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PREFACE

In numerical analysis, in applied mathematics and in engineering one has
often to deal with sequences and series. They are produced by iterative
methods, perturbation techniques, approximation procedures depending
on a parameter, and so on. Very often in practice those sequences or
series converge so slowly that it is a serious drawback to their effective
use. This is the reason why convergence acceleration methods have been
studied for many years and applied to various situations. They are based
on the very natural idea of extrapolation and, in many cases, they lead
to the solution of problems which were unsolvable otherwise. Extrapola-
tion methods now constitute a particular domain of numerical analysis
having connections with many other important topics as Padé approxi-
mation, continued fractions, formal orthogonal polynomials, projection
methods to name a few. They also form the basis of new methods for
solving various problems and have many applications as well. Analytical
methods seem to become more and more in favour in numerical analysis
and applied mathematics and thus one can think (and we do hope) that
extrapolation procedures will become more widely used in the future.

The aim of this book is twofold. First it is a self-contained and, as
much as possible, exhaustive exposition of the theory of extrapolation
methods and of the various algorithms and procedures for accelerating
the convergence of scalar and vector sequences. Our second aim is to
convince people working with sequences to use extrapolation methods
and to help them in this respect. This is the reason why we provide many
subroutines (written in FORTRAN 77) with their directions for use. We
also include many numerical examples showing the effectiveness of the
procedures and a quite consequent chapter on applications. In order to
reduce the size of the book the proofs of the theoretical results have been
omitted and replaced by references to the existing literature. However,
on the other hand, some results and applications are given here for the
first time. We have also included suggestions for further research.
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The first chapter is a general presentation of extrapolation methods
and algorithms. It does not require any special knowledge and gives
the necessary prerequisites. The second chapter is devoted to the algo-
rithms for accelerating scalar sequences. Special devices for a better use
of extrapolation procedures are given in the third chapter. Chapter four
deals with acceleration of vector sequences while chapter five presents
the so-called continuous prediction algorithms for functional extrapola-
tion. The sixth chapter is quite a big one. It is devoted to applications
of extrapolation methods which range from the solution of systems of
equations, differential equations, quadratures to problems in statistics.
The last chapter presents the subroutines. They have been written in
order to be as portable as possible and can be found on the floppy disk
included in this book with the main programs and the numerical results.
They are all new.

We intend to write a book which can be of interest for researchers in
the field and to those needing to use extrapolation methods for solving
a particular problem. We also hope that it can be used for graduate
courses on the subject.

It is our pleasure to thank our colleagues and students who partici-
pate, directly or not, to the preparation of this monograph. In particular
some of them read the manuscript or parts of it and made several im-
portant comments. We would like to specially express our gratitude
to M. Calvani, G. F. Cariolaro, F. Cordellier, A. Draux, B. Germain-
Bonne, A. M. Litovsky, A. C. Matos, S. Paszkowski, M. Pichat, M. Pinar,
M. Prévost, V. Ramirez, H. Sadok, A. Sidi and J. van Iseghem.

We would like to thank M. Morandi Cecchi for inviting C. Brezinski
to the University of Padova for a one month stay during which the book
was completed.

A special thank is also due to F. J. van Drunen, J. Butterfield and
A. Carter from North-Holland Publishing Company for their very ef-
ficient assistance in the preparation of the book and to M. Agnello,
A. Calore and R. Lazzari from the University of Padova who typed the
-textual part of the manuscript.

Claude Brezinski Michela Redivo Zaglia
Université des Sciences et Universita degli Studi di Padova
Technologies de Lille
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Chapter 1

INTRODUCTION TO THE THEORY

1.1 First steps

The aim of this chapter is to be an introduction to convergence accelera-
tion methods which are usually obtained by an extrapolation procedure.
Let (S,) be a sequence of (real or complex) numbers which converges
to S. We shall transform the sequence (S,) into another sequence (T},)
and denote by T such a transformation.
For example we can have

. Sn + Sn+1

Tn 2 b

n=01,...

or

SnSnt2 — S£+1
Sﬂ.+2 - 2Sn+1 + Sn ’

T, = n=01,...

which is the well-known A2 process due to Aitken [6].

In order to present some practical interest the new sequence (7,,) must
exhibit, at least for some particular classes of convergent sequences (S,),
the following properties

1. (T,) must converge
2. (T,) must converge to the same limit as (S,,)

3. (T,) must converge to S faster than (S,), that is
Jim (T, — §)/(S» — §) = 0.

e In the case 2, we say that

the transformation T is for the sequence (S,).
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o In the case 3, we say that
the transformation T | accelerates the convergence] of the sequence
(Sn) or that
the sequence (T},) lcanverges faster] than (S,).

Usually these properties do not hold for all converging sequences
(Sn) and, in particular, the last one since, as proved by Delahaye and
Germain-Bonne [139], a universal transformation T accelerating all the
converging sequences cannot exist (this question will be developed in
section 1.10). This negative result also holds for some classes of se-
quences such as the set of monotone sequences or that of logarithmic
sequences (that is such that Jim (Sn+1— S)/(Sn — S) = 1). Thus, this
negative result means that it will be always interesting to find and to
study new sequence transformations since, in fact, each of them is only
able to accelerate the convergence of certain classes of sequences.

What is now the answer to the first two above mentioned properties?
The first example was a linear transformation for which it is easy to see
that, for all converging sequence (S,), the sequence (T,) converges and
has the same limit as (S,). Such linear transformations, called summa-
tion processes, have been widely studied and the transformations named
after Euler, Cesaro, Hausdorff, Abel and others, are well known. The
positive answer to properties 1 and 2 above for all convergent sequences
is a consequence of the so-called Toeplitz theorem which can be found
in the literature and whose conditions are very easily checked in prac-
tice. Some summation processes are very powerful for some sequences
as is the case with Romberg’s method for accelerating the trapezoidal
rule which is explained in any textbook of numerical analysis. However
let us look again at our first transformation and try to find the class of
sequences which it accelerates. We have

T.-§ 1 S,.H-S)
(” S. -3

Sn—85 2

and thus
"l_i_{{.lo(Tn - 5)/(Sn-5)=0

if and only if
Jim (Sas1 = 8)/(5n = 5) = -1
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which shows that this transformation is only able to accelerate the con-
vergence of a very restricted class of sequences. This is mainly the case
for all summation processes.

On the other hand, let us now look at our second sequence trans-
formation which is Aitken’s A2 process. It can be easily proved that
it accelerates the convergence of all the sequences for which it exists
A € [-1, 4+1] such that

nl_i_{{.lo(snﬂ - 5)/(S5n=S8)=2A

which is a much wider class than the class of sequences accelerated by
our first linear transformation. But, since in mathematics as in life
nothing can be obtained without pain, the drawback is that the answer
to properties 1 and 2 is no more positive for all convergent sequences.
Examples of convergent sequences (S,) for which the sequence (7,) ob-
tained by Aitken’s process has two accumulation points, are known, see
section 2.3. But it can also be proved that if such a (7)) converges, then
its limit is the same as the limit of the sequence (S,), see Tucker [440].

In conclusion, nonlinear sequence transformations usually have better
acceleration properties than linear summation processes (that is, they
accelerate wider classes of sequences) but, on the other hand, they do
not always transform a convergent sequence into another converging
sequence and, even if so, both limits can be different.

In this book we shall be mostly interested by nonlinear sequence
transformations. Surveys on linear summation processes were given by
Joyce [253], Powell and Shah [361] and Wimp [465]. One can also con-
sult Wynn [481], Wimp (463, 464]|, Niethammer [334], Gabutti [168],
Gabutti and Lyness [170] and Walz [451] among others where interest-
ing developments and applications of linear sequence transformations
can be found.

There is another problem which must be mentioned at this stage.
When using Aitken’s process, the computation of T, uses Sy, S+1 and
Sn+2. For some sequences it is possible that Jim (T.— S)/(Sn—-S5)=0
and that ,.li.l?o(T" —8)/(Sp41—S) or "lirgo(Tn — 8)/(Sn+2— S) be differ-
ent from zero. In particular if lim (Sp41 — §)/(Sn — §) = 0 then (T5,)
obtained by Aitken’s process converges faster than (S,) and (S,41) but
not always faster than (S,+2). Thus, in the study of a sequence trans-
formation, it would be better to look at the ratio (T, — S)/(Sn+k — S)
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where S, is the term with the greatest index used in the computation
of T,,. However it must be remarked that

Tn—5 _Ta-S Sa-S5  Sak1—S
Satk—S Sn—S Sat1—=S 7 Sayx—S

which shows that if (T, — §)/(S, — S) tends to zero and if (Sn+1 —
5)/(Sn — 8) is always away from zero and do not tend to it, then the
ratio (T, — §)/(Sn+k — §) also tends to zero. In practice, avoiding a null
limit for (Sp+1 — §)/(S» — S) is not a severe restriction since, in such a
case, (S,) converges fast enough and does not need to be accelerated.
We shall now exemplify some interesting properties of sequence trans-
formations on our two preceding examples. In the study of a sequence
transformation the first question to be asked and solved (before those
of convergence and acceleration) is an algebraic one: it concerns the
so-called kernel of the transformation that is the set of sequences for
which 35 such that Vn,T, = § (in the sequel Vn would eventually mean
Vn > N).
For our linear summation process it is easy to check that its kernel is
the set of sequences of the form

S" = S + a(—'l)"

where a is a scalar.
For Aitken’s process the kernel is the set of sequences of the form

Sn =8+ al"

where a and )\ are scalars with a # 0 and A # 1.
Thus, obviously, the kernel of Aitken’s process contains the kernel of the
first linear summation process.

As we can see, in both cases, the kernel depends on some (almost)
arbitrary parameters, S and a in the first case, S, a and A(# 1) in the
second.

If the sequence (S,) to be accelerated belongs to the kernel of the
transformation used then, by construction, we shall have Vn, T, = §.

Of course, usually, S is the limit of the sequence (S,) but this is not
always the case and the question needs to be studied. For example, in
Aitken’s process, S is the limit of (S, ) if |A| < 1. If |A] > 1,(Sn) diverges
and S is often called its anti-limit. If |A\| = 1,(S,) has no limit at all
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or it only takes a finite number of distinct values and § is, in this case,
their arithmetical mean.

The two above expressions give the explicit form of the sequences
belonging to the respective kernels of our transformations. For that
reason we shall call them the explicit forms of the kernel.

However the kernel can also be given in an implicit form that is by means
of a relation which holds among consecutive terms of the sequence. Thus,
for the first transformation, it is equivalent to write that, Vn

Snt1 =S =—(5, - 5)
while, for Aitken’s process, we have Yn
S,.+1 -S5S= A(S" - S)

Such a difference equation (see Lakshmikantham and Trigiante [270]) is
called the implicit form of the kernel because it does not give directly
(that is explicitly) the form of the sequences belonging to the kernel
but only implicitly as the solution of this difference equation. Solving
this difference equation, which is obvious in our examples, leads to the
explicit form of the kernel. Of course, both forms are equivalent and
depend on parameters.

We are now ready to enter into the details and to explain what an
extrapolation method is.

1.2 What is an extrapolation method?

As we saw in the previous section, the implicit and explicit forms of
the kernel of a sequence transformation depend on several parameters
S,ai,...,ap. The explicit form of the kernel explicitly gives the expres-
sion of the sequences of the kernel in terms of the unknown parameters
which can take (almost) arbitrary values. The implicit form of the kernel
consists in a relation among consecutive terms of the sequence, involving
the unknown parameters a,,...,a, and §, that is a relation of the form

R(S",. ..,Sn.'.q, S) =0

which must be satisfied Vn, if and only if (S,) belongs to the kernel K7
of the transformation T'.
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A sequence transformation T : (S,) — (Ty) is said to be an extrap-
olation method if it is such that ¥n,T,, = S if and only if (S,) € K7.
Thus any sequence transformation can be viewed as an extrapolation

method.
What is the reason for this name? Of course, it comes from interpolation
and we shall now explain how a transformation T is built from its kernel
K7 that is from the given relation R.

SnySnt1y -« - sSn+p+q being given we are looking for the sequence (u,)€
K satisfying the interpolation conditions

u;=S5;, t=n,...,n+p+gq.
Then, since (u,) belongs to Kr, it satisfies the relation R that is, Vi
R(uiy...,%44,S5) =0.
But, thanks to the interpolation conditions we also have
R(S;,...,5i4+4,5) =10

for i = n,...,n+ p. This is a system of (p + 1) equations with (p + 1)
unknowns §,a;,...,a, whose solution depends on n, the index of the
first interpolation condition. We shall solve this system to obtain the
value of the unknown § which, since it depends on n, will be denoted
by T, (sometimes to recall that it also depends on k = p + ¢ it will be
called T,S")).

In order for the preceding system to have a solution we assume that
the derivative of R with respect to the last variable is different from zero
which guarantees, by the implicit function theorem, the existence of a
function G (depending on the unknown parameters a,,. .., ap) such that

S = G(S,‘, ceey S;+q)

for i = n,...,n+ p. The solution T,, = S of this system depends on
Sny+ -y Sn+ik and thus we have

Ty = F(Sn,- -, Sask)-

Let us give an example to illustrate our purpose. We assume that R
has the following form

R(u;, %i41,S) = a1(u; — S) + az(uiy1 — S)=0, ay-a2 #0,
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and thus we have to solve the system

al(S,. - S) + az(S,..,.] - S) =0
al(S,,H - S) + GQ(S"+2 — S) =0.

Since this system does not change if each equation is multiplied by a
non zero constant then a; and a, are not independent and the system
corresponds top = ¢ = 1.

The derivative of R with respect to its last variable is equal to —(a; +a2)
which is assumed to be different from zero.

Then G is given by

S = (a1u; + aguiy1)/(a1 + a2)

and the system to be solved becomes

S = (180 + a25n41)/(a1 + a2)
S = (a18n+1 + a25n42)/(a1 + a2).

Thus we do not restrict the generality if we assume that a; + a; = 1 and
the system writes

S=a5,+ (1 - al)sn+1
S =a18n41+ (1 - a1)Sn42

or

0= alASn + (1 - al)AS,,+1

where A is the difference operator defined by Av, = v,4; — v, and
Aktly, = Aky ) — Aky,.
The last relation gives

a, = ASp;1/A2S,

(A2S,, # 0 since a; + a; # 0) and thus we finally obtain

Asn+l Asn+l
$= 1= g Set (1 a5 o

that is
Snsn+2 - Sﬁ-{-l

T, =
Sn+2 - 2Sn+1 + Sn
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which is Aitken’s A2 process (whose name becomes from the A? in the
denominator).

Thus we saw how to construct a sequence transformation T from a
given kernel X7. By construction Vn,T,, = S if and only if (S,) € K.
Sometimes it can happen that the starting point of a study is the se-
quence transformation T and one has to look for its kernel. This is, in
particular, the case when a new sequence transformation is obtained by
modifying another one. Usually this approach is much more difficult
than the direct approach explained above (see section 1.4).

1.3 What is an extrapolation algorithm?

Let us come back to the example of Aitken’s A2 process given in the
preceding section. We saw that the system to be solved for constructing
T is

Tn =85= alsn-i-l + (1 - al)sn+2-

Adding and subtracting S,, to the first equation and S, ; to the second
one, leads to the equivalent system

{ Tn =98 = a15,. + (1 - al)S,.+1

Sn T, + dAS,
Sn+l = Th+ bASn+1

where b = a; — 1.

We have to solve this system for the unknown 7,,. Using the classical
determinantal formulze giving the solution of a system of linear equations
we know that T}, can be written as a ratio of determinants

Sn Sn+1
AS, AS,
T, = b .
1 1
IAs,, ASns1

Of course the computation of a determinant of dimension 2 is well
known and easy to perform and in the preceding case we obtain

T = SnAsn+l - n+1ASn . Snsn+2 - s'2|+1
" T ASni1— ASn Sniz~25n11 + Sn
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which is again the formula of Aitken’s process.
Let us now take a more complicated example to illustrate the problems
encountered in our approach. We assume now that R has the form

ay(u; — §) + az(uiy1 — S)+ -+ + agy1(vipk — §) =0

with a; - a1 # 0. We now set p = ¢ = k. For k = 1, the kernel of
Aitken’s process is recovered. Performing the same procedure as above
(assuming that a; + -+ + ax4+1 = 1 since this sum has to be different
from zero) leads to the system

Sn = T+ bIASn +--4 bkASn-Hc—l
sn+1 = Ta+ bIASn+1 +--- 4+ bkASn+k

Sn+k = Tn + blASn+k 4+ .+ bkASn-l-Zk-—l'

Solving this system by the classical determinantal formulz gives for T,

Sn Sn+1 o Sn+k
AS, ASn+1 e ASTH'IC
T — ASn-Hc—l ASn-Hc v ASﬂ+2k—-1
" 1 1 .. 1
AS,  ASpy1 -+ ASmik
ASntk-1 ASntk - ASnypor—

In that case T, will be denoted as ex(Sy,). It is a well known sequence
transformation due to Shanks [392].

The computation of ex(S,) needs the computation of two determi-
nants of dimension (k + 1) that is about 2(k + 1)(k + 1)! multiplications.
For k = 9 this is more than 7 - 107 multiplications. Thus even if these
determinants can be calculated in a reasonable time, the result obtained
will be, in most cases, vitiated by an important error due to the com-
puter’s arithmetic. This is a well known objection to the computation of
determinants which, together with the prohibitive time, leads numerical
analysts to say that they don’t know how to compute determinants.

If the determinants involved in the definition of T,, have some special
structures, as is the case for Shanks’ transformation, then it is possible to
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obtain some rules (that is an algorithm) for computing recursively these
ratios of determinants. Such an algorithm will be called an extrapola-
tion algorithm. The implementation of some sequence transformations
needs the knowledge of a corresponding extrapolation algorithm because
their definition involves determinants; this is the case for Shanks’ trans-
formation. Some other transformations as Aitken’s process, do not need
such an algorithm because their direct implementation is easier and even
obvious.

For implementing Shanks’ transformation, it is possible to use the
e-algorithm of Wynn [470] whose rules are the following

e("])=0, eg")=S,., n=0,1,...

n n41 1
5{.,_)1 = €£_1)+m, k,n=0,1,...
€k — &k

and we have

eg:) = ex(5n)

the ¢’s with an odd lower index being intermediate quantities without
any interesting meaning.

The ¢-algorithm is one of the most important extrapolation algorithms
and it will be studied in section 2.3. Let us mention that Shanks’ trans-
formation can also be implemented via other extrapolation algorithms.

As we shall see below, many sequence transformations are defined as
a ratio of determinants and thus they need an extrapolation algorithm
for their practical implementation. As explained above, such an algo-
rithm usually allows to compute recursively the T,g")’s. It is obtained,
in most cases, by applying determinantal identities to the ratio of deter-
minants defining T,E"). Although they are now almost forgotten, these
determinantal identities are well known and they are named after their
discoverers: Gauss, Cauchy, Kronecker, Jacobi, Binet, Laplace, Muir,
Cayley, Bazin, Schur, Sylvester, Schweins, ... the last three being the
most important ones for our purpose. The interested reader is referred
to the paper by Brualdi and Schneider [105] which is on these questions.

