..

If Gaussian elimination with partial pivoting is applied to A then a factoriza-
tion PA = LU is obtained, where L has at most one nonzero element below the
diagonal in each column and U has upper bandwidth two (cf. the Hessenberg case
in Example 7.4.2). If A is diagonally dominant, then no pivoting is requires and
the factorization A = LU exists. By Theorem 7.4.4 it has the form

A = LU =















1
γ2 1

γ3
. . .
. . . 1

γn 1



























α1 c2
α2 c3

. . .
. . .

αn−1 cn
αn













. (7.4.4)

By equating elements in A and LU it is verified that the upper diagonal in U equals
that in A, and for the other elements in L and U we obtain the recursions

α1 = a1, γk = bk/αk−1, αk = ak − γkck, k = 2 : n. (7.4.5)

Note that the elements γk and αk can overwrite bk and ak, respectively. The solution
to the system Ax = f can then be computed by solving Ly = f by Ux = y by back-
and forward-substitution

y1 = f1, yi = fi − γiyi−1, i = 2 : n, (7.4.6)

xn = yn/αn, xi = (yi − ci+1xi+1)/αi, i = n− 1 : 1. (7.4.7)

The total number of flops is about 1.5n for the factorization and 2.5n for the solu-
tion.

If A is tridiagonal then it is easily proved by induction that ρn ≤ 2 with partial
pivoting. This result is a special case of a more general result.
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Theorem 7.4.5. [Bothe [10]] If A ∈ Cn×n has upper and lower bandwidth p then
the growth factor in GE with partial pivoting satisfies

ρn ≤ 22p−1 − (p− 1)2p−2.

In particular for a tridiagonal matrix (p = 1) ρn ≤ 2.

When A is symmetric positive definite and tridiagonal (7.4.3)

A =













a1 b2
b2 a2 b3

. . .
. . .

. . .

bn−1 an−1 bn
bn an













, (7.4.8)

we can write the factorization

A = LDLT , D = diag (α1, . . . , αn), (7.4.9)

where L is as in (7.4.4). The algorithm then reduces to

α1 = a1, γk = bk/αk−1, αk = ak − γkbk, k = 2 : n. (7.4.10)

Sometimes it is more convenient to write

A = UTD−1U, D = diag (a1, . . . , an).

In the scalar case U is given by (7.4.4) (with ck = bk), and the elements in U and
D are computed from

α1 = a1, αk = ak − b2k/αk−1. k = 2 : n. (7.4.11)

The recursion (7.4.5) for the LU factorization of a tridiagonal matrix is highly
serial. An algorithm for solving tridiagonal systems, which has considerable inherent
parallelism, is cyclic reduction also called odd-even reduction. This is the most
preferred method for solving large tridiagonal systems on parallel computers.

The basic step in cyclic reduction is to eliminate all the odd unknowns to
obtain a reduced tridiagonal system involving only even numbered unknowns. This
process is repeated recursively until a system involving only a small order of un-
knowns remains. This is then solved separately and the other unknowns can then be
computed in a back-substitution process. We illustrate this process on a tridiagonal
system Ax = f of order n = 23 − 1 = 7. If P is a permutation matrix such that
P (1, 2, . . . , 7) = (1, 3, 5, 7, 2, 4, 6)T the transformed system PAPT (Px) = PT f , will
have the form





















a1 c2
a3 b3 c4

a5 b5 c6
a7 b7

b2 c3 a2

b4 c5 a4

b6 c7 a6









































x1

x3

x5

x7

x2

x4

x6





















=





















f1
f3
f5
f7
f2
f4
f6





















.
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It is easily verified that after eliminating the odd variables from the even equations
the resulting system is again tridiagonal. Rearranging these as before the system
becomes





a′2 c′4
a′6 b′6

b′4 c′6 a′4



 =





x2

x6

x4



 =





f ′

2

f ′

6

f ′

4



 .

After elimination we are left with one equation in one variable

a′′4x4 = f ′′

4 .

Solving for x4 we can compute x2 and x6 from the first two equations in the previous
system. Substituting these in the first four equations we get the odd unknowns
x1, x3, x5, x7. Clearly this scheme can be generalized. For a system of dimension
n = 2p − 1, p steps are required in the reduction. Note, however, that it is possible
to stop at any stage, solve a tridiagonal system and obtain the remaining variables
by substitution. Therefore it can be used for any dimension n.

The derivation shows that cyclic reduction is equivalent to Gaussian elimina-
tion without pivoting on a reordered system. Therefore it is stable if the matrix
is diagonally dominant or symmetric positive definite. In contrast to the conven-
tional algorithm there is some fill during the elimination and about 2.7 times more
operations are needed.

Example 7.4.3.
Consider the linear system Ax = b, where A is a symmetric positive definite

tridiagonal matrix. Then A has positive diagonal elements and the symmetrically
scaled matrix DAD, where D = diag (d1, . . . , dn), di = 1/

√
ai, has unit diagonal

elements. After an odd-even permutation the system has the 2 × 2 block form

(

I F
FT I

) (

x
y

) (

c
d

)

, (7.4.12)

with F lower bidiagonal. After block elimination the Schur complement system
becomes

(I − FTF )x = d− FT c.

Here I − FTF is again a positive definite tridiagonal matrix. Thus the process can
be repeated recursively.

Boundary value problems, where the solution is subject to periodic boundary
conditions, often lead to matrices of the form

B =















a1 c2 b1
b2 a2 c3

. . .
. . .

. . .

bn−1 an−1 cn
c1 bn an















, (7.4.13)
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which are tridiagonal except for the two corner elements b1 and c1. We now consider
the is real symmetric case, bi = ci, i = 1 : n Partitioning B in 2 × 2 block form as
above, we seek a factorization

B =

(

A u
vT an

)

=

(

L 0
yT 1

) (

U z
0 dn

)

where u = b1e1+cnen−1, v = c1e1+bnen−1. Multiplying out we obtain the equations

A = LU, u = Lz, vT = yTU, an = yT z + dn

Assuming that no pivoting is required the factorization A = LU , where L and U
are bidiagonal, is obtained using (7.4.5). The vectors y and z are obtained from the
lower triangular systems

Lz = b1e1 + cnen−1, UT y = c1e1 + cnen−1,

and dn = an − yT z. Note that y and z will be full vectors.
Cyclic reduction can be applied to systems Bx = f , where B has the tridiago-

nal form in (7.4.13). If n is even the reduced system obtained after eliminating the
odd variables in the even equations will again have the form (7.4.13). For example,
when n = 23 = 8 the reordered system is

























a1 c2 b1
a3 b3 c4

a5 b5 c6
a7 b7 c8

b2 c3 a2

b4 c5 a4

b6 c7 a6

c1 b8 a8

















































x1

x3

x5

x7

x2

x4

x6

x8

























=

























f1
f3
f5
f7
f2
f4
f6
f8

























.

If n = 2p the process can applied recursively. After p steps one equation in a single
unknown is obtained. Cyclic reduction here does not require extra storage and also
has a slightly lower operation count than ordinary Gaussian elimination.

We finally consider the case when A is a symmetric indefinite tridiagonal
matrix. It would be possible to use LU factorization with partial pivoting, but this
destroys symmetry and gives no information about the inertia of A. Instead a block
factorization A = LDLT can be computed using no interchanges as follows. Set
σ = max1≤i≤n |aij | and α = (

√
5 − 1)/2 ≈= 0.62. In the first stage we take a11 as

pivot if σ|a11| ≥ a2
21. Otherwise we take the 2 × 2 pivot

(

a11 a12

a21 a22

)

.

This factorization can be shown to be normwise backward stable and is a good way
to solve such symmetric indefinite tridiagonal linear systems.
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7.4.4 Inverses of Banded Matrices

It is important to note that the inverse A−1 of a banded matrix in general has no zero
elements. Hence one should never attempt to explicitly compute the elements of the
inverse of a band matrix. Since banded systems often have very large dimensions
even storing the elements in A−1 may be infeasible!

The following theorem states that the lower triangular part of the inverse of
an upper Hessenberg matrix has a very simple structure.

Theorem 7.4.6.
Let H =∈ Rn×n be an upper Hessenberg matrix with nonzero elements in the

subdiagonal, hi+1,i 6= 0, i = 1 : n− 1. Then there are vectors p and q such that

(H−1)ij = piqj , i ≥ j. (7.4.14)

Proof. See Ikebe [46]

A tridiagonal matrix A is both lower and upper Hessenberg. Hence if A is
irreducible it follows that there are vectors x, y, p and q such that

(A−1)ij =

{

xiyj, i ≤ j,
piqj , i ≥ j.

(7.4.15)

Note that x1 6= 0 and yn 6= 0, since otherwise the entire first row or last column
of A−1 would be zero, contrary to the assumption of the nonsingularity of A. The
vectors x and y (as well as p and q) are unique up to scaling by a nonzero factor.
There is some redundancy in this representation since xiyi = piqi. It can be shown
that 3n−2 parameters are needed to represent the inverse, which equals the number
of nonzero elements in A.

The following algorithm has been suggested by N. J. Higham to compute the
vectors x, y, p and q:

1. Compute the LU factorization of A.

2. Use the LU factorization to solve for the vectors y and z, where AT y = e1
and Az = en. Similarly solve for p and r, where Ap = e1 and AT r = en.

3. Set q = p−1
n r and x = y−1

n z.

This algorithm is not foolproof and can fail because of overflow.

Example 7.4.4. Let A be a symmetric, positive definite tridiagonal matrix with
elements a1 = 1,

ai = 2, bi = ci = −1, i = 2 : 5.
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Although the Cholesky factor L of A is bidiagonal the inverse

A−1 =











5 4 3 2 1
4 4 3 2 1
3 3 3 2 1
2 2 2 2 1
1 1 1 1 1











.

is full. Here x = p, y = q, can be determined up to a scaling factor from the first
and last columns of A−1.

The inverse of any banded matrix has a special structure related to low rank
matrices. The first study of inverse of general banded matrices was Asplund [5].

Review Questions

1. Give an example of matrix multiplication by diagonals.

2. (a) If a is a column vector what is meant by diag (a, k)?

(b) If A is a square matrix what is meant by diag (A, k)?

3. (a) Let A ∈ Rn×n be a banded matrix with upper bandwidth p and lower
bandwidth q. Show how A can be efficiently stored when computing the LU
factorization.

(b) Assuming that the LU factorization can be carried out without pivoting,
what are the structures of the resulting L and U factors of A?

(c) What can you say about the structure of the inverses of L and U?

4. Let A ∈ Rn×n be a banded matrix with upper bandwidth p and lower band-
width q. Assuming that the LU factorization of A can be carried out without
pivoting, roughly how many operations are needed? You need only give the
dominating term when p, q ≪ n.

5. Give a bound for the growth ratio ρn in Gaussian elimination with partial
pivoting, when the matrix A is: (a) Hessenberg; (b) tridiagonal.

Problems

1. (a) Let A,B ∈ Rn×n have lower (upper) bandwidth r and s respectively. Show
that the product AB has lower (upper) bandwidth r + s.

(b) An upper Hessenberg matrix H is a matrix with lower bandwidth r = 1.
Using the result in (a) deduce that the product of H and an upper triangular
matrix is again an upper Hessenberg matrix.

2. Show that an irreducible nonsymmetric tridiagonal matrix A can be written
A = DT , where T is symmetric tridiagonal and D = diag (dk) is diagonal with
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elements

d1 = 1, dk =

k
∏

j=2

cj/bj, k = 2 : n. (7.4.16)

3. (a) Let A ∈ Rn×n be a symmetric, tridiagonal matrix such that det(Ak) 6= 0,
k = 1 : n. Then the decomposition A = LDLT exists and can be computed
by the formulas given in (7.4.10). Use this to derive a recursion formula for
computing det(Ak), k = 1 : n.

(b) Determine the largest n for which the symmetric, tridiagonal matrix

A =















2 1.01
1.01 2 1.01

1.01
. . .

. . .
. . .

. . . 1.01
1.01 2















∈ Rn×n

is positive definite.

4. (a) Show that for λ ≥ 2 it holds that B = µLLT , where

B =















µ −1
−1 λ −1

−1
. . .

. . .
. . . λ −1

−1 λ















, L =















1
−σ 1

−σ . . .
. . . 1

−σ 1















,

and
µ = λ/2 ± (λ2/4 − 1)1/2, σ = 1/µ.

Note that L has constant diagonals.

(b) Suppose we want to solve and equation system Ax = b, where the matrix
A differs from B in the element (1,1),

A = B + δe1e
T
1 , δ = λ− µ, eT

1 = (1, 0, . . . , 0).

Show, using the Sherman–Morrison formula (7.1.26), that the solution x =
A−1b can be computed from

x = y − γL−T f, γ = δ(eT
1 y)/(µ+ δfT f)

where y and f satisfies µLLTy = b, Lf = e1.

5. Consider the symmetric tridiagonal matrix

An =















4 1
1 4 1

1
. . .

. . .
. . . 4 1

1 4















.
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For n = 20, 40 use the Cholesky factorization of An and Higham’s algorithm
to determine vectors x and y so that (A−1

n )ij = xiyj for i, j = 1 : n. Verify
that there is a range of approximately θn in the size of the components of
these vectors, where θ = 2 +

√
3.

5. (a) Write a function implementing the multiplication C = AB, where A =
diag (a, r) and B = diag (b, s) both consist of a single diagonal. Use the
formulas in Lemma 7.4.2.

(b) Write a function for computing the product C = AB of two banded
matrices using the w1w2 calls to the function in (a), where and w2 are the
bandwidth of A and B, respectively.

6. Derive expressions for computing δk, k = 1 : n− 1 and αn in the factorization
of the periodic tridiagonal matrix A in (7.4.13).

7. Let B be a symmetric matrix of the form (7.4.13). Show that

B = T + σuuT , u = (1, 0, . . . , 0,−1)T .

where T is a certain symmetric, tridiagonal matrix. What is σ and T . Derive
an algorithm for computing L by modifying the algorithm (7.4.10).

7.5 Perturbation Theory and Condition Estimation

7.5.1 Component-Wise Perturbation Analysis

In Sec. 7.1.8 bounds were derived for the perturbation in the solution x to a linear
system Ax = b, when the data A and b are perturbed. Sharper bounds can often
be obtained in case if the data is subject to the perturbations, which are bounded
component-wise. Assume that

|δaij | ≤ ωeij , |δbi| ≤ ωfi. i, j = 1 : n,

where eij ≥ 0 and fi ≥ 0 are known. These bounds can be written as

|δA| ≤ ωE, |δb| ≤ ωf, (7.5.1)

where the absolute value of a matrix A and vector b is defined by

|A|ij = (|aij |), |b|i = (|bi|).

The partial ordering “≤” for matrices A,B and vectors x, y, is to be interpreted
component-wise19 It is easy to show that if C = AB, then

|cij | ≤
n

∑

k=1

|aik| |bkj |,

and hence |C| ≤ |A| |B|. A similar rule |Ax| ≤ |A| |x| holds for matrix-vector
multiplication.

For deriving the componentwise bounds we need the following result.
19Note that A ≤ B in other contexts means that B − A is positive semidefinite.
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Lemma 7.5.1.
Let F ∈ Rn×n be a matrix for which ‖ |F | ‖ < 1. Then the matrix (I − |F |) is

nonsingular and
|(I − F )−1| ≤ (I − |F |)−1. (7.5.2)

Proof. The nonsingularity follows form Lemma 7.1.15. Using the identity (I −
F )−1 = I + F (I − F )−1 we obtain

|(I − F )−1| ≤ I + |F ||(I − F )−1|

from which the inequality (7.5.2) follows.

Theorem 7.5.2.
Consider the perturbed linear system (A + δA)(x + δx) = b + δb, where A is

nonsingular. Assume that δA and δb satisfy the componentwise bounds in (7.5.1)
and that

ω‖ |A−1|E ‖ < 1.

Then (A+ δA) is nonsingular and

‖δx‖ ≤ ω

1 − ωκE(A)
‖ |A−1|(E |x| + f)‖, (7.5.3)

where κE(A) = ‖ |A−1|E‖.

Proof. Taking absolute values in (7.1.62) gives

|δx| ≤ |(I +A−1δA)−1| |A−1|(|δA||x| + |δb|). (7.5.4)

Using Lemma 7.5.1 it follows from the assumption that the matrix (I − |A−1|δA|)
is nonsingular and from (7.5.4) we get

|δx| ≤ (I − |A−1||δA|)−1 |A−1|(|δA||x| + |δb|).

Using the componentwise bounds in (7.5.1) we get

|δx| ≤ ω(I − ω|A−1|E)−1|A−1|(E|x| + f), (7.5.5)

provided that ωκE(A) < 1 Taking norms in (7.5.5) and using Lemma 7.1.15 with
F = A−1δA proves (7.5.3).

Taking E = |A| and f = |b| in (7.5.1) corresponds to bounds for the component-
wise relative errors in A and b,

|δA| ≤ ω|A|, |δb| ≤ ω|b|. (7.5.6)

For this special case Theorem 7.5.2 gives

‖δx‖ ≤ ω

1 − ωκ|A|(A)
‖ |A−1|(|A| |x| + |b|) ‖, (7.5.7)
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where
κ|A|(A) = ‖ |A−1||A| ‖, (7.5.8)

(or cond (A)) is the Bauer–Skeel condition number of the matrix A. Note that
since |b| ≤ |A| |x|, it follows that

‖δx‖ ≤ 2ω‖ |A−1||A| |x| ‖ +O(ω2) ≤ 2ωκ|A|(A)‖x‖ +O(ω2).

If Â = DA, b̂ = Db where D > 0 is a diagonal scaling matrix, then |Â−1| =

|A−1||D−1|. Since the perturbations scale similarly, δÂ = DδA, δb̂ = Dδb, it follows
that

|Â−1||δÂ| = |A−1||δA|, |Â−1||δb̂| = |A−1||δb|.
Thus the bound in (7.5.7) and also κ|A|(A) are invariant under row scalings.

For the l1-norm and l∞-norm it holds that

κ|A|(A) = ‖ |A−1||A| ‖ ≤ ‖ |A−1| ‖ ‖ |A| ‖ = ‖A−1‖ ‖A‖ = κ(A),

i.e., the solution of Ax = b is no more badly conditioned with respect to the
component-wise relative perturbations than with respect to normed perturbations.
On the other hand, it is possible for κ|A|(A) to be much smaller than κ(A).

The analysis in Sec. 7.1.8 may not be adequate, when the perturbations in
the elements of A or b are of different magnitude, as illustrated by the following
example.

Example 7.5.1.
The linear system Ax = b, where

A =

(

1 104

1 10−4

)

, b =

(

104

1

)

,

has the approximate solution x ≈ (1, 1)T . Assume that the vector b is subject to a
perturbation δb such that |δb| ≤ (1, 10−4)T . Using the ∞-norm we have ‖δb‖∞ = 1,
‖A−1‖∞ = 1 (neglecting terms of order 10−8). Theorem 7.1.18 then gives the gross
overestimate ‖δx‖∞ ≤ 1.

Multiplying the first equation by 10−4, we get an equivalent system Âx = b̂
where

Â =

(

10−4 1
1 10−4

)

, b̂ =

(

1
1

)

.

The perturbation in the vector b is now |δb̂| ≤ 10−4(1, 1)T , and from ‖δb̂‖∞ = 10−4,
‖(Â)−1‖∞ = 1, we get the sharp estimate ‖δx‖∞ ≤ 10−4. The original matrix A
is only artificially ill-conditioned. By a scaling of the equations we obtain a
well-conditioned system. How to scale linear systems for Gaussian elimination is a
surprisingly intricate problem, which is further discussed in Sec. 7.6.3.

Consider the linear systems in Example 7.5.1. Neglecting terms of order 10−8

we have

|Â−1||Â| =

(

10−4 1
1 10−4

) (

10−4 1
1 10−4

)

=

(

1 2 · 10−4

2 · 10−4 1

)

,
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By the scaling invariance cond (A) = cond (Â) = 1 + 2 · 10−4 in the ∞-norm.
Thus the componentwise condition number correctly reveals that the system is
well-conditioned for componentwise small perturbations.

7.5.2 Backward Error Bounds

We now derive a simple a posteriori bound for the backward error of a computed
solution x̄. These bounds are usually much sharper than a priori bounds and hold
regardless of the algorithm used to compute x̄.

Given x̄, there are an infinite number of perturbations δA and δb for which
(A+ δA)x̄ = b+ δb holds. Clearly δA and δb must satisfy

δAx̄ − δb = b−Ax̄ = r,

where r = b−Ax̄ is the residual vector corresponding to the computes solution. An
obvious choice is to take δA = 0, and δb = −r. If we instead take δb = 0, we get
the following result.

Theorem 7.5.3.
Let x̄ be a purported solution to Ax = b, and set r = b−Ax̄. Then if

δA = rx̄T /‖x̄‖2
2, (7.5.9)

x̄ satisfies (A+ δA)x̄ = b and this has the smallest l2-norm ‖δA‖2 = ‖r‖2/‖x̄‖2 of
any such δA.

Proof. Clearly x̄ satisfies (A + δA)x̄ = b if and only if δAx̄ = r. For any such δA
it holds that ‖δA‖2‖x̄‖2 ≥ ‖r‖2 or ‖δA‖2 ≥ ‖r‖2/‖x̄‖2. For the particular δA given
by (7.5.9) we have δAx̄ = rx̄T x̄/‖x̄‖2 = r. From

‖rx̄T ‖2 = sup
‖y‖2=1

‖rx̄T y‖2 = ‖r‖2 sup
‖y‖2=1

|x̄T y| = ‖r‖2‖x̄‖2,

it follows that ‖δA‖2 = ‖r‖2/‖x̄‖2 and hence the δA in (7.5.9) is of minimum
l2-norm.

Similar bounds for the l1-norm and l∞-norm are given in Problem 5.
It is often more useful to consider the component-wise backward error ω

of a computed solution. The following theorem shows that also this can be cheaply
computed

Theorem 7.5.4. (Oettli and Prager [1964]).
Let r = b−Ax̄, E and f be nonnegative and set

ω = max
i

|ri|
(E|x̄| + f)i

, (7.5.10)
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where 0/0 is interpreted as 0. If ω 6= ∞, there is a perturbation δA and δb with

|δA| ≤ ωE, |δb| ≤ ωf, (7.5.11)

such that
(A+ δA)x̄ = b+ δb. (7.5.12)

Moreover, ω is the smallest number for which such a perturbation exists.

Proof. From (7.5.10) we have

|ri| ≤ ω(E|x̄| + f)i,

which implies that r = D(E|x̄|+f), where |D| ≤ ωI. It is then readily verified that

δA = DE diag
(

sign(x̄1), . . . , sign(x̄n)
)

, δb = −Df

are the required backward perturbations.
Further, given perturbations δA and δb satisfying equations (7.5.11)–(7.5.12)

for some ω we have

|r| = |b−Ax̄| = |δAx̄ − δb| ≤ ω(E|x̄| + f).

Hence ω ≥ |ri|/(E|x̄| + f)i, which shows that ω as defined by (7.5.10) is optimal.

In particular we can take E = |A|, and f = |b| in Theorem 7.1.18, to get an
expression for the component-wise relative backward error ω of a computed solution.
This can then be used in (7.5.6) or (7.5.7) to compute a bound for ‖δx‖.

Example 7.5.2. Consider the linear system Ax = b, where

A =

(

1.2969 0.8648
0.2161 0.1441

)

, b =

(

0.8642
0.1440

)

.

Suppose that we are given the approximate solution x̄ = (0.9911,−0.4870)T . The
residual vector corresponding to x̄ is very small,

r = b−Ax̄ = (−10−8, 10−8)T .

However, not a single figure in x̄ is correct! The exact solution is x = (2,−2)T ,
as can readily verified by substitution. Although a zero residual implies an exact
solution, a small residual alone does not necessarily imply an accurate solution.
(Compute the determinant of A and then the inverse A−1!)

It should be emphasized that the system in this example is contrived. In
practice one would be highly unfortunate to encounter such an ill-conditioned 2× 2
matrix.20

20As remarked by a prominent expert in error-analysis “Anyone unlucky enough to encounter
this sort of calamity has probably already been run over by a truck”!
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7.5.3 Estimating Condition Numbers

The perturbation analysis has shown that the norm-wise relative perturbation in
the solution x of a linear system can be bounded by

‖A−1‖ (‖δA‖ + ‖δb‖/‖x‖) , (7.5.13)

or, in case of componentwise analysis, by

‖ |A−1(| |E|x| + f |) ‖. (7.5.14)

To compute these upper bounds exactly is costly since 2n3 flops are required to
compute A−1, even if the LU factorization of A is known (see Section 7.2.5). In
practice, it will will suffice with an estimate of ‖A−1‖ (or ‖ |A−1| ‖, which need not
be very precise.

The first algorithm for condition estimation to be widely used was suggested
by Cline, Moler, Stewart, and Wilkinson [14]. It is based on computing

y = (ATA)−1u = A−1(A−Tu) (7.5.15)

by solving the two systems ATw = u and Ay = w. A lower bound for ‖A−1‖ is then
given by

‖A−1‖ ≥ ‖y‖/‖w‖. (7.5.16)

If an LU factorization of A is known this only requires O(n2) flops. The computa-
tion of y = A−Tw involves solving the two triangular systems

UT v = u, LTw = v.

Similarly the vector y and w are obtained by solving the triangular systems

Lz = w, Uy = z,

For (7.5.16) to be a reliable estimate the vector u must be carefully chosen so that
it reflects any possible ill-conditioning of A. Note that if A is ill-conditioned this
is likely to be reflected in U , whereas L, being unit upper triangular, tends to be
well-conditioned. To enhance the growth of v we take ui = ±1, i = 1 : n, where the
sign is chosen to maximize |vi|. The final estimate is taken to be

1/κ(A) ≤ ‖w‖/(‖A‖‖y‖), (7.5.17)

since then a singular matrix is signaled by zero rather than by ∞ and overflow
is avoided. We stress that (7.5.17) always underestimates κ(A). Usually the l1-
norm is chosen because the matrix norm ‖A‖1 = maxj ‖aj‖1 can be computed
from the columns aj of A. This is often referred to as the LINPACK condition
estimator. A detailed description of an implementation is given in the LINPACK
Guide, Dongarra et al. [18, 1979, pp. 11-13]. In practice it has been found that the
LINPACK condition estimator seldom is off by a factor more than 10. However,
counter examples can be constructed showing that it can fail. This is perhaps to
be expected for any estimator using only O(n2) operations.
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Equation (7.5.15) can be interpreted as performing one step of the inverse
power method on ATA using the special starting vector u. As shown in Sec-
tion 10.4.2 this is a standard method for computing the largest singular value
σ1(A

−1) = ‖A−1‖2. An alternative to starting with the vector u is to use a random
starting vector and perhaps carrying out several steps of inverse iteration with ATA.

An alternative 1-norm condition estimator has been devised by Hager [36] and
improved by Higham [39]. This estimates

‖B‖1 = max
j

n
∑

i=1

|bij |,

assuming that Bx and BTx can be computed for an arbitrary vector x. It can also
be used to estimate the infinity norm since ‖B‖∞ = ‖BT ‖1. It is based on the
observation that

‖B‖1 = max
x∈S

‖Bx‖1, S = {x ∈ Rn | ‖x‖1 ≤ 1}.

is the maximum of a convex function f(x) = ‖Bx‖1 over the convex set S. This
implies that the maximum is obtained at an extreme point of S, i.e. one of the 2n
points

{±ej | j = 1 : n},
where ej is the jth column of the unit matrix. If yi = (Bx)i 6= 0, ∀i, then f(x) is
differentiable and by the chain rule the gradient is

∂f(x) = ξTB, ξi =

{

+1 if yi > 0,
−1 if yi < 0.

If yi = 0, for some i, then ∂f(x) is a subgradient of f at x. Note that the subgradient
is not unique. Since f is convex, the inequality

f(y) ≥ f(x) + ∂f(x)(y − x), ∀x, y ∈ Rn.

is always satisfied.
The algorithm starts with the vector x = n−1e = n−1(1, 1, . . . , 1)T , which is

on the boundary of S. We set ∂f(x) = zT , where z = BT ξ, and find an index j for
which |zj| = maxi |zi|. It can be shown that |zj | ≤ zTx then x is a local maximum.
If this inequaity is satisfied then we stop. By the convexity of f(x) and the fact
that f(ej) = f(−ej) we conclude that f(ej) > f(x). Replacing x by ej we repeat
the process. Since the estimates are strictly increasing each vertice of S is visited
at most once. The iteration must therefore terminate in a finite number of steps.
It has been observed that usually it terminates after just four iterations with the
exact value of ‖B‖1.

We now show that the final point generated by the algorithm is a local max-
imum. Assume first that (Bx)i 6= 0 for all i. Then f(x) = ‖Bx‖1 is linear in a
neighborhood of x. It follows that x is a local maximum of f(x) over S if and only
if

∂f(x)(y − x) ≤ 0, ∀y ∈ S.
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If y is a vertex of S, then ∂f(x)y = ±∂f(x)i, for some i since all but one component
of y is zero. If |∂f(x)i| ≤ ∂f(x)x, for all i, it follows that ∂f(x)(y − x) ≤ 0
whenever y is a vertex of S. Since S is the convex hull of its vertices it follows
that ∂f(x)(y − x) ≤ 0, for all y ∈ S. Hence x is a locla maximum. In case
some component of Bx is zero the above argument must be slightly modified; see
Hager [36].

Algorithm 7.5.1 Hager’s 1-norm estimator.

x = n−1e

repeat

y = Bx

ξ = sign (y)

z = BT ξ

if ‖z‖∞ ≤ zTx

γ = ‖y‖1; quit

end

x = ej,where|zj| = ‖z‖∞
end

To use this algorithm to estimate ‖A−1‖1 = ‖ |A−1| ‖1, we take B = A−1. In
each iteration we are then required to solve systems Ay = x and AT z = ξ.

It is less obvious that Hager’s estimator can also be used to estimate the
componentwise analysis 7.5.13). The problem is then to estimate a n expression
of the form ‖ |A−1|g‖∞, for a given vector g > 0. Using a clever trick devised by
Arioli, Demmel and Duff [3], this can be reduced to estimating ‖B‖1 where

B = (A−1G)T , G = diag (g1, . . . , gn) > 0.

We have g = Ge where e = (1, 1, . . . , 1)T and hence

‖ |A−1|g‖∞ = ‖ |A−1|Ge‖∞ = ‖ |A−1G|e‖∞ = ‖ |A−1G|‖∞ = ‖(A−1G)T ‖1,

where in the last step we have used that the ∞ norm is absolute (see Sec. 7.1.5).
Since Bx and BT y can be found by solving linear systems involving AT and A the
work involved is similar to that of the LINPACK estimator. This together with
ω determined by (7.5.10) gives an approximate bound for the error in a computed
solution x̄. Hager’s condition estimator is used Matlab .

We note that the unit lower triangular matrices L obtained from Gaussian
elimination with pivoting are not arbitrary but their off-diagonal elements satisfy
|lij | ≤ 1. When Gaussian elimination without pivoting is applied to a row diagonally
dominant matrix it gives a row diagonally dominant upper triangular factor U ∈
Rn×n satisfying

|uii| ≥
n

∑

j=i+1

|uij |, i = 1 : n− 1. (7.5.18)

and it holds that cond(U) ≤ 2n− 1; (see [41, Lemma 8.8].
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Definition 7.5.5. For any triangular matrix T the comparison matrix is

M(T ) = (mij), mij =

{

|tii|, i = j;
−|tij |, i 6= j;

Review Questions

1. How is the condition number κ(A) of a matrix A defined? How does κ(A)
relate to perturbations in the solution x to a linear system Ax = b, when A
and b are perturbed? Outline roughly a cheap way to estimate κ(A).

Problems

1. (a) Compute the inverse A−1 of the matrix A in Problem 6.4.1 and determine
the solution x to Ax = b when b = (4, 3, 3, 1)T .

(b) Assume that the vector b is perturbed by a vector δb such that ‖δb‖∞ ≤
0.01. Give an upper bound for ‖δx‖∞, where δx is the corresponding pertur-
bation in the solution.

(c) Compute the condition number κ∞(A), and compare it with the bound
for the quotient between ‖δx‖∞/‖x‖∞ and ‖δb‖∞/‖b‖∞ which can be derived
from (b).

2. Show that the matrix A in Example 7.5.2 has the inverse

A−1 = 108

(

0.1441 −0.8648
−0.2161 1.2969

)

,

and that κ∞ = ‖A‖∞‖A−1‖∞ = 2.1617 · 1.5130 · 108 ≈ 3.3 · 108, which shows
that the system is “perversely” ill-conditioned.

3. (Higham [41, p. 144]) Consider the triangular matrix

U =





1 1 0
0 ǫ ǫ
0 0 1



 .

Show that cond (U) = 5 but cond (UT ) = 1+2/ǫ. This shows that a triangular
system can be much worse conditioned than its transpose.

4. Let the matrix A ∈ Rn×n be nonnegative, and solve ATx = e, where e =
(1, 1, . . . , 1)T . Show that then ‖A−1‖1 = ‖x‖∞.

5. Let x̄ be a computed solution and r = b − Ax̄ the corresponding residual.
Assume that δA is such that (A+δA)x̄ = b holds exactly. Show that the error
of minimum l1-norm and l∞-norm respectively are given by

δA = r(s1, . . . , sn)/‖x̄‖1, δA = r(0, . . . , 0, sm, 0, . . . , 0)/‖x̄‖∞,
where ‖x̄‖∞ = |xm|, and si = 1, if xi ≥ 0; si = −1, if xi < 0.
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7.6 Rounding Error Analysis

7.6.1 Floating Point Arithmetic

In this section we first recall some basic results for floating point computations. For
a detailed treatment of IEEE floating point standard and floating point arithmetic
we refer Sections 2.2–2.3, Volume I.

If x and y are two floating point numbers, we denote by

fl (x+ y), f l (x− y), f l (x · y), f l (x/y)

the results of floating addition, subtraction, multiplication, and division, which the
machine stores in memory (after rounding or chopping). We will in the following
assume that underflow or overflow does not occur. and that the following standard
model for the arithmetic holds:

Definition 7.6.1.
Assume that x, y ∈ F . Then in the standard model it holds

fl (x op y) = (x op y)(1 + δ), |δ| ≤ u, (7.6.1)

where u is the unit roundoff and “op” stands for one of the four elementary opera-
tions +, −, ·, and /.

The standard model holds with the default rounding mode for computers
implementing the IEEE 754 standard. In this case we also have

fl (
√
x) =

√
x(1 + δ), |δ| ≤ u, (7.6.2)

Bounds for roundoff errors for basic vector and matrix operations can easily
be derived (Wilkinson [66, pp. 114–118]) using the following basic result:

Lemma 7.6.2. [N. J. Higham [41, Lemma 3.1]]
Let |δi| ≤ u, ρi = ±1, i = 1:n, and

n
∏

i=1

(1 + δi)
ρi = 1 + θn.

If nu < 1, then |θn| < γn, where γn = nu/(1 − nu).

For an inner product xT y computed in the natural order we have

fl (xT y) = x1y1(1 + δ1) + x2y2(1 + δ2) + · · · + xnyn(1 + δn)

where
|δ1| < γn, |δr| < γn+2−i, i = 2 : n.

The corresponding forward error bound becomes

|fl (xT y) − xT y| <
n

∑

i=1

γn+2−i|xi||yi| < γn|xT ||y|, (7.6.3)



94 Chapter 7. Direct Methods for Solving Linear System

where |x|, |y| denote vectors with elements |xi|, |yi|.This bound is independent of
the summation order and is valid also for floating point computation with no guard
digit rounding.

For the outer product xyT of two vectors x, y ∈ Rn it holds that fl (xiyj) =
xiyj(1 + δij), δij ≤ u, and so

|fl (xyT ) − xyT | ≤ u |xyT |. (7.6.4)

This is a satisfactory result for many purposes, but the computed result is not in
general a rank one matrix and it is not possible to find perturbations ∆x and ∆y
such that fl(xyT ) = (x+ ∆x)(x+ ∆y)T . This shows that matrix multiplication in
floating point arithmetic is not always backward stable!

Similar error bounds can easily be obtained for matrix multiplication. Let
A ∈ Rm×n, B ∈ Rn×p, and denote by |A| and |B| matrices with elements |aij | and
|bij |. Then it holds that

|fl (AB) −AB| < γn|A||B|. (7.6.5)

where the inequality is to be interpreted elementwise. Often we shall need bounds
for some norm of the error matrix. From (7.6.5) it follows that

‖fl (AB) −AB‖ < γn‖ |A| ‖ ‖ |B| ‖. (7.6.6)

Hence, for the 1-norm, ∞-norm and the Frobenius norm we have

‖fl (AB) −AB‖ < γn‖A‖ ‖B‖. (7.6.7)

but unless A and B have non-negative elements, we have for the 2-norm only the
weaker bound

‖fl (AB) −AB‖2 < nγn‖A‖2 ‖B‖2. (7.6.8)

In many matrix algorithms there repeatedly occurs expressions of the form

y =
(

c−
k−1
∑

i=1

aibi

)/

d.

A simple extension of the roundoff analysis of an inner product in Sec, 2.4.1 (cf.
Problem 2.3.7) shows that if the term c is added last, then the computed ȳ satisfies

ȳd(1 + δk) = c−
k−1
∑

i=1

aibi(1 + δi), (7.6.9)

where

|δ1| ≤ γk−1, |δi| ≤ γk+1−i, i = 2 : k − 1, |δk| ≤ γ2. (7.6.10)

and γk = ku/(1 − ku) and u is the unit roundoff. Note that in order to prove a
backward error result for GE, that does not perturb the right hand side vector b,
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we have formulated the result so that c is not perturbed. It follows that the forward
error satisfies

∣

∣

∣ȳd− c+

k−1
∑

i=1

aibi

∣

∣

∣ ≤ γk

(

|ȳd| +
k−1
∑

i=1

|ai||bi|
)

, (7.6.11)

and this inequality holds independent of the summation order.

7.6.2 Error Analysis of Gaussian Elimination

In the practical solution of a linear system of equations, rounding errors are intro-
duced in each arithmetic operation and cause errors in the computed solution. In
the early days of the computer era around 1946 many mathematicians were pes-
simistic about the numerical stability of Gaussian elimination. It was argued that
the growth of roundoff errors would make it impractical to solve even systems of
fairly moderate size. By the early 1950s experience revealed that this pessimism was
unfounded. In practice Gaussian elimination with partial pivoting is a remarkably
stable method and has become the universal algorithm for solving dense systems of
equations.

The bound given in Theorem 7.2.3 is satisfactory only if the growth factor
ρn is not too large, but this quantity is only known after the elimination has been
completed. In order to obtain an a priori bound on ρn we use the inequality

|a(k+1)
ij | = |a(k)

ij − lika
(k)
kj | ≤ |a(k)

ij | + |a(k)
kj | ≤ 2 max

k
|ā(k)

ij |,

valid If partial pivoting is employed. By induction this gives the upper bound
ρn ≤ 2n−1, which is attained for matrices An ∈ Rn×n of the form

A4 =







1 0 0 1
−1 1 0 1
−1 −1 1 1
−1 −1 −1 1






. (7.6.12)

Already for n = 54 we can have ρn = 253 ≈ 0.9 ·1016 and can lose all accuracy using
IEEE double precision (u = 1.11 · 10−16). Hence the worst-case behavior of partial
pivoting is very unsatisfactory.

For complete pivoting, Wilkinson [65, ] has proved that

ρn ≤ (n · 2131/241/3 · · ·n1/(n−1))1/2 < 1.8
√
nn

1

4
log n,

and that this bound is not attainable. This bound is much smaller than that for
partial pivoting, e.g., ρ50 < 530. It was long conjectured that ρn ≤ n for real
matrices and complete pivoting. This was finally disproved in 1991 when a matrix
of order 13 was found for which ρn = 13.0205. A year later a matrix of order 25
was found for which ρn = 32.986.

Although complete pivoting has a much smaller worst case growth factor than
partial pivoting it is more costly. Moreover, complete (as well as rook) pivoting
has the drawback that it cannot be combined with the more efficient blocked meth-
ods of GE (see Sec. 7.5.3). Fortunately from decades of experience and extensive
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experiments it can be concluded that substantial growth in elements using partial
pivoting occurs only for a tiny proportion of matrices arising naturally. We quote
Wilkinson [66, pp. 213–214].

It is our experience that any substantial increase in the size of elements
of successive A(k) is extremely uncommon even with partial pivoting.
No example which has arisen naturally has in my experience given an
increase by a factor as large as 16.

So far only two exceptions to the experience related by Wilkinson have been
reported. One concerns linear systems arising from a class of two-point boundary
value problems, when solved by the shooting method. Another is the class of linear
systems arising from a quadrature method for solving a certain Volterra integral
equation. These examples show that GE with partial pivoting cannot be uncondi-
tionally trusted. When in doubt some safeguard like monitoring the element growth
should be incorporated. Another way of checking and improving the reliability of
GE with partial pivoting is iterative refinement, which is discussed in Sec. 7.7.4.

Why large element growth rarely occurs with partial pivoting is still not fully
understood. Trefethen and Schreiber [62] have shown that for certain distributions
of random matrices the average element growth was close to n2/3 for partial pivoting.

We now give a component-wise roundoff analysis for the LU factorization of
A. Note that all the variants given in Sec. 7.2 for computing the LU factorization
of a matrix will essentially lead to the same error bounds, since each does the same
operations with the same arguments. Note also that since GE with pivoting is
equivalent to GE without pivoting on a permuted matrix, we need not consider
pivoting.

Theorem 7.6.3.
If the LU factorization of A runs to completion then the computed factors L̄

and Ū satisfy
A+ E = L̄Ū , |E| ≤ γn|L̄| |Ū |, (7.6.13)

where γn = nu/(1 − nu).

Proof. In the algorithms in Sec 7.2.6) we set lii = 1 and compute the other elements
in L and U from the equations

uij = aij −
i−1
∑

p=1

lipupj , j ≥ i;

lij =
(

aij −
j−1
∑

p=1

lipupj

)

/ujj , i > j,

Using (7.6.11) it follows that the computed elements l̄ip and ūpj satisfy

∣

∣

∣
aij −

r
∑

p=1

l̄ipūpj

∣

∣

∣
≤ γr

r
∑

p=1

|l̄ip| |ūpj |, r = min(i, j).



7.6. Rounding Error Analysis 97

where l̄ii = lii = 1. These inequalities may be written in matrix form

To prove the estimate the error in a computed solution x̄ of a linear system
given in Theorem 7.6.3, we must also take into account the rounding errors per-
formed in the solution of the two triangular systems L̄y = b, Ūx = y. A lower
triangular system Ly = b is solved by forward substitution

lkkyk = bk −
k−1
∑

i=1

lkiyi, k = 1 : n.

If we let ȳ denote the computed solution, then using (7.6.9) –(7.6.10) it is straight-
forward to derive a bound for the backward error in solving a triangular system of
equations.

Using the bound for the backward error the forward error in solving a trian-
gular system can be estimated. It is a well known fact that the computed solution
is far accurate than predicted by the normwise condition number. This has been
partly explained by Stewart [60, p. 231] as follows:

“When a matrix is decomposed by GE with partial pivoting for
size, the resulting L-factor tends to be well conditioned while any ill-
conditioning in the U-factor tends to be artificial.”

This observation does not hold in general, for counter examples exist. However, it
is true of many special kinds of triangular matrices.

Theorem 7.6.4. If the lower triangular system Ly = b, L ∈ Rn×n is solved by
substitution with the summation order outlined above, then the computed solution ȳ
satisfies

(L+ ∆L)ȳ = b, |∆lki| ≤
{

γ2|lki|, i = k
γk+1−i|lki|, i = 1 : k − 1

, k = 1 : n. (7.6.14)

Hence |∆L| ≤ γn|L| and this inequality holds for any summation order.

An analogue result holds for the computed solution to an upper triangular
systems. We conclude the backward stability of substitution for solving triangular
systems. Note that it is not necessary to perturb the right hand side.

Theorem 7.6.5.
Let x̄ be the computed solution of the system Ax = b, using LU factorization

and substitution. Then x̄ satisfies exactly

(A+ ∆A)x̄ = b, (7.6.15)

where δA is a matrix, depending on both A and b, such that

|∆A| ≤ γn(3 + γn)|L̄| |Ū |. (7.6.16)



98 Chapter 7. Direct Methods for Solving Linear System

Proof. From Theorem 7.6.4 it follows that the computed ȳ and x̄ satisfy

(L̄ + δL̄)ȳ = b, (Ū + δŪ)x̄ = ȳ,

where
|δL̄| ≤ γn|L̄|, |δŪ | ≤ γn|Ū |. (7.6.17)

Note that δL̄ and δŪ depend upon b. Combining these results, it follows that the
computed solution x̄ satisfies

(L̄+ δL̄)(Ū + δŪ)x̄ = b,

and using equations (7.6.13)–(7.6.17) proves the backward error

|∆A| ≤ γn(3 + γn)|L̄| |Ū |. (7.6.18)

for the computed solution x̄ given in Theorem 7.6.3.

Note that although the perturbation δA depends upon b the bound on |δA|
is independent on b. The elements in Ū satisfy |ūij | ≤ ρn‖A‖∞, and with partial
pivoting |l̄ij | ≤ 1. Hence

‖ |L̄| |Ū | ‖∞ ≤ 1
2n(n+ 1)ρn,

and neglecting terms of order O((nu)2) in (7.6.18) it follows that

‖δA‖∞ ≤ 1.5n(n+ 1)γnρn‖A‖∞. (7.6.19)

By taking b to be the columns e1, e2, . . . .en of the unit matrix in succession
we obtain the n computed columns of the inverse X of A. For the kth column we
have

(A+ ∆Ar)x̄r = er,

where we have written ∆Ar to emphasize that the perturbation is different for each
column. Therefore we cannot say that GE computes the exact inverse corresponding
to some matrix A+ ∆A! We obtain the estimate

‖AX̄ − I‖∞ ≤ 1.5n(n+ 1)γnρn‖A‖∞‖X̄‖∞. (7.6.20)

FromAX̄−I = E it follows that X̄−A−1 = A−1E and ‖X̄−A−1‖∞ ≤ ‖A−1‖∞‖E‖∞,
which together with (7.6.20) can be used to get a bound for the error in the com-
puted inverse. We should stress again that we recommend that computing explicit
inverses is avoided.

The residual for the computed solution satisfies r̄ = b−Ax̄ = δAx̄, and using
(7.6.19) it follows that

‖r̄‖∞ ≤ 1.5n(n+ 1)γnρn‖A‖∞‖x̄‖∞.

This shows the remarkable fact that GE will give a small relative residual even for
ill-conditioned systems. Unless the growth factor is large the quantity

‖b−Ax̄‖∞/(‖A‖∞‖x̄‖∞)
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will in practice be of the order nu. It is important to realize that this property of
GE is not shared by most other methods for solving linear systems. For example,
if we first compute the inverse A−1 and then x = A−1b the residual r̄ may be much
larger even if the accuracy in x̄ is about the same.

The error bound in Theorem 7.6.3 is instructive in that it shows that a par-
ticularly favourable case is when |L̄| |Ū | = |L̄Ū |. This is true when L̄ and Ū are
nonnegative. Then

|L̄| |Ū | = |L̄Ū | = |A+ ∆A| ≤ |A| + |L̄| |Ū |,

and neglecting terms of order O((nu)2) we find that the computed x̄ satisfies

(A+ ∆A)x̄ = b, |∆A| ≤ 3γn|A|.

A class of matrices for which Gaussian elimination without pivoting gives
positive factors L and U is the following.

Definition 7.6.6.
A matrix A ∈ Rn×n is called totally positive if the determinant of every

square submatrix of A is positive.

It is known (see de Boor and Pinkus [15]) that if A is totally positive, then it
has an LU factorization with L > 0 and U > 0. Since the property of a matrix being
totally positive is destroyed under row permutations, pivoting should not be used
when solving such systems. Totally positive systems occur in spline interpolation.

In many cases there is no a priori bound for the matrix |L̄| |Ū | appearing in
the componentwise error analysis. It is then possible to compute its ∞-norm in
O(n2) operations without forming the matrix explicitly, since

‖ |L̄| |Ū | ‖∞ = ‖ |L̄| |Ū |e ‖∞ = ‖ |L̄| (|Ū |e) ‖∞.

This useful observation is due to Chu and George [12].
An error analysis for the Cholesky factorization of a symmetric positive defi-

nite matrix A ∈ Rn×n is similar to that for LU factorization.

Theorem 7.6.7.
Suppose that the Cholesky factorization of a symmetric positive definite matrix

A ∈ Rn×n runs to completion and produces a computed factor R̄ and a computed
solution x̄ to the linear system. Then it holds that

A+ E1 = L̄Ū , |E1| ≤ γn+1|R̄T | |R̄|, (7.6.21)

and

(A+ E2)x̄ = b, |E2| ≤ γ3n+1|R̄T | |R̄|. (7.6.22)
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Theorem 7.6.8. [J. H. Wilkinson [67]]
Let A ∈ Rn×n be a symmetric positive definite matrix. The Cholesky factor

of A can be computed without breakdown provided that 2n3/2uκ(A) < 0.1. The
computed L̄ satisfies

L̄L̄T = A+ E, ‖E‖2 < 2.5n3/2u‖A‖2, (7.6.23)

and hence is the exact Cholesky factor of a matrix close to A.

This is essentially the best normwise bounds that can be obtained, although
Meinguet [50] has shown that for large n the constants 2 and 2.5 in Theorem 7.6.8
can be improved to 1 and 2/3, respectively.

In practice we can usually expect much smaller backward error in the com-
puted solutions than the bounds derived in this section. It is appropriate to recall
here a remark by J. H. Wilkinson (1974):

“All too often, too much attention is paid to the precise error bound
that has been established. The main purpose of such an analysis is
either to establish the essential numerical stability of an algorithm or to
show why it is unstable and in doing so expose what sort of change is
necessary to to make it stable. The precise error bound is not of great
importance.”

7.6.3 Scaling of Linear Systems

In a linear system of equations Ax = b the ith equation may be multiplied by an
arbitrary positive scale factor di, i = 1 : n, without changing the exact solution.
In contrast, such a scaling will usually change the computed numerical solution.
In this section we show that a proper row scaling is important for GE with partial
pivoting to give accurate computed solutions, and give some rules for scaling.

We first show that if the pivot sequence is fixed then Gaussian elimination is
unaffected by such scalings, or more precisely:

Theorem 7.6.9.
Denote by x̄ and x̄′ the computed solutions obtained by GE in floating point

arithmetic to the two linear systems of equations

Ax = b, (DrADc)x
′ = Drb,

where Dr and Dc are diagonal scaling matrices. Assume that the elements of Dr

and Dc are powers of the base of the number system used, so that no rounding
errors are introduced by the scaling. Then if the same pivot sequence is used and
no overflow or underflow occurs we have exactly x̄ = Dcx̄

′, i.e., the components in
the solution differ only in the exponents.

Proof. The proof follows by examination of the scaling invariance of the basic step
in Algorithm 7.2.2

a
(k+1)
ij = a

(k)
ij − (a

(k)
ik a

(k)
kj )/a

(k)
kk .
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This result has the important implication that scaling will affect the accuracy
of a computed solution only if it leads to a change in the selection of pivots. When
partial pivoting is used the row scaling may affect the choice of pivots; indeed we
can always find a row scaling which leads to any predetermined pivot sequence.
However, since only elements in the pivotal column are compared, the choice of
pivots is independent of the column scaling. Since a bad choice of pivots can give
rise to large errors in the computed solution, it follows that for GE with partial
pivoting to give accurate solutions a proper row scaling is important.

Example 7.6.1. The system Ax = b in Example 7.5.1 has the solution x =
(0.9999, 0.9999)T , correctly rounded to four decimals. Partial pivoting will here
select the element a11 as pivot. Using three-figure floating point arithmetic, the
computed solution becomes

x̄ = (0, 1.00)T (Bad!).

If GE instead is carried out on the scaled system Âx = b̂, then a21 will be chosen
as pivot, and the computed solution becomes

x̄ = (1.00, 1.00)T (Good!).

From the above discussion we conclude that the need for a proper scaling is
of great importance for GE to yield good accuracy. An discussed in Sec, 7.5.3, an
estimate of κ(A) is often used to access the accuracy of the computed solution. If,
e.g., the perturbation bound (7.1.64) is applied to the scaled system (DrADc)x

′ =
Drb

‖D−1
c δx‖

‖D−1
c x‖

≤ κ(DrADc)
‖Drδb‖
‖Drb‖

. (7.6.24)

Hence if κ(DrADc) can be made smaller than κ(A), then it seems that we might
expect a correspondingly more accurate solution. Note however that in (7.6.24) the
perturbation in x is measured in the norm ‖D−1

c x‖, and we may only have found
a norm in which the error looks better! We conclude that the column scaling Dc

should be chosen in a way that reflects the importance of errors in the components
of the solution. If |x| ≈ c, and we want the same relative accuracy in all components
we may take Dc = diag(c).

We now discuss the choice of row scaling. A scheme which is sometimes
advocated is to choose Dr = diag (di) so that each row in DrA has the same l1-
norm, i.e.,

di = 1/‖aT
i ‖1, i = 1 : n. (7.6.25)

(Sometimes the l∞-norm, of the rows are instead made equal.) This scaling, called
row equilibration, can be seen to avoid the bad pivot selection in Example 7.5.1.
However, suppose that through an unfortunate choice of physical units the solution
x has components of widely varying magnitude. Then, as shown by the following
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example, row equilibration can lead to a worse computed solution than if no scaling
is used!

Example 7.6.2. Consider the following system

A =





3 · 10−6 2 1
2 2 2
1 2 −1



 , b =





3 + 3 · 10−6

6
2



 |ǫ| ≪ 1

which has the exact solution x = (1, 1, 1)T . The matrix A is well-conditioned,
κ(A) ≈ 3.52, but the choice of a11 as pivot leads to a disastrous loss of accuracy.
Assume that through an unfortunate choice of units, the system has been changed
into

Â =





3 2 1
2 · 106 2 2
106 2 −1



 ,

with exact solution x̂ = (10−6, 1, 1)T . If now the rows are equilibrated, the system
becomes

Ã =





3 2 1
2 2 · 10−6 2 · 10−6

1 2 · 10−6 −10−6



 , b̃ =





3 + 3 · 10−6

6 · 10−6

2 · 10−6



 .

GE with column pivoting will now choose a11 as pivot. Using floating point arith-
metic with precision u = 0.47 · 10−9 we get the computed solution of Âx = b̂

x̄ = (0.999894122 · 10−6, 0.999983255, 1.000033489)T .

This has only about four correct digits, so almost six digits have been lost!

A theoretical solution to the row scaling problem in GE with partial pivoting
has been given by R. D. Skeel [56, ]. He shows a pivoting rule in GE should
depend not only on the coefficient matrix but also on the solution. Hence sepa-
rating the matrix factorization from the solution of the linear system may lead to
instability. His scaling rule is based on minimizing a bound on the backward error
that contains the quantity

maxi(|DrA||x̄|)i

mini(|DrA||x̄|)i
.

Scaling Rule: (R. D. Skeel) Assume that mini(|A||x|)i > 0. Then scale the
rows of A and b by Dr = diag (di), where

di = 1/(|A||x|)i, i = 1 : n. (7.6.26)

A measure of ill-scaling of the system Ax = b is

σ(A, x) = max
i

(|A||x|)i/min
i

(|A||x|)i. (7.6.27)
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This scaling rule gives infinite scale factors for rows which satisfy (|A||x|)i = 0.
This may occur for sparse systems, i.e., when A (and possibly also x) has many
zero components. In this case a large scale factor di should be chosen so that the
corresponding row is selected as pivot row at the first opportunity.

Unfortunately scaling according to this rule is not in general practical, since
it assumes that the solution x is at least approximately known. If the components
of the solution vector x are known to be of the same magnitude then we can take
|x| = (1, . . . , 1)T in (7.6.26), which corresponds to row equilibration. Note that this
assumption is violated in Example 7.6.2.

7.6.4 Iterative Refinement of Solutions

So far we have considered ways of estimating the accuracy of computed solutions.
We now consider methods for improving the accuracy. Let x̄ be any approximate
solution to the linear system of equations Ax = b and let r = b − Ax̄ be the
corresponding residual vector. Then one can attempt to improve the solution by
solving the system Aδ = r for a correction δ and taking xc = x̄ + δ as a new
approximation. If no further rounding errors are performed in the computation of
δ this is the exact solution. Otherwise this refinement process can be iterated. In
floating-point arithmetic with base β this process of iterative refinement can be
described as follows:

s := 1; x(s) := x̄;

repeat

r(s) := b−Ax(s); (inprecision u2 = β−t2)

solve Aδ(s) = r(s); (inprecision u1 = β−t1)

x(s+1) := x(s) + δ(s);

s := s+ 1;

end

When x̄ has been computed by GE this approach is attractive since we can use the
computed factors L̄ and Ū to solve for the corrections

L̄(Ūδ(s)) = r(s), s = 1, 2, . . . .

The computation of r(s) and δ(s), therefore, only takes n2+2· 12n2 = 2n2 flops, which
is an order of magnitude less than the n3/3 flops required for the initial solution.

We note the possibility of using extended precision t2 > t1 for computing the
residuals r(s); these are then rounded to single precision u1 before solving for δ(s).
Since x(s), A and b are stored in single precision, only the accumulation of the inner
product terms are in precision u2, and no multiplications in extended precision
occur. This is also called mixed precision iterative refinement as opposed to fixed
precision iterative refinement when t2 = t1.

Since the product of two t digit floating point numbers can be exactly repre-
sented with at most 2t digits inner products can be computed in extended precision
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without much extra cost. If fle denotes computation with extended precision and ue

the corresponding unit roundoff then the forward error bound for an inner product
becomes

|fl (fle((xT y)) − xT y| < u|xT y| + nue

1 − nue/2
(1 + u)|xT ||y|, (7.6.28)

where the first term comes form the final rounding. If |xT ||y| ≤ u|xT y| then the
computed inner product is almost as accurate as the correctly rounded exact re-
sult. However, since computations in extended precision are machine dependent it
has been difficult to make such programs portable.21 The recent development of
Extended and Mixed Precision BLAS (Basic Linear Algebra Subroutines) (see [49])
may now make this more feasible!

In the ideal case that the rounding errors committed in computing the correc-
tions can be neglected we have

x(s+1) − x = (I − (L̄Ū)−1A)s(x̄− x).

where L̄ and Ū denote the computed LU factors of A. Hence the process converges
if

ρ = ‖(I − (L̄Ū)−1A‖ < 1.

This roughly describes how the refinement behaves in the early stages, if extended
precision is used for the residuals. If L̄ and Ū have been computed by GE using
precision u1, then by Theorem 7.2.3 we have

L̄Ū = A+ E, ‖E‖∞ ≤ 1.5n2ρnu1‖A‖∞,

and ρn is the growth factor. It follows that an upper bound for the initial rate of
convergence is given by

ρ = ‖(L̄Ū)−1E‖∞ ≤ n2ρnu1κ(A).

When also rounding errors in computing the residuals r(s) and the corrections
δ(s) are taken into account, the analysis becomes much more complicated. The
behavior of iterative refinement, using t1-digits for the factorization and t2 = 2t1
digits when computing the residuals, can be summed up as follows:

1. Assume that A is not too ill-conditioned so that the first solution has some
accuracy, ‖x − x̄‖/‖x‖ ≈ β−k < 1 in some norm. Then the relative error
diminishes by a factor of roughly β−k with each step of refinement until we
reach a stage at which ‖δc‖/‖xc‖ < β−t1 , when we may say that the solution
is correct to working precision.

2. In general the attainable accuracy is limited to min(k + t2 − t1, t1) digits,
which gives the case above when t2 ≥ 2t1. Note that although the computed
solution improves progressively with each iteration this is not reflected in a
corresponding decrease in the norm of the residual, which stays about the
same.

21It was suggested that the IEEE 754 standard should require inner products to be precisely
specified, but that did not happen.
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Iterative refinement can be used to compute a more accurate solution, in case A
is ill-conditioned. However, unless A and b are exactly known this may not make
much sense. The exact answer to a poorly conditioned problem may be no more
appropriate than one which is correct to only a few places.

In many descriptions of iterative refinement it is stressed that it is essential
that the residuals are computed with a higher precision than the rest of the compu-
tation, for the process to yield a more accurate solution. This is true if the initial
solution has been computed by a backward stable method, such as GE with partial
pivoting, and provided that the system is well scaled. However, iterative refinement
using single precision residuals, can considerably improve the quality of the solution,
for example, when the system is ill-scaled, i.e., when σ(A, x) defined by (7.6.27) is
large, or if the pivot strategy has been chosen for the preservation of sparsity, see
Section 7.6.

Example 7.6.3. As an illustration consider again the badly scaled system in
Example 7.6.1

Ã =





3 2 1
2 2 · 10−6 2 · 10−6

1 2 · 10−6 −10−6



 , b̃ =





3 + 3 · 10−6

6 · 10−6

2 · 10−6



 ,

with exact solution x̃ = (10−6, 1, 1)T . Using floating point arithmetic with unit
roundoff u = 0.47 · 10−9 the solution computed by GE with partial pivoting has
only about four correct digits. From the residual r = b̃−Ãx̄ we compute the Oettli–
Prager backward error ω = 0.28810 · 10−4. The condition estimate computed by
(7.5.17) is 3.00 · 106, and wrongly indicates that the loss of accuracy should be
blamed on ill-conditioning.

With one step of iterative refinement using a single precision residual we get

x̃ = x̄+ d = ( 0.999999997 · 10−6 1.000000000 1.000000000)
T
.

This is almost as good as for GE with column pivoting applied to the system Ax = b.
The Oettli–Prager error bound for x̃ is ω = 0.54328 · 10−9, which is close to the
machine precision. Hence one step of iterative refinement sufficed to correct for
the bad scaling. If the ill-scaling is worse or the system is also ill-conditioned then
several steps of refinement may be needed.

The following theorem states that if GE with partial pivoting is combined
with iterative refinement in single precision then the resulting method will give a
small relative backward error provided that the system is not too ill-conditioned or
ill-scaled.

Theorem 7.6.10. (R. D. Skeel.)
As long as the product of cond(A−1) = ‖|A||A−1|‖∞ and σ(A, x) is sufficiently

less than 1/u, where u is the machine unit, it holds that

(A+ δA)x(s) = b+ δb, |δaij | < 4nǫ1|aij |, |δbi| < 4nǫ1|bi|, (7.6.29)
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for s large enough. Moreover, the result is often true already for s = 2, i.e., after
only one improvement.

Proof. For exact conditions under which this theorem holds, see Skeel [57, ].

As illustrated above, GE with partial or complete pivoting may not provide
all the accuracy that the data deserves. How often this happens in practice is not
known. In cases where accuracy is important the following scheme, which offers
improved reliability for a small cost is recommended.

1. Compute the Oettli–Prager backward error ω using (7.5.10) with E = |A|,
f = |b|, by simultaneously accumulating r = b − Ax̄ and |A||x̄| + |b|. If ω is
not sufficiently small go to 2.

2. Perform one step of iterative refinement using the single precision residual r
computed in step 1 to obtain the improved solution x̃. Compute the backward
error ω̃ of x̃. Repeat until the test on ω̃ is passed.

7.6.5 Interval Matrix Computations

In order to treat multidimensional problems interval vectors [x] = ([xi]) with interval
components [xi] = [xi, xi]), i = 1 : n and interval matrices [A] = ([aij ]) with interval
elements [aij ] = [aij , aij ], i = 1 : m, j = 1 : n, are introduced.

Operations between interval matrices and interval vectors are defined in an
obvious manner. The interval matrix-vector product [A][x] is the smallest inter-
val vector, which contains the set {Ax | A ∈ [A], x ∈ [x]}, but normally does not
coincide with it. By the inclusion property it holds that

{Ax | A ∈ [A], x ∈ [x]} ⊆ [A][x] =

( n
∑

j=1

[aij ][xj ]

)

. (7.6.30)

In general there will be an overestimation in enclosing the image with an interval
vector caused by the fact that the image of an interval vector under a transfor-
mation in general is not an interval vector. This phenomenon, intrinsic to interval
computations, is called the wrapping effect.

Example 7.6.4.
We have

A =

(

1 1
−1 1

)

, [x] =

(

[0, 1]
[0, 1]

)

, ⇒ A[x] =

(

[0, 2]
[−1, 1]

)

.

Hence b = ( 2 −1 )
T ∈ A[x], but there is no x ∈ [x] such that Ax = b. (The

solution to Ax = b is x = ( 3/2 1/2 )T .)
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The magnitude of an interval vector or matrix is interpreted component-wise
and defined by

| [x] | = (| [x1] |, | [x2] |, . . . , | [xn] |)T ,

where the magnitude of the components are defined by

| [a, b] | = max{|x| | x ∈ [a, b]}, (7.6.31)

The ∞-norm of an interval vector or matrix is defined as the ∞-norm of their
magnitude,

‖ [x] ‖∞ = ‖ | [x] | ‖∞, ‖ [A] ‖∞ = ‖ | [A] | ‖∞. (7.6.32)

In implementing matrix multiplication it is important to avoid case distinc-
tions in the inner loops, because that would make it impossible to use fast vector and
matrix operations. Using interval arithmetic it is possible to compute strict enclo-
sures of the product of two matrices. Note that this is needed also in the case of the
product of two point matrices since rounding errors will in general occur. In this case
we want to compute an interval matrix [C] such that fl(A ·B) ⊂ [C] = [Cinf , Csup].
The following simple code does that using two matrix multiplications:

setround(−1); Cinf = A · B;

setround(1); Csup = A · B;

Here and in the following we assume that the command setround(i), i = −1, 0, 1
sets the rounding mode to −∞, to nearest, and to +∞, respectively.

We next consider the product of a point matrix A and an interval matrix
[B] = [Binf , Bsup]. The following code, suggested by A. Neumeier, performs this
using four matrix multiplications:

A− = min(A, 0); A+ = max(A, 0);

setround(−1);

Cinf = A+ · Binf +A− ·Bsup;

setround(1);

Csup = A− · Binf +A+ ·Bsup;

(Note that the commands A− = min(A, 0) and A+ = max(A, 0) acts component-
wise.) Rump [55] gives an algorithm for computing the product of two interval
matrices using eight matrix multiplications. He also gives several faster implemen-
tations, provided a certain overestimation can be allowed.

A square interval matrix [A] is called nonsingular if it does not contain a
singular matrix. An interval linear system is a system of the form [A]x = [b], where
A is a nonsingular interval matrix and b an interval vector. The solution set of such
an interval linear system is the set

X = {x | Ax = b, A ∈ [A], b ∈ [b]}. (7.6.33)

Computing this solution set can be shown to be an intractable problem (NP-
complete). Even for a 2 × 2 linear system this set may not be easy to represent.
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Figure 7.6.1. The solution set (solid line) and its enclosing hull (dashed
line) for the linear system in Example 7.6.5.

Example 7.6.5. (Hansen [37, Chapter 4])
Consider a linear system with

[A] =

(

[2, 3] [0, 1]
[1, 2] [2, 3]

)

, [b] =

(

[0, 120]
[60, 240]

)

. (7.6.34)

The solution set X in (7.6.33) is the star shaped region in Fig. 7.6.1.

An enclosure of the solution set of an interval linear system can be computed
by a generalization of Gaussian elimination adopted to interval coefficients. The
solution of the resulting interval triangular system will give an inclusion of the
solution set. Realistic bounds can be obtained in this way only for special classes
of matrices, e.g., for diagonally dominant matrices and tridiagonal matrices; see
Hargreaves [38]. For general systems this approach unfortunately tends to give
interval sizes which grow exponentially during the elimination. For example, if [x]
and [y] are intervals then in the 2 × 2 reduction

(

1 [x]
1 [y]

)

∼
(

1 [x]
0 [y] − [x]

)

.

If [x] ≈ [y] the size of the interval [y]− [x] will be twice the size of [x]. This growth
is very likely to happen. Even for well-conditioned linear systems the elimination
can break down prematurely, because all remaining possible pivot elements contain
zero.

A better way to compute verified bounds on a point or interval linear system
uses an idea that goes back to E. Hansen [1965]. In this an approximate inverse C
is used to precondition the system. Assuming that an initial interval vector [x(0)]
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is known, such that [x(0)] ⊇ X where X is the solution set (7.6.33). An improved
enclosure can then be obtained as follows:

By the inclusion property of interval arithmetic, for all Ã ∈ [A] and b̃ ∈ [b] it
holds that

Ã−1b̃ = Cb̃+ (I − CÃ)Ã−1b̃ ∈ C [b] + (I − C [A])[x(0)] =: [x(1)].

This suggests the iteration known as Krawczyck’s method

[x(i+1)] =
(

C [b] + (I − C[A])[x(i)]
)

∩ [x(i)], i = 0, 1, 2, . . . , (7.6.35)

for computing a sequence of interval enclosures [x(i)] of the solution. Here the
interval vector [c] = C [b] and interval matrix [E] = I−C [A] need only be computed
once. The dominating cost per iteration is one interval matrix-vector multiplication.

As approximate inverse we can take the inverse of the midpoint matrix C =
(mid [A])−1. An initial interval can be chosen of the form

[x(0)] = Cmid [b] + [−β, β]e, e = (1, 1, . . . , 1),

with β sufficiently large. The iterations are terminated when the bounds are no
longer improving. A measure of convergence can be computed as ρ = ‖[E]‖∞.

Rump [55, 54] has developed a Matlab toolbox INTLAB (INTerval LABora-
tory). This is very efficient and easy to use and includes many useful subroutines.
INTLAB uses a variant of Krawczyck’s method, applied to a residual system, to
compute an enclosure of the difference between the solution and an approximate
solution xm = Cmid [b]; see Rump [55].

Example 7.6.6.
A method for computing an enclosure of the inverse of an interval matrix can

be obtained by taking [b] equal to the identity matrix in the iteration (7.6.35) and
solving the system [A][X ] = I. For the symmetric interval matrix

[A] =

(

[0.999, 1.01] [−0.001, 0.001]
[−0.001, 0.001] [0.999, 1.01]

)

the identity C = mid [A] = I is an approximate point inverse. We find

[E] = I − C[A] =

(

[−0.01, 0.001] [−0.001, 0.001]
[−0.001, 0.001] [−0.01, 1.001]

)

,

and as an enclosure for the inverse matrix we can take

[X(0)] =

(

[0.98, 1.02] [−0.002, 0.002]
[−0.002, 0.002] [0.98, 1.02]

)

.

The iteration

[X(i+1)] =
(

I + E[X(i)]
)

∩ [X(i)], i = 0, 1, 2, . . . .

converges rapidly in this case.
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Review Questions

1. The result of a roundoff error analysis of Gaussian elimination can be stated
in the form of a backward error analysis. Formulate this result. (You don’t
need to know the precise expression of the constants involved.)

2. (a) Describe the main steps in iterative refinement with extended precision for
computing more accurate solutions of linear system.

(b) Sometimes it is worthwhile to do a step of iterative refinement in using
fixed precision. When is that?

Problems

1. Compute the LU factors of the matrix in (7.6.12).

7.7 Block Algorithms for Gaussian Elimination

7.7.1 Block and Blocked Algorithms

In block matrix algorithms most part of the arithmetic operations consists of matrix
multiplications. Because of this these algorithms can achieve high performance
on modern computers. The following distinction between two different classes of
algorithms is important to emphasize, since they have different stability properties.

As a first example, consider the inverse of a block lower triangular matrix

L =











L11

L21 L22

...
...

. . .

Ln,1 Ln,2 · · · Lnn











, (7.7.1)

If the diagonal blocks Lii, i = 1 : 2, are nonsingular, it is easily verified that the
inverse also will be block lower triangular,

L−1 =











Y11

Y21 Y22

...
...

. . .

Yn,1 Yn,2 · · · Ynn











, (7.7.2)

In Sec. 7.1.5 we showed that the inverse in the 2 × 2 case is

L−1 =

(

L−1
11 0

−L−1
22 L21L

−1
11 L−1

22

)

.

Note that we do not assume that the diagonal blocks are lower triangular.
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In the general case the blocks in the inverse can be computed a block column at
a time from a straightforward extension of the scalar algorithm (7.2.40). Identifying
blocks in the jth block column, of the equation LY = I, we for j = 1 : n,

LjjYjj = I, LiiYij = −
i−1
∑

k=j

LikYkj , i = j + 1 : n. (7.7.3)

These equations can be solved for Yjj , . . . , Ynj , by the scalar algorithms described
in Sec. 7.2. The main arithmetic work will take place in the matrix-matrix multipli-
cations LikYkj . This is an example of a true block algorithm, which is a obtained
by substituting in a scalar algorithm operations on blocks of partitioned matrices
regarded as non-commuting scalars.

In the special case that L is a lower triangular matrix this implies that all
diagonal blocks Lii and Yii, i = 1 : n, are lower triangular. In this case the equations
in (7.7.3) can be solved by back-substitution. The resulting algorithm is then just
a scalar algorithm in which the operations have been grouped and reordered into
matrix operations. Such an algorithm is called a blocked algorithm. Blocked
algorithms have the same stability properties as their scalar counterparts. This is
not true for general block algorithms, which is why the distinction is important to
make.

In Sec. 7.1.5 we gave, using slightly different notations, the block LU factor-
ization

A =

(

A11 A12

A21 A22

)

=

(

I 0
A21A

−1
11 I

) (

A11 A12

0 S

)

, (7.7.4)

for a 2×2 block matrix, with square diagonal blocks. Here S = A22−A21A
−1
11 A12 is

the Schur complement. Note that the diagonal blocks in the block lower triangular
factor in (7.7.4) are the identity matrix. Hence, this is a true block algorithm.

In a blocked LU factorization algorithm, the LU factors should have the form

A =

(

L11 0
L21 L22

) (

U11 U12

0 U22

)

,

where L11, L22 are unit lower triangular and U11 , U22 are upper triangular. Such
a factorization can be computes as follows. We first compute the scalar LU factor-
ization A11 = L11U11, and then compute

L21 = A21U
−1
11 , U12 = L−1

11 A12, S22 = A22 − L21U12.

Finally compute the scalar factorization S22 = L22U22.
In the general case a blocked algorithm for the LU factorization of a block

matrix

A =









A11 A12 . . . A1N

A21 A22 . . . A2N
...

...
. . .

...
AN1 AN2 . . . ANN









, (7.7.5)

having square diagonal blocks. Let L and U be partitioned conformally with A.
Equating blocks in the product A = LU , we obtain, assuming that all inverses
exist, the following block LU algorithm:
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Algorithm 7.7.1 Blocked LU Factorization.

for k = 1 : N

Skk = Akk −
k−1
∑

p=1

LkpUpk;

Skk = LkkUkk

for j = k + 1 : N

Ljk =
(

Ajk −
k−1
∑

p=1

LjpUpk

)

U−1
kk ;

end

for j = 1 : k − 1

Ujk = L−1
kk

(

Ajk −
k−1
∑

p=1

LjpUpj

)

;

end
end

Here the LU-decompositions Skk = LkkUkK of the modified diagonal blocks
are computed by a scalar LU factorization algorithm. However, the dominating
part of the work is performed in matrix-matrix multiplications. The inverse of the
triangular matrices L−1

kk and U−1
kk are not formed but the off-diagonal blocks Ukj and

Ljk (which in general are full matrices) are computed by triangular solves. Pivoting
can be used in the factorization of the diagonal blocks. As described the algorithm
does not allow for row interchanges between blocks. This point is addressed In the
next section.

As with the scalar algorithms there are many possible ways of sequencing the
block factorization. The block algorithm above computes in the kth major step the
kth block column of L and U . In this variant at step k only the kth block column
of A is accessed, which is advantageous from the standpoint of data access.

A block LU factorization algorithm differs from the blocked algorithm above
in that the lower block triangular matrix L has diagonal blocks equal to unity.
Although such a block algorithm may have good numerical stability properties
this cannot be taken for granted, since in general they do not perform the same
arithmetic operations as in the corresponding scalar algorithms. It has been shown
that block LU factorization can fail even for symmetric positive definite and row
diagonally dominant matrices.

One class of matrices for which the block LU algorithm is known to be stable
is block tridiagonal matrices that are block diagonally dominant. .

Definition 7.7.1. (see Demmel et al. [16])
A general matrix A ∈ Rn×n is said to be block diagonally dominant by columns,

with respect to a given partitioning, if it holds i.e.

‖A−1
jj ‖−1 ≥

∑

i6=j

‖Aij‖, j = 1 : n. (7.7.6)
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A is block diagonally dominant by rows, if AT is (strictly) diagonally dominant
by columns.

Note that for block size 1 the usual property of (point) diagonal dominance
is obtained. For the 1 and ∞-norms diagonal dominance does not imply block
diagonal dominance Neither does and the reverse implications hold.

Analogous to the Block LU Algorithm in Section 7.7.1 block versions of the
Cholesky algorithm can be developed. If we assume that A has been partitioned
into N × N blocks with square diagonal blocks we get using a block column-wise
order:

Algorithm 7.7.2 Blocked Cholesky Algorithm.

for j = 1 : N

Sjj = Ajj −
j−1
∑

k=1

RT
jkRjk;

Sjj = RT
jjRjj

for i = j + 1 : N

RT
ij =

(

Aij −
j−1
∑

k=1

RT
ikRjk

)

(Rjj)
−1;

end
end

Note that the diagonal blocksRjj are obtained by computing the Cholesky fac-
torizations of matrices of smaller dimensions. The right multiplication with (Rjj)

−1

in the computation of RT
jk is performed by solving the triangular equations of the

form RT
jjRij = ST . The matrix multiplications dominate the arithmetic work in

the block Cholesky algorithm.
In deriving the block LU and Cholesky algorithms we assumed that the block

sizes were determined in advance. However, this is by no means necessary. A more
flexible way is to advance the computation by deciding at each step the size of the
current pivot block. The corresponding blocked formulation then uses a 3×3 block
structure, but the partitioning changes after each step.

Suppose that a partial LU factorization so that

P1A =





L11

L21 I
L31 0 I









U11 U12 U13

Ã22 Ã23

Ã32 Ã33



 .

has been obtained, where P1 is a permutation matrix and L11, U11 ∈ Rn1×n1 . To
advance the factorization compute the LU factorization with row pivoting

P2

(

Ã22

Ã32

)

=

(

L22

L32

)

U22,
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where L22, U22 ∈ Rn2×n2 . The permutation matrix P2 has to be applied also to
(

Ã23

Ã33

)

:= P2

(

Ã23

Ã33

)

,

(

L21

L31

)

:= P2

(

L21

L31

)

.

We then solve for U23 and update A33 using

L22U23 = Ã23, Ã33 = A33 − L32U23.

The factorization has now been advanced one step to become

P2PA =





L11

L21 L22

L31 L32 I









U11 U12 U13

U22 U23

A33



 .

We can now repartition so that the first two block-columns in L are joined into a
block of n1 +n2 columns and similarly the first two block-rows in U joined into one
block of n1 + n2 rows. The blocks I and A33 in L and U are partitioned into 2×2
block matrices and we advance to the next block-step. This describes the complete
algorithm since we can start the algorithm by taking n1 = 0.

The above algorithm is sometimes called right-looking, referring to the way
in which the data is accessed. The corresponding left-looking algorithm goes as
follows. Assume that we have computed

PA =





L11

L21 I
L31 0 I









U11 A12 A13

A22 A23

A32 A33



 .

To advance the factorization we solve first a triangular system L11U12 = A12 to
obtain U12 and then compute

(

Ã22

Ã32

)

=

(

A22

A32

)

−
(

L21

L31

)

U12,

We then compute the LU factorization with row pivoting

P2

(

Ã22

Ã32

)

=

(

L22

L32

)

U22,

and replace
(

Ã23

Ã33

)

= P2

(

A23

A33

)

,

(

L21

L31

)

:= P2

(

L21

L31

)

.

The factorization has now been advanced one step to become

P2PA =





L11

L21 L22

L31 L32 I









U11 U12 A13

U22 A23

A33



 .

Note that in this version the blocks in the last block column of A are referenced
only in the pivoting operation, but this can be postponed.
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Block LU factorizations appears to have been first proposed for block tridi-
agonal matrices, which often arise from the discretization of partial differential
equations. For a symmetric positive definite matrix the recursion (7.4.11) is easily
generalized to compute the following block-factorization:

A = UTD−1U, D = diag (Σ1, . . . ,Σn),

of a symmetric positive definite block-tridiagonal matrix with square diagonal
blocks. We obtain

A =















D1 AT
2

A2 D2 AT
3

A3
. . .

. . .
. . .

. . . AT
N

AN DN















, UT =















Σ1

A2 Σ2

A3
. . .
. . .

. . .

AN ΣN















,

where

Σ1 = D1, Σk = Dk −AkΣ−1
k−1A

T
k , k = 2 : N. (7.7.7)

To perform the operations with Σ−1
k , k = 1 : N the Cholesky factorization of these

matrices are computed by a scalar algorithm. After this factorization has been
computed the solution of the system

Ax = UTD−1Ux = b

can be obtained by block forward- and back-substitution UT z = b, Ux = Dz.
Note that the blocks of the matrix A may again have band-structure, which

should be taken advantage of! A similar algorithm can be developed for the un-
symmetric block-tridiagonal case.

For block tridiagonal matrices the following result is known:

Theorem 7.7.2. (Varah [64])
Let the matrix A ∈ Rn×n be block tridiagonal and have the block LU fac-

torization A = LU , where L and U are block bidiagonal, and normalized so that
Ui,i+1 = Ai,i+1. Then if A is block diagonally dominant by columns

‖Li,i−1‖ ≤ 1, ‖Ui,i‖ ≤ ‖Ai,i‖ + ‖Ai−1,i‖. (7.7.8)

If A is block diagonally dominant by rows

‖Li,i−1‖ ≤ Ai−1,i‖
‖Ai,i−1‖

, ‖Ui,i‖ ≤ ‖Ai,i‖ + ‖Ai−1,i‖. (7.7.9)

These results can be extended to full block diagonally dominant matrices, by
using the key property that block diagonal dominance is inherited by the Schur
complements obtained in the factorizations.
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7.7.2 Recursive Algorithms

In the 2×2 case the block LU factorization Algorithm 7.7.1 is obtained by equating

A =

(

A11 A12

A21 A22

)

=

(

L11 0
L21 L22

) (

U11 U12

0 U22

)

. (7.7.10)

We get

L11U11 = A11,

L21 = A21U
−1
11 , U12 = L−1

11 A12,

Ã22 = A22 − L21U12,

L22U22 = Ã22.