There is a case where it is quite easy to construct the sequence trans-
formation T and the corresponding algorithm from a given kernel. It is
when the kernel is the set of sequences of the form

Spo=S+and,, n=01,...
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where (a,) and (d,) are sequences such that a linear operator P satis-
fying
P(au, + b) = aP(u,)+b

for all sequences (u,) and all a and b and such that, Vn
P(a,)=0

is known.
In this case we have

(Sn— S)/dn=an, n=0,1,...
and thus, applying P to both sides gives
P((Sn, — S)/d,) = P(a,) =0, n=0,1,...
It follows, from the properties of P, that Vn
P(Sp/dn) - S P(1/ds) =0
and thus the sequence transformation T : (S, ) — (T,) defined by
Tn = P(Sn/dn)/P(1/d,), mn=0,1,...

is such that Vn,T,, = S if and only if V1, S,, = S + a,d,.

For example if Vn,a,, = a then the operator P can be taken as the
forward difference operator A and the algorithm for the practical imple-
mentation of the transformation T is obvious.

If a, is a polynomial in n of degree (k — 1) then P can be taken as A*.
This approach, due to Weniger [457], will be used in section 2.7 where
examples of such a situation will be given.

1.4 Quasi-linear sequence transformations

We previously saw that a sequence transformation T : (S,) — (Ty)
has the form

T, =F(Snssn+h---,sn+k), n=0,1,..
Of course, this can also be written as

T,.=S.+D,, n=0,1,...
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with D, = F(Sn,Sn+1,-- -+ Sn+k) — Sn and we have

T,~S _._ _Da
5.-5  5-5.

Thus a necessary and sufficient condition that "lirgo (Tn—S)/(5,-S)=0
is that lim D,/(5 - Sn) = 1.

Such a sequence (D,) is called a perfect estimation of the error of
(S») and accelerating the convergence is equivalent to finding a perfect
estimation of the error. This very simple observation opened a new
approach to extrapolation methods since perfect estimations of the er-
ror can be sometimes obtained from the usual convergence criteria for
sequences and series, an approach introduced by Brezinski [77] and de-
veloped much further by Matos [311). We shall come back later (see
sections 3.1 and 3.2) to this idea but for the moment we shall use it to
explain the usefulness of the so-called property of quasi-linearity that
almost all the sequence transformations possess.

Let us consider the sequence (S, = S, + b) where b is a constant. If
(S») converges to S, then (S)) converges to §' = S +b. If (D,) is a
perfect estimation of the error of (S,,), then it is also a perfect estimation
of the error of (S/,) since S~ S} = §—S,. As we saw above D,, depends
on S,,...,Sn+k. Thus it will be interesting for D,, to remain unchanged
if Sp,..., Sntk ave replaced by S, + b,...,Sp+x + b. In that case D, is
said to be invariant by translation and if we denote by (T},) the sequence
obtained by applying the transformation T to (S.) then we have

T. =S8 +D,=8S,+b+D,=T,+b

and we say, in that case, that T (or F) is translative.

Now let us consider the sequence (S, = aS,) where a is a non-zero
constant. If (S,) converges to S, then (S,) converges to S’ = aS. If
(Dr) is a perfect estimation of the error of (S,), then (aD,) is a perfect
estimation of the error of (S.) since §' — S/, = a($ — S,). Thus it will
be interesting that D,, becomes aD,, when S,,,..., S,+i are replaced by
aSp,...,aS,4+k. In that case D, is said to be homogeneous of degree
one (or shortly, homogeneous) and if we denote by (T}) the sequence
obtained by applying the transformation T to (S)) we have

T. =S) +aD,, = aS, + aD, = aT,
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which shows that T (or F) is also homogeneous.
Gathering both properties gives

T(aS, + b) = aT(S,) + b.

Sequence transformations which are translative and homogeneous are
called quasi-linear, and we saw that this property is a quite natural
requirement. Moreover it gives rise to other important properties that
we shall now describe.

F is a real function of (k + 1) variables, that is an application of RF+1
into R. We shall assume that it is defined and translative on 4 C R¥+!
that is V(zo,...,zx) € A,VbER

F(zo+b,...,2k + b) = F(zo,...,2x) + b,

and that it is twice differentiable on A. Let f be another application of
Rk+1 into A, defined and twice differentiable on A. Then we have the

following important characterization

Theorem 1.1
A necessary and sufficient condition that F be translative on A is that
there ezists f such that F can be written as

f(zoy- . 2k)
Df(zo,...,2k)

with D2 f(zq,...,zi) identically zero on A and where D is the operator
D =48/0zo+---+ 0/0z.

This result started from a remark, made by Benchiboun [23] that
almost all the sequence transformations have the form f/Df. Then
the reason for that particular form was found and studied by Brezinski
[81]). It is also possible to state this result by saying that a necessary
and sufficient condition for the translativity of F on A is that DF be
identically equal to one on A.

For Aitken’s A2 process we have

F(zo,...,2¢) =

f(zO’ z, z2) = ZoT2 — t%.

Thus 8f/0z0 = z,,0f/02y = —22,,0f/8z; = zp and then Df =
z2—2z;+ 2o which shows that this process is translative since 8Df /0zo=
1,0Df/8zy = —2,0Df/0z2 =1 and then D2f=1-2+1=0.
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In section 1.2, we explained how F was obtained from the implicit
form of the kernel, that is from R, via another function G. We shall
now relate the properties of translativity and invariance by translation
(that is g(zo + b,...,2x + b) = g(Z0,...,2k)) of F,R and G. These
results, although important, are not vital for the understanding of the
book and they can be skipped for a first lecture.

First it is easy to see that a necessary and sufficient condition for a
function g to be invariant by translation on A is that Dg be identically
zero on A. Moreover if g has the form g(zo, ..., z¢) =h(Azo,...,Azx_)
then it is invariant by translation. Using these two results we can obtain
the

Theorem 1.2
A necessary and sufficient condition that R be invariant by translation

ts that G be translative.

It is easy to check that this result is satisfied by Aitken’s process since

R(z0,21,5) = ai(zo — S)+ azx(z; - S)
G(ZQ, 21) = a1%9 + (1 - 01)21.

The invariance by translation of R, used in theorem 1.2, is an in-
variance with respect to all its variable that is zo,...,2z, and S which

means
R(zo+b,...,z2q+ b,5 +b) = R(zo,...,2q,5)-

Then the translativity of F' can be studied from that of G. Since
G is translative, the system to be solved for obtaining the unknown
parameters a, ..., @, is invariant by translation and thus we have the

Theorem 1.3
If G s translative then so is F.

The reciprocal of this result is false. A counter example will be given in
section 2.1.

Let us now study the property of homogeneity. We recall that a
function g is said to be homogeneous of degree r € N if Va € R, g(az,
...y 62;) = a"g(Zo, ..., zx) and that a result due to Euler holds in that
case

k
r-g(zo,...,z) = Y zig]
1=0
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where g/ denotes the partial derivative of g with respect to z;. We have
the

Theorem 1.4
If f is homogeneous of degree r, then F = f/Df is homogeneous (of
degree one).

For Aitken’s process, it is easy to see that f is homogeneous of degree
2.

Interesting consequences on the form of F can be deduced from these
results.

Theorem 1.5
If f s homogeneous of degree r and if F = f/Df is translative, then

k k
F = Y afl [ f!
=0

1=0
k k
= (r=1)) =z:fl /) Dfl
1=0 1=0
k
= Zz.l‘z’
1=0

where f! and F! denote the partial derivatives with respect to z;.

These three formulz can be easily checked for Aitken’s process.

When r = 1, the first formula is of the barycentric type thus general-
izing a well known form for the interpolation polynomial (which is also
quasi-linear).

The last formula shows that T,, can be written as a combination of
Sny. ..y Sn+k whose coefficients are not constants but depend also on
Sn, ceey Sn+k-

From the results of theorem 1.5, it can be seen that F can be written
as

F(zo,...,zk) = 2o + (21 — z0) - 9(z0, - - -, Zk)

where g is invariant by translation. Thus we have

D, = (Sn+1 - Sn) ‘ g(srn ceey Sn+k)-
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More precisely we have

_ Azl Atk-l)
9(zos---y2k) = h (A:l:o’“.’ Azr_s

which shows that, for a linearly convergent sequence (see section 1.12),
that is a sequence such that 3z # 1 and "liteo(s,l.,.l - 85)/(Sn - S) =
nl;ugo ASp+1/ASn = a, (D,) is a perfect estimation of the error if and
only if h(a,...,a) = (1 — a)~!. Thus we recover the results given by
Germain-Bonne [181] which generalize those of Pennacchi [355] for ra-
tional transformations. Other acceleration results for linear sequences
will be given later.
For Aitken’s process we have

2 2
zoz2 — % (z1 — =20) 1
—_— - —_— Y~ + A  —_— .
22 — 221 + 2o o 22 —221 + 20 %o 0 1- Az,/Az

A relation between homogeneity and translativity does not seem to
hold. Some functions F are homogeneous but not translative (F =
z%/z1) while others are translative but not homogeneous (F = 1+ (zo+
Z1 ) / 2).

At the end of section 1.3, the question of finding the kernel of a trans-
formation (that is the relation R) from the transformation T (that is
from the function F) was raised. We are now able to answer this ques-
tion. We have the

Theorem 1.6
Let T be a quasi-linear sequence transformation. (S,) € Kr if and
only if, Vn

k
S (Snti = 8) - Fi(Sn— Sy ey Sy — §) =0

1=0
or if and only if, Vn

k
Z(S,..H ~8)-F/($5,.-S,...,8+k—S)=0.
=0
It must be remarked that, since F is translative, F} is invariant by
translation and thus, in the second condition, F/(S, — S,...,Snik — §)
can be replaced by F!(S,,...,Snt+k)-
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The first condition applied to Aitken’s process gives (Sp, — S5)/(Sn+2—
S) = (Sn41 — S)? that is 3a # 1 such that Vn,(Sp+1 — §)/(Sn—S) =a
which is the relation defining the kernel as seen above.

The second condition leads to the same result but is more difficult to
use.

The expressions given in theorem 1.5 can be used to obtain conver-
gence and acceleration results thus answering the questions raised in
section 1.1. We have the

Theorem 1.7
Let (5,) converge to S. If IM > 0 such that VYn, |F!(Sn,..., Sn+k)| <
M fori=0,...,k then (T,) converges to S.

For convergence acceleration, we have to consider the ratio

S _5 Z ;'-h__s F{(8n,- «os Sntk)

In the important case where (S,) converges linearly, that is when
Ja # 1 such that nl-i_'rgo(S,.H ~ 8)/(Sn — S) = a, then obviously if

3440, Al, ey Ak such that "I.LI{.IO R"(Sn’ ceny Sn+k) = A,’ and Ao + Ala +

.-+ Aga* = 0 then (T,) converges faster than (S,). However, thanks
to the quasi-linearity of F, more complete results can be obtained

Theorem 1.8
Let F be quasi-linear and (S,) be a linearly converging sequence.
IfDf(1,a,...,a*) # 0 and if IM > 0 such that |f(1,a,...,a*)| < M,
then lim T, = S. Moreover if f(1,a,...,aF) = 0, then (T,) converges

n—oo

faster than (S,,).

For Aitken’s process we have Df(1,a,a?) = a? — 2a + 1 which is
different from zero if and only if a # 1 and f(1,a,a?) =10~ (a?) =0
which shows that Aitken’s process accelerates linear convergence, a well
known result. .

It can also be seen that the condition f(1,a,...,a*) = 0 is a necessary
and sufficient condition that Vn, T,, = § if (5,) is a geometric progression
which means that Vn,(Sp41 — §)/(Sn — §) = a or, equivalently, S, =
S 4+ ba™. Thus, in that case, geometric progressions belong to the kernel
of T'. If geometric progressions belong to the kernel of a transformation
T, then T accelerates the convergence of linearly converging sequences.
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If F is homogeneous then F(azo,...,azx) = aF(zo,...,zi) and thus
F(0,...,0) = 0. If F is not defined at the point (0,...,0) we shall set
F(0,...,0) = 0. Since F is translative, we have F(0 + b,...,0 4+ b) =
F(0,...,0) = 0 + b and thus F(b,...,b) = b. If F is not defined at the
point (b,...,b0) we shall set F(b,...,b) = b. More generally, if F is not
defined at the point (zo,...,zx) we shall set F(zo,...,2x) = Z,,» where
m is an arbitrary integer between 0 and k (usually 0 or k). However it
must be noticed and clearly understood that this convention does not
insure the continuity of F.

Transformations which are homogeneous in the limit were recently
defined by Graga [188]. They can be useful in some cases. They are
only at an early stage of development and this is the reason why they
will not be presented here.

1.5 Sequence transformations as ratios of determinants

Most of the sequence transformations actually known can be expressed
as ratios of determinants. There are two reasons for that: the first one is,
let us say, a mechanical one depending on the way such transformations
are usually built while the second one is much more profound since it
relates such a determinantal formula with the recursive scheme used for
implementing the transformation. The first reason will be examined in
this section and the second one in the next section.

Let us come back to the beginning of the section 1.3 where we ex-
plained how to construct 7}, from G in Aitken’s A2 process. We show
that we had to solve the system

Sn = T, +bAS,
Snt+1 = Tn+bASq4.

Of course if the second equation is replaced by its difference with the

first one, we get the equivalent system

Sn = T, +bAS,
AS, = 0+ bA2S,.

Similarly in the system written for Shanks’ transformation we can
replace each equation, from the second one, by its difference with the
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preceding one and the system becomes

Sn = Tn+bA85, 4+ bkASn-Hc—]
AS, = 0+ b,A%5, + -+ bk A%Spii1
ASpnik—1 = 04+ 01A%28n 41+ -+ brA28ny2k—2.
Thus we have
S" AS" Asn+k—1
AS, A?S, AZSp k-1
ASn+lc—l A2Sn+l«:-—l A? Sn+2k—2
T, = ex(S,) =
ek(5n) 1 0 0
AS, AZS, A%Sn k-
ASn+k—l A2Sn-Hc:-—l A2Sn+2l:-—2

This ratio of determinants and the ratio given in section 1.3 have the
common form
€ -1}
a0 a{®)

a® ... o

CO LI ck

(0) (k)

al LY al

2@ ... o

with e; = Sp44, ag-") = ASnti+j-1 and ¢; = 1 for the ratio of section 1.3
and with €y = S,,,afo) = AS,.+,'_1,CO = 1 and e = ASn+,'_1, a;-i) =
A25n+.-+,~_2, ¢; = 0 for 1 > 1 for the preceding ratio.

If the determinant in the numerator of Ry is developed with respect
to its first row then it is easy to see that

Ry = apeg + - - - + ajex

where the a;’s are solution of the system
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apco + **+ + agck =1

aoago) +--4 akag") =0

aoaﬁo) + e akaﬁk) = 0.

This interpretation of R, shows that our ratio of determinants can
be extended to the case where the e;’s are vectors (or more generally
elements of a vector space), the afJ)’s and the ¢;’s being scalars. In
that case, the determinant in the numerator of R; denotes the vector
obtained by expanding it with respect to its first row using the classical
rule for that purpose.

If the e;’s are scalars, then Rj is also given as the solution of the
system

coRx + P ago) + e+ ﬁkaio) = e

ck Ry + ﬂlagk) + -4 ﬁkaﬁk) = e.

Let us assume that the ¢;’s and the a.(j )% are invariant by translation
on the e;’s. Thus, so are the a;’s and the B;’s and, if we set By =

k
Z a;e; = F(eg,...,er), we have
1=0

k k
F(eo-l-b,...,ek-l—b) = Za;e,- +bEa.-.
1=0 1=0
Thus F is invariant by translation (that is, in other words, F(1,...,1)=
k
1) if and only ifZa,- = 1. This property is trueif ¢g = --- = ¢x = 1,
s
orifco=1and ¢; = --- = ¢ = 0 and if, in addition
0 1 ... 1
a® o ... o®

= 0.

o® ot ... of®
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These two particular cases will be of interest in the sequel.

Such a ratio of determinants for R; includes almost all the sequence
transformations (for sequences of scalar and sequences of vectors) that
will be studied in this book. It also includes other important related
topics such as Padé approximants, orthogonal polynomials and fixed
point methods.

We still have to see how to compute recursively these ratios of deter-
minants. There are two possibilities for such an algorithm: its normal
form or its progressive form. They will be discussed in sections 1.7
and 1.8 respectively but let us now explain why ratios of determinants
and recursive schemes are obtained.

1.6 Triangular recursive schemes

A unified treatment of sequence transformations in relation with their
determinantal expressions and triangular recursive schemes for their im-
plementation was given by Brezinski and Walz [104]. In fact this theory
goes far beyond extrapolation methods since it includes in the same
framework B-splines, Bernstein polynomials, orthogonal polynomials,
divided differences and certainly many other topics.

Let us consider sequence transformations of the form

k
T =3 o) Snsi, k,n=0,1,...

1=0

with Té") = Sy, for all n, where the a’s are real or complex numbers
which can depend on some terms of the sequence (S,) itself.

The theory we shall now present includes the case where the S,,’s are
vectors or, more generally, elements of a vector space F. Let E be a
vector space on K = R or C. Usually F will be R or C. Let 2y, z;,... be
elements of E and let us denote by A(E, F) the vector space of (possibly
nonlinear) applications from E to F. In the sequel o will arbitrarily
designate either an element of A(E, F) or an element of A(E, K). We
consider the linear functional on A(E, F) or A(E, K) defined by

k
T{M(o) =3 ol 0 (2n4:)

1=0

for all k and n.
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If L € A(E, F) and if we set S,, = L(2,) then clearly (L) = T,f").
We have the following fundamental result

Theorem 1.9
Let 0, ..., 0 be elements of A(E, K) such that

o0(zn) - 00(2n4k)
: : #0
ok (zn) -+ Ok (zn4k)
and
T,S") (00) = w,(:')
T,S")(O‘.') = 0 for i=1,...,k

where the w,(c") ’s are arbitrary nonzero real or complez numbers.
Then

o(zn) -+ 0(2n4k)

01(zn) -+ 01(Zn4k)

7 () — Ok () -+ Ok(znik) | (n)
e )= ) o e (zare) |
01 () -+ 01 (Znek)

ok(2n) -+ Ok (2n+s)
In particular all the quasi-linear transformations of the form

T = Fi (Sny - +» Sntk)

fit into this framework since, as explained in section 1.4, we have

k
Tk(”) = Z Fl:,i (Sru sy Sn+k) Sn+i

=0

. d .
with F ; (uo,...,ux) = ng(uo,...,uk) fori=0,...,k.

The T,S") (o)’s can be recursively computed since we have the
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Theorem 1.10
IfVk,n and for i = 0 and 1, we have

oi(zn) -+ 0i(2n4k)
X . £0

Oitk(2n) -+ Oitk(Zn4k)

then )
17(0) = XTI (0) + T )

with T (¢) = o (2n) and

A = T o)/

wh = —wlT (or) ) 4
dfc") = w,(c")lT("“)(a) w("“) ('_')1 (ok) .

k
It is easy to see that if Vn, k, ) cx;:l-) = ai then Vn, k, Afc") + y}c") = vk
1=0
k

and 70 = a0 = 1, ak = [[ %
i=1
Reciprocally if we consider a triangular recursion scheme of the form
™ = AT O k=10, 0 =01,

with Té") = Sn, then
k
Té") = Z a;:.-) Sni

1=0
with
o} = AV
o = AMal), +u(") ("j’,’_l, i=1,...,k—1

n n n+1
aﬁﬁ = ()02 112 1
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and a((,','g =1 for all n.

k
Moreover if Vn, k, a\ﬁ") + pﬁ") = 9 then Vn,k, Zaf’? = a; with
=0
k
Yo =ap=1and a; = II7.~. If, in addition, w((,") = wq for all n then
=1
Vn, w,(c") = axwg.

The algorithm given in the preceding theorem is very close to the E-
algorithm which will be studied in section 2.1. It is recovered by setting
EM = T (o) / wi™ and 91(:.‘) = T{"(0;) / w{™. It is also connected to
the H-algorithm in the case of vector sequences, see section 4.5 below.

From theorem 2.1 we immediately obtain the
Theorem 1.11

A necessary and sufficient condition that Vn, T,S") / w,(c") = § is that
Vn, Sp = Soo(2n) + @101 (2n) + -+ - + axok (2n) -

We recall that o (2,) = w((,") and thus these quantities are different
from zero.

Let us now look at the possible existence of other recurrence relations
of the form

T (0) = oI (0) + BT (o)

with 0 < ¢ < j and p,q € Z.

By taking successively ¢ = op,...,0% it is easy to see that such a
relation can only hold for i = j = 1 and that, in that case we have

of) = o1 (0n)/ d”

b = w1 o)/ &
4 = W1 (01) - oI (o)

provided that dﬁ") # 0.

However we have
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M (@) - T (o)
T (k1) - T (0k4)
TlSn) (o,) = Tlgn) (ak+m) Tee Tlgn+m) (U’H-m) . wl(c")
tm w’(cn) . w™tm) +m
TIE") (ok+1) -+ T1£"+m) (ok+1)
TA(:") (Fktm) - Tlsn+m) (Ok+m)

and a similar formula by inverting ¥ and m. For k = 0, this is the
first determinantal formula given above. For m = 1, it reduces to the
triangular recursive scheme given in theorem 1.10. For an arbitrary value
of m this formula allows to jump over a breakdown (due to a division
by zero) or a near-breakdown.

Let us now show, on a very simple example, how to find the o;’s from
the recursive scheme. It must be noticed first that these o;’s do not
depend on k. Thus, when passing from k — 1 to k£ we keep the same
00,...,0k_1 Which have already been determined and we only have to
find o by writing that

T,S") (0:)=0 for i=1,...,k.

This leads to a difference equation of order k¥ with k£ — 1 solutions
already known (0, ...,0r—1) and we have to find its last solution oy.
Usually this difference equation is nonlinear and has non-constant coef-
ficients and the task of finding o} is a difficult one.

Aitken’s A? process can be written as

T(n) _ Sn ASﬂ+1 - Sn+1 Asn
U = T AS.a—-AS,

Taking z, = n we have
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o(n)ASp1 —o(n+1)AS,
ASp41 - AS, |

T{(0) =

Let us take og(n) = 1 for all n. Thus T,(") (00) = 1. We see that if oy
is defined by 01(n) = AS,, then Tl(") (¢1) = 0 and thus we have

Sn Sn+l
ASn ASns

1 1
AS, ASn

"™ =

and we recover the formula given in section 1.3.
Let us say that T,E") (o) can also be expressed as a complex contour

integral. On this question see Walz [451] for the case of linear extrapo-
lation methods.

1.7 Normal forms of the algorithms

In sequence transformations, the ratio of determinants R; of section 1.5

depends on a second index n since the e;’s and the a'(-j hg depend on n.

Thus, as explained in section 1.2, let us denote it by T,f”) (or by ex(Sn)
in the case of Shanks’ transformation).

By applying determinantal identities to the numerator and the de-
nominator of T,s") it is possible to obtain algorithms for computing re-
cursively these T,S")’s without explicitly computing the determinants in-
volved in their definition. Such a recursive algorithm for Shanks’ trans-
formation was given in section 1.3; it was the so-called e-algorithm.
Since we already know it, let us take it as an example but the situation
will be similar for the recursive algorithms corresponding to the other
sequence transformations that will be studied later.

The numbers ei") computed by the ¢-algorithm are displayed in a
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double entry table as follows

e(_ol) =0
ESO) = So
e(_11) =0 e§°)
6(()1) = Sl Ego)
s‘},’ =0 egl) ego)
s o
e(_al) =0 egz) )
eg’) =53 Egz)
ega) Egz)
. ££3)
. 5:(’3)

Notice that, in this table, the lower index k& denotes a column, the
upper index (n) denotes a descending diagonal and that the sum of the
lower and upper indexes is constant among an ascending diagonal.

Starting from the first two columns (eg'l) = 0) and (eg") = S,,), the
rule of the e-algorithm allows to proceed in this table from left to right
and from top to bottom. This rule relates quantities located at the four
corners of a rhombus

/ eﬁ")
+1
et 5&-)1'

Thus, knowing efc"jil), e;c") and e£"+1) it is possible to compute 5;:31 as

n n 1
e = T+ r)
€& &k

This is the normal form of the ¢-algorithm, when proceeding in this
way in the table.
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However this normal form can suffer from a very serious drawback:
cancellation errors due to the computer’s arithmetic. The better the
e-algorithm works, the worse are rounding errors. The reason is easy
to understand. We saw that the numbers eg',:) are approximations of
the limit S of the sequence (S,) (it is the purpose of any extrapolation
method to furnish such approximations) while the eg',:h_l are intermediate
results. If the algorithm works very well, then both eg',;) and eg',:“)
are very good approximations of S. Thus when computing eg'&_l, an
important cancellation error will occur in the difference eg',:“) - eg',:).

Thus ™), will be large and badly computed. If eg',:"'z) is also close to

2k+1
S then, for the same reason, eg',:ﬁ) will be large and badly computed

also. After that, we want to compute eg'&z by

eg'lgn = Eg'I:-H) + WI_T
E2k+1 ~ E2k41
and we have, in the denominator, the difference of two large and badly
computed quantities thus producing numerical instability in the algo-
rithm.

For example if the e-algorithm is applied to the sequence S, = 1/(n+
1) then it can be proved that eg',:) = 1/(k+1)(n+ k + 1). This example
is thus very interesting for controlling the numerical stability of the
algorithm since all the answers are known.

For eg?,) we obtain (on a computer working with 15 decimal figures)
0.591715- 10~2 instead of 0.626850 - 102,

It is possible to avoid, to some extent, such a numerical instability by
using either the progressive form of the algorithm or its particular rules.
These two possibilities will be now studied.

1.8 Progressive forms of the algorithms

Let us assume that, in the ¢-algorithm, the first descending diagonal is
known: e((,o), e§°),e§°),e§°), e‘(,o),. .. Then, writing the rule of the £-algorithm
as

(n+1) _  _(n) 1

T AN OS]
Ekv2 ~ Ek
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allows to compute all the quantities in the table from the first diagonal
(eio)) and the second column (eg,") = S,,).

Of course this rule still suffers from numerical instability since, when &
is even, we have to compute the difference of two almost equal quantities.
However the instability is not so severe since, usually, eg:)ﬂ is a better

approximation of S than eg',:“) and both quantities have less digits in

common than egz) and eg',:“) as was the case in the normal form of the

€-algorithm.
Coming back to the example S,, = 1/(n+1), the following conclusions
hold

e For the normal form

- eg',:) and eg',:'H) have log,o(n + k + 2) common decimal digits

- eg',;ti) and 1/ (eg';ﬂ) - eg',?) have —log,,(1 — 2/k) common

digits
- Egﬁn and eg',:ii) have —log,,(2/(n + k + 3)) common digits

- €§2+1) and 1/ (eg';ﬁ) - e,f,’,;{q) have opposite signs.

e For the progressive form
€g',:) and eg',::_lz) have log,(k + 2) common decimal digits

eliry and 1/ (5373 — ) have — logo(1-2/(n+F)) com-
mon digits

eg',g,l and eg',;;) have — log;,(2/(k + 3)) common digits
- Eg'iii’ and 1/ (é:l};’ - eg’,ﬂ,_l) have opposite signs.

Thus all the computations conducted with the progressive form are
more stable than the computations realized with the normal form (at
least for this example).

We have now to solve another problem: how to compute the first
diagonal (e,(co))? Let us first see how to obtain the subsequence (eg,’:)).
In section 1.3 and in section 1.5 we saw that these quantities can be in
fact obtained as the first unknown of a system of linear equations. In
both cases, although the systems were not identical, the situation was
the same: the system to be solved for computing ex4+1(S0) = eg?c)“ can
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be obtained by adding one equation and one unknown to the system
giving ex(So) = eg,?. Or, in other words, the matrix of the system to
be solved has been bordered by a new row and a new column. It is well
known in numerical analysis that such a bordered system can be solved
recursively by using the solution of the initial system: it is the so-called
bordering method (see Faddeeva [154]) which will be now explained.

Let A; be a regular square matrix of dimension k and d; a vector of
dimension k . Let z; be the solution of the system

Arzp = dg.

Let now u; be a column vector of dimension k, v, a row vector of
dimension k and a; a scalar. We consider the bordered matrix Ai; of
dimension k + 1 given by

[ Ax w
(B 2),

We have

4o = [ A+ AT AL B AP w/Bi
k+1 ~vA; ' /Br 1/Bk

with B = ax — va,:luk.
Let fi be a scalar and 2;4; be the solution of the bordered system

d
Ar+12k41 = diy1 = ( f: ) .

Then we have

~- iz ~A7!
zk+1=(z(;‘)+————fkﬂkkk-( ’iuk).

This formula gives the solution of the bordered system in terms of the
solution of the initial system. However its use needs the computation
and the storage of A;l. This drawback can be avoided by setting gx =
—A;'u; and computing it recursively by the same bordering method.
Thus we finally obtain the following algorithm.
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Let q,(ci) be the solution of the system

A = 4f
where ug) is the vector formed by the first ¢ components of uy.
Thus u‘(-') = u; and q}') = ¢; for all i. A; is the matrix of dimension 7
formed by the first ¢ rows and columns of Ag.

We have since A; is a number

(1)

(1) ¥

Qk - Al
g+ = 9t _E's_:r_l_il_qg g i=1,...,k-1
k 0 a; + vig) 1)’ o

where ug ;i is the (¢ + 1)th component of ux. And then q,(ck) = gx =

—A;luk thus allowing to use the previous formula for zx;;. It must be
noticed that this variant of the bordering method needs the storage of
Ay instead of that of A;! for the original procedure. On these questions
see Brezinski [86)].
The subroutine BORDER performs this variant of the bordering method.
Of course, the bordering method can only be applied if 8x # 0 for all
k. When it is not the case a block bordering procedure has to be used as
explained by Brezinski, Redivo Zaglia and Sadok [99]. We now assume
that the dimensions of A are ny X ng, ux are ng X pi, Vi are py X ni
and a; are py X pi. Thus the dimensions of Ax;; are ng4; X ngyy with
Ngy1 = Nk + pr. We set

-1
Br = ar — vk Ag " ug
and we have now

4o = [ AT+ AT B v AL AT BT )
k41 _ﬂ;lval:l ﬁ;l

fr is now a vector with p; components and we obtain

41
Zky1 = ( z’)+( AIkk Yk ) Bt (fx — vrzi)
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where I} is the identity matrix of dimensions py X px.
The subroutine BLBORD performs this block bordering method.
Again g; = -—A;luk (whose dimensions are n; X px) can be recursively
computed by the bordering method.
Let u{') be the n; X pr matrix formed by the first n; rows of u; for

i < k,n; < ni. We have u,(‘) = u;. Let q,(:) be the n; X px matrix
satisfying A.-q,(:) = ——ug) for ¢ < k. We have q,-(‘) = g¢;.
We set
a = 47" u)

and then we have

: (" (9 i .
T (8 ettt v

with 8; = a; + v,-q,w and ug ;41 the matrix formed by the rows n; +

1,...,m; + p; of u;.
Thus, the algorithm is as follows

1. Set k=1 and n; = 1.
2. Compute A,.

3. If A, is non-singular, compute z; and go to step 4.
If A, is singular, border the system by the next row and the next
column, increase n; by 1 and go to step 2.

Increase k by 1 for solving the next system (if wanted).
Set pr = 1.
Compute ;.

NS & e

If By is non-singular, compute z;4; and go to step 4.
If Bi is singular, border the system by the next row and the next
column, increase p; by 1 and go to step 6.

Of course a test for checking the numerical singularity of a matrix
is needed. The permutation-perturbation method of La Porte and Vi-
gnes [269] is particularly well adapted for that purpose.

Instead of using the previous block bordering method it is possible to
use a pivoting strategy. If, for some k, Sy = 0 then the last row of the
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matrix is interchanged with the next one and so on until some 8; # 0
has been obtained. Such a procedure is not adapted to our case where
the intermediate solutions are desired and have to be computed. It can
be used only if the last solution is needed but not the intermediate ones.

The bordering method can be applied to the computation of R; of
section 1.5. In that case it simplifies since d; = 1 and fy = 0 for &£ > 1.
The vector zx,; thus obtained has components ag,...,a) and then we
have Ry = apep + - -+ + aiex which shows how to use the bordering
method when the e;’s are vectors.

Sometimes, due to some special structure of the matrices A, the
general bordering method as explained above can be made more efficient.
This is, in particular, the case for Shanks’ transformation where the
matrices A; are Hankel matrices. Let us consider the system

aoSn + a18Sn41 4 -+ Ak Sngk =1
aoSnt1 +a1Sny2++ apSnpk1 = 1
aoSnt+k + @1 Sniks1 + o+ G Snpune = 1.

It was proved by Brezinski [35)] that

n 1
ex(Sn) = €5 = ——.
> e

1=0

Two very efficient bordering methods for solving this system were
given by Brezinski [54] with the corresponding subroutines.

Now, before being able to apply the progressive form of the ¢-al-
gorithm, we need to compute the subsequence (eg,)c)“). This can be
done again with the help of the bordering method since the auxiliary
quantities eg',:)“ are in fact related to Shanks’ transformation by

T
2k+1 T ek(AS,.)'

Thus, replacing S,, by AS,, in the preceding system and using the bor-
dering methods, leads to the recursive computation of ex(ASy) and thus

(0)
to €54 4-
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However, since we are not in fact interested by the auxiliary quanti-
ties eg',:)_l_l they can be eliminated from the rule of the £-algorithm thus
leading to the so-called cross rule due to Wynn [479] which only involves
quantities with an even lower index. Setting

C= Eg'l:H)’ N = eg'l:)’ S= eg'l:n)' W= eg',:fi), E= Eg'l:)+2
this cross rule is
(N - C)‘1 +(S - C’)‘1 = (W - C)"1 +(E- C)'l.

The notation with C (= center) and the cardinal points comes from
the fact that, in the table of the ¢-algorithm, these quantities are located

as
N

W C E
S

The normal form of the cross rule is
-1
E=C+[N-C)"'+(S-C)"-(W-0))
with e(_"z) = oo. Its progressive form, which is more stable, is given by

s=Cc+[w-c)y'+(E-c)'-(N-0)] .

1.9 Particular rules of the algorithms

A crucial point in extrapolation methods is that of the propagation of
cancellation errors due to the computer’s arithmetic. Let us illustrate
this question with Aitken’s A? process. As seen before it is given by

SnSn+2 _ Srzl-{-l
sn+2 - 2Sn+l + Sn ’

However such a formula is highly numerically unstable since, if $,,,5n41
and S,,;, are almost equal, cancellation errors arise both in the numer-
ator and in the denominator and T, is badly computed. Thus instead
of the preceding formula we can write

(Sn+l - Sn)2
Spn+2 —25n41+ Sn’

n=01,...

T, =

T,= 8, — n=01,...
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Reducing to the same denominator it is easy to see that this expression
is the same as the first one. Of course in this formula cancellation errors
again arise in the computation of (S, — .S'n)2 and Sp42 — 285541+ Sn,
but the term (Sn41 — S,.)z/ (Sn+2 — 2 Sn41 + Sn) is a correcting term to
S, and this second formula is much more stable than the first one. Thus
by modifying the rule of the algorithm we were able to obtain a more
stable algorithm. The second formula is a particular rule for avoiding
propagation of rounding errors due to the computer’s arithmetic. The
conditioning of Aitken’s process is discussed by Bell and Phillips [20].

Let us give two numerical examples for illustrating our purpose. We
first consider the sequence

So = 1

= exp(-S,), n=01,...

Sn+l
which converges to 0.5671432904097838. We obtain

[ unstable formula “

stable formula

Ln |
15 || 0.5671433079394927 | 0.5671433079394927
20 || 0.5671432904701356 | 0.5671432904701355
35 || 0.5671432904097838 | 0.5671432904101733
40 || 0.5671432904097838 | 0.5671432903972257
45 || 0.5671432904097838 | 0.5671432900920601
50 [l 0.5671432904097838 | 0.5671432886117994
55 || 0.5671432904097838 | 0.5671434290968433
60 [ 0.5671432904097838 | 0.5671420162671232
65 || 0.5671432904097838 | 0.5671386718750000

Let us now take the sequence (S, = A"). Thus we shall obtain T, = 0

for all n even if |A| > 1. For n = 0 the stable formula gives

[( A “ simple precision l double precision ”

0.997 0.66-102 0.41-10"11
0.9997 —-0.51 0.91-10°10
1.0004 0.33 —0.53-107°

More details about these two interesting examples will be given in

section 7.2.

Let us now deal with a more complicated situation and, for this pur-
pose, let us come back to the cross rule of the ¢-algorithm and introduce
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again the quantities with lower odd indexes, denoted by small letters for
simplicity

N
a b
w C E
e d
S
Using the normal form of the algorithm we have
C = W+1/(e—a)
b = a+1/(C-N)
d = e+1/(5-C)
E = C+1/(d-b).

If N = C, then b is infinity. If § = C, then d is infinity. If b and
d are infinity, then E is undefined and the computations have to be
stopped. There is a breakdown in the algorithm. The same is true if
a = e since then C is infinity. f N # C,then b =a=¢ If S # C,
then d = a = b = e and FE is undefined. If N is different from C but
very close to it, then a cancellation error arises in the computation of b
which will be large and badly computed. The same is true for d if S is
different from C but close to it. If a is different from e but close to it,
C will be large and badly computed. Thus b and d will be almost equal
and E will be the difference of two large and badly computed numbers.
There is a near-breakdown in the algorithm.