Hence the LU factorization of A can be reduced to the LU factorization of two
smaller matrices A11 and Ã22, two triangular solves with matrix right hand sides,
and one matrix update A22 − L21U12.

Similarly for the Cholesky factorization equating

(

A11 AT
21

A21 A22

)

=

(

L11 0
L21 L22

)(

LT
11 LT

21

0 LT
22

)

, (7.7.11)

gives

L11L
T
11 = A11,

LT
21 = L−1

11 A
T
21,

L22L
T
22 = A22 − L21L

T
21.

It is possible to derive “divide and conquer” algorithms for the LU and
Cholesky algorithms, by using the 2 × 2 block versions recursively. see [24].

Algorithm 7.7.3 Recursive Cholesky Factorization.

Let A ∈ Rn×n be a symmetric positive definite matrix. The following recursive
algorithm computes the Cholesky factorization of A.

function L = rchol(A);

[n, n] = size(A);

if n 6= 1

%RecursiveCholesky

k = floor(n/2)

L11 = rchol(A(1 : k, 1 : k));

L21 = (L11−1A(1 : k, k + 1 : n))′;

L22 = rchol(A(1 : k, 1 : k) − L21 ∗ L21′);

L = [L11 zeros(k, n− k);L21 L22];
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else

L = sqrt(A);

end;

This is not a toy algorithm, but can be developed into an efficient algorithm
for parallel high performance computers!

An intriguing question is whether it is possible to multiply two matrices A ∈
Rm×n, and B ∈ Rn×p in less than mnp (scalar) multiplications. The answer is
yes! Strassen [1969] developed a fast algorithm for matrix multiplication based on
the following method for multiplying 2 × 2 block matrices. Assume that m,n, p
are even and partition each of A, B and the product C ∈ Rm×p, into four equally
sized blocks. Then, as can be verified by substitution, the product C = AB can be
computed using the following formulas:

(

A11 A12

A21 A22

) (

B11 B12

B21 B22

)

=

(

P1 + P4 − P5 + P7 P3 + P5

P2 + P4 P1 + P3 − P2 + P6

)

,

where

P1 = (A11 +A22)(B11 +B22), P2 = (A21 +A22)B11,

P3 = A11(B12 − B22), P4 = A22(B21 −B11),

P5 = (A11 +A12)B22, P6 = (A21 −A11)(B11 +B12),

P7 = (A12 −A22)(B21 +B22).

The key property of Strassen’s algorithm is that only seven matrix multiplica-
tions and eighteen matrix additions are needed, instead of the eight matrix mul-
tiplications and four matrix additions required using conventional block matrix
multiplications. Since for large dimensions multiplication of two matrices is more
expensive (n3) than addition (n2) this will lead to a saving in operations.

Strassen’s algorithm can be used recursively. to multiply two square matrices
of dimension n = 2k. The number of multiplications is then reduced from n3 to
nlog

2
7 = n2.807.... (The number of additions is of the same order.) Even with

just one level of recursion Strassen’s method is faster in practice when n is larger
than about 100, see Problem 2. However, there is some loss of numerical stability
compared to conventional matrix multiplication, see Higham [41, Ch. 23].

By using the block formulation recursively, and Strassen’s method for the
matrix multiplication it is possible to perform the LU factorization in O(nlog

2
7)

operations.

7.7.3 Kronecker Systems

Linear systems where the matrix is a Kronecker product22 arise in several ap-
plication areas such as signal and image processing, photogrammetry, multidimen-
sional data fitting, etc. Such systems can be solved with great savings in storage

22Leopold Kronecker (1823–1891) German mathematician. He is known also for his remark
“God created the integers, all else is the work of man”.
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and operations. Since often the size of the matrices A and B is large, resulting in
models involving several hundred thousand equations and unknowns, such savings
may be essential.

Definition 7.7.3.
Let A ∈ Cm×n and B ∈ Cp×q be two matrices. Then the Kronecker product

of A and B is the mp× nq block matrix

A⊗B =





a11B a12B · · · a1nB
...

...
...

am1B am2B · · · amnB



 . (7.7.12)

We now state without proofs some elementary facts about Kronecker products.
From the definition (7.7.12) it follows that

(A+B) ⊗ C = (A⊗ C) + (B ⊗ C),

A⊗ (B + C) = (A⊗B) + (A⊗ C),

A⊗ (B ⊗ C) = (A⊗B) ⊗ C,

(A⊗B)T = AT ⊗BT .

Further we have the important mixed-product relation, which is not so obvious:

Lemma 7.7.4.
Let A ∈ Rm×n, B ∈ Rp×q, C ∈ Rn×k, and D ∈ Rq×r. Then the ordinary

matrix products AC and BD are defined, and

(A⊗B)(C ⊗D) = AC ⊗BD. (7.7.13)

Proof. Let A = (aik) and C = (ckj). Partitioning according to the sizes of B and
D, A⊗B = (aikB) and C⊗D = (ckjD). Hence, the (i, j)th block of (A⊗B)(C⊗D)
equals

n
∑

k=1

aikBckjD =

( n
∑

k=1

aikckj

)

BD,

which is the (i, j)th element of AC times BD, which is the (i, j)th block of (A ⊗
B)(C ⊗D).

If A ∈ Rn×n and B ∈ Rp×p are non-singular, then then by Lemma 7.7.4

(A−1 ⊗B−1)(A ⊗B) = In ⊗ Ip = Inp.

It follows that A⊗B is nonsingular and

(A⊗B)−1 = A−1 ⊗B−1. (7.7.14)

We now introduce an operator closely related to the Kronecker product, which
converts a matrix into a vector.
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Definition 7.7.5. Given a matrix C = (c1, c2, . . . , cn) ∈ Rm×n we define

vec (C) =









c1
c2
...
cn









, (7.7.15)

that is, the vector formed by stacking the columns of C into one long vector.

We now state an important result which shows how the vec-function is related
to the Kronecker product.

Lemma 7.7.6.
If A ∈ Rm×n, B ∈ Rp×q, and C ∈ Rq×n, then

(A⊗B)vecC = vecX, X = BCAT . (7.7.16)

Proof. Denote the kth column of a matrix M by Mk. Then

(BCAT )k = BC(AT )k = B

n
∑

i=1

akiCi

= ( ak1B ak2B . . . aknB ) vecC,

where Let A = (aij). But this means that vec (BCAT ) = (A⊗B)vecC.

Let A ∈ Rn×n and B ∈ Rp×p be non-singular, and C ∈ Rp×n. Consider the
Kronecker linear system

(A⊗B)x = vecC, (7.7.17)

which is of order np. Then by (7.7.14) the solution can be written

x = (A−1 ⊗B−1)vecC = vec (X), X = B−1CA−T . (7.7.18)

where C is the matrix such that c = vec (C). This reduces the operation count for
solving (7.7.17) from O(n3p3) to O(n2p+ np2).

7.7.4 Linear Algebra Software

The first collection of high quality software was a series of algorithms written in
Algol 60 that appeared in a handbook edited by Wilkinson and Reinsch [68, ].
This contains 11 subroutines for linear systems, least squares, and linear program-
ming and 18 routines for the algebraic eigenvalue problem.

The collection LINPACK of Fortran subroutines for linear systems that fol-
lowed contained several important innovations; see Dongarra et al. [18, ]. As
much as possible of the computations were performed by calls to so called Basic
Linear Algebra Subprograms (BLAS) [48]. These identified frequently occurring



120 Chapter 7. Direct Methods for Solving Linear System

vector operations in linear algebra such as scalar product, adding of a multiple of
one vector to another. For example, the operations

y := αx+ y, α := α+ xT y

in single precision was named SAXPY. By carefully optimizing these BLAS for each
specific computer performance could be enhanced without sacrificing portability.
LINPACK was followed by EISPACK, a collection of routines for the algebraic
eigenvalue problem; see Smith et al. [58, ], B. S. Garbow et al. [29, ].

The original BLAS, now known as Level 1 BLAS, were found to be unsatis-
factory for vector computers, the level 2 BLAS for matrix-matrix operations were
introduced in 1988 [20]. These operations involve one matrix A and one or several
vectors x and y, e.g., the real matrix-vector products

y := αAx+ βy, y := αATx+ βy,

and
x := Tx, x := T−1x, x := T Tx,

where α and β are scalars, x and y are vectors, A a matrix and T an upper or
lower triangular matrix. The corresponding operations on complex data are also
provided.

In most computers in use today the key to high efficiency is to avoid as much
as possible data transfers between memory, registers and functional units, since
these can be more costly than arithmetic operations on the data. This means
that the operations have to be carefully structured. The LAPACK collection of
subroutines [2] was initially released in 1992 to address these questions. LAPACK
was designed to supersede and integrate the algorithms in both LINPACK and
EISPACK. The subroutines are restructured to achieve much greater efficiency on
modern high-performance computers. This is achieved by performing as much as
possible of the computations by calls to so called Level 2 and 3 BLAS. These enables
the LAPACK routines to combine high performance with portable code and is also
an aid to clarity, portability and modularity.

Level 2 BLAS involve O(n2) data, where n is the dimension of the matrix
involved, and the same number of arithmetic operations. However, on computers
with hierarchical memories, as is now the rule, they failed to obtain adequate per-
formance. Therefore level 3 BLAS were finally introduced in 1990 [19]. These were
derived in a fairly obvious manner from some level 2 BLAS, by replacing the vectors
x and y by matrices B and C,

C := αAB + βC, C := αATB + βC, C := αABT + βC,

and
B := TB, B := T−1B, B := T TB,

Since level 3 BLAS use O(n2) data but perform O(n3) arithmetic operations
and gives a surface-to-volume effect for the ratio of data movement to operations.
This avoids excessive data movements between different parts of memory hierarchy.
Level 3 BLAS are used in LAPACK, the linear algebra package that is the successor
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of LINPACK, which achieves close to optimal performance on a large variety of
computer architectures.

LAPACK is continually improved and updated and is available for free from
http://www.netlib.org/lapack95/. Several specila forms of matrices are sup-
ported by LAPACK: General

General band
Positive definite
Positive definite packed
Positive definite band
Symmetric (Hermitian) indefinite
Symmetric (Hermitian) indefinite packed
Triangular
General tridiagonal
Positive definite tridiagonal

The LAPACK subroutines form the backbone of Cleve Moler’s Matlab system,
which has simplified matrix computations tremendously.

LAPACK95 is a Fortran 95 interface to the Fortran 77 LAPACK library. It is
relevant for anyone who writes in the Fortran 95 language and needs reliable software
for basic numerical linear algebra. It improves upon the original user-interface to
the LAPACK package, taking advantage of the considerable simplifications that
Fortran 95 allows. LAPACK95 Users’ Guide provides an introduction to the design
of the LAPACK95 package, a detailed description of its contents, reference manuals
for the leading comments of the routines, and example programs.

Review Questions

1. How many operations are needed (approximately) for

(a) The LU factorization of a square matrix?

(b) The solution of Ax = b, when the triangular factorization of A is known?

2 To compute the matrix product C = AB ∈ Rm×p we can either use an
outer product or an inner product formulation. Discuss the merits of the two
resulting algorithms when A and B have relatively few nonzero elements.

Problems

1. Assume that for the nonsingular matrix An−1 ∈ R(n−1)×(n−1) we know the
LU factorization An−1 = Ln−1Un−1. Determine the LU factorization of the
bordered matrix An ∈ Rn×n,

An =

(

An−1 b
cT ann

)

=

(

Ln−1 0
lT 1

) (

Un−1 u
0 unn

)

.
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Here b, c ∈ Rn−1 and ann are given and l, u ∈ Rn−1 and unn are to be
determined.

2. The methods of forwards- and back-substitution extend to block triangular
systems. Show that the 2 × 2 block upper triangular system

(

U11 U12

U22

) (

x1

x2

)

=

(

b1
b2

)

can be solved by block back-substitution provided that the diagonal blocks
U11 and U22 are square and nonsingular.

3. Write a recursive LU Factorization algorithm based on the 2 × 2 block LU
algorithm.

4. (a) Let A ∈ Rm×n, B ∈ Rn×p, with m and n even. Show that, whereas con-
ventional matrix multiplication requires mnp multiplications (M) and m(n−
1)p additions (A) to form the product C = AB ∈ Rm×p, Strassen’s algorithm,
using conventional matrix multiplication at the block level, requires

7

8
mnp M +

7

8
m(n− 2)p+

5

4
n(m+ p) + 2mp A.

(b) Show, using the result in (a), that if we assume that “M ≈ A”, Strassen’s
algorithm is cheaper than conventional multiplication when mnp ≤ 5(mn +
np+mp).

5. Show the equality
vec (A)T vec (B) = trace (ATB). (7.7.19)

7.8 Sparse Linear Systems

7.8.1 Introduction

A matrix A ∈ Rn×n is called sparse if only a small fraction of its elements are
nonzero. Similarly, a linear systems Ax = b is called sparse if its matrix A is
sparse. The simplest class of sparse matrices is the class of banded matrices treated
in Sec. 7.4. These have the property that in each row all nonzero elements are
contained in a relatively narrow band centered around the main diagonal. Matrices
of small bandwidth occur naturally, since they correspond to a situation where only
variables ”close” to each other are coupled by observations.

Large sparse linear systems of more general structure arise in numerous areas
of application such as the numerical solution of partial differential equations, math-
ematical programming, structural analysis, chemical engineering, electrical circuits
and networks, etc. Large could imply a value of n in the range 1,000–1,000,000.
Typically, A will have only a few (say, 5–30) nonzero elements in each row, regard-
less of the value of n. In Fig. 7.8.1 we show a sparse matrix of order 479 with 1887
nonzero elements and its LU factorization. It is a matrix W called west0479 in
the Harwell–Boeing sparse matrix test collection, see Duff, Grimes and Lewis [23].
It comes from a model due to Westerberg of an eight stage chemical distillation
column. Other applications may give pattern with quite different characteristics.
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Figure 7.8.1. Nonzero pattern of a matrix W and its LU factors.

For many sparse linear systems iterative methods (see Chapter 11) may be
preferable to use. This is particularly true of linear systems derived by finite differ-
ence methods for partial differential equations in two and three dimensions. In this
section we will study elimination methods for sparse systems. These are easier to
develop as black box algorithms. Iterative methods, on the other hand, often have
to be specially designed for a particular class of problems.

When solving sparse linear systems by direct methods it is important to avoid
storing and operating on the elements which are known to be zero. One should
also try to minimize fill-in as the computation proceeds, which is the term used
to denote the creation of new nonzeros during the elimination. For example, as
shown in Fig. 7.8.1, the LU factors of W contain 16777 nonzero elements about
nine times as many as in the original matrix. The object is to reduce storage and
the number of arithmetic operations. Indeed, without exploitation of sparsity, many
large problems would be totally intractable.

7.8.2 Storage Schemes for Sparse Matrices

A simple scheme to store a sparse matrix is to store the nonzero elements in an
unordered one-dimensional array AC together with two integer vectors ix and jx
containing the corresponding row and column indices.

ac(k) = ai,j , i = ix(k), j = jx(k), k = 1 : nz.

Hence A is stored in “coordinate form” as an unordered set of triples consisting of
a numerical value and two indices. This scheme is very convenient for the initial
representation of a general sparse matrix. Note that further nonzero elements are
easily added to the structure. This coordinate form is very convenient for the
original input of a sparse matrix. A drawback is that using this storage structure
it is difficult to access the matrix A by rows or by columns, which is needed for the
implementation of Gaussian elimination.
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Example 7.8.1. The matrix

A =











a11 0 a13 0 0
a21 a22 0 a24 0
0 a32 a33 0 a35

0 a42 0 a44 0
0 0 0 a54 a55











,

is stored in coordinate form as

AC = (a13, a22, a21, a33, a35, a24, a32, a42, a44, a55, a54, a11)

i = (1, 2, 2, 3, 3, 2, 3, 4, 4, 5, 5, 1)

j = (3, 2, 1, 3, 5, 4, 2, 2, 4, 5, 4, 1)

In some applications, one encounters matrices of banded structure, where the
bandwidth differs from row to row. For this class of matrices, called variable-band
matrices, we define

fi = fi(A) = min{j | aij 6= 0}, lj = lj(A) = min{i | aij 6= 0}. (7.8.1)

Here fi is the column subscript of the first nonzero in the i-th row of A, and similarly
lj the row subscript of the first nonzero in the jth column of A. We assume here and
in the following that A has a zero free diagonal. From the definition it follows that
fi(A) = li(A

T ). Hence for a symmetric matrix A we have fi(A) = li(A), i = 1 : n.

Definition 7.8.1.
The envelope (or profile) of A is the index set

Env (A) = {(i, j) | fi ≤ j ≤ i; or lj ≤ i < j; }. (7.8.2)

The envelope of a symmetric matrix is defined by the envelope of its lower (or upper)
triangular part including the main diagonal.

For a variable band matrix it is convenient to use a storage scheme, in which
every element aij , (i, j) ∈ Env (A) is stored. This means that zeros outside the
envelope are exploited, but those inside the envelope are stored. This storage scheme
is useful because of the important fact that only zeros inside the envelope will suffer
fill-in during Gaussian elimination.

The proof of the following theorem is left as an exercise.

Theorem 7.8.2.
Assume that the triangular factors L and U of A exist. Then it holds that

Env (L+ U) = Env (A),

i.e., the nonzero elements in L and U are contained in the envelope of A.
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One of the main objectives of a sparse matrix data structure is to economize on
storage while at the same time facilitating subsequent operations on the matrix. We
now consider storage schemes that permits rapid execution of the elimination steps
when solving general sparse linear systems. Usually the pattern of nonzero elements
is very irregular, as illustrated in Fig. 7.8.1. We first consider a storage scheme for
a sparse vector x. The nonzero elements of x can be stored in compressed form
in a vector xc with dimension nnz, where nnz is the number of nonzero elements in
x. Further, we store in an integer vector ix the indices of the corresponding nonzero
elements in xc. Hence the sparse vector x is represented by the triple (nnz, xc, ix),
where

xck = xix(k), k = 1 : nnz.

Example 7.8.2. The vector x = (0, 4, 0, 0, 1, 0, 0, 0, 6, 0) can be stored in com-
pressed form as

xc = (1, 4, 6), ix = (5, 2, 9), nnz = 3

Operations on sparse vectors are simplified if one of the vectors is first un-
compressed, i.e, stored in a full vector of dimesnion n. Clearly this operation can
be done in time proportional to the number of nonzeros, and allows direct random
access to specified element in the vector. Vector operations, e.g., adding a multiple
a of a sparse vector x to an uncompressed sparse vector y, or computing the inner
product xT y can then be performed in constant time per nonzero element. Assume,
for example, that the vector x is held in compressed form as nnz pairs of values
and indices, and y is held in a full length array. Then the operation y := a ∗ x + y
may be expressed as

for k = 1 : nnz, y(ix(k)) := a ∗ xc(k) + y(ix(k));

A matrix can be stored as a collection of sparse row vectors, where each row
vector is stored in AC in compressed form. The corresponding column subscripts
are stored in the integer vector jx, i.e., the column subscript of the element ack
is given in jx(k). Finally we need a third vector ia(i), which gives the position in
the array AC of the first element in the ith row of A. For example, the matrix in
Example 7.8.1 is stored as

AC = (a11, a13 | a21, a22, a24 | a32, a33, a35 | a42, a44 | a54, a55),

ia = (1, 3, 6, 9, 11, 13),

jx = (1, 3, 1, 2, 4, 2, 3, 5, 2, 4, 4, 5).

Alternatively a similar scheme storing A as a collection of column vectors may be
used. A drawback with these schemes is that it is expensive to insert new nonzero
elements in the structure when fill-in occurs.

The components in each row need not be ordered; indeed there is often little
advantage in ordering them. To access a nonzero aij there is no direct method
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of calculating the corresponding index in the vector AC. Some testing on the
subscripts in jx has to be done. However, more usual is that a complete row of
A has to be retrieved, and this can be done quite efficiently. This scheme can be
used unchanged for storing the lower triangular part of a symmetric positive definite
matrix.

If the matrix is stored as a collection of sparse row vectors, the entries in a
particular column cannot be retrieved without a search of nearly all elements. This
is needed, for instance, to find the rows which are involved in a stage of Gaussian
elimination. A solution is then to store also the structure of the matrix as a set of
column vectors. If a matrix is input in coordinate form it the conversion to this
storage form requires a sorting of the elements, since they may be in arbitrary order.
Such a sortin can be done very efficiently in O(n) +O(τ) time.

Another way to avoid extensive searches in data structures is to use a linked
list to store the nonzero elements. Associated with each element is a pointer to the
location of the next element in its row and a pointer to the location of the next
element in its column. If also pointer to the first nonzero in each row and column
are stored there is a total overhead of integer storage of 2(τ + n), where τ is the
number of nonzero elements in the factors and n is the order of the matrix. This
allows fill-ins to be added to the data structure with only two pointers being altered.
Also the fill-in can be placed anywhere in storage so no reorderings are necessary.
Disadvantages are that indirect addressing must be used when scanning a row or
columnand that the elements in one row or column can be scattered over a wide
range of memory.

An important distinction is between static storage structures that remain
fixed and dynamic structures that can accommodate fill-in. If only nonzeros are
to be stored, the data structure for the factors must dynamically allocate space for
the fill-in during the elimination. A static structure can be used when the location
of the nonzeros in the factors can be predicted in advance, as is the case for the
Cholesky factorization.

7.8.3 Graph representation of sparse matrices.

In the method of normal equations for solving sparse linear least squares problems
an important step is to determine a column permutation P such that the matrix
PTATAP has a sparse Cholesky factor R, and to then generate a storage structure
for R. This should be done symbolically using only the nonzero structure of A
(or ATA) as input. To perform such tasks the representation of the structure of a
sparse matrix as a directed or undirected graph is a powerful tool.

A useful way to represent the structure of a symmetric matrix is by an undi-
rected graph G = (X,E), consisting of a set of nodes X and a set of edges E
(unordered pairs of nodes). A graph is ordered (labeled) if its nodes are labeled.
The ordered graph G(A) = (X,E), representing the structure of a symmetric ma-
trix A ∈ Rn×n, consists of nodes labeled 1, . . . , n and edges (xi, xj) ∈ E if and only
if aij = aji 6= 0. Thus there is a direct correspondence between nonzero elements
and edges in its graph; see Figure 6.4.1.
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Figure 7.8.2. The matrix A and its labeled graph.

Two nodes, x and y, are said to be adjacent if there is an edge (x, y) ∈ E.
The adjacency set of x in G is defined by

AdjG(x) = {y ∈ X | x and y are adjacent}.

The number of nodes adjacent to x is denoted by |AdjG(x)|, and is called the degree
of x. A path of length l ≥ 1 between two nodes, u1 and ul+1, is an ordered set of
distinct nodes u1, . . . , ul+1, such that

(ui, ui+1) ∈ E, i = 1, . . . , l.

If there is such a chain of edges between two nodes, then they are said to be
connected. If there is a path between every pair of distinct nodes, then the graph
is connected. A disconnected graph consists of at least two separate connected
subgraphs. (Ḡ = (X̄, Ē) is a subgraph of G = (X,E) if X̄ ⊂ X and Ē ⊂ E.) If
G = (X,E) is a connected graph, then Y ⊂ X is called a separator if G becomes
disconnected after the removal and the nodes Y .

A symmetric matrix A is said to be reducible if there is a permutation matrix
P such that PTAP is block diagonal. Such a symmetric permutation PTAP of A
corresponds to a reordering of the nodes in G(A) without changing the graph. It
follows that the graph G(PTAP ) is connected if and only if G(A) is connected. It is
then easy to prove that A is reducible if and only if its graph G(A) is disconnected.

The structure of an unsymmetric matrix can similarly be represented by a
directed graph G = (X,E), where the edges now are ordered pairs of nodes. A
directed graph is strongly connected if there is a path between every pair of
distinct nodes along directed edges.

The structure of a symmetric matrix A can be represented by the undirected
graph of A.

Definition 7.8.3.
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The ordered undirected graph G(A) = (X,E) of a symmetric matrix A ∈ Rn×n

consists of a set of n nodes X together with a set E of edges, which are unordered
pairs of nodes. The nodes are labeled 1, 2 : n where n, and nodes i and j are joined
by an edge if and only if aij = aji 6= 0, i 6= j. We then say that the nodes i and
j are adjacent. The number of edges incident to a node is called the degree of the
node.

The important observation is that for any permutation matrix P ∈ Rn×n the
graphs G(A) and G(PAPT ) are the same except that the labelling of the nodes are
different. Hence the unlabeled graph represents the structure of A without any
particular ordering. Finding a good permutation for A is equivalent to finding a
good labeling for its graph.

7.8.4 Nonzero Diagonal and Block Triangular Form

Before performing a factorization of a sparse matrix it is often advantageous to
perform some pre-processing. An arbitrary square nonsingular matrix A ∈ Rn×n

there always is a row permutation P such that PA has nonzero elements on it
diagonal. Further, there is a row permutation P and column permutation Q such
that PAQ has a nonzero diagonal and block triangular structure

PAQ =









A11 A12 . . . A1,t

A22 . . . A2,t

. . .
...
Att









(7.8.3)

with square nonsingular diagonal blocks A11, . . . , Att. The off-diagonal blocks are
possibly nonzero matrices of appropriate dimensions. Using this structure a linear
system Ax = b or PAQy = c, where y = QTx, c = Pb, reduces to

Aiiyi = ci −
n

∑

j=i+1

Aijxj , j = n : −1 : 1. (7.8.4)

Hence we only need to factorize the diagonal blocks. This block back-subsitution
can lead to significant savings.

If we require that the diagonal blocks are irreducible, then the block triangular
form (7.8.3) can be shown to be essentially unique. Any one block triangular form
can be obtained from any other by applying row permutations that involve the rows
of a single block row, column permutations that involve the columns of a single block
column, and symmetric permutations that reorder the blocks. A square matrix
which can be permuted to the form (7.8.3), with t > 1, is said to be reducible;
otherwise it is called irreducible.

In the symmetric positive definite case a similar reduction to block upper
triangular form can be considered, where Q = PT . Some authors reserve the terms
reducible for the case, and use the terms bi-reducible and bi-irreducible for the
general case.
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Figure 7.8.3. The block triangular decomposition of A.

An arbitrary rectangular matrix A ∈ Rm×n has a block triangular form called
the Dulmage–Mendelsohn form. If A is square and nonsingular this is the form
(7.8.3). The general case is based on a canonical decomposition of bipartite graphs
discovered by Dulmage and Mendelsohn. In the general case the first diagonal
block may have more columns than rows, the last diagonal block more rows than
column. All the other diagonal blocks are square and nonzero diagonal entries.This
block form can be used for solving least squares problems by a method analogous
to back-substitution.

The bipartite graph associated with A is denoted by G(A) = {R,C,E},
where R = (r1, . . . , rm) is a set of vertices corresponding to the rows of A and
C = (c1, . . . , cm) a set of vertices corresponding to the columns of A. E is the set
of edges, and {ri, cj} ∈ E if and only if aij 6= 0. A matching in G(A) is a subset of
its edges with no common end points. In the matrix A this corresponds to a subset
of nonzeros, no two of which belong to the same row or column. A maximum
matching is a matching with a maximum number r(A) of edges. The structural
rank of A equals r(A). Note that the mathematical rank is always less than or
equal to its structural rank. For example, the matrix

(

1 1
1 1

)

has structural rank 2 but numerical rank 1.
For the case when A is structurally nonsingular matrix there is a two-stage

algorithm for permuting A to block upper triangular form. In the first stage a
maximum matching in the bipartite graph G(A) with row set R and column set C
is found. In the second stage the block upper triangular form of each submatrix
determined from the strongly connected components in the graph G(A), with edges
directed from columns to rows.

If A has structural rank n but is numerically rank deficient it will not be pos-
sible to factorize all the diagonal blocks in (7.8.3). In this case the block triangular
structure given by the Dulmage–Mendelsohn form cannot be preserved, or some
blocks may become severely ill-conditioned.

Note that for some applications, e.g., for matrices arising from discretizations
of partial differential equations, it may be known a priori that the matrix is irre-
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ducible. In other applications the block triangular decomposition may be known in
advance from the underlying physical structure. In both these cases the algorithm
discussed above is not useful.

7.8.5 LU Factorization of Sparse Matrices

Hence the first task in solving a sparse system is to order the rows and columns so
that Gaussian elimination applied to the permuted matrix PAQ does not introduce
too much fill-in. To find the optimal ordering, which minimizes the number of
nonzero in L and U is unfortunately a hard problem. This is because the number
of possible orderings of rows and columns is very large, (n!)2, wheras solving a
linear system only takes O(n3) operations. Fortunately, there are heuristic ordering
algorithms which do a god job at approximately minimizing fill-in. These orderinga
usually also nearly minimize the arithmetic operation count.

Example 7.8.3.
The ordering of rows and columns in Gaussian elimination may greatly affect

storage and number of arithmewtic operations as shown by the following example.
Let

A =













× × × . . . ×
× ×
× ×
...

. . .

× ×













, PAPT =













× ×
. . .

...
× ×

× ×
× . . . × × ×













.

Matrices, or block matrices of this structure are called arrowhead matrices and
occur in many applications.

If the (1, 1) element in A is chosen as the first pivot the fill in will be total
and n3/3 operations required for the LU factorization. In PAPT the orderings of
rows and columns have been reversed. Now there is no fill-in except in the last
step of, when pivots are chosen in natural order.Only about 2n flops are required
to perform the factorization.

For variable-band matrices no fill-in occurs in L and U outside the envelope.
One strategy therefore is to choose P and Q to approximately minimize the envelope
of PAQ. (Note that the reordered matrix PAPT in Example 7.8.3 has a small enve-
lope but A has a full envelope!) For symmetric matrices the reverse Cuthill–McKee
ordering is often used. In the unsymmetirc case one can determine a reordering of
the columns by applying this algorithm to the symmetric structure of A+AT .

Perhaps surprisingly, the orderings that approximately minimize the total fill-
in in LU factorization tend not to give a small bandwidth. Typically, the factors L
and U instead have their nonzeros scattered throughout their triangular parts. A
simple column reordering is to sort the columns by increasing column count, i.e. by
the number of nonzeros in each column. This can often give a substantial reduction
of the fill-in in Gaussian elimination. In Figure 7.8.5 we show the LU factorization
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of the matrix W reordered after column count and its LU factors. The number of
nonzeros in L and U now are 6604, which is a substantial reduction.
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Figure 7.8.4. Nonzero pattern of a matrix and its LU factors after re-
ordering by increasing column count.

An ordering that often performs even better is the so called column minimum
degree ordering shown in Figure 7.8.5. The LU factors of the reordered matrix now
containg 5904 nonzeros. This column ordering is obtained by using the symmetric
minimum degree described in the next section on the matrix WTW . Matlab

uses an implementation of this ordering algorithm that does not actually form the
matrix WTW . For the origin and details of this code we refer to Gilbert, Moler,
and Schreiber [33].
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Figure 7.8.5. Nonzero pattern of a matrix and its LU factors after mini-
mum degree ordering.
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For unsymmetric systems some kind of stability check on the pivot elements
must be performed during the numerical factorization. Therefore the storage struc-
ture for L and U cannot be predicted from the structure of A only. but must be
determined dynamically during the numerical elimination phase.

Matlab uses the column sweep method with partial pivoting due to Gilbert
and Peierls [34] for computing the LU factorization a column of L and U at a time.
In this the basic operation is to solve a series of sparse triangular system involving
the already computed part of L. The column-oriented storage structure is set up
dynamically as the factorization progresses. Note that the size of storage needed
can not be predicted in advance. The total time for this LU factorization algorithm
can be shown to be proportional to the number of arithmetic operations plus the
size of the result.

Other sparse LU algorithms reorders both rows and columns before the nu-
merical factorization. One of the most used ordering algorithm is the Markowitz
algorithm. To motivate this suppose that Gaussian elimination has proceeded
through k stages and let A(k) be the remaining active submatrix. Denote by ri is
the number of nonzero elements in the ith row and cj is the number of nonzero
elements in the jth column of A(k). In the Markowitz algorithm one performs a
row and column interchange so that the product

(ri − 1)(cj − 1),

is minimized. (Some rules for tie-breaking are also needed.) This is equivalent to a
local minimization of the fill-in at the next stage, assuming that all entries modified
were zero beforehand. This choice also minimizes the number of multplications
required for this stage.

With such an unsymmetric reordering there is a conflict with ordering for
sparsity and for stability. The ordering for sparsity may not give pivotal elements
which are acceptable from the point of numerical stability. Usually a threshold
pivoting scheme is used to minimize the reorderings. This means that the chosen
pivot is restricted by an inequality

|a(k)
ij | ≥ τ max

r
|a(k)

rj |, (7.8.5)

where τ , 0 < τ ≤ 1, is a predetermined threshold value. A value of τ = 0.1 is
usually recommended as a good compromise between sparsity and stability. (Note
that the usual partial pivoting strategy is obtained for τ = 1.) The condition (7.8.5)
ensures that in any column that is modified in an elimination step the maximum
element increases in size by at most a factor of (1 + 1/τ). Note that a column is
only modified if the pivotal row has a nonzero element in that column. The total
number of times a particular column is modified during the complete elimination
is often quite small if the matrix is sparse. Furthermore, it is possible to monitor
stability by, for example, computing the relative backward error, see Sec. 7.5.2.

7.8.6 Cholesky Factorization of Sparse Matrices

If A is symmetric and positive definite, then the Cholesky factorization is numer-
ically stable for any choice of pivots along the diagonal. We need only consider
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symmetric permutations PAPT , where P can be chosen with regard only to spar-
sity. This, leads to a substantial increase in the efficiency of the sparse Cholesky
algorithm since a static storage structure can be used.

We remark that the structure predicted for R from that of PTAP by perform-
ing the Cholesky factor symbolically, is such that R + RT will be at least as full
as PAPT . In Figure 7.8.6 we show the nonzero pattern of the matrix S = WWT ,
where W is the matrix west0479, and its Cholesky factor.
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Figure 7.8.6. Nonzero pattern of a matrix and its Cholesky factor.

The Cholesky factorization of a sparse symmetric positive definite matrix A
can be divided into four separate steps:

1. Determine a permutation P such that PTAP has a sparse Cholesky factor L.

2. Perform a symbolic Cholesky factorization of PAPT and generate a storage
structure for R.

3. Form PTAP and store in data structure for R.

4. Compute numerically the Cholesky factor R such that PTAP = RTR.

We stress that steps 1 and 2 are done symbolically, only working on the struc-
ture of A. The numerical computations take place in steps 3 and 4 a static storage
scheme can be used.

Example 7.8.4.
To illustrate the symbolic factorization we use the sparse symmetric matrix A
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with Cholesky factor R

A =



















× × × ×
× × ×

× × × ×
× ×
× ×

× ×
× ×



















, R =



















× × × ×
× × + +

× + + × ×
× +

×
×

×



















,

where × and + denote a nonzero element. We show only the nonzero structure of
A and R, not any numerical values. The five elements marked + are the fill-in that
occur in the Cholesky factorization.

Graph theory provides a powerful tool for the analysis and implementation of
ordering algorithms. In the following we restrict ourselves to the case of a symmetric
structure. Below is the ordered graph G(A), of the matrix in Example 7.8.4.

3 2 1

4

57

6

Figure 7.8.7. The labeled graph of the matrix A.

Example 7.8.5.
The labelled graph suggest that row and columns of the matrix in Exam-

ple 7.8.5 is rearranged in order 4, 5, 7, 6, 3, 1, 2. With this ordering the Cholesky
factor of the matrix PAPT will have no fill-in!

PAPT =



















× ×
× ×

× ×
× ×

× × × ×
× × × ×

× × ×



















, R =



















× ×
× ×

× ×
× ×

× ×
× ×

×



















,

From the graph G(ATA) the structure of the Cholesky factor R can be pre-
dicted by using a graph model of Gaussian elimination. The fill-in under the factor-
ization process can be analyzed by considering a sequence of elimination graphs
that can be recursively formed as follows. We take G0 = G(A), and form Gi from
G(i−1) by removing the node i and its incident edges and adding fill edges. The fill
edges in eliminating node v in the graph G are

{(j, k) | (j, k) ∈ AdjG(v), j 6= k}.
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Thus the fill edges correspond to the set of edges required to make the adjacent
nodes of v pairwise adjacent. The filled graph GF (A) of A is a graph with n
vertices and edges corresponding to all the elimination graphs Gi, i = 0, . . . , n− 1.
The filled graph bounds the structure of the Cholesky factor R,

G(RT +R) ⊂ GF (A). (7.8.6)

Under a no-cancellation assumption, the relation (7.8.6) holds with equality.
The following characterization of the filled graph describes how it can be

computed directly from G(A).

Theorem 7.8.4. Let G(A) = (X,E) be the undirected graph of A. Then (xi, xj)
is an edge of the filled graph GF (A) if and only if (xi, xj) ∈ E, or there is a path
in G(A) from node i to node j passing only through nodes with numbers less than
min(i, j).

Consider the structure of the Cholesky factor R = (rij . For each row i ≤ n
we define γ(i) by

γ(i) = min{j > i | rij 6= 0}, (7.8.7)

that is γ(i) is the column subscript of the first off-diagonal nonzero element in row
i of R. If row i has no off-diagonal nonzero, then γ(i) = i. Clearly γ(n) = n.
The quantities γ(i), i = 1 : n can be used to represent the structure of the sparse
Cholesky factor R. For the matrix R in Example 7.8.4 we have

i 1 2 3 4 5 6 7
γ(i) 2 3 6 4 5 6 7

We now introduce the elimination tree corresponding to the structure of the
Cholesky factor. The tree has n nodes, labelled form 1 to n. For each i if γ(i) > j,
then node γ(i) is the parent of node i in the elimination tree and node j is one
of possible several child nodes of node γ(i). If the matrix is irreducible then n is
the only node with γ(n) = n and is the root of the tree. There is exactly one path
from node i to the root. If node j lies on the pathe from node i to the root, then
node j is an ancestor to node i and node j is a descendant of node i.

The most widely used algorithm for envelope reduction for symmetric matrices
is the reverse Cuthill–McKee ordering. This works on the graph G(A) as
follows:

1. Determine a starting node and label this 1.

2. For i = 1 : n − 1 find all unnumbered nodes adjacent to the node with label
i, and number them in increasing order of degree.

3. The reverse ordering is obtained by reversing the ordering just determined.

The reversal of the Cuthill–McKee ordering in step 3 was suggested by Alan
George, who noticed that it often was much superior to the original ordering pro-
duced by steps 1 and 2 above. In order for the algorithm to perform well it is
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necessary to choose a good starting node; see George and Liu [31, Section 4.3.3].
In Fig. 7.8.2 we show the structure of the matrix from Fig. 7.8.1 and its Cholesky
factor after reverse Cuthill–McKee reordering. The number of non-zero elements in
the Cholesky factor is 23, 866.
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Figure 7.8.8. Matrix and its Cholesky factor after reverse Cuthill–McKee
reordering.

As for unsymmetric matrices, the orderings that approximately minimize the
total fill-in in the Cholesky factor tend to have their nonzeros scattered throughout
the matrix. For some problems, such orderings can reduce fill-in by one or more
orders of magnitude over the corresponding minimum bandwidth ordering.

In the symmetric case ri = ci for the Markowitz ordering. It is then equivalent
to minimizing ri, and the resulting algorithm is called the minimum-degree al-
gorithm. The minimum degree ordering can be determined using a graph model of
the Cholesky factorization. At the same time the nonzero structure of the Cholesky
factor R can be determined and a storage structure for R generated. The minimum-
degree algorithm ordering algorithm has been subject to an extensive development.
Very efficient implementations now exist. For details we refer to George and Liu
[31, Chapter ] and [32].

Figure 7.8.3 shows the structure of the matrix from Fig. 7.8.1 and its Cholesky
factor after minimum-degree reordering. The number of non-zero elements in the
Cholesky factor is reduced to 12, 064. For nested dissection orderings, see George
and Liu [31, Chapter 8].

Review Questions

1. Describe the coordinate form of storing a sparse matrix. Why is this not
suitable for performing the numerical LU factorization?
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Figure 7.8.9. Matrix and its Cholesky factor after minimum-degree reordering.

2. Give an example of a sparse matrix A, which suffers extreme fill-in in Gaussian
elimination..

3. Describe the Markowitz algorithm for ordering rows and columns of a non-
symmetric matrix before factorization.

4. Describe threshold pivoting. Why is this used instead of partial pivoting in
some schemes for LU factorization?

5. What does the reverse Cuthill–McKee ordering minimize?

Problems

1. Let A,B ∈ Rn×n be sparse matrices. Show that the number of multiplications
to compute the product C = AB is

∑n
i=1 ηiθi, where ηi denotes the number

of nonzero elements in the ith column of A and θi the number of nonzeros in
the ith row of B.

Hint: Use the outer product formulation C =
∑n

i=1 a.ib
T
i .

2. (a) It is often required to add a multiple a of a sparse vector x to another
sparse vector y. Show that if the vector x is held in coordinate form as nx
pairs of values and indices, and y is held in a full length array this operation
may be expressed thus:

for k = 1 : nx

y(index(k)) = a ∗ x(k) + y(index(k));

(b) Give an efficient algorithm for computing the inner product of two com-
pressed vectors.
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3. Consider a matrix with the symmetric structure

A =















× ×
× × ×

× × ×
× × ×
× × ×

× × ×















.

(a) What is the envelope of A? Where will fill-in occur during Gaussian
elimination?

(b) Draw the undirected graph G, which represents the sparsity structure of A.

7.9 Structured Systems

The coefficient matrices in systems of linear equations arising from signal processing,
control theory and linear prediction often have some special structure that can be
taken advantage of. Several classes of such structured systems can be solved by fast
methods inO(n2) operations, or by super-fast methods even inO(n log n) operations
rather than O(n3) otherwise required by Gaussian elimination. This has important
implications for many problems in signal restoration, acoustics, seismic exploration
and many other application areas. Since the numerical stability properties of super-
fast methods are generally either bad or unknown we consider only fast methods in
the following.

7.9.1 Toeplitz and Hankel Matrices

Note: The following subsection are not yet complete and will be amended.
A Toeplitz matrix T is a matrix whose entries are constant along every

diagonal; T = (ti−j)1≤i,j≤n,

T =









t0 t1 . . . tn−1

t−1 t0 . . . tn−2

...
...

. . .
...

t−n+1 t−n+2 . . . t0









∈ Rn×n,

and is defined by the 2n − 1 values of t−n+1, . . . , t0, . . . , tn−1. Toeplitz matrices
arising in applications are often large, and dimensions of 10, 000 not uncommon.
Consequently there is a need for special fast methods for solving Toeplitz systems.
In large problems also storage requirements are important. The original matrix T
only requires 2n− 1 storage. However, if standard factorization methods are used,
at least n(n+ 1)/2 storage is needed.

A Hankel matrix is a matrix whose elements are constant along every an-
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tidiagonal, i.e.,H = (hi+j−2)1≤i,j≤n

H =









h0 h1 . . . hn−1

...
...

. . .
...

hn−2 hn−1 . . . h2n−3

hn−1 hn . . . h2n−2









∈ Rn×n.

Reversing the rows (or columns) of a Hankel matrix we get a Toeplitz matrix. Hence
methods developed for solving Toeplitz systems apply also to Hankel systems.

7.9.2 Cauchy-Like Matrices

A Cauchy matrix is a matrix of the following form:

C =

(

1

yi − zj

)

1≤i,j≤n

, ai, bj ∈ Rp. (7.9.1)

where we assume that yi 6= zj for 1 ≤ i, j ≤ n.

Example 7.9.1. Consider the problem of finding the coefficients of a rational
function

r(x) =
n

∑

j=1

aj
1

x− yj
,

which satisfies the interpolation conditions r(xi) = fi, i = 1, . . . , n. With a =
(a1, . . . , an), f = (f1, . . . , fn) this leads to the linear system Ca = f , where C is
the Cauchy matrix in (7.9.1).

Cauchy gave in 1841 the following explicit expression for the determinant

det(C) =

∏

1≤i<j≤n

(yj − yi)(zj − zi)

∏

1≤i≤j≤n

(yj + zi)
.

We note that any row or column permutation of a Cauchy matrix is again a Cauchy
matrix. This property allows fast and stable version of Gaussian to be developed
for Cauchy systems.

Many of these methods also apply in the more general case of Loewner ma-
trices of the form

C =

(

aT
i bj

yi − zj

)

1≤i,j≤n

, ai, bj ∈ Rp. (7.9.2)
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Example 7.9.2. The most famous example of a Cauchy matrix is the Hilbert
matrix, which is obtained by taking yi = zi = i− 1/2:

Hn ∈ Rn×n, hij =
1

i+ j − 1
.

For example,

H4 =







1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7






.

The Hilbert matrix is symmetric and positive definite Hankel matrix. It is also
totally positive . The inverse of Hn is known explicitly and has integer elements.
Hilbert matrices of high order are known to be very ill-conditioned; for large n it
holds that κ2(Hn) ∼ e3.5n.

7.9.3 Vandermonde systems

In Chapter 4 the problem of interpolating given function values f(αi), i = 1, . . . , n
at distinct points αi with a polynomial of degree ≤ n − 1 was shown to lead to
a linear system of equations with matrix M = [pj(αi)]

m
i,j=1. In the case of the

power basis pj(z) = zj−1, the matrix M equals V T , where V is the Vandermonde
matrix

V = [αi−1
j ]ni,j=1 =









1 1 · · · 1
α1 α2 · · · αn
...

... · · ·
...

αn−1
1 αn−1

2 · · · αn−1
n









. (7.9.3)

Hence the unique polynomial P (z) satisfying the interpolating conditions P (αi) =
fi, i = 1, . . . , n is given by

P (z) = (1, z, . . . , zn−1)a,

where a is the solution of the dual Vandermonde system.

V Ta = f (7.9.4)

One of the most efficient ways to determine P (x) is by Newton’s interpolation
formula, which uses the basis polynomials

Q1(z) = 1, Qk(z) = (z − α1) · · · (z − αk−1), k = 2 : n− 1.

We write the polynomial in the form

P (z) = (Q1(z), Q2(z), . . . , Qn(z))c,

where c are the divided differences of f1 : fn. These divided differences can be
recursively computed, see Section 4.?. This leads to the algorithm below for com-
puting the coefficient vector a in the power basis. Note that the algorithm operates
directly on the αj ’s and the matrix V T is never formed,
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Algorithm 7.9.1 Dual Vandermonde System

Given distinct scalars α1, α2, . . . , αn and f = (f1, f2, . . . , fn)T the following algo-
rithm solves the dual Vandermonde system V Ta = f :

a = dvand(α, f)
a := f ;
for k = 1 : n− 1

for j = n : (−1) : k + 1
aj := (aj − aj−1)/(αj − αj−k)

end
end
for k = n− 1 : (−1) : 1

for j = k : n− 1
aj := aj − αk ∗ aj+1

end
end

The accuracy of this algorithm depends on the ordering of the interpolation
points αi. Often the best ordering is the monotone ordering for which

α1 < α2 · · · < αn.

If moreover 0 ≤ α1 this algorithm often gives remarkably accurate solutions.
To interpret the Newton interpolation algorithm in matrix terms we define

lower bidiagonal matrices

Lk(α) =

(

Ik−1 0
0 Bn−k+1(α)

)

, k = 1, . . . , n− 1,

where

Bp(α) =









1
−α 1

. . .
. . .

−α 1









∈ Rp×p.

We further let

Dk = diag (1, . . . , 1, (αk+1 − α1), . . . , (αn − αn−k)).

Then we find that the dual Vandermonde algorithm can be written as

c = UT f, UT = D−1
n−1Ln−1(1) · · ·D−1

1 L1(1),

a = LT c, LT = LT
1 (α1)L

T
2 (α2) · · ·LT

n−1(αn−1).

Systems of equations with Vandermonde matrix

V x = b (7.9.5)
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are called primal Vandermonde systems and occur, e.g., in approximation of linear
functionals (see Chapter 4). The matrix representation of the algorithm for the
dual Vandermonde system allows us to derive an algorithm also for solving primal
Vandermonde systems.

Since a = V −T f = LTUT f , we have V −T = LTUT . Transposing this relation
and find

V −1 = UL,

Hence the solution to the primal system V x = b is given by x = V −1b = U(Lb) or

d = Lb, L = Ln−1(αn−1) · · ·L2(α2)L1(α1)

x = Uf, U = MT
1 D

−1
1 · · ·MT

n−1D
−1
n−1

This gives rise to the following algorithm:

Algorithm 7.9.2 Primal Vandermonde System

Given distinct scalars α1, α2, . . . , αn and b = (b1, b2, . . . , bn)T the following algo-
rithm solves the primal Vandermonde system V x = b:

x = pvand(α, b)
x := b;
for k = 1 : n− 1

for j = n : (−1) : k + 1
xj := xj − αk ∗ xj−1

end
end
for k = n− 1 : (−1) : 1

for j = k + 1 : n
xj := xj/(αj − αj−k)

end
for j = k : n− 1
xj := xj − xj+1

end
end

This is the Björck–Pereyra algorithm. It solves primal Vandermonde sys-
tems with only 1

2n(n+1)(3A+2M) operations, where A and M denotes one floating
point addition and multiplication, respectively. Note also that no extra storage is
needed since a can overwrite f .

Notes

Although the history of Gaussian elimination goes back at least to Chinese mathe-
maticians about 250 B.C., there was no practical experience of solving large linear
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systems until the advent of computers in the 1940s. Gaussian elimination was the
first numerical algorithm to be subjected to a rounding error analysis. In 1946 there
was a mood of pessimism about the stability of Gaussian elimination. Hotelling [44]
had produced bounds showing that the error in the solution would be proportional
to 4n, which suggested that it would be impossible to solve even systems of mod-
est order. A few years later J. von Neumann and H. H. Goldstein published more
relevant error bounds. In 1948 A. M. Turing wrote a remarkable paper [63], where
he formulated the LU factorization and introduced matrix condition numbers. The
more or less final form of error analysis of Gaussian elimination was given by J. H.
Wilkinson [65]. For a more detailed historical perspective of Gaussian elimination
we refer to N. J. Higham [41, Sec. 9.13].

Rook pivoting for nonsymmetric matrices was introduced by Neal and Poole in
[51]. Related pivoting strategies for symmetric indefinite matrices were introduced
earlier by Fletcher [26].

The idea of doing only half the elimination for symmetric systems, while pre-
serving symmetry is probably due to Gauss, who first sketched his elimination al-
gorithm in 1809. The Cholesky method is named after Andre-Louis Cholesky, who
was a French military officer. He devised his method to solve symmetric, positive
definite system arising in a geodetic survey in Crete and North Africa just before
World War I.

The literature on linear algebra is very extensive. For a theoretical treatise a
classical source is Gantmacher [28, ]. Several nonstandard topics are covered
in depth in two excellent volumes by Horn and Johnson [42, ] and [43, ].

An interesting survey of classical numerical methods in linear algebra can be
found in Faddeev and Faddeeva [25, ], but many of the methods treated are
now dated. A compact, lucid and modern presentation is given in Householder [45,
]. Bellman [7, ] is an original and readable complementary text.

An up to date and indispensable book for of anyone interested in computa-
tional linear algebra is Golub and Van Loan [35, ]. The book by Higham [41,
] is a wonderful and useful source book for information about the accuracy and
stability of algorithms in numerical linear algebra. Other excellent textbooks on
matrix computation include Stewart [60, ]. For results on on perturbation the-
ory and related topics a very complete reference book is Stewart and Sun [61, ].
In particular, an elegant treatise on norms and metrics is found in [61, Chapter II].

Direct methods for sparse symmetric positive definite systems are covered in
George and Liu [31, ], while a more general treatise is given by Duff et al. [22,
].

Bauer [6] was the first to study componentwise perturbation theory. This did
not catch on in English publications until Skeel took it up in two papers [56, ],
and [57, ].

A gallery of test matrices is documented in N. J. Higham [40]. available from
the Web,; see also [41, Appendix D].
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Chapter 8

Linear Least Squares

Problems

8.1 Preliminaries

8.1.1 The Least Squares Principle

A fundamental task in scientific computing is to estimate parameters in a math-
ematical model from collected data which are subject to errors. The influence of
the errors can be reduced by using a greater number of data than the number of
unknowns. If the model is linear, the resulting problem is then to “solve” an in
general inconsistent linear system Ax = b, where A ∈ Rm×n and m ≥ n. In other
words, we want to find a vector x ∈ Rn such that Ax is in some sense the “best”
approximation to the known vector b ∈ Rm.

There are many possible ways of defining the “best” solution to an inconsistent
linear system. A choice which can often be motivated for statistical reasons (see
Theorem 8.1.4) and also leads to a simple computational problem is the following:
Let x be a vector which minimizes the Euclidian length of the residual vector
r = b −Ax; i.e., a solution to the minimization problem

min
x

‖Ax− b‖2, (8.1.1)

where ‖·‖2 denotes the Euclidian vector norm. Note that this problem is equivalent
to minimizing the sum of squares of the residuals

∑m
i=1 r

2
i . Hence, we call (8.1.1)

a linear least squares problem and any minimizer x a least squares solution
of the system Ax = b. 1

Example 8.1.1. Consider a model described by a scalar function y(t) = f(x, t),
where x ∈ Rn is a parameter vector to be determined from measurements (yi, ti),
i = 1, . . . ,m, m > n. In particular let f(x, t) be linear in x,

f(x, t) =

n
∑

j=1

xjφj(t).

1This draft last revised 2003 10 31.

1



2 Chapter 8. Linear Least Squares Problems

Then the equations yi =
∑n

j=1 xjφj(ti), i = 1, . . . ,m form an overdetermined sys-
tem, which can be written in matrix form Ax = b, where aij = φj(ti), and bi = yi.

We shall see that a least squares solution x is characterized by r ⊥ R(A), where
R(A) the range space of A. The residual vector r is always uniquely determined
and the solution x is unique if and only if rank (A) = n, i.e., when A has linearly
independent columns. If rank (A) < n, we seek the unique least squares solution of
minimum Euclidean norm.

When there are more variables than needed to match the observed data, then
we have an underdetermined problem. In this case we can seek the minimum
norm solution y ∈ Rm of a linear system, i.e. solve

min ‖y‖2, AT y = c, (8.1.2)

where c ∈ Rn and AT y = c is assumed to be consistent.

8.1.2 Linear Models and the Gauss–Markoff Theorem

We first need to introduce some concepts from statistics. Let the probability that
random variable y ≤ x be equal to F (x), where F (x) is nondecreasing, right con-
tinuous, and satisfies

0 ≤ F (x) ≤ 1, F (−∞) = 0, F (∞) = 1.

Then F (x) is called the distribution function for y.
The expected value and the variance of y are defined as the Stieltjes inte-

grals

E(y) = µ =

∫

∞

−∞

ydF (y), E(y − µ)2 = σ2 =

∫

∞

−∞

(y − µ)2dF (y),

If y = (y1, . . . , yn)T is a vector of random variables and µ = (µ1, . . . , µn)T ,
µi = E(yi), then we write µ = E(y). If yi and yj have the joint distribution F (yi, yj)
the covariance between yi and yj is

σij = E [(yi − µi)(yj − µj)] =

∫

∞

−∞

(yi − µi)(yj − µj)dF (yi, yj)

= E(yiyj) − µiµj .

The covariance matrix V ∈ Rn×n of y is defined by

V = V(y) = E [(y − µ)(y − µ)T ] = E(yyT ) − µµT .

where the diagonal element σii is the variance of yi.
We now prove some properties which will be useful in the following.
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Lemma 8.1.1.
Let B ∈ Rr×n be a matrix and y a random vector with E(y) = µ and covariance

matrix V . Then

E(By) = Bµ, V(By) = BV BT .

In the special case that B = bT is a row vector, r = 1, then V(bT y) = µ‖b‖2
2.

Proof. The first property follows directly from the definition of expected value.
The second follows from the relation

V(By) = E [(B(y − µ)(y − µ)TBT ]

= BE [(y − µ)(y − µ)T ]BT = BV BT .

In linear statistical models one assumes that the vector b ∈ Rm of observations
is related to the unknown parameter vector x ∈ Rn by a linear relationship

Ax = b+ ǫ, (8.1.3)

where A ∈ Rm×n is a known matrix, and, ǫ is a vector of random errors. In the
standard case ǫ has zero mean and covariance matrix σ2I, i.e.,

E(ǫ) = 0, V(ǫ) = σ2I.

We also assume that rank (A) = n, and make the following definitions:

Definition 8.1.2.
A function g of the random vector y is called unbiased estimate of a param-

eter θ if E(g(y)) = 0. When such a function exists, then θ is called an estimable
parameter.

Definition 8.1.3.
The linear function g = cT y, where c is a constant vector, is a minimum vari-

ance (best) unbiased estimate of the parameter θ if E(g) = θ, and V(g) is minimized
over all linear estimators.

Gauss gave the method of least squares a sound theoretical basis in [23, ],
without any assumptions that the random variables follow a normal distribution.
This contribution of Gauss was somewhat neglected until rediscovered by Markoff
1912. We state the relevant theorem without proof.

Theorem 8.1.4. The Gauss–Markoff theorem.
Consider the linear model (8.1.3), where A ∈ Rm×n is a known matrix, and

ǫ is a random vector with zero mean and covariance matrix V(ǫ) = σ2I. Let x̂
be the least square estimator, obtained by minimizing over x the sum of squares
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‖Ax− b‖2
2. Then the best linear unbiased estimator of any linear function g = cTx

is cT x̂. Furthermore, the covariance matrix of the estimate x̂ equals

V(x̂) = V = σ2(ATA)−1 (8.1.4)

and E(s2) = σ2, where s2 is the quadratic form

s2 =
1

m− n
‖b−Ax̂‖2

2.

Proof. See Zelen [67].

In the next subsection we show that the residual vector r̂ = b̂ − Ax satisfies
AT r̂ = 0. Hence there are n linear relations among the m components of r̂. It can
be shown that the residuals r̂ and therefore also s2 are uncorrelated with x̂, i.e.,

V(r̂, x̂) = 0, V(s2, x̂) = 0.

In the general univariate linear model the covariance matrix equals V(ǫ) =
σ2W , where W ∈ Rm×m is a positive semidefinite symmetric matrix. For full
column rank A and positive definite W the best unbiased linear estimate is the
solution of

min
x

(Ax − b)TW−1(Ax− b). (8.1.5)

In particular, if the errors are uncorrelated with varianceswii > 0, i = 1, . . . ,m, then
W is diagonal and the best estimate is obtained form the problem the weighted
least squares problem

min
x

‖D−1(Ax − b)‖2, D = diag (
√
w11, . . . ,

√
wmm). (8.1.6)

Hence if the ith equation is scaled by 1/
√
wii we get the standard case. This

is consistent with the obvious observation that the larger the variance the smaller
weight should be given to a particular equation. It is important to note that different
scalings will give different solutions, unless the system is consistent, i.e., b ∈ R(A).

8.1.3 Generalized Inverses

IN
The SVD is a powerful tool both for analyzing and solving linear least squares

problems. The reason for this is that the orthogonal matrices that transform A
to diagonal form do not change the l2-norm. We have the following fundamental
result.

Theorem 8.1.5.
Let A ∈ Rm×n, rank (A) = r, and consider the general linear least squares

problem
min
x∈S

‖x‖2, S = {x ∈ Rn| ‖b−Ax‖2 = min}. (8.1.7)
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This problem always has a unique solution, which in terms of the SVD of A can be
written as

x = V

(

Σ−1
1 0
0 0

)

UT b, (8.1.8)

Proof. Let

c = UT b =

(

c1
c2

)

,

where z1, c1 ∈ Rr. Using the orthogonal invariance of the l2 norm we have

‖b−Ax‖2 = ‖UT (b −AV V Tx)‖2

=
∥

∥

∥

(

c1
c2

)

−
(

Σ1 0
0 0

) (

z1
z2

)

∥

∥

∥

2
=

∥

∥

∥

(

c1 − Σ1z1
c2

)

∥

∥

∥

2
.

The residual norm will attain its minimum value equal to ‖c2‖2 for z1 = Σ−1
1 c1, z2

arbitrary. Obviously the choice z2 = 0 minimizes ‖x‖2 = ‖V z‖2 = ‖z‖2.

Note that problem (8.1.7) includes as special cases the solution of both overde-
termined and underdetermined linear systems. We can write x = A†b, where

A† = V

(

Σ−1
1 0
0 0

)

UT ∈ Rn×m (8.1.9)

is the unique pseudo-inverse of A and x is called the pseudo-inverse solution of
Ax = b.

Methods for computing the SVD are described in Sec. 10.8. Note that for
solving least squares problems we only need to compute the singular values, the
matrix V1 and vector c = UT

1 b, where we have partitioned U = (U1 U2) and V =
(V1 V2) so that U1 and V1 have r = rank (A) columns. The pseudo-inverse solution
(8.1.9) can then be written

x = V1Σ
−1
1 UT

1 b =

r
∑

i=1

uT
i b

σi
· vi, r = rank (A). (8.1.10)

The matrix A† is often called the Moore–Penrose inverse. Moore 1920
developed the concept of the general reciprocal in 1920. Penrose [1955], gave an
elegant algebraic characterization and showed that X = A† is uniquely determined
by the four Penrose conditions :

(1) AXA = A, (2) XAX = X, (8.1.11)

(3) (AX)T = AX, (4) (XA)T = XA. (8.1.12)

It can be directly verified thatX = A† given by (8.1.9) satisfies these four conditions.
In particular this shows that A† does not depend on the particular choices of U and
V in the SVD. (See also Problem 2.)
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The orthogonal projections onto the four fundamental subspaces of A have
the following simple expressions in terms of the pseudo-inverse :

PR(A) = AA†, PN (AT ) = I −AA†, (8.1.13)

PR(AT ) = A†A, PN (A) = I −A†A.

These expressions are easily verified using the definition of an orthogonal projection
and the Penrose conditions.

Another very useful characterization of the pseudo-inverse solution is the fol-
lowing:

Theorem 8.1.6. The pseudo-inverse solution x = A†b is uniquely characterized by
the two geometrical conditions

x ⊥ N (A), Ax = PR(A) b. (8.1.14)

Proof. These conditions are easily verified from (8.1.10).

In the special case that A ∈ Rm×n and rank (A) = n it holds that

A† = (ATA)−1AT , (AT )† = A(ATA)−1 (8.1.15)

These expressions follow from the normal equations (8.2.3) and (8.2.4). Some prop-
erties of the usual inverse can be extended to the pseudo-inverse, e.g., the relations

(A†)† = A, (AT )† = (A†)T ,

easily follow form (8.1.9). In general (AB)† 6= B†A†. The following theorem gives
a useful sufficient conditions for the relation (AB)† = B†A† to hold.

Theorem 8.1.7.
If A ∈ Rm×r, B ∈ Rr×n, and rank (A) = rank (B) = r, then

(AB)† = B†A† = BT (BBT )−1(ATA)−1AT . (8.1.16)

Proof. The last equality follows from (8.1.15). The first equality is verified by
showing that the four Penrose conditions are satisfied.

A matrix X which only satisfy some of the Penrose conditions is called a
generalized inverse. A matrix X is called an inner inverse or {1}-inverse if
it satisfies condition (1). Any matrix X which satisfies condition (2) is called an
outer inverse or a {2}-inverse. A matrix which satisfies conditions (1) and (3), is
called a {1, 3}-inverse, etc.

Let X be a {1}-inverse of A ∈ Cm×n. Then for all b such that Ax = b is
consistent x = Xb is a solution. The general solution can be written

x = Xb+ (I −XA)y, y ∈ Cn.
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Let A ∈ Rm×n of rank r and X an {1}-inverse. Then AXA = A and we have

(AX)2 = AXAX = AX, (XA)2 = XAXA = XA.

This shows that AX and XA are idempotent and therefore (in general oblique)
projectors

AX = PR(A),S , XA = PT,N (A),

where S and T are some subspaces complementary to R(A) and N (A), respectively.
If A is a {1, 3}-inverse, then AX is symmetric and therefore is the orthogonal

projector onto R(A). Similarly, if A is a {1, 4}-inverse, then XA is symmetric and
therefore the orthogonal projector orthogonal to N (A).

Theorem 8.1.8.
Let A ∈ Rm×n and b ∈ Rm. Then ‖Ax − b‖2 is the smallest when x = Xb,

where X is a {1, 3}-inverse.
Conversely, if X ∈ Rn×m has the property that for all b, ‖Ax−b‖2 is smallest

when x = Xb, then X is a {1, 3}-inverse.

Theorem 8.1.9.
Let A ∈ Rm×n and b ∈ Rm. If Ax = b has a solution, the unique solution for

which ‖x‖2 is smallest is given by x = Xb, where X is a {1, 4}-inverse.
Conversely, if X ∈ Rn×m is such that, whenever Ax = b has a solution,

x = Xb is the solution of smallest norm, then X is a {1, 4}-inverse.

8.1.4 Matrix Approximation and the SVD

A useful relationship between the SVD and a symmetric eigenvalue problem is given
in the following theorem.

Theorem 8.1.10. Let the SVD of A ∈ Rm×n be A = UΣV T , where U =
Rm×m and V ∈ Rn×n are orthogonal. Let r = rank (A) ≤ min(m,n) and Σ1 =
diag (σ1, . . . , σr) > 0. Then it holds that

C =

(

0 A
AT 0

)

= Q





Σ 0 0
0 −Σ 0
0 0 0



QT , (8.1.17)

where

Q =
1√
2

(

U1 U1

√
2U2 0

V1 −V1 0
√

2V2

)

. (8.1.18)

and U and V have been partitioned conformally. Hence the eigenvalues of C are
±σ1,±σ2, . . . ,±σr, and zero repeated (m+ n− 2r) times.

Proof. Form the product on the right hand side of (8.1.17) and note that A =
U1Σ1V

T
1 and AT = V1Σ1U

T
1 .
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The singular values have the following important extremal property, the min-
imax characterization.

Theorem 8.1.11.
Let A ∈ Rm×n have singular values σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0, p = min(m,n),

and S be a linear subspace of Rn of dimension dim (S). Then

σi = min
dim(S)=n−i+1

max
x∈S
x 6=0

‖Ax‖2

‖x‖2
. (8.1.19)

Proof. The result is established in almost the same way as for the corresponding
eigenvalue theorem, Theorem 10.3.9 (Fischer’s theorem).

The minimax characterization of the singular values may be used to establish
the following relations between the singular values of two matrices A and B.

Theorem 8.1.12.
Let A,B ∈ Rm×n have singular values σ1 ≥ σ2 ≥ . . . ≥ σp and τ1 ≥ τ2 ≥

. . . ≥ τp respectively, where p = min(m,n). Then

max
i

|σi − τi| ≤ ‖A−B‖2, (8.1.20)

p
∑

i=1

|σi − τi|2 ≤ ‖A−B‖2
F . (8.1.21)

Proof. See Stewart [1973, pp. 321-322].

Hence perturbations of the elements of a matrix A result in perturbations of
the same, or smaller, magnitude in the singular values. This result is important for
the use of the SVD to determine the “numerical rank” of a matrix; see below.

The eigenvalues of the leading principal minor of order n − 1 of a Hermitian
matrix C can be shown to interlace the eigenvalues of C, see Theorem 10.3.8. From
the relation (8.1.17) corresponding results can be derived for the singular values of
a matrix A.

Theorem 8.1.13.
Let

Â = (A, u) ∈ Rm×n, m ≥ n, u ∈ Rm.

Then the ordered singular values σi of A interlace the ordered singular values σ̂i of
Â as follows

σ̂1 ≥ σ1 ≥ σ̂2 ≥ σ2 . . . ≥ σ̂n−1 ≥ σn−1 ≥ σ̂n.

Similarly, if A is bordered by a row,

Â =

(

A
v∗

)

∈ Rm×n, m > n, v ∈ Rn,
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then
σ̂1 ≥ σ1 ≥ σ̂2 ≥ σ2 . . . ≥ σ̂n−1 ≥ σn−1 ≥ σ̂n ≥ σn.

The SVD plays an important role in a number of matrix approximation prob-
lems. In the theorem below we consider the approximation of one matrix by another
of lower rank.

Theorem 8.1.14. Let Mm×n
k denote the set of matrices in Rm×n of rank k.

Assume that A ∈ Mm×n
r and consider the problem

min
X∈M

m×n

k

‖A−X‖, k < r.

Then the SVD expansion of A truncated to k terms X = B =
∑k

i=1 σiuiv
T
i , solves

this problem both for the l2 norm and the Frobenius norm. Further, the minimum
distance is given by

‖A−B‖2 = σk+1, ‖A−B‖F = (σ2
k+1 + . . .+ σ2

r)1/2.

The solution is unique for the Frobenius norm but not always for the l2 norm.

Proof. See Mirsky [42] for the l2, norm and Eckhard and Young[20] for the Frobe-
nius norm.

According to this theorem σi equals the distance in l2 norm to the nearest
matrix of rank i− 1, i ≤ min(m,n). In particular σ1 = ‖A‖2.

Inaccuracy of data and rounding errors made during the computation usually
perturb the ideal matrix A. In this situation the mathematical notion of rank may
not be appropriate. For example, let A be a matrix of rank r < n, whose elements
are perturbed by a matrix E of small random errors. Then it is most likely that
the perturbed matrix A + E has full rank n. However, A + E is close to a rank
deficient matrix, and should be considered as numerically rank deficient.

Clearly the numerical rank assigned to a matrix should depend on some
tolerance δ, which reflects the error level in the data and/or the precision of the
floating point arithmetic used. A useful definition is the following:

Definition 8.1.15.
A matrix A ∈ Rm×n has numerical δ-rank equal to k (k ≤ min{m,n}) if

σ1 ≥ . . . ≥ σk > δ ≥ σk+1 ≥ . . . ≥ σn,

where σi, i = 1, 2, . . . , n are the singular values of A. If we write

A = UΣV T = U1Σ1V
T
1 + U2Σ2V

T
2 ,

where Σ2 = diag (σk+1, . . . , σn) then R(V2) = span{vk+1, . . . , vn} is called the nu-
merical nullspace of A.
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It follows from Theorem 8.1.12, that if the numerical δ-rank ofA equals k, then
rank (A+E) ≥ k for all perturbations such that ‖E‖2 ≤ δ, i.e., such perturbations
cannot lower the rank. Definition 8.1.15 is only useful when there is a well defined
gap between σk+1 and σk. This should be the case if the exact matrix A is rank
deficient but well-conditioned. However, it may occur that there does not exist a
gap for any k, e.g., if σk = 1/k. In such a case the numerical rank of A is not well
defined!

If r < n then the system is numerically underdetermined. Note that this can
be the case even when m > n.

Let A ∈ Rm×n, be a matrix of rank n with the “thin” SVD A = U1ΣV
T .

Since A = U1ΣV
T = U1ΣU

T
1 U1V

T we have

A = PH, P = U1V
T , H = V ΣV T , (8.1.22)

where P ∈ Rm×n has orthogonal columns, and H ∈ Rn×n is symmetric, positive
semidefinite. The decomposition (8.1.22) is called the polar decomposition of
A, since it can be regarded as a generalization to matrices of the complex number
representation z = reiθ , r ≥ 0.

The significance of the factor P in the polar decomposition is that it is the
closest matrix with orthogonal columns to A.

Theorem 8.1.16.
Let Mm×n denote the set of all matrices in Rm×n with orthogonal columns.

Let A ∈ Rm×n be a given matrix and A = PH its polar decomposition, where P ∈
Mm×n and H is symmetric positive semidefinite. Then for any matrix Q ∈ Mm×n,

‖A−Q‖F ≥ ‖A− P‖F .

Proof. This theorem was proved for m = n and general unitarily invariant norms
by Fan and Hoffman [21]. The generalization to m > n follows from the additive
property of the Frobenius norm.

An generalization of Theorem 8.1.16 has important application in factor anal-
ysis in statistics.

Theorem 8.1.17.
Let Mm×n denote the set of all matrices in Rm×n with orthogonal columns.

Let A and B be given matrices in Rm×n. If BTA = PH is the polar decomposition
then for any matrix Q ∈ Mm×n it holds that

‖A−BQ‖F ≥ ‖A−BP‖F .

Proof. See P. Schönemann [54].
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8.1.5 Perturbation Analysis

We now consider the effect of perturbations of A and b on the least squares solution
x. In this analysis the condition number of the matrix A ∈ Rm×n will play a
significant role. The following definition generalizes the condition number (6.6.3) of
a square nonsingular matrix.

Definition 8.1.18.
Let A ∈ Rm×n have rank r > 0 and singular values equal to σ1 ≥ σ2 ≥ . . . ≥

σr > 0. Then the condition number of A is

κ(A) = ‖A‖2‖A†‖2 = σ1/σr,

where the last equality follows from the relations ‖A‖2 = σ1, ‖A†‖2 = σ−1
r .

Using the singular value decomposition A = UΣV T we obtain

ATA = V ΣT (UTU)ΣV T = V

(

Σ2
r 0

0 0

)

V T . (8.1.23)

Hence, σi(A
TA) = σ2

i (A), and it follows that

κ(ATA) = κ2(A).

This shows that the matrix of the normal equations has a condition number which
is the square of the condition number of A.

We now give a first order perturbation analysis for the least squares problem
when rank (A) = n. Denote the perturbed data A+ δA and b+ δb and assume that
δA sufficiently small so that we have rank (A+ δA) = n. Let the perturbed solution
be x + δx and r + δr, where r = b − Ax is the residual vector. Then, neglecting
second order perturbations, we have

δr = δb− (A+ δA)(x + δx) = (δb − δAx) −Aδx.

The perturbed solution satisfies

(A+ δA)T
(

(A+ δA)(x+ δx) − (b+ δb)
)

= 0.

Subtracting AT (Ax− b) = 0 and neglecting second order perturbations, we get

δx = (ATA)−1AT (δb− δAx) + (ATA)−1δAT r, (8.1.24)

δr = (I −A(ATA)−1AT )(δb − δAx) −A(ATA)−1δAT r, (8.1.25)

Here we can identify

(ATA)−1AT = A†, A(ATA)−1 = (A†)T ,

I −A(ATA)−1AT = I −AA† = PN (AT ).

Using (8.1.9) and (8.1.23) it follows that

‖A†‖2 = ‖(A†)T ‖2 = 1/σn, ‖(ATA)−1‖2 = 1/σ2
n, ‖PN (AT )‖2 = 1.
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Hence, taking norms in (8.1.25) and (8.1.25) we obtain

‖δx‖2 /
1

σn
‖δb‖2 +

1

σn
‖δA‖2

(

‖x‖2 +
1

σn
‖r‖2

)

, (8.1.26)

‖δr‖2 / ‖δb‖2 + ‖δA‖2

(

‖x‖2 +
1

σn
‖r‖2

)

, (8.1.27)

A more refined perturbation analysis (see Wedin [65]) shows that if

η = ‖A†‖2‖δA‖2 ≪ 1.

then rank (A + δA) = n, and there are perturbations δA and δb such that these
upper bounds are almost attained.

Assuming that x 6= 0 and setting δb = 0, we get a bound for the normwise
relative perturbation

‖δx‖2

‖x‖2
≤ κ(A)

‖δA‖2

‖A‖2

(

1 +
‖r‖2

σ2
n‖x‖2

)

(8.1.28)

Note that if the system Ax = b is consistent, then r = 0 and the bound is identical
to that obtained for a square nonsingular linear system. Otherwise, there is a second
term present in the perturbation bound.

An upper bound for the condition number for x in the least squares problems
with respect to A is

κLS = κ(A)
(

1 +
‖r‖2

σn‖x‖2

)

(8.1.29)

The two following facts should be noted:

• κLS depends not only on A but also on r and therefore on b;

• If ‖r‖2 ≪ σn‖x‖2 then κLS ≈ κ(A), but if ‖r‖2 > σn‖x‖2 the second term in
(8.1.29) will dominate,

Example 8.1.2. The following simple example illustrates the perturbation analysis
above. Consider a least squares problem with

A =





1 0
0 δ
0 0



 , b =





1
0
α



 , δA =





0 0
0 0
0 δ/2



 .

and κ(A) = 1/δ ≫ 1. If α = 1 then

x =

(

1
0

)

, δx =
2

5δ

(

0
1

)

, r =





0
0
1



 , δr = −1

5





0
2
1



 .

For this right hand side ‖x‖2 = ‖r‖2 and κLS = 1/δ + 1/δ2 ≈ κ2(A). This is
reflected in the size of δx.
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If instead we take α = δ, then a short calculation shows that ‖r‖2/‖x‖2 = δ
and κLS = 2/δ. The same perturbation δA now gives

δx =
2

5

(

0
1

)

, δr = − δ
5





0
2
1



 .

It should be stressed that in order for the perturbation analysis above to be
useful, the matrix A and vector b should be scaled so that perturbations are “well
defined” by bounds on ‖δA‖2 and ‖b‖2. If the columns in A = (a1, a2, . . . , an)
have widely differing norms, then a much better estimate may often be obtained
by applying (8.1.28) to the scaled problem minx̃ ‖Ãx̃ − b‖2, chosen so that Ã has
columns of unit length, i.e.,

Ã = AD−1, x̃ = Dx, D = diag(‖a1‖2, . . . , ‖an‖2).

By Theorem 8.2.5 this column scaling approximately minimizes κ(AD−1) over D >
0. Note however that scaling the columns also changes the norm in which the error
in x is measured.

If the rows in A differ widely in norm, then (8.1.28) may also considerably
overestimate the perturbation in x. As remarked above, we cannot scale the rows
in A without changing the least squares solution.

Perturbation bounds with better scaling properties can be obtained by con-
sidering component-wise perturbations.

|δA| ≤ ωE, |δb| ≤ ωf. (8.1.30)

Substituting in (8.1.25)–(8.1.25) yields the bounds

|δx| / ω
(

|A†|(f + E|x|) + |(ATA)−1|ET |r|
)

, (8.1.31)

|δr| / ω
(

|I −AA†|(f + E|x|) + |(A†)T |ET |r|
)

. (8.1.32)

where terms of order O(ω2) have been neglected. In particular, if E = |A|, f = |b|,
we obtain taking norms

‖δx‖ / ω
(

‖ |A†|(|b| + |A||x|)‖ + ‖ |(ATA)−1||A|T |r| ‖
)

, (8.1.33)

‖δr‖ / ω
(

‖ |I −AA†|(|A||x| + |b|)‖ + ‖ |(A†)T ||A|T |r| ‖
)

. (8.1.34)

8.1.6 Backward Error and Stability

An algorithm for solving the linear least squares problem is said to numerically
stable if for any data A and b, there exist small perturbation matrices and vectors
δA and δb, such that the computed solution x̄ is the exact solution to

min
x

‖(A+ δA)x− (b+ δb)‖2, (8.1.35)
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where ‖δA‖ ≤ τ , ‖δb‖ ≤ τ , with τ being a small multiple of the unit round-
off u. Methods which explicitly form the normal equations are not backward stable.
However, many methods based on orthogonal factorizations have been proved to be
numerically stable with δb = 0.

Any computed solution x̄ is called a stable solution if it satisfies (8.1.35). This
does not mean that x̄ is close to the exact solution x. If the least squares problem
is ill-conditioned then a stable solution can be very different from x. For a stable
solution the error ‖x− x̄‖ can be estimated using the perturbation results given in
Section 8.1.5.

Many special fast methods exist for solving structured least squares problems,
e.g., where A is a Toeplitz matrix. These methods cannot be proved to be backward
stable, which is one reason why a solution to the following problem is of interest:

Given an alleged solution x̃, find the smallest backward error, i.e. a perturba-
tion δA of smallest norm such that x̃ is the exact solution to the perturbed problem

min
x

‖(b+ δb) − (A+ δA)x‖2. (8.1.36)

If we could find the backward error of smallest norm, this could be used to verify
numerically the stability properties of an algorithm. There is not much loss in
assuming that δb = 0 in (8.1.37). Then the optimal backward error in the Frobenius
norm is

ηF (x̃) = min{‖δA‖F | x̃ solves min
x

‖b− (A+ δA)x‖2}. (8.1.37)

This the optimal backward error can be found by characterizing the set of all back-
ward perturbations and then finding an optimal bound, which minimizes the Frobe-
nius norm.

Theorem 8.1.19. Let x̃ be an alleged solution and r̃ = b − Ax̃ 6= 0. The optimal
backward error in the Frobenius norm is

ηF (x̃) =

{

‖AT r̃‖2/‖r̃‖2, if x̃ = 0,
min {η, σmin( [A C] )} otherwise.

(8.1.38)

where
η = ‖r̃‖2/‖x̃‖2, C = I − (r̃r̃T )/‖r̃‖2

2

and σmin( [A C]) denotes the smallest (nonzero) singular value of the matrix
[A C] ∈ Rm×(n+m).

The task of computing ηF (x̃) is thus reduced to that of computing σmin(A).
Since this is expensive, approximations that are accurate and less costly have been
derived. If a QR factorization of A is available lower and upper bounds for ηF (x̃)
can be computed in only O(mn) operations. Let r1 = PR(A)r̃ be the orthogonal
projection of r̃ onto the range of A. If ‖r1‖2 ≤ α‖r‖2 it holds that

√
5 − 1

2
σ̃1 ≤ ηF (x̃) ≤

√

1 + α2 σ̃1, (8.1.39)

where
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σ̃1 =
∥

∥(ATA+ ηI)−1/2AT r̃
∥

∥

2
/‖x̃‖2. (8.1.40)

Since α→ 0 for small perturbations σ̃1 is an asymptotic upper bound.

Review Questions

1. State the Gauss–Markov theorem.

2. Assume that A has full column rank. Show that the matrix P = A(ATA)−1AT

is symmetric and satisfies the condition P 2 = P .

3. (a) Give conditions for a matrix P to be the orthogonal projector onto a
subspace S ∈ Rn.

(b) Define the orthogonal complement of S in Rn.

4. (a) Which are the four fundamental subspaces of a matrix? Which relations
hold between them? Express the orthogonal projections onto the fundamental
subspaces in terms of the SVD.

(b) Give two geometric conditions which are necessary and sufficient conditions
for x to be the pseudo-inverse solution of Ax = b.

5. Which of the following relations are universally correct?

(a) N (B) ⊆ N (AB). (b) N (A) ⊆ N (AB). (c) N (AB) ⊆ N (A).

(d) R(AB) ⊆ R(B). (e) R(AB) ⊆ R(A). (f) R(B) ⊆ R(AB).

6. (a) What are the four Penrose conditions for X to be the pseudo-inverse of
A?

(b)A matrix X is said to be a left-inverse if XA = I. Show that a left-
inverse is an {1, 2, 3}-inverse, i.e. satisfies the Penrose conditions (1), (2), and
(3). Similarly show that a right-inverse is an {1, 2, 4}-inverse.

7. Let the singular values of A ∈ Rm×n be σ1 ≥ · · · ≥ σn. What relations are
satisfied between these and the singular values of

Ã = (A, u), Â =

(

A
vT

)

?

8. (a) Show that A† = A−1 when A is a nonsingular matrix.

(b) Construct an example where G 6= A† despite the fact that GA = I.

Problems

1. (a) Compute the pseudo-inverse x† of a column vector x.

(b) Take A = ( 1 0 ), B = ( 1 1 )T , and show that 1 = (AB)† 6= B†A† = 1/2.

2. (a) Verify that the Penrose conditions uniquely defines the matrix X . Do it
first for A = Σ = diag (σ1, . . . , σn), and then transform the result to a general
matrix A.
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3 (a) Show that if w ∈ Rn and wTw = 1, then the matrix P (w) = I − 2wwT is
both symmetric and orthogonal.

(b) Given two vectors x, y ∈ Rn, x 6= y, ‖x‖2 = ‖y‖2, then

P (w)x = y, w = (y − x)/‖y − x‖2.

4. Let S ⊆ Rn be a subspace, P1 and P2 be orthogonal projections onto S =
R(P1) = R(P2). Show that P1 = P2, i.e., the orthogonal projection onto S is
unique.

Hint: Show that for any z ∈ Rn

‖(P1 − P2)z‖2
2 = (P1z)

T (I − P2)z + (P2z)
T (I − P1)z = 0.

5. (R. E. Cline) Let A and B be any matrices for which the product AB is
defined, and set

B1 = A†AB, A1 = AB1B
†

1.

Show that AB = AB1 = A1B1 and that (AB)† = B†

1A
†

1.

Hint: Use the Penrose conditions.

6. (a) Show that the matrix A ∈ Rm×n has a left inverse AL ∈ Rn×m, i.e.,
ALA = I, if and only if rank(A) = n. Although in this case Ax = b ∈ R(A)
has a unique solution, the left inverse is not unique. Find the general form of
ΣL and generalize the result to AL.

(b) Discuss the right inverse AR in a similar way.

7. Show that A† minimizes ‖AX − I‖F .

8. Prove Bjerhammar’s characterization : Let A have full column rank and let B
be any matrix such that ATB = 0 and (A B ) is nonsingular. Then A† = XT

where
(

XT

Y T

)

= (A B )
−1
.

8.2 The Method of Normal Equations

8.2.1 Characterization of Least Squares Solutions

We now show a necessary condition for a vector x to minimize ‖b−Ax‖2.

Theorem 8.2.1.
Given the matrix A ∈ Rm×n and a vector b ∈ Rm. The vector x minimizes

‖b − Ax‖2 if and only if the residual vector r = b − Ax is orthogonal to R(A), or
equivalently

AT (b−Ax) = 0. (8.2.1)

Proof. Let x be a vector for which AT (b −Ax) = 0. Then for any y ∈ Rn

b−Ay = (b −Ax) +A(x − y). Squaring this and using (8.2.1) we obtain

‖b−Ay‖2
2 = ‖b−Ax‖2

2 + ‖A(x− y)‖2
2 ≥ ‖b−Ax‖2

2.
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On the other hand assume that AT (b−Ax) = z 6= 0. Then if x− y = −ǫz we have
for sufficiently small ǫ 6= 0,

‖b−Ay‖2
2 = ‖b−Ax‖2

2 − 2ǫ‖z‖2
2 + ǫ2‖Az‖2

2 < ‖b−Ax‖2
2

so x does not minimize ‖b−Ax‖2.

1

�6

Ax

b b − Ax

R(A)

Figure 8.2.1. Geometric characterization of the least squares solution.

Here ATA ∈ Rn×n is a symmetric matrix and since

xTATAx = ‖Ax‖2
2 ≥ 0,

also positive semidefinite. The normal equations ATAx = AT b are consistent since

AT b ∈ R(AT ) = R(ATA),

and therefore a least squares solution always exists.
By Theorem 8.2.1 any least squares solution x will decompose the right hand

side b into two orthogonal components

b = Ax + r, r ⊥ Ax. (8.2.2)

Here Ax = PR(A)b is the orthogonal projection (see Sec. 8.3.1) onto R(A) and r ∈
N (AT ) (cf. Fig. 8.2.1). Any solution to the (always consistent) normal equations
(8.2.1) is a least squares solution. Note that although the least squares solution x
may not be unique the decomposition in (8.2.2) always is unique.

Theorem 8.2.2.
The matrix ATA is positive definite if and only if the columns of A are linearly

independent, i.e., when rank (A) = n. In this case the least squares solution x is
unique and given by

x = (ATA)−1AT b. (8.2.3)

Proof. If the columns of A are linearly independent, then x 6= 0 ⇒ Ax 6= 0.
Therefore x 6= 0 ⇒ xTATAx = ‖Ax‖2

2 > 0, and hence ATA is positive definite. On
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the other hand, if the columns are linearly dependent, then for some x0 6= 0 we have
Ax0 = 0. Then xT

0 A
TAx0 = 0, and therefore ATA is not positive definite. When

ATA is positive definite it is also nonsingular and (8.2.3) follows.

For the minimum norm problem (8.1.2) let y be any solution of AT y = c, and
write y = y1 + y2, where y1 ∈ R(A). y2 ∈ N (AT ). Then AT y2 = 0 and hence y1 is
also a solution. Since y1 ⊥ y2 we have

‖y1‖2
2 = ‖y‖2

2 − ‖y2‖2
2 ≤ ‖y‖2

2,

with equality only if y2 = 0. Hence the minimum norm solution lies in R(A) and we
can write y = Az, for some z. Then we have AT y = ATAz = c. If AT has linearly
independent rows the inverse of ATA exists and the minimum norm solution y ∈ Rm

satisfies the normal equations of second kind

y = A(ATA)−1c. (8.2.4)

8.2.2 Forming and Solving the Normal Equations

From the time of Gauss until the computer age the basic computational tool for solv-
ing (8.1.1) was to form ATA and AT b and solve the normal equations by symmetric
Gaussian elimination (which Gauss did), or later by the Cholesky factorization [7].
We now discuss the numerical implementation of this method. We defer treat-
ment of rank deficient problems to later and assume throughout this section that
rank (A) = n.

The first step is to compute the elements of the symmetric matrix C = ATA
and the vector d = AT b. If A = (a1, a2, . . . , an) has been partitioned by columns,
we can use the inner product formulation

cjk = (ATA)jk = aT
j ak, dj = (AT b)j = aT

j b, 1 ≤ j ≤ k ≤ n. (8.2.5)

Since C is symmetric it is only necessary to compute and store its lower (or upper)
triangular which requires 1

2mn(n+1) multiplications. Note that if m≫ n, then the
number of elements 1

2n(n+ 1) in the upper triangular part of ATA is much smaller
than the number mn of elements in A. Hence in this case the formation of ATA
and AT b can be viewed as a data compression!

The formulas in (8.2.5) may not be suitable for large problems, where the
matrix A is held in secondary storage, since each column needs to be accessed
many times. An alternative row oriented outer product algorithm only needs one
pass through the data (A, b). Denoting by ãT

i , the ith row of A, i = 1, . . . ,m, we
have

C = ATA =

m
∑

i=1

ãiã
T
i , d = AT b =

m
∑

i=1

biãi. (8.2.6)

This is an form, where ATA is expressed as the sum of m matrices of rank one and
AT b as a linear combination of the transposed rows of A. Using this alternative no
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more storage is needed than that for ATA and AT b. This outer product form is
also preferable if the matrix A is sparse; see the hint to Problem 7.6.1. Note that
both formulas can be combined if we adjoin b to A and form

(A, b)T (A, b) =

(

ATA AT b
bTA bT b

)

.

The matrix C = ATA is symmetric, and if rank (A) = n also positive defi-
nite. Gauss solved the normal equations by symmetric Gaussian elimination, but
computing the Cholesky factorization

C = ATA = RTR, R ∈ Rn×n, (8.2.7)

is now the standard approach. The Cholesky factor R is upper triangular and
nonsingular and can be computed by one of the algorithms given in Sec. 7.4.2. The
least squares solution is then obtained by solving the two triangular systems

RT z = d, Rx = z. (8.2.8)

Forming and solving the normal equations requires (neglecting lower order terms)
about 1

2mn
2 + 1

6n
3 flops. If we have several right hand sides bi, i = 1 : p, then the

Cholesky factorization need only be computed once. To solve for each new right
hand side then only needs mn+ n2 additional flops.

Example 8.2.1.
Linear regression is the problem of fitting a linear model y = α + βx to a

set of given points (xi, yi), i = 1 : m. This leads to a overdetermined linear system









1 x1

1 x2
...

...
1 xm













α

β



 =









y1
y2
...
ym









Forming the normal equations we get




m
∑m

i=1 xi

∑m
i=1 xi

∑m
i=1 x

2
i









α

β



 =





∑m
i=1 yi

∑m
i=1 yixi



 . (8.2.9)

Eliminating α we obtain the “classical” formulas

β =
(

∑m
i=1 yixi −mȳx̄

)/(

∑m
i=1 x

2
i −mx̄2

)

,

where

ȳ =
1

m

∑m
i=1 yi, x̄ =

1

m

∑m
i=1 xi. (8.2.10)

are the mean values. The first equation in (8.2.9) gives

ȳ = α+ βx̄. (8.2.11)
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which shows that (ȳ, x̄) lies on the fitted line. This determines α = ȳ − βx̄.
A more accurate formula for β is obtained by first subtracting out the mean

values from the data. We have

(y − ȳ) = β(x− x̄)

In the new variables the matrix of normal equation is diagonal. and we find

β =
∑m

i=1(yi − ȳ)(xi − x̄)i

/

∑m
i=1(xi − x̄)2. (8.2.12)

A drawback of this formula is that it requires two passes through the data.

In many least squares problems the matrix A has the property that in each row
all nonzero elements in A are contained in a narrow band. For banded rectangular
matrix A we define:

Definition 8.2.3.
For A ∈ Rm×n let fi and li be the column subscripts of the first and last

nonzero in the ith row of A, i.e.,

fi = min{j | aij 6= 0}, li = max{j | aij 6= 0}. (8.2.13)

Then the matrix A is said to have row bandwidth w, where

w = max
1≤i≤m

wi, wi = (li − fi + 1). (8.2.14)

Alternatively w is the smallest number for which it holds that

aijaik = 0, if |j − k| ≥ w. (8.2.15)

For this structure to have practical significance we need to have w ≪ n.
Matrices of small row bandwidth often occur naturally, since they correspond to a
situation where only variables ”close” to each other are coupled by observations. We
now prove a relation between the row bandwidth of the matrix A and the bandwidth
of the corresponding matrix of normal equations ATA.

Theorem 8.2.4.
Assume that the matrix A ∈ Rm×n has row bandwidth w. Then the symmetric

matrix ATA has bandwidth r ≤ w − 1.

Proof. From the Definition 8.2.3 it follows that aijaik 6= 0 ⇒ |j − k| < w. Hence,

|j − k| ≥ w ⇒ (ATA)jk =

m
∑

i=1

aijaik = 0.
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If the matrix A also has full column rank it follows that we can use the band
Cholesky Algorithm 6.4.6 to solve the normal equations.

The covariance matrix estimate in (8.1.4) can be expressed in terms of the
Cholesky factor as

V = σ2(ATA)−1 = σ2(RTR)−1 = σ2R−1R−T .

In order to assess the accuracy of the computed least squares estimate of x it is
often required to compute the matrix V , or part of it. The matrix S = R−1, which
is also upper triangular, can be computed from the triangular system RS = I by
back-substitution. Often just the diagonal elements vii of V = σ2SST are required,
which are the variances of the components of the least squares solution x. These
elements are the 2-norms squared of the rows of S,

vii = σ2
n

∑

j=i

s2ij , i = 1, 2, . . . , n.

In many situations the matrix V only occurs as an intermediate quantity in a
formula. For example the variance of a linear functional ϕ = fT x̂ is equal to σ2v,
where

v = fTV f = fTR−1R−T f = zT z, z = R−T f.

Thus to compute v we only need to solve the triangular system RT z = f and form
zT z. This is a more stable and efficient approach than using the expression fTV f .

We have r − r̂ = −A(ATA)−1AT ǫ, where r̂ = b − Ax̂ is the least squares
residual and ǫ the random error in the model. Hence r − r̂ has covariance matrix

Vr = σ2(A(ATA)−1AT )2 = σ2A(ATA)−1AT = σ2PR(A).

Note that the orthogonal projector PR(A) can be computed from

PR(A) = A(RTR)−1AT = QQT , Q = AR−1.

The normalized residuals are defined by

r̃ = (diag (Vr))
−1/2r̂.

Large components in r̃ can be assumed to correspond to “bad” data.

8.2.3 Stability and Accuracy with Normal Equations

We now turn to a discussion of the accuracy of the method of normal equations
for least squares problems. First we consider rounding errors in the formation
of the system of normal equations. Using the standard model for floating point
computation we get for the elements c̄ij in the computed matrix C̄ = fl(ATA)

c̄ij = fl

( m
∑

k=1

aikajk

)

=

m
∑

k=1

aikajk(1 + δk),
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where (see (2.4.4)) |δk| < 1.06(m+ 2 − k)u (u is the machine unit). It follows that
the computed matrix satisfies

C̄ = ATA+ E, |eij | < 1.06um

m
∑

k=1

|aik||ajk|. (8.2.16)

A similar estimate holds for the rounding errors in the computed vector AT b. Note
that it is not possible to show that C̄ = (A + E)T (A + E) for some small error
matrix E, i.e., the rounding errors in forming the matrix ATA are not in general
equivalent to small perturbations of the initial data matrix A. From this we can
deduce that the method of normal equations is not backwards stable. The following
example illustrates that when ATA is ill-conditioned, it might be necessary to use
double precision in forming and solving the normal equations in order to avoid loss
of significant information.

Example 8.2.2. (Läuchli) Consider the system Ax = b, where

A =







1 1 1
ǫ

ǫ
ǫ






, b =







1
0
0
0






, |ǫ| ≪ 1.

We have, exactly

ATA =





1 + ǫ2 1 1
1 1 + ǫ2 1
1 1 1 + ǫ2



 , AT b =





1
1
1



 ,

x =
1

3 + ǫ2
( 1 1 1 )

T
, r =

1

3 + ǫ2
( ǫ2 −1 −1 −1 )

T
.

Now assume that ǫ = 10−4, and that we use eight-digit decimal floating point
arithmetic. Then 1 + ǫ2 = 1.00000001 rounds to 1, and the computed matrix ATA
will be singular. We have lost all information contained in the last three rows of A!
Note that the residual in the first equation is O(ǫ2) but O(1) in the others.

Least squares problems of this form occur when the error in some equations
(here x1 + x2 + x3 = 1) have a much smaller variance than in the others; see
Sec. 8.6.2.

To assess the error in the least squares solution x̄ computed by the method
of normal equations, we must also account for rounding errors in the Cholesky
factorization and in solving the triangular systems. Using Theorem 6.6.6 and
the perturbation bound in Theorem 6.6.2 it can be shown that provided that
2n3/2uκ(ATA) < 0.1, the error in the computed solution x̄ satisfies

‖x̄− x‖2 ≤ 2.5n3/2uκ(ATA)‖x‖2. (8.2.17)

As seen in Sec. 8.1.5, for “small” residual least squares problem the true condition
number is approximately κ(A) = κ1/2(ATA). In this case the system of normal
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equations can be much worse conditioned than the least squares problem from which
it originated.

Sometimes ill-conditioning is caused by an unsuitable formulation of the prob-
lem. Then a different choice of parameterization can significantly reduce the con-
dition number. For example, in approximation problems one should try to use
orthogonal, or nearly orthogonal, base functions. In case the elements in A and b
are the original data the ill-conditioning cannot be avoided in this way.

In statistics the linear least squares problem minx ‖b − Ax‖2 derives from a
multiple linear regression problem, where the vector b is a response variable and
the columns of A contain the values of the explanatory variables.

In Secs. 8.3 and 8.4 we consider methods for solving least squares problems
based on orthogonalization. These methods work directly with A and b and are
backwards stable.

8.2.4 Scaling Least Squares Problems

In Sec. 7.7.7 we discussed how the scaling of rows and columns of a linear system
Ax = b influenced the solution computed by Gaussian elimination. For a least
squares problem minx ‖Ax− b‖2 a row scaling of (A, b) is not allowed since such a
scaling would change the exact solution. However, we can scale the columns of A.
If we take x = Dx′, the normal equations will change into

(AD)T (AD)x′ = D(ATA)Dx′ = DAT b.

Hence this corresponds to a symmetric scaling of rows and columns in ATA. It is
important to note that if the Cholesky algorithm is carried out without pivoting the
computed solution is not affected by such a scaling, cf. Theorem 7.5.6. This means
that even if no explicit scaling is carried out, the rounding error estimate (8.2.17)
for the computed solution x̄ holds for all D,

‖D(x̄− x)‖2 ≤ 2.5n3/2uκ(DATAD)‖Dx‖2.

(Note, however, that scaling the columns changes the norm in which the error in x
is measured.)

Denote the minimum condition number under a symmetric scaling with a
positive diagonal matrix by

κ′(ATA) = min
D>0

κ(DATAD). (8.2.18)

The following result by van der Sluis [1969] shows the scaling where D is chosen so
that in D(ATA)D all column norms are equal, i.e. D = diag(‖a1‖2, . . . , ‖an‖2)

−1,
comes within a factor of n of the minimum value.

Theorem 8.2.5. Let C ∈ Rn×n be a symmetric and positive definite matrix, and
denote by D the set of n×n nonsingular diagonal matrices. Then if in C all diagonal
elements are equal, and C has at most q nonzero elements in any row, it holds that

κ(C) ≤ q min
D∈D

κ(DCD).
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As the following example shows, this scaling can reduce the condition number
considerably. In cases where the method of normal equations gives surprisingly
accurate solution to a seemingly very ill-conditioned problem, the explanation often
is that the condition number of the scaled problem is quite small!

Example 8.2.3. The matrix A ∈ R21×6 with elements

aij = (i− 1)j−1, 1 ≤ i ≤ 21, 1 ≤ j ≤ 6

arises when fitting a fifth degree polynomial p(t) = x0 + x1t+ x2t
2 + . . .+ x5t

5 to
observations at points xi = 0, 1, . . . , 20. The condition numbers are

κ(ATA) = 4.10 · 1013, κ(DATAD) = 4.93 · 106.

where D is the column scaling in Theorem 8.2.5. Thus, the condition number of
the matrix of normal equations is reduced by about seven orders of magnitude by
this scaling!

A simple way to improve the accuracy of a solution x̄ computed by the method
of normal equations is by fixed precision iterative refinement, see Sec. 7.7.8. This
requires that the data matrix A is saved and used to compute the residual vector
b−Ax̄. In this way information lost when ATA was formed can be recovered. If also
the corrections are computed from the normal equations we obtain the following
algorithm:

Iterative Refinement with Normal Equations:
Set x1 = x̄, and for s = 1, 2, . . . until convergence do

rs := b −Axs, RTRδxs = AT rs,

xs+1 := xs + δxs.

Here R is computed by Cholesky factorization of the matrix of normal equation
ATA. This algorithm only requires one matrix-vector multiplication each with A
and AT and the solution of two triangular systems. Note that the first step, i.e., for
i = 0, is identical to solving the normal equations. It can be shown that initially
the errors will be reduced with rate of convergence equal to

ρ̄ = cuκ′(ATA), (8.2.19)

where c is a constant depending on the dimensions m,n. Several steps of the
refinement may be needed to get good accuracy. (Note that ρ̄ is proportional to
κ′(ATA) even when no scaling of the normal equations has been performed!)

Example 8.2.4. If κ′(ATA) = κ(ATA) and c ≈ 1 the error will be reduced to a
backward stable level in p steps if κ1/2(ATA) ≤ u−p/(2p+1). (As remarked before
κ1/2(ATA) is the condition number for a small residual problem.) For example,
with u = 10−16, the maximum value of κ1/2(ATA) for different values of p are:

105.3, 106.4, 108, p = 1, 2,∞.
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For moderately ill-conditioned problems the normal equations combined with iter-
ative refinement can give very good accuracy. For more ill-conditioned problems
the methods based QR factorization described in Secs. 8.3 and 8.4 are usually to
be preferred.

8.2.5 Methods Based on Gaussian Elimination

The pseudo-inverse of a matrix can also be computed using a LU factorization with
complete pivoting. Usually it will be sufficient to use partial pivoting with a linear
independence check. Let ãq,p+1 be the element of largest magnitude in column p+1.
If |ãq,p+1| < tol, column p+ 1 is considered to be linearly dependent and is placed
last. We then look for a pivot element in column p+ 2, etc.

Assume now that we have computed the LU factorization

Π1AΠ2 =

(

L11

L21

)

(U11 U12 ) , (8.2.20)

where L11, U11 ∈ Rr×r are triangular and nonsingular. Then by Theorem 8.1.7 we
have

A† = Π2 (U11 U12 )
†

(

L11

L21

)†

Π1

= Π2 ( Ir S )† U−1
11 L

−1
11

(

Ir
T

)†

Π1,

where

T = L21L
−1
11 , S = U−1

11 U12,

Note the symmetry in the treatment of the L and U factors!
Standard algorithms for solving nonsymmetric linear systems Ax = b are

usually based on LU factorization with partial pivoting. Therefore it seems natural
to consider such factorizations also for least squares problems which are only slightly
overdetermined, i.e., where m− n≪ n.

A rectangular matrix A ∈ Rm×n, m ≥ n, can be reduced by Gaussian elimina-
tion with partial pivoting to an upper triangular form U . In general, column inter-
changes are needed to ensure numerical stability. In the full rank case, rank (A) = n,
the resulting LDU factorization becomes

Π1AΠ2 =

(

A1

A2

)

= LDU =

(

L1

L2

)

DU, (8.2.21)

where L1 ∈ Rn×n is unit lower triangular, D diagonal, and U ∈ Rn×n is unit upper
triangular and nonsingular. Thus the matrix L has the same dimensions as A and
a lower trapezoidal structure. Computing this factorization requires 1

2n
2(m − 1

3n)
flops.
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Using the LU factorization (8.2.21) and setting x̃ = ΠT
2 x, b̃ = Π1b, the least

squares problem minx ‖Ax− b‖2 is reduced to

min
y

‖Ly − b̃‖2, DUx̃ = y. (8.2.22)

If partial pivoting by rows is used in the factorization (8.2.21), then L is usually
a well-conditioned matrix. In this case the solution to the least squares problem
(8.2.22) can be computed from the normal equations

LTLy = LT b̃,

without substantial loss of accuracy. This is the approach taken by Peters and
Wilkinson [49, ]. The following example shows that this is a more stable method
than using the normal equation ATAx = AT b.

Example 8.2.5. (Noble [43, ])
Consider the matrix A and its pseudo-inverse

A =





1 1
1 1 + ǫ−1

1 1 − ǫ−1



 , A† =
1

6

(

2 2 − 3ǫ−1 2 + 3ǫ−1

0 3ǫ−1 −3ǫ−1

)

.

The (exact) matrix of normal equations is

ATA =

(

3 3
3 3 + 2ǫ2

)

.

If ǫ ≤ √
u, then in floating point computation fl(3 + 2ǫ2) = 3, and the computed

matrix fl(ATA) has rank one. However, the LU factorization of A is

A = LDU =





1 0
1 1
1 −1





(

1 0
0 ǫ

) (

1 1
0 1

)

,

where L and U are well-conditioned. The correct pseudo-inverse is now obtained
from

A† = U−1D−1(LTL)−1LT =

(

1 −ǫ
0 ǫ

) (

1/3 0
0 1/2

) (

1 1 1
0 1 −1

)

.

and now there is no cancellation.

Forming the symmetric matrix LTL requires 1
2n

2(m− 2
3n) flops, and comput-

ing its Cholesky factorization takes n3/6 flops. Hence, neglecting terms of order
n2, the total number of flops to compute the least squares solution by the Peters–
Wilkinson method is n2(m− 1

3n). This is always more expensive than the method
of normal equations applied to ATA.
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When m − n < n an algebraic reformulation is advantageous. If we let T =
L2L

−1
1 and L1y = z, problem (8.2.22) becomes

min
z

∥

∥

∥

∥

(

In
T

)

z −
(

b̃1
b̃2

)∥

∥

∥

∥

2

.

The solution z can be computed from

z = (In + T TT )−1(b̃1 + T T b̃2)

= b̃1 + (In + T TT )−1T T (b̃2 − T b̃1)

= b̃1 + T T (Im−n + TT T )−1(b̃2 − T b̃1). (8.2.23)

The last expression can be evaluated more efficiently if m− n < n and leads to the
most efficient method for solving slightly overdetermined least squares problems.
(Note that for m = n+ 1 the inversion in (8.2.23) is reduced to a scalar division.)

Methods based on the factorization (8.2.21) for solving the minimum norm
problem min ‖y‖2, subject to AT y = c can be similarly developed. Setting c̃ = ΠT

2 c
and ỹ = Π1y, we have

ỹ = (UTLT )†c̃ = L(LTL)−1U−T c̃.

For the case m− n < n we note that from UTLT ỹ = c̃ we have

ỹ1 = L−T
1 U−T c̃− (L2L

−1
1 )T ỹ2 = e− T T ỹ2. (8.2.24)

Hence ỹ2 can be obtained as the solution to the least squares problem

min
ỹ2

∥

∥

∥

∥

(

T T

Im−n

)

ỹ2 −
(

e
0

)∥

∥

∥

∥

2

,

or using the normal equations,

ỹ2 = (Im−n + TT T )−1Te. (8.2.25)

The reformulation used above for the almost square case follows from a useful
identity, which holds for any matrix S of dimension r × (n− r) of rank r:

(Ir + STS)−1ST = ST (In−r + SST )−1. (8.2.26)

This identity is easily proved using the Woodbury formula (3.1.6). It reduces the
computation of the pseudo-inverse of a matrix of rank r to the computation of the
pseudo-inverse of a matrix of rank (n − r). If n − r ≪ r, there is a great gain in
efficiency.

Review Questions

1. Give a necessary and sufficient condition for x to be a solution to minx ‖Ax−
b‖2, and interpret this geometrically. When is is the least squares solution x
unique? When is r = b−Ax unique?
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2. What are the advantages and drawbacks with the method of normal equations
for computing the least squares solution of Ax = b? Give a simple example,
which shows that loss of information can occur in forming the normal equa-
tions.

3. Discuss how the accuracy of the method of normal equations can be improved
by (a) scaling the columns of A, (b) iterative refinement.

4. Show that the more accurate formula in Example 8.2.1 can be interpreted
as a special case of the method (8.5.5)–(8.5.6) for partitioned least squares
problems.

5. (a) Let A ∈ Rm×n with m < n. Show that ATA is singular.

(b) Show, using the SVD, that rank (ATA) = rank (AAT ) = rank (A).

6. Define the condition number κ(A) of a rectangular matrix A. What terms in
the perturbation of a least squares solution depend on κ and κ2, respectively?

Problems

1. In order to estimate the height above sea level for three points, A,B, and C,
the difference in altitude was measured between these points and points D,E,
and F at sea level. The measurements obtained form a linear system in the
heights xA, xB , and xC of A,B, and C,

















1 0 0
0 1 0
0 0 1

−1 1 0
0 −1 1

−1 0 1





















xA

xB

xC



 =















1
2
3
1
2
1















.

Show that the least squares solution and residual vector are

x =
1

4
(5, 7, 12)T , r =

1

4
(−1, 1, 0, 2, 3,−3)T .

and verify that the residual vector is orthogonal to all columns in A.

2. (a) Consider the linear regression problem of fitting y(t) = α+β(t− c) by the
method of least squares to the data

t 1 3 4 6 7
f(t) −2.1 −0.9 −0.6 0.6 0.9

With the (unsuitable) choice c = 1, 000 the normal equations
(

5 4979
4979 4958111

) (

x0

x1

)

=

(

−2.1
−2097.3

)

become very ill-conditioned. Show that if the element 4958111 is rounded to
4958 · 103 then β is perturbed from its correct value 0.5053 to −0.1306!
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(b) As shown in Example 8.2.1, a much better choice of base functions is shift-
ing with the mean value of t, i.e., taking c = 4.2. However, it is not necessary
to shift with the exact mean; Show that shifting with 4, the midpoint of the
interval (1, 7), leads to a very well-conditioned system of normal equations.

3. Denote by xw the solution to the weighted least squares problem (8.1.6) and
let x be the solution to the corresponding unweighted problem (W = I). Using
the normal equations show that

xw − x = (ATW−1A)−1AT (W−1 − I)(b −Ax). (8.2.27)

Conclude that weighting the rows affects the solution if b 6∈ R(A).

4. Assume that rank (A) = n, and put Ā = (A, b) ∈ Rm×(n+1). Let the corre-
sponding cross product matrix, and its Cholesky factor be

C̄ = ĀT Ā =

(

C d
dT bT b

)

, R̄ =

(

R z
0 ρ

)

.

Show that the solution x and the residual norm ρ to the linear least squares
problem minx ‖b−Ax‖2 is given by

Rx = z, ‖b−Ax‖2 = ρ.

5. Let A ∈ Rm×n and rank (A) = n. Show that the minimum norm solution of
the underdetermined system AT y = c can be computed as follows:

(i) Form the matrix ATA, and compute its Cholesky factorization ATA =
RTR.

(ii) Solve the two triangular systems RT z = c, Rx = z, and compute y = Ax.

6. Compute the solution x using the LDU factorization in Example 8.6.2. Com-
pare with the exact solution given in Example 8.2.2.

7. (B. Noble 1976) Consider the matrix A and its generalized inverse

A =





1 1
1 1 + ǫ−1

1 1 − ǫ−1



 .

(a) Show that The (exact) matrix of normal equations is

ATA =

(

3 3
3 3 + 2ǫ2

)

.

Hence if ǫ ≤ √
u, then in floating point computation fl(3 + 2ǫ2) = 3, and the

computed matrix fl(ATA) has rank one.

(b) An LU factorization of A is

A = LU =





1 0
1 1
1 −1





(

1 1
0 ǫ

)

.

Show that here L is well-conditioned. and that the pseudo-inverse can be
stably computed from A† = U−1(LTL)−1LT .
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8. (S. M. Stiegler [60].) In 1793 the French decided to base the new metric
system upon a unit, the meter, equal to one 10,000,000th part of the distance
from the the north pole to the equator along a meridian arc through Paris.
The following famous data obtained in a 1795 survey consist of four measured
subsections of an arc from Dunkirk to Barcelona. For each subsection the
length of the arc S (in modules), the degrees d of latitude and the latitude L
of the midpoint (determined by the astronomical observations) are given.

Segment Arc length S latitude d Midpoint L
Dunkirk to Pantheon 62472.59 2.18910◦ 49◦ 56′ 30′′

Pantheon to Evaux 76145.74 2.66868◦ 47◦ 30′ 46′′

Evaux to Carcassone 84424.55 2.96336◦ 44◦ 41′ 48′′

Carcassone to Barcelona 52749.48 1.85266◦ 42◦ 17′ 20′′

If the earth is ellipsoidal, then to a good approximation it holds

z + y sin2(L) = S/d,

where z and y are unknown parameters. The meridian quadrant then equals
M = 90(z + y/2) and the eccentricity is e is found from 1/e = 3(z/y + 1/2).
Use least squares to determine z and y and then M and 1/e.

9. Consider the least squares problem minx ‖Ax− b‖2
2, where A has full column

rank. Partition the problem as

min
x1,x2

∥

∥

∥(A1 A2)

(

x1

x2

)

− b
∥

∥

∥

2

2
.

By a geometric argument show that the solution can be obtained as follows.
First compute x2 as solution to the problem

min
x2

‖P⊥

A1
(A2x2 − b)‖2

2,

where P⊥

A1
= I −PA1

is the orthogonal projector onto N (AT
1 ). Then compute

x2 as solution to the problem

min
x1

‖A1x1 − (b−A2x2)‖2
2.

10. Show that if A,B ∈ Rm×n and rank (B) 6= rank (A) then it is not possible
to bound the difference between A† and B† in terms of the difference B −A.
Hint: Use the following example. Let ǫ 6= 0, σ 6= 0, take

A =

(

σ 0
0 0

)

, B =

(

σ ǫ
ǫ 0

)

,

and show that ‖B −A‖2 = ǫ, ‖B† −A†‖2 > 1/ǫ.
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11. Show that for any matrix A it holds

A† = lim
µ→0

(ATA+ µ2I)−1AT = lim
µ→0

AT (AAT + µ2I)−1. (8.2.28)

12. (a) Let A = (a1, a2), where aT
1 a2 = cos γ, ‖a1‖2 = ‖a2‖2 = 1. Hence γ is the

angle between the vectors a1 and a2. Determine the singular values and right
singular vectors v1, v2 of A by solving the eigenvalue problem for

ATA =

(

1 cos γ
cos γ 1

)

.

Then determine the left singular vectors u1, u2 from (7.1.33).

(b) Show that if γ ≪ 1, then σ1 ≈
√

2 and σ2 ≈ γ/
√

2 and

u1 ≈ (a1 + a2)/2, u2 ≈ (a1 − a2)/γ.

8.3 Methods using Orthogonal Factorizations

Orthogonality plays a key role in least squares problems. By Theorem 8.2.2, in the
full rank case, rank (A) = n, the residual r = b−Ax can be written

r = PN (AT )b, PN (AT ) = I −A(ATA)−1AT , (8.3.1)

which gives an expression for PR(A), the orthogonal projector onto R(A), the range
space of A. It follows that any solution to the consistent linear system

Ax = PR(A)b (8.3.2)

is a least squares solution. In the next section we survey the theory of orthogonal
and oblique projection.

8.3.1 Orthogonal and Oblique Projections

Recall that two vectors v and w in Rn are said to be orthogonal if (v, w) = 0.
A set of vectors v1, . . . , vk in Rn is called orthogonal with respect to the Euclidian
inner product if

vT
i vj = 0, i 6= j,

and orthonormal if also vT
i vi = 1, i = 1 : k. An orthogonal set of vectors is

linearly independent. More generally, a collection of subspaces S1, . . . , Sk of Rn are
mutually orthogonal if

xT y = 0, ∀ x ∈ Si, ∀ y ∈ Sj, i 6= j.

The orthogonal complement S⊥ of a subspace S ∈ Rn is defined by

S⊥ = {y ∈ Rn| xT y = 0, x ∈ S}.
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Let q1, . . . , qk form an orthonormal basis for a subspace S ⊂ Rn. Such a basis
can always be extended to a full orthonormal basis q1, . . . , qn for Rn, and then
S⊥ = span {qk+1, . . . , qn}.

Let q1, . . . , qn ∈ Rm be orthonormal Then the matrix Q = (q1, . . . , qn) ∈
Rm×n, m ≥ n, is called an orthogonal matrix and QTQ = In. If Q is square
(m = n) then Q−1 = QT , and hence also QQT = In. Further,

1 = det(QTQ) = det(QT ) det(Q) = (det(Q))2,

and it follows that det(Q) = ±1.
In the complex case, A = (aij) ∈ Cm×n the Hermitian inner product leads to

modifications in the definition of symmetric and orthogonal matrices. Two vectors
x and y in Cn are called orthogonal if xHy = 0. A square matrix U for which
UHU = I is called unitary. Then

(Ux)HUy = xHUHUy = xHy,

and hence unitary matrices have the property that they preserve the Hermitian inner
product. In particular the Euclidian length of a vector is invariant under unitary
transformations, i.e., ‖Ux‖2

2 = ‖x‖2
2. Note that when the vectors and matrices are

real the definitions for the complex case are consistent with those made for the real
case.

Any square matrix P ∈ Rn×n such that

P 2 = P. (8.3.3)

is called idempotent and a projector. An arbitrary vector v ∈ Rn can be de-
composed in a unique way as

v = Pv + (I − P )v = v1 + v2. (8.3.4)

Here v1 = Pv ∈ S is a projection of v onto R(P ), the range space of P . Since
Pv2 = (P − P 2)v = 0 it follows that (I − P ) is a projection onto N (P ), the null
space of P .

If P is symmetric, PT = P , then

vT
1 v2 = (Pv)T (I − P )v = vTP (I − P )v = vT (P − P 2)v = 0.

It follows that v2 ⊥ S, i.e., v2 lies in the orthogonal complement S⊥ of S; In this
case P is the orthogonal projector onto S and I − P the orthogonal projector
onto S⊥. It can be shown that the orthogonal projector P onto a given subspace
S is unique, see Problem 1.

Example 8.3.1.
Let Q = (q1, . . . , qn) ∈ Rm×n, m ≥ n, where q1, . . . , qn ∈ Rm are orthonormal

vectors. Then the orthogonal projector onto the orthogonal complement of R(Q).

P = Im −QQT , (8.3.5)
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If n = 1 then P = Im − q1q
T
1 and the null space N (P ) = span (q1) has dimension

one. P is then called an elementary orthogonal projection.

A projector P such that P 6= PT is called an oblique projector. We now
briefly review oblique projections and their matrix representations. If λ is an eigen-
value of P then from P 2 = P it follows that λ2 = λ. Hence the eigenvalues of P
are either 1 or 0 and we can write the eigendecomposition

P = (U1 U2)

(

Ik 0
0 0n−k

) (

Ŷ T
1

Ŷ T
2

)

,

(

Ŷ T
1

Ŷ T
2

)

= (U1 U2)
−1, (8.3.6)

where k = trace (P ) is the rank of P and

span (U1) = R(P ), span (U2) = N (P ).

The matrices U1 ∈ Rn×n1 and U2 ∈ Rn×n2 (n1 + n2 = n), can be chosen as
orthogonal bases for the invariant subspaces corresponding to the eigenvalues 1 or
0, respectively. In terms of this eigendecomposition (8.3.4) can be written

v = (U1 U2)

(

Ŷ T
1

Ŷ T
2

)

v = (U1Ŷ
T
1 )v + (U2Ŷ

T
2 )v = v1 + v2, (8.3.7)

that is

P = U1Ŷ
T
1 , I − P = U2Ŷ

T
2 . (8.3.8)

If PT = P then P is an orthogonal projector and in (8.3.6) we can take
U = (U1 U2) orthogonal and Ŷ1 = U1 and Ŷ2 = U2. The projectors (8.3.7) then take
the form

P = U1U
T
1 , I − P = U2U

T
2 ; (8.3.9)

For an orthogonal projector we have

‖Pv‖2 = ‖UT
1 v‖2 ≤ ‖v‖2 ∀ v ∈ Rm, (8.3.10)

where equality holds for all vectors in R(U1). From this it follows that for an
orthogonal projector ‖P‖2 = 1. The conversion is also true; P is an orthogonal
projection only if (8.3.10) holds.

When P is not symmetric we call v1 = Pv the oblique projection of v
onto R(U1) along R(U2), and the matrix P = U1Ŷ

T
1 is the corresponding oblique

projector. Similarly I−P = U2Ŷ
T
2 is the oblique projector onto R(U2) along R(U1).

From (8.3.6) we have

(

Ŷ T
1

Ŷ T
2

)

(U1 U2) =

(

Ŷ T
1 U1 Ŷ T

1 U2

Ŷ T
2 U1 Ŷ T

2 U2

)

=

(

Ik 0
0 In−k

)

. (8.3.11)

In particular we have Ŷ T
1 U2 = 0 and Ŷ T

2 U1 = 0. Hence the columns of Ŷ1 form a
basis of the orthogonal complement of R(U2) and, similarly, the columns of Ŷ2 form
a basis of the orthogonal complement of R(U1).
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Let Y1 be an orthogonal matrix whose columns span R(Ŷ1). Then there
is a nonsingular matrix G1 such that Ŷ1 = Y1G. From (8.3.11) it follows that
GTY T

1 U1 = Ik, and hence GT = (Y T
1 U1)

−1. Similarly Y2 = (Y T
2 U2)

−1Y2 is an
orthogonal matrix whose columns span R(Ŷ2). Hence using (8.3.8) the projectors
can be written

P = U1(Y
T
1 U1)

−1Y T
1 , I − P = U2(Y

T
2 U2)

−1Y T
2 . (8.3.12)

u1

v

ŷ1

u2

Figure 8.3.1. The oblique projection of v on u1 along u2.

Example 8.3.2.
We illustrate the case when n = 2 and n1 = 1. Let the vectors u1 and y1 be

normalized so that ‖u1‖2 = ‖y1‖2 = 1 and let yT
1 u1 = cos θ, where θ is the angle

between u1 and y1, see Fig. 8.4.1. Since

P = u1(y
T
1 u1)

−1yT
1 =

1

cos θ
u1y

T
1 .

Hence ‖P‖2 = 1/ cos θ ≥ 1, and ‖P‖2 becomes very large when y1 is almost orthog-
onal to u1. When y1 = u1 we have θ = 0 and P is an orthogonal projection.

8.3.2 Gram–Schmidt Orthogonalization

Gram–Schmidt orthogonalization is one of the fundamental algorithms in numeri-
cal linear algebra. Given a sequence of linearly independent vectors a1, a2, . . . , an

Gram–Schmidt orthogonalization computes orthonormal vectors q1, q2, . . . , qn. such
that

span [a1, . . . , ak] = span [q1, . . . , qk], k = 1 : n. (8.3.13)

Algorithm 8.3.1 Classical Gram–Schmidt (CGS).

for k = 1 : n

(i) If k = 1 then set q̂1 = a1 else orthogonalize ak against q1, . . . , qk−1:

q̂k = ak −
k−1
∑

i=1

rikqi, rik = qT
i ak, i = 1 : k − 1; (8.3.14)

(ii) Normalize q̂k
rkk = ‖q̂k‖2, qk = q̂k/rkk. (8.3.15)
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end;

Note that q̂k 6= 0, since otherwise ak is a linear combination of the vectors
a1, . . . , ak−1, which contradicts the assumption. The CGS algorithm requires ap-
proximately mn2 multiplications and can be interpreted in matrix terms as follows:

Theorem 8.3.1. The QR Factorization
Let the matrix A = (a1, a2, . . . , an) ∈ Rm×n have linearly independent columns.

Then the Gram–Schmidt algorithm computes unique matrices Q1 ∈ Rm×n with
orthonormal columns and an upper triangular R ∈ Rn×n with positive diagonal
elements, such that

A = (a1, a2, . . . , an) = (q1, q2, . . . , qn)









r11 r12 · · · r1n

r22 · · · r2n

. . .
...
r2n









≡ Q1R. (8.3.16)

Proof. Combining (8.3.14) and (8.3.15) we obtain

ak = rkkqk +

k−1
∑

i=1

rikqi =

k
∑

i=1

rikqi, k = 1 : n,

which is equivalent with (8.3.16). Since the vectors qk are mutually orthogonal by
construction the theorem follows.

Corollary 8.3.2. The factor R in the factorization (8.3.16) equals the Cholesky fac-
tor of ATA. Hence the GS algorithm computes the Cholesky factor directly from A.

Proof. The Cholesky factor R of a nonsingular matrix ATA is uniquely determined
provided R is normalized to have a positive diagonal. From (8.3.16) we have ATA =
RTQT

1Q1R = RTR, and the result follows.

For the numerical GS factorization of a matrix A a small reordering of the
above algorithm gives the modified Gram–Schmidt method (MGS). Although
mathematically equivalent to the classical algorithm MGS has greatly superior nu-
merical properties, and is therefore usually to be preferred.

The modified Gram–Schmidt (MGS) algorithm employs a sequence of elemen-
tary orthogonal projections. At the beginning of step k, we have computed

(q1, . . . , qk−1, a
(k)
k , . . . , a(k)

n ),

where we have put aj = a
(1)
j , j = 1 : n. Here a

(k)
k , . . . , a

(k)
n have already been made

orthogonal to q1, . . . , qk−1, which are final columns in Q1. In the kth step qk is

obtained by normalizing the vector a
(k)
k ,

q̃k = a
(k)
k , rkk = ‖q̃k‖2, qk = q̃k/rkk, (8.3.17)
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and then a
(k)
k+1, . . . , a

(k)
n are orthogonalized against qk

a
(k+1)
j = (Im − qkq

T
k )a

(k)
j = a

(k)
j − rkjqk, rkj = qT

k a
(k)
j , j = k + 1 : n. (8.3.18)

After n steps we have obtained the factorization (8.3.16). Note that for n = 2 MGS
and CGS are identical.

Algorithm 8.3.2 Modified Gram–Schmidt.
Given A ∈ Rm×n with rank(A) = n the following algorithm computes the factor-

ization A = Q1R:

for k = 1 : n

q̂k = a
(k)
k ; rkk = ‖q̂k‖2;

qk = q̂k/rkk;

for j = k + 1 : n

rkj = qT
k a

(k)
j ;

a
(k+1)
j = a

(k)
j − rkjqk;

end

end

The operations in Algorithm 8.3.2 can be sequenced so that the elements in R
are computed in a column-wise fashion. However, the row-wise version given above
is more suitable if column pivoting is to be performed; see Sec. 8.4.2.

There is also a square root free version of the modified Gram–Schmidt
orthogonalization method, which results if the normalization of the vectors q̃k is
omitted. In this version one computes scaled factors Q̃1 = (q̃1, . . . , q̃n) and R̃ so
that

A = Q̃1R̃,

where R̃ is unit upper triangular. We take r̃kk = 1, dk = q̃T
k q̃k, and change (8.3.18)

to

a
(k+1)
j = a

(k)
j − r̃kj q̃k, r̃kj = q̃T

k a
(k)
j /dk, j = k + 1, . . . , n. (8.3.19)

The unnormalized vector q̃k is just the orthogonal projection of ak onto the com-
plement of span[a1, a2, . . . , ak−1] = span[q1, q2, . . . , qk−1].

In CGS the orthogonalization of ak in step (8.3.14) can be written

q̂k = (I −Qk−1Q
T
k−1)ak, Qk−1 = (q1, . . . , qk−1).

In MGS the projections rikqi are subtracted from ak as soon as they are computed,
which corresponds to computing

q̂k = (I − qk−1q
T
k−1) · · · (I − q1q

T
1 )ak.

For k > 2 these two expressions are identical only if the q1, . . . , qk−1 are accurately
orthogonal. However, due to round-off there will be a gradual (sometimes catas-
trophic) loss of orthogonality. In this respect CGS and MGS behave very differently.
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In MGS the loss of orthogonality occurs in a predictable manner proportional to
the κ(A). This is not the case for CGS.

Loss of orthogonality will occur in orthogonalization whenever cancellation

takes place in subtracting the orthogonal projection on qi from a
(i)
k , that is when

a
(k+1)
j = (I − qkq

T
k )a

(k)
j , ‖a(i+1)

k ‖2 ≪ α‖a(i)
k ‖2. (8.3.20)

Consider the case of orthogonalizing two vectors. Given a vector a2, we want to
orthogonalize it against a vector q1, ‖q1‖2 = 1, by computing

q̂2 = a2 − r12q1, r12 = qT
1 a2. (8.3.21)

We use the standard model for floating point computation, and the basic results in
Sec. 2.3.2 to analyze the rounding errors. For the computed scalar product r̄12 =
fl(qT

1 a2) we get

|r̄12 − r12| < γm‖a2‖2, γm =
mu

1 −mu/2
,

where u is the unit roundoff. Using |r12| ≤ ‖a2‖2 we obtain for q̄2 = fl(a2 −
fl(r̄12q1))

‖q̄2 − q̂2‖2 < γm+2‖a2‖2.

Since qT
1 q̂2 = 0, it follows that |qT

1 q̄2| < γm+2‖a2‖2 and the loss of orthogonality

|qT
1 q̄2|

‖q̄2‖2
≈ |qT

1 q̄2|
‖q̂2‖2

< γm+2
‖a2‖2

‖q̃2‖2
=

γm+2

sinφ(q1, a2)
, (8.3.22)

is proportional to φ(q1, a2), the angle between q1 and a2.

Example 8.3.3. As an illustration consider the matrix

A = (a1, a2) =

(

1.2969 0.8648
0.2161 0.1441

)

.

Using the Gram–Schmidt algorithm and IEEE double precision we get

q1 =

(

0.98640009002732
0.16436198585466

)

,

r12 = qT
1 a2 = 0.87672336001729,

q̂2 = a2 − r12q1 =

(

−0.12501091273265
0.75023914025696

)

10−8,

q2 =

(

−0.16436196071471
0.98640009421635

)

,

and

R =

(

1.31478090189963 0.87672336001729
0 0.00000000760583

)

.
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Severe cancellation has taken place when computing q̂2, which leads to a serious
loss of orthogonality between q1 and q2:

qT
1 q2 = 2.5486557 · 10−8,

which should be compared with the unit roundoff 1.11 · 10−16. We note that the
loss of orthogonality is roughly equal to a factor 10−8.

Reorthogonalizing the computed vector a
(2)
2 against q1 we obtain

qT
1 q2 = 2.5486557 · 10−8, q̃2 =

(

−0.16436198585466
0.98640009002732

)

.

The vector q̃2 is exactly orthogonal to q1.

For MGS the loss of orthogonality can be bounded in terms of the condition
number κ(A) also for n > 2. (Note that for n = 2 MGS and CGS are the same.)
In can be shown that if c2κu < 1, then

‖I − Q̄T
1 Q̄1‖2 ≤ c1

1 − c2κu
κu.

where c1 and c2 denote constants depending on m, n, and the details of the arith-
metic. In contrast, the computed vectors qk from CGS may depart from orthogo-
nality to an almost arbitrary extent. The more gradual loss of orthogonality in the
computed vectors qi for MGS is illustrated in the example below; see also Problem 1.

Example 8.3.4. A matrix A ∈ R50×10 was generated by computing

A = Udiag (1, 10−1, . . . , 10−9)V T

where U and V are orthonormal matrices. Hence A has singular values σi = 10−i+1,
i = 1 : 10, and κ(A) = 109. Fig. 8.5.1 shows the condition number of Ak =
(a1, . . . , ak) and the loss of orthogonality in CGS and MGS after k steps as measured
by ‖Ik −QT

kQk‖2.
For MGS the loss of orthogonality is more gradual and proportional to κ(Ak),

whereas for CGS the loss of orthogonality is roughly proportional to κ2(Ak),

In some applications it is important not only that the computed Q̄1 and R̄ are
such that Q̄1R̄ accurately represents A, but also that Q̄1 is accurately orthogonal.
We call this the orthogonal basis problem. It can be show that for MGS it holds
that

A+ E = Q̄1R̄, ‖E‖2 ≤ c0u‖A‖2.

However, to satisfy the second condition it is necessary to reorthogonalize the
computed vectors in the Gram–Schmidt algorithm, whenever (8.3.20) is satisfied
for some suitably chosen parameter α < 1 typically chosen in the range [0.1, 1/

√
2].

In a sense to be made more precise below, one reorthogonalization will always suf-
fice. Hence reorthogonalization will at most double the cost of the Gram–Schmidt
factorization.
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Table 8.3.1. Loss of orthogonality and CGS and MGS.

k κ(Ak) ‖Ik −QT
CQC‖2 ‖Ik −QT

MQM‖2

1 1.000e+00 1.110e-16 1.110e-16
2 1.335e+01 2.880e-16 2.880e-16
3 1.676e+02 7.295e-15 8.108e-15
4 1.126e+03 2.835e-13 4.411e-14
5 4.853e+05 1.973e-09 2.911e-11
6 5.070e+05 5.951e-08 3.087e-11
7 1.713e+06 2.002e-07 1.084e-10
8 1.158e+07 1.682e-04 6.367e-10
9 1.013e+08 3.330e-02 8.779e-09

10 1.000e+09 5.446e-01 4.563e-08

For the case n = 2 the following result is known:

Algorithm 8.3.3 Kahan–Parlett algorithm Parlett [48, Sec. 6.9].
Suppose that for any given z the expression p̄ := orthog(a1, z) computes an

approximation to the (exact) orthogonal complement p = z − a1(a
T
1 z)/‖a1‖2

2 of z
to a1, such that the error satisfies ‖p̄− p‖2 ≤ ǫ‖z‖2 for some tiny positive ǫ. Then,
given A = (a1, a2), the following algorithm computes a vector q̄2, which satisfies

‖q̄2 − q2‖2 ≤ (1 + α)ǫ‖a2‖2, ‖aT
1 q̄2‖ ≤ ǫα−1‖q̄2‖2‖a1‖2, (8.3.23)

where q2 is the exact complement of a2 orthogonal to a1. The first inequality implies
that q̄2 is close to a linear combination of a1 and a2. The second says that q̄2 is
nearly orthogonal to a1.

q̄2 := orthog(a1, a2);

if ‖q̄2‖2 < α‖a2‖2

q̌2 := orthog(a1, q̄2); (reorthogonalizeq̄2)

if ‖q̌2‖2 ≥ α‖q̄2‖2 q̌2;

else q̄2 = q̄2 := 0; (numerically singular case)

end

end

Note that if ‖q̌2‖2 < α‖q̄2‖2 we conclude that the given vectors (a1, a2) are linearly
dependent and and signal this by setting q̄2 := 0.
When α is large, say α ≥ 1/

√
2, then the bounds in (8.3.23) are very good but

reorthogonalization will occur more frequently. If α is small, reorthogonalization
will be rarer, but the bound on orthogonality less good. For larger n there seems to
be a good case for recommending the stringent value α = 1/

√
2 or always perform

one step of reorthogonalization (α = 1).

Now consider the case n > 2. Assume we are given a matrixQ1 = (q1, . . . , qk−1)
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with ‖q1‖2 = . . . = ‖qk−1‖2 = 1. Adding the new vector ak, we want to compute a
vector q̂k such that

q̂k ∈ span(Q1, ak) ⊥ span(Q1).

The solution equals q̂k = ak −Q1rk, where rk solves the least squares problem

min
rk

‖ak −Q1rk‖2.

We first assume that Q1 is accurately orthogonal. Then it can be rigorously proved
that it suffices to run MGS twice on the matrix (Q1, ak). This generalizes the result
by Kahan–Parlett to n > 2.

To solve the problem, when the columns of Q1 are not accurately orthogonal,
we can use iterated Gram–Schmidt methods. In the iterated CGS algorithm we

put q̂
(0)
k := ak, r

(0)
k := 0, and for p = 0, 1, . . . compute

s
(p)
k := QT

1 q̂
(p)
k , q̂

(p+1)
k := q̂

(p)
k −Q1s

(p)
k , r

(p+1)
k := r

(p)
k + s

(p)
k .

The first step of this algorithm is the usual CGS algorithm, and each step is a
reorthogonalization. The iterated MGS algorithm is similar, except that each pro-
jection is subtracted as soon as it computed: As in the Kahan–Parlett algorithm,

the iterations can be stopped when ‖q̂(p+1)
k ‖2 > α‖q̂p

k‖2.
The iterated Gram–Schmidt algorithm can be used recursively, adding one

column ak at a time, to compute the factorization A = Q1R. If A has full numer-
ical column rank, then with α = 1/

√
2 both iterated CGS and MGS computes a

factor Q1, which is orthogonal to almost full working precision, using at most one
reorthogonalization. Hence in this case iterated CGS is not inferior to the iterated
MGS.

8.3.3 Least Squares Problems by Gram–Schmidt

We now consider the use of the Modified Gram–Schmidt algorithm for solving linear
least squares problem. It is important to note that because of the loss of orthog-
onality in Q1 computing x by forming c1 = QT

1 b and then solving Rx = c1 will
not in general give an accurate solution. Using the MGS factorization in this way
seems to have contributed to an undeserved bad reputation of the method. Used
correctly, as described below, the MGS factorization will give as accurate results as
any competing method.

To solve a least squares problems the MGS algorithm is applied to the aug-
mented matrix (A, b). If we skip the normalization of the (n+1)st column we obtain
a factorization

(A, b) = (Q1, r)

(

R z
0 1

)

, (8.3.24)

where r is the residual vector. We have

‖Ax− b‖2 =

∥

∥

∥

∥

(A, b)

(

x
−1

)∥

∥

∥

∥

2

= ‖Q1(Rx− z) − r‖2.
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Let us assume that qn+1 = r/‖r‖2 is orthogonal to Q1. Then the minimum of
the last expression occurs when Rx − z = 0 and the least squares residual equals
r. Although this assumptions is not true to machine precision, we note that it
is not necessary to assume that Q1 is accurately orthogonal for the conclusion to
hold. This heuristic argument leads to the following algorithm for solving linear
least squares problems by MGS, which can be proved to be backward stable for
computing the solution x:

Algorithm 8.3.4 Linear Least Squares Solution by MGS.
Carry out MGS on A ∈ Rm×n, rank(A) = n, to give Q1 = (q1, . . . , qn) and R, and
put b(1) = b. Compute the vector z = (z1, . . . , zn)T by

for k = 1, 2, . . . , n

zk = qT
k b

(k); b(k+1) = b(k) − zkqk;

end

r = b(n+1);

solve Rx = z;

If implemented as above MGS gives very accurate results. Unfortunately, a
common error can still found in some textbooks. This is to compute R by MGS,
but in the final step solve Rx = QT

1 b. This destroys the accuracy and may be one
reason the MGS method is not widely used.

In some applications it is important to use an algorithm which is backwards
stable for the computed residual r̄, i.e. we want a relation

(A+ E)T r̄ = 0, ‖E‖2 ≤ cu‖A‖2, (8.3.25)

to hold for some constant c. This implies that AT r̄ = −ET r̄, and

‖AT r̄‖2 ≤ cu‖r̄‖2‖A‖2. (8.3.26)

Note that this is much better than if we compute

r̄ = fl(b− fl(Ax)) = fl

(

( b A )

(

1
−x

))

even when x is the exact least squares solution. We obtain using (2.3.13) and
AT r = 0

|AT r̄| < γn+1|AT |(|b| + |A||x|).
From this we get the norm-wise bound

‖AT r̄‖2 ≤ n1/2γn+1‖A‖2(‖b‖2 + n1/2‖A‖2‖x‖2),

which is a much weaker than (8.3.26) when, as is often the case, ‖r̄‖2 ≪ ‖b‖2!
An obvious remedy seems to be to reorthogonalize the computed residual r

against Q1 = (q1, q2, . . . , qn). However, to obtain a backward stable algorithm for r
this should be done in reverse order!
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Algorithm 8.3.5 Orthogonal projection by MGS.
To make Algorithm 8.3.3 backward stable for r it suffices to add a loop where the
vector b(n+1) is orthogonalized against qn, qn−1, . . . , q1 (note the order):

for k = n, n− 1, . . . , 1

zk = qT
k b

(k+1); b(k) = b(k+1) − zkqk;

end

r = b(1);

It can be proved that this step “magically” compensates for the lack of or-
thogonality of Q1 and the r̄ computed by Algorithm 8.3.3 satisfies (8.3.25).

A similar idea is used to construct a backward stable algorithm for the mini-
mum norm problem

min ‖y‖2, AT y = c.

Algorithm 8.3.6 Minimum Norm Solution by MGS.
Carry out MGS on AT ∈ Rm×n, with rank(A) = n to give Q1 = (q1, . . . , qn) and
R. Then the minimum norm solution y = y(0) is obtained from

RT (ζ1, . . . , ζn)T = c;

y(n) = 0;

for k = n, . . . , 2, 1

ωk = qT
k y

(k); y(k−1) = y(k) − (ωk − ζk)qk;

end

If the columns of Q1 were orthogonal to working accuracy, then ωk = 0,
k = m, . . . , 1. Hence ω compensates for the lack of orthogonality to make this
algorithm backwards stable!

8.3.4 Householder and Givens Transformations

Orthogonal matrices which are equal to the unit matrix modified by a matrix of rank
one are called elementary orthogonal matrices. Such matrices are flexible and
useful tools for constructing algorithms for solving a variety of problems in linear
algebra. They are attractive since multiplication of a vector with an orthogonal
matrix preserves the Euclidean length and hence there use leads to numerically
stable algorithms.

Recall that a square matrix Q ∈ Rm×m, is called orthogonal if QTQ = I.
Then Q−1 = QT , and hence QQT = I. Taking the determinant of both sides

det(QTQ) = det(QT ) det(Q) = det(Q)2 = 1.
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and hence det(Q) = ±1. A very important class of orthogonal transformations are
matrices of the form

H = I − βuuT , β = 2/(uTu). (8.3.27)

By construction H is symmetric HT = H , and using (8.3.27) we have

HTH = H2 = I − 2βuuT + β2u(uTu)uT = I.

Hence H is orthogonal, and H2 = I. The product Ha where a is a given vector can
be computed without explicitly forming H itself using

Ha = (I − βuuT )a = a− βu(uTa).

Note that Ha ∈ span[a, u]. We have Hu = −u, i.e., H reverses u. Further Ha = a,
for a ⊥ u. Hence H has m−1 eigenvalues equal to +1 and one equal to −1, and thus
det(H) = −1. The effect of the transformationHa for a general vector a is to reflect
a in the (m− 1) dimensional hyperplane characterized by the normal vector u, see
Fig. 8.5.1. Therefore, H is called an elementary reflector. The use of elementary
reflectors in numerical linear algebra was initiated by A. S. Householder. Matrices
of the form (8.3.27) are therefore often called Householder reflectors and the
vector u is called a Householder vector.

I

*

�

u

a

Pa

span(u)
⊥

Figure 8.3.2.

Fig. 8.4.1 shows the vector a mapped into Ha by a reflection in the plane with
normal vector u. Note that this is equivalent to subtracting twice the orthogonal
projection onto u. Further the normal u is parallel to the difference (a−Pa). Given
a 6= 0 ∈ Rm, we consider the problem of constructing a plane reflection H ∈ Rm×m

such that multiplication by H zeros all components except the first in a, i.e.,

Ha = ±σe1, σ = ‖a‖2. (8.3.28)

Multiplying (8.3.28) from the left by H and using H2 = I it follows that y = Ue1
satisfies UT y = e1 or

He1 = ±a/σ.
Hence (8.3.28) is equivalent to finding a square orthogonal matrix H with its first
column proportional to ±a/σ. It is easily seen that (8.3.28) is satisfied if we take

u = a∓ σe1 =

(

α1 ∓ σ
a2

)

, a =

(

α1

a2

)

. (8.3.29)



44 Chapter 8. Linear Least Squares Problems

Note that u differs from a only in its first component. A short calculation shows
that

1/β = 1
2u

Tu = 1
2 (a∓ σe1)

T (a∓ σe1) = 1
2 (σ2 ∓ 2σα1 + σ2) = σ(σ ∓ α1).

If a is close to a multiple of e1, then σ ≈ |α1| and cancellation may lead to a large
relative error in β. To avoid this we take

u = a+ sign (α1)σe1, 1/β = σ(σ + |α1|), (8.3.30)

which gives

Ha = −sign (α1)σe1 = σ̂e1.

Note that with this choice of sign the vector a = e1 will be mapped onto −e1. (It
is possible to rewrite the formula in (8.3.30) for β so that the other choice of sign
does not give rise to numerical cancellation; for details see Parlett [48, pp. 91].)

The Householder transformation in (8.3.27) does not depend on the scaling of
u. It is often more convenient to scale u so that its first component equals 1. If we
write

H = I − βuuT , u =

(

1
u2

)

,

then

β = 1 + |α1|/σ. u2 = ρa2, ρ = sign (α1)/(σ + |α1|), (8.3.31)

This has the advantage that we can stably reconstruct β from u2 using

β = 2/(uTu) = 2/(1 + uT
2 u2).

Algorithm 8.3.7 Let a ∈ Rm be a vector with ‖a‖2 = σ and aT e1 = α1. The
following algorithm constructs a Householder transformation H = I −βuuT , where
uT e1 = 1, such that Ha = −sign(α1)σ̂e1, where σ̂ = −sign(α1)σ.

[u, β, σ̂] = house(a)

α1 = a(1);

σ = ‖a‖2;

β = 1 + |α1|/σ;

σ̂ = −sign (α1)σ;

ρ = −1/(σ̂β);

u = [1; ρ · a(2 : m)];

If a matrix A = (a1, . . . , an) ∈ Rm×n is premultiplied by H the product can
be computed in 2mn multiplications as

HA = (Ha1, . . . , Han), Haj = aj − β(uT aj)u. (8.3.32)
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An analogous formula, exists for postmultiplying A with H , where H now acts on
the rows of A. Writing the products HA and AH as

HA = A− βu(uTA), AH = A− β(Au)uT ,

shows that in both cases is A altered by a matrix of rank one.
Another useful class of orthogonal transformations are the matrices repre-

senting plane rotations, which are also called Givens rotations after Wallace
Givens, who popularized their use for numerical computations. In R2 the matrix
representing a rotation clockwise through an angle θ is

G(θ) =

(

c s
−s c

)

, c = cos θ, s = sin θ. (8.3.33)

Note that G−1(θ) = G(−θ), and detG(θ) = +1.
In Rm the matrix representing a rotation in the plane spanned by the unit

vectors ei and ej , i < j, is the following rank two modification of the unit matrix
Im

Gij(θ) =

























i j

1
. . .

i c s
. . .

j −s c
. . .

1

























. (8.3.34)

Premultiplying a vector a = (α1, . . . , αm)T by Gij(θ) we get

Gij(θ)a = (α̃1, . . . , α̃m)T , α̃k =







αk, k 6= i, j;
cαi + sαj , k = i;
−sαi + cαj , k = j.

(8.3.35)

Thus a plane rotation may be multiplied into a vector at a cost of two additions
and four multiplications. We can determine the rotation Gij(θ) so that α̃j becomes
zero by taking

c = αi/σ, s = αj/σ, σ = (α2
i + α2

j )
1/2 6= 0. (8.3.36)

Note that −G(θ) also zeros α̃j so c and s are only determined up to a factor ±1.
To guard against possible overflow, the Givens rotation should be computed

as in the following procedure:

Algorithm 8.3.8 Given (α, β)T 6= 0 the algorithm constructs c, s, σ such that
s2 + c2 = 1 and

(

c s
−s c

) (

α
β

)

=

(

σ
0

)

:
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[c, s, σ] = givrot(α, β)

if |α| > |β|
t = β/α; c = 1/

√

1 + t2;

s = tc; σ = α/c;

else

t = α/β; s = 1/
√

1 + t2;

c = ts; σ = β/s;

end

Premultiplication of a matrix A ∈ Rm×n with a Givens rotation Gij will only
affect the two rows i and j in A, which are transformed according to

aik := caik + sajk, (8.3.37)

ajk := −saik + cajk, k = 1, 2, . . . , n. (8.3.38)

The product requires 4nmultiplications. An analogous algorithm, which only affects
columns i and j, exists for postmultiplying A with Gij .

Givens rotations can be used in several different ways to construct an orthog-
onal matrix U , which satisfies (8.3.28). Let G1k, k = 2, . . . ,m be a sequence of
Givens rotations, where G1k is determined to zero the kth component in the vector
a,

G1m . . . G13G12a = σe1.

Note that G1k will not destroy previously introduced zeros. Another possible se-
quence is Gk−1,k, k = m,m − 1, . . . , 2, where Gk−1,k is chosen to zero the kth
component. This demonstrates the flexibility of Givens rotations compared to re-
flectors.

It is essential to note that the matrix Gij is never explicitly formed, but
represented by (i, j) and the two numbers c and s. When a large number of rotations
need to be stored it is more economical to store just a single number, from which
c and s can be retrieved in a numerically stable way. Since the formula

√
1 − x2 is

poor if |x| is close to unity a slightly more complicated method than storing just
c or s is needed. In a scheme devised by G. W. Stewart one stores the number c
or s of smallest magnitude. To distinguish between the two cases one stores the
reciprocal of c. More precisely, if c 6= 0 we store

ρ =

{

s, if |s| < |c|;
1/c, if |c| ≤ |s| .

In case c = 0 we put ρ = 1, a value that cannot appear otherwise.
To reconstruct the Givens rotation, if ρ = 1, we take s = 1, c = 0, and

ρ =

{

s = ρ, c =
√

1 − s2, if |ρ| < 1;
c = 1/ρ, s =

√
1 − c2, if |ρ| > 1;
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It is possible to rearrange the Givens rotations so that it uses only two instead
of four multiplications per element and no square root. These modified transfor-
mations called “fast” Givens transformations, and are described in Golub and Van
Loan [29, , Sec. 5.1.13].

8.3.5 Householder QR Factorization

Methods for solving the linear least squares problem which, like the SVD, are based
on orthogonal transformations avoid the squaring of the condition number that re-
sults from forming the normal equations. In this section we first develop algorithms
using elementary orthogonal transformations to factor a matrix A ∈ Rm×n (m ≥ n)
into the product of a square orthogonal matrix Q ∈ Rm×m and an upper triangular
matrix R ∈ Rm×n. We then show how to use this full QR factorization for
solving linear least squares problems.

Theorem 8.3.3. The Full QR Factorization
Let A ∈ Rm×n with rank (A) = n. Then there is an orthogonal matrix Q ∈

Rm×m and an upper triangular matrix R with positive diagonal elements such that

A = Q

(

R
0

)

. (8.3.39)

Proof. A constructive proof will be given in Sec. 8.4.3.

Since Q is orthogonal the singular values of R equal those of A and κ(R) =
κ(A). Indeed, to compute the SVD of A one can first compute the QR factorization
and then the SVD of R.

The QR factorization can be written

A = (Q1, Q2)

(

R
0

)

= Q1R. (8.3.40)

where Q has been partitioned as Q = (Q1, Q2), Q1 ∈ Rm×n, Q2 ∈ Rm×(m−n). This
is the the factorization computed by the Gram–Schmidt algorithm. From (8.3.40) it
follows that the columns of Q1 and Q2 form orthonormal bases for the range space
of A and its orthogonal complement,

R(A) = R(Q1), N (AT ) = R(Q2), (8.3.41)

and the corresponding orthogonal projections are

PR(A) = Q1Q
T
1 , PN (AT ) = Q2Q

T
2 . (8.3.42)

Note that although the matrix Q1 in (8.3.40) is uniquely determined, Q2 can be
any orthogonal matrix with range N (AT ).

In contrast to the Gram–Schmidt algorithm for computing the QR factoriza-
tion, the methods we now consider represents Q implicitly as a product of House-
holder or Givens matrices. This elegantly avoids the problem with loss of orthogo-
nality in Q!
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The QR factorization of a matrix A ∈ Rm×n of rank n can be computed using
a sequence of n Householder reflectors. Let A = (a1, a2, . . . , an), σ1 = ‖a1‖2, and
choose H1 = I − β1u1u

T
1 , so that

H1a1 = H1

(

α1

â1

)

=

(

r11
0

)

, r11 = −sign (α1)σ1.

By (8.3.30) we achieve this by choosing β1 = 1 + |α1|/σ1,

u1 =

(

1
û1

)

, û1 = sign (α1)â1/ρ1, ρ1 = σ1β1.

H1 is then applied to the remaining columns a2, . . . , an, giving

A(2) = H1A =









r11 r12 . . . r1n

0 ã22 . . . ã2n
...

...
...

0 ãn2 . . . ãnn









.

Here the first column has the desired form and, as indicated by the notation, the
first row is the final first row in R. In the next step the (m− 1) × (n− 1) block in
the lower right corner is transformed. All remaining steps, k = 2, . . . , n are similar
to the first. Before the kth step we have computed a matrix of the form

A(k) =

(

k−1

k−1 R
(k)
11 R

(k)
12

0 Â(k)

)

, (8.3.43)

where the first k − 1 rows of A(k) are rows in the final matrix R, and R
(k)
11 is upper

triangular. In step k the matrix a(k) is transformed,

A(k+1) = HkA
(k), Hk =

(

Ik 0
0 H̃k

)

. (8.3.44)

Here H̃k = I − βkuku
T
k is chosen to zero the elements below the main diagonal in

the first column of the submatrix

Â(k) = (a
(k)
k , . . . , a(k)

n ) ∈ R(m−k+1)×(n−k+1),

i.e. H̃ka
(k)
k = rkke1. With σk = ‖a(k)

k ‖2, using (8.3.29), we get rkk = −sign
(

a
(k)
kk

)

σk,
and

ûk = sign (α
(k)
k )â

(k)
k /ρk, βk = 1 + |akk|/σk. (8.3.45)

where ρk = σkβk. After n steps we have obtained the QR factorization of A, where

R = R
(n+1)
11 , Q = H1H2 · · ·Hn. (8.3.46)

Note that the diagonal elements rkk will be positive if a
(kk)
k is negative and neg-

ative otherwise. Negative diagonal elements may be removed by multiplying the
corresponding rows of R and columns of Q by −1. 2

2The difference between the Householder and Gram–Schmidt QR algorithms has been aptly
summarized by Trefethen, who calls Gram–Schmidt triangular orthogonalization as opposed to
Householder which is orthogonal triangularization.
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Algorithm 8.3.9 Householder QR Factorization.
Given a matrix A(1) = A ∈ Rm×n of rank n, the following algorithm computes R
and Householder matrices:

Hk = diag (Ik−1, H̃k), H̃k = I − βkuku
T
k , k = 1, 2, . . . , n, (8.3.47)

so that Q = H1H2 · · ·Hn.

for k = 1, 2, . . . , n

[uk, βk, rkk] = house(a
(k)
k );

for j = k + 1, . . . , n

γjk = βku
T
k a

(k)
j ;

rkj = a
(k)
kj − γjk;

a
(k+1)
j = â

(k)
j − γjkûk;

end

end

The vectors ûk can overwrite the elements in the strictly lower trapezoidal part
of A. Thus, all information associated with the factors Q and R can be overwritten
A. The vector (β1, . . . , βn) of length n can be recomputed from

βk = 1
2 (1 + ‖ûk‖2

2)
1/2,

and therefore need not be saved. The algorithm requires (mn2 − n3/3) multiplica-
tions, or n3/3 less than for the MGS method. Note that in the special case that
m = n it would be possible to skip the last step which just computes H̃n = −1 and

rnn = −a(n)
nn .

Following Higham [Eq. (3.8)][33]) we will in the following frequently make use
of the notation

γ̄k =
cku

1 − cku/2
, (8.3.48)

where c denotes a small integer constant.

Theorem 8.3.4.
Let R̄ denote the upper triangular matrix R computed by the Householder QR

algorithm. Then there exists an exactly orthogonal matrix Q̂ ∈ Rm×m (not the
matrix corresponding to exact computation throughout) such that

A+ E = Q̂

(

R̄
0

)

,

where

‖ej‖2 ≤ γ̄n‖aj‖2, j = 1 : n,
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As have been stressed before it is usually not advisable to compute the matrix
Q in the QR factorization explicitly, even when it is to be used in later calculations.
In the rare case that the Q = H1H2 · · ·Hn from the Householder algorithm is
explicitly required it should be accumulated in backward order by taking Q(n) = Im,
and computing Q = Q(0) in 2(m2n−mn2 + n3/3) flops by the recursion

Q(k−1) = HkQ
(k), k = n : −1 : 1.

Note that by setting

Q(n) =

(

In
0

)

, or Q(n) =

(

0
Im−n

)

,

we can similarly accumulate Q1 or Q2 separately. mn2−n3/3 and 2m2n−3mn2+n3

flops, respectively; see Problem 3.
It is often advantageous to use column pivoting in the QR factorization and

compute

AP = Q

(

R
0

)

, (8.3.49)

where P is a permutation matrix. The following simple pivoting strategy, first sug-
gested by Golub, has been shown to work well in practice. Assume that after k steps
in the Householder Algorithm 7.3.3 we have computed the partial QR factorization

A(k+1) = (Hk · · ·H1)A(Π1 · · ·Πk) =

(

R
(k+1)
11 R

(k+1)
12

0 Ã(k+1)

)

, (8.3.50)

Then the pivot column in the next step is chosen as a column of largest norm in
the submatrix

Ã(k+1) = (ã
(k+1)
k+1 , . . . , ã(k+1)

n ) ∈ R(m−k)×(n−k),

i.e., Πk+1 is chosen to interchange columns p and k + 1, where p is the smallest
index such that

s(k+1)
p ≥ s

(k+1)
j , s

(k+1)
j = ‖ã(k+1)

j ‖2
2, j = k + 1, . . . , n. (8.3.51)

If s
(k+1)
p = 0 then the algorithm terminates with Ã(k+1) = 0 in (8.3.50). This

pivoting strategy can be viewed as choosing a remaining column of largest distance
to the subspace spanned by the previously chosen columns. This is equivalent to
maximizing the diagonal element rk+1,k+1.

If the column norms in ã(k) were recomputed at each stage, then column
pivoting would increase the operation count by 50%. Instead the norms of the
columns of A can be computed initially, and recursively updated as the factorization
proceeds. This reduces the overhead of column pivoting to 0(mn) operations. This
pivoting strategy can also be implemented in the Cholesky and modified Gram–
Schmidt algorithms.
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Since column norms are preserved by left orthogonal transformations it is
easily shown that the elements in R, computed by QR factorization with pivoting,
satisfy

r2kk ≥
j

∑

i=k

r2ij , j = k + 1, . . . , n. (8.3.52)

This implies in particular that |rkk| ≥ |rkj |, j > k and that the diagonal elements
form a non-increasing sequence,

|r11| ≥ |r22| ≥ · · · ≥ |rnn|. (8.3.53)

To obtain near-peak performance for large dense matrix computations on cur-
rent computing architectures requires code that is dominated by matrix-matrix
operations since these involve less data movement per floating point computation.
The QR factorization should therefore be organized in partitioned or blocked form,
where the operations have been reordered and grouped into matrix operations.

For the QR factorization A ∈ Rm×n (m ≥ n) is partitioned as

A = (A1, A2), A1 ∈ Rm×nb, (8.3.54)

where nb is a suitable block size and the QR factorization

QT
1 A1 =

(

R1

0

)

, Q1 = H1H2 · · ·Hnb, (8.3.55)

is computed, where Hi = I−uiu
T
i are Householder reflections. Then the remaining

columns A2 are are updated

QT
1 A2 = QT

1

(

A12

A22

)

=

(

R12

Ã22

)

. (8.3.56)

In the next step we partition Ã22 = (B1, B2), and compute the QR factorization of
B1 ∈ R(m−r)×r. Then B2 is updated as above, and we continue in this way until
the columns in A are exhausted.

A major part of the computation in spent in the updating step (8.3.56). As
written this step cannot use BLAS-3, which slows down the execution. To achieve
better performance it is essential that this part is sped up. The solution is to aggre-
gate the Householder transformations so that their application can be expressed as
matrix operations. For use in the next subsection, we give a slightly more general
result.

Lemma 8.3.5.
Let H1, H2, . . . , Hr be a sequence of Householder transformations. Set r =

r1 + r2, and assume that

Q1 = H1 · · ·Hr1
= I − Y1T1Y

T
1 , Q2 = Hr1+1 · · ·Hr = I − Y2T2Y

T
2 ,

where T1, T2 ∈ Rr×r are upper triangular matrices. Then for the product Q1Q2 we
have

Q = Q1Q2 = (I − Y1T1Y
T
1 )(I − Y2T2Y

T
2 ) = (I − Y TY T ) (8.3.57)
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where

Ŷ = (Y1, Y2), T̂ =

(

T1 −(T1Y
T
1 )(Y2T2)

0 T2

)

. (8.3.58)

Note that Y is formed by concatenation, but computing the off-diagonal block in T
requires extra operations.

For the partitioned algorithm we use the special case when r2 = 1 to aggregate
the Householder transformations for each processed block. Starting with Q1 =
I − τ1u1u

T
1 , we set Y = u1, T = τ1 and update

Y := (Y, uk+1), T :=

(

T −τkTY Tuk

0 τk

)

, k = 2 : nb. (8.3.59)

Note that Y will have a trapezoidal form and thus the matrices Y and R can
overwrite the matrix A. With the representation Q = (I − Y TY T ) the updating of
A2 becomes

B = QT
1 A = (I − Y T TY T )A2 = A2 − Y T TY TA2,

which now involves only matrix operations.
This partitioned algorithm requires more storage and operations than the

point algorithm, namely those needed to produce and store the T matrices. How-
ever, for large matrices this is more than offset by the increased rate of execution.

As mentioned in Chapter 7 recursive algorithms can be developed into highly
efficient algorithms for high performance computers and are an alternative to the
currently more used partitioned algorithms by LAPACK. The reason for this is
that recursion leads to automatic variable blocking that dynamically adjusts to an
arbitrary number of levels of memory hierarchy.

Consider the partitioned QR factorization

A = (A1 A2 ) = Q

(

R11 R12

0 R22

)

where Let A1 consist of the first ⌊n/2⌋ columns of A. To develop a recursive
algorithm we start with a QR factorization of A1 and update the remaining part
A2 of the matrix,

QT
1 A1 =

(

R11

0

)

, QT
1 A2 = QT

1

(

A12

A22

)

=

(

R12

Ã22

)

.

Next Ã22 is recursively QR decomposed giving Q2, R22, and Q = Q1Q2.
As an illustration we give below a simple implementation in Matlab, which is

convenient to use since it allows for the definition of recursive functions.

function [Y,T,R] = recqr(A)

%

% RECQR computes the QR factorization of the m by n matrix A,

% (m >= n). Output is the n by n triangular factor R, and
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% Q = (I - YTY’) represented in aggregated form, where Y is

% m by n and unit lower trapezoidal, and T is n by n upper

% triangular

[m,n] = size(A);

if n == 1

[Y,T,R] = house(A);

else

n1 = floor(n/2);

n2 = n - n1; j = n1+1;

[Y1,T1,R1]= recqr(A(1:m,1:n1));

B = A(1:m,j:n) - (Y1*T1’)*(Y1’*A(1:m,j:n));

[Y2,T2,R2] = recqr(B(j:m,1:n2));

R = [R1, B(1:n1,1:n2); zeros(n-n1,n1), R2];

Y2 = [zeros(n1,n2); Y2];

Y = [Y1, Y2];

T = [T1, -T1*(Y1’*Y2)*T2; zeros(n2,n1), T2];

end

%

The algorithm uses the function house(a) to compute a Householder transformation
P = I −+τ uuT , such that Pa = σ e1, σ = −sign (a1)‖a‖2. A serious defect of this
algorithm is the overhead in storage and operations caused by the T matrices. In
the partitioned algorithm n/nb T -matrices of size we formed and stored, giving a
storage overhead of 1

2n ·nb. In the recursive QR algorithm in the end a T -matrix of
size n× n is formed and stored, leading to a much too large storage and operation
overhead. Therefore a better solution is to use a hybrid between the partitioned
and the recursive algorithm, where the recursive QR algorithm is used to factorize
the blocks in the partitioned algorithm.