After some algebraic manipulations it can be proved that the cross
rule of the ¢-algorithm can be equivalently written as

E=1r(1+7r/C)"!
with
r=801-8/C)'+N(1-N/C)'-W(1-W/C)™L.

This rule was shown to be more stable than the rule given above for
computing E. It is called a particular rule for the e-algorithm. If C is
infinity, it reduces to

E=S+N-W

thus allowing to compute E by jumping over the singularity (or the
breakdown). This rule was obtained by Wynn [475]. It is valid when
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there is only one isolated singularity that is when N and S are not
infinity, or, equivalently, when only two adjacent quantities in a column
(a and e in our example) are equal or almost equal. Wynn’s particular
rule was extended by Cordellier [119] to the case of an arbitrary number
of equal quantities in the ¢-algorithm.

If we have a square block of size m containing quantities all equal to
C and if we set

Wi En

then the cross rule become
(N: - C')‘1 +(5: - C')"1 = (W; - C)‘1 + (E; - C’)"l, i=1,...,m.

Using the notion of Schur complement, Brezinski [79] was able to
obtain particular rules for the E-algorithm (which contains many well
known sequence transformations, such as Shanks’, as particular cases),
and for some vector sequence transformations, such as the so-called RPA,
CRPA and H-algorithm, which will be discussed later. This technique al-
lows to compute directly the elements of the column m+ k of the table in
terms of the elements of column k without computing the intermediate
columns. Thus one can jump over breakdowns or near-breakdowns in or-
der to avoid division by zero or numerical instability due to cancellation
errors.

Since Wynn’s cross rule also holds between the &’s with an odd lower
index, the preceding particular rules are also valid for these quantities.

All the questions concerning the numerical stability of extrapolation
processes are treated in details by Cordellier {121].
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It must be clearly understood that the particular rules are not the
panacea for avoiding the propagation of rounding errors. Let us give
two examples with Wynn’s particular rules for the ¢-algorithm.

Let us first consider the sequence given by

So = 1.5999999, S, =12, S;=1

and
_ Si-1, Si-2 | Sis . _
S = 5 + 1 + g i1=3,4,...
From the theory of the ¢-algorithm we know that (see theorem 2.18)
Vn, el = 0.

Using the s-algorithm without and with the particular rules gives

respectively for eé")

[ n ] without p. r. | withp. r. |

0 2.15-10-2 2.22-10-1¢
1 3.18.103 —2.16-10"15
2 | —2.51-10-2 2.89.10-15
3 [ -1.31. 102 1.86-10~15 Hi
4| -1.38.10-3 1.05.10-15
5 | -2.57-10-15 | —2.57.10-15

Let us now consider the sequence S, = (n+1)"!, n = 0,1,.... For
this case it can be proved that Vk,n we must obtain

e = (k+1)" - (n+k+1)7
eg',:)+1=—(k+1)-(k+2)°("+"+1)‘("+’°+2)-

Thus the precision of the whole table can be checked. For this example
the results obtained without and with the particular rules are the same.
Using Sy, . .., 523 the results computed have 14 exact digits for egn), 11
for 5?9), 7 for egs) » 3 for eg? and 2 for egg).

For both examples the particular rules were used when two successive
quantities eg') and e£"+l) had 5 common digits.
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1.10 Accelerability and non-accelerability

As explained in section 1.1, a universal sequence transformation for
accelerating the convergence of all convergent sequences cannot exist.
More precisely, as proved by Delahaye and Germain-Bonne [139), a uni-
versal transformation cannot exist for a set of sequences which is rema-
nent. In other words a transformation able to accelerate the convergence
of all the sequences of a remanent set cannot exist. This is clearly a
very fundamental result in the theory of sequence transformations since
it shows the frontier between accelerability and non-accelerability.

A set S of real convergent sequences is said to possess the property of
generalized remanence if and only if

1. There exists a convergent sequence ($,) with limit § such that
Vn, S, # S and such that

i) 3(S9) € S such that nl_l_)!glo S% = $o.

ii) Vmo > 0,3po > mo and (5}) € S such that lim S} = §; and
Vm < po, S}, = S%.

iii) Vm; > po,Ip1 > m; and (S2) € S such that nll)r{‘lo 52 =2,
and Vm < p;, 52 = S}.

2. (88y..-y 88,8k 1rees 8L 82 0yen ey S2, 83 11,0 ) €.

The diagram in figure 1.1 makes the property more clear.
A deep understanding of this property is not necessary for the sequel.
The fundamental result is

Theorem 1.12

If a set of sequences possesses the property of generalized remanence
then a universal transformation able to accelerate the convergence of all
its sequences cannot ezist.

Such a set of sequences is said to be non-accelerable. Techniques
similar but different from remanence can also be used to prove the non-
accelerability of some sets of sequences. Actually many sets of sequences
were proved to be non accelerable by Delahaye [138], Kowalewski [266,
267] and Delahaye and Germain-Bonne [140]. They are the following
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)= 8% = 8
st |= st = s
%= S = s,
Spot1 Spot1 | = Spou1
Spot2 Spotz | = Spot2
Sp | = S5
SI}1+1 531+1
Sll’rl-? Sgl+2
3
l ! !
So S‘] 32 — S

Figure 1.1: The property of generalized remanence.

The set of convergent sequences of E, where E is a metric space.
This set will be denoted conv(E).

The set of convergent sequences of E such that IN,¥n > N, S,, #
lim S;. This set will be denoted conv*(E).

$—00

The subsets of conv(E) such that Vn, S,y > S, or Spy1 < Sp or
S,.+1 > S, or S'H-l < Sp.

The subsets of conv(E) such that Vn,(-1)’A’S, < 0 for i =
1,...,k or (-1)'A'S, > 0.

The subsets of conv(R) such that (—1)*AS,, or (—1)*(S, - S) has
a constant sign.
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o The subsets of conv(R) such that (—1)*AS, or (-1)*(S, — 5) is
monotone with a constant sign.

e The subsets of conv*(R) such that Vn > N,0 < XA < (Sp41 —
S)/(Sn—S)<pu<lor AL AS,1/AS, L p.

o The subset of conv*(R) such that Lim (Spy1~ §)/(Sn - 5) =0.

o The set of logarithmic sequences, Lim (Sn41— S)/(Sn—S)=1.
This set is called LOG.

e The subset of logarithmic sequences such that nli’r{.lo (Sn+1—S)/(Sn—
S)= lim ASnyy / AS, = 1. This set is called LOGSF.

If must be clearly understood that the preceding results do not mean
that a particular sequence belonging to a non-accelerable set cannot be
accelerated. It means that the same algorithm cannot accelerate all the
sequences of the set. The reason is usually because it is too big and one
has to look for the possibility of accelerating some of its subsets. Of
course for obtaining a good idea of the frontier between accelerability
and non-accelerability one has to find the smallest non-accelerable sets
and to complete these negative results by positive ones giving the biggest
accelerable sets. Such results were also obtained by Delahaye [138] who,
for example, proved the

Theorem 1.13

Let S*(E) be a set of convergent sequences of elements of a metric
space E such that Vn,S, # S (the limit of (S,)). A necessary and
sufficient condition for $*(E) to be accelerable is that E" be the emply
set, where E’ designates the set of accumulation points of E and E" =

(E'Y.
We also have the following positive results

Theorem 1.14

Let S be a set of convergent real sequences, let fS = {(f(Sn))|(Sn) €
S, f monotone, differentiable and such that Vz, f'(z) # 0} and let S+ =
{(Sn + A)|(Sn) € S,A € R}. Then S is accelerable if and only if fS is
accelerable. S is accelerable if and only if S + X\ is accelerable.
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As we shall see in sections 3.1 and 3.5, accelerable sets of sequences
can be obtained by construction of a synchronous transformation or by
subsequence extraction.

The result of theorem 1.12 is very general since no assumption on the
transformation is made. In particular it holds even for transformations
of the form

T.=F, (So, ceey Sk(,,))

with k(n) > n (for example k(n) = 2n or k(n) = n"). A remanent set
of sequences cannot be accelerated by such transformations. Other sets
are not accelerable only by transformations with k(n) constant.

Let us mention that all the attempts to find a necessary and sufficient
condition of non-accelerability failed. The property of remanence, as
defined above, is only a sufficient condition of non-accelerability. But
it is a very strong sufficient condition since it not only implies the non-
accelerability of a remanent set but also the fact that it is impossible to
improve the convergence of all its sequences which means that it can-
not exist A €]0, 1[ such that Vn, |T,, — §| < A|S, — §|. Transformations
satisfying such a property, called contractive sequence transformations,
will be studied in section 3.9. A universal contractive sequence trans-
formation for a remanent set cannot exist.

The impossibility of accelerating a remanent set of sequences is due
to the definition of acceleration which was chosen. This is the reason
why some other definitions of acceleration have been studied, see Jacob-
sen [240], Germain-Bonne [183] and Wang [456)].

1.11 Optimality

Another interesting question about sequence transformations is optimal-
ity, a word which can be understood under several meanings. The first
results on this question were obtained by Pennacchi [355) who considered
transformations of the form

P(AS,,...,ASn4p-1)
Q (Asrn sy Asn+p—l) ’
where P and Q are homogeneous polynomials of degree m and m — 1

respectively. Such a transformation is called a rational transformation
of type (p, m).

n=0,1,...

Tn=5n+
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We consider the set of sequences for which there exists A such that
Lim (Sn41 = §)/(Sa - §) = A

with 0 < |A] < 1. This is the set of linearly converging sequences (the
set of linear sequences, for short).

Pennacchi proved that a rational transformation of type (1,m) or
(p, 1) accelerating the convergence of all the linear sequences cannot exist
and that the only rational transformation of type (2, 2) accelerating this
set is Aitken’s A2 process. Moreover any rational transformation of type
(2,m) with m > 2 which accelerates this set is equivalent to Aitken’s
process which means that it gives the same sequence (T;,) (this is due
to a common factor between P and Q which cancels out).

Thus Aitken’s A2 process is optimal in the algebraic sense since it is
the simplest rational transformation which accelerates the set of linear
sequences. This is confirmed by a result due to Germain-Bonne [182]
which states that this set cannot be accelerated by any transformation
of the form

T, =Sn+9(AS,), n=01,...

where ¢ is a function continuous at the point zero.

Other optimality results about Aitken’s A2 process were proved by
Delahaye [137). They go in two different directions: first we shall see
that it is impossible to accelerate a larger set of sequences (in some
sense) than the linear ones and next that it is impossible to improve the
acceleration of linear sequences.

A transformation of the form

Tn = Fr(Soy--sSn+k) » n=0,1,...

is said to be k-normal. For k = 0, it is said to be normal. Thus, with this
definition, Aitken’s A2 process is 2-normal. By a shift in the indexes, a
k-normal transformation can always be changed into a normal one, since
we can set T, , = T;;,n=0,1,.... The reason for such definitions was
explained in section 1.1: for some sequences, (T,,) can converge faster
than (S,) but not faster than (S,+x) when k£ > 1. If the computation
of T,, involves S, it is more appropriate to define acceleration with
respect to (S,+x) than to (S,).

Let us now try to enlarge the set of linear sequences by weakening the
condition on A.
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For example we can assume that 0 < |A] < 1. As proved by Dela-
haye [137] this set of sequences is not accelerable by any normal trans-
formation.

Let us assume that 0 < |A| < 1. This set is not accelerable by any
normal or k-normal transformation for all k.

Let us finally assume that 30 < a < # < 1, 3N such that Vn > N,
a < |Sp41 — S|/ |Sn — S| < B. This set is not accelerable by any normal
or k-normal transformation for all k.

Similar results hold by replacing the ratio (S,+1 — S)/(Sn — S) by the
ratio AS,,+]/AS,..

Thus we tried to enlarge, in three different ways, the set of linear
sequences and proved that these extensions were not accelerable. Of
course this result does not mean that other extensions are not accelera-
ble. Examples of accelerable extensions of linear sequences will be given
in the subsequent chapters.

We saw that Aitken’s process accelerates the convergence of linear
sequences which means that for such a sequence

1im (T, ~ 5)/(Sn42 - §) = 0.

We shall now try to find a transformation having better acceleration
properties for linear sequences, namely a k-normal transformation such
that 3r > 0 with

Jim (T, - S| /|Snss - S = 0.

In that case we shall say that the transformation accelerates (S,) with
the degree 1+ ». Such a notion was introduced by Germain-Bonne [181]
and Delahaye [137] proved that, Vr > 0, a normal or a k-normal trans-
formation accelerating linear sequences with degree 1 + r cannot exist.
Thus Aitken’s A2 process is also optimal in this sense since no other
transformation can produce a better acceleration for linear sequences.

These results on the degree of acceleration were refined by Trojan
[439]). He considered transformations of the form

T,,=F),(S,.,...,S,.+k), n=201,...
were F} is a rational function independent of n. Obviously Aitken’s A2
process has this form. Let X, ,, be the set of sequences such that, Vn
Sn—8 = —ASp+ai(-AS)P +-++ amoy (-AS T2 4
(—AS,)PH™1 . b(-AS,)
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with a; # 0, p > 1 and b a bounded function in a neighborhood of zero.
If p = 1 we assume moreover that |e; /(1 + a;)] < 1.
For p = 1 we have, Vn

2
Snt1 =S == ((Sa - 5)?)
and for p > 2, Vn
'Sn+l’S|
< ——X< .
0< AL 5, — 5 < B < 400

The set X, ,» contains in particular the sequences generated by 5,41 =
F(S,) with F sufficiently differentiable in the neighborhood of § = F(S)
and such that F/(§) = ... = F(P-1)(§) = 0 and F(P)(S) # 0.

Trojan [439] defined the order of the transformation F; in a class X
of convergent sequences by

n S
q(Fx,X)= sup {qIV(S,.)EX hmsupl—‘g—:—SIL oo}.

Let &;(X) be the set of all transformations Fj, of the preceding form
such that V(S$,) € X

].imsupl—'l_—sl— <1.

n—oo |Sntk — S|~
Trojan [439] proved that if F; € & (X,:) and t > k then
q(FkaXp,k) Sqg=14+p+ ...+pk—2 +pk.

This estimate is sharp. When ¢t = k, a transformation attaining this
upper bound can be constructed by inverse polynomial interpolation as
follows.

Let P, be the polynomial of degree p + k — 2 at most defined by

P,(-AS;) =S, i=n,....,n+k-1
and forp > 2

Pi(0)=1, PU(0)=0, j

Il
N
-

..,p—1.
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Then put
Tn = Fi(Sny- ..y Snt+k) = Pa(0).

This transformation is well defined (which means that such a P, ex-
ists) for S, sufficiently close to S and its order is equal to gz. For
p =1 it is identical with the method proposed by Germain-Bonne [182]
which consists in taking z, = AS, in Richardson extrapolation (see
section 2.2).

For p = k = 2, the following transformation is obtained

) — (Sn+2 = Snt1)’
"2 (Sn+ Snt2) (Snt2 — 25041 + Sn)’

Another method for measuring the acceleration of a transformation is
to find a sequence (e, ) tending to zero such that

T, =

n=20,1,...

n

lim sup < 0o0.
n—o0 €n
When (S$,) is generated by
Sn+] :F(Sn), n=0,1,--.

with [F'(S)| < 1 and Sy sufficiently close to § = F(S) in order to insure
convergence, then lower bounds on such a sequence (e,) were obtained
by Trojan [438]. He considered transformations given by

Tn = F,(Soy---,8n) s n=01,...

Thus the set {F,} characterizes the transformation and he proved
that for every transformation and every constant ¢ > 0, there exists an
analytic function F such that

lim sup T — S| > 0.

n—»00 2-cn?

This bound is again sharp which means that there exists an algorithm
such that for every analytic function F it exists ¢ with

lim sup |T, — §| < 27

n-—»00

As before this optimal algorithm is obtained by inverse polynomial
interpolation.
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If we now assume F to be only p-times continuously differentiable,
2-°"* has to be replaced by 2=°" in the preceding inequalities.

The proofs of these results are based on the notion of remanence
explained in the preceding section and on the adversary principle of
Traub and WoZniakowski [436] for constructing optimal algorithms.

For the construction of rational transformations see section 2.11.

1.12 Asymptotic behaviour of sequences

Before entering into more details about sequence transformations it is
not unnecessary to know some results on the asymptotic behaviour of
a sequence and on the asymptotic comparison of sequences. The proofs
of these results and more references can be found in Brezinski [55, 91].
Let (S,) and (T,,) be sequences converging respectively to S and T.

Theorem 1.15
Let X be a complez number with a modulus different from 1. A neces-
sary and sufficient condition that

nl_i_glo(sn+l - 5)/(Sn—8)=2A

is that
"11.1{.10 AS,1/AS, = A

As shown by counter-examples, the conditions |A| # 1 cannot be re-
moved but it can be replaced by others as we shall see now.

Theorem 1.16
If (Sn) is monotone and if there ezists ), finite or not, such that
n]inélo AS,.+1/AS,. = A, then nlil&(sn+1 - S)/(Sn - S) = A

Theorem 1.17

If ((-1)"AS,) is monotone and if there ezists A, finite or not, such
that im ASny1 / ASn = A and if Lim (1 + ASny2/ASn41)/(1 +
AS,,+1/AS,.) =1 then "IEI!:IO(S".I.] - S)/(Sn - S) = A

Theorem 1.18
Let A\ and p be two real numbers with 0 < A < u < 1.
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i) If: VnrA < Asn+l/ASn <u thenVn, A < (Sn+l“s)/(sn—s) <
B with X = Mp—1)/(A-1) and p' = p(A - 1)/(p—1).

i) If,Vn,A < (Sn4+1—S5)/(Sn—S) < , thenVn, X <ASp41/AS, <
wwith X =A(p—-1)/(A~1) and o’ = p(X - 1)/(p - 1).

Let us now give some results which allow to compare the asymptotic
behaviour of (S,) and (T,,). We recall that
(T,) is said to converge faster than (S, ) if and only if

Tim (T, — 5)/(5 — 5) = 0.

(T,) is said to converge at the same rate as (S,) if there exist a and b
with 0 < a < b, and N such that Yn > N

a<|T,-T|/|S. - S|< b
We have the

Theorem 1.19
Assume that there ezxist g and A with |g| < 1 and |A| < 1 such that
nl_i_’xgo AT, 1/AT, = g and nﬁ_{!go ASp41/AS, = A,

i) (T,) converges faster than (S,) if and only if (AT,) converges
faster than (AS,).

i) (T,) converges at the same rate as (S,) if and only if (AT,)
converyges at the same rate as (AS,).

The faster convergence of (AT,) obviously implies |g| < [A].

Theorem 1.20

Assume that there ezist p and A with0 < p <1 and 0< A <1/2 and
N such that Vn > N,|ATp41/AT,| < 0 and |ASp41/ASa| < A
If (AT,) converges faster than (AS,) then (T,) converges faster than

(Sn)-

In this theorem, 1/2 cannot be replaced by a greater number as shown
by counter-examples.
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Theorem 1.21
Assume that there ezist a and b with a < 1 < b and N such that
Vn>N
(Sn+1 = 8)/(Sn — S) € [a, b].
If there ezists ¢ such that nl_i_’r?o(Tn—S)/(S,.—S) = ¢, then lim AT,/AS,

=cC.