8.3.6 Least Squares Problems by QR Factorization

We now show how to use the QR factorization to solve the linear least squares
problem (8.1.1).

Theorem 8.3.6.
Let the QR factorization of A ∈ Rm×n with rank (A) = n ≤ m be given by

(8.3.39). Then the unique solution x to minx ||Ax − b||2 and for the corresponding
residual vector r are given by

x = R−1c1, c =

(

c1
c2

)

= QT b, r = Q

(

0
c2

)

, (8.3.60)

and hence ‖r‖2 = ‖c2‖2.
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Proof. Since Q is orthogonal we have

‖Ax− b‖2
2 =

∥

∥QT (Ax− b)
∥

∥

2

2
=

∥

∥

∥

∥

(

Rx
0

)

−
(

c1
c2

)∥

∥

∥

∥

2

2

= ‖Rx− c1‖2
2 + ‖c2‖2

2.

Obviously the minimum residual norm ‖c2‖2 is obtained by taking x = R−1c1.
With c defined by (8.3.60) and using the orthogonality of Q we have

b = QQT b = Q1c1 +Q2c2 = Ax + r

which shows the formula for r.

By Theorem 8.3.6, when R and H1, H2, . . . , Hn have been computed by Algo-
rithm 8.3.5 the least squares solution x and residual r can be computed from

n{
(

c1
c2

)

= Hn · · ·H2H1b, Rx = c1,

r = H1 · · ·Hn−1Hn

(

0
c2

)

, (8.3.61)

and ‖r‖2 = ‖c2‖2. Note that the matrix Q should not be explicitly formed.
When rank (A) = m ≤ n, i.e., the matrix A has full row rank, the QR fac-

torization of AT (which is equivalent to the LQ factorization of A) can be used to
solve the minimum norm problem (8.1.2).

Theorem 8.3.7.
Let A ∈ Rm×n with rank (A) = m, have the LQ factorization

A = (L 0 )

(

QT
1

QT
2

)

, Q1 ∈ Rn×m,

Then the general solution to the underdetermined system Ax = b is

x = Q1y1 +Q2y2, y1 = L−1b (8.3.62)

where y2 is arbitrary. The minimum norm solution is obtained by taking y2 = 0,

x = Q1L
−1b. (8.3.63)

Proof. Since A = (L 0 )QT the system Ax = b can be written

(L 0 ) y = b, y =

(

y1
y2

)

= QTx.

L is nonsingular, and thus y1 is determined by Ly1 = b. The vector y2 can be chosen
arbitrarily. Further, since ‖x‖2 = ‖Qy‖2 = ‖y‖2 the minimum norm solution is
obtained by taking y2 = 0.
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The operation count mn2 − n3/3 for the QR method can be compared with
that for the method of normal equations, which requires 1

2 (mn2 + n3/3) multipli-
cations. Hence, for m = n both methods require the same work but for m≫ n the
QR method is twice as expensive. To compute c by (8.3.61) requires (2mn − n2)
multiplications, and thus to compute the solution for each new right hand side takes
only (2mn−n2/2) multiplications. The Householder QR algorithm, and the result-
ing method for solving the least squares problem are backwards stable, both for x
and r, and the following result holds.

Theorem 8.3.8.
Let R̄ denote the computed R. Then there exists an exactly orthogonal matrix

Q̃ ∈ Rm×m (not the matrix corresponding to exact computation throughout) such
that

A+ E = Q̃

(

R̄
0

)

, ‖E‖F ≤ cu‖A‖F ,

where ‖ · ‖F denotes the Frobenius norm, c = 6n(m − n/2 + 7), and u is the ma-
chine precision. Further, the computed solution x̄ is the exact solution of a slightly
perturbed least squares problem

min
x

‖(A+ δA)x− (b+ δb)‖2,

where the perturbation can be bounded in norm by

‖δA‖F ≤ cu‖A‖F , ‖δb‖2 ≤ cu‖b‖2, (8.3.64)

Proof. See Higham [33, Theorem 19.5].

A method combining LU factorization and orthogonalization can be developed
by solving the least squares problem in (8.2.22) by an orthogonal reduction of L to
lower triangular form. The solution is then obtained by solving L̃y = c1 by forward
substitution, where

L = Q

(

L̃
0

)

, QT Π1b =

(

c1
c2

)

.

In Cline’s method, Householder transformations can be used to perform this re-
duction of L. The kth Householder transformation Pk is chosen to affect only rows
k, n + 1, . . . ,m and zero elements in column k below row n. The total number of
flops required for computing the least squares solution x by Cline’s method is about
n2(3

2m− 7
6n) flops. Since the method of normal equations using the Cholesky factor-

ization on ATA requires n2(1
2m+ 1

6n) flops Cline’s method uses fewer operations if
m ≤ 4

3n. Hence for slightly overdetermined least squares problems, the elimination
method combined with Householder transformations is very efficient.

A version solving (8.2.22) with the MGS method has been analyzed by Plem-
mons [50, ]. If the lower triangular structure of L is taken advantage of then
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this method requires n2(3
2m − 5

6n) flops, which is slightly more than Cline’s vari-
ant. Similar methods for the underdetermined case (m < n) based on the LU
decomposition of A have been studied by Cline and Plemmons [17, ].

An algorithm similar to Algorithm 8.3.5, but using Givens rotations, can easily
be developed. The greater flexibility of Givens rotations can be taken advantage
of when the matrix A is structured or sparse; see, e.g., Problem 3, where the QR
factorization of a Hessenberg matrix is considered.

Peters and Wilkinson commented in 1970: “Evidence is accumulating that the
modified Gram–Schmidt method gives better results than Householder. . . . The rea-
sons for this phenomenon appear not to have been elucidated yet.” A key observation
for understanding the good numerical properties of the modified Gram–Schmidt al-
gorithm is that it can be interpreted as Householder QR factorization applied to
the matrix A augmented with a square matrix of zero elements on top. These two
algorithms are not only mathematically but also numerically equivalent. In the
MGS method the columns are transformed by

a
(k+1)
j = Mka

(k)
j , Mk = I − qkq

T
k ,

where Mk is the orthogonal projection onto the complement of qk. In the House-
holder method one computes the factorization

PT

(

0
A

)

=

(

R
0

)

, PT = Pn · · ·P2P1,

Pk = I − vkv
T
k , vk =

(

−ek

qk

)

.

Here ‖vk‖2
2 = 2, and hence Pk is a Householder reflection. Because of the special

structure of the augmented matrix the vectors vk have a special form. Since the first
n rows are initially zero, the scalar products of the vector vk with later columns will
only involve qk, and it can be verified that the quantities rkj and qk are numerically
equivalent to the quantities computed in the modified Gram–Schmidt method.

8.3.7 Condition and Error Estimation

Using the above pivoting strategy, a lower bound for κ(A) = κ(R) can be obtained
from the diagonal elements of R. We have |r11| ≤ σ1 = ‖R‖2, and since the diagonal
elements of R−1 equal r−1

ii , i = 1, . . . , n, it follows that r−1
nn | ≤ σ−1

n = ‖R−1‖2,
provided rnn 6= 0. Combining these estimates we obtain the lower bound

κ(A) = σ1/σn ≥ |r11/rnn| (8.3.65)

Although this may considerably underestimate κ(A), it has proved to give a fairly
reliable estimate in practice. Extensive numerical testing has shown that (8.3.65)
usually underestimates κ(A) only by a factor of 2–3, and seldom by more than 10.

When column pivoting has not been performed, the above estimate of κ(A) is
not reliable. Then a condition estimator similar to that described in Sec. 7.6.5 can
be used. Let u be a given vector and define v and w from

RT v = u, Rw = v.
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We have w = R−1(R−Tu) = (ATA)−1u so this is equivalent to one step of inverse
iteration with ATA, and requires about 0(n2) multiplications. Provided that u is
suitably chosen (cf. Sec. 7.6.5)

σ−1
n ≈ ‖w‖2/‖v‖2

will usually be a good estimate of σ−1
n . We can also take u as a random vector and

perform and 2–3 steps of inverse iteration. This condition estimator will usually
detect near rank deficiency even in the case when this is not revealed by a small
diagonal element in R.

More reliable estimates can be based on the componentwise error bound
(8.1.33) given in Sec. 8.1.5. This estimate has the form

‖δx‖∞ ≤ ω(‖ |B1|g1‖∞ + ‖ |B2|g2‖∞), (8.3.66)

where

B1 = A†, g1 = |b| + |A||x|, B2 = (ATA)−1, g2 = |AT ||r|. (8.3.67)

Consider now a general expression of the form ‖ |B−1|d‖∞, where d > 0 is a
known nonnegative vector. Writing D = diag (d) and e = (1, 1, . . . , 1), we have3

‖ |B−1|d‖∞ = ‖ |B−1|De‖∞ = ‖ |B−1D|e‖∞ = ‖ |B−1D|‖∞ = ‖B−1D‖∞.
(8.3.68)

Hence the problem is equivalent to that of estimating ‖C‖∞, where C = B−1D.
There are algorithms that produce reliable order-of-magnitude estimates of ‖CT ‖1 =
‖C‖∞ using only a few matrix-vector products of the form Cx and CT y for some
carefully selected vectors x and y. Since these are rather tricky we will not describe
them in detail here. An excellent discussion is given in Higham [33, Chapter 15].

If A has full rank and A = QR then A† = R−1QT and (A†)T = QR−T . Hence
the required products can be computed inexpensively.

Review Questions

1 Let w ∈ Rn, ‖w‖2 = 1. Show that I − 2wwT is orthogonal. What is the
geometrical significance of the matrix I − 2wwT ? Give the eigenvalues and
eigenvectors of these matrices.

2. Define a Givens transformations Gij(φ) ∈ Rn×n. Give a geometrical interpre-
tations for the case n = 2.

3. Describe the difference between the classical and modified Gram–Schmidt
methods for computing the factorization A = Q1R. What can be said about
the orthogonality of the computed matrix Q1 for these two algorithms?

3This clever observation is due to Arioli, Demmel, and Duff [2].
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4. Define the QR factorization of a matrix A ∈ Rm×n, in the case that rank (A) =
n ≤ m. What is its relation to the Cholesky factorization of ATA?

Problems

1. Compute using Householder reflectors H1, H2, the factorization

QTA = H2H1A =

(

R
0

)

, A = (a1, a2) =







1 5
2 6
3 7
4 8






,

to four decimal places

2. Solve the least squares problem minx ‖Ax− b‖2, where




√
2 0

1 −1
1 1



 , b =





1
2
3



 .

using a QR factorization computed with Givens transformation;

3. Suppose the square root free version of modified Gram–Schmidt is used to
compute the factorization A = Q̃1R̃. Modify Algorithm 8.3.2 for computing
the least squares solution and residual from this factorization.

4. Describe in detail how to compute the QR factorization of a Hessenberg matrix
H ∈ Rn×n using Givens transformations. For n = 5 such a matrix has the
form

H =











h11 h12 h13 h14 h15

h21 h22 h23 h24 h25

h32 h33 h34 h35

h43 h44 h45

h54 h55











.

Approximately how many multiplications are needed for general n?

5. (a) If the matrix Q in the QR factorization is explicitly required in the House-
holder algorithm it can be computed by setting Q(n) = Im, and computing
Q = Q(0) by backward recursion

Q(k−1) = HkQ
(k), k = n : −1 : 1.

Show that if advantage is taken of the property that Hk = diag (Ik−1, H̃k) this
accumulation requires 2(m2n−mn2 +n3/3) flops. What is the corresponding
operation count if forward recursion is used?

(b) Show how we can compute

Q1 = Q

(

In
0

)

, Q2 = Q

(

0
Im−n

)

separately in mn2−n3/3 and 2m2n−3mn2 +n3 multiplications, respectively.
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6. Let Q = Q1 = (q1, q2, . . . , qn) ∈ Rn×n be a real orthogonal matrix.

(a) Determine a reflectorH1 = I−2v1v
T
1 , such thatH1q1 = e1 = (1, 0, . . . , 0)T ,

and show that H1Q1 = Q2 has the form

Q2 =









1 0 · · · 0
0
... Q̃2

0









,

where Q̃2 = (q̃1, q̃2, . . . , q̃n) ∈ R(n−1)×(n−1) is a real orthogonal matrix.

(b) Show, using the result in (a), that Q can be transformed to diagonal form
with a sequence of orthogonal transformations

Hn−1 · · ·H2H1Q = diag (1, . . . , 1,±1).

7. An orthogonal matrix Q such that det(Q) = 1 is called a rotation matrix.
Show that any rotation matrix Q ∈ R3×3 can be written as a product of three
Givens rotations

Q = G23(φ)G12(θ)G23(ψ).

The three angles φ, θ, and ψ are called the Euler angles.

Hint: Consider the QR factorization of Q.

8. Test the recursive QR algorithm recqr(A) given in Sec. sec8.3.6 on some
matrices. Check that you obtain the same result as from the built-in function
qr(A).

8.4 Rank Deficient and Ill-Posed Problems

8.4.1 Regularized Least Squares Problems

In solving linear systems and linear least squares problems failure to detect ill-
conditioning and possible rank deficiency in A can lead to a meaningless solution of
very large norm, or even to breakdown of the numerical algorithm. In this section
we discuss how to assign a numerical rank to a matrix and how algorithms should
be modified to cope with rank deficiency and ill-conditioning.

Example 8.4.1. Consider an example based on the integral equation of the first
kind

∫ 1

1

k(s, t)f(s)ds = g(t), k(s, t) = e−(s−t)2 ,

on −1 ≤ t ≤ 1. To compute g(t) given f(s) is well conditioned problem. How-
ever, the inverse problem of reconstructing f(s) given g(t) is a very ill-conditioned
problem.

The equation can be discretized using a uniform mesh on [-1,1] and the trape-
zoidal rule, giving a finite-dimensional linear system Kf = g, where K ∈ Rn×n,
and f, g ∈ Rn. For n = 100 the singular values σk of the matrix K are displayed in
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Figure 8.4.1. Singular values of the matrix K.

logarithmic scale in Figure 8.4.1. Note that for k > 30 all σk are close to roundoff
level, so the numerical rank of K certainly is smaller than 30. This means that
the linear system Kf = g is numerically under-determined and has a meaningful
solution only for special right hand sides g.

The choice of the parameter δ in Definition 8.1.15 is not always an easy matter.
If the errors in aij satisfy |eij | ≤ ǫ, for all i, j, an appropriate choice is δ = (mn)1/2ǫ.
On the other hand, if the absolute size of the errors eij differs widely, then Defini-
tion 8.1.15 is not appropriate. One could then scale the rows and columns of A so
that the magnitude of the errors become nearly equal. (Note that any such diagonal
scaling DrADc will induce the same scaling DrEDc of the error matrix.)

We now consider solving the linear least squares problem

min
x

‖Ax− b‖2, (8.4.1)

where the matrix A is ill-conditioned and possibly rank deficient. If A has numerical
rank equal to k < n, we can get a more stable approximative solution by discarding
terms in the expansion (8.1.10) corresponding to singular values smaller or equal to
δ, and take the solution as the truncated SVD (TSVD) solution

x(δ) =
∑

σi>δ

ci
σi
vi. (8.4.2)

If σk > δ ≥ σk+1 then the TSVD solution is x(δ) = A†

kb and solves the related least
squares problem

min
x

‖Akx− b‖2, Ak =
∑

σi>δ

σiuiv
T
i ,

where Ak is the best rank k approximation of A. We have

‖A−Ak‖2 = ‖AV2‖2 ≤ δ, V2 = (vk+1, . . . , vn).
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In general the most reliable way to determine an approximate pseudo-inverse
solution of a numerically rank deficient least squares problems is by first comput-
ing the SVD of A and then using an appropriate truncated SVD solution (8.4.2).
However, this is also an expensive method. In practice the QR factorization often
works as well, provided that some form of column pivoting is carried out.

An alternative to the truncated SVD (TSVD) solution is to consider the
regularized problem

min
x

‖Ax− b‖2
2 + µ2‖Dx‖2

2, (8.4.3)

where D = diag (d1, . . . , dn) > 0 is a positive diagonal matrix. The problem (8.4.3),
also called a damped least squares problem, is equivalent to the least squares
problem

min
x

∥

∥

∥

∥

(

A
µD

)

x−
(

b
0

)∥

∥

∥

∥

2

, (8.4.4)

where the matrix A has been modified by appending the matrix µD. When µ > 0
this problem is always of full column rank and has a unique solution. (Often dj is
taken to be proportional to the 2-norm of the jth column in A.)

The solution to problem (8.4.3) satisfies the normal equations

(ATA+ µ2D2)x = AT b.

However, from the formulation (8.4.4) it is seen that the solution can also be ob-
tained from the QR factorization

(

A
µD

)

= Q

(

R
0

)

, (8.4.5)

which can be computed by some of the algorithms described before. The special
structure can be taken advantage of. For example, in the Householder QR factoriza-
tion the shape of the transformed matrix after k = 2 steps is as follows (m = n = 4):

0

B

B

B

B

B

B

B

B

B

@

× × × ×
0 × × ×
0 0 × ×
0 0 × ×
0 0 + +

0 + +

×
×

1

C

C

C

C

C

C

C

C

C

A

Notice that the first two rows of D have filled in, but the remaining rows of D are
still not touched. For each step k = 1, . . . , n there are m elements in the current
column to be annihilated. Therefore the operation count for the Householder QR
factorization will increase with n3/3 to mn2 flops. A similar increase in operations
occurs in Givens or MGS QR factorizations. If A = R already is in upper triangular
form then the flop count for the reduction is reduced to approximately n3/3 (cf.
Problem 1b).
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If D = I the singular values of the modified matrix in (8.4.4) are equal to
σ̃i = (σ2

i + µ2)1/2, i = 1, . . . , n. In this case the solution can be expressed in terms
of the SVD as

x(µ) =

n
∑

i=1

fi
ci
σi
vi, fi =

σ2
i

σ2
i + µ2

. (8.4.6)

The quantities fi are often called filter factors. Notice that as long as µ≪ σi we
have fi ≈ 1, and if µ≫ σi then fi ≪ 1. This establishes a relation to the truncated
SVD solution (8.4.2) which corresponds to a filter factor which is a step function
fi = 1 if σi > δ and fi = 0 otherwise.

Note that the regularized problem (8.4.3) can be used also when m < n (i.e.,
when A has fewer rows than columns). However, in this case it may be better to
consider the regularized problem

min

∥

∥

∥

∥

(

x
z

)∥

∥

∥

∥

2

2

, subject to (A µD)

(

x
z

)

= b. (8.4.7)

The solution of this problem can be written x = AT y, z = (µD)−1(b− Ax), where
y satisfies the system of normal equations

(AAT + µ2D2)y = b.

Using Theorem 8.3.7, a method for solving problem (8.4.7) is obtained which uses
the QR factorization of the matrix (µD A)T , which can be computed in m2n opera-
tions. Surprisingly, when D = I the two problems (8.4.3) and (8.4.7) are equivalent.
To see this set note that since z = (µ)−1(b−Ax), both problems (8.4.4) and (8.4.7)
are equivalent to

min
x

{

‖r‖2
2 + µ2‖x‖2

2

}

, r = b−Ax.

Even with regularization we may not be able to compute the solution of an
ill-conditioned problem with the accuracy that the data allows. In those cases it is
possible to improve the solution by the following iterated regularization scheme.
Take x(0) = 0, and compute a sequence of approximate solutions by

x(q+1) = x(q) + δx(q),

where δx(q) solves the least squares problem

min
δx

∥

∥

∥

∥

(

A
µI

)

δx−
(

r(q)

0

)∥

∥

∥

∥

2

, r(q) = b−Ax(q). (8.4.8)

This iteration may be implemented very effectively since only the QR factorization
(8.4.5) (with D = I) is needed. The convergence of iterated regularization can be
expressed in terms of the SVD of A.

x(q)(µ) =

n
∑

i=1

f
(q)
i

ci
σi
vi, f

(q)
i = 1 −

( µ2

σ2
i + µ2

)q

. (8.4.9)

Thus for q = 1 we have the standard regularized solution and as q → ∞ x(q) → A†b.
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8.4.2 QR Factorization and Rank Deficient Matrices

Although any matrix A ∈ Rm×n has a QR factorization, the following example
shows that this may not always be useful when rank (A) < n:

Example 8.4.2.
For any c and s such that c2 + s2 = 1 we have

A =

(

0 0
0 1

)

=

(

c −s
s c

) (

0 s
0 c

)

= QR.

Here rank (A) = 1 < 2 = n. Note that the columns of Q no longer provide
any information about an orthogonal basis for R(A) and its complement.

We now indicate how the QR factorization should be modified in the rank
deficient case.

Theorem 8.4.1.
Given A ∈ Rm×n with rank (A) = r ≤ min(m,n) there is a permutation

matrix Π and an orthogonal matrix Q =∈ Rm×m such that

AΠ = Q

(

R11 R12

0 0

)

(8.4.10)

where R11 ∈ Rr×r is upper triangular with positive diagonal elements.

Proof. Since rank (A) = r, we can always choose a permutation matrix Π such
that AΠ = (A1, A2), where A1 ∈ Rm×r has linearly independent columns. Then
A1 has a QR factorization and we can write

QTAΠ = (QTA1 QTA2 ) =

(

R11 R12

0 R22

)

,

where R11 has positive diagonal elements. From rank (QTAΠ) = rank (A) = r
it follows that R22 = 0, since otherwise QTAΠ would have more than r linearly
independent rows.

Note that it is not required that m ≥ n in Theorem 8.4.1. The factorization is
not unique, since there may be several ways to choose the permutation Π. Pivoting
strategies for determining a suitable Π will be discussed later in this section.

The factorization (8.4.10) can be used to solve rank deficient linear least
squares problems. To simplify notations we assume in the following that Π = I.
(This is no restriction since the column permutation of A can always be assumed
to have been carried out in advance.) Using the invariance of the l2-norm problem
(8.1.1) becomes

min
x

∥

∥

∥

∥

(

R11 R12

0 0

) (

x1

x2

)

−
(

c1
c2

)∥

∥

∥

∥

2

,
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where x and c have been partitioned conformally. Since R11 is nonsingular the
first r equations can be satisfied for any x2 by taking x1 to be the solution to
R11x1 = c1 −R12x2. Hence the general least squares solutions can be written

x1 = R−1
11 (c1 −R12x2) = xb − C1x2, (8.4.11)

where x2 is arbitrary and

d = R−1
11 c1, C = R−1

11 R12. (8.4.12)

Here C can be computed by solving n − r triangular systems R11C = R12, which
requires r2(n− r)/2 multiplications.

Taking x2 = 0 we we obtain a particular solution x1 = d with at most r =
rank(A) nonzero components Any solution x such that Ax only involves at most
r columns of A, is called a basic least squares solution. Such a solution is
appropriate when we want to fit a vector b of observations using as few columns of
A as possible. It is not unique and depends on the initial column permutation.

We now show how the pseudo-inverse solution can be computed using the
factorization (8.4.10). Then we want to choose x2 so that ‖x‖2 is minimized. From
(8.4.11) it follows that this is achieved by solving the linear least squares problem
for x2

min

∥

∥

∥

∥

(

x1

x2

)∥

∥

∥

∥

2

= min
x2

∥

∥

∥

∥

(

d
0

)

−
(

C
−In−r

)

x2

∥

∥

∥

∥

2

. (8.4.13)

Note that this problem always has a unique solution x2 and that the pseudo-inverse
solution x = A†b equals the residual of the problem.

To compute x2 we can form and solve the normal equations

(I + CCT )x2 = CT d. (8.4.14)

Alternatively we can use Householder QR factorization

QT
C

(

C
In−r

)

=

(

RC

0

)

, QT
C

(

d
0

)

=

(

d1

d2

)

,

taking the special structure into account, to obtain x2 from RCx2 = d1.
We have

A

(

C
−In−r

)

= Q

(

R11 R12

0 0

) (

R−1
11 R12

−In−r

)

= 0,

from which it follows that the nullspace of A is given by

N (A) = R(W ), W =

(

C
−In−r

)

. (8.4.15)

By Theorem 8.1.7 the pseudo-inverse solution is the unique least squares solution
which satisfies x ⊥ N (A). Hence it can be obtained by Gram–Schmidt orthogonal-
ization applied to

(

C d
In−r 0

)

. (8.4.16)

It is possible to carry the factorization one step further to give the related
complete QR factorization of A.
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Theorem 8.4.2.
Given A ∈ Rm×n with rank (A) = r ≤ min(m,n). Then there are orthogonal

matrices Q = (Q1, Q2) ∈ Rm×m, and V = (V1, V2) ∈ Rn×n such that

A = Q

(

R 0
0 0

)

V T (8.4.17)

where R ∈ Rr×r is upper triangular with positive diagonal elements. The pseudo-
inverse of A is then given by

A† = V

(

R−1 0
0 0

)

QT = V1R
−1QT

1 . (8.4.18)

Proof. Starting from the factorization in (8.4.10) we can determine a sequence of
Householder matrices such that

(R11 R12 )Pr · · ·P1 = (R 0 ) .

Here Pk, k = r, r − 1, . . . , 1, is constructed to zero elements in row k and only
affect columns k, r + 1, . . . , n. These transformations require r2(n − r) multiplica-
tions. Then (8.4.17) holds with V = ΠP1 · · ·Pr. Using the orthogonal invariance
of the l2-norm it follows that x = V1R

−1QT
1 b is the minimum norm solution of the

least squares problem (8.1.1). Since the pseudo-inverse is uniquely defined by this
property, cf. Theorem 8.1.5, the last assertion follows.

8.4.3 Rank Revealing QR Factorization

In Sec. 8.3.5 we studied the pivoted QR factorization. It was shown that if the pivot
column in each step of the reduction was chosen as a column of largest norm in the
remaining part, then we have the inequalities

r2kk ≥
j

∑

i=k

r2ij , j = k + 1, . . . , n. (8.4.19)

in particular it holds that |rkk| ≥ |rkj |, j > k and the diagonal elements form a
non-increasing sequence, |r11| ≥ |r22| ≥ · · · ≥ |rnn|.

Taking x = e1 in σ1 = max‖x‖=1 ‖Ax‖2 we find that the lower bound |r11| ≤
σ1(R) for the largest singular value σ1. The matrix R−1 has diagonal elements
1/rkk and singular values 1/σk(A). Hence we also have the inequality σn ≤ |rnn|.

For a triangular matrix satisfying (8.4.19) we also have the upper bound

σ1(R) = ‖R‖2 ≤
(

∑

i≤j

r2ij

)1/2

≤
√
nr11,

and hence σ1(R) ≤ n1/2r11. Using the interlacing property of singular values (The-
orem 8.1.13), a similar argument gives the upper bounds

σk(R) ≤ (n− k + 1)1/2|rk,k|, 1 ≤ k ≤ n. (8.4.20)



66 Chapter 8. Linear Least Squares Problems

If after k steps in the pivoted QR factorization it holds that

|rk,k| ≤ (n− k + 1)−1/2δ,

then σk(A) = σk(R) ≤ δ, and A has numerical rank at most equal to k− 1, and we
should terminate the algorithm. Unfortunately, the converse is not true, i.e., the
rank is not always revealed by a small element |rkk |, k ≤ n. Let R be an upper
triangular matrix whose elements satisfy (8.3.52). The best known lower bound for
the smallest singular value is

σn ≥ 3|rnn|/
√

4n + 6n− 1 ≥ 21−n|rnn|. (8.4.21)

(For a proof see Lawson and Hanson [38, Ch. 6].)
The lower bound in (8.4.21) can almost be attained as shown in the example

below due to Kahan. Then the pivoted QR factorization may not reveal the rank
of A.

Example 8.4.3. Consider the upper triangular matrix

Rn = diag(1, s, s2, . . . , sn−1)















1 −c −c . . . −c
1 −c . . . −c

1
...

. . . −c
1















, s2 + c2 = 1.

It can be verified that the elements in Rn satisfies the inequalities in (8.4.21), and
that Rn is invariant under QR factorization with column pivoting. For n = 100, c =
0.2 the last diagonal element ofR is rnn = sn−1 = 0.820. This can be compared with
the smallest singular value which is σn = 0.368 · 10−8. If the columns are reordered
as (n, 1, 2, . . . , n− 1) and the rank is revealed from the pivoted QR factorization!

The above example did inspire research into alternative column permutation
strategies. The following theorem, which we state without proof, shows that a
column permutation Π can always be found so that the numerical rank of A is
revealed by the QR factorization of AΠ.

Theorem 8.4.3. (H. P. Hong and C. T. Pan [1992].)
Let A ∈ Rm×n, (m ≥ n), and r be a given integer 0 < r < n. Then there

exists a permutation matrix Πr, such that the QR factorization has the form

QTAΠr =

(

R11 R12

0 R22

)

, (8.4.22)

with R11 ∈ Rr×r upper triangular, c =
√

r(n− r) + min(r, n− r)), and

σmin(R11) ≥
1

c
σr(A), σmax(R22) ≤ cσr+1(A). (8.4.23)
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Note that the bounds in this theorem are much better than those in (8.4.21).
From the interlacing properties of singular values (Theorem 8.1.13) it follows

by induction that for any factorization of the form (8.4.22) we have the inequalities

σmin(R11) ≤ σr(A), σmax(R22) ≥ σr+1(A). (8.4.24)

Hence to achieve (8.4.23) we want to choose the permutation Π to maximize σmin(R11)
and simultaneously minimize σmax(R22). These two problems are in a certain sense
dual; cf. Problem 2.

Assume now that A has a well defined numerical rank r < n, i.e.,

σ1 ≥ . . . ≥ σr ≫ δ ≥ σr+1 ≥ . . . ≥ σn.

Then the above theorem says that if the ratio σk/σk+1 is sufficiently large then
there is a permutation of the columns of A such that the rank of A is revealed by
the QR factorization. Unfortunately, to find such a permutation may be a hard
problem. The naive solution, to try all possible permutations, is not feasible since
the cost prohibitive—it is exponential in the dimension n.

Many other pivoting strategies for computing rank revealing QR factorizations
have been proposed. A strategy by T. F. Chan [14] makes use of approximate right
singular vectors of A, which can be determined by inverse iteration (see Sec. 9.4.3).
In case r = n− 1, the column permutation Π is constructed from an approximation
to the right singular vector corresponding to the smallest singular value σn.

8.4.4 The URV and ULV decompositions

In signal processing problems it is often the case that one wants to determine the
rank of A as well as the range (signal subspace) and null space of A. Since the
data analyzed arrives in real time it is necessary to update an appropriate matrix
decompositions at each time step. For such applications the SVD has the disad-
vantage that it cannot in general be updated in less than O(n3) operations, when
rows and columns are added or deleted to A. Although the RRQR decomposition
can be updated, it is less suitable in applications where a basis for the approximate
null space of A is needed, since the matrix W in (8.4.15) cannot easily be updated.

For this reason we introduce the URV decomposition

A = URV T = (U1 U2 )

(

R11 R12

0 R22

) (

V T
1

V T
2

)

, (8.4.25)

where U and V are orthogonal matrices, R11 ∈ Rk×k, and

σk(R11) ≥
1

c
σk,

(

‖R12‖2
F + ‖R22‖2

F

)1/2 ≤ cσk+1. (8.4.26)

Note that here both submatrices R12 and R22 have small elements.
From (8.4.25) we have

‖AV2‖2 =

∥

∥

∥

∥

(

R12

R22

)∥

∥

∥

∥

F

≤ cσk+1,
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and hence the orthogonal matrix V2 can be taken as an approximation to the nu-
merical null space Nk.

Algorithms for computing an URV decomposition start with an initial QR
decomposition, followed by a rank revealing stage in which singular vectors corre-
sponding to the smallest singular values of R are estimated. Assume that w is a
unit vector such that ‖Rw‖ = σn. Let P and Q be a orthogonal matrices such that
QTw = en and PTRQ = R̂ where R̂ is upper triangular. Then

‖R̂en‖ = ‖PTRQQTw‖ = ‖PTRw‖ = σn,

which shows that the entire last column in R̂ is small. Given w the matrices P and
Q can be constructed as a sequence of Givens rotations, Algorithms can also be
given for updating an URV decomposition when a new row is appended.

Like the RRQR decompositions the URV decomposition yield approximations
to the singular values. In [41] the following bounds are derived

fσi ≤ σi(R11) ≤ σi, i = 1 : r,

and
σi ≤ σi−k(R22) ≤ σi/f, i = r + 1 : n,

where

f =

(

1 − ‖R12‖2
2

σmin(R11)2 − ‖R22‖2
2

)1/2

.

Hence the smaller the norm of the off-diagonal block R12, the better the bounds
will be. Similar bounds can be given for the angle between the range of V2 and the
right singular subspace corresponding to the smallest n− r singular values of A.

An alternative decomposition that is more satisfactory for applications where
an accurate approximate null space is needed, is the rank-revealing ULV decom-
position

A = U

(

L11 0
L21 L22

)

V T . (8.4.27)

where the middle matrix has lower triangular form. For this decomposition

‖AV2‖2 = ‖L22‖F , V = (V1, V2),

and hence the size of ‖L21‖ does not adversely affect the null space approximation.
On the other hand the URV decomposition usually gives a superior approximation
for the numerical range space and the updating algorithm for URV is much simpler.

We finally mention that rank-revealing QR decompositions can be effectively
computed only if the numerical rank r is either high, r ≈ n or low, r ≪ n. The low
rank case is discussed in [15]. Matlab templates for rank-revealing UTV decompo-
sitions are described in [22].

An advantage of the complete QR factorization of A is that V2 gives an or-
thogonal basis for the nullspace N (A). This is often useful, e.g., in signal processing
applications, where one wants to determine the part of the signal that corresponds
to noise. The factorization (8.4.18) can be generalized to the case when A is only
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numerically rank deficient in a similar way as done above for the QR factorization.
The resulting factorizations have one of the forms

A = Q

(

R F
0 G

)

V T A = Q

(

RT 0
FT GT

)

V T (8.4.28)

where R is upper triangular and

σk(R) >
1

c
, (‖F‖2

F + ‖G‖2
F )1/2 ≤ cσk+1.

An advantage is that unlike the SVD it is possible to efficiently update the factor-
izations (8.4.28) when rows/columns are added/deleted.

8.4.5 Bidiagonal Decomposition and Least Squares

So far we have considered methods based on the QR factorization of A for solving
least squares problems. It is possible to carry this reduction further using a two-
sided orthogonal factorization.

Theorem 8.4.4.
Any matrix A ∈ Rm×n can be decomposed as

A = UBV T , (8.4.29)

where B is a lower bidiagonal matrix and U and V are orthogonal matrices. In the
nondegenerate case the decomposition is uniquely determined by u1 := Ue1, which
can be chosen arbitrarily.

Note that, since AT = V BTUT , it follows that an arbitrary matrix A can
alternatively be transformed to upper bidiagonal form.

This decomposition is usually the first step in computing the SVD of A; see
Sec. 9.7. It is also powerful tool for solving various least squares problems. We will
give a constructive proof of this theorem below.

In the Golub–Kahan algorithm the reduction is achieved by applying a se-
quence of Householder reflections alternately from left and right. We set A = A(1)

and in the first step compute

A(2) = Q1(AP1) =













α1 0 0 · · · 0
β2 ã22 ã23 · · · ã2n

0 ã32 ã33 · · · ã3n
...

...
...

...
0 ãm2 ãm3 · · · ãmn













.

First P1 is chosen to zero the n−1 elements in the first column of A above the main
diagonal. Next Q1 is chosen to zero the last m− 2 elements in the the first row of
AP1. This transformation does not affect the zeros introduced in the first row.
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All later steps are similar and in the kth step, k = 1 : min(m,n), we compute

A(k+1) = Qk(A(k)Pk),

where Qk and Pk are Householder reflections. Here Pk is chosen to zero the last
n−k elements in the kth row of A(k). Then Qk is chosen to zero the last m−(k+1)
elements in the kth column of A(k)Pk.

When m > n the process ends with the factorization

UTAV =

(

B
0

)

, B =















α1

β2 α2

β3
. . .
. . . αn

βn+1















∈ R(n+1)×n, (8.4.30)

U = Q1Q2 · · ·Qn, V = P1P2 · · ·Pn−1. (8.4.31)

Note that since Qk, only works on rows k + 1 : m, and Pk, only works on columns
k : m. It follows that

u1 = e1. uk = Uek = Q1 · · ·Qkek, k = 2 : n, (8.4.32)

vk = V ek = P1 · · ·Pkek, k = 1 : n− 1, vn = en. (8.4.33)

If m ≤ n then we obtain

UTAV = (B 0 ) , B =















α1

β2 α2

β3
. . .
. . . αm−1

βm αm















∈ Rm×m.

U = Q1Q2 · · ·Qm−2, V = P1P2 · · ·Pm−1.

The above process can always be carried through although some elements in
B may vanish. Note that the singular values of B equal those of A; in particular
rank (A) = rank (B). Using complex Householder transformations (see Sec. 9.6.2) a
complex matrix A can be reduced to real bidiagonal form. by the algorithm above.

The reduction to bidiagonal form is backward stable in the following sense.
The computed B̄ can be shown to be the exact result of an orthogonal transforma-
tion from left and right of a matrix A+ E, where

‖E‖F ≤ cn2u‖A‖F , (8.4.34)

and c is a constant of order unity. Moreover, if we use the information stored to gen-
erate the products U = Q1 · · ·Qn and V = P1 · · ·Pn−2 then the computed matrices
are close to the exact matrices U and V which reduce A + E. This will guaran-
tee that the singular values and transformed singular vectors of B̄ are accurate
approximations to those of a matrix close to A.
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The bidiagonal reduction algorithm as described above requires approximately

4(mn2 − n3/3) flops

when m ≥ n, which is twice the work for a Householder QR factorization. The
Householder vectors associated with U can be stored in the lower triangular part of
A and those associated with V in the upper triangular part of A. Normally U and V
are not explicitly required. They can be accumulated at a cost of 4(m2n−mn2+ 1

3n
3)

and 4
3n

3 flops respectively.
When m ≫ n it is more efficient to use a two-step procedure as originally

suggested by Lawson and Hanson [38] and later analyzed by T. Chan. In the first
step the QR factorization of A is computed (possibly using column pivoting)

AP = Q

(

R
0

)

, R ∈ Rn×n,

which requires 4mn2 − 2
3n

3 flops. In the second step the upper triangular matrix
R is transformed to bidiagonal form using the algorithm described above. Note
that no advantage can be taken of the triangular structure of R in the Householder
algorithm. Already the first postmultiplication of R with P1 will cause the lower
triangular part of R to fill in. Hence the Householder reduction of R to bidiagonal
form will require 4

3n
3 flops. The complete reduction to bidiagonal form then takes

a total of

2(mn2 + n3) flops.

This is less than the original Golub–Kahan algorithm when m/n > 5/3. Trefethen
and Bau [62, pp. 237–238] have suggested a blend of the two above approaches
that reduces the operation count slightly for 1 < m/n < 2. They note that after
k steps of the Golub–Kahan reduction the aspect ratio of the reduced matrix is
(m− k)/(n− k). and thus increases with k. To minimize the total operation count
one should switch to the Chan algorithm when (m− k)/(n− k) = 2. This gives the
operation count

4(mn2 − n3/3 − (m− n)3/6) flops,

a modest approval over the two other methods when n > m > 2n.
If Givens transformation are used to reduce R to upper bidiagonal form it is

possible to take advantage of the triangular form, provided that the elements are
annihilated in a suitable order. In the first major step we can zero the elements
in the first row from right to left, i.e. in the order r1n, . . . , r13. To zero r1j the
columns (j − 1, j) are rotated using a Givens rotation Gj−1,j from the right. This
introduces one new non-zero element rj,j−1 in the lower triangular part, which can
be annihilated by a rotation of the rows (j − 1, j), applying a Givens rotation
G̃j−1,j from the left. This is illustrated below, where the element r14 is zeroed by
first rotating columns 3,4 followed by a rotation of rows 3,4.
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After zeroing the last n− 2 elements in the first row we continue the reduction on
the triangular submatrix in rows and columns 2 : n in the same fashion.

Since two Givens rotations are needed to zero each of the (n − 1)(n − 2)/2
elements, the operation count turns out to be about the same as for the House-
holder reduction if standard Givens rotations are used. If the transformations are
to be accumulated the Givens reduction will require more work, unless fast Givens
transformations are used.

When A is a banded matrix of bandwidth w > 2 then R will be an upper
triangular banded matrix (w = 2 corresponds to a bidiagonal matrix). In this case
the reduction of R to bidiagonal form can be accomplished by successively reducing
the bandwidth by one. (This algorithm is similar to an algorithm by Schwarz [55]
for reducing a symmetric banded matrix to tridiagonal form.) Each zero element
introduced generates a new nonzero element that has to be chased across the border
of the matrix. Because of this the reduction is expensive unless the bandwidth is
small.

Example 8.4.4.
Let w = 3 and n = 7. The figure below illustrates the steps in zeroing out the

element r13 using Givens rotations applied alternately from the right and left
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.

corresponding to the transformations

G67((G45((G23(RG23))G45))G67).

Then the elements r13, . . . , rn−2,n are eliminated in this order. Such “chasing”
algorithms are also commonly used in eigenvalue algorithms. Reduction of an up-
per triangular matrix of bandwidth w to bidiagonal form requires ≈ 4n2(w − 2)
multiplications.

We now derive an algorithm for solving the linear least squares problem
min ‖Ax − b‖2, where A ∈ Rm×n, m ≥ n. Let Q0 be a Householder reflection
such that

Q1b = β1e1. (8.4.35)
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Using the Golub–Kahan algorithm Q1A to lower triangular form. we obtain

UT ( b AV ) =

(

β1e1 Bn

0 0

)

, (8.4.36)

where e1 is the first unit vector, and Bn is lower bidiagonal,

Bn =













α1

β2 α2

. . .
. . .

βn αn

βn+1













∈ R(n+1)×n, (8.4.37)

and
U = Q1Q2 · · ·Qn+1. V = P1P2 · · ·Pn−1. (8.4.38)

(Note the minor difference in notation in that Qk+1 now zeros elements in the kth
column of A.)

Setting x = V y and using the invariance of the l2-norm it follows that

‖b−Ax‖2 =

∥

∥

∥

∥

( b A )

(

−1
x

)∥

∥

∥

∥

2

=

∥

∥

∥

∥

UT ( b AV )

(

−1
y

)∥

∥

∥

∥

2

= ‖β1e1 −Bny‖2.

Hence if y solves the bidiagonal least squares problem

min
y

‖Bny − β1e1‖2, (8.4.39)

then x = V y minimizes ‖Ax− b‖2.
The least squares solution to (8.4.39) is obtained by a QR factorization of Bn,

which takes the form

Gn(Bn | β1e1) =

(

Rn fk

φ̄n+1

)

=





















ρ1 θ2 φ1

ρ2 θ3 φ2

ρ3
. . . φ3

. . . θn

...
ρn φn

φ̄n+1





















(8.4.40)

where Gn is a product of n Givens rotations. The solution is obtained by back-
substitution from Rny = dn. The norm of the corresponding residual vector equals
|φ̄n+1|. To zero out the element β2 we premultiply rows (1,2) with a rotation G12,
giving

(

c1 s1
−s1 c1

) (

α1 0 β1

β2 α2 0

)

=

(

ρ1 θ2 φ1

0 ρ̄2 φ̄2

)

.

(Here and in the following only elements affected by the rotation are shown.) Here
the elements ρ1, θ2 and φ1 in the first row are final, but ρ̄2 and φ̄2 will be transformed
into ρ2 and φ2 in the next step.
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Continuing in this way in step j the rotation Gj,j+1 is used to zero the element
βj+1. In steps, j = 2 : n− 1, the rows (j, j + 1) are transformed

(

cj sj

−sj cj

) (

ρ̄j 0 φ̄j

βj+1 αj+1 0

)

=

(

ρj θj+1 φj

0 ρ̄j+1 φ̄j+1

)

.

where

φj = cj φ̄j , φ̄j+1 = −sjφ̄j , ρj =
√

ρ̄2
j + β2

j+1,

θj+1 = sjαj+1, ρ̄n+1 = cjαj+1.

Note that by construction |φ̄j+1| ≤ φ̄j . Finally, in step n we obtain

(

cn sn

−sn cn

)(

ρ̄n φ̄n

βn+1 0

)

=

(

ρn φn

0 φ̄n+1

)

.

After n steps, we have obtained the factorization (8.4.40) with

Gn = Gn,n+1 · · ·G23G12.

Now consider the result after k < n steps of the above bidiagonalization
process have been carried out. At this point we have computed Q1, Q2, . . . , Qk+1,
P1, P2, . . . , Pk such that the first k columns of A are in lower bidiagonal form, i.e.

Qk+1 · · ·Q2Q1AP1P2 · · ·Pk

(

Ik
0

)

=

(

Bk

0

)

=

(

Ik+1

0

)

Bk,

where Bk ∈ R(k+1)×k is a leading submatrix of Bn. Multiplying both sides with
Q1Q2 · · ·Qk+1 and using orthogonality we obtain the relation

AVk = Uk+1Bk = B̂k + βk+1vk+1e
T
k , k = 1 : n, (8.4.41)

where

P1P2 · · ·Pk

(

Ik
0

)

= Vk = (v1, . . . , vk),

Q1Q2 · · ·Qk+1

(

Ik+1

0

)

= Uk+1 = (u1, . . . , uk+1).

If we consider the intermediate result after applying also Pk+1 the first k + 1 rows
have been transformed into bidiagonal form, i.e.

( Ik+1 0 )Qk+1 · · ·Q2Q1AP1P2 · · ·Pk+1 = (Bk αk+1ek+1 ) ( Ik+1 0 ) .

Transposing this gives a second relation

UT
k+1A = BkV

T
k + αk+1ek+1v

T
k+1, (8.4.42)
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We now show that the bidiagonalization can be stopped prematurely if a zero
element occurs in B. Assume first that the first zero element to occur is αk+1 = 0.
Then we have obtained the decomposition

ŨT
k+1AṼk =

(

Bk 0
0 Ak

)

,

where Ak ∈ R(m−k−1)×(n−k), and

Ũk+1 = Qk+1 · · ·Q2Q1, Ṽk = P1P2 · · ·Pk,

are square orthogonal matrices. Then, setting x = Ṽky, the transformed least
squares problem takes the form

min
y

∥

∥

∥

∥

(

Bk 0
0 A2

) (

y1
y2

)

−
(

β1e1
0

)∥

∥

∥

∥

2

, y =

(

y1
y2

)

, (8.4.43)

y1 ∈ Rk, y2 ∈ Rn−k. This problem is separable and decomposes into two indepen-
dent subproblems

min
y1

‖Bky1 − β1e1‖2 , min
y2

‖A2y2‖2. (8.4.44)

By construction Bk has nonzero elements in its two diagonals. Thus it has full
column rank and the solution y1 to the first subproblem is unique. Further, the
minimum norm solution of the initial problem is obtained simply by taking y2 = 0.
We call the first subproblem (8.4.44) a core subproblem. It can be solved by QR
factorization exactly as outlined for the full system when k = n.

When βk+1 = 0 is the first zero element to occur then the reduced problem
has a similar separable form similar to (8.4.44). The core subproblem is now

B̂ky1 = β1e1, B̂k =









α1

β2 α2

. . .
. . .

βk αk









∈ Rk×k. (8.4.45)

Here B̂k is square and lower triangular, and the solution y1 is obtained by forward
substitution. Taking y2 = 0 the corresponding residual b − AV y is zero and hence
the original system Ax = b is consistent.

We give two simple examples of when premature termination occurs. First
assume that b ⊥ R(A). Then the reduction will terminate with α1 = 0. The core
system is empty and x = V y2 = 0 is the minimal norm least squares solution.

If the bidiagonalization instead terminates with β2 = 0, then the system Ax =
b is consistent and the minimum norm solution equals

x = (β1/α1)v1, v1 = V1e1 = P1e14.

Paige and Strakoš [46] have shown the following important properties of the
core subproblem obtained by the bidiagonalization algorithm:
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Theorem 8.4.5.
Assume that the bidiagonalization of ( b A ) terminates prematurely with

αk = 0 or βk+1 = 0. Then the core corresponding subproblem (8.4.44) or (8.4.45) is
minimally dimensioned. Further, the singular values of the core matrix Bk or B̂k,
are simple and the right hand side βe1 has nonzero components in along each left
singular vector.

Proof. Sketch: The minimal dimension is a consequence of the uniqueness of the
decomposition (8.4.36), as long as no zero element in B appears. That the matrix
B̂k has simple singular values follows from the fact that all subdiagonal elements
are nonzero. The same is true for the square bidiagonal matrix (Bk 0) and therefore
also for Bk. Finally, if βe1 did not have nonzero components along a left singular
vector, then the reduction must have terminated earlier. For a complete proof we
refer to [46].)

In many applications the numerical rank of the matrix A is much smaller
than min{m,n}. For example, in multiple linear regression often some columns are
nearly linearly dependent. Then one wants to express the solution by restricting it
to lie in a lower dimensional subspace. This can be achieved by neglecting small
singular values of A and using a truncated SVD solution; see Sec. 8.4.1. In partial
least squares (PLS) method this is achieved by a partial bidiagonalization of the
matrix ( b A ). It is known that PLS often gives a faster reduction of the residual
than TSVD.

We remark that the solution steps can be interleaved with the reduction to
bidiagonal form. This makes it possible to compute a sequence of approximate
solutions xk = P1P2 · · ·Pkyk, where yk ∈ Rk solves

min
y

‖β1e1 −Bky‖2, k = 1, 2, 3, . . . .. (8.4.46)

After each (double) step in the bidiagonalization we advance the QR decomposition
of Bk. The norm of the least squares residual corresponding to xk is then given by

‖b−Axk‖2 = |φ̄k+1|.

The sequence of residual norms is nonincreasing. We stop and accept x = Vkyk

as an approximate solution of the original least squares problem. if this residual is
sufficiently small. This method is called the Partial Least Squares (PLS) method
in statistics.

The sequential method outlined here is mathematically equivalent to a method
called LSQR, which is a method of choice for solving sparse linear least squares.
LSQR uses a Lanczos-type process for the bidiagonal reduction, which works only
with the original sparse matrix. A number of important properties of the succes-
sive approximations xk in PLS are best discussed in connection with LSQR; see
Sec. 10.6.4.
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Review Questions

1. When and why should column pivoting be used in computing the QR factor-
ization of a matrix? What inequalities will be satisfied by the elements of R
if the standard column pivoting strategy is used?

2. Show that the singular values and condition number of R equal those of A.
Give a simple lower bound for the condition number of A in terms of its
diagonal elements. Is it advisable to use this bound when no column pivoting
has been performed?

3. Give a simple lower bound for the condition number of A in terms of the
diagonal elements of R. Is it advisable to use this bound when no column
pivoting has been performed?

4. What is meant by a Rank-revealing QR factorization? Does such a factoriza-
tion always exist?

5. How is the numerical rank of a matrix A defined? Give an example where the
numerical rank is not well determined.

Problems

1. (a) Describe how the QR factorizations of a matrix of the form

(

A
µD

)

, A ∈ Rm×n,

where D ∈ Rn×n is diagonal, can be computed using Householder transfor-
mations in mn2 flops.

(b) Estimate the number of flops that are needed for the reduction using
Householder transformations in the special case that A = R is upper triangu-
lar? Devise a method using Givens rotations for this special case!

Hint: In the Givens method zero one diagonal at a time in R working from
the main diagonal inwards.

2. Let the vector v, ‖v‖2 = 1, satisfy ‖Av‖2 = ǫ, and let Π be a permutation such
that

|wn| = ‖w‖∞, ΠT v = w.

(a) Show that if R is the R factor of AΠ, then |rnn| ≤ n1/2ǫ.

Hint: Show that ǫ = ‖Rw‖2 ≥ |rnnwn| and then use the inequality |wn| =
‖w‖∞ ≥ n−1/2‖w‖2.

(b) Show using (a) that if v = vn, the right singular vector corresponding to
the smallest singular value σn(A), then

σn(A) ≥ n−1/2|rnn|.
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4. Consider a nonsingular 2 × 2 upper triangular matrix and its inverse

R =

(

a b
0 c

)

, R−1 =

(

a−1 a−1bc−1

0 c−1

)

.

(a) Suppose we want to choose Π to maximize the (1, 1) element in the QR
factorization of RΠ. Show that this is achieved by taking Π = I if |a| ≥√
b2 + c2, else Π = Π12, where Π12 interchanges columns 1 and 2.

(b) Unless b = 0 the permutation chosen in (a) may not minimize the (2,2)
element in the QR factorization of RΠ. Show that this is achieved by taking
Π = I if |c−1| ≥

√

a−2 + b2(ac)−2 else Π = Π12. Hence, the test compares
row norms in R−1 instead of column norms in R.

6. To minimize ‖x‖2 is not always a good way to resolve rank deficiency, and
therefore the following generalization of problem (8.4.13) is often useful: For
a given matrix B ∈ Rp×n consider the problem

min
x∈S

‖Bx‖2, S = {x ∈ Rn | ‖Ax− b‖2 = min}.

(a) Show that this problem is equivalent to

min
x2

‖(BC)x2 − (Bd)‖2,

where C and d are defined by (8.4.12).

(b) Often one wants to choose B so that ‖Bx‖2 is a measure of the smoothness
of the solution x. For example one can take B to be a discrete approximation
to the second derivative operator,

B =









1 −2 1
1 −2 1

. . .
. . .

. . .

1 −2 1









∈ R(n−2)×n.

Show that provided that N (A)∩N (B) = ∅ this problem has a unique solution,
and give a basis for N (B).

5. Let A ∈ Rm×n with rank(A) = r. A rank revealing LU factorizations of the
form

Π1AΠ2 =

(

L11

L21

)

(U11 U12 ) ,

where Π1 and Π2 are permutation matrices and L11, U11 ∈ Rr×r are triangular
and nonsingular can also be used to compute pseudo-inverse solutions x = A†b.
Show, using Theorem 8.1.7 that

A† = Π2 ( Ir S )
†
U−1

11 L
−1
11

(

Ir
T

)†

Π1,

where T = L21L
−1
11 , S = U−1

11 U12. (Note that S is empty if r = n, and T
empty if r = m.)
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6. Consider the block upper-bidiagonal matrix

A =





B1 C1

B2 C2

B3





Outline an algorithm for computing the QR factorization of A, which treats
one block row at a time. (It can be assumed that A has full column rank.)
Generalize the algorithm to an arbitrary number of block rows!

7. (a) Suppose that we have computed the pivoted QR factorization of A,

QTAΠ =

(

R
0

)

∈ Rm×n,

of a matrix A ∈ Rm×n. Show that by postmultiplying the upper triangular
matrix R by a sequence of Householder transformations we can transform R
into a lower triangular matrix L = RP ∈ Rn×n and that by combining these
two factorizations we obtain

QTAΠP =

(

L
0

)

. (8.4.47)

This factorization, introduced by G. W. Stewart, who calls it the QLP de-
composition of A.

(b) Show that the total cost for computing the QLP decomposition is roughly
2mn2 + 2n3/3 flops. How does that compare with the cost for computing the
bidiagonal decomposition of A?

(c) Show that the two factorizations can be interleaved. What is the cost for
performing the first k steps?

8. Work out the details of an algorithm for transforming a matrix A ∈ Rm×n to
lower bidiagonal form. Consider both cases when m > n and m ≤ n.

Hint: It can be derived by applying the algorithm for transformation to upper
bidiagonal form to AT .

8.5 Some Structured Least Squares Problems

8.5.1 Banded Least Squares Problems

We now consider orthogonalization methods for the special case when A is a banded
matrix of row bandwidth w, see Definition 8.2.3. From Theorem 8.2.4 we know
that the matrix ATA will also be a banded matrix with only the first r = w − 1
superdiagonals nonzero. Since the factor R in the QR factorization equals the
unique Cholesky factor of ATA it will have only w nonzeros in each row.

Even though the final factor R is independent of the row ordering in A, the
intermediate fill-in will vary. For banded rectangular matrices the QR factorization
can be obtained efficiently by sorting the rows of A and suitably subdividing the
Householder transformations. The rows of A should be sorted by leading entry
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order (i.e., increasing minimum column subscript order) That is, if fi, i = 1, 2, . . . ,m
denotes the column indices of the first nonzero element in row i we should have,

i ≤ k ⇒ fi ≤ fk.

Such a band matrix can then be written as

A =









A1

A2
...
Aq









, q ≤ n,

is said to be in standard form. where in block Ai the first nonzero element of each
row is in column i. The Householder QR process is then applied to the matrix in q
major steps. In the first step a QR decomposition of the first block A1 is computed,
yielding R1. Next at step k, k = 2 : q, Rk−1 will be merged with Ak yielding

QT
k

(

Rk−1

Ak

)

= Rk.

Since the rows of block Ak has their first nonzero elements in column k, the first
k−1 rows of Rk−1 will not be affected. The matrix Q can be implicitly represented
in terms of the Householder vectors of the factorization of the subblocks. This
sequential Householder algorithm, which is also described in [38, Ch. 27], requires
(m + 3n/2)w(w + 1) multiplications or about twice the work of the less stable
Cholesky approach. For a detailed description of this algorithm, see Lawson and
Hanson [38, Ch. 11].

In Sec. 4.6.4 we considered the interpolation of a function f where with a
linear combination of m + k B-splines of degree k, see (4.6.18), on ∆ = {x0 <
x1 < · · · < xm}. Assume that we are given function values fj = f(τj), where
τ1 < τ2 < . . . < τn are distinct points and n ≥ m + k. Then we consider the least
squares approximation problem

min

n
∑

j=1

e2j , ej = wi

(

fj −
m−1
∑

i=−k

ciBi,k+1(τj)

)

. (8.5.1)

where wj are positive weights. This is an overdetermined linear system for ci,
i = −k, . . . ,m−1. The elements of its coefficient matrix Bi,k+1(τj) can be evaluated
by the recurrence (4.6.19). The coefficient matrix has a band structure since in the
jth row the ith element will be zero if τj 6∈ [xi, xi+k+1]. It can be shown, see de
Boor [1978, p. 200], that the coefficient matrix will have full rank equal to m+ k if
and only if there is a subset of points τj satisfying

xj−k−1 < τj < xj , ∀j = 1, 2, . . . ,m+ k. (8.5.2)
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Example 8.5.1.
The least squares approximation of a discrete set of data by a linear combi-

nation of cubic B-splines gives rise to a banded linear least squares problem. Let

s(t) =

n
∑

j=1

xjBj(t),

where Bj(t), j = 1 : n are the normalized cubic B-splines, and let (yi, ti), i = 1 : m
be given data points. If we determine x to minimize

m
∑

i=1

(s(ti) − yi)
2 = ‖Ax− y‖2

2,

then A will be a banded matrix with w = 4. In particular if m = 13, n = 8 the
matrix may have the form shown in Fig. 8.4.2. Here A consists of blocks AT

k ,
k = 1 : 7. In the Fig. 8.4.2 we also show the matrix after the first three blocks have
been reduced by Householder transformations H1, . . . , H9. Elements which have
been zeroed by Hj are denoted by j and fill-in elements by +. In step k = 4 only
the indicated part of the matrix is involved.
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Figure 8.5.1. A banded rectangular matrix A after k = 3 steps in the QR
reduction.

In the algorithm the Householder transformations can also be applied to one
or several right hand sides b to produce

c = QT b =

(

c1
c2

)

, c1 ∈ Rn.

The least squares solution is then obtained from Rx = c1 by back-substitution.
The vector c2 is not stored but used to accumulate the residual sum of squares
‖r‖2

2 = ‖c2‖2
2.
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It is also possible to perform the QR factorization by treating one row at
a time using Givens’ rotations. Each step then is equivalent to updating a full
triangular matrix formed by columns fi(A) to li(A). Further, if the matrix A is
in standard form the first fi(A) rows of R are already finished at this stage. The
reader is encouraged to work through Example 8.5.1 below in order to understand
how the algorithm proceeds!

8.5.2 Two-Block Least Squares Problems

In many least squares problem minx ‖Ax − b‖2
2, A ∈ Rm×n the unknowns can be

naturally partitioned into two groups,

min
x1,x2

∥

∥

∥ (A1 A2 )

(

x1

x2

)

− b
∥

∥

∥

2
, (8.5.3)

with n1 and n2 components, respectively, n = n1 + n2. Assume that the matrix
A = (A1 A2 ) has full column rank.

Let PR(A1) be the orthogonal projection onto R(A1). For any x2 we can split
the vector b−A2x2 = r1 + r2 into two orthogonal components

r1 = PR(A1)(b−A2x2), r2 = (I − PR(A1))(b −A2x2).

Then the problem (8.5.3) takes the form

min
x1,x2

∥

∥

∥(A1x1 − r1) − P
N (AT

1
)(b−A2x2)

∥

∥

∥

2
. (8.5.4)

Here, since r1 ∈ R(A1) the variables x1 can always be chosen so that A1x1 − r1. It
follows that x2 is the solution to the reduced least squares problem

min
x2

‖P
N (AT

1
)(A2x2 − b)‖2. (8.5.5)

When this reduced problem has been solved for x2 the unknowns x1 can be com-
puted from the least squares problem

min
x1

‖A1x1 − (b −A2x2)‖2. (8.5.6)

Sometimes it may be advantageous to carry out a partial QR factorization,
where only the first k < n columns are orthogonalized. Suppose that after k steps
of MGS, we have computed the partial factorization

(A, b) = (Qk, A
(k+1), b(k+1))





R11 R12 zk

0 I 0
0 0 1



 .

where R11 is nonsingular. Then we can decompose the residual as r = b − Ax =
r1 + r2, r1 ⊥ r2, where

r1 = Qk(zk −R12x2 −R11x1), r2 = b(k+1) −A(k+1)x2.
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Then x2 is the solution to the reduced least squares problem

min
x2

‖b(k+1) −A(k+1)x2‖2.

With x2 known x1 can been computed by back-substitution from

R11x1 = zk −R12x2.

In some applications, e.g., when A has block angular structure (see Sec. 8.5.4), it
may be preferable instead not to save R11 and R12 and instead to refactorize A1

and solve (8.5.6) for x1.

8.5.3 Block Triangular Form of a Rectangular Matrix

An arbitrary rectangular matrix A ∈ Rm×n, m ≥ n, can by row and column
permutations be brought into the block triangular form

PAQ =





Ah Uhs Uhv

As Usv

Av



 , (8.5.7)

where the diagonal block Ah is underdetermined (i.e., has more columns than rows),
As is square and Av is overdetermined (has more rows than columns), and all three
blocks have a nonzero diagonal; see the example in Figure 7.6.4. The submatrices
Av and AT

h both have the strong Hall property. The off-diagonal blocks denoted by
U are possibly nonzero matrices of appropriate dimensions. This block triangular
form (8.5.7) of a sparse matrix is based on a canonical decomposition of bipartite
graphs.

× × ⊗ × × ×

⊗ × × × ×

× × ⊗

⊗ × ×

× ⊗ ×

⊗ ×

× ⊗ ×

⊗ ×

⊗

×

× ×

×

Figure 8.5.2. The coarse block triangular decomposition of A.

We call the decomposition of A into the submatrices Ah, As, and Av the
coarse decomposition. One or two of the diagonal blocks may be absent in the
coarse decomposition. It may be possible to further decompose the diagonal blocks
in (8.5.7) to obtain the fine decompositions of these submatrices. Each of the
blocks Ah and Av may be further decomposable into block diagonal form,

Ah =





Ah1

. . .

Ahp



 , Av =





Av1

. . .

Avq



 ,
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where each Ah1, . . . , Ahp is underdetermined and each Av1, . . . , Avq is overdeter-
mined. The submatrix As may be decomposable in block upper triangular form

As =









As1 U12 . . . U1,t

As2 . . . U2,t

. . .
...
Ast









(8.5.8)

with square diagonal blocks As1, . . . , Ast which have nonzero diagonal elements.
The resulting decomposition can be shown to be essentially unique. Any one block
triangular form can be obtained from any other by applying row permutations that
involve the rows of a single block row, column permutations that involve the columns
of a single block column, and symmetric permutations that reorder the blocks.

An algorithm for the more general block triangular form described above due
to Pothen and Fan depends on the concept of matchings in bipartite graphs. The
algorithm consists of the following steps:

1. Find a maximum matching in the bipartite graph G(A) with row set R and
column set C.

2. According to the matching, partition R into the sets V R, SR,HR and C into
the sets V C, SC,HC corresponding to the horizontal, square, and vertical
blocks.

3. Find the diagonal blocks of the submatrix Av and Ah from the connected
components in the subgraphs G(Av) and G(Ah). Find the block upper trian-
gular form of the submatrix As from the strongly connected components in
the associated directed subgraph G(As), with edges directed from columns to
rows.

The reordering to block triangular form in a preprocessing phase can save work
and intermediate storage in solving least squares problems. If A has structural rank
equal to n, then the first block row in (8.5.7) must be empty, and the original least
squares problem can after reordering be solved by a form of block back-substitution.
First compute the solution of

min
x̃v

‖Avx̃v − b̃v‖2, (8.5.9)

where x̃ = QTx and b̃ = Pb have been partitioned conformally with PAQ in (8.5.7).
The remaining part of the solution x̃k, . . . , x̃1 is then determined by

Asix̃i = b̃i −
k

∑

j=i+1

Uij x̃j , i = k, . . . , 2, 1. (8.5.10)

Finally, we have x = Qx̃. We can solve the subproblems in (8.5.9) and (8.5.10) by
computing the QR decompositions of Av and As,i, i = 1, . . . , k. Since As1, . . . , Ask

and Av have the strong Hall property the structures of the matrices Ri are correctly
predicted by the structures of the corresponding normal matrices.
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If the matrix A has structural rank less than n, then we have an underde-
termined block Ah. In this case we can still obtain the form (8.5.8) with a square
block A11 by permuting the extra columns in the first block to the end. The least
squares solution is then not unique, but a unique solution of minimum length can
be found as outlined in Section 2.7.

8.5.4 Block Angular Least Squares Problems

There is often a substantial similarity in the structure of many large scale sparse
least squares problems. In particular, the problem can often be put in the following
bordered block diagonal or block angular form:

A =











A1 B1

A2 B2

. . .
...

AM BM











, x =













x1

x2
...
xM

xM+1













, b =









b1
b2
...
bM









, (8.5.11)

where

Ai ∈ Rmi×ni , Bi ∈ Rmi×nM+1 , i = 1, 2, . . . ,M,

and

m = m1 +m2 + · · · +mM , n = n1 + n2 + · · · + nM+1.

Note that the variables x1, . . . , xM are coupled only to the variables xM+1, which
reflects a “local connection” structure in the underlying physical problem. Appli-
cations where the form (8.5.11) arises naturally include photogrammetry, Doppler
radar and GPS positioning, and geodetic survey problems.

The normal matrix of A in (8.5.11) is of doubly bordered block diagonal form,

ATA =



















AT
1A1 AT

1B1

AT
2A2 AT

2B2

. . .
...

AT
MAM AT

MBM

BT
1A1 BT

2A2 · · · BT
MAM C



















,

where

C =

M
∑

k=1

BT
k Bk = RT

M+1RM+1,

and RM+1 is the Cholesky factor of C. We assume in the following that rank (A) =
n, which implies that the matrices AT

i Ai, i = 1, 2, . . . ,M , and C are positive def-
inite. It is easily seen that then the Cholesky factor R of ATA will have a block
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structure similar to that of A,

R =















R1 S1

R2 S2

. . .
...

RM SM

RM+1















(8.5.12)

where Ri ∈ Rni×ni , the Cholesky factor of AT
i Ai, is nonsingular and

Si = (AiR
−1
i )TBi, i = 1, . . . ,M + 1.

An algorithm for least squares problems of block angular form based on QR
factorization of A proceeds in the following three steps:

1. For i = 1, 2, . . . ,M reduce the diagonal block Ai to upper triangular form by a
sequence of orthogonal transformations applied to (Ai, Bi) and the right-hand
side bi, yielding

QT
i (Ai, Bi) =

(

Ri Si

0 Ti

)

, QT
i bi =

(

ci
di

)

.

It is usually advantageous to continue the reduction in step 1 so that the
matrices Ti, i = 1, . . . ,M , are brought into upper trapezoidal form.

2. Set

T =





T1
...
TM



 , d =





d1
...
dM





and compute the QR decomposition

Q̃T
M+1 (T d ) =

(

RM+1 cM+1

0 dM+1

)

.

The solution to min
xM+1

‖TxM+1−d‖2 is then obtained from the triangular system

RM+1xM+1 = cM+1,

and the residual norm is given by ρ = ‖dM+1‖2.

3. For i = M, . . . , 1 compute xM , . . . , x1 by back-substitution in the triangular
systems

Rixi = ci − SixM+1.

In steps 1 and 3 the computations can be performed in parallel on the M
subsystems. There are alternative ways to organize this algorithm. Note that when
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xM+1 has been computed in step 2, then the vectors xi, i = 1, . . . ,M , solves the
least squares problem

min
xi

‖Aixi − gi‖2, gi = bi −BixM+1.

Hence it is possible to discard the Ri, Si and ci in step 1 if the QR factorizations
of Ai are recomputed in step 3. In some practical problems this modification can
reduce the storage requirement by an order of magnitude, while the recomputation
of Ri may only increase the operation count by a few percent.

Using the structure of the R-factor in (8.5.12), the diagonal blocks of the
variance-covariance matrix C = (RTR)−1 = R−1R−T can be written

CM+1,M+1 = R−1
M+1R

−T
M+1,

Ci,i = R−1
i (I +WT

i Wi)R
−T
i , WT

i = SiR
−1
M+1, i = 1, . . . ,M. (8.5.13)

If we compute the QR decompositions

Qi

(

Wi

I

)

=

(

Ui

0

)

, i = 1, . . . ,M,

we have I +WT
i Wi = UT

i Ui and then

Ci,i = (UiR
−T
i )T (UiR

−T
i ), i = 1, . . . ,M.

This assumes that all the matrices Ri and Si have been retained.

8.5.5 Kronecker Product Problems

Sometimes least squares problems occur which have a highly regular block structure.
Here we consider least squares problems of the form

min
x

‖(A⊗B)x − d‖2, (8.5.14)

where the A ⊗ B is the Kronecker product of A ∈ Rm×n and B ∈ Rp×q. This
product is the mp× nq block matrix,

A⊗B =









a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
am1B am2B · · · amnB









.

Problems of Kronecker structure arise in several application areas including signal
and image processing, photogrammetry, and multidimensional approximation. It
applies to least squares fitting of multivariate data on a rectangular grid. Such
problems can be solved with great savings in storage and operations. Since often
the size of the matrices A and B is large, resulting in models involving several
hundred thousand equations and unknowns, such savings may be essential.
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We recall from Sec. 7.7.3 the important rule (7.7.14) for the inverse of a Kro-
necker product

(A⊗B)−1 = A−1 ⊗B−1.

It follows that if P and Q are orthogonal n×n matrices then P ⊗Q is an orthogonal
n2 × n2 matrix. This rule for the inverse holds also for pseudo-inverses.

Lemma 8.5.1.
Let A† and B† be the pseudo-inverses of A and B. Then

(A⊗B)† = A† ⊗B†.

Proof. The theorem follows by verifying that X = A† ⊗ B† satisfies the four
Penrose conditions in (8.1.11)–(8.1.12).

Using Lemmas 7.7.6 and 8.5.1 the solution to the Kronecker least squares
problem (8.5.14) can be written

x = (A⊗B)†vecC = (A† ⊗B†)vecC = vec (B†C(A†)T ). (8.5.15)

This formula leads to a great reduction in the cost of solving Kronecker least squares
problems. For example, if A and B are both m×n matrices, the cost of computing
is reduced from O(m2n4) to O(mn2).

In some areas the most common approach to computing the least squares
solution to (8.5.14) is to use the normal equations. If we assume that both A and
B have full column rank, then we can use the expressions

A† = (ATA)−1AT , B† = (BTB)−1BT .

However, because of the instability associated with the explicit formation of ATA
and BTB, an approach based on orthogonal decompositions should generally be
preferred. If we have computed the complete QR decompositions of A and B,

AΠ1 = Q1

(

R1 0
0 0

)

V T
1 , BΠ2 = Q2

(

R2 0
0 0

)

V T
2 ,

with R1, R2 upper triangular and nonsingular, then from Section 2.7.3 we have

A† = Π1V1

(

R−1
1 0
0 0

)

QT
1 , B† = Π2V2

(

R−1
2 0
0 0

)

QT
2 .

These expressions can be used in (8.5.15) to compute the pseudo-inverse solution
of problem (8.5.14) even in the rank deficient case.

We finally note that the singular values and singular vectors of the Kronecker
product A⊗B can be simply expressed in terms of the singular values and singular
vectors of A and B.
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Lemma 8.5.2. Let A and B have the singular value decompositions

A = U1Σ1V
T
1 , B = U2Σ2V

T
2 .

Then we have

A⊗B = (U1 ⊗ U2)(Σ1 ⊗ Σ2)(V1 ⊗ V2)
T .

Proof. The proof follows from Lemma 8.5.1.

Review Questions

1. What is meant by the standard form of a banded rectangular matrix A? Why
is it important that a banded matrix is permuted into standard form before
its orthogonal factorization is computed?

2. In least squares linear regression the first column of A often equals the vector
a1 = e = (1, 1, . . . , 1)T (cf. Example 8.2.1). Setting A = ( e A2 ), show that
performing one step in MGS is equivalent to “subtracting out the means”.

Problems

1. Consider the two-block least squares problem (8.5.3). Work out an algorithm
to solve the reduced least squares problem minx2

‖P
N (AT

1
)(A2x2 − b)‖2 using

the method of normal equations.

Hint: First show that P
N (AT

1
)(A) = I − A1(R

T
1 R1)

−1AT
1 , where R1 is the

Cholesky factor of AT
1 A1.

2. (a) Suppose we want to fit two set of points (xi, yi) ∈ R2, i = 1, . . . , p, and
i = p+ 1, . . . ,m, to two parallel lines

cx+ sy = h1, cx+ sy = h2, c2 + s2 = 1,

so that the sum of orthogonal distances are minimized. Generalize the ap-
proach of Example 8.6.3 to sketch an algorithm for solving this problem.

(b) Modify the algorithm in (a) to fit two orthogonal lines.

3. Use the Penrose conditions to prove the formula

(A⊗B)† = A† ⊗B†,

where ⊗ denotes the Kronecker product
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8.6 Generalized Least Squares

8.6.1 Generalized Least Squares

Let A ∈ Rm×n, m ≥ n, and let B ∈ Rm×m be symmetric positive semidefinite.
Augmented linear systems of the form

(

B A
AT 0

)(

s
x

)

=

(

b
c

)

(8.6.1)

in (8.6.1) occur in many application areas since they represent the condition for
equilibrium of a physical system. The system (8.6.1) is often called a saddle-point
system or, in optimization, a KKT (Karush–Kuhn–Tucker) system. The system
matrix in (8.6.1) is symmetric but in general indefinite; it is nonsingular if and only
if

1. A has full column rank;

2. the matrix (B A) has full row rank.

A unified formulation of generalized least squares and minimum norm prob-
lems can be obtained as follows.

Theorem 8.6.1. If B is positive definite then the linear system (8.6.1) is nonsin-
gular and gives the condition for the solution of the two problems:

min
x

1
2‖Ax− b‖2

B−1 + cTx, (8.6.2)

min
s

1
2‖s− b‖B, subject to AT s = c, (8.6.3)

where ‖x‖2
G = xTGx for any symmetric positive definite matrix G.

Proof. If B is symmetric positive definite so is B−1. The system (8.6.1) can be
obtained by differentiating (8.6.2) to give

ATB−1(Ax− b) + c = 0,

and setting s = B−1(b − Ax). The system can also be obtained by differentiating
the Lagrangian

L(x, s) =
1

2
sTBs− sT b+ xT (AT s− c)

of (8.6.3), and equating to zero. Here x is the vector of Lagrange multipliers.

Remark: Theorem 8.6.1 can be generalized to to the semidefinite case, see
Gulliksson and Wedin [31, Theorem 3.2]. A case when B is indefinite and nonsin-
gular is considered in Sec. 8.6.4

If we take c = 0 in Theorem 8.6.1, then the solution x gives the best linear
unbiased estimate for the linear model

Ax+ ǫ = b, V(ǫ) = σ2B−1.
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The standard linear least squares problem (8.1.1) is obtained by taking B = I.
Taking B = I in problem (8.6.3), we have s = r = b − Ax and this problem

becomes

min
s

1

2
‖r − b‖2, subject to AT r = c, (8.6.4)

i.e. to find the point s closest to b in the set of solutions to the underdetermined
linear system AT r = c. This problem frequently occurs as a subproblem in linearly
constrained optimization. Another application, for which c = 0, is in structural
optimization, where AT is called the equilibrium matrix, B the element flexibility
matrix, y is the force, and x a Lagrange multiplier vector.

There are two different approaches to the solution of systems of the form (8.6.1).
In the range space method the y variables are eliminated to obtain the gener-
alized normal equations

ATB−1Ax = ATB−1b− c. (8.6.5)

From the assumptions in Theorem 8.6.1, it follows that the matrix ATB−1A is
symmetric, positive definite. The normal equations can be solved for x, and then
y obtained by solving Bs = b − Ax. Setting B = W and c = 0 in (8.6.2) gives a
weighted linear least squares problem; see Sec. 8.6.2.

ATB−1Ax = ATB−1b− c, y = B−1(b− Ax). (8.6.6)

For B = I the first equation in (8.6.6) is the normal equations for the least squares
problem. If B is positive definite then one way to solve these equations is to compute
the Cholesky factorization B = RTR and then solve

min
x

‖R−1(Ax− b)||2 (8.6.7)

using the QR factorization of R−1A. However, a more stable approach is to use
a generalized QR (GQR) factorization of the matrix pair A,B; to be described in
Sec. 8.6.3.

Using (8.6.5) the solution to problem (8.6.4) can be written

r = b−Ax = PN (AT )b+A(ATA)−1c. (8.6.8)

In particular, taking b = 0, this is the minimum norm solution of the system
AT y = c.

In the null space method the solution y to (8.6.6) is split as

y = y1 + y2, y1 ∈ R(A), y2 ∈ N (AT ). (8.6.9)

Let y1 be the minimum norm solution of AT y = c. This can be computed using the
QR factorization of A. If we set Q = (Q1 Q2 ) then

y1 = Q1z1, z1 = R−T c.

Next y2 is obtained by solving the reduced system

QT
2 BQ2z2 = QT

2 (b −By1), y2 = Q2z2. (8.6.10)



92 Chapter 8. Linear Least Squares Problems

Finally, form
y = Q1z1 +Q2z2 and x = R−1QT

1 (b− V y).

In the special case that B = I the generalized least squares problems associ-
ated with (8.6.1) simplify to

min
y

‖y − b‖2
2 subject to AT y = c, (8.6.11)

min
x

{‖b−Ax‖2
2 + 2cTx}. (8.6.12)

When a Householder QR factorization is available the algorithm is as follows:

z = R−T c,

(

d
f

)

= QT b, r = Q

(

z
f

)

, x = R−1(d− z).

Assuming that the matrixM = ATB−1A has rank n, a first order perturbation
analysis for the generalized least squares problem can be obtained. We assume that
B is not perturbed and for simplicity take c = 0. Proceeding as in Sec. 8.1.5, we
denote the perturbed data A + δA and b + δb and the perturbed solution x + δx
and s+ δs.

The perturbed solution satisfies the system

(

B A+ δA
(A+ δA)T 0

) (

s̃
x̃

)

=

(

b+ δb
0

)

. (8.6.13)

Subtracting the equations (8.6.13) and neglecting second order quantities the per-
turbations δs = B−1δr and δx satisfy the linear system

(

B A
AT 0

) (

δs
δx

)

=

(

δb− δAx
−δAT s

)

. (8.6.14)

From the Schur–Banachiewicz formula (see Sec. 7.1.5) it follows that the inverse of
the matrix in this system equals

(

B A
AT 0

)−1

=

(

(I −B−1AM−1AT )B−1 B−1AM−1

M−1ATB−1 −M−1

)

. (8.6.15)

where M = ATB−1A is the negative Schur complement. Hence we obtain

δx = M−1ATB−1(δb− δA x̃) +M−1δAT s̃, (8.6.16)

δr = (B −AM−1AT )B−1(δb− δA x̃) −AM−1δAT s̃, (8.6.17)

Taking norms in (8.6.17) and (8.6.17) we obtain

‖δx‖2 / ‖M−1ATB−1‖
(

‖δb‖ + ‖δA‖ ‖x‖
)

+ ‖M−1‖ ‖δA‖ ‖s‖, (8.6.18)

‖δr‖ / ‖(B −AM−1AT )‖ ‖B−1‖(‖δb‖+ ‖δA‖ ‖x‖) (8.6.19)

+ ‖AM−1‖ ‖δA‖‖s‖, (8.6.20)
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8.6.2 Weighted Problems

We now consider a simple special case of the generalized least squares problem. In
the general univariate linear model (8.1.5) the covariance matrix W is a positive
diagonal matrix

W = σ2diag (w1, w2, . . . , wm) > 0.

The corresponding problem then is the weighted linear least squares problem
(8.1.5)

min
x

‖D(Ax− b)‖2, D = W−1/2 = diag (d1, d2, . . . , dm). (8.6.21)

When the ith component of the error vector in the linear model has small variance
then di = 1/

√
wii will be large. In the limit when some di tend to infinity, the

corresponding ith equation becomes a linear constraint.
We assume in the following that the matrix A is row equilibrated, that is,

max
1≤j≤n

|aij | = 1, i = 1 : m.

and that the rows of A are ordered so that the weights satisfy

∞ > d1 ≥ d2 ≥ · · · ≥ dm > 0. (8.6.22)

We call a weighted least squares problems stiff if d1 ≫ dm; see Example 8.2.2.
For stiff problems the condition number κ(DA) will be large. An upper bound is
given by

κ(DA) ≤ κ(D)κ(A) = γκ(A).

It is important to note that this does not mean that the problem of computing x
from given data {D,A, b} necessarily is ill-conditioned. Problems with extremely
ill-conditioned weight matrices arise, e.g., in electrical networks, certain classes of
finite element problems, and interior point methods for constrained optimization.

In many cases it is possible to compute Ã = DA, b̃ = Db and solve this as a
standard least squares problem

min
x

‖Ãx− b̃‖2.

However, if the weights d1, . . . , dm vary widely in magnitude this is not in general a
numerically stable approach. Special care may be needed in solving stiff weighted
linear least squares problems. In general the method of normal equations is not
well suited for solving stiff problems. To illustrate this, we consider the important
special case where only the first p equations are weighted:

min
x

∥

∥

∥

∥

(

γA1

A2

)

x−
(

γb1
b2

)∥

∥

∥

∥

2

2

, (8.6.23)

A1 ∈ Rp×n and A2 ∈ R(m−p)×n. Such problems occur, for example, when the
method of weighting is used to solve least squares problems with the linear equality
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constraints A1x = b1; see Section 5.1.4. For this problem the matrix of normal
equations becomes

B = ( γAT
1 AT

2 )

(

γA1

A2

)

= γ2AT
1A1 +AT

2A2.

If γ > u−1/2 (u is the unit roundoff) and AT
1A1 is dense, then B = ATA will be

completely dominated by the first term and the data contained in A2 may be lost.
However, if the number p of very accurate observations is less than n, then the
solution depends critically on the less precise data in A2. (The matrix in Example
2.2.1 is of this type.) We conclude that for weighted least squares problems with
γ ≫ 1 the method of normal equations generally is not well behaved.

We now consider the use of methods based on the QR decomposition of A
for solving weighted problems. We first examine the Householder QR method, and
show by an example that this method can give poor accuracy for stiff problems
unless the algorithm is extended to include row interchanges.

Example 8.6.1.
Consider the least squares problem ([51]) with

A =







0 2 1
γ γ 0
γ 0 γ
0 1 1






, b =







3
2γ
2γ
2






.

The exact solution is equal to x = (1, 1, 1). Using exact arithmetic we obtain after
the first step of QR decomposition of A by Householder transformations the reduced
matrix

Ã(2) =







1
2γ − 21/2 − 1

2γ − 2−1/2

− 1
2γ − 21/2 1

2γ − 2−1/2

1 1






.

If γ > u−1 the terms −21/2 and −2−1/2 in the first and second rows are lost.
However, this is equivalent to the loss of all information present in the first row
of A. This loss is disastrous because the number of rows containing large elements
is less than the number of components in x, so there is a substantial dependence of
the solution x on the first row of A. (However, compared to the method of normal
equations, which fails already when γ > u−1/2, this is an improvement!)

The Householder algorithm can be extended to include row interchanges. In
each step a pivot column is first selected in the reduced matrix, and then the element
of largest absolute value in the pivot column is permuted to the top. The resulting
algorithm has good stability properties for stiff problems as well.

There is no need to perform row pivoting in Householder QR, provided that
an initial row sorting is performed, where the rows are sorted after decreasing so
that

max
j

|a1j | ≥ max
j

|a1j | ≥ · · · ≥ max
j

|a1j |. (8.6.24)
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For example, in Example 8.6.1 the two large rows will be permuted to the top of
the matrix A. The Householder algorithm then works well without any further row
interchanges.

The stability of row sorting has been shown by Cox and Higham [18]. Note
that row sorting has the advantage over row pivoting in that after sorting the rows
any library routine can be used for the QR factorization. In particular this allows
for the use of BLAS 3 subroutines, which is not the case for row pivoting.

It is also essential that column pivoting is performed when QR decomposition
is used for weighted problems. To illustrate the need for column pivoting, consider
an example of the form (8.6.23), where

A1 =

(

1 1 1
1 1 −1

)

,

Then stability is lost without column pivoting because the first two columns of the
matrix A1 are linearly dependent.

When column pivoting is introduced this difficulty disappears. With QR fac-
torization with complete pivoting we will mean that both row sorting (or row
pivoting) and column pivoting is used.

Another suitable transformation for weighted problems is to make a prelimi-
nary LU factorization of the matrix A. If the problem has the form (8.6.23) with
rank (A1) = p, then p steps of Gaussian elimination are performed on the weighted
system using row and column pivoting. The resulting factorization can be written

Πr

(

γA1

A2

)

Πc = LDU, (8.6.25)

where Πr and Πc are permutation matrices, and

L =

(

L11

L21 L22

)

∈ Rm×n, U =

(

U11 U12

I

)

∈ Rn×n.

Here L11 ∈ Rp×p is unit lower triangular, and U11 ∈ Rp×p is unit upper triangular.
Assuming that A has full rank, D is nonsingular. Then (4.4.1) is equivalent to

min
y

‖Ly − Πrb‖2, DUΠT
c x = y.

The least squares problem in y is usually well-conditioned, since any ill-conditioning
from the weights is usually reflected in D. We illustrate the method in a simple
example. For a fuller treatment of weighted and the general linear model, see Björck
[11, Chap.3].

Example 8.6.2. In Example 8.2.2 it was shown that the method of normal equa-
tions can fail. After multiplication with γ = ǫ−1 this becomes

A =







1 1 1
ǫ

ǫ
ǫ






, b =







1
0
0
0






.
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which is of the form (8.6.23) with p = 1. After one step of Gaussian elimination we
have the factorization A = LDU , where

L =







1
ǫ −1 −1

1
1






, D =





1
ǫ

ǫ



 , U =





1 1 1
1

1



 .

As is easily verified L and U are well-conditioned. Setting DUx = y, the solution
can be accurately computed by first solving the normal equations LTLy = LT b for
y and then finding x by back-substitution and scaling.

8.6.3 Generalized Orthogonal Decompositions

The motivation for introducing different generalizations of orthogonal decomposi-
tions is basically to avoid the explicit computation of matrix products and quotients
of matrices. For example, let A and B be square and nonsingular matrices and as-
sume we need the SVD of AB−1 (or AB). Then the explicit calculation of AB−1

(or AB) may result in a loss of precision and should be avoided.
Consider a pair of matrices A ∈ Rm×n and B ∈ Rm×p. The generalized QR

(GQR) decomposition of A and B is written

A = QR, B = QTZ, (8.6.26)

where Q ∈ Rm×m and Z ∈ Rp×p are orthogonal matrices and R and T have one of
the forms

R =

(

R11

0

)

(m ≥ n), R = (R11 R12 ) (m < n), (8.6.27)

and

T = ( 0 T12 ) (m ≤ p), T =

(

T11

T21

)

(m > p). (8.6.28)

If B is square and nonsingular GQR implicitly gives the QR factorization of B−1A.
There is also a similar generalized RQ factorization related to the QR factorization of
AB−1. Routines for computing a GQR decomposition of are included in LAPACK.
These decompositions allow the solution of very general formulations of several least
squares problems.

8.6.4 Indefinite Least Squares

The indefinite least squares problem (ILS) has the form

min
x

(b−Ax)TJ(b −Ax), (8.6.29)

where A ∈ Rm×n, m ≥ n, and b ∈ Rm are given and J is a signature matrix,
i.e. a diagonal matrix with elements equal to ±1. In the following we assume for
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simplicity that

J =

(

Ip 0
0 −Iq

)

, p+ q = m, (8.6.30)

While the standard least squares is obtained if p = 0 or q = 0, for pq 6= 0 the
problem is to minimize an indefinite quadratic form.

The normal equations

ATJ(b −Ax) = 0 (8.6.31)

give first order conditions for optimality. In the following we assume that the
Hessian matrix ATJA is positive definite. Then the ILS problem has a unique
solution.

Chandrasekaran, Gu and Sayed [16] proposed a QR-Cholesky method for solv-
ing the ILS problem. It uses a QR factorization

A = QR =

(

Q1

Q2

)

R, Q1 ∈ Rp×n, Q2 ∈ Rq×n. (8.6.32)

Then

ATJA = RT (QT
1Q1 −QT

2Q2)R,

and it follows that R is nonsingular and QT
1Q1 −QT

2Q2 is positive definite. Using
(8.6.32) the normal equations (8.6.31) can be written

(QT
1Q1 −QT

2Q2)Rx = QTJb. (8.6.33)

Using the Cholesky factorization QT
1Q1 −QT

2Q2 = UTU , this becomes

UTURx = QTJb,

which can be solved by one forward and two backward substitutions.
The operation count for the QR–Cholesky algorithm is approximately n2(5m−

n), which can be compared to the normal equations n2(m+ n/3).
Sometimes it is useful to consider hyperbolic rotations Ğ of the form

Ğ =

(

c −s
−s c

)

, c = cosh θ, s = sinh θ, (8.6.34)

and c2−s2 = 1. The matrix Ğ is S-orthogonal, ĞTSĞ = I, for the signature matrix
S = diag (1,−1).

A hyperbolic rotation can be used to zero a selected component in a vector.
Provided that |α| > |β| and

s = β/α, c =
√

(1 + s)(1 − s), σ = αc,

we have s2 + c2 = 1 and

Ğ

(

α
β

)

=
1

c

(

1 −s
−s 1

)(

α
β

)

=

(

σ
0

)

.
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A matrix representing a rotation a hyperbolic rotation in Rm in the plane spanned
by the unit vectors ei and ej, i < j, is obtained as for Givens’ rotations; see (8.3.34).

Thee condition number of Ğ in (8.6.34) is not bounded, and to form a prod-
uct Ğx the straightforward way is not numerically stable. Instead we note the
equivalence of

Ğ

(

xi

xj

)

=

(

x̂i

x̂j

)

, G

(

x̂i

xj

)

=

(

c s
−s c

) (

x̂i

xj

)

=

(

xi

x̂j

)

, (8.6.35)

where G is an orthogonal Givens rotation. The mixed method where x̂i is deter-
mined from the hyperbolic rotation and then x̂j from the equivalent Givens rotation

x̂i = (xi − sxj)/c, x̂j = −sx̂i + cxj , (8.6.36)

has been shown to be numerically more stable.
A hyperbolic QR factorization method for solving the indefinite least squares

problem has been devised by Bojanczyk, Higham and Patel [13]. We first use
Householder transformations to compute the factorization

(

QT
1 0

0 I

) (

A1

A2

)

=





R1

0
A2



 .

where A has been partitioned conformally with J .

8.6.5 Orthogonal Regression

We consider here the following orthogonal regression problem. Let yi ∈ Rn,
i = 1 : m, be m > n given points. We want to determine a hyperplane M in Rn

such that the sum of squares of the orthogonal distances from the given points to
M is minimized. The equation for the hyperplane can be written

cT z = h, z, c ∈ Rn, ‖c‖2 = 1,

where c ∈ Rn is the normal vector of M , and |h| is the orthogonal distance form
the origin to the plane. Then the orthogonal projections of the points yi onto M
are given by

zi = yi − (cT yi − h)c. (8.6.37)

It is readily verified that the point zi lies onM and the residual (zi−yi) is parallel to
c and hence orthogonal toM . It follows that the problem is equivalent to minimizing

m
∑

i=1

(cT yi − h)2, subject to ‖c‖2 = 1.

If we put Y = (y1, . . . , ym) ∈ Rn×m and e = (1, . . . , 1)T , this problem can be
written in matrix form

min
c,h

∥

∥

∥

∥

(Y T −e )

(

c
h

)∥

∥

∥

∥

2

, subject to ‖c‖2 = 1. (8.6.38)
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For a fixed c, this expression is minimized when the residual vector (Y T c − he) is
orthogonal to e, that is eT (Y T c − he) = eTY T c − heT e = 0. Since eT e = m it
follows that

h =
1

m
cTY e = cT ȳ, ȳ =

1

m
Y e, (8.6.39)

where ȳ is the mean value of the given points yi. Hence h is determined by the
condition that the mean value ȳ lies on the optimal plane M .

We now subtract the mean value ȳ from the each given point, and form the
matrix

Ȳ = (ȳ1, . . . , ȳm), ȳi = yi − ȳ, i = 1, . . . ,m.

Since by (8.6.39)

(Y T ,−e)
(

c
h

)

= Y T c− eȳT c = (Y T − eȳT )c = Ȳ T c,

problem (8.6.38) is equivalent to

min
c

‖Ȳ T c‖2, ‖c‖2 = 1 (8.6.40)

By the min-max characterization of the singular values (Theorem 8.1.11) a solution
to (8.6.40) is c = vn, where vn is a right singular vector of Ȳ T corresponding to the
singular value σn. Hence, a solution to problem (8.6.38) is given by

c = vn, h = vT
n ȳ,

m
∑

i=1

(vT
n yi − h)2 = σn,

The fitted points zi ∈M are obtained from

zi = ȳi − (vT
n ȳi)vn + ȳ,

i.e., by first orthogonalizing the shifted points ȳi against vn, and then adding the
mean value back.

Note that in contrast to the TLS problem the orthogonal regression problem
always has a solution. The solution is unique when σn−1 > σn, and the minimum
sum of squares equals σ2

n. We have σn = 0, if and only if the given points yi,
i = 1, . . . ,m all lie on the hyperplane M . In the extreme case, all points coincide
and then Ȳ = 0, and any plane going through ȳ is a solution.

The above method solves the problem of fitting a (n − 1) dimensional linear
manifold to a given set of points in R. It is readily generalized to the fitting of an
(n− p) dimensional manifold by orthogonalizing the shifted points y against the p
left singular vectors of Y corresponding to p smallest singular values. A least squares
problem that often arises is to fit to given data points a geometrical element, which
may be defined in implicit form. For example, the problem of fitting circles, ellipses,
spheres, and cylinders arises in applications such as computer graphics, coordinate
meteorology, and statistics. Such problems are nonlinear and will be discussed in
Sec. 11.4.7.
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Example 8.6.3.
Suppose we want to fit by orthogonal regressionm pair of points (xi, yi) ∈ R2,

i = 1, . . . ,m, to a straight line

cx+ sy = h, c2 + s2 = 1.

First compute the mean values of xi and yi and the QR factorization of the matrix
of shifted points

Ȳ T =









x̄1 ȳ1
x̄2 ȳ2
...

...
x̄m ȳm









= Q

(

R
0

)

,

where R is an upper triangular 2 × 2 matrix. Since the singular values and right
singular vectors of Ȳ T and R are the same, it suffices to compute the SVD

R =

(

r11 r12
0 r22

)

= (u1 u2)

(

σ1 0
0 σ2

) (

vT
1

vT
2

)

,

where σ1 ≥ σ2 ≥ 0. (A stable algorithm for computing the SVD of an upper
triangular matrix is given in Algorithm 9.4.2; see also Problem 9.4.5.) Then the
coefficients in the equation of the straight line are given by

(c s) = vT
2 , h = vT

2

(

x̄
ȳ

)

.

If σ2 = 0 but σ1 > 0 the matrix Ȳ has rank one. In this case the given points lie on
a straight line. If σ1 = σ2 = 0, then Ȳ = 0, and xi = x̄, yi = ȳ for all i = 1, . . . ,m.
Note that u2 is uniquely determined if and only if σ1 6= σ2. It is left to the reader
to discuss the case σ1 = σ2 6= 0!

8.6.6 Linear Equality Constraints

In some least squares problems in which the unknowns are required to satisfy a
system of linear equations exactly. One source of such problems is in curve and
surface fitting, where the curve is required to interpolate certain data points.

Given matrices A ∈ Rm×n and B ∈ Rp×n we consider the problem LSE to
find a vector x ∈ Rn which solves

min
x

‖Ax− b‖2 subject to Bx = d. (8.6.41)

A solution to problem (8.6.41) exists if and only if the linear system Bx = d is
consistent. If rank (B) = p then B has linearly independent rows, and Bx = d is
consistent for any right hand side d. A solution to problem (8.6.41) is unique if and
only if the null spaces of A and B intersect only trivially, i.e., if N (A)∩N (B) = {0},
or equivalently

rank

(

A
B

)

= n. (8.6.42)
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If (8.6.42) is not satisfied then there is a vector z 6= 0 such that Az = Bz = 0.
Hence if x solves (8.6.41) then x + z is a different solution. In the following we
therefore assume that rank (B) = p and that (8.6.42) is satisfied.

A robust algorithm for problem LSE should check for possible inconsistency
of the constraints Bx = d. If it is not known a priori that the constraints are
consistent, then problem LSE may be reformulated as a sequential least squares
problem

min
x∈S

‖Ax− b‖2, S = {x | ‖Bx− d‖2 = min }. (8.6.43)

The most natural way to solve problem LSE is to derive an equivalent uncon-
strained least squares problem of lower dimension. There are basically two different
ways to perform this reduction: direct elimination and the null space method.
We describe both these methods below.

In the method of direct elimination we start by reducing the matrix B to
upper trapezoidal form. It is essential that column pivoting is used in this step. In
order to be able to solve also the more general problem (8.6.43) we will compute a
QR factorization of B. By Theorem 8.4.1 (see next section) there is an orthogonal
matrix U ∈ Rp×p and a permutation matrix ΠB such that

QT
BBΠB =

(

R11 R12

0 0

)

, R11 ∈ Rr×r, (8.6.44)

where r = rank(B) ≤ p and R11 is upper triangular and nonsingular. Using this
factorization, and setting x̄ = ΠT

Bx, the constraints become

(R11, R12)x̄ = R11x̄1 +R12x̄2 = d̄1, d̄ = QT
Bd =

(

d̄1

d̄2

)

, (8.6.45)

where d̄2 = 0 if and only if the constraints are consistent. If we apply the permu-
tation ΠB also to the columns of A and partition the resulting matrix conformally
with (8.6.44), ĀΠB = (A1, A2). then Ax − b = A1x̄1 + A2x̄2 − b. Solving (8.6.45)
for x̄1 = R−1

11 (d̄1 − R12x̄2), and substituting, we find that the unconstrained least
squares problem

min
x̄2

‖Â2x̄2 − b̂‖2, Â2 ∈ Rm×(n−r) (8.6.46)

Â2 = Ā2 − Ā1R
−1
11 R12, b̂ = b− Ā1R

−1
11 d̄1.

is equivalent to the original problem LSE. Here Â2 is the Schur complement of R11

in
(

R11 R12

Ā1 Ā2

)

.

It can be shown that if the condition in (8.6.42) is satisfied, then rank (A2) = r.
Hence the unconstrained problem has a unique solution, which can be computed
from the QR factorization of Â2.

In the null-space method, assuming that rank (B) = p, we compute the QR
factorization

BT = U

(

RB

0

)

, RB ∈ Rp×p, (8.6.47)
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where RB is upper triangular and nonsingular. Using Theorem 8.3.7 we find that
the general solution of the system Bx = d can be written as

x = x1 +Q2y2, x1 = B†d = Q1R
−T
B d. (8.6.48)

where U = (Q1, Q2), Q1 ∈ Rn×p, and Q2 ∈ Rn×(n−p). (Note that Q2 gives an
orthogonal basis for the null space of B.) Hence, Ax − b = Ax1 + AQ2y2 − b,
y2 ∈ Rn−p, and it remains to solve the unconstrained least squares problem

min
y2

‖(AQ2)y2 − (b−Ax1)‖2. (8.6.49)

Let y2 = (AQ2)
I(b−Ax1) be the minimum length solution to (8.6.49), and let x be

defined by (8.6.48). Then since x1 ⊥ Q2y2 it follows that

‖x‖2
2 = ‖x1‖2

2 + ‖Q2y2‖2
2 = ‖x1‖2

2 + ‖y2‖2
2

and x is the minimum norm solution to problem LSE.
If (8.6.42) is satisfied it follows that rank (AQ2) = n−p. Then we can compute

the QR factorization

QT
A(AQ2) =

(

RA

0

)

,

where RA is upper triangular and nonsingular. The unique solution to (8.6.49) can
then be computed from

RAy2 = c1, c =

(

c1
c2

)

= QT
A(b−Ax1), (8.6.50)

and we finally obtain x = x1 +Q2y2, the unique solution to problem LSE.
The method of direct elimination and the null space method both have good

numerical stability. The operation count for the method of direct elimination is
slightly lower because Gaussian elimination is used to derive the reduced uncon-
strained problem.

Review Questions

1. What is meant by a saddle-point system? Which two optimization problems
give rise to saddle-point systems?

2. Show the equivalence of the hyperbolic and the Givens rotations in (8.6.35).

Problems

1. Consider the overdetermined linear system Ax = b in Example 8.2.2. Assume
that ǫ2 ≤ u, where u is the unit roundoff, so that fl(1 + ǫ2) = 1.
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(a) Show that the condition number of A is κ = ǫ−1
√

3 + ǫ2 ≈ ǫ−1
√

3.

(b) Show that if no other rounding errors are made then the maximum devia-
tion from orthogonality of the columns computed by CGS and MGS, respec-
tively, are

CGS : |qT
3 q2| = 1/2, MGS : |qT

3 q1| =
ǫ√
6
≤ κ

3
√

3
u.

Note that for CGS orthogonality has been completely lost!

2. Assume that A ∈ Rm×m is symmetric and positive definite and B ∈ Rm×n a
matrix with full column rank. Show that

M =

(

A B
BT 0

)

=

(

I 0
BTA−1 I

) (

A 0
0 −S

) (

I A−1B
0 I

)

,

where S = BTA−1B is the Schur complement (cf. (6.2.12)). Conclude that
M is indefinite! (M is called a saddle point matrix.)

8.7 Total Least Squares

8.7.1 The Total Least Squares Problem

In the standard linear model (8.1.3) it is assumed that the vector b ∈ Rm is related
to the unknown parameter vector x ∈ Rn by a linear relation Ax = b + e, where
A ∈ Rm×n is an exactly known matrix and e a vector of random errors. If the
components of e are uncorrelated, have zero means and the same variance, then
by the Gauss–Markoff theorem (Theorem 8.1.4) the best unbiased estimate of x is
obtained by solving the least squares problem

min
x

‖r‖2, Ax = b+ r. (8.7.1)

The assumption in the least squares problem that all errors are confined to
the right hand side b is frequently unrealistic, and sampling or modeling errors often
will affect also the matrix A. In the errors-in-variables model it is assumed that
a linear relation

(A+ E)x = b+ r,

where the rows of the errors (E, r) are independently and identically distributed
with zero mean and the same variance. If this assumption is not satisfied it might
be possible to find scaling matrices D = diag (d1, . . . , dm), T = diag (d1, . . . , dn+1),
such that D(A, b)T ) satisfies this assumptions.

Estimates of the unknown parameters x in this model can be obtained from
the solution of the total least squares (TLS) problem4

min
E, r

‖(r, E)‖F , (A+ E)x = b+ r, (8.7.2)

4The term “total least squares problem” was coined by Golub and Van Loan in [28]. The
concept has been independently developed in other areas. For example, in statistics this is also
known as ”latent root regression”.
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where ‖ · ‖F denotes the Frobenius matrix norm defined by

‖A‖2
F =

∑

i,j

a2
ij = trace (ATA).

The constraint in (8.7.2) implies that b + r ∈ R(A + E). Thus the total least
squares is equivalent to the problem of finding the “nearest” compatible linear
system, where the distance is measured by the Frobenius norm. If a minimizing
perturbation (E, r) has been found for the problem (8.7.2) then any x satisfying
(A+ E)x = b+ r is said to solve the TLS problem.

The TLS solution will depend on the scaling of the data (A, b). In the following
we assume that this scaling has been carried out in advance, so that any statistical
knowledge of the perturbations has been taken into account. In particular, the TLS
solution depends on the relative scaling of A and b. If we scale x and b by a factor
γ we obtain the scaled TLS problem

min
E, r

‖(E, γr)‖F (A+ E)x = b+ r.

Clearly, when γ is small perturbations in b will be favored. In the limit when γ → 0
we get the ordinary least squares problem. Similarly, when γ is large perturbations
in A will be favored. In the limit when 1/γ → 0, this leads to the data least
squares (DLS) problem

min
E

‖E‖F , (A+ E)x = b, (8.7.3)

where it is assumed that the errors in the data is confined to the matrix A.

8.7.2 Total Least Squares Problem and the SVD

In the following we assume that b /∈ R(A), for otherwise the system is consistent.
The constraint in (8.7.2) can be written

( b+ r A+ E )

(

−1
x

)

= 0.

This constraint is satisfied if the matrix (b+r A+E) is rank deficient and (−1 x )T

lies in its nullspace. Hence the TLS problem involves finding a perturbation matrix
having minimal Frobenius norm, which lowers the rank of the matrix ( b A ).

The total least squares problem can be analyzed in terms of the SVD

( b A ) = UΣV T =

k+1
∑

i=1

σiuiv
T
i , (8.7.4)

where σ1 ≥ . . . ≥ σn ≥ σn+1 ≥ 0 are the singular values of ( b A ). By Theo-
rem 8.1.13 the singular values of σ̂i of A interlace those of ( b A ), i.e.,

σ1 ≥ σ̂1 ≥ σ2 > · · · ≥ σn ≥ σ̂n ≥ σn+1. (8.7.5)
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Assume first that rank (A) = n and that σ̂n > σn+1, which implies that σn > σn+1.
Then by Theorem 8.1.14 the unique perturbation of minimum norm ‖ ( r E ) ‖F

that makes (A+ E)x = b+ r consistent is the rank one perturbation

( r E ) = −σn+1un+1v
T
n+1 (8.7.6)

for which minE, r ‖ ( r E ) ‖F = σn+1. From (8.7.5), using the orthogonality of the
right singular vectors we find that σn+1un+1 = ( b A ) vn+1. Multiplying (8.7.6)
from the right with vn+1 gives

( b A ) vn+1 = − ( r E ) vn+1. (8.7.7)

Writing the relation (A+ E)x = b+ r in the form

( b A )

(

1
−x

)

= − ( r E )

(

1
−x

)

and comparing with (8.7.7) it is easily seen that the TLS solution can be written
in terms of the right singular vector vn+1 as

x = −ω−1y, vn+1 =

(

ω
y

)

, (8.7.8)

If ω = 0 then the TLS problem has no solution. Note that this is the case if and
only if b has no component along un+1. (This case can only occur when σ̂n = σn+1,
since otherwise it can be shown that the TLS problem has a unique solution.) In
this “nongeneric” case the theory and solution methods become more complicated.

Suppose now that σn+1 is a repeated singular value,

σ1 ≥> · · · ≥ σk > σ̂k+1 = · · · = σn+1.

and let v = V2z be any unit vector in the subspace R(V2), where V2 = (vk+1, . . . , vn+1)
is the matrix consisting of the right singular vectors corresponding to the minimal
singular values. Let Q be a Householder transformation such that.

V2Q =

(

ω 0
y V ′

2

)

Then is ω 6= 0 a TLS solution of minimum norm is given by (8.7.8). Otherwise we
have a nongeneric problem.

One way to avoid the complications of nongeneric problems is to compute a
regular core TLS problem by bidiagonalizing of the matrix ( b A ). This will be
discussed in Sec. 8.7.4.

8.7.3 Conditioning of the TLS Problem

We now consider the conditioning of the total least squares problem and its rela-
tion to the least squares problem. We denote those solutions by xTLS and xLS

respectively.
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The TLS solution can also be characterized by

(

bT b bTA
AT b ATA

) (

−1
xTLS

)

= σ2
n+1

(

−1
xTLS

)

, (8.7.9)

i.e., (−1 xTLS )T is an eigenvector corresponding to the smallest eigenvalue λn+1 =
σ2

n+1 of the “square” of ( b A ). This eigenvector is characterized by the property
that it minimizes the Rayleigh quotient, that is minx ρ(x) = σ2

n+1, where

ρ(x) =
(b−Ax)T (b −Ax)

xTx+ 1
=

‖r‖2
2

‖x‖2
2 + 1

, (8.7.10)

This also shows that whereas the LS solution minimizes ‖r‖2 the TLS solution
minimizes ‖r‖2/(‖x‖2

2 + 1)1/2.
From the last block row of (8.7.9) it follows that

(ATA− σ2
n+1I)xTLS = AT b. (8.7.11)

Hence, if we assume that σ̂n > σn+1 it follows that the matrix (ATA − σ2
n+1I)

is symmetric positive definite, which ensures that the TLS problem has a unique
solution.

This can be compared with the corresponding normal equations for the least
squares solution xLS ,

ATAxLS = AT b. (8.7.12)

In (8.7.11) a positive multiple of the unit matrix is subtracted from the matrix ATA
of normal equations. Thus TLS can be considered as a deregularizing procedure.
(Compare Sec. 8.4.1, where a multiple of the unit matrix was added to improve
the conditioning.) Hence the TLS solution is always worse conditioned than the LS
problem, From a statistical point of view this can be interpreted as removing the
bias by subtracting the error covariance matrix (estimated by σ2

n+1I from the data
covariance matrix ATA. Subtracting (8.7.12) from (8.7.12) we get

xTLS − xLS = σ2
n+1(A

TA− σ2
n+1I)

−1xLS .

Taking norms we obtain

‖xTLS − xLS‖2

‖xLS‖2
≤ σ2

n+1

σ̂2
n − σ2

n+1

,

which shows that when the difference σ̂n−σn+1 ≪ σ̂n is small then the TLS solution
can differ much from the LS solution. It can be shown that an approximate condition
number for the TLS solution is

κTLS ≈ σ̂1

σ̂n − σn+1
= κ(A)

σ̂n

σ̂n − σn+1
. (8.7.13)

When σ̂n − σn+1 ≪ σ̂n the TLS condition number can be much worse than for the
LS problem.
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Figure 8.7.1. Condition numbers κLS and κTLS as function of β = ‖rLS‖2.

Example 8.7.1.
Consider the overdetermined system





σ̂1 0
0 σ̂2

0 0





(

x1

x2

)

=





c1
c2
β



 . (8.7.14)

Trivially, the LS solution is xLS = (c1/σ̂1, c2/σ̂2)
T , ‖rLS‖2 = |β|. If we take

σ̂1 = c1 = 1, σ̂2 = c2 = 10−6, then xLS = (1, 1)T independent of β, and hence does
not reflect the ill-conditioning of A. However,

κLS(A, b) = κ(A)

(

1 +
‖rLS‖2

‖σ̂1xLS‖2

)

will increase proportionally to β. The TLS solution is of similar size as the LS
solution as long as |β| ≤ σ̂2. However, when |β| ≫ σ̂2 then ‖xTLS‖2 becomes large.

In Figure 8.7.1 the two condition numbers are plotted as a function of β ∈
[10−8, 10−4]. For β > σ̂2 the condition number κTLS grows proportionally to β2. It
can be verified that ‖xTLS‖2 also grows proportionally to β2.

Setting c1 = c2 = 0 gives xLS = 0. If |β| ≥ σ2(A), then σ2(A) = σ3(A, b) and
the TLS problem is nongeneric.

8.7.4 Bidiagonalization and TLS Problems.

Consider the total least squares (TLS) problem

min
E,r

‖(E, r)‖F , (A+ E)x = b+ r.
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It was shown in Sec. 8.4.5 that we can always find square orthogonal matrices Ũk+1

and Ṽk = P1P2 · · ·Pk, such that

ŨT
k+1 ( b AṼk ) =

(

β1e1 Bk 0
0 0 Ak

)

, (8.7.15)

where

Bk =













α1

β2 α2

. . .
. . .

βk αk

βk+1













∈ R(k+1)×k,

and

βjαj 6= 0, j = 1 : k. (8.7.16)

Setting x = Ṽk

(

y
z

)

, the approximation problem Ax ≈ b then decomposes

into the two subproblems

Bky ≈ β1e1, Akz ≈ 0.

It seems reasonable to simply take z = 0, and separately solve the first subproblem,
which is the minimally dimensioned core subproblem. Setting

Vk = Ṽk

(

Ik
0

)

, Uk+1 = Ũk+1

(

Ik+1

0

)

,

it follows that

( b AVk ) = Uk+1 (β1e1 Bk ) .

If x = Vky ∈ R(Vk) then

(A+ E)x = (A+ E)Vky = (Uk+1Bk + EVk)y = β1Uk+1e1 + r,

Hence the consistency relation (A+ Ek)x = b+ r becomes

(Bk + F )y = β1e1 + s, F = UT
k+1EVk, s = UT

k+1r. (8.7.17)

Using the orthogonality of Uk+1 and Vk it follows that

‖(E, r)‖F = ‖(F, s)‖F . (8.7.18)

Hence to minimize ‖(E, r)‖F we should take yk to be the solution to the TLS core
subproblem

min
F,s

‖(F, s)‖F , (Bk + F )y = β1e1 + s. (8.7.19)

From (8.7.16) and Theorem 8.4.5 it follows that the singular values of the matrix
Bk are simple and that the right hand side βe1 has nonzero components along each
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left singular vector. This TLS problem therefore must have a unique solution. Note
that we can assume that βk+1 6= 0, since otherwise the system is compatible.

To solve this subproblem we need to compute the SVD of the bidiagonal matrix

(β1e1, Bk) =















β1 α1

β2 α2

β3
. . .
. . . αk

βk+1















∈ R(k+1)×(k+1). (8.7.20)

The SVD of this matrix

(β1e1, Bk) = Pdiag (σ1, . . . , σk+1)Q
T , P,Q ∈ R(k+1)×(k+1)

can be computed, e.g., by the implicit QR-SVD algorithm; see Sec. 9.7.6. (Note
that the first stage in this is a transformation to bidiagonal form, so the work in
performing the reduction (8.7.15) has not been wasted!) Then with

qk+1 = Qek+1 =

(

ω
z

)

.

Here it is always the case that ω 6= 0 and the solution to the original TLS problem
(8.7.19) equals

xTLS = Vky = −ω−1Vkz.

Further the norm of the perturbation equals

min
E,r

‖(E, r)‖F = σk+1.

8.7.5 Some Generalized TLS Problems

We now consider the more general TLS problem with d > 1 right-hand sides

min
E, F

‖ (E F ) ‖F , (A+ E)X = B + F, (8.7.21)

where B ∈ Rm×d. The consistency relations can be written

(B + F A+ E )

(

−Id
X

)

= 0,

Thus we now seek perturbations (E, F ) that reduces the rank of the matrix (A, B)
by d. We call this a multidimensional TLS problem. As remarked before, for
this problem to be meaningful the rows of the error matrix (E, F ) should be
independently and identically distributed with zero mean and the same variance.
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Note that the multidimensional problem is different from solving d one-dimensional
TLS problems with right-hand sides b1, . . . , bd. This is because in the multidimen-
sional problem we require that the matrix A be similarly perturbed for all right-
hand sides. This is in contrast to the usual least squares solution and may lead to
improved predicted power of the TLS solution.

The solution to the TLS problem with multiple right-hand sides can be ex-
pressed in terms of the SVD

(B A ) = (U1 U2)

(

Σ1

Σ2

) (

V T
1

V T
2

)

, (8.7.22)

where Σ1 = diag (σ1, . . . , σn), Σ2 = diag (σn+1, . . . , σn+d), and U and V are parti-
tioned conformally. The minimizing perturbation is given by

(F E ) = −U2Σ2V
T
2 = − (B A )V2V

T
2 ,

for which ‖ (F E ) ‖F =
∑d

j=1 σ
2
n+j and

(B + F A+ E )V2 = 0, V2 =

(

V12

V22

)

.

where V12 ∈ Rd×d. If σ̂n > σn+1, where σ̂i, i = 1, . . . , n, are the singular values of
A, it can be shown that V12 is nonsingular. Then the solution to the TLS problem
is unique and given by

X = −V22V
−1
12 ∈ Rn×d.

Otherwise assume that σk > σk+1 = · · · = σn+1, k ≤ n, and set V2 =
(vk+1, . . . , vn+d). Let Q be a product of Householder transformations such that

V2Q =

(

Γ 0
Z Y

)

,

where Γ ∈ Rd×d is lower triangular. If Γ is nonsingular, then the TLS solution of
minimum norm is given by

X = −ZΓ−1.

In many parameter estimation problems, some of the columns are known ex-
actly. It is no restriction to assume that the error-free columns are in leading
positions in A. In the multivariate version of this mixed LS-TLS problem one
has a linear relation

(A1, A2 + E2)X = B + F, A1 ∈ Rm×n1 ,

where A = (A1, A2) ∈ Rm×n, n = n1 + n2. It is assumed that the rows of the
errors (E2, F ) are independently and identically distributed with zero mean and
the same variance. The mixed LS-TLS problem can then be expressed

min
E2,F

‖(E2, F )‖F , (A1, A2 + E2)X = B + F. (8.7.23)
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When A2 is empty, this reduces to solving an ordinary least squares problem. When
A1 is empty this is the standard TLS problem. Hence this mixed problem includes
both extreme cases.

The solution of the mixed LS-TLS problem can be obtained by first computing
a QR factorization of A and then solving a TLS problem of reduced dimension.

Algorithm 8.7.1 Mixed LS-TLS problem
Let A = (A1, A2) ∈ Rm×n, n = n1 + n2, m ≥ n, and B ∈ Rm×d. Assume that the
columns of A1 are linearly independent. Then the following algorithm solves the
mixed LS-TLS problem (8.7.23).

Step 1. Compute the QR factorization

(A1, A2, B) = Q

(

R
0

)

, R =

(

R11 R12

0 R22

)

,

where Q is orthogonal, and R11 ∈ Rn1×n1 , R22 ∈ R(n2+d)×(n2+d) are upper trian-
gular. If n1 = n, then the solution X is obtained by solving R11X = R12 (usual
least squares); otherwise continue (solve a reduced TLS problem).

Step 2. Compute the SVD of R22

R22 = UΣV T , Σ = diag (σ1, . . . , σn2+d),

where the singular values are ordered in decreasing order of magnitude.

Step 3a. Determine k ≤ n2 such that

σk > σk+1 = · · · = σn2+d = 0,

and set V22 = (vk+1, . . . , vn2+d). If n1 > 0 then compute V2 by back-substitution
from

R11V12 = −R12V22, V2 =

(

V12

V22

)

,

else set V2 = V22.

Step 3b. Perform Householder transformations such that

V2Q =

(

Γ 0
Z Y

)

,

where Γ ∈ Rd×d is upper triangular. If Γ is nonsingular then the solution is

X = −ZΓ−1.

Otherwise the TLS problem is nongeneric and has no solution.

Note that the QR factorization in the first step would be the first step in
computing the SVD of A.
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8.7.6 Iteratively Reweighted Least Squares.

In some applications it might be more adequate to solve the problem

min ‖Ax− b‖p (8.7.24)

for some lp-norm with p 6= 2. For p = 1 the solution may not be unique, while
for 1 < p < ∞ the problem (8.7.24) is strictly convex and hence has exactly one
solution. Minimization in the l1-norm or l∞-norm is more complicated since the
function f(x) = ‖Ax− b‖p is not differentiable for p = 1,∞.

Example 8.7.2. To illustrate the effect of using a different norm we consider the
problem of estimating the scalar x from m observations b ∈ Rm. This is equivalent
to minimizing ‖Ax − b‖p, with A = e = (1, 1, . . . , 1)T . It is easily verified that if
b1 ≥ b2 ≥ . . . ≥ bm, then the solution xp for some different values p are

x1 = bm+1

2

, (m odd)

x2 =
1

m
(b1 + b2 + . . .+ bm),

x∞ =
1

2
(b1 + bm).

These estimates correspond to the median, mean, and midrange respectively. Note
that the estimate x1 is insensitive to the extreme values of bi, while x∞ only depends
on the extreme values. The l∞ solution has the property that the absolute error in
at least n equations equals the maximum error.

The simple example above shows that the l1 norm of the residual vector has
the advantage of giving a solution that is robust, i.e., a small number of isolated
large errors will usually not change the solution much. A similar effect is also
achieved with p greater than but close to 1.

For solving the lp norm problem when 1 < p < 3, the iteratively reweighted
least squares (IRLS) method (see Osborne [44, ]) can be used to reduce the
problem to a sequence of weighted least squares problems.

We start by noting that, provided that |ri(x)| = |b − Ax|i > 0, i = 1, . . . ,m,
the problem (8.7.24) can be restated in the form minx ψ(x), where

ψ(x) =

m
∑

i=1

|ri(x)|p =

m
∑

i=1

|ri(x)|p−2ri(x)
2. (8.7.25)

This can be interpreted as a weighted least squares problem

min
x

‖D(r)(p−2)/2(b −Ax)‖2, D(r) = diag (|r|), (8.7.26)

where diag (|r|) denotes the diagonal matrix with ith component |ri|.
The diagonal weight matrix D(r)(p−2)/2 in (8.7.26) depends on the unknown

solution x, but we can attempt to use the following iterative method.
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Algorithm 8.7.2
IRLS for lp Approximation 1 < p < 2

Let x(0) be an initial approximation such that r
(0)
i = (b−Ax(0))i 6= 0, i = 1, . . . , n.

for k = 0, 1, 2, . . .

r
(k)
i = (b−Ax(k))i;

Dk = diag
((

|r(k)
i |

)(p−2)/2)
;

solve δx(k) from

min
δx

∥

∥Dk(r(k) −Aδx)
∥

∥

2
;

x(k+1) = x(k) + δx(k);

end

SinceDkb = Dk(r(k)−Ax(k)), it follows that x(k+1) in IRLS solves minx ‖Dk(b−
Ax)‖2, but the implementation above is to be preferred. It has been assumed that

in the IRLS algorithm, at each iteration r
(k)
i 6= 0, i = 1, . . . , n. In practice this

cannot be guaranteed, and it is customary to modify the algorithm so that

Dk = diag
((

100ue+ |r(k)|
)(p−2)/2)

,

where u is the machine precision and eT = (1, . . . , 1) is the vector of all ones.
Because the weight matrixDk is not constant, the simplest implementations of IRLS
recompute, e.g., the QR factorization of DkA in each step. It should be pointed out
that the iterations can be carried out entirely in the r space without the x variables.
Upon convergence to a residual vector ropt the corresponding solution can be found
by solving the consistent linear system Ax = b − ropt.

It can be shown that in the lp case any fixed point of the IRLS iteration
satisfies the necessary conditions for a minimum of ψ(x). The IRLS method is
convergent for 1 < p < 3, and also for p = 1 provided that the l1 approximation
problem has a unique nondegenerate solution. However, the IRLS method can be
extremely slow when p is close to unity.

Review Questions

1. Formulate the total least squares (TLS) problem. The solution of the TLS
problem is related to a theorem on matrix approximation. Which?

Problems and Computer Exercises

1. Consider a TLS problem where n = 1 and

C = (A, b) =

(

1 0
0 2

)

.
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Show that the unique minimizing ∆C gives

C + ∆C = (A+ E, b+ r) =

(

0 0
0 2

)

so the perturbed system is not compatible, but that an arbitrary small per-
turbation ǫ in the (2,1) element will give a compatible system with solution
x = 2/ǫ.

2. Write a MATLAB program for fitting a straight line c1x + c2y = h to given
points (xi, yi) ∈ R2, i = 1, 2, . . . ,m. Follow the outline in Example 8.6.3. Use
the Algorithm 10.4.2 to compute the SVD of R. The program should handle
all exceptional cases, e.g., c1 = 0 or and/or c2 = 0.

3. (a) Let A ∈ Rm×n, m ≥ n, b ∈ Rm, and consider the total least squares
(TLS) problem. minE,r ‖(E, r)‖F , where (A+E)x = b+ r. If we have the QR
factorization

QT (A, b) =

(

S
0

)

, S =

(

R z
0 ρ

)

.

then the ordinary least squares solution is xLS = R−1z, ‖r‖2 = ρ.
Show that if a TLS solution xTLS exists, then it holds

(

RT 0
zT ρ

) (

R z
0 ρ

) (

xTLS

−1

)

= σ2
n+1

(

xTLS

−1

)

,

where σn+1 is the smallest singular value of (A, b).

(b) Write a program using inverse iteration to compute xTLS , i.e., for k =
0, 1, 2, . . ., compute a sequence of vectors x(k+1) by

(

RT 0
zT ρ

) (

R z
0 ρ

) (

y(k+1)

−α

)

=

(

x(k)

−1

)

, x(k+1) = y(k+1)/α.

As starting vector use x(0) = xLS on the assumption that xTLS is a good
approximation to xLS . Will the above iteration always converge? Try to
make it fail!

(c) Study the effect of scaling the right hand side in the TLS problem by
making the substitution z := θz, ρ := θρ. Plot ‖xTLS(θ)−xLS‖2 as a function
of θ and verify that when θ → 0, then xTLS → xLS .

Hint For generating test problems it is suggested that you use the function
qmult(A) from the MATLAB collection of test matrices by N. Higham to
generate a matrix C = (A, b) = Q1 ∗D ∗ QT

2 , where Q1 and Q2 are random
real orthogonal matrices and D a given diagonal matrix. This allows you to
generate problems where C has known singular values and vectors.

Notes

Several of the great mathematicians at the turn of the 19th century worked on meth-
ods for solving overdetermined linear systems. Laplace in 1799 used the principle of
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minimizing the sum of absolute errors |ri|. This leads to a solution x that satisfies
at least n equations exactly. The method of least squares was first published as an
algebraic procedure by Legendre 1805 in [39]. Gauss justified the least squares prin-
ciple as a statistical procedure in [24], where he claimed to have used the method
since 1795. This led to one of the most famous priority dispute in the history of
mathematics. Gauss further developed the statistical aspects in 1821–1823. For an
interesting accounts of the history of the invention of least squares, see Stiegler [60,
].

Because of its success in analyzing astronomical data the method of least
squares rapidly became the method of choice when analyzing observation. Geodetic
calculations was another early area of application of the least squares principle. In
the last decade applications in control and signal processing has been a source of
inspiration for developments in least squares calculations.

The singular value decomposition was independently developed by E. Beltrami
1873 and C. Jordan 1874; see G. W. Stewart [57, ] for an interesting account of
the early history of the SVD. The first stable algorithm for computing the SVD the
singular value was developed by Golub, Kahan and Wilkinson in the late 1960’s.
Several other applications of the SVD to matrix approximation can be found in
Golub and Van Loan [29, Sec. 12.4].

A good introduction to generalized inverses Ben-Israel and Greville [5]. These
should be used with caution since they tend to hide the computational difficulties
involved with rank deficient matrices. A more complete and thorough treatment is
given in the monograph by the same authors [6]. The use of generalized inverses in
geodetic calculations is treated in Bjerhammar [8].

Peters and Wilkinson [49, ] developed methods based on Gaussian elim-
ination from a uniform standpoint and the excellent survey by Noble [43, ].
Sautter [53, ] gives a detailed analysis of stability and rounding errors of the
LU algorithm for computing pseudo-inverse solutions.

The different computational variants of Gram–Schmidt have an interesting his-
tory. The “modified” Gram–Schmidt (MGS) algorithm was in fact already derived
by Laplace in 1816 as an elimination method using weighted row sums. Laplace
did not interpret his algorithm in terms of orthogonalization, nor did he use it for
computing least squares solutions! Bienaymé in 1853 gave a similar derivation of
a slightly more general algorithm; see Björck [10, ]. What is now called the
“classical” Gram–Schmidt (CGS) algorithm first appeared explicitly in papers by
Gram 1883 and Schmidt 1908. Schmidt treats the solution of linear systems with
infinitely many unknowns and uses the orthogonalization as a theoretical tool rather
than a computational procedure.

In the 1950’s algorithms based on Gram–Schmidt orthogonalization were fre-
quently used, although their numerical properties were not well understood at the
time. Björck [9] analyzed the modified Gram–Schmidt algorithm and showed its
stability for solving linear least squares problems.

The systematic use of orthogonal transformations to reduce matrices to sim-
pler form was initiated by Givens [25, ] and Householder [36, ]. The ap-
plication of these transformations to linear least squares is due to Golub [26, ],
where it was shown how to compute a QR factorization of A using Householder
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transformations.
How to find the optimal backward error for the linear least squares problem

was an open problem for many years, until it was elegantly answered by Karlsson et
al. [64]; see also [37]. Gu [30] gives several approximations to that are optimal up to
a factor less than 2. Optimal backward perturbation bounds for underdetermined
systems are derived in [61]. The extension of backward error bounds to the case of
constrained least squares problems is discussed by Cox and Higham [19].

The QR algorithm for banded rectangular matrices was first given by Reid [52].
Rank-revealing QR (RRQR) decompositions have been studied by a number of au-
thors. A good survey can be found in Hansen [32]. The URV and ULV decomposi-
tions were introduced by G. W. Stewart [56, 58].

The systematic use of GQR as a basic conceptual and computational tool
are explored by [45]. These generalized decompositions and their applications are
discussed in [1]. Algorithms for computing the bidiagonal decomposition are due to
Golub and Kahan [27, ]. The partial least squares (PLS) method, which has
become a standard tool in chemometrics, goes back to Wold et al. [66].

The term “total least squares problem”, which was coined by Golub and Van
Loan [28], renewed the interest in the “errors in variable model”. A thorough and
rigorous treatment of the TLS problem is found in Van Huffel and Vandewalle [63].
The important role of the core problem for weighted TLS problems was discovered
by Paige and Strakoš [47].

Modern numerical methods for solving least squares problems are surveyed in
the two comprehensive monographs [38] and [11]. The latter contains a bibliography
of 860 references, indicating the considerable research interest in these problems.
Hansen [32] gives an excellent survey of numerical methods for the treatment of
numerically rank deficient linear systems arising, for example, from discrete ill-
posed problems.
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[7] Commandant Benoit. Sur la méthode de résolution des équations normales,
etc. (procédés du commandant Cholesky). Bull. Géodesique, 2:67–77, 1924.
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[11] Åke Björck. Numerical Methods for Least Squares Problems. SIAM, Philadel-
phia, PA, 1996.
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Chapter 9

Matrix Eigenvalue

Problems

9.1 Basic Properties

9.1.1 Introduction

Eigenvalues and eigenvectors are a standard tool in the mathematical sciences and
in scientific computing. Eigenvalues give information about the behavior of evolving
systems governed by a matrix or operator. The problem of computing eigenvalues
and eigenvectors of a matrix occurs in many settings in physics and engineering.
Eigenvalues are useful in analyzing resonance, instability, and rates of growth or
decay with applications to, e.g., vibrating systems, airplane wings, ships, buildings,
bridges and molecules. Eigenvalue decompositions also play an important part in
the analysis of many numerical methods. Further, singular values are closely related
to an eigenvalues a symmetric matrix.

In this chapter we treat numerical methods for computing eigenvalues and
eigenvectors of matrices. In the first three sections we briefly review the classical
theory needed for the proper understanding of the numerical methods treated in
the later sections. In particular Section 9.1 gives a brief account of basic facts of
the matrix eigenvalue problem, Section 9.2 treats the classical theory of canonical
forms and matrix functions. Section 9.3 is devoted to the localization of eigenvalues
and perturbation results for eigenvalues and eigenvectors.

Section 9.5 treats the Jacobi methods for the real symmetric eigenvalue prob-
lem and the SVD. These methods have advantages for parallel implementation and
are potentially very accurate. The power method and its modifications are treated
in Section 9.4. Transformation to condensed form described in Section 9.4 often is a
preliminary step in solving the eigenvalue problem. Followed by the QR algorithm
this constitutes the current method of choice for computing eigenvalues and eigen-
vectors of small to medium size matrices, see Section 9.7. This method can also
be adopted to compute singular values and singular vectors although the numerical
implementation is often far from trivial, see Section 9.7.

In Section 9.8 we briefly discuss some methods for solving the eigenvalue prob-
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2 Chapter 9. Matrix Eigenvalue Problems

lem for large sparse matrices. Finally, in Section 9.9 we consider the generalized
eigenvalue problem Ax = λBx, and the generalized SVD.

9.1.2 Complex Matrices

In developing the theory for the matrix eigenvalue problem it often is more relevant
to work with complex vectors and matrices. This is so because a real unsymmetric
matrix can have complex eigenvalues and eigenvectors. We therefore introduce the
vector space Cn×m of all complex n ×m matrices whose components are complex
numbers.

Most concepts and operations in Section 7.2 carry over from the real to the
complex case in a natural way. Addition and multiplication of vectors and matrices
follow the same rules as before. The Hermitian inner product of two vectors x and
y in Cn is defined as

(x, y) = xHy =

n
∑

k=1

x̄kyk, (9.1.1)

where xH = (x̄1, . . . , x̄n) and x̄i denotes the complex conjugate of xi. Hence (x, y) =
(y, x), and x ⊥ y if xHy = 0. The Euclidean length of a vector x thus becomes

‖x‖2 = (x, x)1/2 =

n
∑

k=1

|xk|2.

The set of complex m×n matrices is denoted by Cm×n. If A = (aij) ∈ Cm×n

then by definition its adjoint matrix AH ∈ Cn×m satisfies

(x,AHy) = (Ax, y).

By using coordinate vectors for x and y it follows that AH = ĀT , that is, AH is the
conjugate transpose of A. It is easily verified that (AB)H = BHAH . In particular,
if α is a scalar αH = ᾱ.

A matrix A ∈ Cn×n is called self-adjoint or Hermitian if AH = A. A
Hermitian matrix has analogous properties to a real symmetric matrix. If A is
Hermitian, then (xHAx)H = xHAx is real, and A is called positive definite if

xHAx > 0, ∀x ∈ Cn, x 6= 0.

A square matrix U is unitary if UHU = I. From (9.1.1) we see that a unitary
matrix preserves the Hermitian inner product

(Ux,Uy) = (x, UHUy) = (x, y).

In particular the 2-norm is invariant under unitary transformations, ‖Ux‖2
2 = ‖x‖2

2.
Hence, unitary matrices corresponds to real orthogonal matrices. Note that in every
case, the new definition coincides with the old when the vectors and matrices are
real.
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9.1.3 Theoretical Background

Of central importance in the study of matrices A ∈ Cn×n are the special vectors
whose directions are not changed when multiplied by A. A complex scalar λ such
that

Ax = λx, x 6= 0, (9.1.2)

is called an eigenvalue of A and x is an eigenvector of A. When an eiegnvalue is
known, the determination of the corresponding eigenvector(s) requires the solution
of a linear homogenous system (A − λI)x = 0. Clearly, if x is an eigenvector so is
αx for any scalar α 6= 0.

It follows that λ is an eigenvalue of A if and only if the system (A− λI)x = 0
has a nontrivial solution x 6= 0, or equivalently if and only if the matrix A− λI is
singular. Hence the eigenvalues satisfy the characteristic equation

pn(λ) = det(A− λI) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n

... . . .
. . .

...
an1 an2 · · · ann − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (9.1.3)

The set λ(A) = {λi}n
i=1 of all eigenvalues of A is called the spectrum1 of A.

The polynomial pn(λ) = det(A − λI) is called the characteristic polynomial of
the matrix A. Expanding the determinant in (9.1.3) it follows that p(λ) has the
form

pn(λ) = (a11 − λ)(a22 − λ) · · · (ann − λ) + q(λ), (9.1.4)

= (−1)n(λn − ξn−1λ
n−1 − · · · ξ0). (9.1.5)

where q(λ) has degree at most n− 2. Thus, by the fundamental theorem of algebra
the matrix A has exactly n eigenvalues λi, i = 1, 2, . . . n, counting multiple roots
according to their multiplicities, and we can write

p(λ) = (λ1 − λ)(λ2 − λ) · · · (λn − λ).

Using the relation between roots and coefficients of an algebraic equation we obtain

p(0) = λ1λ2 · · ·λn = det(A), (9.1.6)

Further, using the relation between roots and coefficients of an algebraic equation
we obtain

λ1 + λ2 + · · · + λn = trace (A). (9.1.7)

where trace (A) = a11 + a22 + · · ·+ ann is the trace of the matrix A. This relation
is useful for checking the accuracy of a computed spectrum.

1From Latin verb specere meaning “to look”.
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Theorem 9.1.1.
Let A ∈ Cn×n. Then

λ(AT ) = λ(A), λ(AH) = λ̄(A).

Proof. Since det(AT − λI)T = det(A − λI)T = det(A − λI) it follows that AT

and A have the same characteristic polynomial and thus same set of eigenvalues.
For the second part note that det(AH − λ̄I) = det(A − λI)H is zero if and only if
det(A− λI) is zero.

By the above theorem, if λ is an eigenvalue of A then λ̄ is an eigenvalue of
AH , i.e., AHy = λy for some vector y 6= 0, or equivalently

yHA = λyH , y 6= 0. (9.1.8)

Here y is called a left eigenvector of A, and consequently if Ax = λx, x is also
called a right eigenvector of A. For a Hermitian matrix AH = A and thus λ = λ,
i.e., λ is real. In this case the left and right eigenvectors can be chosen to coincide.

Theorem 9.1.2.
Let λi and λj be two distinct eigenvalues of A ∈ Cn×n, and let yi and xj be

left and right eigenvectors corresponding to λi and λj respectively. Then yH
i xj = 0,

i.e., yi and xj are orthogonal.

Proof. By definition we have

yH
i A = λiy

H
i , Axj = λjxj .

Multiplying the first equation with xj from the right and the second with yH
i from

the left and subtracting we obtain (λi − λj)y
H
i xj = 0. Since λi 6= λj the theorem

follows.

Definition 9.1.3.
Denote the eigenvalues of the matrix A ∈ Cn×n by λi|, i = 1 : n. The

spectral radius of A is is the maximal absolute value of the eigenvalues of A

ρ(A) = max
i

|λi|. (9.1.9)

The spectral abscissa is the maximal real part of the eigenvalues of A

α(A) = max
i

ℜλi. (9.1.10)

If X is any square nonsingular matrix and

Ã = X−1AX, (9.1.11)

then Ã is said to be similar to A and (9.1.11) is called a similarity transformation
of A. Similarity of matrices is an equivalence transformation, i.e., if A is similar to
B and B is similar to C then A is similar to C.
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Theorem 9.1.4.
If A and B are similar, then A and B have the same characteristic polynomial,

and hence the same eigenvalues. Further, if B = X−1AX and y is an eigenvector
of B corresponding to λ then Xy is an eigenvector of A corresponding to λ.

Proof. We have

det(B − λI) = det(X−1AX − λI) = det(X−1(A− λI)X)

= det
(

X−1) det(A− λI
)

det(X) = det(A− λI).

Further, from AX = XB it follows that AXy = XBy = λXy.

Let Axi = λixi, i = 1, . . . , n. It is easily verified that these n equations are
equivalent to the single matrix equation

AX = XΛ, Λ = diag (λ1, . . . , λn),

where X = (x1, . . . , xn) is a matrix of right eigenvectors of A If the eigenvectors are
linearly independent then X is nonsingular and we have

X−1AX = Λ. (9.1.12)

This similarity transformation by X transforms A to diagonal form and A is said
to be diagonalizable.

From (9.1.12) it follows that X−1A = ΛX−1, which shows that the rows of
X−1 are left eigenvectors yH

i . We can also write A = XΛX−1 = XΛY H , or

A =
n
∑

i=1

λiPi, Pi = xiy
H
i . (9.1.13)

Since Y HX = I it follows that the left and right eigenvectors are biorthogonal,
yH

i xj = 0, i 6= j, and yH
i xi = 1. Hence Pi is a projection (P 2

i = Pi) and (9.1.13) is
called the spectral decomposition of A. The decomposition (9.1.13) is essentially
unique. If λi1 is an eigenvalue of multiplicity m and λi1 = λi2 = · · · = λim

, then the
vectors xi1 , xi2 , . . . , xim

can be chosen as any basis for the null space of A− λi1I.

9.1.4 Invariant Subspaces

Suppose that for a matrix X ∈ Cn×k, rank (X) = k ≤ n, it holds that

AX = XB, B ∈ Ck×k.

Any vector x ∈ R(X) can be written x = Xz for some vector z ∈ Ck. Thus
Ax = AXz = XBz ∈ R(X) and R(X) is called a right invariant subspace. If
By = λy, it follows that

AXy = XBy = λXy,

and so any eigenvalue λ of B is also an eigenvalue of A and Xy a corresponding
eigenvector. Note that any set of right eigenvectors spans a right invariant subspace.
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Similarly, if Y HA = BY H , where Y ∈ Cn×k, rank (Y ) = k ≤ n, then R(Y ) is
a left invariant subspace. If vHB = λvH it follows that

vHY HA = vHBY H = λvHY H ,

and so λ is an eigenvalue of A and Y v is a left eigenvector.

Definition 9.1.5.
A matrix A ∈ Rn×n, is said to be reducible if for some permutation matrix

P , PTAP has the form

PTAP =

(

B C
0 D

)

, (9.1.14)

where B and C, are square submatrices, or if n = 1 and A = 0. Otherwise A is
called irreducible.

The concept of a reducible matrix can be illustrated using some elementary
notions from the theory of graphs. The directed graph of a matrixA is constructed
as follows: Let P1, . . . , Pn be n distinct points in the plane called nodes. For each
aij 6= 0 in A we connect node Pi to node Pj by means of directed edge from node i
to node j. (Compare the definition of an undirected graph of a matrix in Def. 6.5.2.)
It can be shown that a matrix A is irreducible if and only if its graph is connected
in the following sense. Given any two distinct nodes Pi and Pj there exists a path
Pi = Pi1 , Pi2 , . . . , Pip

= Pj along directed edges from Pi to Pj . Note that the graph
of a matrix A is the same as the graph of PTAP , where P is a permutation matrix;
only the labeling of the node changes.

Assume that a matrix A is reducible to the form (9.1.14), where B ∈ Rr×r,
B ∈ Rs×s (r + s = n). Then we have

Ã

(

Ir
0

)

=

(

Ir
0

)

B, ( 0 Is ) Ã = D ( 0 Is ) ,

that is, the first r unit vectors span a right invariant subspace, and the s last unit
vectors span a left invariant subspace of Ã. It follows that the spectrum of A equals
the union of the spectra of B and D.

If B and D are reducible they can be reduced in the same way. Continuing in
this way until the diagonal blocks are irreducible we obtain a block upper triangular
matrix

A =









A11 A12 · · · A1N

0 A22 · · · A2N
...

...
. . .

...
0 0 0 ANN









, (9.1.15)

where each diagonal block Aii is square.

Theorem 9.1.6.
Assume that the matrix A can be reduced by a permutation to the block up-

per triangular form (9.1.15). Then λ(A) =
⋃N

i=1 λ(Aii), where λ(A) denotes the
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spectrum of A. In particular the eigenvalues of a triangular matrix are its diagonal
elements.

Many important numerical methods for computing eigenvalues and eigenvec-
tors of a matrix A perform a sequence of similarity transformations to transform A
into a matrix of simpler form. With A0 = A one computes

Ak = P−1
k Ak−1Pk, k = 1, 2, ....

The matrix Ak is similar to A and the eigenvectors x of A and y of Ak are related
by x = P1P2 · · ·Pky. The eigenvalues of a triangular matrix equal its diagonal
elements. Hence if the matrix A can be transformed by successive similarities to
triangular form, then its eigenvalues are trivial to determine.

Let AX1 = X1B, for some X1 ∈ Rn×p of rank p, and B ∈ Rp×p. Then R(X1)
is a right invariant subspace of A. Let X2 ∈ Rn×(n−p) be such that X = (X1, X2)
is invertible. Then we have

X−1AX = X−1(AX1, AX2) = (X−1X1B,X
−1AX2) =

(

B T12

0 T22

)

(9.1.16)

that is, X−1AX is reducible. Hence, if a set of eigenvalues of A and a basis X1

for a corresponding right invariant are known, then we can find the remaining
eigenvalues of A from T22. This process is called deflation and is a powerful tool for
computation of eigenvalues and eigenvectors. Note that if X1 = Q1 has orthonormal
columns, then X = (Q1, Q2) in (9.1.16) can be chosen as an orthogonal matrix.

A matrix A may not have a full set of n linearly independent eigenvectors.
However, it holds:

Theorem 9.1.7.
Let x1, . . . , xk be eigenvectors of A ∈ Cn×n corresponding to distinct eigenval-

ues λ1, . . . , λk. Then the vectors x1, . . . , xk are linearly independent. In particular
if all the eigenvalues of a matrix A are distinct then A has a complete set of linearly
independent eigenvectors and hence A is diagonalizable.

Proof. Assume that only the vectors x1 . . . , xp, p < k, are linearly independent
and that xp+1 = γ1x1 + · · · + γpxp. Then Axp+1 = γ1Ax1 + · · · + γpAxp, or

λp+1xp+1 = γ1λ1x1 + · · · + γpλpxp.

It follows that
∑p

i=1 γi(λi −λp+1)xi = 0. Since γi 6= 0 for some i and λi −λp+1 6= 0
for all i, this contradicts the assumption of linear independence. Hence we must
have p = k linearly independent vectors.

Let λ1, · · · , λk be the distinct zeros of p(λ) and let σi be the multiplicity of λi,
i = 1, ..., k. The integer σi is called the algebraic multiplicity of the eigenvalue
λi and

σ1 + σ2 + · · · + σk = n.
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To every distinct eigenvalue corresponds at least one eigenvector. All the eigen-
vectors corresponding to the eigenvalue λi form a linear subspace L(λi) of Cn of
dimension

ρi = n− rank(A− λiI). (9.1.17)

The integer ρi is called the geometric multiplicity of λi, and specifies the max-
imum number of linearly independent eigenvectors associated with λi. The eigen-
vectors are not in general uniquely determined.

Theorem 9.1.8.
For the geometric and algebraic multiplicity the inequality ρ(λ) ≤ σ(λ) holds.

Proof. Let λ̄ be an eigenvalue with geometric multiplicity ρ = ρ(λ̄) and let
x1, . . . , xρ be linearly independent eigenvectors associated with λ̄. If we put X1 =
(x1, . . . , xρ) then we have AX1 = λ̄X1. We now let X2 = (xρ+1, · · · , xn) consist
of n − ρ more vectors such that the matrix X = (X1, X2) is nonsingular. Then it
follows that the matrix X−1AX must have the form

X−1AX =

(

λ̄I B
0 C

)

and hence the characteristic polynomial of A, or X−1AX is

p(λ) = (λ̄− λ)ρ det(C − λI).

Thus the algebraic multiplicity of λ̄ is at least equal to ρ.

If ρ(λ) < σ(λ) then λ is said to be a defective eigenvalue. A matrix
with at least one defective eigenvalue is defective, otherwise it is nondefective.
The eigenvectors of a nondefective matrix A span the space Cn and A is said to
have a complete set of eigenvectors. A matrix is nondefective if and only if it is
diagonalizable.

Example 9.1.1.
The matrix λ̄I, where I is a unit matrix of dimension n has the characteristic

polynomial p(λ) = (λ̄−λ)n and hence λ = λ̄ is an eigenvalue of algebraic multiplicity
equal to n. Since rank (λ̄I − λ̄·I) = 0, there are n linearly independent eigenvectors
associated with this eigenvalue. Clearly any vector x ∈ Cn is an eigenvector.

Now consider the nth order matrix

Jn(λ̄) =











λ̄ 1

λ̄
. . .
. . . 1

λ̄











. (9.1.18)

Also this matrix has the characteristic polynomial p(λ) = (λ̄− λ)n. However, since
rank (Jn(λ̄) − λ̄·I) = n − 1, Jn(λ̄) has only one right eigenvector x = (1, 0, ..., 0)T .
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Similarly it has only one left eigenvector y = (0, . . . , 0, 1)T , and the eigenvalue λ = λ̄
is defective. A matrix of this form is called a Jordan block, see Theorem 9.2.8.

For any nonzero vector v1 = v, define a sequence of vectors by

vk+1 = Avk = Akv1. (9.1.19)

Let vm+1 be the first of these vectors that can be expressed as a linear combination
of the preceding ones. (Note that we must have m ≤ n.) Then for some polynomial
p of degree m

p(λ) = c0 + c1λ+ · · · + λm

we have p(A)v = 0, i.e., p annihilates v. Since p is the polynomial of minimal degree
that annihilates v it is called the minimal polynomial and m the grade of v with
respect to A.

Of all vectors v there is at least one for which the degree is maximal, since for
any vector m ≤ n. If v is such a vector and q its minimal polynomial, then it can
be shown that q(A)x = 0 for any vector x, and hence

q(A) = γ0I + γ1A+ · · · + γs−1A
s−1 +As = 0.

This polynomial p is the minimal polynomial for the matrix A, see Section 9.2.2.
Consider the Kronecker product C = A ⊗ B of A ∈ Rn×n and B ∈ Rm×m

as defined in Sec. 7.5.5 The eigenvalues and eigenvectors of C can be expressed in
terms of the eigenvalues and eigenvectors of A and B. Assume that Axi = λixi,
i = 1, . . . , n, and Byj = µjyj, j = 1, . . . ,m. Then, using equation (7.5.26), we
obtain

(A⊗B)(xi ⊗ yj) = (Axi) ⊗ (Byj) = λiµj(xi ⊗ yj). (9.1.20)

This shows that the nm eigenvalues of A ⊗ B are λiµj , i = 1, . . . , n, j = 1, . . . ,m,
and xi ⊗ yj are the corresponding eigenvectors. If A and B are diagonalizable,
A = X−1Λ1X , B = Y −1Λ2Y , then

(A⊗B) = (X−1 ⊗ Y −1)(Λ1 ⊗ Λ2)(X ⊗ Y ),

and thus A⊗B is also diagonalizable.
The matrix

(Im ⊗A) + (B ⊗ In) ∈ Rnm×nm (9.1.21)

is the Kronecker sum of A and B. Since
[

(Im ⊗A) + (B ⊗ In)
]

(yj ⊗ xi) = yj ⊗ (Axi) + (Byj) ⊗ xi (9.1.22)

= (λi + µj)(yj ⊗ xi).

the nm eigenvalues of the Kronecker sum equal the sum of all pairs of eigenvalues
of A and B

Review Questions

1. How are the eigenvalues and eigenvectors of A affected by a similarity transforma-

tion?
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2. What is meant by a (right) invariant subspace of A? Describe how a basis for an

invariant subspace can be used to construct a similarity transformation of A to block

triangular form. How does such a transformation simplify the computation of the

eigenvalues of A?

3. What is meant by the algebraic multiplicity and the geometric multiplicity of an

eigenvalue of A? When is a matrix said to be defective?

Problems

1. A matrix A ∈ R
n×n

is called nilpotent if Ak
= 0 for some k > 0. Show that a

nilpotent matrix can only have 0 as an eigenvalue.

2. Show that if λ is an eigenvalue of a unitary matrix U then |λ| = 1.

3. Let A ∈ R
m×n

and B ∈ R
n×m

. Show that

X−1

„

AB 0

B 0

«

X =

„

0 0

B BA

«

, X =

„

I A
0 I

«

.

Conclude that the nonzero eigenvalues of AB ∈ R
m×m

and BA ∈ R
n×n

are the

same.

4. (a) Let A = xyT
, where x and y are vectors in R

n
, n ≥ 2. Show that 0 is an

eigenvalue of A with multiplicity at least n − 1, and that the remaining eigenvalue

is λ = yT x.

(b) What are the eigenvalues of a Householder reflector P = I − 2uuT
, ‖u‖2 = 1?

5. What are the eigenvalues of a Givens’ rotation

R(θ) =

„

cos θ sin θ
− sin θ cos θ

«

?

When are the eigenvalues real?

6. An upper Hessenberg matrix is called unreduced if all its subdiagonal elements

are nonzero. Show that if H ∈ R
n×n

is an unreduced Hessenberg matrix, then

rank (H) ≥ n − 1, and that therefore if H has a multiple eigenvalue it must be

defective.

7. Let A ∈ C
n×n

be an Hermitian matrix, λ an eigenvalue of A, and z the corresponding

eigenvector. Let A = S + iK, z = x + iy, where S, K, x, y are real. Show that λ is

a double eigenvalue of the real symmetric matrix

„

S −K
K S

«

∈ R
2n×2n,

and determine two corresponding eigenvectors.

8. Show that the matrix

Kn =

0

B

B

B

B

@

−a1 −a2 · · · −an−1 −an

1 0 · · · 0 0

0 1 · · · 0 0

.

.

.

.

.

.
. . .

.

.

.

.

.

.

0 0 · · · 1 0

1

C

C

C

C

A
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has the characteristic polynomial

p(λ) = (−1)
n
(λn

+ a1λ
n−1

+ · · · + an−1λ + an).

Kn is called the companion matrix of p(λ). Determine the eigenvectors of Kn

corresponding to an eigenvalue λ, and show that there is only one eigenvector even

when λ is a multiple eigenvalue.

Remark: The term companion matrix is sometimes used for slightly different matri-

ces, where the coefficients of the polynomial appear, e.g., in the last row or in the

last column.

9. Draw the graphs G(A), G(B) and G(C), where

A =

0

@

0 1 1

1 0 0

1 0 0

1

A , B =

0

B

B

@

1 0 1 0

0 1 1 1

1 0 1 0

1 1 0 1

1

C

C

A

, C =

0

B

B

@

1 0 1 0

0 0 0 1

0 1 0 0

1 0 0 1

1

C

C

A

.

Show that A and C are irreducible but B is reducible.

9.2 Canonical Forms and Matrix Functions

Using similarity transformations it is possible to transform a matrix into one of
several canonical forms, which reveal its eigenvalues and gives information about
the eigenvectors. These canonical forms are useful also for extending analytical
functions of one variable to matrix arguments.

9.2.1 The Schur Normal Form

The computationally most useful of the canonical forms is the triangular, or Schur
normal form.

Theorem 9.2.1. Schur Normal Form.
Given A ∈ Cn×n there exists a unitary matrix U ∈ Cn×n such that

UHAU = T = D +N, (9.2.1)

where T is upper triangular, N strictly upper triangular, D = diag (λ1, · · · , λn), and
λi, i = 1, ..., n are the eigenvalues of A. Furthermore, U can be chosen so that the
eigenvalues appear in arbitrary order in D.

Proof. The proof is by induction on the order n of the matrix A. For n = 1 the
theorem is trivially true. Assume the theorem holds for all matrices of order n− 1.
We will show that it holds for any matrix A ∈ Cn×n.

Let λ be an arbitrary eigenvalue of A. Then, Ax = λx , for some x 6= 0 and
we let u1 = x/‖x‖2. Then we can always find U2 ∈ Cn×n−1 such that U = (u1, U2)
is a unitary matrix. Since AU = A(u1, U2) = (λu1, AU2) we have

UHAU =

(

uH
1

UH
2

)

AU =

(

λuH
1 u1 uH

1 AU2

λUH
2 u1 UH

2 AU2

)

=

(

λ wH

0 B

)

.
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Here B is of order n − 1 and by the induction hypothesis there exists a unitary
matrix Ũ such that ŨHBŨ = T̃ . Then

U
H
AU = T =

(

λ wH Ũ
0 T̃

)

, U = U

(

1 0
0 Ũ

)

,

where U is unitary. From the above it is obvious that we can choose U to get the
eigenvalues of A arbitrarily ordered on the diagonal of T .

The advantage of the Schur normal form is that it can be obtained using a
numerically stable unitary transformation. The eigenvalues of A are displayed on
the diagonal. The columns in U = (u1, u2, . . . , un) are called Schur vectors. It is
easy to verify that the nested sequence of subspaces

Sk = span[u1, . . . , uk], k = 1, . . . , n,

are invariant subspaces. However, of the Schur vectors in general only u1 is an
eigenvector.

If the matrix A is real, we would like to restrict ourselves to real similarity
transformations, since otherwise we introduce complex elements in U−1AU . If A
has complex eigenvalues, then A obviously cannot be reduced to triangular form
by a real orthogonal transformation. For a real matrix A the eigenvalues occur in
complex conjugate pairs, and it is possible to reduce A to block triangular form T ,
with 1× 1 and 2× 2 diagonal blocks, in which the 2× 2 blocks correspond to pairs
of complex conjugate eigenvalues. T is then said to be in quasi-triangular form.

Theorem 9.2.2. The Real Schur Form.
Given A ∈ Rn×n there exists a real orthogonal matrix Q ∈ Rn×n such that

QTAQ = T = D +N, (9.2.2)

where T is real block upper triangular, D is block diagonal with 1 × 1 and 2 × 2
blocks, and where all the 2 × 2 blocks have complex conjugate eigenvalues.

Proof. Let A have the complex eigenvalue λ 6= λ̄ corresponding to the eigenvector
x. Then, since Ax̄ = λ̄x̄, also λ̄ is an eigenvalue with eigenvector x̄ 6= x, and R(x, x̄)
is an invariant subspace of dimension 2. Let

X1 = (x1, x2), x1 = x+ x̄, x2 = i(x− x̄)

be a real basis for this invariant subspace. Then AX1 = X1M where M ∈ R2×2

has eigenvalues λ and λ̄. Let X1 = Q

(

R
0

)

= Q1R be the QR decomposition of

X1. Then AQ1R = Q1RM or AQ1 = Q1P , where P = RMR−1 ∈ R2×2 is similar
to M . Using (9.1.16) with X = Q, we find that

QTAQ =

(

P WH

0 B

)

.
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where P has eigenvalues λ and λ̄. An induction argument completes the proof.

We now introduce a class of matrices for which the Schur normal form is
diagonal.

Definition 9.2.3.
A matrix A ∈ Cn×n is said to be normal if

AHA = AAH . (9.2.3)

If A is normal then for unitary U so is UHAU , since

(UHAU)HUHAU = UH(AHA)U = UH(AAH)U = UHAU(UHAU)H .

It follows that the upper triangular matrix T in the Schur normal form is normal,

THT = TTH , T =









λ1 t12 . . . t1n

λ2 . . . t2n

. . .
...
λn









,

Equating the (1, 1)-element on both sides of the equation THT = TTH we get
|λ1|2 = |λ1|2 +

∑n
j=2 |t1j |2, and so t1j = 0, j = 2, . . . , n. In the same way it can be

shown that all the other nondiagonal elements in T vanishes, and so T is diagonal.
Important classes of normal matrices are Hermitian (A = AH), skew-Hermitian

(AH = −A), unitary (A−1 = AH) and circulant matrices (see Problem 9.1.10).
Hermitian matrices have real eigenvalues, skew-Hermitian matrices have imaginary
eigenvalues, and unitary matrices have eigenvalues on the unit circle.

Theorem 9.2.4.
A matrix A ∈ Cn×n is normal, AHA = AAH , if and only if A can be unitarily

diagonalized, i.e., there exists a unitary matrix U ∈ Cn×n such that

UHAU = D = diag (λ1, · · · , λn).

Proof. If A is normal, then it follows from the above that the matrix T in the
Schur normal form is diagonal. If on the other hand A is unitarily diagonalizable
then we immediately have that

AHA = UDHDUH = UDDHUH = AAH .

It follows in particular that any Hermitian matrix may be decomposed into

A = UΛUH =

n
∑

i=1

λiuiu
H
i . (9.2.4)
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with λi real. In the special case that A is real and symmetric we can take U to be
real and orthogonal, U = Q = (q1, . . . , qn) , where qi are orthonormal eigenvectors.
Note that in (9.2.4) uiu

H
i is the unitary projection matrix that projects unitarily

onto the eigenvector ui. We can also write A =
∑

j λPj , where the sum is taken
over the distinct eigenvalues of A, and Pj projects Cn unitarily onto the eigenspace
belonging to λj . (This comes closer to the formulation given in functional analysis.)

Note that although U in the Schur normal form (9.2.1) is not unique, ‖N‖F

is independent of the choice of U , and

∆2
F (A) ≡ ‖N‖2

F = ‖A‖2
F −

n
∑

i=1

|λi|2.

The quantity ∆F (A) is called the departure from normality of A.

9.2.2 Sylvester’s Equation and Jordan’s Canonical Form

Let the matrix A have the block triangular form

A =

(

B C
0 D

)

, (9.2.5)

where B and D are square. Suppose that we wish to reduce A to block diagonal
form by a similarity transformation of the form

P =

(

I Q
0 I

)

, P−1 =

(

I −Q
0 I

)

.

This gives the result

P−1AP =

(

I −Q
0 I

)(

B C
0 D

)(

I Q
0 I

)

=

(

B C −QD +BQ
0 D

)

.

The result is a block diagonal matrix if and only if BQ−QD = −C. This equation,
which is a linear equation in the elements of Q, is called Sylvester’s equation2

We will investigate the existence and uniqueness of solutions to the general
Sylvester equation

AX −XB = C, X ∈ Rn×m, (9.2.6)

where A ∈ Rn×n, B ∈ Rm×m. We prove the following result.

Theorem 9.2.5.
The matrix equation (9.2.6) has a unique solution if and only if

λ(A) ∩ λ(B) = ∅.

Proof. From Theorem 9.2.1 follows the existence of the Schur decompositions

UH
1 AU1 = S, UH

2 BU2 = T,

2James Joseph Sylvester English mathematician (1814–1893) considered the homogenous case
in 1884.
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where S and T are upper triangular and U1 and U2 are unitary matrices. Using
these decompositions (9.2.6) can be reduced to

SY − Y T = F, Y = UH
1 XU2, F = UH

1 CU2.

Expanding this equation by columns gives

S ( y1 y2 y3 · · · ) − ( y1 y2 y3 · · · )









t11 t12 t13 · · ·
0 t22 t33 · · ·
0 0 t33 · · ·
...

...
...









= ( f1 f2 f3 · · · ) .

(9.2.7)
The first column of the system (9.2.7) has the form

Sy1 − t11y1 = (S − t11I)y1 = d1.

Here t11 is an eigenvalue of T and hence is not an eigenvalue of S. Therefore the
triangular matrix S − t11I is not singular and we can solve for y1. Now suppose
that we have found y1, . . . , yk−1. From the kth column of the system

(S − tkkI)yk = dk +

k
∑

i=1

tikyi.

Here the right hand side is known and, by the argument above, the triangular
matrix S − tkkI nonsingular. Hence it can be solved for yk. The proof now follows
by induction.

If we have an algorithm for computing the Schur decompositions this proof
gives an algorithm for solving the Sylvester equation. It involves solving m trian-
gular equations and requires O(mn2) operations.

An important special case of (9.2.6) is the Lyapunov equation

AX +XAH = C. (9.2.8)

Here B = −AH , and hence by Theorem 9.2.5 this equation has a unique solution
if and only if the eigenvalues of A satisfy λi + λ̄j 6= 0 for all i and j. Further, if
CH = C the solution X is Hermitian. In particular, if all eigenvalues of A have
negative real part, then all eigenvalues of −AH have positive real part, and the
assumption is satisfied.

We have seen that a given block triangular matrix (9.2.5) can be transformed
by a similarity transformation to block diagonal form provided that B and C have
disjoint spectra. The importance of this contruction is that it cann be applied
recursively.

If A is not normal, then the matrix T in its Schur normal form cannot be
diagonal. To transform T to a form closer to a diagonal matrix we have to use
non-unitary similarities. By Theorem 9.2.1 we can order the eigenvalues so that in
the Schur normal form

D = diag (λ1, . . . , λn), λ1 ≥ λ2 ≥ · · · ≥ λn.