As proved by a counter-example, the reciprocal of this theorem is not
true.

Theorem 1.22
If (Sp) is monotone and if there ezists ¢, finite or not, such that
nlir{.lo AT,/AS, = ¢, then n]ir&(Tn —T)/(Sn—-S)=c.

Theorem 1.23
Assume that there exist a and b with a < 1 < b and N such that
YVn>N
(Sn+1—8)/(Sn— S) € [a,]].

If |Tw — T| = O (ISn - S), then |AT,| = O (JAS.]).

Theorem 1.24
Assume that hmsup|ATn|n =1/R and llm |AS, In =1/r. Ifr <R

then (AT,) converges faster than (ASy,).

If the conditions of theorem 1.19 hold then |g| = 1/R and |A\| = 1/~
with |g| < |A| and (T,) converges faster than (S,).
Let us now generalize theorem 1.19. We have the

Theorem 1.25
Assume that there ezist A and p with |A\| < 1 and |g| < 1, such that
”ILIE.O AT, /AT, = g and nlirg) AS,11/AS, = A. Let a be a complez

number. A necessary and sufficient condition that
"]_i}&(Tn —8)/(Sn—8)=a

is that
nlir& AT,/AS, = a.
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Of course by, theorem 1.15, the conditions of this theorem can be
replaced by ”llxg(T,.H -T)/(Ta—T) = oand ”g%(sm -5)/(S.-S) =
A

Let us now generalize theorem 1.20. We have

Theorem 1.26

Assume that there ezist p and A with 0 < p < 1/2and 0 < A < 1/2
and N such that Y¥n > N,|ATn4,/AT,| < o0 and |ASn41/ASa| < A.
(AT,) converges faster than (AS,) if and only if (T,) converges faster
than (S,).

This result shows that theorem 1.20 is a necessary and sufficient con-
dition when ¢ < 1/2.
Let us finally give a generalization of theorem 1.18.

Theorem 1.27

Let a,B,a’,' be real numbers with0 < a<f <land0<a <f' <
1.
Assume that there exist N such that Vn > N, AT, /AT, € [a,f] and
ASni1/AS, € [, B).

i) If there ezist a and b with 0< a< b such that¥n> N, AT,/AS, €
[a,b] then Vn > N,(T, — T)/(Sn — S) € [a’,¥'] with o’ = a(1 —
A)/(1- a) and ¥’ = b(1 - a')/(1 - ).

it) If there ezist a and b with 0 < a < b such thatVn > N, (T, —
T)/(8n — S) € [a,d] then Vn > N,AT,/AS, € [@',V] with &’ =
a(l1-8)/(1-a’) end b’ = b(1 — a)/(1 - B').

When T, = Sp4; then a = @’ = a,8 = B’ = b and the first part of
this theorem reduces to the first part of theorem 1.18.

Additional results and tools for the asymptotic comparison of se-
quences could be found in Brezinski {37, 58].

When accelerating the convergence of sequences we are naturally led
to use words like acceleration or speed of convergence. Thus we shall now
give precise definitions of such concepts based on kinematical notions
and the main corresponding results. The interested reader is referred
for more details to Brezinski [72]. Let (S,) be a sequence converging to
S. We assume that Vn, S,, is different from S and we set

dnz—loglolsn—sl, ﬂ=0,l,...
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d,, represents (up to a constant independent of n) the number of exact
decimal digits of S,,.
The speed of convergence of (S,) is the sequence (v,) defined by

Sut1— S

vp = Adp, = —log, S 3

This notion is quite useful to visualize and understand some properties
of convergent sequences. Let us recall that (S,) is said to have order
r>1if 30 < A < B < +00, 3N such that Vn > N

|Sn+1 — S|

< intl — VI

A% s, 5T

If lim (Sn41 — §)/(Sn — S) = 0 then (S,) is said to be super-linear

(which does not imply that (S,) has an order greater than 1). The
following results can be proved

< B.

Theorem 1.28

i) (Sn) has order 1 if and only if 3M > 0, IN such thatVn > N,
vn < M.

i) n]gg; [Snt+1— S|/ |Sn — S| =1 if and only if nlggo v, = 0.

iii) (Sn) is super-linear if and only if nlir{.xo v, = +00.

iv) If (S,) has order r > 1 then Jim Unt1/Un =T.

v) If (Sn) has order 1 and if Jim |Sn+1— S|/ 1Sn =8| =C # 1

then "lggo Unt1/vn = 1.

It must be noticed that, for some values of n, v, can be negative.
The acceleration of (S,,) is defined as the sequence (vy,) given by

Tn = Av, = A%d,.

The acceleration is also a useful notion for the understanding of the
behaviour of (5,). We have the

Theorem 1.29

i) If AN such thatVn > N, 4, < 0 then (S,) has order 1.
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i5) A necessary and sufficient condition that (S,) has order r > 1
is that lim 4, = 4o00.
n—+00
iii) If AN such thatVn > N, v, = v > 0 then (S,) is super-linear.

It seems that there is a contradiction between ii and #1:. This is not
true since it is not possible to define the order of a sequence for which
Vn > N, 9, = 7 > 0 since in that case

Tim |Sp41 — 51/1Sn— S| =0

and Ve > 0,
lim |Sny1 — 5] /15n - S|'** = +oo.

Thus we have the following figure

dn 1

n

The curves in the figure were obtained with the three following se-
quences
Sp = (0.9)"/(n+1) which is linear

= (0.8)13" which has order 1.3

1.
2. S,
3. Sp=1/(n+1) which is logarithmic
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The notions of speed of convergence and acceleration are useful for
comparing two sequences. Let (S,) be a second sequence with speed
(v.,) and acceleration (v;,). Then we have the

Theorem 1.30

i) If 3k > 0,3N such thatVn > N, v!, > v, +k then (S.) converges
faster than (S,).

i) If lim v, = v and lim vl = v' > v then (§') converges faster

than (S,).

Since the reciprocal of this result is not true, we need a sharper one
given by the

Theorem 1.31
If 3N such thatVn > N, v, > v, and v}, > v, then (S)) converges
faster than (S,).

It is easy to see that the condition v}, > v, > 0 for all n, implies that
the ratio |S/ — §’| /|Sn» — S| is monotonically decreasing and smaller
than 1. Thus it converges but not always to zero. Thus to converge
faster is not equivalent to to have a greater speed and the only necessary
and sufficient condition is the following

Theorem 1.32
A necessary and sufficient condition that (S.) converges faster than
(Sn) is that
lim (d;, - d,) = +oo.

n—00

(wtth d:‘l = —loglo IS,,‘ - S,I)-
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Chapter 2

SCALAR EXTRAPOLATION ALGORITHMS

All the sequences considered in this chapter are sequences of real num-
bers. It will not be difficult to adapt the algorithms and the subroutines
to sequences of complex numbers if complex arithmetic is available. If
not, the sequences formed by the real and imaginary parts of the num-
bers can be treated separately as two real sequences. One can also form
vectors with two components, the real and imaginary parts of the num-
bers, and use the vector extrapolation algorithms that will be discussed
in the next chapter.

We shall begin with the E-algorithm which covers most of the other
algorithms and study it in details. Of course, the drawback of such
a generality is that, in a particular case, it will be less powerful (in
terms of number of arithmetical operations and storage requirements)
than an algorithm particularly adapted to that case. But, on the other
hand, its interest lies in its flexibility and generality and in the fact that
it can be used for implementing many sequence transformations even
those for which a particular recursive algorithm does not exist. After
discussing some sequence transformations which are particular cases of
the E-transformation (sections 2.2 to 2.7) we shall study others which
cannot be included in its framework merely because they were obtained
by modifying the rules of an existing algorithm (sections 2.8 to 2.11).
The proofs of the results given in this chapter can be found in Bre-
zinski [55] and in the subsequent papers quoted in the text. See also
Weniger [457, 458] which contain many interesting results.

2.1 The E-algorithm

The E-transformation is the most general sequence transformation ac-
tually known. It contains, as particular cases, almost all the sequence
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transformations discovered so far: Richardson polynomial extrapolation,
Shanks’ transformation and the first generalization of the ¢-algorithm,
the G-transformation, summation processes, Germain-Bonne transfor-
mation, Levin’s generalized transforms, the process p and rational ex-
trapolation.

It was obtained independently by several authors but the two more
general approaches were given by Havie [219] and Brezinski [61]. It can
also be viewed as a particular case of a generalization of the Neville-
Aitken scheme to compute recursively the interpolation polynomial.
This generalization, due to Miihlbach [329], allows to compute recur-
sively an interpolating combination of functions forming a complete
Chebyshev system. On the various approaches to the E-algorithm and
on its numerous applications, see Brezinski [84].

The transformation E is based on the following relation R which is
assumed to hold between the members of the sequence (S,) to be trans-
formed (see section 1.2 on the role of this relation R)

Sn— S —ar1q1(n) —--- — argr(n) =0

where the (gi(n))’s are given auxiliary sequences which can depend on
some terms of the sequence (S,) itself. In other words, it is assumed
that

Sn = S + algl(n) 404 akgk(n).

Writing this relation for the indexes n,n + 1,...,n 4+ k and solving
the system obtained for the unknown §, which will be denoted by E',(‘")
since it usually depends on k and n, as was done in section 1.2, gives

Sa - Snuk
ai(n) - gi(n+k)

g _ | 9@m) - g(n+k)
(n) =

1 .- 1
gi(n) -+ gi(n+k)

gk(.n) gk(ﬂ.+ k)

By construction, the kernel of this transformation is given by
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Theorem 2.1
Vn, E(™ = S if and only if Vn

Sn =5+ a191(n) + - - - + akgr(n).

Of course, it must be assumed that the determinant in the denomi-
nator of E,(c") does not vanish. It must also be remarked that the kernel
of the transformation E; : (S,) — (E,(c")) depends on the auxiliary
sequences gi,...,gk. S0 if the order of g,,. .'.‘, gk is changed the kernels
of the transformations E4, E,, ..., Ex_, will be modified accordingly but
not that of E;.

Sequences of the form

S = S +a1fi(n) + -+ apfp(n)
"1+ “p+1h1(") +eeet ap+qhq(")

with k = p + ¢ are also included in the kernel of E; since this relation
can be written

Sn =8 + ay fl(n) 4+ 4 a,,_fp(n) - a,,+15,.h1(n) — e — ap+qS,.hq(n)

or
Sn =84+ aig1(n) + -+ - + argr(n)

with gi(n) = fi(n)fori =1,...,pand gi;p(n) = Sphi(n)fori=1,...,q.

The choice g2,-1(n) = fi(n), 92i(n) = Snhi(n) for i = 1,...,p when
P = ¢ can also be made, or the choice g;(n) = Sphi(n) fori =1,...,q
and g;4q(n) = fi(n) for i = 1,...,p, or any other choice. These various
choices lead to different E,-(")’s fori=1,...,p+ ¢ — 1 but to the same

E,(,'L)q’s thus generalizing techniques due to Larkin [272] and Bulirsch
and Stoer {106] for rational interpolation and extrapolation (see also,
Stoer and Bulirsch [418]). A different choice in the ordering of the
gi’s produces intermediate transformations E; with different kernels and
thus this order can be important and made according to the user’s needs.
An application of this rational form of the E-algorithm will be given in
section 6.2.4.
The E-transformation includes the following particular cases

o Richardson extrapolation process
gi(n) = 2!, where (z,) is an auxiliary sequence.
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G-transformation
9i(n) = zp4i—1 where (z,) is an auxiliary sequence.

Summation processes
gi(n) = zP where (z;) is an auxiliary sequence.

Shanks’ transformation
g,'(n) = ASn-H-—l R

Germain-Bonne transformation

9i(n) = (AS,,)‘.

Levin’s generalized transformation
gi(n) = 271 AS, /y, where (z,) and (y,) are auxiliary sequences.

First generalization of the ¢-algorithm
gi(n) = R(S,Az,)/Az, where (z,) is an auxiliary sequence and
R a difference operator generalizing A and defined by

Ry v
k+1 - n)_ k n
R v"—A(—_Az,.) R A(Az,,)

where v,, = S, Az,,.

Process p
g1(n) = z, and gi(n) = ASp4i—z for i > 2 where (z,) is an
auxiliary sequence.

Thiele rational extrapolation _
gi(n) =z fori=1,...,p, gitp(n) = Spz!, fori=1,...,p, k= 2p
and where (z,) is an auxiliary sequence.

As remarked above if we take in the last case gy;_;(n) = zi and

g2i(n) = Spzi, for i = 1,...,p, then the kernels of the transformations
E,,..., Ex_, are changed according to theorem 2.1 but not that of E;.

The recursive algorithm which allows to compute the numbers E,(:')

for all k¥ and n without computing the determinants involved in their
determinantal definition, is the E-algorithm whose normal rules are

E(g")zs,., n=01,...

g(():)=y’(n)’ n=0717--- and i=1,2,...
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Then for £k =1,2,...and n = 0,1,... we have (main rule)

_ ES) - B o
n n -1,
91(:—-?,113 - gl(c—)l,k

E’E") - E('_‘_)l

where the 9/?-'-)1 & s are auxiliary quantities recursively computed by (aux-
iliary rule)

(n+1) _ (n)
(n) _ _(n) k-1, ~Ik-1i  (n)
ki = Gk—15— (nt1) ) k1>
k-1, ~ k-1,

i=k+1,k+2,...

It can be proved that these auxiliary quantities are also given as a
ratio of determinants, namely

gi(n) - gi(n+k)

gi(n) -+ gi(n+k)

(n) _ akin) e yk(n.+ k)
Ik = 1 ... 1

g1(n) -+ qi(n+k)

gk(."-) gk(n."‘k)

Thus g,(:’:.) = 0 for i < k since two rows of the numerator are identical.

From the preceding determinantal formula for E,(c") and g,(c":-) we see that
we have

k
B = S A,

j=0
k

o) = LA aln+4)
j=0

where the coefficients A;k’") are solution of the system given in sec-
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tion 1.5 (which gives Ry)

AP gy al) =
AFVgi(n) + o+ A p(n+ k) = 0

AF M g(m) + -+ AFNge(n+ k) = 0.

Thus this system can be solved recursively by the bordering method
and for n = 0 it furnishes the sequences (E,(‘o)) and (g,(‘ )1 ) for k =
1,2,.

If E(")1 and g( ") & are replaced by the above expressions in the main

rule of the E~a1gor1thm we obtain a recursive scheme for computing the
Alkm)g
J

A(O’") = 1
A(k’") Ag(") - (k—l,n)gl(cn+1’2
AR A L = §" Lnlgint) _ gl tmttlgln) =1, k-1
A(k"‘) Ag(") _ (k A% n+1) g,(:l) ¥

with Ag{™), , = g4} — o™,

The progressive form of the E-algonthm is ngen by

(n+l)
st = o+ af - 502) (1 )
k-1,k

with
Py
n+1 n n n ) .
glg—-*l- t) = (—)1 t + (gl(c,u) gl(c )l,l) (1 - (n) ) ’ 12 k.

Thus, the second of these formul= cannot be used in practice since
the computation of elements of the descending diagonal n + 1 uses other
elements of the same diagonal for ¢ # k.

However if the sequences (E,(co)) and (g,(‘o_)l'k) have been computed by

the bordering method as explained above, then the quantities Ag-k—l'o)
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(j=0,...,k —1) and A%% (j = 0,..., k) are known. Then we obtain

- A(()k’o)gl(co—)l,k
k—1k = ) =y
450 _ 4010

and the progressive form of the main rule of the E-algorithm gives
the sequence (E,(cl)). Knowing E,(cl) we can determine the coefficients

A% (j=0,...,k) by

k-1, k—~ k, j
A(- 1,1) I(CO_) — ASHIO) (1_) A§+(1)) ’(co)lk, i=0,....,k-2
A(k 1, 1)_%(:0)1 . = - Aﬁk 0) Ay’(:’)1 o

Then, from these coefficients, we obtain

k,
g(z) _ A(() l)gl(cl—)l,k
-1k = -
A(()k,l)__A(()k 1,1)

and the progressive form of the main rule of the E-algorithm allows to
compute the sequence (E,(f)) and so on.

The subroutines EALGO and SEALGO perform the normal form of
the E-algorithm.

A more economical algorithm for implementing the E-transformation
was obtained by Ford and Sidi [162]. It is based on a quite simple
trick consisting in dividing the numerator and the denominator in the
determinantal formula of E,(c") by

gk+1(n) - gry1(n+ k)
a(n) - g(n+k)

gké") gk(n.+k)
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If we set, for any sequence u = (ug, th1,...)

Uy Un+tk
ai(n) -+ gi(n+k)

gkin) 9k(ﬂ.+ k) |
gk+1(n) oo Grga(n+ k)
ai(n) -+ gi(n+k)

(")( ) =

g(n) - gk(n+k)

(where the g;(n)’s are kept the same even if they depend on the u,’s
and the u,’s are changed) then

E’(c") - ‘I’g‘)(S) i
(1)

Using Sylvester’s determinantal identity, it can be easily seen that

¥, (u) - w‘"“’()
‘I’f,_)l(ykﬂ) ‘I’ )(9k+1)

¥ (u) =

Thus the E,(:")’s can be recursively computed by this algorithm (see
Ford and Sidi [162] for a FORTRAN subroutine). However it must

be noticed that the computation of 'I'}"')(u) requires the knowledge of

(9k+1(n)) while E{™ does not.
A generalization of theorem 2.1 is given by the

Theorem 2.2
IfVn,S, = § + a191(n) + az292(n) + - - - then Vk and Vn

E,(c") =S5+ ar1 9:(:13“ + Gk+2 91(:12+2 +ee

The result of theorem 2.1 is recovered if Vi > k,a; = 0.



2.1. The E-algorithm 63

Let us now come to the particular rules of the E-algorithm. It was
proved by Brezinski [62] that

EM Ein+h) E( E{m)

n n+-k n+m

95,.,)”.“ y,(n,fnll 91(:24-1 gl(c,k+1)

Y -;-k n. n-.i-m

EM™ _ g'(r:)m+k gfr?,m-l)-k - 91(c,13+m gl(c,k+rr2
ktm 1 1 1 1
+k n+m

9r(:,)m+1 9r(:.m-21 91(:,‘13+1 . !Jl(c.k+1)

. +k \ +

95:,)m+k gr(v’:.m-zk 91(:12+m gl(c'.'k+"r:2

Similar expressions hold for g,(c'_;,)m,i by replacing the first rows in the

numerators by (gS,:),-, ceey g("'-H‘)) or (g,(ct:.), ces ,g,(c"‘fm)

hig ) respectively.

In the first expression, if m = 0 then the determinantal definition of
E,E") is recovered. The choice m = 1 in the second expression leads to
the rules of the E-algorithm. When m is arbitrary we obtain a rule for
computing directly the elements of column k + m from those of column
k without computing the elements of the intermediate columns thus
providing a particular rule for jumping over a singularity or avoiding
instability due to cancellation errors.

For example let us use the E-algorithm to implement Shanks’ trans-
formation, that is g;(n) = ASn4i-1. Let (S,) be the partial sums of a
power series

f(=z) co+c1z +cpz? 4 ---
Sn

= co+c1z+ -+ cpz™, n=01,...

If f is the power series expansion of a rational fraction with a numer-
ator of degree k and a denominator of degree k then, by theorem 2.1,

we shall have Vn, E,(c") = f(z).
Let us take

f(z) =

If ¢ = 0 the normal rule of the E-algorithm cannot be used since a
division by zero occurs. Applying the particular rule allows to compute
E{™ directly and we obtain Eé") = f(z) for all n.

1tez =l+4ez+z?+ezd+2t+---.
1-2z2
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For small values of ¢, numerical instability is present due to cancella-
tion errors. These cancellation errors do not affect the particular rule.
For ¢ = 10~7,z = 0.8, f(z) = 2.77778 we have for E{™

[ » || normal rule | particular rule |

0 2.77778 2.77778
1 3.27840 2.77778
2 2.77718 2.77778
3 2.04960 2.77778

The use of the determinantal form of the particular rules is easy in this
example since m was small (m = 2). For larger values of m it is worth-
while to use the following formula which was proved to be equivalent
(Brezinski [79])

ER. = EP - (AEP,...,aEM™Y).
n - -1 n
Agl(c,k)+1 Agl(c"kt: Y gl(:,IZ+1
;l n:m—l n:
Aglm -+ Al R

and a similar formula for g,(c'_;)m.i (A operates on the upper indexes). Of
course the inverse of the matrix involved in this expression, multiplied
by a vector is replaced by the solution of a system of linear equations.

From the determinantal formula of the particular rules we have a
further generalization of theorems 2.1 and 2.2

Theorem 2.3

Vn, E,("_;)m = S if and only if Vn

E,(,?) = S + am+l 95:_),,..,.1 + e + Am+k 95,:),,.+k-
If Un, 5,:') =S+ant g,(,:),n+1 + a,,....zg,(,:',),,.+2 4 ... then Yk and Vn
El(c'-l.-)m =5+ Ck+m+1 gl(c:-)m.k+m+l + Gk4m42 gl(c’-:-)m,k+m+2 +---.

The properties of translativity (see section 1.4) of the E-algorithm
where studied by Brezinski [81]. We saw above that

E(™ = F(Sn,...,Sn+x)
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with

k
F(ugy...,uk) = EAjuj
=0

where the A;, which depend on k and n, are solution of a system of linear
equations whose coefficients are the g;(n)’s. Thus the A;’s depend on the
gi(n)’s and it is easy to see that if they are invariant by translation (that
is if they are invariant if (S,,) is replaced by ($,+b)) then F is translative.
But this is not the most general condition for the translativity of the
E-algorithm.

Let A be the matrix of the system giving the Ag-k’")’s, let b = (A((,k'") ,

ceey Aik’"))T, let e = (1,0,...,0), let v = (S,,. ..,S,.+k)T and let DA
be the matrix obtained by applying the operator D (sum of the partial
derivatives, see section 1.4) to the elements of the matrix A. Then we
have the

Theorem 2.4
A necessary and sufficient condition that the E-algorithm be transla-

tive is that (v,A"1 DA A~ 1¢) = 0.

Thus if the g;’s are invariant by translation, then DA = 0 and the
E-algorithm is translative. If the g;’s are independent of (S,) then,
obviously, the above condition is satisfied. We saw above that the case

_ St afi(n)+- 4 apfyln)
1+ apy1hi(n) + - + apighy(n)

n

fits into the framework of the E-algorithm since this can be transformed
into
Sn =5+ aigi(n) + -+ + argi(n)

with k = p+ ¢ and where, for example, g;(n) = fi(r)fori =1,...,pand
gi+p(n) = —Sphi(n) for i = 1,...,q. Thus, even if the f;’s and the h;’s
are invariant by translation, the g;;,’s are not and thus the function G
(see section 1.4) corresponding to the E-algorithm is not translative.

However in some cases the E-algorithm is translative thus providing
a counter-example to reciprocal of theorem 1.3. We have the



66 Chapter 2. Scalar extrapolation algorithms

Theorem 2.5
Let the f;’s and the h;’s be invariant by translation. If ¢ < p and if
the h;’s are linear combinations of fi,...,fp fori =1,...,q, then the

E-algorithm is translative.

For the sake of completeness, let us mention other algebraic properties
of the E-algorithm. Their proofs can be found in Brezinski [85]. To

indicate that E,E") depends on (S,), (91(n)), - - ., (9x(n)), we shall make
use of the notation

E,(C") = Ex(Sn; 915---,9k)-
These properties have been gathered in the
Theorem 2.6
1. Va; #0 fori=1,...,k
Ey (Sn; @191, -+,0k9k) = Ex (Sn; 91,-- -, 98).
2. Va, # 0,Vay,...,ax
Ei(Sn;@191 + -+ GkGks 92,- -, 9k) = Bk (Sni g1, ---, 9x)-

The same result holds if several g; are replaced by linear combina-
tions of the others.
Ex (Sn; 915- - - 9k) 18 @ symmetric function of gi,..., gk.

3. If either the g;’s are independent of (S,) or the E-algorithm is
applied with the same g;’s then

i)

Ey (S,,d;l;gl,.. "gk)
E; (451;91,---,9&)

where h;(n) = d,gi(n) and Vn,d, # 0.
) IfVn, S, # 0 then

Ek(sn;flv KX fp) 9. "gq)zl/Ek (S;l; €1y.++9Cpy hlr XX} hq)

with k = p + g, 9i(n) = S,hi(n) and e;(n) = S fi(n).

Ex(Sp; hyy. .. hi) =
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i) If Vn, S, # 0 then
Ex(Snih1y. ..y hi) = 1/Ek (5,71;91,- --,gk)

where hi(n) = Spgi(n).
iv) IfYn,d, # 0 then
E; (Sndr—xl; 91, h29 ooy hk)
Eyx ( r—ll;ghh%"whk)

Ek(sn; hla g2y.- ) gk) =

where hy(n) = d,g1(n) end hi(n) = d;1gi(n) fori=2,...,k.
v) IfVn,d, # 0 then

E ny e
Ei(dpSn;h1y. .- i) = k(s_l»gl, » 9k)
Ey (dn ;91:...,gk)

where h;(n) = dngi(n).

Property 3—i) was obtained by Havie [219]. It shows how to compute
Ei (Sni b1, - .., hy) from Eg (Spdz'i g1, -5 9k) Bk (d775 91, - -, 9x) and
the 91(:-'-)1,1;’5 obtained from the g,;’s without computing the new auxiliary

g,(:,-) ’s from the A;’s.

Let us now come to the convergence and acceleration results which
are known for the E-algorithm. These results are few and they only
concern the columns (that is k fixed and n tending to infinity). However
they are quite interesting since they throw some light on the process of
convergence acceleration. They are the following

Theorem 2.7
If nanc}o E,E'_‘_)l = 8, if there ezist a and B such that a < 1 < B and

Vn > N, g™ /o™, , & [0, 8] then lim E{ = 5.

Of course, this result is not very interesting since it will be difficult in
practice to check if the condition is satisfied or not. We shall now give
conditions on the initial g;’s such that the preceding condition holds.
Thus we have the
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Theorem 2.8
If nli’rgo S, = 8, ifVi,3b; # 1 such that ,.li.lf}o gi(n+1)/gi(n) = b;, of

Vj # i,b; # b; then VE, lim EM=s5.
Let us now come to convergence acceleration.

Theorem 2.9

If the conditions of theorem 2.8 are satisfied and if ul_iglo . (E,(:*;l) -S ) /
(E,(:)l - .S') = by then (E,(c")) converges to S faster than (E,(c'l)l) when
n tends to infinity, that is
lim (E{ - 5) /(EX, - 5) =o.

Moreover if by # 0, (E,(:")) converges to S faster than (E,(:;l)) .

As was the case for theorem 2.7, this result is not very useful since the
condition is difficult to check in practical situations. Thus, let us now
give conditions on (S,) and the g,’s which insure that the condition of
the preceding theorem is satisfied. We have the

Theorem 2.10
If the conditions of theorem 2.8 are salisfied, if Vi, g;11(n) = o(gi(n))
(n — o0) and if Vn, S, = S + a191(n) + azg2(n) + - - - then Vk, (E,(:'))

converges to S faster than (El(:-)l) .
Moreover

k

n b _bi
E,(: )—S~ak+1H—£;—l_T-'9k+1(") (n — o)

=1

and

EM -5 o(221(n))

EM s\ giln)

(n — o0).

These last two assertions were proved by Sidi [404]. They show the
gain brought by each column and are the quantitative complement to
the previous results.

Another acceleration result was obtained by Matos and Prévost [315].
Its interest is that the conditions of theorem 2.8 are no more required.
1t is as follows
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Theorem 2.11
If¥n,S, = S + a191(n) + azg2(n) + - -+ with Vi, gi(n) = o(1)and
gi+1(n) = o(gi(r)) (n — o0) and if Vi,Vp and Vn > N we have (with
go(n) =1)
gisp(n) - 9:'(")
: : >0

gi+p(n+p) --- gi(n+p)
then Vk > 0, (E,(c';)l) converges to S faster than (E,g")).

Let us give some examples of sequences satisfying the above assump-
tion on the determinant

¢ g1(n) = g(n) where (g(n)) is a logarithmic totally monotonic se-
quence (that is Yk and n, (—1)*Akg(n) > 0, see section 2.3 for
more details) and g;(n) = (—1)'A’g(n) for i > 1.

o gi(n)=z%iwith1>2z;>2z;>--->0and0<ay <z < ...
. gi(n)=Q?With1>gl>92>.,,>0.

¢ gi(n) =1/((n+1) (In(n +2))*) with0 < a1 < @ < ... and
Bi < Biy1 if i = ajyg.

Let us comment these results since they show us the way that must
be followed for accelerating the convergence of (S,). The condition
gi+1(n) = o(gi{n)) (or, in other words, lim gis1(n)/gi(n) = 0) means
that (g1, g2,...) is an asymptotic sequence and the condition S, = § +
a191(n) + azg2(n) + - - - means that the error (S, — §) has an asymptotic
expansion with respect to the asymptotic sequence (g1, g2,...).

Thus, now, what has to be done for accelerating the convergence of
(Sn) becomes clear: one has to find an asymptotic sequence with respect
to which the error admits an asymptotic expansion. Sometimes such
asymptotic expansions can be obtained from the classical convergence
tests for series, Brezinski [77]. Sometimes they can be constructed from
a good estimation of the absolute value of the error, Matos [312]. In
other cases, they can be obtained from an asymptotic expansion of the
inverse of the error, a technique useful for the acceleration of some classes
of continued fractions, Matos [313]. In some other cases, they can be
deduced from an asymptotic expansion of AS,41/AS,,, Overholt [352],
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Matos [310], or of AS,,, Matos [309]. These techniques will be described
in section 3.3.

It must be noticed that the conditions given in the preceding theorems
are only sufficient conditions and that an asymptotic expansion does not
always exist.

For example, let us take S, = A"/n with A € [-1, +1[ and g;(n) = A™.
Then the conditions of theorems 2.7 and 2.8 are satisfied and (Ef")
converges to zero as (S,). We have

An+l

EM = :
(A-1)-n-(n+1)
The condition of theorem 2.9 is satisfied and (E}")) converges faster
than (S,+1) since
EM 1
S,..H - (A - 1) ~ﬂ.
However S,, has no asymptotic expansion with respect to an asymp-
totic sequence beginning with g;(n) = A" since

Jim S,/g1(n) = 0.

Let us now take S,, = A" and g,(n) = 1/n. Then E'i") = A"A(n+1)-
n] which tends to zero although the conditions of theorems 2.7 and 2.8
are not satisfied. In that case also, S,, has no asymptotic expansion since

nli-{go Sn/gl(n) =0
but the convergence is not accelerated and we have
: (m) =
Jin |17/ 2| = co.

Numerical examples illustrating the preceding theorems will be given
in section 6.1.1.

The case where the assumption b; # b;,Vj # i of theorems 2.8, 2.9
and 2.10 is no more assumed to hold was studied by Fdil [156).

We set a; =1 and for i > 2

o™ = gi(n+1) gi(n+1)
' 91(n) 9i(n)

and we have the
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Theorem 2.12

If "lingo Sn = S, if Vi,3b; # 1 such that nll’ngo gi(n + 1)/ gi(n) = b;, if
Ja; with aj- b; different from 1 and from a; - b;,Vj # i and such that
Jlim w,("“) /w,(") =a;, then Vk, lim E,(c") =S. Moreover if Vi, g, 1(n) =

0(gi(n)) when n — oo and if Vn, S, = S+a19:(n)+azg92(n)+ - -« with
a; # 0,Vi then Vk, (E,g")) converges to S faster than (El(c':)l) .

Prévost is actually extending the result of theorem 2.11 to the diagonals.
To end this section let us present a variant of the E-algorithm which is
more economical in a particular case. It is the W-algorithm of Sidi [397]
which has many applications in extrapolation methods for infinite in-
tegrals as we shall see in section 6.7.4. In this algorithm it is assumed
that
Sn=54+9(zn)- (Go +arz;t + a2t 4 - ) .

Thus the E-algorithm can be used with
gi(n) = g(za)z; !,  i=1,2,...
and we have,forn > 0
Sn = E,(cn) + 9(zn) - (ao +azt +--- 4 ak_lz;(k‘l)) .
From theorem 2.6 (3—1) we have
E; (Sn; g(z,,),g(zn)z;l, vy g(zn)z;(k“l)) =

Ex (S,./g(z"); Lz.1,..., Zg(k—l))
Ei (1/9(zn)iLLzat, .., za ™)

The W-algorithm is based on this relation and on the fact that for
9i(n) = z,;**! the E-algorithm reduces to the Richardson extrapolation
scheme. This algorithm is as follows

S, 1
MM = Pn N® — , n=0,1
1 g(zn) 1 g(zn) v 4y
o~ M-
kDT T z]
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NEHY )

N® = b=l k,n=01,...
Zotk-1 " Tn
(n) M
Wi (n)
N

and we have W( ") = E,g")l. The W,E")’s can also be computed by

N(':TI)W’E'_H'I) N(") W(") J——" Wé” 1) W(") )
N)Ef_ﬂl-l) N(n) - k-1 ngn-i—l) Nk(y:) k-1°

W,S") =

2.2 Richardson extrapolation process

Richardson extrapolation process corresponds to the choice g;(n) = zi,
in the E-algorithm, where (z,) is an auxiliary sequence such that Vi and
Vj #i,2; # zj. Thus the kernel is the set of sequences of the form

Sp=8+ a1z, +a2z2 + -+ q4zF

thus showing that Richardson process corresponds to polynomial extrap-
olation at the point 0.
The numbers E,(c ), denoted usually by T,E") in this case, are given by

Sn oo+ Smik

Tn °°* Tnik
o L
=

1 -.- 1

z" LIy zn+k

zt ... ok,
It can be proved, by looking directly at their determinantal expression
and using the well known value of a Vandermonde determinant, that

(n) ~1)k-l.z .. ...
9k lk"'( ) Tn.oo Tptk—1-
Thus the E-algorithm reduces to its main rule which also simplifies

and we obtain Richardson extrapolation process

T0=Sn, TI:O,I,...
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7Y _ 5 plnt])
T]En) _ Tntkdp_1 — Tndp . k=1’2,_._;n=0,1,...

Tntk — Tn

T,f") is the value at the point 0 of the interpolation polynomial P,S"), of
degree at most k, which satisfies

P,g")(zn+.')=S,.+;, i=0,-..,k.

It is well known that these interpolation polynomials P,S") can be
recursively computed by the Neville-Aitken scheme. Setting z = 0 in
this scheme leads to Richardson process.

The T,S")’s can also be obtained directly as the solution of the system
of linear equations

S,,+,-=T£")+a13n+i+"'+akzﬁ+i’ 1=0,...,k
Multiplying equation i by b; and adding them leads to
T{™ = boSn + -+ + bk Snik

with
bo+- -+ b=1
bozp+ -+ bkZpyk = 0

bozk + .-+ brzk, . = 0.
This system can be solved by the bordering method and thus we
obtain a recursive method for computing Té"), Tl("), TZ("), ... for a fixed
value of n.

In some particular cases the b;’s can be obtained in closed form as
proved by Marchuk and Shaidurov [306]. We have for n = 0 and

= (i4+1)! _ (EDEE )R
z;=(i+1)"", b= G+ 1) (k=)

N 2(_1)k—f,(i+1)2k+2
B CETES) B

, 1=0,...,k

z;=(i+1)72, b i=0,...,k

Moreover

.Zb',zf'f'l = (_1)k Bt B = gl(c(,2+l'
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If the auxiliary quantities z, are either independent of (S,) or in-
variant by translation then so are the T,E")’s. This is, in particular,
the case when z,, = AS,, thus obtaining an acceleration method due to
Germain-Bonne [182].

From the simple structure of the algorithm, we can obtain a quite gen-
eral convergence result, a weaker form of it being due to Laurent [274].

Theorem 2.13
A necessary and sufficient condition that

Vk fized, nlggor,@ = lim S.=§

n—

Vn fized,  lim T = Jim S, =S

for all converging sequences (S,) is that Ja < 1 < B such that Vn >
N’ =|:ﬂ«)-l/’:n ¢ [a:ﬂ]'

This result holds even if the auxiliary sequence (z,) depends on (S,)
as soon as the condition of the theorem is satisfied.

If S, = f(zn) and if f is k + 1 times continuously differentiable in
an interval I containing 0 and z,,...,2,4+x then, from the theory of
polynomial interpolation, we have

§ — T = (~q)k+1. Zn oo Dotk | g(kt1)
with £ € I and depending on the indexes k and n.

Thus, in that case, convergence can occur even if the condition of

theorem 2.13 does not hold. We have the

Theorem 2.14
Let (z,) converge to zero and S, = f(z,) where f is k + 1 times
continuously differentiable in an interval I containing 0 and all the z,, ’s.
Then
lim T( = lim S, = §.
n—o0

n—oo

If f is infinitely many times differentiable in I and if IM such that
Vk and Vzel, | f6+0(z)| < M then
Vk fized,  lim T{" = lim S, =§

n—00

Vn fized,  lim T(" = lim S; = 5.



2.2. Richardson extrapolation process 75

More precise results on the convergence of the columns can be ob-
tained, see Crouzeix and Mignot [123] who gave the

Theorem 2.15
Let (z,) be a sequence of positive terms converging to 0 and S, =
f(zn) forn=0,1,... with f such that, for k = 0,..., kg, we have

f(@)=S+aiz+ -+ arz® + Ri(z)
with
|Ri(z)] < Crz*t!.
If 3r < 1 such that Vn,z, 1/, < r then Vk < kg

T,E") - § =0(zk) (n — o).
IfVn,z, = zo/(n + 1) then Yk < ko/2
T - § = 0(z**1) (n — ).