We now show how to obtain the following block diagonal form:
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Theorem 9.2.6. Block Diagonal Decomposition.
Let the distinct eigenvalues of A be λ1, · · · , λk, and in the Schur normal form

let D = diag (D1, . . . , Dk), Di = λiI, i = 1, . . . , k. Then there exists a nonsin-
gular matrix Z such that

Z−1UHAUZ = Z−1TZ = diag (λ1I +N1, · · · , λkI +Nk),

where Ni, i = 1, . . . , k are strictly upper triangular. In particular, if the matrix A
has n distinct eigenvalues the matrix D diagonal.

Proof. Consider first the matrix T =

(

λ1 t
0 λ2

)

∈ C2×2, where λ1 6= λ2. Perform

the similarity transformation

M−1TM =

(

1 −m
0 1

)(

λ1 t
0 λ2

)(

1 m
0 1

)

=

(

λ1 m(λ1 − λ2) + t
0 λ2

)

.

where M is an upper triangular elementary elimination matrix, see Section 7.3.5.
By taking m = t/(λ2 − λ1), we can annihilate the off-diagonal element in T .

In the general case let tij be an element in T outside the block diagonal. Let
Mij be a matrix which differs from the unit matrix only in the (i, j)th element,
which is equal to mij . Then as above we can choose mij so that the element (i, j) is
annihilated by the similarity transformation M−1

ij TMij. Since T is upper triangular
this transformation will not affect any already annihilated off-diagonal elements in
T with indices (i′, j′) if j′ − i′ < j − i. Hence, we can annihilate all elements tij
outside the block diagonal in this way, starting with the elements on the diagonal
closest to the main diagonal and working outwards. For example, in a case with 3
blocks of orders 2, 2, 1 the elements are eliminated in the order

0

B

B

B

@

× × 2 3 4

× 1 2 3

× × 2

× 1

×

1

C

C

C

A

.

Further details of the proof is left to the reader.

A matrix which does not have n linearly independent eigenvectors is defective
and cannot be similar to a diagonal matrix. We now state without proof the follow-
ing fundamental Jordan Canonical Form3 For a proof based on the block diagonal
decomposition in Theorem 9.2.6, see Fletcher and Sorensen [12, ].

Theorem 9.2.7. Jordan Canonical Form.
If A ∈ Cn×n, then there is a nonsingular matrix X ∈ Cn×n, such that

X−1AX = J = diag (Jm1
(λ1), · · · , Jmt

(λt)), (9.2.9)

3Marie Ennemond Camille Jordan (1838–1922), French mathematician, professor at École Poly-
technique and Collége de France. Jordan made important contributions to finte group theory, linear
and multilinear algebra as well as differential equations.
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where

Jmi
(λi) =











λi 1

λi
. . .
. . . 1

λi











= λiI + S ∈ Cmi×mi , mi ≥ 1,

The numbers m1, . . . ,mt are unique and
∑t

i=1mi = n. To each Jordan block
Jmi

(λi) there corresponds exactly one eigenvector. Hence the number of Jordan
blocks corresponding to a multiple eigenvalue λ equals the geometric multiplicity of
λ.

The form (9.2.9) is called the Jordan canonical form of A, and is unique up
to the ordering of the Jordan blocks. Note that the same eigenvalue may appear in
several different Jordan blocks. A matrix for which this occurs is called derogatory.
The Jordan canonical form has the advantage that it displays all eigenvalues and
eigenvectors of A explicitly. A serious disadvantage is that the Jordan canonical
form is not in general a continuous function of the elements of A. For this reason
the Jordan canonical form of a nondiagonalizable matrix may be very difficult to
determine numerically.

Example 9.2.1.
Consider the matrices of the form

Jm(λ, ǫ) =











λ 1

λ
. . .
. . . 1

ǫ λ











∈ Cm×m.

The matrix Jm(λ, 0) has an eigenvalue equal to λ of multiplicity m, and is in Jordan
canonical form. For any ǫ > 0 the matrix Jm(λ, ǫ) has m distinct eigenvalues µi,
i = 1, . . . ,m, which are the roots of the equation (λ − µ)m − (−1)mǫ = 0. Hence
Jm(λ, ǫ) is diagonalizable for any ǫ 6= 0, and its eigenvalues λi satisfy|λi−λ| = |ǫ|1/m.
For example, if m = 10 and ǫ = 10−10, then the perturbation is of size 0.1.

If X = (x1, x2, . . . , xn) is the matrix in (9.2.9), then

Ax1 = λ1x1, Axi+1 = λ1xi+1 + xi, i = 1, . . . ,m1 − 1.

The vectors x2, . . . , xm1
are called principal vectors of the matrix A. Similar

relations holds for the other Jordan blocks.
The minimal polynomial of A can be read off from its Jordan canonical form.

Consider a Jordan block Jm(λ) = λI+N of order m and put q(z) = (z−λ)j . Then
we have q(Jm(λ)) = N j = 0 for j ≥ m. The minimal polynomial of a matrix A
with the distinct eigenvalues λ1, . . . , λk then has the form

q(z) = (z − λ1)
m1(z − λ2)

m2 · · · (z − λk)mk , (9.2.10)
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wheremj is the highest dimension of any Jordan box corresponding to the eigenvalue
λj , j = 1, . . . , k.

As a corollary we obtain Cayley–Hamilton theorem, which states that the
characteristic polynomial p(z) of a matrix A satisfies p(A) = 0. The polynomials

πi(z) = det
(

zI − Jmi
(λi)

)

= (z − λi)
mi

are called elementary divisors of A. They divide the characteristic polynomial of
A. The elementary divisors of the matrix A are all linear if and only if the Jordan
canonical form is diagonal.

We end with an approximation theorem due to Bellman, which sometimes
makes it possible to avoid the complication of the Jordan canonical form.

Theorem 9.2.8.
Let A ∈ Cn×n be a given matrix. Then for any ǫ > 0 there exists a matrix

B with ‖A − B‖2 ≤ ǫ, such that B has n distinct eigenvalues. Hence, the class of
diagonalizable matrices is dense in Cn×n.

Proof. Let X−1AX = J be the Jordan canonical form of A. Then, by a slight
extension of Example 9.2.1 it follows that there is a matrix J(δ) with distinct
eigenvalues such that ‖J − J(δ)‖2 = δ. (Show this!) Take B = XJ(δ)X−1. Then

‖A−B‖2 ≤ ǫ, ǫ = δ‖X‖2‖X−1‖2.

9.2.3 Convergence of Matrix Power Series

We start with a definition of the limit of a sequence of matrices:

Definition 9.2.9.
An infinite sequence of matrices A1, A2, . . . is said to converge to a matrix A,

lim
n→∞

An = A, if

lim
n→∞

‖An −A‖ = 0.

From the equivalence of norms in a finite dimensional vector space it follows
that convergence is independent of the choice of norm. The particular choice ‖ · ‖∞
shows that convergence of vectors in Rn is equivalent to convergence of the n
sequences of scalars formed by the components of the vectors. By considering
matrices in Rm×n as vectors in Rmn the same conclusion holds for matrices.

An infinite sum of matrices is defined by:

∞
∑

k=0

Bk = lim
n→∞

Sn, Sn =

n
∑

k=0

Bk.

In a similar manner we can define limz→∞A(z), A′(z), etc., for matrix-valued
functions of a complex variable z ∈ C.
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Theorem 9.2.10.
If ‖ · ‖ is any matrix norm, and

∑

∞

k=0 ‖Bk‖ is convergent, then
∑

∞

k=0 Bk is
convergent.

Proof. The proof follows from the triangle inequality ‖∑n
k=0 Bk‖ ≤ ∑n

k=0 ‖Bk‖
and the Cauchy condition for convergence. (Note that the converse of this theorem
is not necessarily true.)

A power series
∑

∞

k=0 Bkz
n, z ∈ C, has a circle of convergence in the z-plane

which is equivalent to the smallest of the circles of convergence corresponding to
the series for the matrix elements. In the interior of the convergence circle, formal
operations such as term-wise differentiation and integration with respect to z are
valid for the element series and therefore also for matrix series.

We now investigate the convergence of matrix power series. First we prove a
theorem which is also of fundamental importance for the theory of convergence of
iterative methods studied in Chapter 10. We first recall the the following result:

Lemma 9.2.11. For any consistent matrix norm

ρ(A) ≤ ‖A‖, (9.2.11)

where ρ(A) = maxi |λi(A)| is the spectral radius of A.

Proof. If λ is an eigenvalue ofA then there is a nonzero vector x such that λx = Ax.
Taking norms we get |λ| ‖x‖ ≤ ‖A‖‖x‖. Dividing with ‖x‖ the result follows.

We now return to the question of convergence of matrix series.

Theorem 9.2.12.
If the infinite series f(z) =

∑

∞

k=0 akz
k has radius of convergence r, then

the matrix series f(A) =
∑

∞

k=0 akA
k converges if ρ < r, where ρ = ρ(A) is the

spectral radius of A. If ρ > r, then the matrix series diverges; the case ρ = r is a
“questionable case”.

Proof. By Theorem 9.2.10 the matrix series
∑

∞

k=0 akA
k converges if the series

∑

∞

k=0 |ak|‖Ak‖ converges. By Theorem 9.2.13 for any ǫ > 0 there is a matrix norm
such that ‖A‖T = ρ + ǫ. If ρ < r then we can choose r1 such that ρ(A) ≤ r1 < r,
and we have

‖Ak‖T ≤ ‖A‖k
T ≤ (ρ+ ǫ)k = O(rk

1 ).

Here
∑

∞

k=0 |ak|rk
1 converges, and hence

∑

∞

k=0 |ak|‖Ak‖ converges. If ρ > r, let
Ax = λx with |λ| = ρ. Then Akx = λkx, and since

∑

∞

k=0 akλ
k diverges

∑

∞

k=0 akA
k

cannot converge.

Theorem 9.2.13.
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Given a matrix A ∈ Rn×n with spectral radius ρ = ρ(A). Denote by ‖ · ‖ any
lp-norm, 1 ≤ p ≤ ∞, and set ‖A‖T = ‖T−1AT ‖. Then the following holds:

(a) If A has no defective eigenvalues with absolute value ρ then there exists a
nonsingular matrix T such that

‖A‖T = ρ.

(b) If A has a defective eigenvalue with absolute value ρ then for every ǫ > 0 there
exists a nonsingular matrix T (ǫ) such that

‖A‖T (ǫ) ≤ ρ+ ǫ.

In this case, the condition number κ(T (ǫ)) → ∞ like ǫ1−m∗

as ǫ → 0, where
m∗ > 1 is the largest order of a Jordan block belonging to an eigenvalue λ
with |λ| = ρ.

Proof. If A is diagonalizable, we can simply take T as the diagonalizing trans-
formation. Then clearly ‖A‖T = ‖D‖ = ρ, where D = diag (λ1, . . . , λn). In the
general case, we first bring A to Jordan canonical form, X−1AX = J , where

J = diag
(

J1(λ1), · · · , Jt(λt)
)

, Ji(λi) = λiI +Ni ∈ Cmi×mi , mi ≥ 1,

and Ji(λi) is a Jordan block. We shall find a diagonal matrixD = diag (D1, . . . , Dt),
such that a similarity transformation with T = XD, K = T−1AT = D−1JD makes
K close to the diagonal of J . Note that ‖A‖T = ‖K‖, and

K = diag (K1,K2, . . . ,Kt), Ki = D−1
i Ji(λi)Di.

If mi = 1, we set Di = 1, hence ‖Ki‖ = |λi|. Otherwise we choose

Di = diag
(

1, δi, δ
2
i , . . . , δ

mi−1
i

)

, δi > 0. (9.2.12)

Then Ki = λiI + δiNi, and ‖K‖ = maxi(‖Ki‖). (Verify this!) We have ‖Ni‖ ≤ 1,
because Nix = (x2, x3, ..., xmi

, 0)T , so ‖Nix‖ ≤ ‖x‖ for all vectors x. Hence,

‖Ki‖ ≤ |λi| + δi. (9.2.13)

If mi > 1 and |λi| < ρ, we choose δi = ρ − |λi|, hence ‖Ki‖ ≤ ρ. This proves case
(a).

In case (b), mi > 1 for at least one eigenvalue with |λi| = ρ. Let M = {i :
|λi| = ρ}, and choose δi = ǫ, for i ∈M . Then by (9.2.13) ‖Ki‖ ≤ ρ+ ǫ, for i ∈M ,
while ‖Ki‖ ≤ ρ, for i /∈ M . Hence ‖K‖ = maxi ‖Ki‖ = ρ+ ǫ, and the first part of
statement (b) now follows.

With T (ǫ) = XD(ǫ), we have that

κ
(

D(ǫ)
)

/κ(X) ≤ κ
(

T (ǫ)
)

≤ κ
(

D(ǫ)
)

κ(X).
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When |λi| = ρ we have δi = ǫ, and it follows from (9.2.12) that κ(Di) grows like
ǫ1−mi . Since κ(D) = maxi κ(Di), and for |λi| < ρ the condition numbers of Di are
bounded, this proves the second part of statement (b).

Note that 1/κ(T ) ≤ ‖A‖T /‖A‖ ≤ κ(T ). For every natural number n, we have,
in case (a), ‖An‖T ≤ ‖A‖n

T = ρ(A)n. Hence

‖An‖p ≤ κ(T )‖An‖T ≤ κ(T )ρn.

In case (b), the same holds, if ρ, T are replaced by, respectively, ρ+ ǫ, T (ǫ). See also
Problem 9.

If only statement (b) is needed, a more elementary proof can be found by a
similar argument applied to the Schur canonical form instead of the Jordan canon-
ical form. Since X is unitary in this case, one has a better control of the condition
numbers, which is of particular importance in some applications to partial differen-
tial equations, where one needs to apply this kind of theorem to a family of matrices
instead of just one individual matrix. This leads to the famous matrix theorems of
Kreiss, see Theorems 13.8.6–13.8.7.

For some classes of matrices, an efficient (or rather efficient) norm can be
found more easily than by the construction used in the proof of Theorem 9.2.13
This may have other advantages as well, e.g., a better conditioned T . Consider, for
example, the weighted max-norm

‖A‖w = ‖T−1AT ‖∞ = max
i

∑

j

|aij |wj/wi,

where T = diag (w1, . . . , wn) > 0, and κ(T ) = maxwi/minwi. We then note that
if we can find a positive vector w such that |A|w ≤ αw, then ‖A‖w ≤ α.

9.2.4 Matrix Functions

The matrix exponential eAt, where A is a constant matrix, can be defined by the
series expansion

eAt = I +At+
1

2!
A2t2 +

1

3!
A3t3 + · · · .

This series converges for all A and t since the radius of convergence of the power
series

∑

∞

k=0 ‖A‖ktk/k! is infinite. The series can thus be differentiated everywhere
and

d

dt
(eAt) = A+A2t+

1

2!
A3t2 + · · · = AeAt.

Hence y(t) = eAtc ∈ Rn solves the initial value problem for the linear system of
ordinary differential equations with constant coefficients

dy(t)/dt = Ay(t), y(0) = c. (9.2.14)

Such systems occurs in many physical, biological, and economic processes.
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Other functions, for example, sin(z), cos(z), log(z), can be similarly defined
for matrix arguments from their Taylor series representation. In general, if f(z) is
an analytic function with Taylor expansion f(z) =

∑

∞

k=0 akz
k, then we define

f(A) =

∞
∑

k=0

akA
k.

We now turn to the question of how to define analytic functions of matrices
in general. If the matrix A is diagonalizable, A = XΛX−1, we define

f(A) = Xdiag
(

f(λ1), . . . , f(λn)
)

X−1 = Xf(Λ)X−1. (9.2.15)

This expresses the matrix function f(A) in terms of the function f evaluated at the
spectrum of A and is often the most convenient way to compute f(A).

For the case when A is not diagonalizable we first give an explicit form for the
kth power of a Jordan block Jm(λ) = λI+N . Since N j = 0 for j ≥ m we get using
the binomial theorem

Jk
m(λ) = (λI +N)k = λkI +

min(m−1,k)
∑

p=1

(

k

p

)

λk−pNp, k ≥ 1.

Since an analytic function can be represented by its Taylor series we are led to the
following definition:

Definition 9.2.14.
Suppose that the analytic function f(z) is regular for z ∈ D ⊂ C, where D is

a simply connected region, which contains the spectrum of A in its interior. Let

A = XJX−1 = Xdiag
(

Jm1
(λ1), · · · , Jmt

(λt)
)

X−1

be the Jordan canonical form of A. We then define

f(A) = X diag
(

f
(

Jm1
(λ1)

)

, · · · , f
(

Jmt
(λt)

)

)

X−1. (9.2.16)

where the analytic function f of a Jordan block is

f(Jm) = f(λ)I +

m−1
∑

p=1

1

p!
f (p)(λ)Np. (9.2.17)

If A is diagonalizable, A = X−1ΛX , then for the exponential function we
have,

‖eA‖2 = κ(X)eα(A),

where α(A) = maxi ℜλi is the spectral abscissa of A and κ(X) denotes the
condition number of the eigenvector matrix. If A is normal, then V is orthogonal
and κ(V ) = 1.
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One can show that for every non-singular matrix T it holds

f(T−1AT ) = T−1f(A)T. (9.2.18)

With this definition, the theory of analytic functions of a matrix variable closely
follows the theory of a complex variable. If lim

n→∞

fn(z) = f(z) for z ∈ D, then

lim
n→∞

fn(J(λi)) = f(J(λi)). Hence if the spectrum of A lies in the interior of D

then lim
n→∞

fn(A) = f(A). This allows us to deal with operations involving limit
processes.

The following important theorem can be obtained, which shows that Defini-
tion 9.2.14 is consistent with the more restricted definition (by a power series) given
in Theorem 9.2.12.

Theorem 9.2.15.
All identities which hold for analytic functions of one complex variable z for

z ∈ D ⊂ C, where D is a simply connected region, also hold for analytic functions
of one matrix variable A if the spectrum of A is contained in the interior of D. The
identities also hold if A has eigenvalues on the boundary of D, provided these are
not defective.

Example 9.2.2.
We have, for example,

cos2A+ sin2 A = I, ∀A;

ln(I −A) = −
∞
∑

n=1

1

n
An, ρ(A) < 1;

∫

∞

0

e−steAtdt = (sI −A)−1, Re(λi) < Re(s);

Further, if f(z) is analytic inside C, and if the whole spectrum of A is inside C, we
have (cf. Problem 9)

1

2πi

∫

C

(zI −A)−1f(z)dz = f(A).

Observe also that, for two arbitrary analytic functions f and g, which satisfy
the condition of the definition, f(A)g(A) = g(A)f(A). However, when several non-
commutative matrices are involved, one can no longer use the usual formulas for
analytic functions.

Example 9.2.3.
e(A+B)t = eAteBt for all t if and only if BA = AB. We have

eAteBt =
∞
∑

p=0

Aptp

p!

∞
∑

q=0

Bqtq

q!
=

∞
∑

n=0

tn

n!

n
∑

p=0

(

n

p

)

ApBn−p.
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This is in general not equivalent to

e(A+B)t =

∞
∑

n=0

tn

n!
(A+B)n.

The difference between the coefficients of t2/2 in the two expressions is

(A+B)2 − (A2 + 2AB +B2) = BA−AB 6= 0, if BA 6= AB.

Conversely, if BA = AB, then it follows by induction that the binomial theorem
holds for (A+B)n, and the two expressions are equal.

Because of its key role in the solution of differential equations methods for
computing the matrix exponential and investigation of its qualitative behavior has
been studied extensively. A wide variety of methods for computing eA have been
proposed; see Moler and Van Loan [35]. Consider the 2 by 2 upper triangular matrix

A =

(

λ α
0 µ

)

.

The exponential of this matrix is

etA =



























eλt α
eλt − eµt

λ− µ
0 eµt



 , if λ 6= µ,

(

eλt αteλt

0 eµt

)

, if λ = µ

. (9.2.19)

When |λ−µ| is small, but not negligible neither of these two expressions are suitable,
since severe cancellation will occur in computing the divided difference in the (1,2)-
element in (9.2.19). When the same type of difficulty occurs in non-triangular
problems of larger size the cure is by no means easy!

Another property of eAt that does not occur in the scalar case is illustrated
next.

Example 9.2.4. Consider the matrix

A =

(

−1 4
0 −2

)

.

Since max{−1,−2} = −1 < 0 it follows that limt→∞ etA = 0. In Figure 9.2.1 we
have plotted ‖etA‖2 as a function of t. The curve has a hump illustrating that as
t increases some of the elements in etA first increase before they start to decay.

One of the best methods to compute eA, the method of scaling and squaring,
uses the fundamental relation

eA = (eA/m)m, m = 2s
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Figure 9.2.1. ‖etA‖ as a function of t for the matrix in Example 9.2.4.

of the exponential function. Here the exponent s is chosen so that eA/m can be
reliably computed, e.g. from a Taylor or Padé approximation. Then eA = (eA/m)2

s

can be formed by squaring the result s times.
Instead of the Taylor series it is advantageous to use the diagonal Padé ap-

proximation of ex.

rm,m(z) =
Pm,m(z)

Qm,m(z)
=

∑m
j=0 pjz

j

∑n
j=0 qjz

j
, (9.2.20)

which are known explicitly for all m. We have

pj =
(2m− j)!m!

(2m)! (m− j)!j!
, qj = (−1)jpj , j = 0 : m. (9.2.21)

with the error

ez − Pm,m(z)

Qm,m(z)
= (−1)k (m!)2

(2m)!(2m+ 1)!
z2m+1 +O(z2m+2). (9.2.22)

Note that Pm,m(z) = Qm,m(−z), which reflects the property that e−z = 1/ez. The
coefficients satisfy the recursion

p0 = 1, pj+1 =
m− j

(2m− j)(j + 1)
pj , j = 0 : m− 1. (9.2.23)

To evaluate a digonal Padé approximant of even degree m we can write

P2m,2m(A) = p2mA
2m + · · · + p2A

2 + p0I

+A(p2m−1A
2m−2 + · · · + p3A

2 + p1I) = U + V.

This can be evaluated withm+1 matrix multiplications by formingA2, A4, . . . , A2m.
Then Q2m(A) = U−V needs no extra matrix multiplications. For an approximation
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of odd degree 2m+ 1 we write

P2m+1,2m+1(A) = A(p2m+1A
2m + · · · + p3A

2 + p1I)

+ p2mA
2m−2 + · · · + p2A

2 + p0I = U + V.

This can be evalauted with the same number of matrix multiplications andQ2m+1(A) =
−U + V . The final division Pk,m(A)/Qm,m(A) is performed by solving

Qm,m(A)rm,m(A) = Pm,m(A)

for rm,m(A) using Gaussian elimination.
The function expm in Matlab uses a scaling such that 2−s‖A‖ < 1/2 and a

diagonal Padé approximant of degree 2m = 6

P6,6(z) = 1 +
1

2
z +

5

44
z2 +

1

66
z3 +

1

792
z4 +

1

15840
z5 +

1

665280
z6.

function E = expmv(A);

% EXPMV computes the exponential

% of the matrix A

% Compute scaling parameter

[f,e] = log2(norm(A,’inf’));

s = max(0,e+1);

A = A/2^s;

X = A;

d = 2; c = 1/d;

E = eye(size(A)) + c*A;

D = eye(size(A)) - c*A;

m = 8; p = 1;

for k = 2:m

d = d*(k*(2*m-k+1))/(m-k+1)

c = 1/d;

X = A*X;

cX = c*X;

E = E + cX;

if p, D = D + c*X;

else, D = D - c*X; end

p = ~p;

end

E = D\E;

for k = 1:s, E = E*E; end

It can be shown ([35, Appendix A]) that then rmm(2−sA)2
s

= eA+E, where

‖E‖
‖A‖ < 23(2−s‖A‖)2m (m!)2

(2m)!(2m+ 1)!
.

For s and m chosen as in Matlab this gives ‖E‖/‖A‖ < 3.4 · 10−16, which is
close to the unit roundoff in IEEE double precision 2−53 = 1.11 · 10−16. Note that
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this backward error result does not guarantee an accurate result. If the problem is
inherently sensitive to perturbations the error can be large.

The analysis does not take roundoff errors in the squaring phase into consid-
eration. This is the weak point of this approach. We have

‖A2 − fl(A2)‖ ≤ γn‖A‖2, γn =
nu

1 − nu

but since possibly ‖A2‖ ≪ ‖A‖2 this is not satisfactory and shows the danger in
matrix squaring. If a higher degree Padé approximation is chosen then the number
of squarings can be reduced. Choices suggested in the literature (N. J. Higham [25])
are m = 8, with 2−s‖A‖ < 1.5 and m = 13, with 2−s‖A‖ < 5.4.

Given a square matrix A ∈ Cn×n a matrix X such that

X2 = A, (9.2.24)

is called a square root of A and denoted by X = A1/2. Unlike a square root of a
scalar, the square root of a matrix may not exist. For example, it is easy to verify
that the matrix

A =

(

0 1
0 0

)

has no square root. A sufficient condition for A to have a square root is that
it has at least n − 1 nonzero eigenvalues. We assume in the following that this
condition is satisfied. If A is nonsingular and has s distinct eigenvalues then it has
precisely 2s square roots that are expressible as polynomials in the matrix A. If
some eigenvalues appear in more than one Jordan block then there are infinitely
many additional square roots, none of which can be expressed as a polynomial in
A. For example, any Householder matrix is a square root of the identity matrix.

There is a principal square root of particular interest, namely the one
whose eigenvalues lie in the right half plane. To make this uniquely defined we
map any eigenvalue on the negative real axis to the positive imaginary axis. The
principal square root, when it exists, is a polynomial in the original matrix. When
A is symmetric positive definite the principal square root is the unique symmetric
positive definite square root.

To compute the principal square root we first determine the Schur decompo-
sition

A = QSQH ,

where Q is unitary and S upper triangular. If U is an upper triangular square
root of S, then X = QUQH is a square root of A. If A is a normal matrix then

S = diag (λi) and we can just take U = diag (λ
1/2
i ). Otherwise, from the relation

S = U2 we get

sij =

j
∑

k=i

uikukj , i ≤ j. (9.2.25)

This gives a recurrence relation for determining the elements in U . For the diagonal
elements in U we have

uii = s
1/2
ii , i = 1 : n. (9.2.26)
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Further

uij =

(

sij −
j−1
∑

k=i+1

uikukj

)

/

(uii + ujj). i < j. (9.2.27)

Hence, the elements in U can be determined computed from (9.2.27), for example,
one diagonal at a time. Since whenever sii = sjj we take uii = ujj this recursion
does not break down. (Recall we assumed that at most one diagonal element of S
is zero.)

If we let Ū be the computed square root of S then it can be shown that

Ū2 = S + E, ‖E‖ ≤ c(n)u(‖S‖ + ‖U‖2),

where u is the unit roundoff and c(n) a small constant epending on n. If we define

α = ‖A1/2‖2/‖A‖,

then we have
‖E‖ ≤ c(n)u(1 + α)‖S‖.

To study the conditioning of the square root we let X̃ be an approximation to
the square root of A and look for a correction E such that X = X̃ +E. Expanding
(X̃ + E)2 = A and neglecting the term E2 we get

X̃E + EX̃ = A− X̃2.

We remark that for real matrices an analogue algorithm can be developed,
which uses the real Schur decomposition and only exploys real arithmetic.

9.2.5 Non-Negative Matrices

Non-negative matrices arise in many applications and play an important role in,
e.g., queuing theory, stochastic processes, and input-output analysis.

Definition 9.2.16. A matrix A ∈ Rn×n is called non-negative if aij ≥ 0 for each
i and j and positive if aij > 0 for i, j = 1 : n. Similarly, a vector x ∈ Rn is called
non-negative if xi ≥ 0 i = 1 : n and positive if xi > 0 i = 1 : n.

Theorem 9.2.17. Let A ∈ Rn×n be a square nonnegative matrix and let s = Ae,
e = (1 1 · · · 1)T be the vector of row sums of A. Then

min
i
si ≤ ρ(A) ≤ max

i
si = ‖A‖1. (9.2.28)

For the class of nonnegative and irreducible matrices (see (Def. 9.1.5)) the
following classical theorem holds.

Theorem 9.2.18. (Perron–Frobenius Theorem)
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If A > 0 then r = ρ(A) is a simple eigenvalue and there are no other eigenvalue
of modulus ρ(A).

If A ≥ 0 is irreducible then ρ(A) is a simple eigenvalue and

(i) A has a positive eigenvector x corresponding to the eigenvalue ρ(A) and any
nonnegative eigenvector of A is a multiple of x;

(ii) The eigenvalues of modulus ρ(A) are all simple. If there are m eigenvalues of
modulus ρ, they must be of the form

λk = ρe
2kπi

m , k = 0 : m− 1.

(iii) ρ(A) increases when any entry of A increases.

Proof. See, e.g., Gantmacher [15, ], Vol. II or [4, pp. 27,32]. A simpler proof
of some of these results is found in Strang [46, , [p. ].

Perron4 (1907) proved the first part of this theorem for A > 0. Later Frobe-
nius (1912) extended most of Perron’s result to the class of nonnegative irreducible
matrices.

9.2.6 Finite Markov Chains

A Markov chain5 is a probabilistic process in which the future development is
completely determined by the present state and not at all in the way it arose.
Markov chains serve as models for describing systems that can be in a number of
different states s1, s2, s3, . . .. At each time step the system moves from state si to
state sj with probability qij . Such processes have many applications in the physical,
biological and social sciences. The Markov chain is finite if the number of states is
finite.

Definition 9.2.19. A matrix Q ∈ Rn×n is called row stochastic matrix if it
satisfies

qij ≥ 0,
∑

1≤j≤n

qij = 1, i, j = 1 : n. (9.2.29)

It is called doubly stochastic if in addition

∑

1≤i≤n

qij = 1, (9.2.30)

4German mathematician (1880–1975).
5Named after Russian mathematician Andrej Andreevic Markov (1856–1922), who introduced

them in 1908,
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In a finite Markov chain there are a finite number of states si, i = 1 : n. The
nonnegative matrix Q with elements equal to the transition probabilities qij is a
row stochastic matrix. From (9.2.29) it follows that

Qe = e, e = ( 1 1 . . . 1 )T , (9.2.31)

i.e. e is a right eigenvector of Q corresponding to the eigenvalue λ = 1. From
Theorem 9.2.17 it follows that ρ(Q) = 1.

The vector p = ( p1 p2 . . . pn )
T
, where pi ≥ 0, eT p = 1 is the probability

that the system is at state i, is called the state vector of the Markov chain. Let
pk denote the state vector at time step k. Then p(k+1) = QT pk, and

pk = (Qk)T p0, k = 1, 2, . . . .

An important problem is to find the stationary distribution p of a Markov
chain. A state vector p of a Markov chain is said to be stationary if

QTp = p, eT p = 1. (9.2.32)

Hence p is a left eigenvector of Q corresponding to the eigenvalue λ = 1 = ρ(Q). It
follows that p solves the singular homogeneous linear system

(I −QT )p = 0. (9.2.33)

From the Perron–Frobenius Theorem it follows that if Q is irreducible then
λ = 1 is a simple eigenvalue of Q and there is a unique eigenvector p satisfying
(9.2.32). If Q > 0, then there is no other eigenvalue with modulus ρ(Q) and we
have the following result:

Theorem 9.2.20. Assume that a Markov chain has a positive transition matrix.
Then, independent of the initial state vector,

lim
k→∞

pk = p,

where p satisfies (9.2.32).

If Q is not positive then the Markov chain may not converge to a stationary
state.

Example 9.2.5. Consider a Markov chain with two states for which state 2 is al-
ways transformed into state 1 and state 2 into state 1. The corresponding transition
matrix

Q =

(

0 1
1 0

)

,

with two eigenvalues of modolus ρ(Q), λ1 = 1 and λ2 = −1. Here Q is symmetric
and its left eigenvalue equals p = (0.5 0.5)T . However, for any initial state different
from p the state will oscillate and not converge.
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This example can be generalized by considering a Markov chain with m states
and taking Q equal to the permutation matrix corresponding to a cyclic shift. Then
Q has m eigenvalues on the unit circle in the complex plane.

The theory of Markov chains for general reducible nonnegative transition ma-
trices Q is much more complicated. It is then neccessary to classify the states. We
say that a state si has access to a state sj if it is possible to move from state si

to sj in a finite number of steps. If also sj has access to si si and sj are said to
communicate. This is an equivalence relation on the set of states and partitions the
states into classes. If a class of states has access to no other class it is called final.
If a final class contains a single state then the state is called absorbing.

Suppose that Q has been permuted to its block triangular form

Q =









Q11 0 . . . 0
Q21 Q22 . . . 0

...
...

...
Qs1 Qs2 . . . Qss









(9.2.34)

where the diagonal blocks Qii are square and irreducible. Then these blocks cor-
respond to the classes associated with the corresponding Markov chain. The class
associated with Qii is final if and only if Qij = 0, j = 1 : i− 1. If the matrix Q is
irreducible then the corresponding matrix chain contains a single class of states.

Example 9.2.6. Suppose there is an epidemic in which every month 10% of those
who are well become sick and of those who are sick 20% dies, and the rest become
well. This can be modeled by the Markov process with three states dead, sick,well,
and transition matrix

Q =





1 0 0
0.1 0 0.9
0 0.2 0.8



 .

Then the left eigenvector is p = e1 = ( 1 0 0 )
T

, i.e. in the stationary distribution
all are dead. Clearly the class dead is absorbing!

We now describe a way to force a Markov chain to become irreducible.

Example 9.2.7 (Eldén).
Let Q ∈ Rn×n be a row stohastic matrix and set

P = αQ+ (1 − α)
1

n
eeT , α > 0,

where e is a vector of all ones. Then P > 0 and since eT e = n we have Pe =
(1 − α)e + αe = 1, so P is row stochastic. From the Perron–Frobenius Theorem it
follows that there is no other eigenvalue of P with modulus 1

We now show that if the eigenvalues of Q equal 1, λ2, λ3, . . . , λn then the
eigenvalues of P are 1, αλ2, αλ3, . . . , αλn.
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Proceeding as in the proof of the Schur normal form (Theorem 9.2.1) we define
the orthogonal matrix U = (u1 U2), where u1 = e/

√
n. Then

UTQU = UT (QTu1 QTU2 ) = UT (u1 QTU2 )

=

(

uT
1 u1 uT

1Q
TU2

UT
2 u1 UT

2 Q
TU2

)

=

(

1 vT

0 T

)

.

This is a similarity transformation so T has eigenvalues λ2, λ3, . . . , λn. Further
UT e =

√
ne1 so that UT eeTU = ne1e

T
1 , and we obtain

UTPU = UT

(

αQ+ (1 − α)
1

n
eeT

)

U

= α

(

1 vT

0 T

)

+ (1 − α)

(

1 0
0 0

)

=

(

1 αvT

0 αT

)

.

The result now follows.

Review Questions

1. What is the Schur normal form of a matrix A ∈ Cn×n?

(b)What is meant by a normal matrix? How does the Schur form simplify for
a normal matrix?

2. How can the class of matrices which are diagonalizable by unitary transfor-
mations be characterized?

3. What is meant by a defective eigenvalue? Give a simple example of a matrix
with a defective eigenvalue.

4. Define the matrix function eA. Show how this can be used to express the
solution to the initial value problem y′(t) = Ay(t), y(0) = c?

5. What can be said about the behavior of ‖Ak‖, k ≫ 1, in terms of the spectral
radius and the order of the Jordan blocks of A? (See Problem 8.)

6. (a) Given a square matrix A. Under what condition does there exist a vector
norm, such that the corresponding operator norm ‖A‖ equals the spectral
radius? If A is diagonalizable, mention a norm that has this property.

(b) What can you say about norms that come close to the spectral radius, when
the above condition is not satisfied? What sets the limit to their usefulness?

7. Show that

lim
t→∞

1

t
ln ‖eAt‖ = max

λ∈λ(A)
Re(λ), lim

t→0

1

t
ln ‖eAt‖ = µ(A).

8. Prove the Cayley-Hamilton theorem for a diagonalizable matrix. Then gen-
eralize to an arbitrary matrix, either as in the text or by using Bellman’s
approximation theorem, (Theorem 9.2.5).
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9. Give an example of a matrix, for which the minimal polynomial has a lower
degree than the characteristic polynomial. Is the characteristic polynomial
always divisible by the minimal polynomial?

10. Under what conditions can identities which hold for analytic functions of com-
plex variable(s) be generalized to analytic functions of matrices?

11. (a) Show that any permutation matrix is doubly stochastic.

(b) What are the eigenvalues of matrix





0 1 0
= 0 1
1 0 0



?

12. Suppose that P and Q are row stochastic matrices.

(a) Show that αP + (1 − αQ) is a row stochastic matrix.

(b) Show that PQ is a row stochastic matrix.

Problems and Computer Exercises

1. Find a similarity transformation X−1AX that diagonalizes the matrix

A =

(

1 1
0 1 + ǫ

)

, ǫ > 0.

How does the transformation X behave as ǫ tends to zero?

2. Show that the Sylvester equation (9.2.6) can be written as the linear system

(Im ⊗A−BT ⊗ In)vec(X) = vec(C), (9.2.35)

where ⊗ denotes the Kronecker product and vec(X) is the column vector
obtained by stacking the column of X on top of each other.

3. (a) Let A ∈ Rn×n, and consider the matrix polynomial

p(A) = a0A
n + a1A

n−1 + · · · + anI ∈ Rn×n.

Show that if Ax = λx then p(λ) is an eigenvalue and x an associated eigen-
vector of p(A).

(b) Show that the same is true in general for an analytic function f(A). Ver-
ify (9.2.18). Also construct an example, where p(A) has other eigenvectors in
addition to those of A.

4. Show that the series expansion

(I −A)−1 = I +A+A2 +A3 + . . .

converges if ρ(A) < 1.
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5. (a) Let ‖ · ‖ be a consistent matrix norm, and ρ denote the spectral radius.
Show that

lim
k→∞

‖Ak‖1/k = ρ(A).

(b) Show that

lim
t→∞

ln ‖eAt‖
t

= max
λ∈λ(A)

ℜ(λ).

Hint: Assume, without loss of generality, that A is in its Jordan canonical
form.

6. Show that the eigenvalues λi of a matrix A satisfy the inequalities

σmin(A) ≤ min
i

|λi| ≤ max
i

|λi|σmax(A).

Hint: Use the fact that the singular values of A and its Schur decomposition
QTAQ = diag (λi) +N are the same.

7. Show that Sylvester’s equation (9.2.6) can be written as an equation in stan-
dard matrix-vector form,

(

(I ⊗ A) + (−BT ⊗ I)
)

x = c,

where the vectors x, c ∈ Rnm are obtained from X = (x1, . . . , xm) and C =
(c1, . . . , cm) by

x =





x1
...
xm



 , c =





c1
...
cm



 .

Then use (9.1.19) to give an independent proof that Sylvester’s equation has
a unique solution if and only if λi − µj 6= 0, i = 1, . . . , n, j = 1, . . . ,m.

8. Show that

eA ⊗ eB = eB⊕A,

where ⊕ denotes the Kronecker sum.

9. (a) Show that if A =

(

λ1 1
0 λ2

)

and λ1 6= λ2 then

f(A) =

(

f(λ1)
f(λ1) − f(λ2)

λ1 − λ2
0 f(λ2)

)

.

Comment on the numerical use of this expression when λ2 → λ1.

(b) For A =

(

0.5 1
0 0.6

)

, show that ln(A) =

(

−0.6931 1.8232
0 0.5108

)

.
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10. (a) Compute eA, where

A =

(

−49 24
−64 31

)

,

using the method of scaling and squaring. Scale the matrix so that ‖A/2s‖∞ <
1/2 and approximate the exponential of the scaled matrix by a Padé approx-
imation of order (4,4).

(b) Compute the eigendecomposition A = XΛX−1 and obtain eA = XeΛX−1.
Compare the result with that obtained in (a).

11. Show that an analytic function of the matrix A can be computed by Newton’s
interpolation formula, i.e.,

f(A) = f(λ1)I +

n∗

∑

j=1

f(λ1, λ2, . . . , λj)(A− λ1I) · · · (A− λjI)

where λj , j = 1, 2, . . . , n∗ are the distinct eigenvalues of A, each counted with
the same multiplicity as in the minimal polynomial. Thus, n∗ is the degree of
the minimal polynomial of A.

12. We use the notation of Theorem 9.2.13. For a given n, show by an appropriate
choice of ǫ that ‖An‖p ≤ Cnm∗

−1ρn, where C is independent of n. Then derive
the same result from the Jordan Canonical form.

Hint: See the comment after Theorem 9.2.13.

13. Let C be a closed curve in the complex plane, and consider the function,

φC(A) =
1

2πi

∫

C

(zI −A)−1dz,

If the whole spectrum of A is inside C then, by Example 9.2.2, φC(A) = I.
What is φC(A), when only part of the spectrum (or none of it) is inside C?
Is it generally true that φC(A)2 = φC(A)?

Hint: First consider the case, when A is a Jordan block.

9.3 Perturbation Theory and Eigenvalue Bounds

Methods for computing eigenvalues and eigenvectors are subject to roundoff errors.
The best we can demand of an algorithm in general is that it yields approximate
eigenvalues of a matrix A that are the exact eigenvalues of a slightly perturbed
matrix A + E. In order to estimate the error in the computed result we need to
know the effects of the perturbation E on the eigenvalues and eigenvectors of A.
Such results are derived in this section.

9.3.1 Gerschgorin’s Theorems

In 1931 the Russian mathematician published a seminal paper [17] on how to obtain
estimates of all eigenvalues of a complex matrix. His results can be used both to
locate eigenvalues and to derive perturbation results.
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Theorem 9.3.1.
All the eigenvalues of the matrix A ∈ Cn×n lie in the union of the Ger-

schgorin disks in the complex plane

Di = {z | |z − aii| ≤ ri}, ri =

n
∑

j=1,j 6=i

|aij |, i = 1, 2, . . . , n. (9.3.1)

Proof. If λ is an eigenvalue there is an eigenvector x 6= 0 such that Ax = λx, or

(λ− aii)xi =

n
∑

j=1,j 6=i

aijxj , i = 1, . . . , n.

Choose i so that |xi| = ‖x‖∞. Then

|λ− aii| ≤
n
∑

j=1,j 6=i

|aij ||xj |
|xi|

≤ ri. (9.3.2)

The Gerschgorin theorem is very useful for getting crude estimates for eigen-
values of matrices, and can also be used to get accurate estimates for the eigenvalues
of a nearly diagonal matrix. Since A and AT have the same eigenvalues we can, in
the non-Hermitian case, obtain more information about the location of the eigen-
values simply by applying the theorem also to AT .

From (9.3.2) it follows that if the ith component of the eigenvector is maximal,
then λ lies in the ith disk. Otherwise the Gerschgorin theorem does not say in which
disks the eigenvalues lie. Sometimes it is possible to decide this as the following
theorem shows.

Theorem 9.3.2.
If the union M of k Gerschgorin disks Di is disjoint from the remaining disks,

then M contains precisely k eigenvalues of A.

Proof. Consider for t ∈ [0, 1] the family of matrices

A(t) = tA+ (1 − t)DA, DA = diag (aii).

The coefficients in the characteristic polynomial are continuous functions of t, and
hence also the eigenvalues λ(t) of A(t) are continuous functions of t. Since A(0) =
DA and A(1) = A we have λi(0) = aii and λi(1) = λi. For t = 0 there are exactly
k eigenvalues in M. For reasons of continuity an eigenvalue λi(t) cannot jump to
a subset that does not have a continuous connection with aii for t = 1. Therefore
also k eigenvalues of A = A(1) lie in M.
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Example 9.3.1.
The matrix

A =





2 −0.1 0.05
0.1 1 −0.2
0.05 −0.1 1



 ,

with eigenvalues λ1 = 0.8634, λ2 = 1.1438, λ3 = 1.9928, has the Gerschgorin disks

D1 = {z | |z − 2| ≤ 0.15}; D2 = {z | |z − 1| ≤ 0.3}; D3 = {z | |z − 1| ≤ 0.15}.

Since the disk D1 is disjoint from the rest of the disks, it must contain precisely one
eigenvalue of A. The remaining two eigenvalues must lie in D2 ∪ D3 = D2.

There is another useful sharpening of Gerschgorin’s Theorem in case the ma-
trix A is irreducible, cf. Def. 9.1.5.

Theorem 9.3.3.
If A is irreducible then each eigenvalue λ lies in the interior of the union of

the Gerschgorin disks, unless it lies on the boundary of all Gerschgorin disks.

Proof. If λ lies on the boundary of the union of the Gerschgorin disks, then we
have

|λ− aii| ≥ ri, ∀i. (9.3.3)

Let x be a corresponding eigenvector and assume that |xi1 | = ‖x‖∞. Then from
the proof of Theorem 9.3.1 and (9.3.3) it follows that |λ − ai1i1 | = ri1 . But (9.3.2)
implies that equality can only hold here if for any ai1j 6= 0 it holds that |xj | = ‖x‖∞.
If we assume that ai1,i2 6= 0 then it follows that |λ − ai2i2 | = ri2 . But since A is
irreducible for any j 6= i there is a path i = i1, i2, . . . , ip = j. It follows that λ must
lie on the boundary of all Gerschgorin disks.

Example 9.3.2. Consider the real, symmetric matrix

A =













2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2













∈ Rn×n.

Its Gerschgorin disks are

|z − 2| ≤ 2, i = 2, . . . , n− 1, |z − 2| ≤ 1, i = 1, n,

and it follows that all eigenvalues of A satisfy λ ≥ 0. Since zero is on the boundary
of the union of these disks, but not on the boundary of all disks, zero cannot be an
eigenvalue of A. Hence all eigenvalues are strictly positive and A is positive definite.
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9.3.2 Perturbation Theorems

In the rest of this section we consider the sensitivity of eigenvalue and eigenvectors
to perturbations.

Theorem 9.3.4. (Bauer–Fike.)
Let the matrix A ∈ Cn×n be diagonalizable, X−1AX = D = diag(λ1, · · · , λn),

and let µ be an eigenvalue to A+ E. Then for any p-norm

min
1≤i≤n

|µ− λi| ≤ κp(X)‖E‖p. (9.3.4)

where κp(X) = ‖X−1‖p ‖X‖p is the condition number of the eigenvector matrix.

Proof. We can assume that µ is not an eigenvalue of A, since otherwise (9.3.4)
holds trivially. Since µ is an eigenvalue of A+E the matrix A+E − µI is singular
and so is also

X−1(A+ E − µI)X = (D − µI) +X−1EX.

Then there is a vector z 6= 0 such that

(D − µI)z = −X−1EXz.

Solving for z and taking norms we obtain

‖z‖p ≤ κp(X)‖(D − µI)−1‖p‖E‖p‖z‖p.

The theorem follows by dividing by ‖z‖p and using the fact that for any p-norm
‖(D − µI)−1‖p = 1/ min

1≤i≤n
|λi − µ|.

The Bauer–Fike theorem shows that κp(X) is an upper bound for the condition
number of the eigenvalues of a diagonalizable matrix A. In particular if A is normal
we know from the Schur Canonical Form (Theorem 9.2.1) that we can take X = U
to be a unitary matrix. Then we have κ2(X) = 1, which shows the important result
that the eigenvalues of a normal matrix are perfectly conditioned, also if they have
multiplicity greater than one. On the other hand, for a matrix A which is close to
a defective matrix the eigenvalues can be very ill-conditioned, see Example 9.2.1,
and the following example.

Example 9.3.3.

Consider the matrix A =

(

1 1
ǫ 1

)

, 0 < ǫ with eigenvector matrix

X =

(

1 1√
ǫ −√

ǫ

)

, X−1 =
0.5√
ǫ

(√
ǫ 1√
ǫ −1

)

.

If ǫ≪ 1 then

κ∞(X) = ‖X−1‖∞‖X‖∞ =
1√
ǫ

+ 1 ≫ 1.
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Note that in the limit when ǫ→ 0 the matrix A is not diagonalizable.

In general a matrix may have a mixture of well-conditioned and ill-conditioned
eigenvalues. Therefore it is useful to have perturbation estimates for the individual
eigenvalues of a matrix A. We now derive first order estimates for simple eigenvalues
and corresponding eigenvectors.

Theorem 9.3.5.
Let λj be a simple eigenvalue of A and let xj and yj be the corresponding right

and left eigenvector of A,

Axj = λjxj , yH
j A = λjy

H
j .

Then for sufficiently small ǫ the matrix A+ ǫE has a simple eigenvalue λj(ǫ) such
that,

λj(ǫ) = λj + ǫ
yH

j Exj

yH
j xj

+O(ǫ2). (9.3.5)

Proof. Since λj is a simple eigenvalue there is a δ > 0 such that the disk D =
{µ‖|µ− λj | < δ} does not contain any eigenvalues of A other than λj . Then using
Theorem 9.3.2 it follows that for sufficiently small values of ǫ the matrix A + ǫE
has a simple eigenvalue λj(ǫ) in D. If we denote a corresponding eigenvector xj(ǫ)
then

(A+ ǫE)xj(ǫ) = λj(ǫ)xj(ǫ).

Using results from function theory, it can be shown that λj(ǫ) and xj(ǫ) are analytic
functions of ǫ for ǫ < ǫ0. Differentiating with respect to ǫ and putting ǫ = 0 we get

(A− λjI)x
′

j(0) + Exj = λ′j(0)xj . (9.3.6)

Since yH
j (A − λjI) = 0 we can eliminate x′j(0) by multiplying this equation with

yH
j and solve for λ′j(0) = yH

j Exj/y
H
j xj .

If ‖E‖2 = 1 we have |yH
j Exj | ≤ ‖xj‖2‖yj‖2 and E can always be chosen so

that equality holds. If we also normalize so that ‖xj‖2 = ‖yj‖2 = 1, then 1/s(λj),
where

s(λj) = |yH
j xj | (9.3.7)

can be taken as the condition number of the simple eigenvalue λj . Note that s(λj) =
cos θ(xj , yj), where θ(xj , yj) is the acute angle between the left and right eigenvector
corresponding to λj . If A is a normal matrix we get s(λj) = 1.

The above theorem shows that for perturbations in A of order ǫ, a simple
eigenvalue λ of A will be perturbed by an amount approximately equal to ǫ/s(λ).
If λ is a defective eigenvalue, then there is no similar result. Indeed, if the largest
Jordan block corresponding to λ is of order k, then perturbations to λ of order ǫ1/k

can be expected. Note that for a Jordan box we have x = e1 and y = em and so
s(λ) = 0 in (9.3.7).
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Example 9.3.4.
Consider the perturbed diagonal matrix

A+ ǫE =





1 ǫ 2ǫ
ǫ 2 ǫ
ǫ 2ǫ 2



 .

Here A is diagonal with left and right eigenvector equal to xi = yi = ei. Thus
yH

i Exi = eii = 0 and the first order term in the perturbation of the simple eigen-
values are zero. For ǫ = 10−3 the eigenvalues of A+ E are

0.999997, 1.998586, 2.001417.

Hence the perturbation in the simple eigenvalue λ1 is of order 10−6. Note that
the Bauer–Fike theorem would predict perturbations of order 10−3 for all three
eigenvalues.

We now consider the perturbation of an eigenvector xj corresponding to a sim-
ple eigenvalue λj . Assume that the matrix A is diagonalizable and that x1, . . . , xn

are linearly independent eigenvectors. Then we can write

xj(ǫ) = xj + ǫx′j(0) +O(ǫ2), x′j(0) =
∑

k 6=j

ckjxk,

where we have normalized xj(ǫ) to have unit component along xj . Substituting the
expansion of x′j(0) into (9.3.6) we get

∑

k 6=j

ckj(λk − λj)xk + Exj = λ′j(0)xj .

Multiplying by yH
i and using yH

i xj = 0, i 6= j, we obtain

cij =
yH

i Exj

(λj − λi)yH
i xi

, i 6= j. (9.3.8)

Hence, the sensitivity of the eigenvectors also depend on the separation δj =
mini6=j |λi − λj | between λj and the rest of the eigenvalues of A. If several eigen-
vectors corresponds to a multiple eigenvalue these are not uniquely determined,
which is consistent with this result. Note that even if the individual eigenvectors
are sensitive to perturbations it may be that an invariant subspace containing these
eigenvectors is well determined.

To measure the accuracy of computed invariant subspaces we need to introduce
the largest angle between two subspaces.

Definition 9.3.6. Let X and Y = R(Y ) be two subspaces of Cn of dimension k.
Define the largest angle between these subspaces to be

θmax(X ,Y) = max
x∈X

‖x‖2=1

min
y∈Y

‖y‖2=1

θ(x, y). (9.3.9)
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where θ(x, y) is the acute angle between x and y.

The quantity sin θmax(X ,Y) defines a distance between the two subspaces X
and Y. If X and Y are orthonormal matrices such that X = R(X) and Y = R(Y ),
then it can be shown (see Golub and Van Loan [21]) that

θ(X ,Y) = arccosσmin(XHY ). (9.3.10)

9.3.3 Hermitian Matrices

We have seen that the eigenvalues of Hermitian, and real symmetric matrices are all
real, and from Theorem 9.3.5 it follows that these eigenvalues are perfectly condi-
tioned. For this class of matrices it is possible to get more informative perturbation
bounds, than those given above. In this section we give several classical theorems.
They are all related to each other, and the interlace theorem dates back to Cauchy,
1829. We assume in the following that the eigenvalues of A have been ordered in
decreasing order λ1 ≥ λ2 ≥ · · · ≥ λn.

In the particular case of a Hermitian matrix the extreme eigenvalues λ1 and
λn can be characterized by

λ1 = max
x∈Cn

x 6=0

ρ(x), λn = min
x∈Cn

x 6=0

ρ(x).

The following theorem gives an important extremal characterization also of
the intermediate eigenvalues of a Hermitian matrix.

Theorem 9.3.7. Fischer’s Theorem.
Let the Hermitian matrix A have eigenvalues λ1, λ2, . . . , λn ordered so that

λ1 ≥ λ2 ≥ · · · ≥ λn. Then

λi = max
dim (S)=i

min
x∈S

x 6=0

xHAx

xHx
(9.3.11)

= min
dim (S)=n−i+1

max
x∈S

x 6=0

xHAx

xHx
. (9.3.12)

where S denotes a subspace of Cn.

Proof. See Stewart [43, , p. 314].

The formulas (9.3.11) and (9.3.12) are called the max-min and the min-max
characterization, respectively. They can be used to establish an important relation
between the eigenvalues of two Hermitian matrices A and B, and their sum C =
A+B.

Theorem 9.3.8.
Let α1 ≥ α2 ≥ · · · ≥ αn, β1 ≥ β2 ≥ · · · ≥ βn, and γ1 ≥ γ2 ≥ · · · ≥ γn be the

eigenvalues of the Hermitian matrices A, B, and C = A+B. Then

αi + β1 ≥ γi ≥ αi + βn, i = 1, 2, . . . , n. (9.3.13)
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Proof. Let x1, x2, . . . , xn be an orthonormal system of eigenvectors of A corre-
sponding to α1 ≥ α2 ≥ · · · ≥ αn, and let S be the subspace of Cn spanned by
x1, . . . , xi. Then by Fischer’s theorem

γi ≥ min
x∈S

x 6=0

xHCx

xHx
≥ min

x∈S

x 6=0

xHAx

xHx
+ min

x∈S

x 6=0

xHBx

xHx
= αi + min

x∈S

x 6=0

xHBx

xHx
≥ αi + βn.

This is the last inequality of (9.3.12). The first equality follows by applying this
result to A = C + (−B).

The theorem implies that when B is added to A all of its eigenvalues are
changed by an amount which lies between the smallest and greatest eigenvalues
of B. If the matrix rank (B) < n, the result can be sharpened, see Parlett [38,
Section 10-3]. An important case is when B = ±zzT is a rank one matrix. Then
B has only one nonzero eigenvalue equal to ρ = ±‖z‖2

2. In this case the perturbed
eigenvalues will satisfy the relations

λ′i − λi = miρ, 0 ≤ mi,
∑

mi = 1. (9.3.14)

Hence all eigenvalues are shifted by an amount which lies between zero and ρ.
An important application is to get bounds for the eigenvalues λ′i of A + E,

where A and E are Hermitian matrices. Usually the eigenvalues of E are not known,
but from

max{|λ1(E)|, |λn(E)|} = ρ(E) = ‖E‖2

it follows that
|λi − λ′i| ≤ ‖E‖2. (9.3.15)

Note that this result also holds for large perturbations.
A related result is the Wielandt–Hoffman theorem which states that

√

∑n
i=1 |λi − λ′i|2 ≤ ‖E‖F . (9.3.16)

An elementary proof of this result is given by Wilkinson [52, Section 2.48].
Another important result that follows from Fischer’s Theorem is the following

theorem, due to Cauchy, which relates the eigenvalues of a principal submatrix to
the eigenvalues of the original matrix.

Theorem 9.3.9. Interlacing Property.
Let An−1 be a principal submatrix of order n − 1 of a Hermitian matrix

An ∈ Cn×n, Then, the eigenvalues of An−1, µ1 ≥ µ2 ≥ · · · ≥ µn−1 interlace
the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn of An, that is

λi ≥ µi ≥ λi+1, i = 1, . . . , n− 1. (9.3.17)

Proof. Without loss of generality we assume that An−1 is the leading principal
submatrix of A,

An =

(

An−1 aH

a α

)

.
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Consider the subspace of vectors S′ = {x ∈ Cn, x ⊥ en}. Then with x ∈ S′ we have
xHAnx = (x′)HAn−1x

′, where xH = ((x′)H , 0). Using the minimax characteriza-
tion (9.3.11) of the eigenvalue λi it follows that

λi = max
dim (S)=i

min
x∈S

x 6=0

xHAnx

xHx
≥ max

dim(S)=i

S⊥en

min
x∈S

x 6=0

xHAnx

xHx
= µi.

The proof of the second inequality µi ≥ λi+1 is obtained by a similar argument
applied to −An.

Since any principal submatrix of a Hermitian matrix also is Hermitian, this
theorem can be used recursively to get relations between the eigenvalues of An−1

and An−2, An−2 and An−3, etc.

9.3.4 Rayleigh quotient and residual bounds

We make the following definition.

Definition 9.3.10.
The Rayleigh quotient of a nonzero vector x ∈ Cn is the (complex) scalar

ρ(x) = ρ(A, x) =
xHAx

xHx
. (9.3.18)

The Rayleigh quotient plays an important role in the computation of eigen-
values and eigenvectors. The Rayleigh quotient is a homogeneous function of x,
ρ(αx) = ρ(x) for all scalar α 6= 0.

Definition 9.3.11.
The field of values of a matrix A is the set of all possible Rayleigh quotients

F (A) = {ρ(A, x) | x ∈ Cn}.

For any unitary matrix U we have F (UHAU) = F (A). From the Schur
canonical form it follows that there is no restriction in assuming A to be upper
triangular, and, if normal, then diagonal. Hence for a normal matrix A

ρ(x) =

n
∑

i=1

λi|ξi|2
/

n
∑

i=1

|ξi|2,

that is any point in F (A) is a weighted mean of the eigenvalues of A. Thus for a
normal matrix the field of values coincides with the convex hull of the eigenvalues.
In the special case of a Hermitian matrix the field of values equals the segment
[λ1, λn] of the real axis.
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In general the field of values of a matrix A may contain complex values even if
its eigenvalues are real. However, the field of values will always contain the convex
hull of the eigenvalues.

Let x and A be given and consider the problem

min
µ

‖Ax− µx‖2
2.

This is a linear least squares problem for the unknown µ. The normal equations
are xHxµ = xHAx. Hence the minimum is attained for ρ(x), the Rayleigh quotient
of x.

When A is Hermitian the gradient of 1
2ρ(x) is

1

2
∇ρ(x) =

Ax

xHx
− xHAx

(xHx)2
x =

1

xHx
(Ax− ρx),

and hence the Rayleigh quotient ρ(x) is stationary if and only if x is an eigenvector
of A.

Suppose we have computed by some method an approximate eigenvalue/eigenvector
pair (σ, v) to a matrix A. In the following we derive some error bounds depending
on the residual vector

r = Av − σv.

Since r = 0 if (σ, v) are an exact eigenpair it is reasonable to assume that the size
of the residual r measures the accuracy of v and σ. We show a simple backward
error bound:

Theorem 9.3.12.
Let λ̄ and x̄, ‖x̄‖2 = 1, be a given approximate eigenpair of A ∈ Cn×n, and

r = Ax̄−λ̄x̄ be the corresponding residual vector. Then λ̄ and x̄ is an exact eigenpair
of the matrix A+ E, where

E = −rx̄H , ‖E‖2 = ‖r‖2. (9.3.19)

Proof. We have (A+ E)x̄ = (A− rx̄H/x̄H x̄)x̄ = Ax̄− r = λ̄x̄.

It follows that given an approximate eigenvector x̄ a good eigenvalue approx-
imation is the Rayleigh quotient ρ(x̄), since this choice minimizes the error bound
in Theorem 9.3.12.

By combining Theorems 9.3.4 and 9.3.12 we obtain for a Hermitian matrix A
the very useful a posteriori error bound

Corollary 9.3.13. Let A be a Hermitian matrix. For any λ̄ and any unit vector x̄
there is an eigenvalue of λ of A such that

|λ− λ̄| ≤ ‖r‖2, r = Ax̄− λ̄x̄. (9.3.20)

For a fixed x̄, the error bound is minimized by taking λ̄ = x̄TAx̄.
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This shows that (λ̄, x̄) (‖x̄‖2 = 1) is a numerically acceptable eigenpair of the
Hermitian matrix A if ‖Ax̄− λx̄‖2 is of order machine precision.

For a Hermitian matrix A, the Rayleigh quotient ρ(x) may be a far more ac-
curate approximate eigenvalue than x is an approximate eigenvector. The following
theorem shows that if an eigenvector is known to precision ǫ, the Rayleigh quotient
approximates the corresponding eigenvalue to precision ǫ2.

Theorem 9.3.14.
Let the Hermitian matrix A have eigenvalues λ1, . . . , λn and orthonormal

eigenvectors x1, . . . , xn. If the vector x =
∑n

i=1 ξixi, satisfies

‖x− ξ1x1‖2 ≤ ǫ‖x‖2. (9.3.21)

then |ρ(x) − λ1| ≤ 2‖A‖2ǫ
2. (9.3.22)

Proof. Writing Ax =
∑n

i=1 ξiλixi, the Rayleigh quotient becomes

ρ(x) =

n
∑

i=1

|ξi|2λi

/

n
∑

i=1

|ξi|2 = λ1 +

n
∑

i=2

|ξi|2(λi − λ1)
/

n
∑

i=1

|ξi|2.

Using (9.3.21) we get |ρ(x)−λ1 | ≤ maxi |λi−λ1|ǫ2. Since the matrix A is Hermitian
we have |λi| ≤ σ1(A) = ‖A‖2, i = 1, . . . , n, and the theorem follows.

Stronger error bounds can be obtained if σ = ρ(v) is known to be well sepa-
rated from all eigenvalues except λ.

Theorem 9.3.15.
Let A be a Hermitian matrix with eigenvalues λ(A) = {λ1, . . . , λn}, x a unit

vector and ρ(x) its Rayleigh quotient. Let Az = λρz, where λρ is the eigenvalue of
A closest to ρ(x). Define

gap (ρ) = min
λ∈λ(A)

|λ− ρ|, λ 6= λρ. (9.3.23)

Then it holds that

|λρ − ρ(x)| ≤ ‖Ax− xρ‖2
2/gap (ρ), (9.3.24)

sin θ(x, z) ≤ ‖Ax− xρ‖2/gap (ρ). (9.3.25)

Proof. See Parlett [38, Section 11.7].

Example 9.3.5.
With x = (1, 0)T and

A =

(

1 ǫ
ǫ 0

)

, we get ρ = 1, Ax− xρ =

(

0
ǫ

)

.
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From Corollary 9.3.13 we get |λ−1| ≤ ǫ, whereas Theorem 9.3.15 gives the improved
bound |λ− 1| ≤ ǫ2/(1 − ǫ2).

Often gap(σ) is not known and the bounds in Theorem 9.3.15 are only the-
oretical. In some methods, e.g., the method of spectrum slicing (see Section 9.4.4)
an interval around σ can be determined which contain no eigenvalues of A.

9.3.5 Residual bounds for SVD

The singular values of a matrix A ∈ Rm×n equal the positive square roots of the
eigenvalues of the symmetric matrix ATA and AAT . Another very useful relation-
ship between the SVD of A = UΣV T and a symmetric eigenvalue was given in
Theorem 7.3.2. If A is square, then6

C =

(

0 A
AT 0

)

=
1√
2

(

U U
V −V

)(

Σ 0
0 −Σ

)

1√
2

(

U U
V −V

)T

(9.3.26)

Using these relationships the theory developed for the symmetric (Hermitian) eigen-
value problem in Secs. 9.3.3–9.3.4 applies also to the singular value decomposi-
tion. For example, Theorems 8.3.3–8.3.5 are straightforward applications of Theo-
rems 9.3.7–9.3.9.

We now consider applications of the Rayleigh quotient and residual error
bounds given in Section 9.3.4. If u, v are unit vectors the Rayleigh quotient of
C is

ρ(u, v) =
1√
2
(uT , vT )

(

0 A
AT 0

)

1√
2

(

u
v

)

= uTAv, (9.3.27)

From Corollary 9.3.13 we obtain the following error bound.

Theorem 9.3.16. For any scalar α and unit vectors u, v there is a singular value
σ of A such that

|σ − α| ≤ 1√
2

∥

∥

∥

∥

(

Av − uα
ATu− vα

)∥

∥

∥

∥

2

. (9.3.28)

For fixed u, v this error bound is minimized by taking α = uTAv.

The following theorem is an application to Theorem 9.3.15.

Theorem 9.3.17.
Let A have singular values σi, i = 1, . . . , n. Let u and v be unit vectors,

ρ = uTAv the corresponding Rayleigh quotient, and

δ =
1√
2

∥

∥

∥

∥

(

Av − uρ
ATu− vρ

)∥

∥

∥

∥

2

6This assumption is no restriction since we can always adjoin zero rows (columns) to make A

square.
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the residual norm. If σs is the closest singular value to ρ and Aus = σsvs, then

|σs − ρ(x)| ≤ δ2/gap (ρ), (9.3.29)

max{sin θ(us, u), sin θ(vs, v)} ≤ δ/gap (ρ). (9.3.30)

where

gap (ρ) = min
i6=s

|σi − ρ|. (9.3.31)

Review Questions

1. State Gerschgorin’s Theorem, and discuss how it can be sharpened.

2. Discuss the sensitivity to perturbations of eigenvalues and eigenvectors of a
Hermitian matrix A.

3. Suppose that (λ̄, x̄) is an approximate eigenpair of A. Give a backward error
bound. What can you say of the error in λ̄ if A is Hermitian?

4. (a) Tell the minimax and maximin properties of the eigenvalues (of what kind
of matrices?), and the related properties of the singular values (of what kind
of matrices?).

(b) Show how the theorems in (a) can be used for deriving an interlacing
property for the eigenvalues of a matrix in Rn×n (of what kind?) and the
eigenvalues of its principal submatrix in R(n−1)×(n−1).

Problems

1. An important problem is to decide if all the eigenvalues of a matrix A have
negative real part. Such a matrix is called stable. Show that if

Re(aii) + ri ≤ 0, ∀i,

and Re(aii) + ri < 0 for at least one i, then the matrix A is stable if A is
irreducible.

2. Suppose that the matrix A is real, and all Gerschgorin discs of A are distinct.
Show that from Theorem 9.3.2 it follows that all eigenvalues of A are real.

3. Show that all eigenvalues to a matrix A lie in the union of the disks

|z − aii| ≤
1

di

n
∑

j=1,j 6=i

dj |aij |, i = 1, 2, . . . , n,

where di, i = 1, 2, . . . , n are given positive scale factors.

Hint: Use the fact that the eigenvalues are invariant under similarity trans-
formations.
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4. Let A ∈ Cn×n, and assume that ǫ = maxi6=j |aij | is small. Choose the diagonal
matrix D = diag (µ, 1, . . . , 1) so that the first Gerschgorin disk of DAD−1 is
as small as possible, without overlapping the other disks. Show that if the
diagonal elements of A are distinct then

µ =
ǫ

δ
+O(ǫ2), δ = min

i6=1
|aii − a11|,

and hence the first Gerschgorin disk is given by

|λ− a11| ≤ r1, r1 ≤ (n− 1)ǫ2/δ +O(ǫ3).

5. Compute the eigenvalues of B and A, where

B =

(

0 ǫ
ǫ 0

)

, A =





0 ǫ 0
ǫ 0 1
0 1 0



 .

Show that they interlace.

6. Use a suitable diagonal similarity and Gerschgorin’s theorem to show that the
eigenvalues of the tridiagonal matrix

T =













a b2
c2 a b3

. . .
. . .

. . .

cn−1 a bn
cn a













.

satisfy the inequality

|λ− a| < 2
√

max
i

|bi|max
i

|ci|.

7. Let A and B be square Hermitian matrices and

H =

(

A C
CH B

)

.

Show that for every eigenvalue λ(B) of B there is an eigenvalue λ(H) of H
such that

|λ(H) − λ(B)| ≤ (‖CHC‖2)
1/2.

Hint: Use the estimate (9.3.20).

8. (a) Let D = diag (di) and z = (z1, . . . , zn)T . Show that if λ 6= di, i = 1, . . . , n,
then

det(D + µzzT − λI) = det
(

(D − λI)(I + (D − λI)−1µzzT )
)

.

Using the identity det(I + xyT ) = 1 + yTx conclude that the eigenvalues λ of
D + µzzT are the roots of the secular equation

f(λ) = 1 + µ

n
∑

i=1

z2
i

di − λ
= 0.
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(b) Show by means of Fischer’s Theorem 9.3.8 that the eigenvalues λi interlace
the elements di so that if , for example, µ ≥ 0 then

d1 ≤ λ1 ≤ d2 ≤ λ2 ≤ · · · ≤ dn ≤ λn.

9.4 The Power Method

9.4.1 The Simple Power Method

One of the oldest methods for computing eigenvalues and eigenvectors of a matrix
is the power method. For a long time the power method was the only alternative
for finding the eigenvalues of a general non-Hermitian matrix. It is still one of the
few practical methods when the matrix A is very large and sparse. Although it
is otherwise no longer much used in its basic form for computing eigenvalues it is
central to the convergence analysis of many currently used algorithms. A variant of
the power method is also a standard method for computing eigenvectors when an
accurate approximation to the corresponding eigenvalue is known.

Let A ∈ Rn×n and q0 6= 0 be a given starting vector. In the power method
the sequence of vectors q1, q2, . . . is formed, where

qk = Aqk−1, k = 1, 2, . . . .

It follows that qk = Akq0, which explains the name of the method. Note that in
general it would be much more costly to form the matrix Ak, than to perform the
above sequence of matrix vector multiplications.

We assume in the following that the eigenvalues are ordered so that

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|.

To simplify the analysis of the power method assume that the matrix A is diago-
nalizable. Then the initial vector q0 can be expanded along the eigenvectors xi of
A, q0 =

∑n
j=1 αjxj , and we have

qk =

n
∑

j=1

λk
jαjxj = λk

1

(

α1x1 +

n
∑

j=2

(λj

λ1

)k

αjxj

)

, k = 1, 2, · · ·

If λ1 is a unique eigenvalue of maximum magnitude, |λ1| > |λ2|, we say that λ1 is
a dominant eigenvalue. If α1 6= 0, then

1

λk
1

qk = α1x1 +O

(

∣

∣

∣

λ2

λ1

∣

∣

∣

k
)

, (9.4.1)

and up to a factor λk
1 the vector qk will converge to a limit vector which is an

eigenvector associated with the dominating eigenvalue λ1. The rate of convergence
is linear and equals |λ2|/|λ1|. One can show that this result holds also when A is
not diagonalizable by writing q0 as a linear combination of the vectors associated
with the Jordan (or Schur) canonical form of A, see Theorem 9.2.7 (9.2.1).
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In practice the vectors qk have to be normalized in order to avoid overflow or
underflow. Hence we modify the initial recursion as follows. Assume that ‖q0‖=1,
and compute

q̂k = Aqk−1, µk = ‖q̂k‖, qk = q̂k/µk, k = 1, 2, . . . (9.4.2)

Then we have

qk =
1

γk
Akq0, γk = µ1 · · ·µk,

and under the assumptions above qk converges to a normalized eigenvector x1. From
equations (9.4.1) and (9.4.2) it follows that

q̂k = λ1qk−1 +O(|λ2/λ1|k), lim
k→∞

µk = |λ1|. (9.4.3)

An approximation to λ1 can also be obtained from the ratio of elements in
the two vectors q̂k and qk−1. The convergence, which is slow when |λ2| ≈ |λ1|, can
be accelerated by Aitken extrapolation.

If the matrix A is real symmetric (or Hermitian) its eigenvalues are real and
the eigenvectors can be chosen so that X = (x1, . . . , xn) is real and orthogonal.
Using (9.4.1) one can show that the Rayleigh quotient converges twice as fast as
µk,

λ1 = ρ(qk−1) +O
(

|λ2/λ1|2k
)

, ρ(qk−1) = qT
k−1Aqk−1 = qT

k−1q̂k. (9.4.4)

Example 9.4.1.
The eigenvalues of the matrix

A =





2 1 0
1 3 1
0 1 4





are (4.732051, 3, 1.267949), correct to 6 decimals. If we take q0 = (1, 1, 1)T then we
obtain the Rayleigh quotients ρk and errors ek = λ1 − ρk given in the table below:

k ρk ek ek/ek−1

1 4.333333 0.398718

2 4.627119 0.104932 0.263
3 4.694118 0.037933 0.361
4 4.717023 0.015027 0.396
5 4.729620 0.006041 0.402

The ratios of successive errors converge to (λ2/λ1)
2 = 0.4019.

The convergence of the power method depends on the assumption that α1 6= 0,
and hence we only can prove convergence for almost all starting vectors. Even when
α1 = 0, rounding errors will tend to introduce a small component along x1 in Aq0,
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and therefore the method converges in practice also in this case. Convergence of
the power method can also be shown under the weaker assumption that λ1 = λ2 =
· · · = λr, and

|λr| > |λr+1| ≥ · · · ≥ |λn|.
However, an inherent weakness in this case is that the limit vector will depend on the
expansion of q0 along x1, · · · , xr, and qk will converge to one particular vector in the
invariant subspace span[x1, . . . , xr ]. To determine the whole dominating invariant
subspace we will have to perform the power method with p ≥ r linearly independent
starting vectors, see Section 9.4.6.

An attractive feature of the power method is that the matrix A is not explicitly
needed. It suffices to be able to form the matrix times vector product Ay for any
given vector y. If the matrix A is sparse the cost of one iteration step is proportional
to the number of nonzero elements in A.

9.4.2 Deflation

The simple power method can be used for computing several eigenvalues and the
associated eigenvectors by combining it with deflation. By that we mean a method
that given an eigenvector x1 and the corresponding eigenvalue λ1 computes a matrix
A1 such that λ(A) = λ1∪λ(A1). A way to construct such a matrix A1 in a stable way
was indicated in Section 9.1, see (9.1.16). However, this method has the drawback
that even if A is sparse the matrix A1 will in general be dense.

The following simple method for deflation is due to Hotelling. Suppose an
eigenpair (λ1, x1), ‖x1‖2 = 1, of a symmetric matrix A is known. If we define
A1 = A− λ1x1x

H
1 , then from the orthogonality of the eigenvectors xi we have

A1xi = Axi − λ1x1(x
T
1 xi) =

{

0, if i = 1;
λixi, if i 6= 1.

Hence the eigenvalues of A1 are 0, λ2, . . . , λn with corresponding eigenvectors equal
to x1, x2, . . . , xn. The power method can now be applied to A1 to determine the
dominating eigenvalue of A1. Note that A1 = A − λ1x1x

T
1 = (I − x1x

T
1 )A = P1A,

where P1 is an orthogonal projection.
When A is unsymmetric there is a corresponding deflation technique. Here

it is necessary to have the left eigenvector yT
1 as well as the right x1. If these are

normalized so that yT
1 x1 = 1, then we define A1 by A1 = A − λ1x1y

T
1 . From the

biorthogonality of the xi and yi we have

A1xi = Axi − λ1x1(y
T
1 xi) =

{

0, if i = 1;
λixi, if i 6= 1.

In practice an important advantage of this scheme is that it is not necessary to
form the matrix A1 explicitly. The power method, as well as many other methods,
only requires that an operation of the form y = A1x can be performed. This
operation can be performed as

A1x = Ax− λ1x1(y
T
1 x) = Ax− τx1, τ = λ1(y

T
1 x).
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Hence it suffices to have the vectors x1, y1 available as well as a procedure for
computing Ax for a given vector x. Obviously this deflation procedure can be
performed repeatedly, to obtain A2, A3, . . . .

This deflation procedure has to be used with caution, since errors will accu-
mulate. This can be disastrous in the nonsymmetric case, when the eigenvalues
may be badly conditioned.

9.4.3 Spectral Transformation and Inverse Iteration

The simple power method has the drawback that convergence may be arbitrarily
slow or may not happen at all. To overcome this difficulty we can use a spectral
transformation, which we now describe. Let p(x) and q(x) be two polynomials
such that q(A) is nonsingular and define r(A) = (q(A))−1p(A). Then if A has an
eigenvalue λ with corresponding eigenvector x it follows that r(λ) is an eigenvalue
of r(A) with the same eigenvector x.

As a simple application of this assume that A is nonsingular and take r(x) =
1/x. Then the matrix r(A) = A−1 has eigenvalues equal to 1/λi. Hence from (9.4.3)
it follows that if the eigenvalues of A satisfy

|λ1| ≥ · · · ≥ |λn−1| > |λn|

and the power method is applied to A−1, then qk will converge to the eigenvector
xn of A corresponding to λn. This is called inverse iteration , and was introduced
by H. Wielandt in 1944.

Inverse iteration can also be applied to the matrix A−µI, where µ is a chosen
shift of the spectrum. The eigenvalues of (A− µI)−1 equal

µj = (λj − µ)−1. (9.4.5)

and the iteration can be written

(A− µI)q̂k = qk−1, qk = q̂k/‖q̂k‖2, k = 1, 2, . . . . (9.4.6)

Note that there is no need to explicitly invert A − µI. Instead we compute a
triangular factorization of A − µI, and in each step of (9.4.6) solve two triangular
systems

L(Uq̂k) = Pqk−1, P (A− µI) = LU.

For a dense matrix A one step of the iteration (9.4.5) is therefore no more costly
than one step of the simple power method. However, if the matrix is sparse the
total number of nonzero elements in L and U may be much larger than in A. Note
that if A is positive definite (or diagonally dominant) this property is in general not
shared by the shifted matrix (A − µI). Hence in general partial pivoting must be
employed.

If µ is chosen sufficiently close to an eigenvalue λi, so that |λi −µ| ≪ |λj −µ|,
λi 6= λj then (λi − µ)−1 is a dominating eigenvalue of B,

|λi − µ|−1 ≫ |λj − µ|−1, λi 6= λj . (9.4.7)
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Then qk will converge fast to the eigenvector xi, and an approximation λ̄i to the
eigenvalue λi of A is obtained from the Rayleigh quotient

1

λi − µ
≈ qT

k−1(A− µI)−1qk−1 = qT
k−1q̂k,

where q̂k satisfies (A− µI)q̂k = qk−1. Thus

λ̄i = µ+ 1/(qT
k−1q̂k). (9.4.8)

An a posteriori bound for the error in the approximate eigenvalue λ̄i of A can
be obtained from the residual corresponding to (λ̄i, q̂k), which equals

rk = Aq̂k −
(

µ+ 1/(qT
k−1q̂k)

)

q̂k = qk−1 − q̂k/(q
T
k−1q̂k).

Then, by Theorem 9.3.12, (λ̄i, q̂k) is an exact eigenpair of a matrix A + E, where
‖E‖2 ≤ ‖rk‖2/‖q̂k‖2. If A is real symmetric then the error in the approximative

eigenvalue λ̂i of A is bounded by ‖rk‖2/‖q̂k‖2.

9.4.4 Eigenvectors by Inverse Iteration

After extensive developments by Wilkinson and others inverse iteration has become
the method of choice for computing the associated eigenvector to an eigenvalue
λi, for which an accurate approximation already is known. Often just one step of
inverse iteration suffices.

Inverse iteration will in general converge faster the closer µ is to λi. However,
if µ equals λi up to machine precision then A−µI in (9.4.6) is numerically singular.
It was long believed that inverse iteration was doomed to failure when µ was chosen
too close to an eigenvalue. Fortunately this is not the case!

If Gaussian elimination with partial pivoting is used the computed factoriza-
tion of (A− µI) will satisfy

P (A+ E − µI) = L̄Ū ,

where ‖E‖2/‖A‖2 = f(n)O(u), and u is the unit roundoff and f(n) a modest
function of n (see Theorem 6.6.5). Since the rounding errors in the solution of the
triangular systems usually are negligible the computed qk will nearly satisfy

(A+ E − µI)q̂k = qk−1.

This shows that the inverse power method will give an approximation to an eigen-
vector of a slightly perturbed matrix A+ E, independent of the ill-conditioning of
(A− µI).

To decide when a computed vector is a numerically acceptable eigenvector
corresponding to an approximate eigenvalue we can apply the simple a posteriori
error bound in Theorem 9.3.12 to inverse iteration. By (9.4.6) qk−1 is the residual
vector corresponding to the approximate eigenpair (µ, q̂k). Hence, where u is the
unit roundoff, q̂k is a numerically acceptable eigenvector if

‖qk−1‖2/‖q̂k‖2 ≤ u‖A‖2. (9.4.9)
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Example 9.4.2.

The matrix A =

(

1 1
0.1 1.1

)

has a simple eigenvalue λ1 = 0.7298438 and the

corresponding normalized eigenvector is x1 = (0.9653911,−0.2608064)T . We take
µ = 0.7298 to be an approximation to λ1, and perform one step of inverse iteration,
starting with q0 = (1, 0)T we get

A− µI = LU =

(

1 0
0.37009623 1

)(

0.2702 1
0 0.0001038

)

and q̂1 = 104(1.3202568,−0.3566334)T , q1 = (0.9653989,−0.2607777)T , which agrees
with the correct eigenvector to more than four decimals. From the backward error
bound it follows that 0.7298 and q1 is an exact eigenpair to a matrix A+E, where
‖E‖2 ≤ 1/‖q̂1‖2 = 0.73122 · 10−4.