Regarding convergence acceleration, the following result is a direct
consequence of theorem 2.9

Theorem 2.16
Let us assume that 3a < 1 < f such that Vn,z,41/2z, ¢ [a,B]. A
necessary and sufficient condition that (T,E")) converges to S faster
n

than (T,S'_')l) for a fized value of k, is that
n
(") _ g

. - . Tntk

nhm —k—(:—)——— = lim 2%,
—00 _ n—oo g
;-5 n

Of course this condition is usually difficult to check in practice. How-
ever, from theorem 2.10, we obtain the

Theorem 2.17
Let (z,) be a sequence converging to 0. We assume that there ezists
r €] — 1, +1] such that nl_l_{& Zpt1/Zn =7. IfVn, 8, = S+ a1z, +a2z2 +

-+« then Vk, (T,g")) converges to S faster than (T,Ef)l) (and faster than
(T,f,"“)) ifr#0).



76 Chapter 2. Scalar extrapolation algorithms

Let S, be the result obtained by applying the trapezoidal rule with
b

a step-size h,, for computing an approximate value of § = / f(z)dz
where f is sufficiently differentiable in [a,b]. If h, = ho/2" and if the
Richardson extrapolation process is applied with z,, = A2 then the fa-
mous Romberg’s method described in any textbook of numerical analy-
sis, is recovered. In that case the conditions of theorem 2.16 are satisfied
and each column converges to § faster than the preceding one.

Due to its simplicity and effectiveness in many cases, such as in numer-
ical methods for ordinary and partial differential equations, Richardson
process has been widely discussed and used. See, for example, Marchuk
and Shaidurov [306, 307] which does not contain extrapolation by the
E-algorithm since it was published in Russian in 1979.

A generalization of Richardson process was proposed by Christiansen
and Petersen [114]. Let us assume that ($,) has the form

S,,=S+alzf,l +azzﬁ7+...

where now the values of the k;’s are unknown (if they are known the
E-algorithm can be applied with g;(n) = zki). These authors show how
to compute approximate k;(n)’s of the k;’s and then extrapolating. First
the following functions of the real variable z are defined

fl(n,z)::l, n=12,...
fir1(n, z) = a(n, k) fi(n — 1, k) fi(n, 2) — a(n, z) fi(n, ki) fi(n - 1, z)
sHI a(n, k) fi(n — 1, k) — fi(n, k)

t=12,...andn=1+1,1+2,...
with a(n,z) = (z,-1/2,)* and zo > z; > --- > 0. It is also assumed
that z,, = zo/(n + 1) for n = 0,1,.... The algorithm is as follows

1. Sett—OandR(") Sn,n=20,1,.

2. Replace i by i + 1 and solve the equation

a(n—1,z)fi(n—2,2) - filn—1,z) _ R,(:;I) R("_z)
a(n,z)fi(n - 1,2z) - fi(n,z) - R'(f)l — R.(ffl)

a(n,z)-

for the unknown z and n =i+ 1,i + 2,... and set k;(n) = z.
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3. Compute

a(n, ki(n))fi(n — 1, ki(n))RE™) — filn, ki(n))R{"TY)
a(n, k(n)) fi(n — 1, ki(n)) — fi(n, ki(n))
forn=t+2,:43,...

4. Go to 2.

Although not yet completely justified from the theoretical point of
view, this algorithm seems to work quite well in practice. It can also be
used if 2,4, = az, forn =0,1,....

In some applications the k;’s are known. This is, for example, the
case for the trapezoidal rule. However due to special properties of the
problem some of the coefficients a; can be zero and in that case the cor-
responding term z*i disappears. Of course if the E-algorithm is applied
it will be less efficient than when the term is present. Thus the preceding
procedure could also be applied to check the presence or the absence of
the successive terms. After having checked that a term is present, the
exact value of the corresponding k, is used in the extrapolation formula.

To illustrate the method let us compute an approximate value of

.S'=/l.-~,1/2d:r:=2
0 3

by the rectangular method

_ o j+1/2)""’
Sn=(n+1) g)(n+1 .

R™ =

We have
Sn=8+a1z)® + ayz? + a3zl + - .-

with z,, = (n + 1)~! and we obtain

L | ki(n) | ka(n) | ks(n) | ka(n) | ks(n) |
6 | 1.39 | 1.98 | 3.89 | 5.60 | 6.80
7 || 140 | 1.99 | 3.93 | 5.74 | 7.28
8 || 140 | 1.99 | 3.95 | 5.82 | 7.51
9 | 141 | 1.99 | 3.96 | 5.86 | 7.65
10 || 142 | 2.00 | 3.97 | 5.90 | 7.65
11 || 142 | 2.00 | 3.97 | 5.90

The subroutine RICHAR performs Richardson extrapolation.
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2.3 The ¢-algorithm

Shanks’ transformation (or the e-algorithm) is certainly, with Richard-
son process, one of the most familiar convergence acceleration method.
It was found by Shanks [392] as a generalization of Aitken’s A2 pro-
cess. It corresponds to the choice gi(n) = ASn4i—1 in the E-algorithm
(or, equivalently, to the choice g;(n) = A'S,). Thus its kernel is the set
of sequences of the form
Sn=8+aAS, +---+ akASn+k—1

or Sn=S4+bAS,+---+bAkS,

or ¢c(Sn—8)+--+ck(Snsx—S5)=0
with e+ -+ ¢cx #0.

We see that this is what was called, in section 1.1, the implicit form
of the kernel while, for Richardson process, the explicit form was given.
In order to obtain the explicit form of the kernel of Shanks’ transfor-
mation, one has to solve the above linear difference equation of order
k. However, let us first give the determinantal expression of the E,(c")’s,
usually denoted by ex(S,) in this case. We have

Sn . Sn +k
AS, cer ASnik

ASpik-1 -+ ASpyak—

ex(Sn) = 1 cee 1
AS, cee ASnik
ASpik-1 +++ ASpya
We also have Hea(S52)
_ k+1\9n
ek(Sn) - Hk (Azs")
where Hy(u,) denotes the so-called Hankel determinant defined by
Ho(up) =1
u, vee Uppk—-i
Ungl vt Ungk
Hi(wa)=| o *

Untk—1 *°° Uny2k-2
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Let us give a bit of history. Aitken’s A2 process was, in fact, rediscov-
ered by Aitken [6] but it was known to the great Japanese mathematician
Seki Kowa (16427-1708) who used it for accelerating the computation of
« by inscribed polygons. It corresponds to k = 1 in Shanks’ transforma-
tion. The case k = 2 was used by James Clerk Maxwell [316] (1831-1879)
in his treatise on electricity published after his death. Then the general
case was treated by Schmidt [387] for solving by iteration a system of
linear equations. Finally O’Beirne {341} described a sequence transfor-
mation which is Shanks’ and used it for accelerating the convergence.
An internal report on it was also written by Shanks [391]. Schmidt’s
discovery remained almost unknown since the problem treated was not
convergence acceleration but mostly solution of systems of linear equa-
tions. The work of O’Beirne was published as an internal report and
remained unknown until it was quoted by Jamieson and O’Beirne [243].
The report of Shanks of 1949 also remained unknown until the paper
of Shanks [392] was published although he also wrote several short ab-
stracts of his work between these two dates. These three discoveries of
what is now called Shanks’ transformation were made completely inde-
pendently.

The kernel of Shanks’ transformation was given by Brezinski and
Crouzeix {92] who proved the

Theorem 2.18
A necessary and sufficient condition that Vn,ex(S,) = S s that 3a,,
aj, ..., ar withay #0 and ap + - -+ + ar # 0 such that Vn

ao(Sn—S)+ -+ ak(Sn4x - S)=0

or, in other words, that Vn

Sn=8 +i Ai(n)r?+ 2‘1: [Bi(n) cos b;n + C;(n) sin b;n) e"""-}-i cibin

1=1 i=p+1 =0

withr; #1 for i =1,...,p and where A;, B; and C; are polynomials in
n such that if d; is equal to the degree of A; plus one fori =1,...,p and
to the mazimum of the degrees of B; and C; plus one fori =p+1,...,q
one has
P q
m+2d.-+2 z di=k-1

i=1 i=p+1
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with the convention that m = —1 if there is no term in §;, (Kronecker’s
symbol).

Shanks’ transformation is a generalization of Aitken’s A2 process
which is recovered for k = 1. In that case the kernel is §,, = § + ar™ as
seen in section 1.1.

Of course, Shanks’ transformation can be implemented via the E-
algorithm. Shanks himself computed separately the Hankel determi-
nants Hj1(S,) and Hy (A2S,) of the numerator and denominator of
ek(Sn) by using their recurrence relationship which is a direct conse-
quence of Sylvester’s determinantal identity. It is as follows

Ho(“n)=1, Hl(un)zun: n=0,1,...

Hiyo(tn) - Hi(tny2) = Hir(tn) - Hepr(vns2) ~ (Hee1(vns)?,
k,n=0,1,...

However the most famous algorithm for implementing Shanks’ trans-
formation is the e-algorithm of Wynn [470] which consists in computing

the numbers eﬁ") by

=0, MN=5,, n=0,1,...

n nt1 1
€£+)1 = €£—1)+—(;;1)—(,,)) k,n=0,1,...
&k — &

It is related to Shanks’ transformation by
Eg’]:) = elc(‘srl) ’ k’ n=01,...

A proof of this relation, based on the E-algorithm, was given by Beck-
ermann [16].
The numbers eg',:zl_l are intermediate results and it can be proved that

e(") _ H; (A3S,.) _ 1
2641 7 Hit1(ASn) ~ ex(ASn)
We also have
(n) (n) [Hk+1 (Asn)]2

F42 = % T H(8%5,) - i (B75,)°
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Obviously Shanks’ transformation is quasi-linear, that is
ex (aS, + b) = aex(Sn) + b.
This means that if (S,) is replaced by (aS, + b) then eg',:) becomes
aeg',:) + b while eg',:)ﬂ becomes sg,z_l/a since 5&:!;.1 = 1/ex(ASy)-

As explained in section 1.7, these numbers eﬁ") are displayed in a
double entry table, the e-array, as follows

e21 =0
E(()O) = So
M) =0 )
Egl) = Sl Ego)
e(_zl) =0 egl) ego)
682) = 52 Egl)
e(_g'l) =0 egz) e:(,l)
sg’) =83 egz)
e e
: (3)

Since the eg',g‘_l’s are intermediate results they can be eliminated thus
leading to the so-called cross rule of Wynn [479]

[ ] 4 [ - i) =

e = ) [ - ]
(n)

which can be used to compute recursively ¢, o from the initial condi-
tions

eM=s., M-, n=o1,...

Let us mention that the cross rule was also proved to hold between
the ¢’s with an odd lower index, that is

20 = i?] ™ el - i) =
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n -1 n n -1
[‘g'l:ﬁ) - ‘gkﬂ) + egk)—l - egkt})

with
=0, =145, n=0,1,..

The particular rules for avoiding numerical instability (see section 1.9)
are based on this rule which can also be obtained by Schur complements,
see Tempelmeier [431].

Other algebraic properties of Shanks’ transformation can be found in
Brezinski [55].

The progressive form of the e-algorithm (see section 1.8) is given by

+1) _ _(n 1
eﬂl ) = €k+)1 + m
k+2 k

Thus knowing e((,l) = 51, e{°’ and e§°’, egl) can be computed. Then,
from 59), e§°’ and e§°), sgl) can be obtained. Then e?) can be calculated
from e((f) = Sg,egl) and egl) and so on.

Similarly the progressive form of the cross rule is

-1 -1

it = el (D - o) (e - )
n n -117?
(egk) - egkﬂ)) ] .

Thus, knowing the first two diagonals (eg,)‘)) and (e&)) allows to
compute the whole table.
The first diagonal (eﬁo) ) of the e-array or the first two diagonals (egp)

and (eg:) of the even part of the ¢-array can be obtained by the border-
ing methods described in section 1.8, which are given in more details in
Brezinski [54] and Brezinski [56]. They are based on a modification due
to Trench [437] of the bordering method for the special case of Hankel
matrices.

Of course the use of such a bordering method requires that all the
Hankel determinants are different from zero. When it is not the case, an
extension of the process has been proposed by Piifiar and Ramirez [332].
It is as follows
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Initializations:
o =0, j=0,1,...
(°)—1 u{” =0, ji=1,2,...
d( 1) = d(O) =1
3(0)=1+min{i € N|Sn+i # 0,n fixed }

p(0) = —
,\('1) 1, A =0 for j#0
,\(°) for j=5(0)—1,...,2s(0)—1

() -

Computation of eg:zk)—z from eg',:)_z for n fixed:

k
1. Compute ’\gk) = ZS,,H.,.;u,(-k) for j > k until a non-zero value
1=0
has been obtained.

2. Set
s(k)=1+min{j > k[)\g.") #0}.
3. Set h = s(k) — k and compute A(k) and A(p(k)) for i = s(k) —
o(k)+h—-landj=Fk—1,....k+h-1

4. Solve the system

(k) -1
Aa(lc:)—l B(k)
. . 0
(A%, )“. 0 g = N I

5 B
k k h

Ag(l)c) 1 ’\.S(l)c)+h—1

A(P(R)

k-1

k -1
" o)
MG,

5. Set R
s k -1 k
d(2(k)) — g(k) Z B,( ) _ ( ,\g_(f))) Ag(z)—l dPk).

i=0
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6. Compute
() ™ = () ™ + () () i

=1

7. Compute the ug'(k))’s by the recurrence formula

h
s(k k) (k BN\ ((k k
“.('+(h)) = ZBf )”.(‘+)h—j - (’\gcp—(l))) ’\S(l)c)-l “gi(h))

=0
fori= —h,... k.
8. Replace p(k) by k and k by s(k) and go to 1.

To end with the implementation of Shanks’ transformation let us men-
tion that a more general ¢-algorithm was studied by Carstensen [112]
who gave a cross rule for the E-algorithm.

Let us now come to convergence and acceleration results for the e-
algorithm.

As mentioned in section 1.1, Aitken’s A2 process can produce a se-
quence having several points of accumulation when applied to a conver-
gent sequence. Let us give two examples of this situation. The first one
was considered by Lubkin [301] who took

Sa = Y (1)1 + 1), n=0,1,...
=0
where |i/2] is the integer part of /2. This sequence converges to § =
x/4+ 0.5-1n2 and we obtain

2n+3
(2n +2) - (4n + 5)

e§2n) — Szn + (_1)n .

d
an 2n + 4
2n+3°
Thus (eg")) has three points of accumulations 5,5 +1 and S — 1.

Marx [308] considered.

e = Spnr + (—1)"-

S=§:c;=0

=0
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with ¢33 = 1/2n,¢3,-2 = 1/(2n+1) and e3p—1 = —(4n+1)/2n(2n+1).
(eg’"_l)) converges to 1 while (e?"‘”) and (egs")) tend to zero.

However, as remarked by Lillich [288], if the ¢-algorithm is applied to
these two sequences, the other columns and the diagonals of the ¢-array
converge to the right answer.

Of course, for the e-algorithm, the general convergence and acceler-
ation theorems 2.7 to 2.12 for the E-algorithm remain valid. Due to
the non linearity of Shanks’ transformation such results are difficult to
obtain and only a few are known. The first ones, due to Wynn [477],
deal with sequences of a very special form. They have been gathered in

the following theorem

Theorem 2.19
If the e-algorithm is applied to a sequence (S,) such that

1. Sp ~ S + Ea;(n-{- b)~* with a; # 0 when n — oo, then, for k
=1
fized and n — oo
a)

(k+1)-(n+8)

e~ S+

2. S5n~ S+ (—1)"Za,-(n+b)"i with a; # 0 whenn — oo, then, for
i=1
k fized and n —» oo
(k!)z * a1

(n) n
Ep ~ S+ (-1)"- 4% (n + b)Zk+T’

o0
3. S,.~S+Za,v\,'-' withl > A > Ay > -+ > 0 when n — oo, then,
=1
for k fized and n — oo

arg1 (M1 = A1)® s Qg = M),
2 2 * Ak+1-
TN

e~ S+

o0
4- Sn~ S+ (-1)") @A with1> Ay > Ay > --- > 0 whenn — oo,
=1
then, for k ﬁzed' and n — oo

(n) n Qk+1 (/\k+1 - /\1)2 Ceeet (Ak+1 - Ak)z n
e ~ 8§ +(-1)". D LI
% (=1) (M) (L + M) k41
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We recall that the notation u,, ~ v, means that "lilgo U, /v, = 1 where

(u,) and (v, ) are sequences converging to zero.
Other results of this type were given by Garibotti and Grinstein {173]

Theorem 2.20
If the e-algorithm is applied to a sequence (S,) such that

1. Sp~S+(n+ a)bz\"z:a.'(n+ a)" withag=1,a>0,|A\<1,
1=0
A#1andb € C, then, whenn — oo
e ~ S+ A" [b], (~1)*k!(n + a)* (A - 1)~

fork>0andb+#0,1,2,...0r for 0 < k< bifbeN.
IfbeNand k> b+ 1 then, for n — oo
eg',:) ~ S +ap A" (k—b—1)(k+b+1)Y(A—1)"2%(n 4 )21
where [b); = b(b—1)-...-(b—j+1) if j > 0 and [b], = 1.

2. Sy~ 8+ (n+a)PI"*sing, witha>0,0<A<1,be C\N,
a, = nl+ 8 with 0 < § < » and § € R then, for k fized and
n— oo, n € M;

Eg'):) ~ S+ (_q)—~kAn+k+122N (sin0)2(k—N) .

. 2N -
2w (8inanys)

., \F-2N

(sman_'_k)

where N = k/2 if k is even, N = (k—1)/2 if k is odd, ¢ =
2(A* —cosf), AT = (¢71 2 q)/2, @), = an — £ with § €]0,x]
defined by tan{ = A~ sind/ (A% cos6 — 1) and the set My given
by

M = {n|sina,4x # 0 if k is even, sina), ., # 0 if k is odd} .
n+k

k+1

[Bly N'(n + a)*~

3. Sa~S+(-1)*[(n+a)+c| witha>0,ceCbeC,b#0
then, for k fized and n — oo

eg’,:) ~ 8 + (=1)"+k2-2k(n + a)b-Z¢,

where ¢y = —(k — 1)![b]x+1 if Re b < 0 and ¢ # 0 and cx = k![b]x
if Re b > 0 and c arbitrary or Re b < 0 and ¢ = 0.
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4. Sp ~S+ain+a)" witha; #0,i> 1, a > 0 then, for k fized

and n — oo

eS) ~ 5+ aitk! /[(k +)(n + a)] .

In case 2 the asymptotic expansion given for eg',:) is only valid for the
indexes n belonging to the infinite set M.

We shall now look at convergence and acceleration results for two
important classes of sequences, namely the so-called totally monotonic
and totally oscillating sequences.

A sequence (S, is said to be totally monotonic if Vk, Vn

(-1)kaks, >0

and we shall write (S,) € TM.