Inverse iteration is a useful algorithm for calculation of specified eigenvectors
corresponding to well separated eigenvalues for dense matrices. In order to save work
in the triangular factorizations the matrix is usually first reduced to Hessenberg or
real tridiagonal form, by the methods described in Section 9.6.

It is quite tricky to develop inverse iteration into a reliable algorithm in case
the eigenvalues are not well separated. When A is symmetric and eigenvectors
corresponding to multiple or very close eigenvalues are required, special steps have
to be taken to ensure orthogonality of the eigenvectors. In the nonsymmetric case
the situation can be worse in particular if the eigenvalue is defective or very ill-
conditioned. Then, unless a suitable initial vector is used inverse iteration may not
produce a numerically acceptable eigenvector. Often a random vector with elements
from a uniform distribution in [−1, 1] will work.

Example 9.4.3.
The matrix

A =

(

1 + ǫ 1
ǫ 1 + ǫ

)

has eigenvalues λ = (1 + ǫ)±√
ǫ. Assume that |ǫ| ≈ u, where u is the machine pre-

cision. Then the eigenpair λ = 1, x = (1, 0)T is a numerically acceptable eigenpair
of A, since it is exact for the matrix A+ E, where

E = −
(

ǫ 0
ǫ ǫ

)

, ‖E‖2 <
√

3u.

If we perform one step of inverse iteration starting from the acceptable eigenvector
q0 = (1, 0)T then we get

q̂1 =
1

1 − ǫ

(

−1
1

)

.

No growth occurred and it can be shown that (1, q1) is not an acceptable eigenpair of
A. If we carry out one more step of inverse iteration we will again get an acceptable
eigenvector!
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Equation (9.3.19) gives an expression for the backward error E of the com-
puted eigenpair. An error bound can then be obtained by applying the perturbation
analysis of Section 9.3. In the Hermitian case the eigenvalues are perfectly condi-
tioned, and the error bound equals ‖E‖2. In general the sensitivity of an eigenvalue
λ is determined by 1/s(λ) = 1/|yHx|, where x and y are right and left unit eigen-
vector corresponding to λ, see Section 9.3.2. If the power method is applied also to
AH (or in inverse iteration to (AH − µI)−1) we can generate an approximation to
y and hence estimate s(λ) .

9.4.5 Rayleigh Quotient Iteration

A natural variation of the inverse power method is to vary the shift µ in each
iteration. The previous analysis suggests choosing a shift equal to the Rayleigh
quotient of the current eigenvector approximation. This leads to the Rayleigh
Quotient Iteration (RQI):

Let q0, ‖q0‖2 = 1, be a given starting vector, and for k = 1, 2, . . . compute

(

A− ρ(qk−1)I
)

q̂k = qk−1, ρ(qk−1) = qT
k−1Aqk−1, (9.4.10)

and set qk = q̂k/‖q̂k‖2. Here ρ(qk−1) is the Rayleigh quotient of qk−1.
RQI can be used to improve a given approximate eigenvector. It can also

be used to find an eigenvector of A starting from any unit vector q0, but then we
cannot say to which eigenvector {qk} will converge. There is also a possibility that
some unfortunate choice of starting vector will lead to endless cycling. However,
it can be shown that such cycles are unstable under perturbations so this will not
occur in practice.

In the RQI a new triangular factorization must be computed of the matrix
A − ρ(qk−1)I for each iteration step, which makes this algorithm much more ex-
pensive than ordinary inverse iteration. However, if the matrix A is, for example,
of Hessenberg (or tridiagonal) form the extra cost is small. If the RQI converges
towards an eigenvector corresponding to a simple eigenvalue then it can be shown
that convergence is quadratic. More precisely, it can be shown that

ηk ≤ ckη
2
k−1, ηk = ‖Aqk − ρ(qk)qk‖2,

where ck changes only slowly, see Stewart [43, , Section7.2].
If the matrix A is real and symmetric (or Hermitian), then the situation is

even more satisfactory because of the result in Theorem 9.3.14. This theorem says
that if an eigenvector is known to precision ǫ, the Rayleigh quotient approximates
the corresponding eigenvalue to precision ǫ2. This leads to cubic convergence for the
RQI for real symmetric (or Hermitian) matrices. Also, in this case it is no longer
necessary to assume that the iteration converges to an eigenvector corresponding to
a simple eigenvalue. Indeed, it can be shown that the for Hermitian matrices RQI
has global convergence, i.e., it converges from any starting vector q0. A key fact in
the proof is that the norm of the residuals always decrease, ηk+1 ≤ ηk, for all k, see
Parlett [38, Section 4.8].
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9.4.6 Subspace Iteration

A natural generalization of the power method is to iterate simultaneously with
several vectors. Let Z0 = S = (s1, . . . , sp) ∈ Rn×p, be an initial matrix of rank
p > 1. If we compute a sequence of matrices {Zk}, from

Zk = AZk−1, k = 1, 2, . . . , (9.4.11)

then it holds
Zk = AkS = (Aks1, . . . , A

ksp). (9.4.12)

In applications A is often a very large sparse matrix and p≪ n.
At first it is not clear that we gain much by iterating with several vectors.

If A has a dominant eigenvalue λ1 all the columns of Zk will converge to a scalar
multiple of the dominant eigenvector x1. Hence Zk will be close to a matrix of
numerical rank one.

We first note that we are really computing a sequence of subspaces. If S =
span (S) the iteration produces the subspaces AkS = span (AkS). Hence the prob-
lem is that the basis Aks1, . . . , A

ksp of this subspace becomes more and more ill-
conditioned. This can be avoided by be maintaining orthogonality between the
columns as follows: Starting with a matrix Q0 with orthogonal columns we com-
pute

Zk = AQk−1 = QkRk, k = 1, 2, . . . , (9.4.13)

where QkRk is the QR decomposition of Zk. Here Qk can be computed, e.g.,
by Gram-Schmidt orthogonalization of Zk. The iteration (9.4.13) is also called
orthogonal iteration. Note that Rk plays the rule of a normalizing matrix. We
have Q1 = Z1R

−1
1 = AQ0R

−1
1 . Similarly it can be shown by induction that

Qk = AkQ0(Rk · · ·R1)
−1. (9.4.14)

It is important to note that if Z0 = Q0, then both iterations (9.4.11) and (9.4.13)
will generate the same sequence of subspaces. R(AkQ0) = R(Qk). However, in
orthogonal iteration an orthogonal bases for the subspace is calculated at each
iteration. (Since the iteration (9.4.11) is less costly it is sometimes preferable to
perform the orthogonalization in (9.4.13) only occasionally when needed.)

The method of orthogonal iteration overcomes several of the disadvantages of
the power method. In particular it allows us to determine a dominant invariant
subspace of a multiple eigenvalue.

Assume that the eigenvalues of A satisfy

|λ1| ≥ · · · ≥ |λp| > |λp+1| ≥ · · · ≥ |λn| (9.4.15)

and let
(

UH
1

UH
2

)

A(U1 U2) =

(

T11 T12

0 T22

)

, (9.4.16)

be a Schur decomposition of A, where

diag (T11) = (λ1, · · · , λp)
H .
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Then the subspace U1 = R(U1) is a dominant invariant subspace of A. It can
be shown that almost always the subspaces R(Qk) in orthogonal iteration (9.4.13)
converge to U1 when k → ∞.

Theorem 9.4.1.
Let U1 = R(U1) be a dominant invariant subspace of A defined in (9.4.16).

Let S be a p-dimensional subspace of Cn such that S ∩U⊥

1 = {0}. Then there exists
a constant C such that

θmax(A
kS,U1) ≤ C|λp+1/λp|k.

where θmax(X ,Y) denotes the largest angle between the two subspaces (see Defini-
tion 9.3.6).

Proof. See Golub and Van Loan [21, pp. 333].

If we perform subspace iteration on p vectors, we are simultaneously perform-
ing subspace iteration on a nested sequence of subspaces

span (s1), span (s1, s2), . . . , span (s1, s2, . . . , sp).

This is also true for orthogonal iteration since this property is not changed by the
orthogonalization procedure. Hence Theorem 9.4.1 shows that whenever |λq+1/λq|
is small for some q ≤ p, the convergence to the corresponding dominant invariant
subspace of dimension q will be fast.

We now show that there is a duality between direct and inverse subspace
iteration.

Lemma 9.4.2. (Watkins [1982])
Let S and S⊥ be orthogonal complementary subspaces of Cn. Then for all

integers k the spaces AkS and (AH)−kS⊥ are also orthogonal.

Proof. Let x ⊥ y ∈ Cn. Then (Akx)H(AH)−ky = xHy = 0 and thus Akx ⊥
(AH)−ky.

This duality property means that the two sequences

S,AS,A2S, . . . , S⊥, (AH)−1S⊥, (AH)−2S⊥, . . .

are equivalent in that they yield orthogonal complements! This result will be im-
portant in Section 9.7.1 for the understanding of the QR algorithm.

Approximations to eigenvalues of A can be obtained from eigenvalues of the
sequence of matrices

Bk = QT
kAQk = QT

kZk+1 ∈ Rp×p. (9.4.17)

Note that Bk is a generalized Rayleigh quotient, see Section 9.8.1– 9.8.2. Finally,
both direct and inverse orthogonal iteration can be performed using a sequence of
shifted matrices A− µkI, k = 0, 1, 2, . . ..
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Review Questions

1. Describe the power method and its variants. Name at least one important application

of the shifted inverse power method.

2. If the Rayleigh Quotient Iteration converges to a simple eigenvalue of a general

matrix A, what is the asymptotic rate of convergence? If A is Hermitian, what can

you say then?

3. Describe how the power method can be generalized to simultaneously iterating with

several starting vector.

Problems

1. Let A ∈ R
n×n

be a symmetric matrix with eigenvalues satisfying λ1 > λ2 ≥ · · · ≥
λn−1 > λn. Show that the choice µ = (λ2 +λn)/2 gives fastest convergence towards

the eigenvector corresponding to λ1 in the power method applied to A − µI . What

is this rate of convergence?

2. The matrix A has one real eigenvalue λ = λ1 and another λ = −λ1. All remaining

eigenvalues satisfy |λ| < |λ1|. Generalize the simple power method so that it can be

used for this case.

3. (a) Compute the residual vector corresponding to the last eigenpair obtained in Ex-

ample 9.4.1, and give the corresponding backward error estimate.

(b) Perform Aitken extrapolation on the Rayleigh quotient approximations in Ex-

ample 9.4.1 to compute an improved estimate of λ1.

4. The symmetric matrix

A =

0

B

B

@

14 7 6 9

7 9 4 6

6 4 9 7

9 6 7 15

1

C

C

A

has an eigenvalue λ ≈ 4. Compute an improved estimate of λ with one step of

inverse iteration using the factorization A − 4I = LDLT
.

5. For a symmetric matrix A ∈ R
n×n

it holds that σi = |λi|, i = 1, . . . , n. Compute

with inverse iteration using the starting vector x = (1,−2, 1)
T

the smallest singular

value of the matrix

A =

0

@

1/5 1/6 1/7
1/6 1/7 1/8
1/7 1/8 1/9

1

A

with at least two significant digits.

6. The matrix

A =

„

1 1

ǫ 1 + ǫ

«

has two simple eigenvalues close to 1 if ǫ > 0. For ǫ = 10
−3

and ǫ = 10
−6

first

compute the smallest eigenvalue to six decimals, and then perform inverse iteration

to determine the corresponding eigenvectors. Try as starting vectors both x = (1, 0)T

and x = (0, 1)T
.
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9.5 Jacobi Methods

9.5.1 Jacobi Methods for Real Symmetric Matrices

Jacobi’s7 method is one of the oldest methods for solving the eigenvalue problem
for real symmetric (or Hermitian) matrices. It is at least three times slower than
the QR algorithm, to be described in the next section. However, Jacobi’s method
is easily parallelized and there are problems, for which it should be prefered.

Jacobi’s method is an efficient method when one has to solve eigenvalue prob-
lems for a sequence of matrices, differing only slightly from each other, or, equiv-
alently, for computing eigenvalues of a nearly diagonal matrix. Jacobi’s method,
with a proper stopping criterion, can be shown to compute all eigenvalues of sym-
metric positive definite matrices with uniformly better relative accuracy, than any
algorithms which first reduces the matrix to tridiagonal form. Note that, although
the QR algorithm is backward stable (see Section 9.7), high relative accuracy can
only be guaranteed for the larger eigenvalues (those near ‖A‖ in magnitude).

The Jacobi method solves the eigenvalue problem for A ∈ Rn×n by employing
a sequence of similarity transformations

A0 = A, Ak+1 = JT
k AkJk (9.5.1)

such that the sequence of matrices Ak, k = 1, 2, ... tends to a diagonal form. For each
k, Jk is chosen as a plane rotations Jk = Gpq(θ), defined by a pair of indices (p, q),
p < q, called the pivot pair. The angle θ is chosen so that the off-diagonal elements
apq = aqp are reduced to zero, i.e. by solving a 2 × 2 subproblems. We note that
only the entries in rows and columns p and q of A will change, and since symmetry
is preserved only the upper triangular part of each A needs to be computed.

To construct the Jacobi transformation Jk we consider the symmetric 2 × 2
eigenvalue problem for the principal submatrix Apq formed by rows and columns p
and q. For simplicity of notation we rename Ak+1 = A′ and Ak = A. Hence we
want to determine c = cos θ, s = sin θ so that

(

lp 0
0 lq

)

=

(

c s
−s c

)T (
app apq

aqp aqq

)(

c s
−s c

)

. (9.5.2)

Equating the off-diagonal elements we obtain (as apq = aqp)

0 = (app − aqq)cs+ apq(c
2 − s2), (9.5.3)

which shows that the angle θ satisfies

τ ≡ cot 2θ = (aqq − app)/(2apq), apq 6= 0. (9.5.4)

The two diagonal elements app and aqq are transformed as follows,

a′pp = c2app − 2csapq + s2aqq = app − tapq,

a′qq = s2app + 2csapq + c2aqq = aqq + tapq.

7Carl Gustf Jacob Jacobi (1805–1851), German mathematician. Jacobi joined the faculty of
Berlin university in 1825. Like Euler, he was a profilic calculator, who drew a great deal of insight
from immense algorithmical work. His method for computing eigenvalues was publsihed in 1846;
see [27].
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where t = tan θ. We call this a Jacobi transformation. The following stopping
criterion should be used:

if |aij | ≤ tol (aiiajj)
1/2, set aij = 0, (9.5.5)

where tol is the relative accuracy desired.
A stable way to perform a Jacobi transformation is to first compute t = tan θ

as the root of smallest modulus to the quadratic equation t2+2τt−1 = 0. This choice
ensures that |θ| < π/4 , and can be shown to minimize the difference ‖A′ − A‖F .
In particular this will prevent the exchange of the two diagonal elements app and
aqq, when apq is small, which is critical for the convergence of the Jacobi method.
The transformation (9.5.2) is best computed by the following algorithm.

Algorithm 9.5.1
Jacobi transformation matrix (apq 6= 0):

[c, s, lp, lq] = jacobi(app, apq, aqq)

τ = (aqq − app)/(2apq);

t = sign (τ)/(|τ | +
√

1 + τ2);

c = 1/
√

1 + t2; s = t · c;
lp = app − tapq;

lq = aqq + tapq;

end

The computed transformation is applied also to the remaining elements in
rows and columns p and q of the full matrix A. These are transformed for j 6= p, q
according to

a′jp = a′pj = capj − saqj = apj − s(aqj + rapj),

a′jq = a′qj = sapj + caqj = aqj + s(apj − raqj).

where r = s/(1 + c) = tan(θ/2). (The formulas are written in a form, due to
Rutishauser [40, ], which reduces roundoff errors.)

If symmetry is exploited, then one Jacobi transformation takes about 4n flops.
Note that an off-diagonal element made zero at one step will in general become
nonzero at some later stage. The Jacobi method will also destroy the band structure
if A is a banded matrix.

The convergence of the Jacobi method depends on the fact that in each step
the quantity

S(A) =
∑

i6=j

a2
ij = ‖A−D‖2

F ,

i.e., the Frobenius norm of the off-diagonal elements is reduced. To see this, we
note that the Frobenius norm of a matrix is invariant under multiplication from left
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or right with an orthogonal matrix. Therefore, since a′pq = 0 we have

(a′pp)
2 + (a′qq)

2 = a2
pp + a2

qq + 2a2
pq.

We also have that ‖A′‖2
F = ‖A‖2

F , and it follows that

S(A′) = ‖A′‖2
F −

n
∑

i=1

(a′ii)
2 = S(A) − 2a2

pq.

There are various strategies for choosing the order in which the off-diagonal
elements are annihilated. Since S(A′) is reduced by 2a2

pq, the optimal choice is
to annihilate the off-diagonal element of largest magnitude. This is done in the
classical Jacobi method. Then since

2a2
pq ≥ S(Ak)/N, N = n(n− 1)/2,

we have S(Ak+1) ≤ (1−1/N)S(Ak). This shows that for the classical Jacobi method
Ak+1 converges at least linearly with rate (1−1/N) to a diagonal matrix. In fact it
has been shown that ultimately the rate of convergence is quadratic, so that for k
large enough, we have S(Ak+1) < cS(Ak)2 for some constant c. The iterations are
repeated until S(Ak) < δ‖A‖F , where δ is a tolerance, which can be chosen equal
to the unit roundoff u. From the Bauer–Fike Theorem 9.3.4 it then follows that the
diagonal elements of Ak then approximate the eigenvalues of A with an error less
than δ‖A‖F .

In the Classical Jacobi method a large amount of effort must be spent on
searching for the largest off-diagonal element. Even though it is possible to reduce
this time by taking advantage of the fact that only two rows and columns are
changed at each step, the Classical Jacobi method is almost never used. In a
cyclic Jacobi method, the N = 1

2n(n − 1) off-diagonal elements are instead
annihilated in some predetermined order, each element being rotated exactly once
in any sequence of N rotations called a sweep. Convergence of any cyclic Jacobi
method can be guaranteed if any rotation (p, q) is omitted for which |apq| is smaller
than some threshold; see Forsythe and Henrici [13, ]. To ensure a good rate
of convergence this threshold tolerance should be successively decreased after each
sweep.

For sequential computers the most popular cyclic ordering is the row-wise
scheme, i.e., the rotations are performed in the order

(1, 2), (1, 3), . . . (1, n)
(2, 3), . . . (2, n)

. . . . . .
(n− 1, n)

(9.5.6)

which is cyclically repeated. About 2n3 flops per sweep is required. In practice,
with the cyclic Jacobi method not more than about 5 sweeps are needed to obtain
eigenvalues of more than single precision accuracy even when n is large. The number
of sweeps grows approximately as O(logn), and about 10n3 flops are needed to
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compute all the eigenvalues of A. This is about 3–5 times more than for the QR
algorithm.

An orthogonal system of eigenvectors of A can easily be obtained in the Jacobi
method by computing the product of all the transformations

Xk = J1J2 · · ·Jk.

Then limk→∞Xk = X . If we put X0 = I, then we recursively compute

Xk = Xk−1Jk, k = 1, 2, . . . (9.5.7)

In each transformation the two columns (p, q) of Xk−1is rotated, which requires
4n flop. Hence in each sweep an additional 2n flops is needed, which doubles the
operation count for the method.

The Jacobi method is very suitable for parallel computation since several
noninteracting rotations, (pi, qi) and (pj , qj), where pi, qi are distinct from pj , qj ,
can be performed simultaneously. If n is even the n/2 Jacobi transformations can be
performed simultaneously. A sweep needs at least n− 1 such parallel steps. Several
parallel schemes which uses this minimum number of steps have been constructed.
These can be illustrated in the n = 8 case by

(p, q) =

(1, 2), (3, 4), (5, 6), (7, 8)
(1, 4), (2, 6), (3, 8), (5, 7)
(1, 6), (4, 8), (2, 7), (3, 5)
(1, 8), (6, 7), (4, 5), (2, 3)
(1, 7), (8, 5), (6, 3), (4, 2)
(1, 5), (7, 3), (8, 2), (6, 4)
(1, 3), (5, 2), (7, 4), (8, 6)

.

The rotations associated with each row of the above can be calculated simul-
taneously. First the transformations are constructed in parallel; then the transfor-
mations from the left are applied in parallel, and finally the transformations from
the right.

9.5.2 Jacobi Methods for Computing the SVD.

Several Jacobi-type methods for computing the SVD A = UΣV T of a matrix were
developed in the 1950’s. The shortcomings of some of these algorithms have been
removed, and as for the real symmetric eigenproblem, there are cases for which
Jacobi’s method is to be preferred over the QR-algorithm for the SVD. In particular,
it computes the smaller singular values more accurately than any algorithm based
on a preliminary bidiagonal reduction.

There are two different ways to generalize the Jacobi method for the SVD
problem. We assume that A ∈ Rn×n is a square nonsymmetric matrix. This is no
restriction, sincer we can first compute QR factorization

A = Q

(

R
0

)
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and then apply the Jacobi-SVD method to R. In the two-sided Jacobi-SVD
algorithm for the SVD of A (Kogbetliantz [29]) the elementary step consists of
two-sided Givens transformations

A′ = Jpq(φ)AJT
pq(ψ), (9.5.8)

where Jpq(φ) and Jpq(ψ) are determined so that a′pq = a′qp = 0. Note that only
rows and columns p and q in A are affected by the transformation. The rotations
Jpq(φ) and Jpq(ψ) are determined by computing the SVD of a 2 × 2 submatrix

A =

(

app apq

aqp aqq

)

, app ≥ 0, aqq ≥ 0.

The assumption of nonnegative diagonal elements is no restriction, since we can
change the sign of these by premultiplication with an orthogonal matrix diag (±1,±1).

Since the Frobenius norm is invariant under orthogonal transformations it
follows that

S(A′) = S(A) − (a2
pq + a2

qp), S(A) = ‖A−D‖2
F .

This relation is the basis for a proof that the matrices generated by Kogbetliantz’s
method converge to a diagonal matrix containing the singular values of A. Orthog-
onal systems of left and right singular vectors can be obtained by accumulating the
product of all the transformations.

The rotation angles can be determined as follows: First a Givens transforma-
tion is applied to the left to transform it into an upper triangular 2 × 2 matrix. If
r12 6= 0, then we set

(

cosφ sinφ
− sinφ cosφ

)T (
r11 r12
0 r22

)(

cosψ sinψ
− sinψ cosψ

)

=

(

σ1 0
0 σ2

)

(9.5.9)

where the rotation angles are determined by the formula

tan 2ψ =
2r11r12

r222 − r211 + r212
, (9.5.10)

tanφ =
r12 + r11 tanψ

r22
=

r22 tanψ

r11 − r12 tanψ
. (9.5.11)

For stability reasons, in the latter formula, the quotients of absolutely larger num-
bers are always taken An alternative algorithm for the SVD of 2×2 upper triangular
matrix, which always gives high relative accuracy in the singular values and vectors,
has been developed by Demmel and Kahan; see Problem 5.

At first a drawback of the above algorithm seems to be that it works all the
time on a full m × n unsymmetric matrix. However, if a proper cyclig rotation
strategy is used, then at each step the matrix will be essentially triangular. If the
column cyclic strategy

(1, 2), (1, 3), (2, 3), . . . , (1, n), . . . , (n− 1, n)
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is used an upper triangular matrix will be successievly transformed into a lower
triangular matrix. The next sweep will transform it back to an upper triangular
matrix. During the whole process the matrix can be stored in an upper triangular
array. The initial QR factorization also cures some global convergence problems
present in the twosided Jacobi-SVD method.

In the one-sided Jacobi-SVD algorithm Givens transformations are used to
find an orthogonal matrix V such that the matrixAV has orthogonal columns. Then
AV = UΣ and the SVD of A is readily obtained. The columns can be explicitly
interchanged so that the final columns of AV appear in order of decreasing norm.
The basic step rotates two columns:

(âp, âq) = (ap, aq)

(

c s
−s c

)

, p < q. (9.5.12)

The parameters c, s are determined so that the rotated columns are orthogonal, or
equivalently so that

(

c s
−s c

)T ( ‖ap‖2
2 aT

p aq

aT
q ap ‖aq‖2

2

)(

c s
−s c

)

=

(

λ1 0
0 λ2

)T

is diagonal. This 2× 2 symmetric eigenproblem can be solved by a Jacobi transfor-
mation. To determine the rotation it is better to first compute the QR factorization

(ap, aq) = (q1, q2)

(

rpp rpq

0 rqq

)

≡ QR.

If now the 2 × 2 SVD R = UΣV T is computed, using one of the algorithm given
below, then since RV = UΣ

(ap, aq)V = (q1, q2)UΣ

will have orthogonal columns. It follows that V is the desired rotation in (9.5.12).
Clearly, the one-sided algorithm is mathematically equivalent to applying Ja-

cobi’s method to diagonalize C = ATA, and hence its convergence properties are
the same. Convergence of Jacobi’s method is related to the fact that in each step
the sum of squares of the off-diagonal elements

S(C) =
∑

i6=j

c2ij , C = ATA

is reduced. Hence the rate of convergence is ultimately quadratic, also for multiple
singular values. Note that the one-sided Jacobi SVD will by construction have U
orthogonal to working accuracy, but loss of orthogonality in V may occur. Therefore
the columns of V should be reorthogonalized using a Gram–Schmidt process at the
end.

The one-sided method can be applied to a general real (or complex) matrix
A ∈ Rm×n, m ≥ n, but an intial QR factorization should performed to speed
up convergence. If this is performed with row and column pivoting, then high
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relative accuracy can be achieved for matrices A that are diagonal scalings of a
well-conditioned matrix, that is which can be decomposed as

A = D1BD2,

where D1, D2 are diagonal and B well-conditioned. It has been domonstrated that
if presorting the rows after decreasing norm ‖ai,:‖∞ and then using column pivoting
only gives equally good results. By a careful choice of the rotation sequence the
esential triangularity of the matrix can be preserved during the Jacobi iterations.

In a cyclic Jacobi method, the off-diagonal elements are annihilated in some
predetermined order, each element being rotated exactly once in any sequence of
N = n(n − 1)/2 rotations called a sweep. Parallel implementations can take ad-
vantage of the fact that noninteracting rotations, (pi, qi) and (pj , qj), where pi, qi
and pj , qj are distinct, can be performed simultaneously. If n is even n/2 transfor-
mations can be performed simultaneously, and a sweep needs at least n − 1 such
parallel steps. In practice, with the cyclic Jacobi method not more than about five
sweeps are needed to obtain singular values of more than single precision accuracy
even when n is large. The number of sweeps grows approximately as O(log n).

The alternative algorithm for the SVD of 2× 2 upper triangular matrix below
always gives high relative accuracy in the singular values and vectors, has been
developed by Demmel and Kahan, and is based on the relations in Problem 5.

Review Questions

1. What is the asymptotic speed of convergence for the classical Jacobi method?
Discuss the advantages and drawbacks of Jacobi methods compared to the
QR algorithm.

2. There are two different Jacobi-type methods for computing the SVD were
developed. What are they called? What 2 × 2 subproblems are they based
on?

Problems

1. Implement Jacobi’s algorithm, using the stopping criterion (9.5.5) with tol =
10−12. Use it to compute the eigenvalues of

A =





−0.442 −0.607 −1.075
−0.607 0.806 0.455
−1.075 0.455 −1.069



 ,

How many Jacobi steps are used?
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2. Suppose the matrix

Ã =





1 10−2 10−4

10−2 2 10−2

10−4 10−2 4



 .

has been obtained at a certain step of the Jacobi algorithm. Estimate the
eigenvalues of Ã as accurately as possible using the Gerschgorin circles with a
suitable diagonal transformation, see Problem 9.3.3.

3. Jacobi-type methods can also be constructed for Hermitian matrices using
elementary unitary rotations of the form

U =

(

cos θ α sin θ
−ᾱ sin θ cos θ

)

, |α| = 1.

Show that if we take α = apq/|apq| then equation (9.5.4) for the angle θ
becomes

τ = cot 2θ = (app − aqq)/(2|apq|), |apq| 6= 0.

(Note that the diagonal elements app and aqq of a Hermitian matrix are real.)

4. Let A ∈ C2×2 be a given matrix, and U a unitary matrix of the form in
Problem 3. Determine U so that the matrix B = U−1AU becomes upper
triangular, that is, the Schur Canonical Form of A. Use this result to compute
the eigenvalues of

A =

(

9 10
−2 5

)

.

Outline a Jacobi-type method to compute the Schur Canonical form of a
general matrix A.

5. Consider the SVD of an upper triangular 2×2 matrix (9.5.9). where σ1 ≥ σ2.

(a) Show that the singular values satisfy

σ1σ2 = |r11r22|, σ2
1 + σ2

2 = r211 + r222 + r212.

Deduce that

σ1,2 =
1

2

∣

∣

∣

√

(r11 + r22)2 + r212 ±
√

(r11 − r22)2 + r212

∣

∣

∣, (9.5.13)

of which the larger is σ1 and the smaller σ2 = |r11r22|/σ1.

(b) Show that for the right singular vector (sv, cv) is parallel to (r211−σ2
1 , r11r12).

The left singular vectors then are obtained from

(cu, su) = (r11cv − r12sv, r22sv)/σ1.



9.6. Transformation to Condensed Form 67

SVD of 2 × 2 upper triangular matrix (9.5.9) with |r11| ≥ |r22|:

[cu, su, cv, sv, σ1, σ2] = svd(r11, r12, r22)

l = (|r11| − |r22|)/|r11|;
m = r12/r11; t = 2 − l;

s =
√

t2 +m2; r =
√

l2 +m2;

a = 0.5(s+ r);

σ1 = |r11|a; σ2 = |r22|/a;
t = (1 + a)(m/(s+ t) +m/(r + l));

l =
√

t2 + 4;

cv = 2/l; sv = −t/l;
cu = (cv − svm)/a; su = sv(r22/r11)/a;

end

6. Show that if Kogbetliantz’s method is applied to a triangular matrix then
after one sweep of the row cyclic algorithm (9.5.6) an upper (lower) triangular
matrix becomes lower (upper) triangular.

9.6 Transformation to Condensed Form

9.6.1 Introduction

By Theorem 9.2.1 any matrix can be reduced to upper triangular form, the Schur
canonical form, by a unitary similarity transformation. For a normal matrix this
triangular form must necessarily be diagonal. In both cases we can read off the
eigenvalues from the diagonal. The construction of the similarity transformation
depended on the knowledge of successive eigenpairs, and this transformation can
therefore in general not be realized by a finite process.

It is, however, possible to reduce a matrix to upper Hessenberg form, which is
close to triangular, by a finite number of elementary similarity transformations. In
the symmetric case, a symmetric tridiagonal form is obtained. In several algorithms
for finding the eigenvalues and eigenvectors of a matrix the work is greatly reduced
if this transformation is first carried out.

9.6.2 Unitary Elementary Transformations

For transformation of complex matrices to condensed form we need to consider
unitary Givens and Householder transformations. To generalize Givens rotations
to the complex case, we consider matrices of the form

G =

(

c̄ s̄
−s c

)

, c = eiγ cos θ, s = eiδ sin θ.

It is easily verified that the matrix GH = G, i.e., G is unitary, and that G−1 = GH

is itself a plane rotation Given a complex vector (x1 x2)
T ∈ C2 we now want to
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determine c and s so that

G

(

x1

x2

)

=

(

σ
0

)

, σ2 = |x1|2 + |x2|2, (9.6.1)

Further, (9.6.1) holds provided that

c = x1/σ, s = x2/σ.

The following algorithm generalizes Algorithm 7.4.2 to the complex case:

Algorithm 9.6.1

Given x = (x1, x2)
T 6= 0 construct c, s, and real σ in a complex Givens rotation

such that Gx = σ(1, 0)T :

[c, s, σ] = givrot(x1, x2)

if |x1| > |x2|
t = x2/x1; u =

√

1 + |t|2;
c = (x1/|x1|)/u; s = tc; σ = x1/c;

else

t = x1/x2; u =
√

1 + |t|2;
s = (x2/|x2|)/u; c = ts; σ = x2/s;

end

Householder transformations can also be generalized to the complex case. We
consider unitary Householder transformations of the form

P = I − 1

γ
uuH , γ =

1

2
uHu, u ∈ Cn. (9.6.2)

It is easy to check that P is Hermitian, PH = P , and unitary, P−1 = P . Given a
vector x ∈ Cn we want to determine u such that Px = ke1, |k| = σ = ‖x‖2. It is
easily verified that if x1 = eiα1 |x1| then u and γ are given by

u = x+ ke1, k = σeiα1 , (9.6.3)

and

γ =
1

2
(σ2 + 2|k||x1| + |k|2) = σ(σ + |x1|). (9.6.4)

Note that u differs from x only in its first component.
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9.6.3 Reduction to Hessenberg Form

We now show how to reduce a matrix A ∈ Rn×n to Hessenberg form by an
orthogonal similarity,

QTAQ = H =















h11 h12 · · · h1,n−1 h1n

h21 h22 · · · h2,n−1 h2n

h32
. . .

...
...

. . .
. . .

...
hn,n−1 hnn















.

The orthogonal matrix Q will be constructed as a product of n − 2 Householder
transformations Q = P1P2 · · ·Pn−2, where

Pk = I − 1

γk
uku

T
k , γk =

1

2
‖uk‖2

2 (9.6.5)

(cf. the Householder QR decomposition in Section 8.4.3). Note that Pk is completely
specified by uk and γk, and that products of the form PA and AP , can each be
computed in 2n2 flops by

PA = A− uk(ATuk)T /γk, AP = A− (Auk)uT
k /γk.

We compute A = A(1), A(2), . . . , A(n−1) = H , where A(k+1) = PkA
(k)Pk. In

the first step, k = 1,

A(2) = P1AP1 =













h11 h12 ã13 . . . ã1n

h21 h22 ã23 . . . ã2n

0 ã32 ã33 . . . ã3n
...

...
...

...
0 ãn2 ãn3 . . . ãnn













,

where P1 is chosen so that P1A has zeros in the first column in the positions shown
above. These zeros are not destroyed by the post-multiplication (P1A)P1, which
only affects the n− 1 last columns. All later steps are similar. After (k − 1) steps
we have computed

A(k) =

(

H11 h12 Ã13

0 a22 Ã23

)

, (9.6.6)

where (H11 h12 ) ∈ Rk×k is part of the final Hessenberg matrix. Pk is chosen to
zero all elements but the first in a22. After n− 2 steps we have the required form

QTAQ = A(n−1) = H, Q = P1P2 · · ·Pn−2. (9.6.7)

A simple operation count shows that this reduction requires 5n3/3 flops. Note that
the transformation matrix Q is not explicitly computed, only the vectors defining
the Householder transformations P1, P2, . . . , Pn−2 are saved. These vectors can
conveniently overwrite the corresponding elements in the matrix A using also two
extra rows appended to A.
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The Hessenberg decomposition QTAQ = H is not unique. The following
important theorem states that it is uniquely determined once the first column in
Q is specified, provided that H has no zero subdiagonal element. A Hessenberg
matrix with this property is said to be unreduced.

Theorem 9.6.1. Implicit Q Theorem.
Given A,H,Q ∈ Rn×n, where Q = (q1, . . . , qn) is orthogonal and H = QTAQ

is upper Hessenberg with positive subdiagonal elements. Then H and Q are uniquely
determined by the first column q1 in Q.

Proof. Assume we have already computed q1, . . . , qk and the first k − 1 columns
in H . (Since q1 is known this assumption is valid for k = 1.) Equating the kth
columns in (q1, q2, . . . , qn)H = A(q1, q2, . . . , qn) we obtain

h1,kq1 + · · · + hk,kqk + hk+1,kqk+1 = Aqk.

Multiplying this by qT
i and using the orthogonality of Q, we obtain

hik = qT
i Aqk, i = 1, . . . , k.

Since H is unreduced hk+1,k 6= 0, and therefore qk+1 and hk+1,k are determined (up
to a factor of ±1) by

qk+1 = h−1
k+1,k

(

Aqk −
k
∑

i=1

hikqi

)

,

and the condition that ‖qk+1‖2 = 1.

The reduction by Householder transformations is stable in the sense that the
computed H̄ can be shown to be the exact result of an orthogonal similarity trans-
formation of a matrix A+ E, where

‖E‖F ≤ cn2u‖A‖F , (9.6.8)

and c is a constant of order unity. Moreover if we use the information stored
to generate the product U = P1P2 · · ·Pn−2 then the computed result is close to
the matrix U that reduces A + E. This will guarantee that the eigenvalues and
transformed eigenvectors of H̄ are accurate approximations to those of a matrix
close to A. However, it should be noted that this does not imply that the computed
H̄ will be close to the matrix H corresponding to the exact reduction of A. Even
the same algorithm run on two computers with different floating point arithmetic
may produce very different matrices H̄ . Behavior of this kind, named irrelevant
instability by B. N. Parlett, unfortunately continue to cause much unnecessary
concern! The backward stability of the reduction ensures that each matrix will be
similar to A to working precision and will yield approximate eigenvalues to as much
absolute accuracy as is warranted.
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The reduction to Hessenberg form can also be achieved by using elementary
elimination matrices as introduced in Section 7.3.5. These are lower triangular ma-
trices of the form

Lj = I +mje
T
j , mj = (0, . . . , 0,mj+1,j , . . . ,mn,j)

T .

Only the elements below the main diagonal in the jth column differ from the unit
matrix. If a matrix A is premultiplied by Lj we get

LjA = (I +mje
T
j )A = A+mj(e

T
j A) = A+mja

T
j ,

i.e., multiples of the row aT
j are added to the last n− j rows of A. We complete the

similarity transformation LjAL
−1
j = ÃL−1

j by postmultiplying

ÃL−1
j = Ã(I −mje

T
j ) = Ã− (Ãmj)e

T
j .

In this operation a linear combination Ãmj of the last n− j columns is subtracted

from the jth column of Ã.
If the pivot element a21 6= 0, then we can eliminate the last n− 2 elements in

the first column of A by the transformation L2A, where

m2 = −(0, 0, a31/a21, . . . , an1/a21)
T .

These zeros are not affected by the postmultiplication (L2A)L−1
2 , which only affects

the elements in the last n−1 columns. Hence, if all pivot elements are nonzero we can
complete the transformation to Hessenberg form. The vectors mj, j = 2, . . . , n− 1
can overwrite the corresponding elements of A. The reduction may be unstable
if some pivot elements are small. Therefore, in practice this algorithm has to be
modified by the introduction of partial pivoting, in obvious analogy to Gaussian
elimination. With this modification the stability of the reduction is usually as good
as for the one using Householder reflections. The backward error bound will contain
a growth ratio gn, see Section 7.6.6, but a big growth rarely occurs in practice. The
operation count for this reduction can be shown to be n3/3 + n3/2 = 5n3/6 flops,
or half that for the orthogonal reduction. Because of this reduction by elementary
elimination matrices is often the preferred method.

The similarity reduction of a nonsymmetric matrix to tridiagonal form has also
been considered. This reduction is of interest also because of its relation to Lanczos
bi-orthogonalization and the bi-conjugate gradient method; see Secs. 10.5.2–10.5.3.
As shown by Wilkinson [52, pp. 388–405], this reduction can be performed in two
steps: first an orthogonal similarity is used to reduce A to lower Hessenberg form;
second the appropriate elements in the lower triangular half are zeroed column by
column using a sequence of similarity transformations by elementary elimination
matrices of the form in (6.3.15).

H := (I −mje
T
j )H(I +mje

T
j ), j = 1, . . . , n− 1.

In this step row pivoting can not be used, since this would destroy the lower Hes-
senberg structure. As a consequence, the reduction will fail if a zero pivot element
is encountered. In this case one must restart the reduction from the beginning.
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By (9.6.8) computed eigenvalues will usually have errors at least of order
u‖A‖F . Therefore it is desirable to precede the eigenvalue calculation by a diagonal
similarity transformation Ã = D−1AD which reduces the Frobenius norm. (Note
that only the off-diagonal elements are effected by such a transformation.) This can
be achieved by balancing the matrix A. We say that a matrix Ã is balanced for
some norm lp-norm if ‖ãi‖p = ‖ãi‖p, i = 1, . . . , n where ãi and ãi denote respectively

the ith column and ith row of Ã. There are classes of matrices which do not need
balancing; for example normal matrices are already balanced for p = 2.

An iterative algorithm has been given by Osborne that for any (real or com-
plex) irreducible matrix A and p = 2 converges to a balanced matrix Ã. For a
discussion and an implementation see Contribution II/11 in [53].

9.6.4 Reduction to Symmetric Tridiagonal Form

If we carry out the orthogonal reduction to Hessenberg form for a real symmetric
matrix A, then

HT = (QTAQ)T = QTATQ = H.

It follows that H is a real symmetric tridiagonal matrix, which we write

QTAQ = T =













α1 β2

β2 α2 β3

. . .
. . .

. . .

βn−1 αn−1 βn

βn αn













. (9.6.9)

If elementary elimination matrices are used for the reduction symmetry is not pre-
served. Hence in this case the orthogonal reduction is clearly superior. A similar
remark applies to the case of the unitary reduction of a Hermitian matrix to Her-
mitian tridiagonal form.

In the kth step of the orthogonal reduction of a real symmetric matrix we
compute A(k+1) = PkA

(k)Pk, where Pk is again chosen to zero the last n − k − 1
elements in the kth column. By symmetry the corresponding elements in the kth
row will be zeroed by the post-multiplication Pk.

It is important to take advantage of symmetry to save storage and operations.
Since the intermediate matrix PkA

(k) is not symmetric, this means that we must
compute PkA

(k)Pk directly. Dropping the subscripts k we can write

PAP =
(

I − 1

γ
uuT

)

A
(

I − 1

γ
uuT

)

(9.6.10)

= A− upT − puT + uT puuT/γ (9.6.11)

= A− uqT − quT ,

where

p = Au/γ, q = p− βu, β = uT p/(2γ). (9.6.12)
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If the transformations are carried out in this fashion the operation count for the
reduction to tridiagonal form is reduced to about 2n3/3 flops,and we only need to
store, say, the lower halves of the matrices.

The orthogonal reduction to tridiagonal form has the same stability property
as the corresponding algorithm for the unsymmetric case, i.e., the computed tridi-
agonal matrix is the exact result for a matrix A+E, where E satisfies (9.6.8). Hence
the eigenvalues of T will differ from the eigenvalues of A by at most cn2u‖A‖F .

There is a class of symmetric matrices for which small eigenvalues are de-
termined with a very small error compared to ‖A‖F . This is the class of scaled
diagonally dominant matrices, see Barlow and Demmel [3, ]. A symmetric
scaled diagonally dominant (s.d.d) matrix is a matrix of the form DAD, where
A is symmetric and diagonally dominant in the usual sense, and D is an arbitrary
diagonal matrix. An example of a s.d.d. matrix is the graded matrix

A0 =





1 10−4

10−4 10−4 10−8

10−8 10−8





whose elements decrease progressively in size as one proceeds diagonally from top
to bottom. However, the matrix

A1 =





10−6 10−2

10−2 1 10−2

10−2 10−6



 .

is neither diagonally dominant or graded in the usual sense.
The matrix A0 has an eigenvalue λ of magnitude 10−8, which is quite insensi-

tive to small relative perturbations in the elements of the matrix. If the Householder
reduction is performed starting from the top row of A as described here it is im-
portant that the matrix is presented so that the larger elements of A occur in the
top left-hand corner. Then the errors in the orthogonal reduction will correspond
to small relative errors in the elements of A, and the small eigenvalues of A will not
be destroyed.8

A similar algorithm can be used to transform a Hermitian matrix into a tridi-
agonal Hermitian matrix using the complex Householder transformation introduced
in Section 9.6.2. With U = P1P2 · · ·Pn−2 we obtain T = UHAU , where T is Her-
mitian and therefore has positive real diagonal elements. By a diagonal similarity
DTD−1, D = diag (eiφ1 , eiφ2 , . . . , eiφn) it is possible to further transform T so that
the off-diagonal elements are real and nonnegative.

If the orthogonal reduction to tridiagonal form is carried out for a symmetric
banded matrix A, then the banded structure will be destroyed. By annihilating
pairs of elements using Givens rotations in an ingenious order it is possible to
perform the reduction without increasing the bandwidth. However, it will then take
several rotation to eliminate a single element. This algorithm is described in Parlett
[38, Section 10.5.1], see also Contribution II/8 in Wilkinson and Reinsch [53]. An

8Note that in the Householder tridiagonalization described in [53], Contribution II/2 the re-
duction is performed instead from the bottom up.
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operation count shows that the standard reduction is slower if the bandwidth is less
than n/6. Note that the reduction of storage is often equally important!

9.6.5 A Divide and Conquer Algorithm

The basic idea in the divide and conquer algorithm for the symmetric tridiagonal
eigenproblem is to divide the tridiagonal matrix (9.7.30) into two smaller symmetric
tridiagonal matrices S and T2 as follows.

T =





T1 βk+1ek 0
βk+1e

T
k αk+1 βk+2e

T
1

0 βk+2e1 T2



 = P





αk+1 βk+1e
T
k βk+2e

T
1

βk+1ek T1 0
βk+2e1 0 T2



PT .

(9.6.13)
Here ej is the jth unit vector of appropriate dimension and P is a permutation
matrix permuting block rows and columns 1 and 2. T1 and T2 are k × k and
(n−k−1)×(n−k−1) symmetric tridiagonal matrices and are principle submatrices
of T .

Suppose now that the eigendecompositions of Ti = QiDiQ
T
i , i = 1, 2 are

known. Substituting into (9.6.13) we get

T = P





αk+1 βk+1e
T
k βk+2e

T
1

βk+1ek Q1D1Q
T
1 0

βk+2e1 0 Q2D2Q
T
2



PT = QHQT , (9.6.14)

where

H =





αk+1 βk+1l
T
1 βk+2f

T
2

βk+1l1 D1 0
βk+2f2 0 D2



 , Q = P





1 0 0
0 Q1 0
0 0 Q2



 ,

and l1 = QT
1 ek, f2 = QT

2 e1. Hence the matrix T is reduced to H by an orthogonal
similarity transformation Q. The matrix H has the form

H =

(

α zT

z D

)

, D = diag (d2, . . . , dn).

where z = (z2, . . . , zn)T is a vector. Such a matrix is called a symmetric arrow-
head matrix. We assume that d2 ≥ d3 ≥ · · · ≥ dn, which can be achieved by a
symmetric permutation.

The eigenvalue problem for symmetric arrowhead matrices has been discussed
in detail in Wilkinson [52, pp. 95–96]. In particular, if we assume that the elements
di are distinct, d2 > d3 > · · · > dn, and that zi > 0, i = 2, . . . , n, then the
eigenvalues and eigenvectors of H are characterized by the following lemma (cf.
Problem 9.3.8).

Lemma 9.6.2.
The eigenvalues {λi}n

i=1 of H satisfy the secular equation

f(λ) = λ− α+
n
∑

j=2

z2
j

dj − λ
= 0. (9.6.15)



9.6. Transformation to Condensed Form 75

and the interlacing property λ1 > d2 > λ2 > · · · > dn > λn. For each eigenvalue λi

of H, a corresponding (unnormalized) eigenvector is given by

ui =

(

−1,
z2

d2 − λi
, . . . ,

zn

dn − λi

)T

. (9.6.16)

Hence simple roots of the secular equation are isolated in an interval (di, di+1)
where f(λ) is monotonic and smooth. A zerofinder based on rational interpolation
can be constructed which gets guaranteed quadratic convergence.

We make the following observations:

• If di = di+1 for some i, 2 ≤ i ≤ n−1, then it can be shown that one eigenvalue
of H equals di, and the degree of the secular equation may be reduced by one.

• If zi = 0, then one eigenvalue equals di, and again the degree of the secular
equation is decreased by one.

The splitting in (9.6.13) can be applied recursively to T1 and T2, i.e., we can
repeat the splitting on each T1 and T2, etc., until the original tridiagonal matrix T
has been reduced to a desired number of small subproblems. Then the relations in
Lemma 9.6.2 may be applied from the bottom up to glue the eigensystems together.

In practice the formula for the eigenvectors in Lemma 9.6.2 cannot be used
directly. The reason for this is that we can only compute an approximation λ̂i to
λi. Even if λ̂i is very close to λi, the approximate ratio zj/(dj − λ̂i) can be very
different from the corresponding exact ratio. These errors may lead to computed
eigenvectors of T which are numerically not orthogonal. Fortunately an ingenious
solution to this problem has been found, which involves modifying the vector z
rather than increasing the accuracy of the λ̂i, see Gu and Eisenstat [22, ]. The
resulting algorithm seems to outperform the QR algorithm even on single processor
computers.

9.6.6 Spectrum Slicing

Sylvester’s law of inertia (see Theorem 7.3.8) leads to a simple and important
method called spectrum slicing for counting the eigenvalues greater than a given
real number τ of a Hermitian matrix A. In the following we treat the real sym-
metric case, but everything goes through also for general Hermitian matrices. The
following theorem is a direct consequence of Sylvester’s Law of Inertia.

Theorem 9.6.3.
Assume that symmetric Gaussian elimination can be carried through for A−τI

yielding the factorization (cf. (6.4.5))

A− τI = LDLT , D = diag (d1, . . . , dn), (9.6.17)

where L is a unit lower triangular matrix. Then A − τI is congruent to D, and
hence the number of eigenvalues of A greater than τ equals the number of positive
elements π(D) in the sequence d1, . . . , dn.
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Example 9.6.1.
The LDLT factorization

A− 1 · I =





1 2
2 2 −4

−4 −6



 =





1
2 1

2 1









1
−2

2









1 2
1 2

1



 .

shows that the matrix A has two eigenvalues greater than 1.

The LDLT factorization may fail to exist if A−τI is not positive definite. This
will happen for example if we choose the shift τ = 2 for the matrix in Example 9.6.1.
Then a11 − τ = 0, and the first step in the factorization cannot be carried out. A
closer analysis shows that the factorization will fail if, and only if, τ equals an
eigenvalue to one or more of the n − 1 leading principal submatrices of A. If τ is
chosen in a small interval around each of these values, big growth of elements occurs
and the factorization may give the wrong count. In such cases one should perturb
τ by a small amount and restart the factorization from the beginning.

For the special case when A is a symmetric tridiagonal matrix the procedure
outlined above becomes particularly efficient and reliable. Here the factorization is
T − τI = LDLT , where L is unit lower bidiagonal and D = diag (d1, . . . , dn). The
remarkable fact is that if we only take care to avoid over/underflow then element
growth will not affect the accuracy of the slice.

Algorithm 9.6.2
Tridiagonal Spectrum Slicing Let T be the tridiagonal matrix (9.6.9). Then the

number π of eigenvalues greater than a given number τ is generated by the following
algorithm:

d1 := α1 − τ ;

π := if d1 > 0 then 1 else 0;

for k = 2 : n

dk := (αk − βk(βk/dk−1)) − τ ;

if |dk| <
√
ω then dk :=

√
ω;

if dk > 0 then π := π + 1;

end

Here, to prevent breakdown of the recursion, a small |dk| is replaced by
√
ω

where ω is the underflow threshold. The recursion uses only 2n flops, and it is not
necessary to store the elements dk. The number of multiplications can be halved
by computing initially β2

k, which however may cause unnecessary over/underflow.
Assuming that no over/underflow occurs Algorithm 9.6.6 is backward stable. A
round-off error analysis shows that the computed values d̄k satisfy exactly (let β1 =
0)

d̄k = fl
(

(αk − βk(βk/d̄k−1)) − τ
)
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=
((

αk − β2
k

d̄k−1
(1 + ǫ1k)(1 + ǫ2k)

)

(1 + ǫ3k) − τ
)

(1 + ǫ4k) (9.6.18)

≡ α′

k − τ − (β′

k)2/d̄k−1, k = 1, . . . , n,

where |ǫik| ≤ u. Hence, the computed number π̄ is the exact number of eigenvalues
greater than τ of a matrix A′, where A′ has elements satisfying

|α′

k − αk| ≤ u(2|αk| + |τ |), |β′

k − βk| ≤ 2u|βk|. (9.6.19)

This is a very satisfactory backward error bound. It has been improved even further
by Kahan [28, ], who shows that the term 2u|αk| in the bound can be dropped,
see also Problem 1. Hence it follows that eigenvalues found by bisection differ by
a factor at most (1 ± u) from the exact eigenvalues of a matrix where only the
off-diagonal elements are subject to a relative perturbed of at most 2u. This is
obviously a very satisfactory result.

The above technique can be used to locate any individual eigenvalue λk of
A. Assume we have two values τl and τu such that for the corresponding diagonal
factors we have

π(Dl) ≥ k, π(Du) < k

so that λk lies in the interval [τl, τu). We can then using p steps of the bisec-
tion (or multisection) method (see Section 6.1.1) locate λk in an interval of length
(τu − τl)/2

p. From Gerschgorin’s theorem it follows that all the eigenvalues of a
tridiagonal matrix are contained in the union of the intervals αi ± (|βi| + |βi+1|),
i = 1, . . . , n (β1 = βn+1 = 0).

Using the bound (9.3.20) it follows that the bisection error in each computed
eigenvalue is bounded by |λ̄j − λj | ≤ ‖A′ − A‖2, where from (9.4.11), using the
improved bound by Kahan, and the inequalities |τ | ≤ ‖A‖2, |αk| ≤ ‖A‖2 it follows
that

|λ̄j − λj | ≤ 5u‖A‖2. (9.6.20)

This shows that the absolute error in the computed eigenvalues is always small. If
some |λk| is small it may be computed with poor relative precision. In some special
cases (for example, tridiagonal, graded matrices see Section 9.6.4) even very small
eigenvalues are determined to high relative precision by the elements in the matrix.

If many eigenvalues of a general real symmetric matrix A are to be deter-
mined by spectrum slicing, then A should initially be reduced to tridiagonal form.
However, if A is a banded matrix and only few eigenvalues are to be determined
then the Band Cholesky Algorithm 6.4.6 can be used to slice the spectrum. It is
then necessary to monitor the element growth in the factorization. We finally men-
tion that the technique of spectrum slicing is also applicable to the computation of
selected singular values of a matrix and to the generalized eigenvalue problem

Ax = λBx,

where A and B are symmetric and B or A positive definite, see Section 9.9.
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Review Questions

1. Describe how an arbitrary square matrix can be reduced to Hessenberg form by a

sequence of orthogonal similarity transformations. If this reduction is applied to a

real symmetric matrix what condensed form is obtained?

2. Describe the method of spectrum slicing for determining selected eigenvalues of a

real symmetric matrix A.

Problems

1. Reduce to tridiagonal form, using an exact orthogonal similarity, the real symmetric

matrix

A =

0

B

B

@

1
√

2
√

2
√

2√
2 −

√
2 −1

√
2√

2 −1
√

2
√

2

2
√

2
√

2 −3

1

C

C

A

2. Show that if a real skew symmetric matrix A, AT
= −A, is reduced to Hessenberg

form H by an orthogonal similarity, then H is a real skew symmetric tridiagonal

matrix. Perform the reduction of the circulant matrix A (see Problem 9.1.9) with

first row equal to

(0, 1, 1, 0,−1,−1).

3. To compute the eigenvalues of the following pentadiagonal matrix

A =

0

B

B

B

B

B

@

4 2 1 0 0 0

2 4 2 1 0 0

1 2 4 2 1 0

0 1 2 4 2 1

0 0 1 2 4 2

0 0 0 1 2 4

1

C

C

C

C

C

A

,

we first reduce A to tridiagonal form.

(a) Determine a Givens rotation G23 which zeros the element in position (3, 1) in

G23A. Compute the the transformed matrix A(1)
= G23AGT

23.

(b) In the matrix A(1)
a new nonzero element has been introduced. Show how this

can be zeroed by a new rotation without introducing any new nonzero elements.

(c) Device a “zero chasing” algorithm to reduce a general real symmetric pentadi-

agonal matrix A ∈ R
n×n

to symmetric tridiagonal form. How many rotations are

needed? How many flops?

4. (a) Use one Givens rotation to transform to tridiagonal form the matrix

A =

0

@

1 2 2

2 1 2

2 2 1

1

A .

(b) Compute the largest eigenvalue of A, using spectrum slicing on the tridiagonal

form derived in (a). Then compute the corresponding eigenvector.
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5. Show that (9.6.17) can be written

d̂k = αk −
β2

k

d̂k−1

(1 + ǫ1k)(1 + ǫ2k)

(1 + ǫ3,k−1)(1 + ǫ4,k−1)
−

τ

(1 + ǫ3k)
, k = 1, . . . , n,

where we have put d̄k = d̂k(1 + ǫ3k)(1 + ǫ4k), and |ǫik| ≤ u. Conclude that since

sign(d̂k) = sign(d̄k) the computed number π̄ is the exact number of eigenvalues a

tridiagonal matrix A′
whose elements satisfy

|α′

k − αk| ≤ u|τ |, |β′

k − βk| ≤ 2u|βk |.

9.7 The LR and QR Algorithms

When combined with a preliminary reduction to Hessenberg or symmetric tridi-
agonal form (see Section 9.6) the QR algorithm yields a very efficient method for
finding all eigenvalues and eigenvectors of small to medium size matrices. Then
the necessary modifications to make it into a practical method are described. The
general nonsymmetric case is treated in Section 9.7.3 and the real symmetric case
in Section 9.7.4.

9.7.1 The Basic LR and QR Algorithms

The LR algorithm, developed by Rutishauser in [39, ], is an iterative method
of reducing a matrix to triangular form by a sequence of similarity transformations.
Rutishauser observed that if A = LR then a similarity transformation of A is

L−1AL = L−1(LR)L = RL.

Hence the matrix obtained by multiplying the factors in reverse order gives a matrix
similar to A. The LR algorithm is obtained by repeating this process.

Setting A1 = A we compute Ak+1 = L−1
k AkLk from

Ak = LkRk, Ak+1 = RkLk, k = 1, 2, . . . (9.7.1)

Repeated application of (9.7.1) gives

Ak = L−1
k−1 · · ·L−1

2 L−1
1 A1L1L2 · · ·Lk−1. (9.7.2)

or
L1L2 · · ·Lk−1Ak = A1L1L2 · · ·Lk−1. (9.7.3)

The two matrices defined by

Tk = L1 · · ·Lk−1Lk, Uk = RkRk−1 · · ·R1, (9.7.4)

are lower and upper triangular respectively. Forming the product TkUk and using
(9.7.3) we have

TkUk = L1 · · ·Lk−1(LkRk)Rk−1 · · ·R1

= L1 · · ·Lk−1AkRk−1 · · ·R1

= A1L1 · · ·Lk−1Rk−1 · · ·R1.
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Repeating this we obtain the basic relation

TkUk = Ak
1 . (9.7.5)

This shows that the close relation between the LR algorithm and the power method.
It is possible to show that under certain restrictions the matrix Ak converges

to an upper triangular matrix R∞. The eigenvalues are then equal to the diagonal
elements of R∞. In establishing the convergence result several assumptions need to
be made. for example, that the LR factorization exists at every stage. This is not
be true for the simple matrix

A =

(

0 1
−3 4

)

,

with eigenvalues 1 and 3. Although we could equally well work with the shifted
matrix A + I, which has a triangular factorization, there are other problems with
the LR algorithm, which makes a robust implementation difficult.

In order to avoid the problems with the LR algorithm it seems natural to
devise a similar algorithm using orthogonal similarity transformations. This leads
to the QR algorithm, developed independently by Francis [14, ] and Kublanov-
skaya [31, ].9 It then represented a significant and genuinely new contribution
to eigensystems computation.

In the QR algorithm applied to A1 = A the matrix Ak+1 = QT
kAkQk, is

computed from

Ak = QkRk, Ak+1 = RkQk, k = 1, 2, . . . , (9.7.6)

where Qk is orthogonal and Rk is upper triangular, i.e., in the kth step we first
compute the QR decomposition of the matrix Ak and then multiply the factors in
reverse order to get Ak+1.

The successive iterates of the QR algorithm satisfy relations similar to those
derived for the LR algorithm. We define

Pk = Q1Q2 · · ·Qk, Uk = Rk · · ·R2R1,

where Pk is orthogonal and Uk is upper triangular. Then by repeated applications
of (9.7.6) it follows that

Ak+1 = PT
k APk. (9.7.7)

Further we have

PkUk = Q1 · · ·Qk−1(QkRk)Rk−1 · · ·R1 (9.7.8)

= Q1 · · ·Qk−1AkRk−1 · · ·R1 (9.7.9)

= A1Q1 · · ·Qk−1Rk−1 · · ·R1. (9.7.10)

Repeating this gives
PkUk = Ak

1 . (9.7.11)

9The QR algorithm was chosen as one of the 10 algorithms with most influence on scientific
computing in the 20th century by the editors of the journal Computing in Science and Engineering.
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When A is real symmetric and positive definite we can modify the LR algo-
rithm and use the Cholesky factorization A = LLT instead. The algorithm then
takes the form

Ak = LkL
T
k , Ak+1 = LT

kLk, k = 1, 2, . . . . (9.7.12)

and we have
Ak+1 = L−1

k AkLk = LT
kAkL

−T
k . (9.7.13)

Clearly all matrices Ak are symmetric and positive definite and the algorithm is
well defined. Repeated application of (9.7.13) gives

Ak = T−1
k−1A1Tk−1 = T T

k−1A1(T
−1
k−1)

T , (9.7.14)

where Tk = L1L2 · · ·Lk. Further we have

Ak
1 = (L1L2 · · ·Lk)(LT

k · · ·LT
2 L

T
1 ) = TkT

T
k . (9.7.15)

When A is real symmetric and positive definite there is a close relationship
between the LR and QR algorithms. For the QR algorithm we have AT

k = Ak =
RT

kQ
T
k and hence

AT
kAk = A2

k = RT
kQ

T
kQkRk = RT

kRk, (9.7.16)

which shows that RT
k is the lower triangular Cholesky factor of A2

k.
For the Cholesky LR algorithm we have from (9.7.4) and (9.7.5)

A2
k = LkLk+1(LkLk+1)

T . (9.7.17)

These two Cholesky factorizations (9.7.16) and (9.7.16) of the matrix A2
k must be

the same and therefore RT
k = LkLk+1. Thus

Ak+1 = RkQk = RkAkR
−1
k = LT

k+1L
T
kAk(LT

k+1L
T
k )−1.

Comparing this with (9.7.14) we deduce that one step of the QR algorithm is equiva-
lent to two steps in the Cholesky LR algorithm. Hence the matrix A(2k+1) obtained
by the Cholesky LR algorithm equals the matrix A(k+1) obtained using the QR
algorithm.

We now show that in general the QR iteration is related to orthogonal iter-
ation. Given an orthogonal matrix Q̃0 ∈ Rn×n, orthogonal iteration computes a
sequence Q̃1, Q̃2, . . ., where

Zk = AQ̃k, Zk = Q̃k+1Rk. k = 0, 1, . . . (9.7.18)

The related sequence of matrices Bk = Q̃T
kAQ̃k = Q̃T

kZk similar to A can be

computed directly. Using (9.7.18) we have Bk = (Q̃T
k Q̃k+1)Rk, which is the QR

decomposition of Bk, and

Bk+1 = (Q̃T
k+1A)Q̃k+1 = (Q̃T

k+1AQ̃k)Q̃T
k Q̃k+1 = Rk(Q̃T

k Q̃k+1).

Hence, Bk+1 is obtained by multiplying the QR factors of Bk in reverse order, which
is just one step of QR iteration! If, in particular we take Q̃0 = I then B0 = A0, and
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it follows that Bk = Ak, k = 0, 1, 2, . . ., where Ak is generated by the QR iteration
(9.7.6). From the definition of Bk and (9.7.6) we have Q̃k = Pk−1, and (compare
(9.4.4))

Ak = Q̃kR̃k, R̃k = Rk · · ·R2R1. (9.7.19)

From this we can conclude that the first p columns of Q̃k form an orthogonal basis
for the space spanned by the first p columns of Ak, i.e., Ak(e1, . . . , ep).

In the QR algorithm subspace iteration takes place on the subspaces spanned
by the unit vectors (e1, . . . , ep), p = 1, . . . , n. It is important for the understanding
of the QR algorithm to recall that therefore, according to Theorem 9.4.1, also
inverse iteration by (AH)−1 takes place on the orthogonal complements, i.e., the
subspaces spanned by (ep+1, . . . , en), p = 0, . . . , n − 1. Note that this means that
in the QR algorithm direct iteration is taking place in the top left corner of A, and
inverse iteration in the lower right corner. (For the QL algorithm this is reversed,
see below.)

9.7.2 Convergence of the Basic QR Algorithm

Assume that the eigenvalues of A satisfy |λp| > |λp+1|, and let (9.4.16) be a corre-
sponding Schur decomposition. Let Pk = (Pk1, Pk2), Pk1 ∈ Rn×p, be defined by
(9.7.6). Then by Theorem 9.4.1 with linear rate of convergence equal to |λp+1/λp|

R(Pk1) → R(U1).

where U1 spans the dominant invariant subspace of dimension p of A. It follows
that Ak will tend to reducible form

Ak =

(

A11 A12

0 A22

)

+O
(

(

|λp+1/λp|
)k
)

.

This result can be used to show that under rather general conditions Ak will tend
to an upper triangular matrix R whose diagonal elements then are the eigenvalues
of A.

Theorem 9.7.1.
If the eigenvalues of A satisfy |λ1| > |λ2| > · · · > |λn|, then the matrices

Ak generated by the QR algorithm will tend to upper triangular form. The lower

triangular elements a
(k)
ij , i > j, converge to zero with linear rate equal to |λi/λj |.

Proof. See Watkins [50].

If the product Pk, k = 1, 2, . . . of the transformations are accumulated the
eigenvectors may then be found by calculating the eigenvectors of the final triangular
matrix and then transforming them back.

To speed up convergence the QR algorithm can be applied to the matrix
Ã = A − τI, where τ is a shift. If τ approximates a simple eigenvalue λj of A,
then in general |λi − τ | ≫ |λj − τ | for i 6= j. By the result above the off-diagonal



9.7. The LR and QR Algorithms 83

elements in the last row of Ãk will approach zero very fast. Usually a different shift
in used in each step. If further the shift is restored at the end of the step the QR
iteration can be written

Ak − τkI = QkRk, RkQk + τkI = Ak+1, k = 0, 1, 2, . . . , (9.7.20)

It is easily verified that with this shifted QR iteration we have Ak+1 = QT
kAkQk,

and the relation to the power method is now expressed by the following result.

Theorem 9.7.2.
Let Qk and Rk be computed by the QR algorithm (9.7.20). Then

(A− τkI) · · · (A− τ1I)(A− τ0I) = PkUk, (9.7.21)

Pk = Q0Q1 · · ·Qk, Uk = RkRk−1 · · ·R0.

Proof. For k = 0 the relation (9.7.21) is just the defining equation of Q0 and R0.
Assume now that the relation is true for k − 1. From Ak+1 = QT

kAkQk and using
the orthogonality of Pk

Ak+1 − τkI = PT
k (A− τkI)Pk. (9.7.22)

Hence, Rk = (Ak+1 − τkI)Q
T
k = PT

k (A− τkI)PkQ
T
k = PT

k (A− τkI)Pk−1. Postmul-
tiplying this equation by Uk−1 we get

RkUk−1 = Uk = PT
k (A− τkI)Pk−1Uk−1,

and thus PkUk = (A− τkI)Pk−1Uk−1. Using the inductive hypothesis the theorem
follows.

A variant called the QL algorithm is based on the iteration

Ak = QkLk, LkQk = Ak+1, k = 0, 1, 2, . . . , (9.7.23)

where Lk is lower triangular, and is merely a reorganization of the QR algorithm.
Let J be a permutation matrix such that JA reverses the rows of A. Then AJ
reverses the columns of A and hence JAJ reverses both rows and columns. If R
is upper triangular then JRJ is lower triangular. It follows that if A = QR is
the QR decomposition then JAJ = (JQJ)(JRJ) is the QL decomposition of JAJ .
It follows that the QR algorithm applied to A is the same as the QL algorithm
applied to JAJ . The convergence theory is therefore the same for both algorithms.
However, in the QL algorithm inverse iteration is taking place in the top left corner
of A, and direct iteration in the lower right corner.

An important case where the choice of either the OR or QL algorithm should
be preferred is when the matrix A is graded, see Section 9.6.4. If the large elements
occur in the lower right corner then the QL algorithm is more stable. (Note that
then the reduction to tridiagonal form should be done from bottom up; see the
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remark in Section 9.6.4.) Of course, the same effect can be achieved by explicitly
reversing the ordering of the rows and columns.

For a dense matrix the cost for one QR iteration is 4n3/3 flops, which is too
much to make it a practical algorithm. However, if the matrix A is initially reduced,
as described in Section 9.6, to upper Hessenberg form, or in the real symmetric case
to tridiagonal form, this form is preserved by the QR iteration. The cost is then
reduced to only 4n2 flops per iteration, or about 12n flops per iteration in the
real symmetric case. The QR algorithm in practice also depends on several other
factors to achieve full accuracy and efficiency. Some of these will be discussed in
the following sections.

9.7.3 QR Algorithm for Hessenberg Matrices

We first show that Hessenberg form is preserved by the QR iteration. Let Hk be
upper Hessenberg and for k = 0, 1, 2, . . .

Hk − τkI = QkRk, RkQk + τkI = Hk+1. (9.7.24)

First note that the addition or subtraction of τkI does not affect the Hes-
senberg form. If Rk is nonsingular then Qk = (Hk − τkI)R

−1
k is a product of an

upper Hessenberg matrix and an upper triangular matrix, and therefore again a
Hessenberg matrix (cf. Problem 6.2.5). Hence RkQk and Hk+1 are again of upper
Hessenberg form.

In the explicit-shift QR algorithm we first form the matrix Hk − τkI, and
then apply a sequence of Givens rotations, Gj,j+1, j = 1, . . . , n− 1 (see (7.4.14)) so
that

Gn−1,n · · ·G23G12(Hk − τkI) = QT
k (Hk − τkI) = Rk,

becomes upper triangular. At a typical step (n = 5, j = 3) the partially reduced
matrix has the form











ρ11 × × × ×
ρ22 × × ×

ν33 × ×
h43 × ×

× ×











.

The rotation G3,4 is now chosen so that the element h43 is annihilated, which carries
the reduction one step further. To form Hk+1 we must now compute

RkQk + τkI = RkG
T
12G

T
23 · · ·GT

n−1,n + τkI.

The product RkG
T
12 will affect only the first two columns of Rk, which are replaced

by linear combinations of one another. This will add a nonzero element in the
(2, 1) position. The rotation GT

23 will similarly affect the second and third columns
in RkG

T
12, and adds a nonzero element in the (3, 2) position. The final result is

obviously a Hessenberg matrix.
If an upper Hessenberg matrix H has a zero subdiagonal entry, then we can

write

H =

(

H11 H12

0 H22

)

.
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The eigenvalues of H are then the sum of the eigenvalues of the two Hessenberg
matrices H11 and H22, and the eigenvalue problem decouples into two problems
of smaller dimensions. In particular, if H22 is a scalar, then we have found an
eigenvalue and the problem deflates.

If the shift τ is chosen as an exact eigenvalue of H , then H − τI = QR has
a zero eigenvalue and thus is singular. Since Q is orthogonal R must be singular.
Moreover, if H is unreduced then the first n−1 columns of H− τI are independent
and therefore the last diagonal element rnn must vanish. Hence the last row in RQ
is zero, and the elements in the last row of H ′ = RQ + τI are h′n,n−1 = 0 and
h′nn = τ ,

The above result shows that if the shift is equal to an eigenvalue τ then the
QR algorithm converges in one step to this eigenvalue. This indicates that τ should
be chosen as an approximation to an eigenvalue λ. Then hn,n−1 will converge to
zero at least with linear rate equal to |λ− τ |/minλ′ 6=λ |λ′ − τ |. The choice

τ = hnn = eT
nHen

is called the Rayleigh quotient shift, since it can be shown to produce the same
sequence of shifts as the RQI starting with the vector q0 = en. With this shift
convergence is therefore asymptotically quadratic.

If H is real with complex eigenvalues, then we obviously cannot converge to
a complex eigenvalue using only real shifts. We could shift by the eigenvalue of

C =

(

hn−1,n−1 hn−1,n

hn,n−1 hn,n

)

, (9.7.25)

closest to hn,n, although this has the disadvantage of introducing complex arithmetic
even when A is real. A way to avoid this will be described later.

A important question is when to stop the iterations and accept an eigenvalue
approximation. We set hn,n−1 = 0 and accept hnn as an eigenvalue if

|hn,n−1| ≤ ǫ(|hn−1,n−1| + |hn,n|),

where ǫ is a small constant times the unit roundoff. This criterion can be justified
since it corresponds to a small backward error. In practice the size of all subdiagonal
elements should be monitored. Whenever

|hi,i−1| ≤ ǫ(|hi−1,i−1| + |hi,i|),

for some i < n, we set |hi,i−1| and continue to work on smaller subproblems. This
is important for the efficiency of the algorithm, since the work is proportional to
the square of the dimension of the Hessenberg matrix. An empirical observation is
that on the average less than two QR iterations per eigenvalue are required.

When the shift is explicitly subtracted from the diagonal elements this may
introduce large relative errors in any eigenvalue much smaller than the shift. We now
describe an implicit-shift QR-algorithm, which avoids this type of error. This is
based on Theorem9.6.1, which says that the matrix Hk+1 in a QR iteration (9.7.24)
is essentially uniquely defined by the first column in Qk, provided it is unreduced.
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In the following, for simplicity, we drop the iteration index and write (9.7.24)
as

H − τI = QR, H ′ = RQ+ τI. (9.7.26)

To apply Theorem 9.6.1 to the QR algorithm we must find the first column q1 in
Q. From H − τI = QR with R upper triangular it follows that r11q1 equals the
first column in H − τI, which is

h1 = (h11 − τ, h21, 0, · · · , 0)T .

If we choose a Givens rotation G12 so that GT
12h1 = ±‖h1‖2e1, then G12e1 is

proportional to h1, and (take n = 6)

GT
12H =

0

B

B

B

B

B

@

× × × × × ×
× × × × × ×

× × × × ×
× × × ×

× × ×
× ×,

1

C

C

C

C

C

A

GT
12HG12 =

0

B

B

B

B

B

@

× × × × × ×
× × × × × ×
+ × × × × ×

× × × ×
× × ×

× ×

1

C

C

C

C

C

A

.

To preserve the Hessenberg form a rotation G23 is chosen to zero the element +,

GT
23G

T
12HG12G23 =

0

B

B

B

B

B

@

× × × × × ×
× × × × × ×

× × × × ×
+ × × × ×

× × ×
× ×

1

C

C

C

C

C

A

.

We continue to chase the element + down the diagonal, with rotationsG34, . . . , Gn−1,n

until it disappears. We have then obtained a Hessenberg matrix QTHQ, where the
first column in Q is G12G23 · · ·Gn−1,ne1 = G12e1. From Theorem 9.6.1 it follows
that the computed Hessenberg matrix is indeed H ′. Note that the information of
the shift τ is contained in G12, and the shift is not explicitly subtracted from the
other diagonal elements. The cost of one QR iteration is 4n2 flops.

To avoid complex arithmetic when H is real one can adopt the implicit-shift
QR algorithm to compute the real Schur form in Theorem 9.2.2, where R is quasi-
triangular with 1 × 1 and 2 × 2 diagonal blocks. For real matrices this will save a
factor of 2–4 over using complex arithmetic. Let τ1 and τ2 be the eigenvalues of the
matrix C in (9.7.25), and consider two QR iterations with these shifts,

H − τ1I = Q1R1, H ′ = R1Q1 + τ1I,

H ′ − τ2I = Q2R2, H ′′ = R2Q2 + τ2I.

We now show how to compute H ′′ directly from H using real arithmetic. We have
H ′′ = (Q1Q2)

THQ1Q2 and from Theorem 9.7.2

(Q1Q2)(R2R1) = (H − τ1I)(H − τ2I)

= H2 − (τ1 + τ2)H + τ1τ2I ≡ G,
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where (τ1 + τ2) and τ1τ2 are real. By the uniqueness theorem (Q1Q2) is de-
termined from its first column, which is proportional to the first column g1 =
Ge1 = (u, v, w, 0, . . . , 0)T of G. Taking out a factor h21 6= 0 this can be written
g1 = h21(p, q, r, 0, . . . , 0)T , where

p = (h2
11 − (τ1 + τ2)h11 + τ1τ2)/h21 + h12, (9.7.27)

q = h11 + h22 − (τ1 + τ2), r = h32.

Note that we do not even have to compute τ1 and τ2, since we have τ1 + τ2 =
hn−1,n−1 + hn,n, and τ1τ2 = det(C). Substituting this into (9.7.27), and grouping
terms to reduce roundoff errors, we get

p = [(hnn − h11)(hn−1,n−1 − h11) − hn,n−1hn−1,n]/h21 + h12

q = (h22 − h11) − (hnn − h11) − (hn−1,n−1 − h11), r = h32.

The double QR step iteration can now be implemented by a chasing algorithm. We
first choose rotations G23 and G12 so that GT

1 g1 = GT
12G

T
23g1 = ±‖g1‖2e1, and carry

out a similarity transformation

GT
1 H =

0

B

B

B

B

B

@

× × × × × ×
× × × × × ×
+ × × × × ×

× × × ×
× × ×

× ×

1

C

C

C

C

C

A

, GT
1 HG1 =

0

B

B

B

B

B

@

× × × × × ×
× × × × × ×
+ × × × × ×
+ + × × × ×

× × ×
× ×

1

C

C

C

C

C

A

.

To preserve the Hessenberg form we then choose the transformation G2 = G34G23

to zero out the two elements + in the first column. Then

GT
2 GT

1 HG1G2 =

0

B

B

B

B

B

@

× × × × × ×
× × × × × ×

× × × × ×
+ × × × ×
+ + × × ×

× ×

1

C

C

C

C

C

A

.

Note that this step is similar to the first step. The “bulge” of + elements has now
shifted one step down along the diagonal, and we continue to chase these elements
until they disappear below the last row. We have then completed one double step
of the implicit QR algorithm.

Suppose the QR algorithm has converged to the final upper triangular ma-
trix T . Then we have

PTHP = T, P = Q0Q1Q2 · · · ,

where Qk is a product of Givens rotations, and P is the product of all the transfor-
mations used. The eigenvectors zi, i = 1, 2, . . . , n of T satisfy Tzi = λizi, z1 = e1,
and zi is a linear combination of e1, . . . , ei. The nonzero components of zi can then
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be computed by back-substitution

zii = 1, zji = −
(

i
∑

k=j+1

tjkzki

)/

(λj − λi), j = i− 1, . . . , 1. (9.7.28)

The eigenvectors of H are then given by Pzi, i = 1, 2, . . . , n. Finally if H has been
obtained by reducing a matrix A to Hessenberg form as described in Section 9.6.3,
then the eigenvectors of A can be computed from

xi = UPzi, i = 1, 2, . . . , n, UHAU = H. (9.7.29)

When only a few selected eigenvectors are wanted, then a more efficient way is to
compute these by using inverse iteration. However, if more than a quarter of the
eigenvectors are required, it is better to use the procedure outlined above.

It must be remembered that the matrix A may be defective, in which case
there is no complete set of eigenvectors. In practice it is very difficult to take this
into account, since with any procedure that involves rounding errors one cannot
demonstrate that a matrix is defective. Usually one therefore should attempt to
find a complete set of eigenvectors. If the matrix is nearly defective this will often
be evident, in that corresponding computed eigenvectors will be almost parallel.

If we do not want the eigenvectors, then it is not necessary to save the se-
quence of orthogonal transformations. It is even possible to avoid storing the
rotations by performing the postmultiplications simultaneously with the premul-
tiplications. For example, once we have formed G23G12Hk the first two columns do
not enter in the remaining steps and we can perform the postmultiplication with
GT

12. Hence we can alternately pre- and postmultiply; in the next step we compute
(G34((G23G12Hk)GT

12))G
T
23, and so on.

From the real Schur form QTAQ = T computed by the QR algorithm, we get
information about some of the invariant subspaces of A. If

T =

(

T11 T12

T22

)

, Q = (Q1 Q2 ) ,

and λ(T11) ∩ λ(T22) = 0, then Q1 is an orthogonal basis for the unique invariant
subspace associated with λ(T11). However, this observation is useful only if we want
the invariant subspace corresponding to a set of eigenvalues appearing at the top
of the diagonal in T . Fortunately, it is easy to modify the real Schur decomposition
so that an arbitrary set of eigenvalues are permuted to the top position. Clearly we
can achieve this by performing a sequence of transformations, where in each step
we interchange two nearby eigenvalues in the Schur form. Thus we only need to
consider the 2 × 2 case,

QTAQ = T =

(

λ1 h12

0 λ2

)

, λ1 6= λ2.

To reverse the order of the eigenvalues we note that Tx = λ2x where

x =

(

h12

λ2 − λ1

)

.
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Let GT be a Givens rotation such that GTx = γe1. Then GTTG(GTx) = λ2G
Tx,

i.e. GTx is an eigenvector of T̂ = GTGT . It follows that T̂ e1 = λ2e1 and T̂ must
have the form

Q̂TAQ̂ = T̂ =

(

λ2 ±h12

0 λ1

)

,

where Q̂ = QG.

9.7.4 QR Algorithm for Symmetric Tridiagonal Matrices

By the methods described in Section 9.6 any Hermitian (real symmetric) matrix can
by a unitary (orthogonal) similarity transformation be reduced into real, symmetric
tridiagonal form

T =















α1 β2

β2 α2 β3

β3
. . .

. . .
. . . αn−1 βn

βn αn















. (9.7.30)

A tridiagonal matrix T is called unreduced if all off-diagonal elements are
nonzero, βi 6= 0, i = 2, . . . , n. Let T be unreduced and λ an eigenvalue of T . Then
rank (T − λI) = n − 1 (the submatrix obtained by crossing out the first row and
last column of T − λI has nonzero determinant, β2 · · ·βn 6= 0). Hence there is
only one eigenvector corresponding to λ and since T is diagonalizable λ must have
multiplicity one. Thus all eigenvalues of an unreduced symmetric tridiagonal matrix
are distinct. In the following we can assume that T is unreduced, since otherwise
it can be split up in smaller unreduced tridiagonal matrices.

The QR algorithm also preserves symmetry. Hence it follows that if T is
symmetric tridiagonal, and

T − τI = QR, T ′ = RQ+ τI, (9.7.31)

then also T ′ = QTTQ is symmetric tridiagonal.
From the Implicit Q Theorem (Theorem 9.6.1) we have the following result,

which can be used to develop an implicit QR algorithm.

Theorem 9.7.3.
Let A be real symmetric, Q = (q1, . . . , qn) orthogonal, and T = QTAQ an

unreduced symmetric tridiagonal matrix. Then Q and T are essentially uniquely
determined by the first column q1 of Q.

Suppose we can find an orthogonal matrix Q with the same first column
q1 as in (9.7.31) such that QTAQ is an unreduced tridiagonal matrix. Then by
Theorem 9.7.3 it must be the result of one step of the QR algorithm with shift τ .
Equating the first columns in T − τI = QR it follows that r11q1 equals the first
column t1 in T − τI. In the implicit shift algorithm a Givens rotation G12 is chosen
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so that

GT
12t1 = ±‖t1‖2e1, t1 = (α1 − τ, β2, 0, · · · , 0)T .

We now perform the similarity transformation GT
12TG12, which results in fill-in in

positions (1,3) and (3,1), pictured below for n = 5:

GT
12T =

0

B

B

B

B

B

@

× × +

× × ×
× × ×

× × ×
× × ×

× ×

1

C

C

C

C

C

A

, GT
12TG12 =

0

B

B

B

B

B

@

× × +

× × ×
+ × × ×

× × ×
× × ×

× ×

1

C

C

C

C

C

A

.

To preserve the tridiagonal form a rotation G23 can be used to zero out the fill-in
elements.

GT
23G

T
12 T G12G23 =

0

B

B

B

B

B

@

× ×
× × × +

× × ×
+ × × ×

× × ×
× ×

1

C

C

C

C

C

A

.

We continue to “chase the bulge” of + elements down the diagonal, with trans-
formationsG34, . . . , Gn−1,n after which it disappears. We have then obtained a sym-
metric tridiagonal matrixQTTQ, where the first column inQ isG12G23 · · ·Gn−1,ne1 =
G12e1. By Theorem 9.6.1 it follows that the result must be the matrix T ′ in (9.7.31).

There are several possible ways to choose the shift. Suppose that we are
working with the submatrix ending with row r, and that the current elements of
the two by two trailing matrix is

(

αr−1 βr

βr αr

)

, (9.7.32)

The Rayleigh quotient shift τ = αr, gives the same result as Rayleigh Quotient
Iteration starting with er. This leads to generic cubic convergence, but not guaran-
teed. In practice the Wilkinson shift has proved more efficient. This shift equals
the eigenvalue of the submatrix (9.7.32), which is closest to αr. A suitable formula
for computing this shift is

τ = αr − β2
r

/(

|d| + sign (d)
√

d2 + β2
r

)

, d = (αr−1 − αr)/2 (9.7.33)

(cf. Algorithm (9.5.1)). A great advantage of the Wilkinson shift is that it gives
guaranteed global convergence.10 It can also be shown to give almost always local
cubic convergence, although quadratic convergence might be possible.

10A proof is given in Parlett [38, Chapter 8].
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Example 9.7.1. Consider an unreduced tridiagonal matrix of the form

T =





× × 0
× × ǫ
0 ǫ t33



 .

Show, that with the shift τ = t33, the first step in the reduction to upper triangular
form gives a matrix of the form

G12(T − sI) =





× × s1ǫ
0 a c1ǫ
0 ǫ 0



 .

If we complete this step of the QR algorithm, QR = T−τI, the matrix T̂ = RQ+τI,
has elements t̂32 = t̂23 = −c1ǫ3/(ǫ2 + a2). This shows that if ǫ ≪ the QR method
tends to converge cubically.

As for the QR algorithm for unsymmetric matrices it is important to check
for negligible subdiagonal elements using the criterion

|βi| ≤ ǫ (|αi−1| + |αi|).

When this criterion is satisfied for some i < n, we set βi equal to zero and the
problem decouples. At any step we can partition the current matrix so that

T =





T11

T22

D3



 ,

where D3 is diagonal and T22 is unreduced. The QR algorithm is then applied
to T22.

We will not give more details of the algorithm here. If full account of symmetry
is taken then one QR iteration can be implemented in only 9n multiplications, 2n
divisions, n − 1 square roots and 6n additions. By reorganizing the inner loop of
the QR algorithm, it is possible to eliminate square roots and lower the operation
count to about 4n multiplications, 3n divisions and 5n additions. This rational
QR algorithm is the fastest way to get the eigenvalues alone, but does not directly
yield the eigenvectors.

The Wilkinson shift may not give the eigenvalues in monotonic order. If some
of the smallest or largest eigenvalues are wanted, then it is usually recommended to
use Wilkinson shifts anyway and risk finding a few extra eigenvalues. To check if all
wanted eigenvalues have been found one can use spectrum slicing, see Section 9.6.5.
For a detailed discussion of variants of the symmetric tridiagonal QR algorithm, see
Parlett [38].

If T has been obtained by reducing a Hermitian matrix to real symmetric
tridiagonal form, UHAU = T , then the eigenvectors are given by

xi = UPei, i = 1, 2, . . . , n, (9.7.34)
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where P = Q0Q1Q2 · · · is the product of all transformations in the QR algorithm.
Note that the eigenvector matrix X = UP will by definition be orthogonal.

If eigenvectors are to be computed, the cost of a QR iteration goes up to
4n2 flops and the overall cost to O(n3). To reduce the number of QR iterations
where we accumulate transformations, we can first compute the eigenvalues with-
out accumulating the product of the transformations. We then perform the QR
algorithm again, now shifting with the computed eigenvalues, the perfect shifts,
convergence occurs in one iteration. This may reduce the cost of computing eigen-
vectors by about 40%. As in the unsymmetric case, if fewer than a quarter of the
eigenvectors are wanted, then inverse iteration should be used instead. The draw-
back of this approach, however, is the difficulty of getting orthogonal eigenvectors
to clustered eigenvalues.

For symmetric tridiagonal matrices one often uses the QL algorithm instead
of the QR algorithm. We showed in Section 9.7.1 that the QL algorithm is just
the QR algorithm on JAJ , where J is the permutation matrix that reverses the
elements in a vector. If A is tridiagonal then JAJ is tridiagonal with the diagonal
elements in reverse order.

In the implicit QL algorithm one chooses the shift from the top of A and chases
the bulge from bottom to top. The reason for preferring the QL algorithm is simply
that in practice it is often the case that the tridiagonal matrix is graded with the
large elements at the bottom. Since for reasons of stability the small eigenvalues
should be determined first the QL algorithm is preferable in this case. For matrices
graded in the other direction the QR algorithm should be used, or rows and columns
reversed before the QL algorithm is applied.

9.7.5 QR-SVD algorithms for Bidiagonal Matrices

For the computation of the SVD of a matrix A ∈ Rm×n it is usually advisable to
first perform a QR decomposition with column pivoting of A

AΠ = Q

(

R
0

)

. (9.7.35)

(We assume in the following that m ≥ n. This is no restriction since otherwise we
can consider AT .) Let let R = URΣV T be the SVD of R. Then it follows that

A = UΣV T , U = Q

(

UR

0

)

. (9.7.36)

Clearly the singular values and the right singular vectors of AΠ and R are the same
and the first n left singular vectors of A are easily obtained from those of R.

Starting with R1 = R, a sequence of upper triangular matrices Rk, k =
1, 2, . . .. In step k the QR factorization of a the lower triangular matrix is computed

RT
k = Qk+1Rk+1, (9.7.37)

In the next step Rk+1 is transposed and the process repeated. As we now show
This iteration is related to the basic unshifted QR algorithm for RTR and RTR.
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Using (9.7.37) we observe that

RT
kRk = Qk+1(Rk+1Rk)

is the QR factorization of RT
kRk. Forming the product in reverse order gives

(Rk+1Rk)Qk+1 = Rk+1R
T
k+1Q

T
k+1Qk+1 = Rk+1R

T
k+1

= RT
k+2Q

T
k+2Qk+2Rk+2 = RT

k+2Rk+2.

Hence two successive iterations of (9.7.37) are equivalent to one iteration of the
basic QR algorithm for RTR. Moreover this is achieved without forming RTR,
which is essential to avoid loss of accuracy.

Using the orthogonality of Qk+1 it follows from (9.7.37) that Rk+1 = QT
k+1R

T
k ,

and hence
RT

k+1Rk+1 = Rk(Qk+1Q
T
k+1)R

T
k = RkR

T
k .

Further we have

Rk+2R
T
k+2 = Rk+2Rk+1Qk+2 = QT

k+2(RkR
T
k )Qk+2. (9.7.38)

which shows that we are simultaneously performing an iteration on RkR
T
k , again

without explicitly forming this matrix.
One iteration of (9.7.37) is equivalent to one iteration of the Cholesky LR

algorithm applied to Bk = RkR
T
k . This follows since Bk has the Cholesky factor-

ization Bk = RT
k+1Rk+1 and multiplication of these factors in reverse order gives

Bk+1 = Rk+1R
T
k+1. (Recall that for a symmetric, positive definite matrix two steps

of the LR algorithm is equivalent to one step of the QR algorithm.)
The convergence of this algorithm is enhanced provided the QR factorization

of A in the first step is performed using column pivoting. It has been shown that
then already the diagonal elements of R1 often are surprisingly good approximations
to the singular values of A.

For the QR-SVD algorithm to be efficient it is necessary to initially reduce
A to a compact form that is preserved during the QR iterations and to introduce
shifts. The proper compact form here is a bidiagonal form B. It was described in
Section 8.6.6 how any matrix A ∈ Rm×n can be reduced to upper bidiagonal form.
Performing this reduction on R we have

QT
BRPB = B =













q1 e2
q2 e3

. . .
. . .

qn−1 en

qn













. (9.7.39)

with orthogonal transformations from left and right. Using a sequence of House-
holder transformations

QB = Q1 · · ·Qn ∈ Rn×n, PB = P1 · · ·Pn−2 ∈ Rn×n.
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the reduction can be carried out in 4
3n

3 flops. Note that also a complex matrix A
can be reduced to real bidiagonal form using complex Householder transformations,
see Section 9.1.2. The singular values of B equal those of A and the left and right
singular vectors can be constructed from those of B.

We first notice that if in (9.7.39) ei = 0, then the matrix B breaks into two
upper bidiagonal matrices, for which the singular values can be computed indepen-
dently. If qi = 0, then B has a singular value equal to zero. Applying a sequence of
Givens rotations from the left, Gi,i+1, Gi,i+2, . . . , Gi,n the ith row be zeroed out, and
again the matrix breaks up into two parts. Hence we may without loss of generality
assume that none of the elements q1, qi, ei, i = 2, . . . , n are zero. This assumption
implies that the matrix BTB has nondiagonal elements αi+1 = qiei+1 6= 0, and
hence is unreduced. It follows that all eigenvalues of BTB are positive and distinct,
and we have σ1 > · · · > σn > 0.

Since shifts are essential for achieving rapid convergence and deflation we now
look into alternative ways of implementing the QR-SVD algorithm.

We first proceed by forming the symmetric matrix

C =

(

0 B
BT 0

)

∈ R2n×2n. (9.7.40)

whose eigenvalues are ±σi, i = 1, . . . , n. After reordering rows and columns by an
odd/even permutation C becomes symmetric tridiagonal matrix with zeros on the
main diagonal. Hence

T = PTCP =



















0 q1
q1 0 e2

e2 0 q2

q2 0
. . .

. . .
. . . qn
qn 0



















(9.7.41)

where P is the permutation matrix whose columns are those of the identity in the
order (n+1, 1, n+2, 2, . . . , 2n, n). Hence the QR algorithm, the divide and conquer
algorithm, and spectrum slicing (see Problem 6) are all applicable to this special
tridiagonal matrix to compute the singular values of B. A disadvantage of this
approach is that the dimension is essentially doubled.

A closer inspection of the QR algorithm applied to T reveals it to be equiv-
alent to an algorithm where the iterations are carried out directly on B. It is also
equivalent to an implicit version of the QR algorithm applied to the symmetric
tridiagonal matrix T = BTB.

We now consider the application of the implicit shift QR algorithm to BTB.
Since forming BTB would lead to a severe loss of accuracy in the small singular
values it is essential to work directly with the matrix B. The Wilkinson shift τ
can be determined as the smallest eigenvalue of the lower right 2 × 2 submatrix in
BBT , or equivalently as the square of the smallest singular value of the 2× 2 upper
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triangular submatrix in (9.7.39)

(

qn−1 en

0 qn

)

.

In the implicit shift QR algorithm for BTB we first determine a Givens rota-
tion T1 = G12 so that

GT
12t1 = ±‖t1‖2e1, t1 = (q21 − τ, q1e2, 0, . . . , 0)T , (9.7.42)

where t1 is the first column in BTB− τI and τ is the shift. Suppose we next apply
a sequence of Givens transformations such that

T T
n−1 · · ·T T

2 T
T
1 B

TBT1T2 · · ·Tn−1

is tridiagonal, but we wish to avoid doing this explicitly. Let us start by applying
the transformation T1 to B. Then we get (take n = 5),

BT1 =

0

B

B

B

B

@

→ × ×
→ + × ×

× ×
× ×

×

1

C

C

C

C

A

.

If we now premultiply by a Givens rotation ST
1 = R12 to zero out the + element,

this creates a new nonzero element in the (1, 3) position; To preserve the bidiagonal
form we then choose the transformation T2 = R23 to zero out the element +:

ST
1 BT1 =

0

B

B

B

B

@

→ × × +

→ ⊕ × ×
× ×

× ×
×

1

C

C

C

C

A

, ST
1 BT1T2 =

0

B

B

B

B

@

↓ ↓

× × ⊕
× ×
+ × ×

× ×
×

1

C

C

C

C

A

.

We can now continue to chase the element + down, with transformations alternately
from the right and left until we get a new bidiagonal matrix

B̂ = (ST
n−1 · · ·ST

1 )B(T1 · · ·Tn−1) = UTBP.

But then the matrix

T̂ = B̂T B̂ = PTBTUUTBP = PTTP

is tridiagonal, where the first column of P equals the first column of T1. Hence if
T̂ is unreduced it must be the result of one QR iteration on T = BTB with shift
equal to τ .



96 Chapter 9. Matrix Eigenvalue Problems

The subdiagonal entries of T equal qiei+1, i = 1, . . . , n − 1. If some element
ei+1 is zero, then the bidiagonal matrix splits into two smaller bidiagonal matrices

B =

(

B1 0
0 B2

)

.

If qi = 0, then we can zero the ith row by premultiplication by a sequence Givens
transformations Ri,i+1, . . . , Ri,n, and the matrix then splits as above. In practice
two convergence criteria are used. After each QR step if

|ei+1| ≤ 0.5u(|qi| + |qi+1|),

where u is the unit roundoff, we set ei+1 = 0. We then find the smallest p and the
largest q such that B splits into quadratic subblocks





B1 0 0
0 B2 0
0 0 B3



 ,

of dimensions p, n − p − q and, q where B3 is diagonal and B2 has a nonzero
subdiagonal. Second, if diagonal elements in B2 satisfy

|qi| ≤ 0.5u(|ei| + |ei+1|),

set qi = 0, zero the superdiagonal element in the same row, and repartition B.
Otherwise continue the QR algorithm on B2.

A justification for these tests is that roundoff in a rotation could make the
matrix indistinguishable from one with a qi or ei+1 equal to zero. Also, the error
introduced by the tests is not larger than some constant times u‖B‖2.

The implicit QR-SVD algorithm can be shown to be backward stable. This
essentially follows from the fact that we have only applied a sequence of orthogo-
nal transformations to A. Hence the computed singular values Σ̄ = diag (σ̄k) are
the exact singular values of a nearby matrix A + E, where ‖E‖2 ≤ c(m,n) · uσ1.
Here c(m,n) is a constant depending on m and n and u the unit roundoff. From
Theorem 7.3.4

|σ̄k − σk| ≤ c(m,n) · uσ1.

Thus, if A is nearly rank deficient, this will always be revealed by the computed sin-
gular values. Note, however, that the smaller singular values may not be computed
with high relative accuracy.

When all the superdiagonal elements in B have converged to zero we have
QT

SBTS = Σ = diag (σ1, . . . , σn). Hence

UTAV =

(

Σ
0

)

, U = QBdiag(QS , Im−n), V = TBTS (9.7.43)

is the singular value decomposition of A. Usually less than 2n iterations are needed
in the second phase. One QR iteration requires 14n multiplications and 2n calls to
givrot. Accumulating the rotations into U requires 6mn flops. Accumulating the
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Table 9.7.1. Comparison of multiplications for SVD algorithms.

Required Golub–Reinsch SVD Chan SVD

Σ, U1, V (3 + C)mn2 + 11
3 n

3 3mn2 + 2(C + 1)n3

Σ, U1 (3 + C)mn2 − n3 3mn2 + (C + 4/3)n3

Σ, V 2mn2 + Cn3 mn2 + (C + 5/3)n3

Σ 2mn2 − 2n3/3 mn2 + n3

rotations into V requires 6n2 flops. If singular vectors are desired, the cost of a QR
iteration goes up to 4n2 flops and the overall cost to O(n3). See Table 9.7.5 for a
comparison of flop counts for different variants.

To reduce the number of QR iterations where we accumulate transformations
we can first compute the singular values without accumulating vectors. If we then
choose shifts based on the computed singular values, the perfect shifts, convergence
occurs in one iteration. This may reduce the cost about 40%. If fewer than 25% of
the singular vectors are wanted, then inverse iteration should be used instead. The
drawback of this approach is the difficulty of getting orthogonal singular vectors to
clustered singular values.

An important implementation issue is that the bidiagonal matrix is often
graded, i.e., the elements may be large at one end and small at the other. For ex-
ample, if in the Chan-SVD column pivoting is used in the initial QR decomposition,
then the matrix is usually graded from large at upper left to small at lower right as
illustrated below







1 10−1

10−2 10−3

10−4 10−5

10−6






. (9.7.44)

From the following perturbation result it follows that it should be possible to com-
pute all singular values of a bidiagonal matrix to full relative precision independent
of their magnitudes.

Theorem 9.7.4. (Demmel and Kahan [9, ])
Let B ∈ Rn×n be a bidiagonal matrix with singular values σ1 ≥ · · · ≥ σn. Let

|δB| ≤ ω|B|, and let σ̄1 ≥ · · · ≥ σ̄n be the singular values of B̄ = B + δB. Then if
η = (2n− 1)ω < 1,

|σ̄i − σi| ≤
η

1 − η
|σi|, (9.7.45)

max{sin θ(ui, ũi), sin θ(vi, ṽi)} ≤
√

2η(1 + η)

relgapi − η
, (9.7.46)

i = 1, . . . , n, where the relative gap between singular values is

relgapi = min
j 6=i

|σi − σj |
σi + σj

. (9.7.47)
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The QR algorithm as described above tries to converge to the singular values
from smallest to largest, and “chases the bulge” from top to bottom. Convergence
will then be fast. However, if B is graded the opposite way then the QR algorithm
may require many more steps. To avoid this the rows and columns of B could
in this case be reversed before the QR algorithm is applied. Alternatively many
algorithms check for the direction of grading. Note that the matrix may break up
into diagonal blocks which are graded in different ways.

To compute small singular values of a bidiagonal matrix accurately one can
use the unshifted QR-SVD algorithm given by (9.7.37). which uses the iteration

BT
k = Qk+1Bk+1, k = 0, 1, 2, . . . . (9.7.48)

In each step the lower bidiagonal matrix BT
k is transformed into an upper bidiagonal

matrix Bk+1.

QT
1 B =

0

B

B

B

B

@

→ × +

→ ⊗ ×
× ×

× ×
× ×

1

C

C

C

C

A

, Q2Q
T
1 B =

0

B

B

B

B

@

× ×
→ × +

→ ⊗ ×
× ×

× ×

1

C

C

C

C

A

,

etc. Each iteration in (9.7.48) can be performed with a sequence of n− 1 Givens
rotations at a cost of only 2n multplications and n− 1 calls to givrot. Two steps of
the iteration is equivalent to one step of the zero shift QR algorithm. (Recall that
one step of the QR algorithm with nonzero shifts, requires 12n multiplications and
4n additions.) The zero shift algorithm is very simple and uses no subtractions,
Hence each entry of the transformed matrix is computed to high relative accuracy.

Algorithm 9.7.1 The Zero Shift QR Algorithm

The algorithm performs p steps of the zero shift QR algorithm on the bidiagonal
matrix B in (9.7.39):

for k = 1 : 2p

for i = 1 : n− 1

[c, s, r] = givrot(qi, ei+1);

qi = r; qi+1 = qi+1 ∗ c;
ei+1 = qi+1 ∗ s;

end

end

If two successive steps of (9.7.48) are interleaved we get the zero shift QR
algorithm, the implementation of which has been studied in depth by Demmel and
Kahan [9]. To give full accuracy for the smaller sigingular values the convergence
tests used for standard shifted QR-SVD algorithm must be modified. This is a
non-trivial task, for which we refer to the original paper.
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9.7.6 Singular Values by Spectrum Slicing

An algorithm for computing singular values can be developed by applying Algorithm
9.6.6 for spectrum slicing to the special symmetric tridiagonal matrix T in (9.7.41).
Taking advantage of the zero diagonal this algorithm simplifies and one slice requires
only of the order 2n flops. Given the elements q1, . . . , qn and e2, . . . , en of T in
(9.7.41), the following algorithm generates the number π of singular values of T
greater than a given value σ > 0.

Algorithm 9.7.2
Singular Values by Spectrum Slicing Let T be the tridiagonal matrix (9.6.9). Then
the number π of eigenvalues greater than a given number σ is generated by the
following algorithm:

d1 := −σ;

flip := −1;

π := if d1 > 0 then 1 else 0;

for k = 2 : 2n

flip := −flip;
if flip = 1 then β = qk/2

else β = e(k+1)/2;

end

dk := −β(β/dk−1) − τ ;

if |dk| <
√
ω then dk :=

√
ω;

if dk > 0 then π := π + 1;

end

Spectrum slicing algorithm for computing singular values has been analyzed
by Fernando [11]. and shown to provide high relative accuracy also for tiny singular
values.

Review Questions

1. What is meant by a graded matrix, and what precautions need to be taken when

transforming such a matrix to condensed form?

2. For a certain class of symmetric matrices small eigenvalues are determined with a

very small error compared to ‖A‖F . Which?

3. If one step of the QR algorithm is performed on A with a shift τ equal to an eigenvalue

of A, what can you say about the result? Describe how the shift usually is chosen

in the QR algorithm applied to a real symmetric tridiagonal matrix.

4. What are the advantages of the implicit shift version of the QR algorithm for a real

Hessenberg matrix H?
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5. Suppose the eigenvalues to a Hessenberg matrix have been computed using the QR

algorithm. How are the eigenvectors best computed (a) if all eigenvectors are needed;

(b) if only a few eigenvectors are needed.

6. (a) Show that the symmetry of a matrix is preserved during the QR algorithm. What

about normality?

(b) Show that the Hessenberg form is preserved during the QR algorithm.

7. What condensed form is usually chosen for the singular value decomposition? What

kind of transformations are used for bringing the matrix to condensed form? How

are the singular values computed for the condensed form?

Problems

1. Perform a QR step without shift on the matrix

A =

„

cos θ sin θ
sin θ 0

«

and show that the nondiagonal elements are reduced to − sin
3 θ.

2. Let T be the tridiagonal matrix in (9.7.30), and suppose a QR step using the shift

τ = αn is carried out,

T − αnI = QR, T̃ = RQ + αnI.

Generalize the result from Problem 2, and show that if γ = mini |λi(Tn−1)−αn| > 0,

then |β̃n| ≤ |βn|
3/γ2

.

3. Show that a complex matrix A can be reduced to real bidiagonal form using a

sequence of unitary Householder transformations, see (9.6.2)–(9.6.3)

4. Let C be the matrix in (9.7.40) and P the permutation matrix whose columns are

those of the identity matrix in the order (n +1, 1, n + 2, 2, . . . , 2n, n). Show that the

matrix P T CP becomes a tridiagonal matrix T of the form in (9.7.41).

5. To compute the SVD of a matrix A ∈ R
m×2

we can first reduce A to upper triangular

form by a QR decomposition

A = (a1, a2) = (q1, q2)

„

R
0

«

, R =

„

r11 r12

0 r22

«

.

Then, as outlined in Golub and Van Loan [21, Problem 8.5.1], a Givens rotation G can

be determined such that B = GRGT
is symmetric. Finally, B can be diagonalized

by a Jacobi transformation. Derive the details of this algorithm!

6. (a) Let σi be the singular values of the matrix

M =

0

B

B

B

@

z1

z2 d2

.

.

.
. . .

zn dn

1

C

C

C

A

∈ R
n×n,

where the elements di are distinct. Show the interlacing property

0 < σ1 < d2 < · · · < dn < σn < dn + ‖z‖2.
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(b) Show that σi satisfies the secular equation

f(σ) = 1 +

n
X

k=1

z2

k

d2

k − σ2
= 0.

Give expressions for the right and left singular vectors of M .

Hint: See Lemma 9.6.2.

7. Modify Algorithm 9.7.1 for the zero shift QR-SVD algorithm so that the two loops

are merged into one.

9.8 Subspace Methods for Large Eigenvalue
Problems

In many applications eigenvalue problems arise involving matrices so large that they
cannot be conveniently treated by the methods described so far. For such problems,
it is not reasonable to ask for a complete set of eigenvalues and eigenvectors, and
usually only some extreme eigenvalues (often at one end of the spectrum) are re-
quired. In the 1980’s typical values could be to compute 10 eigenpairs of a matrix
of order 10,000. In the late 1990’s problems are solved where 1,000 eigenpairs are
computed for matrices of order 1,000,000!

We concentrate on the symmetric eigenvalue problem since fortunately many
of the very large eigenvalue problems that arise are symmetric. We first consider
the general problem of obtaining approximations from a subspace of Rn. We then
survey the two main classes of methods developed for large or very large eigenvalue
problems.

9.8.1 The Rayleigh–Ritz Procedure

Let S be the subspace of Rn spanned by the columns of a given matrix S =
(s1, . . . , sm) ∈ Rn×m (usually m ≪ n). We consider here the problem of finding
the best set of approximate eigenvectors in S to eigenvectors of a Hermitian matrix
A. The following generalization of the Rayleigh quotient is the essential tool needed.

Theorem 9.8.1.
Let A be Hermitian and Q ∈ Rn×p be orthonormal, QHQ = Ip. Then the

residual norm ‖AQ−QC‖2 is minimized for C = M where

M = ρ(Q) = QHAQ (9.8.1)

is the corresponding Rayleigh quotient matrix. Further, if θ1, . . . , θp are the eigen-
values of M , there are p eigenvalues λi1, . . . , λip of A, such that

|λij − θj | ≤ ‖AQ−QM‖2, j = 1, . . . , p. (9.8.2)

Proof. See Parlett [38, Section 11-5].
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We can now outline the complete procedure:

Algorithm 9.8.1
The Rayleigh–Ritz procedure

1. Determine an orthonormal matrix Q = (q1, . . . , qm) such that R(Q) = S.

2. Form the matrix B = AQ = (Aq1, . . . , Aqm) and the generalized Rayleigh
quotient matrix

M = QH(AQ) ∈ Rm×m. (9.8.3)

3. Compute the p ≤ m eigenpairs of the Hermitian matrix M which are of
interest

Mzi = θ1zi, i = 1, . . . , p. (9.8.4)

The eigenvectors can be chosen such that Z = (z1, . . . , zm) is a unitary matrix.
The eigenvalues θi are the Ritz values, and the vectors yi = Qzi the Ritz
vectors.

4. Compute the residual matrix R = (r1, . . . , rp), where

ri = Ayi − yiθi = (AQ)zi − yiθi. (9.8.5)

Then each interval

[

θi − ‖ri‖2, θi + ‖ri‖2

]

, i = 1, . . . , p, (9.8.6)

contains an eigenvalue λi of A.

The pairs (θi, yi), i = 1, . . . , p are the best approximate eigenpairs of A which
can be derived from the space S. If some of the intervals in (9.8.6) overlap, we
cannot be sure to have approximations to p eigenvalues of A. However, there are
always p eigenvalues in the intervals defined by (9.8.2).

We can get error bounds for the approximate eigenspaces from an elegant
generalization of Theorem 9.3.15. We first need to define the gap of the spectrum
of A with respect to a given set of approximate eigenvalues.

Definition 9.8.2.
Let λ(A) = {λ1, . . . , λn} be eigenvalues of a Hermitian matrix A. For the set

ρ = {θ1, . . . , θp}, let sρ = {λi1 , . . . , λip
} be a subset of λ(A) minimizing maxj |θj −

λij
|. Then we define

gap (ρ) = min
λ∈λ(A)

|λ− θi|, λ 6∈ sρ, θi ∈ ρ. (9.8.7)
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Theorem 9.8.3.
Let Q ∈ Rn×p be orthonormal and A a Hermitian matrix. Let {θ1, . . . , θp}

be the eigenvalues of H = ρ(Q) = QHAQ, and let sr = {λi1 , . . . , λip
} be a subset

of eigenvalues of A such that maxj |θj − λij
| is minimized. If Z is the invariant

subspace of A corresponding to sr, then

θ(Q,Z) ≤ ‖AQ−QH‖2/gap (ρ). (9.8.8)

where sin θ(Q,Z) is the largest angle between the subspaces Q and Z.

9.8.2 Subspace Iteration for Hermitian Matrices

In Section 9.4.4 subspace iteration, or orthogonal iteration, was introduced as a
block version of the power method. Subspace iteration has long been one of the
most important methods for solving large sparse eigenvalue problems. In particular
it has been used much in structural engineering, and developed to a high standard
of refinement.

In simple subspace iteration we start with an initial matrix Q0 ∈ Rn×p (1 <
p ≪ n) with orthogonal columns. From this a sequence of matrices {Qk} are
computed from

Zk = AQk−1, QkRk = Zk, k = 1, 2, . . . , (9.8.9)

where QkRk is the QR decomposition of the matrix Zk. There is no need for the
matrix A to be known explicitly; only an algorithm (subroutine) for computing
the matrix-vector product Aq for an arbitrary vector q is required. This iteration
(9.8.9) generates a sequence of subspaces Sk = R(AkQ0) = R(Qk), and we seek
approximate eigenvectors ofA in these subspaces. It can be shown (see Section 9.4.4)
that if A has p dominant eigenvalues λ1, · · · , λp, i.e.,

|λ1| ≥ · · · ≥ |λp| > |λp+1| ≥ · · · ≥ |λn|

then the subspaces Sk, k = 0, 1, 2, . . . converge almost always to the corresponding
dominating invariant subspace.The convergence is linear with rate |λp+1/λp|.

For the individual eigenvalues λi > λi+1, i ≤ p, it holds that

|r(k)
ii − λi| = O(|λi+1/λi|k), i = 1, . . . , p.

where r
(k)
ii are the diagonal elements in Rk. This rate of convergence is often

unacceptably slow. We can improve this by including the Rayleigh–Ritz procedure
in orthogonal iteration. For the real symmetric (Hermitian) case this leads to the
improved algorithm below.

Algorithm 9.8.2
Orthogonal Iteration, Hermitian Case.

With Q0 ∈ Rn×p compute for k = 1, 2, . . . a sequence of matrices Qk as follows:
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1. Compute Zk = AQk−1;

2. Compute the QR decomposition Zk = Q̄kRk;

3. Form the (matrix) Rayleigh quotient Bk = Q̄T
k (AQ̄k);

4. Compute eigenvalue decomposition Bk = UkΘkU
T
k ;

5. Compute the matrix of Ritz vectors Qk = Q̄kUk.

It can be shown that

|θ(k)
i − λi| = O(|λp+1/λi|k), Θk = diag (θ

(k)
1 , . . . , θ(k)

p ),

which is a much more favorable rate of convergence than without the Rayleigh–Ritz
procedure. The columns of Qk are the Ritz vectors, and they will converge to the
corresponding eigenvectors of A.

Example 9.8.1.
Let A have the eigenvalues λ1 = 100, λ2 = 99, λ3 = 98 λ4 = 10, and λ5 = 5.

With p = 3 the asymptotic convergence ratios for the jth eigenvalue with and
without Rayleigh–Ritz acceleration are:

j without R-R with R-R

1 0.99 0.1
2 0.99 0.101
3 0.102 0.102

The work in step 1 of Algorithm 9.8.2 consists of p matrix times vector op-
erations with the matrix A. If the modified Gram-Schmidt method is used step 2
requires p(p+ 1)n flops. To form the Rayleigh quotient matrix requires a further p
matrix times vector multiplications and p(p+ 1)n/2 flops, taking the symmetry of
Bk into account. Finally steps 4 and 5 take about 5p3 and p2n flops, respectively.

Note that the same subspace Sk is generated by k consecutive steps of 1, as
with the complete Algorithm 9.8.2. Therefore the rather costly orthogonalization
and Rayleigh–Ritz acceleration need not be carried out at every step. However, to
be able to check convergence to the individual eigenvalues we need the Rayleigh–
Ritz approximations. If we then form the residual vectors

ri = Aq
(k)
i − q

(k)
i θi = (AQk)u

(k)
i − q

(k)
i θi. (9.8.10)

and compute ‖ri‖2 each interval [θi −‖ri‖2, θi + ‖ri‖2] will contain an eigenvalue of
A. Sophisticated versions of subspace iteration have been developed. A highlight is
the Contribution II/9 by Rutishauser in [40].

Algorithm 9.8.2 can be generalized to nonsymmetric matrices, by substituting
in step 4 the Schur decomposition

Bk = UkSkU
T
k ,
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where Sk is upper triangular. The vectors qi then converge to the Schur vector ui

of A.
If interior eigenvalues are wanted then we can consider the spectral trans-

formation (see Section 9.4.2)

Â = (A− µI)−1.

The eigenvalues of Â and A are related through λ̂i = 1/(λi − µ). Hence, the eigen-
values λ in a neighborhood of µ will correspond to outer eigenvalues of Â, and can
be determined by applying subspace iteration to Â. To perform the multiplication
Âq we need to be able to solve systems of equations of the form

(A− µI)p = q. (9.8.11)

This can be done, e.g., by first computing an LU factorization of A− µI or by an
iterative method.

9.8.3 Krylov Subspaces

Of great importance for iterative methods are the subspaces of the form

Km(v,A) = span
(

v,Av, . . . , Am−1v
)

, (9.8.12)

generated by a matrix A and a single vector v. These are called Krylov sub-
spaces11 and the corresponding matrix

Km =
(

v,Av, . . . , Am−1v
)

is called a Krylov matrix. If m ≤ n the dimension of Km usually equals m unless v
is specially related to A.

Many methods for the solving the eigenvalue problem developed by Krylov
and others in the 1930’s and 40’s aimed at bringing the characteristic equation
into polynomial form. Although this in general is a bad idea, we will consider
one approach, which is of interest because of its connection with Krylov subspace
methods and the Lanczos process.

Throughout this section we assume that A ∈ Rn×n is a real symmetric matrix.
Associated with A is the characteristic polynomial (9.1.5)

p(λ) = (−1)n(λn − ξn−1λ
n−1 − · · · ξ0) = 0.

The Cayley–Hamilton theorem states that p(A) = 0, that is

An = ξn−1A
n−1 + · · · ξ1A+ ξ0. (9.8.13)

In particular we have

Anv = ξn−1A
n−1v + · · · ξ1Av + ξ0v

= [v,Av, . . . , An−1v]x,

11Named after Aleksei Nikolaevich Krylov (1877–1945) Russian mathematcian. Krylov worked
at the Naval Academy in Saint-Petersburg and in 1931 published a paper [30] on what is now
called “Krylov subspaces”.
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where x = (ξ0, ξ1, . . . , ξn−1)
T .

Consider the Krylov sequence of vectors, v0 = v,

vj+1 = Avj , j = 0 : n− 1. (9.8.14)

We assume in the following that v is chosen so that vi 6= 0, i = 0 : n− 1, Then we
may write (9.8.14) as

xBx = vn, B = [v0, v1, . . . , vn+1] (9.8.15)

which is a linear equations in n unknowns.
Multiplying (9.8.15) on the left with BT we obtain a symmetric linear system,

the normal equations

Mx = z, M = BTB, z = BT vn.

The elements mij of the matrix M are

mi+1,j+1 = vT
i vj = (Aiv)TAjv = vTAi+jv.

They only depend on the sum of the indices and we write

mi+1,j+1 = µi+j , i+ j = 0; 2n− 1.

Unfortunately this system tends to be very ill-conditioned. For larger values of
n the Krylov vectors soon become parallel to the eigenvector associated with the
dominant eigenvalue.

The Krylov subspace Km(v,A) depends on both A and v. However, it is
important to note the following simply verified invariance properties:

• Scaling: Km(αv, βA) = Km(v,A), α 6= 0, β 6= 0.

• Translation: Km(v,A− µI) = Km(v,A).

• Similarity: Km(QT v,QTAQ) = QTKm(v,A), QTQ = I.

These invariance can be used to deduce some important properties of methods using
Krylov subspaces. Since A and −A generate the same subspaces the left and right
part of the spectrum of A are equally approximated. The invariance with respect
to shifting shows, e.g, that it does not matter if A is positive definite or not.

We note that the Krylov subspace K(v,A) is spanned by the vectors generated
by performing k − 1 steps of the power method starting with v. However, in the
power method we throw away previous vectors and just use the last vector Akv to
get an approximate eigenvector. It turns out that this is wasteful and that much
more powerful methods can be developed which work with the complete Krylov
subspace.

Any vector x ∈ Km(v) can be written in the form

x =

m−1
∑

i=0

ciA
iv = Pm−1(A)v,
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where Pm−1 is a polynomial of degree less than m. This provides a link between
polynomial approximation and Krylov type methods, the importance of which will
become clear in the following.

A fundamental question is: How well can an eigenvector of A be approximated
by a vector in K(v,A)? Let Πk denote the orthogonal projector onto the Krylov
subspace K(v,A). The following lemma bounds the distance ‖ui − Πkui‖2, where
ui is a particular eigenvector of A.

Theorem 9.8.4.
Assume that A is diagonalizable and let the initial vector v have the expansion

v =

n
∑

k=1

αkuk (9.8.16)

in terms of the normalized eigenvectors u1, . . . , un. Let Pk−1 be the set of polyno-
mials of degree at most k − 1 such that p(λi) = 1. Then, if αi 6= 0 the following
inequality holds:

‖ui − Πkui‖2 ≤ ξiǫ
(k)
i , ξi =

∑

j 6=i

|αj |/|αi|, (9.8.17)

where
ǫ
(k)
i = min

p∈Pk−1

max
λ∈λ(A)−λi

|p(λ)|. (9.8.18)

Proof. We note that any vector in Kk can be written q(A)v, where q is a polynomial
q ∈ Pk−1. Since Πk is the orthogonal projector onto Kk we have

‖(I − Πk)ui‖2 ≤ ‖ui − q(A)v‖2.

Using the expansion (9.8.16) of v it follows that for any polynomial p ∈ Pk−1 with
p(λi) = 1 we have

‖(I − Πk)αiui‖2 ≤
∥

∥

∥
αiui −

n
∑

j=1

αjp(λj)uj

∥

∥

∥

2
≤ max

j 6=i
|p(λj)

∣

∣

∣

∑

j 6=i

|αj

∣

∣

∣
.

The last inequality follows noticing that the component in the eigenvector ui is zero
and using the triangle inequality. Finally dividing by |αi| establishes the result.

To obtain error bounds we use the properties of the Chebyshev polynomials.
We now consider the Hermitian case and assume that the eigenvalues of A are simple
and ordered so that λ1 > λ2 > · · · > λn. Let Tk(x) be the Chebyshev polynomial
of the first kind of degree k. Then |Tk(x)| ≤ 1 for |x| ≤ 1, and for |x| ≥ 1 we have

Tk(x) =
1

2

[

(x +
√

x2 − 1)k + (x−
√

x2 − 1)k
]

. (9.8.19)
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Now if we take

x = li(λ) = 1 + 2
λ− λi+1

λi+1 − λn
, γi = li(λi) = 1 + 2

λi − λi+1

λi − λn
. (9.8.20)

the interval λ = [λi+1, λn] is mapped onto x = [−1, 1], and γ1 > 1. In particular,
for i = 1, we take

p(λ) =
Tk−1(l1(λ))

Tk−1(γ1)
.

Then p(λ1) = 1 as required by Theorem 9.8.4. When k is large we have

ǫ
(k)
1 ≤ max

λ∈λ(A)−λi

|p(λ)| ≤ 1

Tk−1(γ1)
≈ 2
/

(

γ1 +
√

γ2
1 − 1

)k−1

. (9.8.21)

The steep climb of the Chebyshev polynomials outside the interval [−1, 1] explains
the powerful approximation properties of the Krylov subspaces. The approximation
error tends to zero with a rate depending on the gap λ1 − λ2 normalized by the
spread of the rest of the eigenvalues λ2 − λn. Note that this has the correct form
with respect to the invariance properties of the Krylov subspaces.

By considering the matrix −A we get analogous convergence results for the
rightmost eigenvalue λn of A. In general, for i > 1, similar but weaker results can
be proved using polynomials of the form

p(λ) = qi−1(λ)
Tk−i(li(λ))

Tk−i(γi)
, qi−1(λ) =

i−1
∏

j=1

λj − λ

λj − λi
.

Notice that qi−1(λ) is a polynomial of degree i−1 with qi−1(λj) = 0, j = 1, . . . , i−1,
and qi−1(λi) = 1. Further

max
λ∈λ(A)−λi

|qi−1(λ)| ≤ |qi−1(λn)| = Ci. (9.8.22)

Thus when k is large we have

ǫ
(k)
i ≤ Ci/Tk−i(γi). (9.8.23)

This indicates that we can expect interior eigenvalues and eigenvectors to be less
well approximated by Krylov-type methods.

9.8.4 The Lanczos Process

We will now show that the Rayleigh–Ritz procedure can be applied to the sequence
of Krylov subspaces Km(v), m = 1, 2, 3, . . ., in a very efficient way using the Lanc-
zos process. The Lanczos process, developed by Lanczos [33, ], can be viewed
as a way for reducing a symmetric matrix A to tridiagonal form T = QTAQ. Here
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Q = (q1, q2, . . . , qn) is orthogonal, where q1 can be chosen arbitrarily, and

T = Tn =















α1 β2

β2 α2 β3

β3
. . .

. . .
. . . αn−1 βn

βn αn















. (9.8.24)

is symmetric tridiagonal.
Equating the first n− 1 columns in A(q1, q2, . . . , qn) = (q1, q2, . . . , qn)T gives

Aqj = βjqj−1 + αjqj + βj+1qj+1, j = 1, . . . , n− 1.

where we have put β1q0 ≡ 0. The requirement that qj+1 ⊥ qj gives

αj = qT
j (Aqj − βjqj−1),

(Note that since qj ⊥ qj−1 the last term could in theory be dropped; however, since a
loss of orthogonality occurs in practice it should be kept. This corresponds to using
the modified rather than the classical Gram-Schmidt orthogonalization process.)

Further solving for qj+1,

βj+1qj+1 = rj+1, rj+1 = Aqj − αjqj − βjqj−1,

so if rj+1 6= 0, then βj+1 and qj+1 is obtained by normalizing rj+1. Given q1 these
equations can be used recursively to compute the elements in the tridiagonal matrix
T and the orthogonal matrix Q.

Algorithm 9.8.3
The Lanczos Process.
Let A be a symmetric matrix and q1 6= 0 a given vector. The following algorithm
computes in exact arithmetic after k steps a symmetric tridiagonal matrix Tk =
trid (βj , αj , βj+1) and a matrix Qk = (q1, . . . , qk) with orthogonal columns spanning
the Krylov subspace Kk(q1, A):

r0 = q1; q0 = 0;

β1 = ‖r0‖2 = 1;

for j = 1, 2, 3 . . .

qj = rj−1/βj;

rj = Aqj − βjqj−1;

αj = qT
j rj ;

rj = rj − αjqj ;

βj+1 = ‖rj‖2;

if βj+1 = 0 then exit;

end
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Note that A only occurs in the matrix-vector operationAqj . Hence, the matrix
A need not be explicitly available, and can be represented by a subroutine. Only
three n-vectors are needed in storage.

It is easy to see that if the Lanczos algorithm can be carried out for k steps
then it holds

AQk = QkTk + βk+1qk+1e
T
k . (9.8.25)

The Lanczos process stops if βk+1 = 0 since then qk+1 is not defined. However, then
by (9.8.25) it holds that AQk = QkTk, and thus Qk spans an invariant subspace of
A. This means that the eigenvalues of Tk also are eigenvalues of A. (For example,
if q1 happens to be an eigenvector of A, the process stops after one step.) Further
eigenvalues of A can the be determined by restarting the Lanczos process with a
vector orthogonal to q1, . . . , qk.

By construction it follows that span(Qk) = Kk(A, b). Multiplying (9.8.25)
by QT

k and using QT
k qk+1 = 0 it follows that Tk = QT

kAQk, and hence Tk is the
generalized Rayleigh quotient matrix corresponding to Kk(A, b). The Ritz values
are the eigenvalues θi of Tk, and the Ritz vectors are yi = Qkzi, where zi are the
eigenvectors of Tk corresponding to θi.

In principle we could at each step compute the Ritz values θi and Ritz vectors
yi, i = 1, . . . , k. Then the accuracy of the eigenvalue approximations could be
assessed from the residual norms ‖Ayi − θiyi‖2, and used to decide if the process
should be stopped. However, this is not necessary since using (9.8.25) we have

Ayi − yiθi = AQkzi −Qkziθi = (AQk −QkTk)zi = βk+1qk+1e
T
k zi.

Taking norms we get

‖Ayi − yiθi‖2 = βk+1|eT
k zi|. (9.8.26)

i.e., we can compute the residual norm just from the bottom element of the normal-
ized eigenvectors of Tk. This is fortunate since then we need to access the Q matrix
only after the process has converged. The vectors can be stored on secondary stor-
age, or often better, regenerated at the end. The result (9.8.26) also explains why
some Ritz values can be very accurate approximations even when βk+1 is not small.

So far we have discussed the Lanczos process in exact arithmetic. In practice,
roundoff will cause the generated vectors to lose orthogonality. A possible remedy
is to reorthogonalize each generated vector qk+1 to all previous vectors qk, . . . , q1.
This is however very costly both in terms of storage and operations.

A satisfactory analysis of the numerical properties of the Lanczos process was
first given by C. C. Paige [36, ]. He showed that it could be very effective
in computing accurate approximations to a few of the extreme eigenvalues of A
even in the face of total loss of orthogonality! The key to the behaviour is, that
at the same time as orthogonality is lost, a Ritz pair converges to an eigenpair of
A. As the algorithm proceeds it will soon start to converge to a second copy of the
already converged eigenvalue, and so on. The effect of finite precision is to slow
down convergence, but does not prevent accurate approximations to be found!



9.8. Subspace Methods for Large Eigenvalue Problems 111

The Lanczos process is also the basis for several methods for solving large
scale symmetric linear systems, and least squares problems, see Section 10.4.

9.8.5 Golub–Kahan Bidiagonalization.

A Lanczos process can also be developed for computing singular values and sin-
gular vectors to a rectangular matrix A. For this purpose we consider here the
Golub–Kahan bidiagonalization (GKBD) of a matrix A ∈ Rm×n, m ≥ n. This has
important applications for computing approximations to the large singular values
and corresponding singular vectors, as well as for solving large scale least squares
problems.

In Section 8.4.8 we gave an algorithm for computing the decomposition

A = U

(

B
0

)

V T , UTU = Im, V TV = In, (9.8.27)

where U = (u1, . . . , um) and V = (v1, . . . , vn) are chosen as products of Householder
transformations and B is upper bidiagonal. If we set U1 = (u1, . . . , un) then from
(9.8.27) we have

AV = U1B, ATU1 = V BT . (9.8.28)

In an alternative approach, given by Golub and Kahan [19, ], the columns of
U and V are generated sequentially, as in the Lanczos process.

A more useful variant of this bidiagonalization algorithm is obtained by instead
taking transforming A into lower bidiagonal form

Bn =















α1

β2 α2

β3
. . .
. . . αn

βn+1















∈ R(n+1)×n. (9.8.29)

(Note that Bn is not square.) Equating columns in (9.8.28) we obtain, setting
β1v0 ≡ 0, αn+1vn+1 ≡ 0, the recurrence relations

ATuj = βjvj−1 + αjvj ,

Avj = αjuj + βj+1uj+1, j = 1, . . . , n. (9.8.30)

Starting with a given vector u1 ∈ Rm, ‖u1‖2 = 1, we can now recursively generate
the vectors v1, u2, v2, . . . , um+1 and corresponding elements in Bn using, for j =
1, 2, . . . , the formulas

rj = ATuj − βjvj−1, αj = ‖rj‖2, vj = rj/αj , (9.8.31)

pj = Avj − αjuj , βj+1 = ‖pj‖2, uj+1 = pj/βj+1. (9.8.32)

For this bidiagonalization scheme we have

uj ∈ Kj(AA
T , u1), vj ∈ Kj(A

TA,ATu1).
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There is a close relationship between the above bidiagonalization process and
the Lanczos process applied to the two matrices AAT and ATA. Note that these
matrices have the same nonzero eigenvalues σ2

i , i = 1, . . . , n, and that the corre-
sponding eigenvectors equal the left and right singular vectors of A, respectively.

The GKBD process (9.8.31)–(9.8.32) generates in exact arithmetic the same
sequences of vectors u1, u2, . . . and v1, v2, . . . as are obtained by simultaneously
applying the Lanczos process to AAT with starting vector u1 = b/‖b‖2, and to
ATA with starting vector v1 = AT b/‖AT b‖2.

In floating point arithmetic the computed Lanczos vectors will lose orthog-
onality. In spite of this the extreme (largest and smallest) singular values of the
truncated bidiagonal matrix Bk ∈ R(k+1)×k tend to be quite good approximations
to the corresponding singular values of A, even for k ≪ n. Let the singular value
decomposition of Bk be Bk = Pk+1ΩkQ

T
k . Then approximations to the singular

vectors of A are
Ûk = UkPk+1, V̂k = VkQk.

This is a simple way of realizing the Ritz–Galerkin projection process on the sub-
spaces Kj(A

TA, v1) and Kj(AA
T , Av1). The corresponding approximations are

called Ritz values and Ritz vectors.
Lanczos algorithms for computing selected singular values and vectors have

been developed, which have been used, e.g., in information retrieval problems and
in seismic tomography. In these applications typically, the 100–200 largest singular
values and vectors for matrices having up to 30,000 rows and 20,000 columns are
required.

9.8.6 Arnoldi’s Method.

Arnoldi’s method is an orthogonal projection method onto Krylov subspace Km for
general non Hermitian matrices. The procedure starts by building an orthogonal
basis for Km

Algorithm 9.8.4
The Arnoldi process.
Let A be a matrix and v1, ‖v1‖2 = 1, a given vector. The following algorithm
computes in exact arithmetic after k steps a Hessenberg matrix Hk = (hij) and a
matrix Vk = (v1, . . . , vk) with orthogonal columns spanning the Krylov subspace
Kk(v1, A):

for j = 1 : k

for i = 1 : j

hij = vH
i (Avj);

end

rj = Avj −
j
∑

i=1

hijvi;

hj+1,j = ‖rj‖2;



Review Questions 113

if hj+1,j = 0 then exit;

vj+1 = rj/hj+1,j ;

end

The Hessenberg matrix Hk ∈ Ck×k and the unitary matrix Vk computed in
the Arnoldi process satisfy the relations

AVk = VkHk + hk+1,kvk+1e
H
k , (9.8.33)

V H
k AVk = Hk. (9.8.34)

The process will break down at step j if and only if the vector rj vanishes. When
this happens we have AVk = VkHk, and so R(Vk) is an invariant subspace of A. By
(9.8.33) Hk = V H

k AVk and thus the Ritz values and Ritz vectors are obtained from
the eigenvalues and eigenvectors of Hk. The residual norms can be inexpensively
obtained as follows (cf. (9.8.26))

‖(A− θiI)yi‖2 = hm+1,m|eT
k zi|. (9.8.35)

The proof of this relation is left as an exercise.

Review Questions

1. Tell the names of two algorithms for (sparse) symmetric eigenvalue problems,
where the matrix A need not to be explicitly available but only as a subrou-
tine for the calculation of Aq for an arbitrary vector q. Describe one of the
algorithms.

2. Tell the names of two algorithms for (sparse) symmetric eigenvalue problems,
where the matrix A need not to be explicitly available but only as a subrou-
tine for the calculation of Aq for an arbitrary vector q. Describe one of the
algorithms.

Problems

1. (To be added.)

9.9 Generalized Eigenvalue Problems

9.9.1 Introduction

In this section we consider the generalized eigenvalue problem of computing
nontrivial solutions (λ, x) of

Ax = λBx, (9.9.1)
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where A and B are square matrices of order n. The family of matrices A − λB is
called a matrix pencil.12 It is called a regular pencil if det(A − λB) 6≡ 0, else it
is a singular pencil. A simple example of a singular pencil is

A =

(

1 0
0 0

)

, B =

(

2 0
0 0

)

,

where A and B have a null vector e2 in common.
If A − λB is a regular pencil, then the eigenvalues λ are the zeros of the

characteristic equation
det(A− λB) = 0. (9.9.2)

If the degree of the characteristic polynomial is n− p, then we say that A−λB has
p eigenvalues at ∞.

Example 9.9.1.
The characteristic equation of the pencil

A− λB =

(

1 0
0 1

)

− λ

(

0 0
0 1

)

is det(A − λB) = 1 − λ and has degree one. There is one eigenvalue λ = ∞
corresponding to the eigenvector e1.

Note that infinite eigenvalues of A− λB simply correspond to the zero eigen-
values of the pencil B − λA.

If S and T are nonsingular matrices then (9.9.2) is equivalent to

detS(A− λB)T = det(SAT − λSBT ) = 0.

The two pencils A− λB and SAT − λSBT are said to be equivalent. They have
the same eigenvalues and the eigenvectors are simply related.

If A and B are symmetric, then symmetry is preserved under congruence
transformations in which T = ST . The two pencils are then said to be congruent.
Of particular interest are orthogonal congruence transformations, S = QT and
T = Q, where Q is orthogonal. Such transformations are stable since they preserve
the 2-norm,

‖QTAQ‖2 = ‖A‖2, ‖QTBQ‖2 = ‖B‖2.

9.9.2 Canonical Forms

The algebraic and analytic theory of the generalized eigenvalue problem is much
more complicated than for the standard problem, and a complete treatment is
outside the scoop of this book. There is a canonical form for regular matrix pencils
corresponding to the Jordan canonical form, Theorem 9.2.7, which we state without
proof.

12The word “pencil” comes from optics and geometry, and is used for any one parameter family
of curves, matrices, etc.
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Theorem 9.9.1. Kronecker’s Canonical Form.
Let A − λB ∈ Cn×n be a regular matrix pencil. Then there are nonsingular

matrices X,Z ∈ Cn×n, such that X−1(A− λB)Z = Â− λB̂, where

Â = diag (Jm1
(λ1), . . . , Jms

(λs), Ims+1
, . . . , Imt

), (9.9.3)

B̂ = diag (Im1
, . . . , Ims

, Jms+1
(0), . . . , Jmt

(0)),

and where Jmi
(λi) are Jordan blocks and the blocks s+1, . . . , t correspond to infinite

eigenvalues. The numbers m1, . . . ,mt are unique and
∑t

i=1mi = n.

The disadvantage with the Kronecker Canonical Form is that it depends dis-
continuously on A and B and is unstable. There is also a generalization of the
Schur Canonical Form (Theorem 9.2.1), which can be computed stably and more
efficiently.

Theorem 9.9.2. Generalized Schur Canonical Form.
Let A − λB ∈ Cn×n be a regular matrix pencil. Then there exist unitary

matrices U and V so that

UAV = TA, UBV = TB,

where both TA and TB are upper triangular. The eigenvalues of the pencil are the
ratios of the diagonal elements of TA and TB.

Proof. See Stewart [1973, Ch. 7.6].

As for the standard case, when A and B are real, then U and V can be
chosen real and orthogonal if TA and TB are allowed to have 2 × 2 diagonal blocks
corresponding to complex conjugate eigenvalues.

9.9.3 Reduction to Standard Form

When B is nonsingular the eigenvalue problem (9.9.1) is formally equivalent to the
standard eigenvalue problem B−1Ax = λx. However, when B is singular such a
reduction is not possible. Also, if B is close to a singular matrix, then we can expect
to lose accuracy in forming B−1A.

Of particular interest is the case when the problem can be reduced to a sym-
metric eigenvalue problem of standard form. A surprising fact is that any real square
matrix F can be written as F = AB−1 or F = B−1A where A and B are suitable
symmetric matrices. For a proof see Parlett [38, Section 15-2] (cf. also Problem 1).
Hence, even if A and B are symmetric the generalized eigenvalue problems embod-
ies all the difficulties of the unsymmetric standard eigenvalue problem. However, if
B is also positive definite, then the problem (9.9.1) can be reduced to a standard
symmetric eigenvalue problem. This reduction is equivalent to the simultaneous
transformation of the two quadratic forms xTAx and xTBx to diagonal form.
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Theorem 9.9.3.
Let A and B be real symmetric square matrices and B also positive definite.

Then there exists a nonsingular matrix X such that

XTAX = DA, XTBX = DB (9.9.4)

are real and diagonal. The eigenvalues of A− λB are given by

Λ = diag (λ1, . . . , λn) = DAD
−1
B .

Proof. Let B = LLT be the Cholesky factorization of B. Then

L−1(A− λB)L−T = Ã− λI, Ã = Ã = L−1AL−T , (9.9.5)

where Ã is real and symmetric. Let Ã = QTDAQ be the eigendecomposition of Ã.
Then we have

XT (A− λB)X = DA − λDB , X = (QL−1)T ,

and the theorem follows.

Given the pencil A−λB the pencil Â−λB̂ = γA+σB−λ(−σA+γB), where
γ2 + σ2 = 1 has the same eigenvectors and the eigenvalues are related through

λ = (γλ̂+ σ)/(−σλ̂+ γ). (9.9.6)

Hence, for the above reduction to be applicable, it suffices that some linear combi-
nation −σA+ γB is positive definite. It can be shown that if

inf
x 6=0

(

(xTAx)2 + (xTBx)2
)1/2

> 0

then there exist such γ and σ.
Under the assumptions in Theorem 9.9.3 the symmetric pencil A− λB has n

real roots. Moreover, the eigenvectors can be chosen to be B-orthogonal, i.e.,

xT
i Bxj = 0, i 6= j.

This generalizes the standard symmetric case for which B = I.
Numerical methods can be based on the explicit reduction to standard form

in (9.9.5). Ax = λBx is then equivalent to Cy = λy, where

C = L−1AL−T , y = LTx. (9.9.7)

Computing the Cholesky decomposition B = LLT and forming C = (L−1A)L−T

takes about 5n3/12 flops if symmetry is used, see Wilkinson and Reinsch, Contribu-
tion II/10, [53]. If eigenvectors are not wanted, then the transform matrix L need
not be saved.
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If A and B are symmetric band matrices and B = LLT positive definite,
then although L inherits the bandwidth of A the matrix C = (L−1A)L−T will
in general be a full matrix. Hence in this case it may not be practical to form
C. Crawford [7] has devised an algorithm for reduction to standard form which
interleaves orthogonal transformations in such way that the matrix C retains the
bandwidth of A, see Problem 2.

The round-off errors made in the reduction to standard form are in general
such that they could be produced by small perturbations in A and B. When
B is ill-conditioned then the eigenvalues λ may vary widely in magnitude, and a
small perturbation in B can correspond to large perturbations in the eigenvalues.
Surprisingly, well-conditioned eigenvalues are often given accurately in spite of the
ill-conditioning of B. Typically L will have elements in its lower part. This will
produce a matrix (L−1A)L−T which is graded so that the large elements appear
in the lower right corner. Hence, a reduction to tridiagonal form should work from
bottom to top and the QL-algorithm should be used.

Example 9.9.2. Wilkinson and Reinsch [53, p. 310].
The matrix pencil A− λB, where

A =

(

2 2
2 1

)

, B =

(

1 2
2 4.0001

)

,

has one eigenvalue ≈ −2 and one O(104). The true matrix

(L−1A)L−T =

(

2 −200
−200 10000

)

is graded, and the small eigenvalue is insensitive to relative perturbation in its
elements.

9.9.4 Methods for Generalized Eigenvalue Problems

We first note that the power method and inverse iteration can both be extended to
the generalized eigenvalue problems. Starting with some q0 with ‖q0‖2 = 1, these
iterations now become

Bq̂k = Aqk−1, qk = q̂k/‖q̂k‖,
(A− σB)q̂k = Bqk−1, qk = q̂k/‖q̂k‖, k = 1, 2, . . .

respectively. Note that B = I gives the iterations in equations (9.5.4) and (9.5.7).
The Rayleigh Quotient Iteration also extends to the generalized eigenvalue problem:
For k = 0, 1, 2, . . . compute

(A− ρ(qk−1)B)q̂k = Bqk−1, qk = q̂k/‖qk‖2, (9.9.8)

where the (generalized) Rayleigh quotient of x is

ρ(x) =
xHAx

xHBx
.
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In the symmetric definite case the Rayleigh Quotient Iteration has asymptotically
cubic convergence and the residuals ‖(A− µkB)xk‖B−1 decrease monotonically.

The Rayleigh Quotient method is advantageous to use when A and B have
band structure, since it does not require an explicit reduction to standard form.
The method of spectrum slicing can be used to count eigenvalues of A− λB in an
interval.

Theorem 9.9.4.
Let A− σB have the Cholesky factorization

A− σB = LDLT , D = diag (d1, . . . , dn),

where L is unit lower triangular. If B is positive definite then the number of eigen-
values of A greater than σ equals the number of positive elements π(D) in the
sequence d1, . . . , dn.

Proof. The proof follows from Sylvester’s Law of Inertia (Theorem 7.3.8) and the
fact that by Theorem 9.9.1 A and B are congruent to DA andDB with Λ = DAD

−1
B .

For a nearly singular pencil (A,B) it may be preferable to use the QZ algo-
rithm of Moler and Stewart which is a generalization of the implicit QR algorithm.
Here the matrix A is first reduced to upper Hessenberg form HA and simultane-
ously B to upper triangular form RB using standard Householder transformations
and Givens rotations. Infinite eigenvalues, which correspond to zero diagonal ele-
ments of RB are then eliminated. Finally the implicit shift QR algorithm is applied
to HAR

−1
B , without explicitly forming this product. This is achieved by comput-

ing unitary matrices Q and Z such that QAZ is upper Hessenberg, QBZ upper
triangular and choosing the first column of Q proportional to the first column of
HAR

−1
B − σI. A double shift technique can also be used if A and B are real. The

matrix HA will converge to upper triangular form and the eigenvalues of A − λB
will be obtained as ratios of diagonal elements of the transformed HA and RB. For
a more detailed description of the algorithm see Stewart [43, Chapter 7.6].

The total work in the QZ algorithm is about 15n3 flops for eigenvalues alone,
8n3 more for Q and 10n3 for Z (assuming 2 QZ iterations per eigenvalue). It avoids
the loss of accuracy related to explicitly inverting B. Although the algorithm is
applicable to the case when A is symmetric and B positive definite, the transfor-
mations do not preserve symmetry and the method is just as expensive as for the
general problem.

9.9.5 The Generalized SVD.

We now introduce the generalized singular value decomposition (GSVD) of
two matrices A ∈ Rm×n and B ∈ Rp×n with the same number of columns. The
GSVD has applications to, e.g., constrained least squares problems. The GSVD is
related to the generalized eigenvalue problem ATAx = λBTBx, but as in the case
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of the SVD the formation of ATA and BTB should be avoided. In the theorems
below we assume for notational convenience that m ≥ n.

Theorem 9.9.5. The Generalized Singular Value Decomposition (GSVD). Let
A ∈ Rm×n, m ≥ n, and B ∈ Rp×n be given matrices. Assume that

rank (M) = k ≤ n, M =

(

A
B

)

.

Then there exist orthogonal matrices UA ∈ Rm×m and UB ∈ Rp×p and a matrix
Z ∈ Rk×n of rank k such that

UT
AA =

(

DA

0

)

Z, UT
BB =

(

DB 0
0 0

)

Z, (9.9.9)

where

DA = diag(α1, . . . , αk), DB = diag(β1, . . . , βq), q = min(p, k).

Further, we have

0 ≤ α1 ≤ · · · ≤ αk ≤ 1, 1 ≥ β1 ≥ · · · ≥ βq ≥ 0,

α2
i + β2

i = 1, i = 1, . . . , q, αi = 1, i = q + 1, . . . , k,

and the singular values of Z equal the nonzero singular values of M .

Proof. We now give a constructive proof of Theorem 9.9.5 using the CS decompo-
sition, Let the SVD of M be

M =

(

A
B

)

= Q

(

Σ1 0
0 0

)

PT ,

where Q and P are orthogonal matrices of order (m+ p) and n, respectively, and

Σ1 = diag(σ1, . . . , σk), σ1 ≥ · · · ≥ σk > 0.

Set t = m+ p− k and partition Q and P as follows:

Q =

(

Q11 Q12

Q21
︸︷︷︸

k

Q22
︸︷︷︸

t

)

}m
}p , P = ( P1

︸︷︷︸

k

, P2
︸︷︷︸

n−k

).

Then the SVD of M can be written
(

A
B

)

P =

(

AP1 0
BP1 0

)

=

(

Q11

Q21

)

(Σ1 0 ) . (9.9.10)

Now let

Q11 = UA

(

C
0

)

V T , Q21 = UB

(

S 0
0 0

)

V T
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be the CS decomposition of Q11 and Q21. Substituting this into (9.9.10) we obtain

AP = UA

(

C
0

)

V T (Σ1 0 ) ,

BP = UB

(

S 0
0 0

)

V T (Σ1 0 ) ,

and (9.9.9) follows with

DA = C, DB = S, Z = V T (Σ1 0 )PT .

Here σ1 ≥ · · · ≥ σk > 0 are the singular values of Z.

When B ∈ Rn×n is square and nonsingular the GSVD of A and B corresponds
to the SVD of AB−1. However, when A or B is ill-conditioned, then computing
AB−1 would usually lead to unnecessarily large errors, so this approach is to be
avoided. It is important to note that when B is not square, or is singular, then the
SVD of AB† does not in general correspond to the GSVD.

9.9.6 The CS Decomposition.

The CS decomposition is a special case of the generalized SVD (GSVD) which is of
interest in its own right.

Theorem 9.9.6. CS Decomposition. Let Q ∈ R(m+p)×n have orthonormal columns,
and be partitioned as

Q =

(

Q1

Q2

)

}m
}p ∈ R(m+p)×n, m ≥ n, (9.9.11)

i.e., QTQ = QT
1Q1 +QT

2Q2 = In. Then there are orthogonal matrices U1 ∈ Rm×m,
U2 ∈ Rp×p, and V ∈ Rn×n, and square nonnegative diagonal matrices

C = diag (c1, . . . , cq), S = diag (s1, . . . , sq), q = min(n, p), (9.9.12)

satisfying C2 + S2 = Iq such that

(

UT
1 0
0 UT

2

)(

Q1

Q2

)

V =

(

UT
1 Q1V

UT
2 Q2V

)

=

(

Σ1

Σ2

)

}m
}p (9.9.13)

has one of the following forms:

p ≥ n :







C
0
S
0







}n
}m− n
}n
}p− n

, p < n :







C 0
0 I
0 0
S
︸︷︷︸

p

0
︸︷︷︸

n−p







}p
}n− p
}m− n
}p

.

The diagonal elements ci and si are

ci = cos(θi), si = sin(θi), i = 1, . . . , q,
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where without loss of generality, we may assume that

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θq ≤ π/2.

Proof. To construct U1, V , and C, note that since U1 and V are orthogonal and
C is a nonnegative diagonal matrix, (9.9.13) is the SVD of Q1. Hence the elements
ci are the singular values of Q1. If we put Q̃2 = Q2V , then the matrix





C
0
Q̃2



 =

(

UT
1 0
0 Ip

)(

Q1

Q2

)

V

has orthonormal columns. Thus C2 + Q̃T
2 Q̃2 = In, which implies that Q̃T

2 Q̃2 =

In − C2 is diagonal and hence the matrix Q̃2 = (q̃
(2)
1 , . . . , q̃

(2)
n ) has orthogonal

columns.
We assume that the singular values ci = cos(θi) of Q1 have been ordered

according to (9.9.6) and that cr < cr+1 = 1. Then the matrix U2 = (u
(2)
1 , . . . , u

(2)
p )

is constructed as follows. Since ‖q̃(2)j ‖2
2 = 1 − c2j 6= 0, j ≤ r we take

u
(2)
j = q̃

(2)
j /‖q̃(2)j ‖2, j = 1, . . . , r,

and fill the possibly remaining columns of U2 with orthonormal vectors in the or-
thogonal complement of R(Q̃2). From the construction it follows that U2 ∈ Rp×p

is orthogonal and that

UT
2 Q̃2 = U2Q2V =

(

S 0
0 0

)

, S = diag(s1, . . . , sq)

with sj = (1 − c2j)
1/2 > 0, if j = 1, . . . , r, and sj = 0, if j = r + 1, . . . , q.

In the theorem above we assumed that m ≥ n. The general case gives rise to
four different forms corresponding to cases where Q1 and/or Q2 have too few rows
to accommodate a full diagonal matrix of order n.

The proof of the CS decomposition is constructive. In particular U1, V , and
C can be computed by a standard SVD algorithm. However, the above algorithm
for computing U2 is unstable when some singular values ci are close to 1.

Review Questions

1. What is meant by a regular matrix pencil? Give examples of a singular pencil, and

a regular pencil that has an infinite eigenvalue.

2. Formulate a generalized Schur Canonical Form. Show that the eigenvalues of the

pencil are easily obtained from the canonical form.
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3. Let A and B be real symmetric matrices, and B also positive definite. Show that

there is a congruence transformation that diagonalizes the two matrices simultane-

ously. How is the Rayleigh Quotient iteration generalized to this type of eigenvalue

problems, and what is its order of convergence?

Problems

1. Show that the matrix pencil A − λB where

A =

„

0 1

1 0

«

, B =

„

1 0

0 −1

«

has complex eigenvalues, even though A and B are both real and symmetric.

2. Let A and B be symmetric tridiagonal matrices. Assume that B is positive definite

and let B = LLT
, where the Cholesky factor L is lower bidiagonal.

(a) Show that L can be factored as L = L1L2 · · ·Ln, where Lk differs from the unit

matrix only in the kth column.

(b) Consider the recursion

A1 = A, Ak+1 = QkL−1

k AkL−T
k QT

k , k = 1, . . . , n.

Show that if Qk are orthogonal, then the eigenvalues of An+1 are the same as those

for the generalized eigenvalue problem Ax = λBx.

(c) Show how to construct Qk as a sequence of Givens rotations so that the matrices

Ak are all tridiagonal. (The general case, when A and B have symmetric bandwidth

m > 1, can be treated by considering A and B as block-tridiagonal.)

Notes

Complex Givens rotations and complex Householder transformations are treated in
detail by Wilkinson [52, pp. 47–50]. For implementation details of complex House-
holder transformations, see the survey by R. B. Lehoucq [34, 1996].

For a more complete treatment of matrix functions see Chapter V in Gant-
macher [15, ] and Lancaster [32, ]. Stewart and Sun [45] is a lucid treatise
of matrix perturbation theory, with many historical comments and a very useful
bibliography. Ward 1977 analyzed the method based on scaling and squaring for
computing the exponential of a matrix and gave an a posteriori error bound. Moler
and Van Loan 1978 gave a backward error analysis covering truncation error in the
Padé approximation.

An analysis and a survey of inverse iteration for a single eigenvector is given
by Ipsen [26]. The relation between simultaneous iteration and the QR algorithm
and is explained in Watkins [50].

A still unsurpassed text on computational methods for the eigenvalue problem
is Wilkinson [52, ]. Also the Algol subroutines and discussions in Wilkinson and
Reinsch [53, ] are very instructive. An excellent discussion of the symmetric
eigenvalue problem is given in Parlett [38, ]. Methods for solving large scale
eigenvalue problems are treated by Saad [41, ].
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The monograph by Bhatia [5] on perturbation theory for eigenspaces of Her-
mitian matrices is a valuable source of reference.

A stable algorithm for computing the SVD based on an initial reduction to
bidiagonal form was first sketched by Golub and Kahan in [19]. The adaption of
the QR algorithm, using a simplified process due to Wilkinson, for computing the
SVD of the bidiagonal matrix was described by Golub [18]. The “final” form of the
QR algorithm for computing the SVD was given by Golub and Reinsch [20]. The
GSVD was first studied by Van Loan [21, ]. Paige and Saunders [37, ]
extended the GSVD to handle all possible cases, and gave a computationally more
amenable form.

For a survey of cases when it is possible to compute singular values and singular
vectors with high relative accuracy; see [8].

Many important practical details on implementation of eigenvalue algorithms
can be found in the documentation of the EISPACK and LAPACK software; see
Smith et al. [42, ], B. S. Garbow et al. [16, ], and E. Anderson et al. [1,
].
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angew. Math.., 30:51–94, 1846.



Bibliography 127

[28] W. M. Kahan. Accurate eigenvalues of a symmetric tri-diagonal matrix. Tech.
Report No. CS-41, Revised June 1968, Computer Science Department, Stan-
ford University, CA, 1966.

[29] E. G. Kogbetliantz. Solution of linear equations by diagonalization of coeffi-
cients matrix. Quart. Appl. Math., 13:123–132, 1955.

[30] A. N. Krylov. On the numerical solution of the equation by which, in technical
matters, frequencies of small oscillations of material systems are determined.
Izv. Akad. Nauk. S.S.S.R. Otdel.Mat. Estest. Nauk, VII:4:491–539, 1931. in
Russian.

[31] Vera N. Kublanovskaya. On some algorithms for the solution of the complete
eigenvalue problem. USSR Comput. Math. Phys., 3:637–657, 1961.

[32] Peter Lancaster and M. Tismenetsky. The Theory of Matrices. Academic Press,
New York, 1985.

[33] Cornelius Lanczos. An iteration method for the solution of the eigenvalue prob-
lem of linear differential and integral operators. J. Res. Nat. Bur. Standards,
Sect. B, 45:255–282, 1950.

[34] Richard B. Lehoucq. The computations of elementary unitary matrices. ACM
Trans. Math. Software, 22:393–400, 1996.

[35] Cleve Moler and Charles F. Van Loan. Nineteen dubious ways to compute the
exponential of a matrix, twenty-five years later. SIAM Review, 45:3–49, 2003.

[36] Christopher C. Paige. The Computation of Eigenvalues and Eigenvectors of
Very Large Sparse Matrices. PhD thesis, University of London, 1971.

[37] Christopher C. Paige and Michael A. Saunders. Toward a generalized singular
value decomposition. SIAM J. Numer. Anal., 18:398–405, 1981.

[38] Beresford N. Parlett. The Symmetric Eigenvalue Problem. Classics in Applied
Mathematics 20. SIAM, Philadelphia, PA, 1998.

[39] Heinz Rutishauser. Solution of eigenvalue problems with the lr-transformation.
Nat. Bureau of Standards, Appl. Math. Ser., 49:47–81, 1958.

[40] Heinz Rutishauser. The Jacobi method for real symmetric matrices. Numer.
Math., 9:1–10, 1966.

[41] Yosef Saad. Numerical Methods for Large Eigenvalue Problems. Halstead Press,
New York, 1992.

[42] B. T. Smith, J. M. Boyle, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B.
Moler. Matrix Eigensystems Routines—EISPACK Guide. Springer-Verlag,
New York, second edition, 1976.



128 Bibliography

[43] G. W. Stewart. Introduction to Matrix Computations. Academic Press, New
York, 1973.

[44] G. W. Stewart. Matrix Algorithms Volume II: Eigensystems. SIAM, Philadel-
phia, PA, 2001.

[45] George W. Stewart and Ji guang. Sun. Matrix Perturbation Theory. Academic
Press, Boston, MA, 1990.

[46] Gilbert Strang. Linear Algebra and Its Applications. Academic Press, New
York, third edition, 1988.

[47] Lloyd N. Trefethen. Pseudospectra of linear operators. SIAM Review, 39:383–
406, 1997.

[48] Charles F. Van Loan. Generalizing the singular value decomposition. SIAM J.
Numer. Anal., 13:76–83, 1976.

[49] Richard S. Varga. Gerschgorin and his Circles. Springer, Berlin, Heidelberg,
New York, 2004.

[50] David S. Watkins. Understanding the QR algorithm. SIAM Review, 24:427–
440, 1982.

[51] David S. Watkins. Fundamentals of Matrix Computation. Wiley-InterScience,
New York, 2002.

[52] James H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press,
Oxford, 1965.

[53] James H. Wilkinson and C. Reinsch, editors. Handbook for Automatic Com-
putation. Vol. II, Linear Algebra. Springer-Verlag, New York, 1971.



Index

adjoint matrix, 2
Aitken extrapolation, 50
algorithm

Givens rotations, 68
Lanczos, 109
orthogonal iteration, 103
Rayleigh–Ritz procedure, 102
singular values by spectrum slic-

ing, 99
svd, 60, 65
The Arnoldi process, 112
tridiagonal spectrum slicing, 76

analytic function
of matrix, 22

Arnoldi’s method, 112–113
arrowhead matrix, 74

Bauer–Fike’s theorem, 38
bidiagonal decomposition

Lanczos process, 111

canonical form
Kronecker, 115
Schur, 11–14

Cayley–Hamilton theorem, 18, 105
characteristic equation, 3
characteristic polynomial, 3
CS decomposition, 120–121

decomposition
block diagonal, 16
CS, 120–121
GSVD, 118

deflation, 51–52
deflation of matrix, 7, 52
departure from normality, 14
divide and conquer

tridiagonal eigenproblem, 74–75
dominant

invariant subspace, 57

eigenvalue
algebraic multiplicity, 7
by spectrum slicing, 75–77
defective, 8
dominant, 49
error bound, 43–46
geometric multiplicity, 8
Jacobi’s method, 59–62
of Kronecker product, 9
of Kronecker sum, 9
perturbation, 38–46
power method, 49–57
subspace iteration, 56–57

eigenvalue of matrix, 3
eigenvalue problem

large, 101–113
eigenvector

of matrix, 3
perturbation, 38–46

elementary rotations
unitary, 66

exponential of matrix, 21

field of values, 43
Fischer’s theorem, 41
flop count

QR algorithm for SVD, 97
QR step, 84
reduction to Hessenberg form, 69,

72
functions

matrix-valued, 21–29

gap
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of spectrum, 102
generalized eigenvalue problem, 113–

118
generalized SVD, 118–120
Gerschgorin disks, 36
Gerschgorin’s theorem, 36, 37
Givens rotation

unitary, 67
GKBD, see Golub–Kahan bidiagonal-

ization
Golub–Kahan bidiagonalization, 111–

112
in finite precision, 112

grade
of vector, 9

graded matrix, 73
graph

connected, 6
directed, 6

growth ratio, 71

Hermitian matrix, 2
Hessenberg form

reduction to, 69–72
Hessenberg matrix

unreduced, 10, 70
Hotelling, 51
Householder reflection

unitary, 67, 68

instability
irrelevant, 70

invariant subspace, 5
inverse iteration, 52–55

shift, 52

Jacobi transformation, 60
Jacobi’s method

classical, 61
cyclic, 61
for SVD, 62
sweep, 61
threshold, 61

Jordan block, 9
Jordan canonical form, 15–18

Kronecker

product, 9
sum, 9

Kronecker’s canonical form, 115
Krylov

subspaces, 105–108

Lanczos bidiagonalization, see Golub–
Kahan bidiagonalization, 112

Lanczos process, 108–111
Lyapunov’s equation, 15

Markov chain, 29
matrix

adjoint, 2
defective, 8
derogatory, 17
diagonalizable, 5
eigenvalue of, 3
eigenvector of, 3
elementary divisors, 18
exponential, 21
functions, 21–29
graded, 73
Hermitian, 2
irreducible, 6
non-negative irreducible, 28
normal, 13
quasi-triangular, 12
reducible, 6
row stochastic, 29
scaled diagonally dominant, 73
square root, 27
trace, 3
unitary, 2

matrix exponential
hump, 24

matrix pencil, 114
congruent, 114
equivalent, 114
regular, 114
singular, 114

minimal polynomial, 17
of vector, 9

minimax characterization
of eigenvalues, 41

Newton’s interpolation formula



Index 131

for matrix functions, 35
Non-negative matrices, 28–29

one-sided Jacobi SVD, 64–65
orthogonal iteration, 56, 103

Padé approximant, 25
Perron–Frobenius theorem, 28
perturbation

of eigenvalue, 38–46
of eigenvector, 38–46

power method, 49–57
principal vector, 17

QR algorithm, 79–92, 98
explicit-shift, 84
for SVD, 92–96
Hessenberg matrix, 84–88
implicit shift, 85
perfect shifts, 92
rational, 91
Rayleigh quotient shift, 85
symmetric tridiagonal matrix, 89–

92
Wilkinson shift, 90

QZ algorithm, 118

radius of convergence, 19
Rayleigh quotient, 43

iteration, 55, 117
matrix, 102, 110

Rayleigh–Ritz procedure, 101–103
reduction

to standard form, 115–117
reduction to

Hessenberg form, 69–72
symmetric tridiagonal form, 72–

74
residual vector, 44
Ritz values, 102
Ritz vectors, 102
row stochastic matrix, 29
RQI, see Rayleigh quotient iteration

scaled diagonally dominant, 73
Schur

canonical form, 11–14

generalized, 115
vectors, 12

Schur decomposition, 27
secular equation, 48, 74
similarity transformation, 4
singular values

by spectrum slicing, 99
relative gap, 97

spectral abscissa, 4, 22
spectral radius, 4, 19
spectral transformation, 52, 105
spectrum of matrix, 3
spectrum slicing, 75–77
square root of matrix, 27
subspace

invariant, 5
subspace iteration, 103–105
SVD

generalized, 118–120
Sylvester’s

equation, 14
law of inertia, 118

symmetric tridiagonal form
reduction to, 72–74

theorem
Cayley-Hamilton, 18
implicit Q, 70, 89

transformation
similarity, 4

tridiagonal matrix, 48
unreduced, 89

two-side Jacobi-SVD, 63
two-sided Jacobi-SVD, 65

unreduced
Hessenberg matrix, 10

vector
principal, 17

Wielandt–Hoffman theorem, 42

zero shift QR algorithm, 98
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