Thus since S, > 0 and S,,41 — Sn < 0 we have 0 < S,4+; < S, which
shows that a totally monotonic sequence converges and that Vn, S, >
S >0.

It was proved that a necessary and sufficient condition that (S,) € TM
is that there exists a bounded and non decreasing in [0, 1] such that

1
S,,:/ z"da(z), n=0,1,...
0

Thus the sequences (S, = A") for A €]0,1[ and (S, = 1/(n + 1)) are
totally monotonic.

Totally monotonic sequences have some important and interesting
properties. First of all they satisfy the inequality, Vn

1/r 1/
Sr(/n+k) < Sél/’p ) Squ

where 7,p,q are rational numbers such that »(n + k),np and kq are
integers and p~! 4+ ¢! = r~1L,
For example, if p = ¢ =2 and » = 1 then
Sr21+lc < Son-S%, nk=0,1,...
If k=0and r =1, then

SP < 8, S, mk=0,1,...
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From these inequalities we can deduce that if (S,) € TM and if Vn, S,,
is different from its limit S (if this is not the case then Vk > n, S; = S or,
equivalently, a has a finite number of points of increase) then 3\ €]0, 1]
such that A" = O(S, — §). Conversely, if (§,) is a sequence converging
to S such that Vn, S,, > S and if VA €]0,1[, S,~ S = o(A") then (S, —S)
cannot be a totally monotonic sequence. This result shows that a totally
monotonic sequence cannot decrease faster than a geometric sequence.

Certain sequences deduced from a totally monotonic sequence are also
totally monotonic sequences under some conditions. The first results of
this kind were proved by Wynn [482]. Later Brezinski [52] showed that
if (Sn) € TM then (f(S,)) € TM provided that f has a series expansion
with all the coefficients positive and Sy < R, the radius of convergence
of f. Of course (f(—S,)) € TM if the coefficients of f have alternate
signs and Sy < R. These results are gathered in the

Theorem 2.21
Let (S,) € TM. Then the following sequences are also totally mono-
tonic provided that the given conditions are satisfied:

(1-8,)7! if So < 1.
oS! if So > 1.
Mio(l-8) fSH<1.
a-1)**'a%n  fo<a<1, k>0.

aoizo Si f0<a<l.
a—(a-S,) #f0<r<1land S <a.
(a— Sn)~" ifr >0 and Sp < a.
tan(S,) if So < x/2.

asn ifa> 1.

—In(1-S,) if So < 1.

arcsin(S,) if So < 1.

arccos(Sy,) if So < 1.

sinh(S,) no condition.

cosh(Sn) no condition.

Of course this list is not limitative. One can also use the fact (used in
the proof of the result mentioned above) that if (S,) and (V,) are two
totally monotonic sequences then so are (S,V,) and (aS, +bV,,) if a and
b are positive.
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Moreover if (S,) € TM, then Vk fixed ((~1)*A*S,)) € TM. Wynn

[477] proved that, for a totally monotonic sequence, all the Hankel de-
terminants H(S,) are positive. Using these results, Brezinski [39, 45]
proved the

Theorem 2.22
If the €-algorithm is applied to a sequence (S,) which converges to S
and if there ezist a and b such that (a$, + b) € TM then, Yk and Vn
0<aelp, +b<aclp) +b
0< aeg',:“) +b< aeg',:) +b
0<ael, +b<aellt 4

2k+2
0<aelp, +b<aelitd +b

Vk fized, lim eg',:) =8
Vn fized, lim cf}) = S.

Thus, all the columns and all the descending diagonals converge to
S, the limit of (S,). Moreover the inequalities show which is the best
approximation of § among all the ¢’s which have been computed: if only
S0y ..y 92k are known then eg(,)c) is the best approximation of §, while it

is egk) if So,...,S2k+1 are used.

If (S,) € TM then 3r €)0,1] such that Jlim (Sp41 — 8)/(Sn—S) =7
and the following acceleration result was obtained by Brezinski [57)

Theorem 2.23
If the e-algorithm is applied to a sequence (S,) which converges to S,
if there exzist a and b such that (aS, + b) € TM and if lim (Sp4q —

S)/(Sn—S) #1 then
vk fized, lim (el — 5)/(Sns2x - S)=0
Vn fized,  lim (ef) - S) /(Snras - S) = 0.
It is not yet known if each column converges or not faster than the

preceding column and if each diagonal converges or not faster than the
preceding one.
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For logarithmic totally monotonic sequences these results are certainly
all not true. For example, if S, = 1/(n+1) then eg',:) = 1/(k+1)(n+k+1)
and lim e{)/Snyoe = 1/(k+1) while Jlim ez,, )/Sp42x = 0. In this case

we also have Lim eg',:la/e("”) = (k+1)/(k+2) and hm eg',:?‘_z/e("”) =
1.

The second class of sequences for which almost complete results have
been obtained is that of totally oscillating sequences. A sequence (S,,) is
said to be totally oscillating if the sequence ((—1)"S,) is totally mono-
tonic and we shall write (S,) € TO.

Contrarily to totally monotonic sequences, not every totally oscillating
sequence converges but if it does, then its limit is zero. Thus one can
think that it is uninteresting to accelerate the convergence of convergent
totally oscillating sequences since their limit is known. However one
must remember that, due to the quasi-linearity of the ¢-algorithm, all
the results hold if there exist two unknown constants a and b such that
(aS, + b) € TO in which case the limit of (S,) is also unknown.

First the following inequalities and convergence results hold, see Wynn
[477] and Brezinski [39, 45, 57]

Theorem 2.24
If the e-algorithm is applied to a sequence (S,) which converges to S
and if there ezist a and b such that (aS, + b) € TO then, Vk and Vn
0< aely), +b< a4
acl2™D) 4 p < aegir:;l) 1b<0

(e£i"“’ efi”) <a (i - i) <o

2n+2 2n+1 2n+2 2n41
0<a (egk'-‘l; = 5gk12 )) <ea (££kn = egkn ))
0< aell), +b<acli™ +

Vk ﬁzed Jim eg',;) =5

Vn fized, hm e(") = S.

It can be proved that if (S,) € TO, then 3r € [-1,0[ such that
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Jim (8a+1—S5)/(Sn—S) = r and thus the following result can be proved,
see Brezinski [57]

Theorem 2.25
If the e-algorithm is applied to a sequence (S,) which converges to S
and if there ezist a and b such that (aS, + b) € TO then

Vk fized,  lim (e3) - 5)/(Snsme— §)=0
Vn fized, klim (e% - )/(S,.+2k -5)=

Additional results dealing with TM and TO sequences and their gen-
eralizations were obtained by Prévost [367]. Let us first consider the
sequence

b
S,,=S+/ z" da(z), n=0,1,...

where -1 < a < b < 1, a bounded and non decreasing in [a,b] and
with no jump at —1. Such a sequence converges to § and it is clearly a
generalization of TM and TO sequences. We have the

Theorem 2.26
Let (n;) and (k;) be two infinite non decreasing sequences of integers
such that lim k; = 400, hm ki/n; = +o0 (in particular if n; = n,Vi the

i—00

second condition is sat:sﬁed even if n = 0). If the e-algorithm is applied
to the above sequence then

(ni)
. Eaky, =S5
:]—lf(I)lo Sn‘+2k‘ — S - 0.

Prévost also considered the Cauchy product of a TM and a TO se-

quence and obtained the

Theorem 2.27
Let (c,) € TM, (d,) € TO and convergent (thus Jlim d, =0 ) and

S,.:icn_,'d.', n=01,...

i=0

If (¢n) is non-logarithmic then (S,,) tends to zero and its convergence can
be accelerated by the c-algorithm in the sense of the preceding theorem.
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We shall now apply the e-algorithm to the sequence of the partial
sums of a power series. Let f be a formal power series

f(z)= ij ciz'.

We apply to e-algorithm to the sequence (S,), denoted by (Sn(z))
since it depends on the variable z, given by

S,.(z):Ec.-z‘, n=0,1,...
1=0

Thus AS,(z) = cp412™t! and it follows from the determinantal ex-

pression of eg',:) that

258,(2) 2K 185p41(2) -+ Snyk(2)

Cn+1 Cn42 o Cptk+l
(n) Cntk Cntk+1 e Cpi2k
Cae = K k-1
z 2 cen 1

Cn41 Cnt+2  *°° Cntk+l

Cnt+k Cnt+k+1l *°* Cni2k

oo
Since S,(2) = f(2)- E c;iZ' then, replacing in the above numerator,
i=n+1
we see that, provided Hy(cny1) # 0

e = f(z)+0 (7+21).

eg',:) is a rational function with a numerator of degree n + k and a
denominator of degree k so that its power series expansion (obtained by
dividing the numerator by the denominator according to the increasing
powers of z) agrees with the series f as far as possible, that is up to the
degree of the numerator plus the degree of the denominator inclusively.

Such a rational function is called a Padé approzimant of f and is denoted
by [n + k/k]s(2).
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Padé approximants have very many applications in applied sciences
such as physics, chemistry, mechanics, fluid dynamics, circuit theory,
were the solution of problems is often obtained as a (divergent or con-
vergent) power series whose coefficients can be hardly computed. They
also have applications in numerical analysis in connection with the ap-
proximation of special functions, the z-transform, the inversion of the
Laplace transform, the construction of A-stable methods for the numer-
ical integration of ordinary differential equations, fixed point methods,
the Borel transform, the reconstruction of a weight function from its mo-
ments, .... Padé approximants have been the subject of an enormous
literature (see the bibliography gathered by Brezinski [88] containing
more than 6000 references), their history is quite long since they are
connected with continued fractions, one of the oldest subjects in math-
ematics (Brezinski [87]), and with many other subjects such as formal
orthogonal polynomials (Brezinski [63]). It is not our purpose here to
develop this topics. We refer the interested reader to Brezinski and
van Iseghem (103] for the theory and to Draux and van Ingelandt [146]
for the subroutines. Applications to physics are described by Baker and
Graves-Morris [11] and Guttmann [207]. Because of the connections be-
tween the ¢-algorithm, continued fractions, orthogonal polynomials and
Padé approximants, software for one subject can be used for an other
one. On these questions one can consult Brezinski [60).

In the floppy disk given with this book, the £-algorithm can be imple-
mented with the subroutines EPSRHO and EPSRHA which contain the
particular rules of Wynn [475] (see section 1.9). The main diagonal of the
e-array can be computed by the bordering method, as explained above,
via the subroutines BORDER and BLBORD. This diagonal is used as an
initialization for implementing the progressive form of the ¢-algorithm.

Let us also mention that, in Brezinski [56], two subroutines, EBOR1
and EBOR2, contain two different bordering methods for computing the
sequence (eg(,? ) . An improvement of the second bordering method used

in EBOR2 was given by Brezinski [63], p. 173. Similar techniques were
used by Brezinski [59] in the subroutine PADE for computing the diag-
onal sequence ([k/k]) of Padé approximants.

In Brezinski [63] a conversational program for computing any sequence
of Padé approximants is given. This program assumes that all the Padé
approximants exist, that is H(c,) # 0 for all k and n. The most
general program for Padé approximation can be found in Draux and
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van Ingelandt [146]. It is a conversational program which computes
recursively any sequence of Padé approximants, detects and jumps over
the singularities even if they are not isolated and furnishes the exact
values (calculated in rational arithmetic using several words) of their
coefficients. It is the only subroutine of this type actually published and
it has needed 12 years of research (for the theory and the construction
of the codes) by different people. Paszkowski is actually writing another
one.

Before ending this section, let us describe another algorithm which is
related to Shanks’ transformation, among others.

Let (a,) be a given sequence. We consider the following ratios of
determinants

w;:) = Hiy1(an)/Hi(an+2)-

If a, = A™S; then “’1('2) = ex(S:) = eg'k) and wgz) = 1/e£2+1. It was
proved by Wynn [484] that these ratios can be recursively computed by
the so-called w-algorithm

w(_"l)zﬂ, w‘()")=a,,, n=0,1,...
(n)
n n+1 w
wi(.’k?f-l = wgktl)'*';(,%il—); k,n=0,1,...
2k
with, = it (Wi, -ufitY),  kn=01,..

As in the e-algorithm, the w’s with a lower odd index are intermediate
computations. These intermediate results can be eliminated and we
obtain

2
W™ =a,, wM=a,- Snt1 o _,1,...
Qn42
(n+2) (n+2)
n n n 2 w k - w. k—
wgkLZ = wgk) + [wgk+l)] * 2(,.+2) (2”_’_22) ’ k= L,2,...;n=0,1,...
Wok-2 " Wi

which can also be written as

w_"z):oo, wé"’:a,., n=01,...

n n n+1 2 1 1
wgk?ld = wglc) - [w§k+ - n+2) ~—  (n+2) | k,n=0,1,...
Wak Wok—2
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The w-algorithm can be used to implement the confluent forms of the ¢
and p-algorithms which will be discussed in chapter 5 (see Brezinski [55,
60]).

It can also be used for the implementation of new sequence transfor-
mations defined, for example, by the choices

a, = A"S;/n!
oF  @n={[;...%i4n)

or an =n!-[z;...2;1,]

where [z;...Z;4,] is the usual divided difference of order n of the func-
tion f such that Vi, f(z;) = S; and where (z;) is a given auxiliary se-
quence. These new transformations have not yet been studied.

The subroutine OMEGA performs the w-algorithm.

2.4 The G-transformation

The most general form of the G-transformation was introduced by Gray,
Atchinson and McWilliams [197]. It corresponds to the particular choice
gi(n) = 2n4i-1 in the E-algorithm where (z,) is a given auxiliary se-
quence. The G-transformation is intermediate between the E-algorithm
and the e-algorithm which corresponds to the particular choice z,, =
AS,.

Thus its kernel is the set of sequences of the form
Sn=S+a12,+ + GkZpik-1-

The numbers E,(c"), usually denoted by G;c") in this case, are given by

Sn .o Sn+k
zﬂ s e zﬂ+k
G(") _ | Tn+k-1 ' Tni2k-1
k 1 .- 1
z" e zn+k
Tptk—-1 *°° Tpy2k-1
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Obviously this transformation is quasi-linear if the z,’s are invariant
by translation of the sequence (S,) or if the same z,’s are used.

If we set
Tn cer Tptk-1

Tntk-1 *°° Tpi2k-2
1 ces 1
Tn v Tptk-1

rﬁ”) =

Zntk-2 °*° Tni42k-3
then, obviously, r,(c") = (-1)k-1. g,(::)l'k

If we set now
1 oo 1

zﬂ cse z"+k

(n) Tntk-1 °°° Tp42k-1
8 =

Tn v ETpyk-1

Tntk~-1 °*°° ZTpiy2k-2

and if we apply Sylvester’s determinantal identity, then the r,(c")’s and

the sﬁ") ’s can be recursively computed by the so-called rs-algorithm due
to Pye and Atchison [369]

=1, M=z, n=0,1,...
(n) mer) [ Thre
spo, = & - ——(ﬁ)———1 , kn=0,1,...
Tk+1
(n+1)
), = r,(:'“)-(‘—:("—)——-l), k=1,2,...;n=0,1,...
k

Then the Gﬁ")’s are obtained by the main rule of the E-algorithm
which, in this case, becomes the G-algorithm

V¢ .
’;n-li-l) (k")l'7'£)a k=1,2,... ;n=0,1,...
rk _rk

Gl(:l) = G(':)l —
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with G = §, forn=0,1,....
The sequences (Gﬁ"))k and (rfc:_)l)k, for a fixed value of n, can be

obtained by the bordering method as explained in section 2.1.
We have

k
G = Y aFs,,;

=0

k
= (P Az,
—~

where the coefficients As-k‘") are solution of the system

YN | S |
A(()k'n)zn +.-F Ak(k’n)zn-l-k =

A(()k'")‘-'in+k—l .04 A&k’")mn_',gk_l = 0.

The progressive form of the G-algorithm is given by

(n+1)
n n n n r
et - )+ (o - i) (1 7).
k

It can be implemented exactly as explained in section 2.1 for the
progressive form of the E-algorithm by using alternately the preceding
rule and the recurrence for the coefficients Ag-k‘").

The rs-algorithm has many interesting applications. For example if
S, = 2™, if we set

o = Pe)

and if we define the linear functional ¢ on the space of polynomials by
c(z") =z,
and the linear functionals ¢(*) by

c(i)(z") = ZTn4i
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then P,S") satisfies
(™ (ziP,E")(z)) =c (z”"""P,E")(z)) =0, fori=0,...,k—1

since two rows in the numerator of the determinantal formula are iden-
tical. Thus the G and rs-algorithms can be used to compute recursively
the polynomials P,S") ’s which form adjacent families of orthogonal poly-
nomials with respect to the functional ¢. These recurrence relations are
fully developed in Brezinski [60).

If z, = AS,, then the G-transformation reduces to Shanks’ and the
G and rs-algorithms can thus be used for its implementation. Moreover
many useful relations can be proved. They provide alternative methods
for computing recursively the ex(S,)’s of Shanks’ transformation. We
have

-

) o i . gln 1)
2k - (n+1) 2k (n+1) 2k-2
8 | Tk _l

) " (nt1 :
oo Y e e

2k+2 = () (n) 2k 2k

Sk+1 L Tk41 i

#(n) #(n)

e(n) — 1+ k+1 -e("+l)— k+1 .e(n+2)

(n+1) (n+1)
8 n 8 n
i ) . egk) - fn—l) ’ egk+l)

Skt
(n) .(n)

m+1) _ [ Tk+13k Cam) _ "1(:214") . o(n-1)
8£n+l)r’(‘1-;l) 2k s,(,"“)r,(c’;l) 2k
L, U G DTS, U e

(n+1) (n-1) 2k (n+1) (n—1) “2k-2
Tk Sk Tk "%k+1

(D = (B - D) - el - FMelpt?

€2k42 =
with
n-2) (n— n+2) (n+2 n
p» — "§c+2 )3£+12) s S s
k

=Y GORE R Gy
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n n-2 ~2
RSN, 0 Gk, $TRL TR
R G F GO O G
EM = 14+4DM+FM
e = — (17 +3) D - ke,
with
ORI
"5«:'-;-)1
Jm o= kM -1 1
K(") — ﬂ(cg)l_’gl,
¢ rl(cn)sgc'-?l

These eight relations can be used to follow an arbitrary road in the
e-array. They relate three ¢’s. There also exist relations between two
adjacent €’s which can be used. They are

(n)

n n r
egk)+2“5gk) = —_f:)l
s
k+1
gt _ (n) "1(:21
2k 2k s("+1)
k
(n) _ _(n+1) _ _rl(cTil)
€2k4+2 ~ E2k = n)
8
k+1
n n+2
RPN, U h ., A
2k+2 2k - g(nt1) ’
k+1

Of course these twelve relations can be used for computing recursively
sequences of Padé approximants.

As we shall see in section 4.5, the rs-algorithm can also be used for
implementing some vector sequence transformations.

For these reasons two subroutines have been written. One for the
G-transformation using the G and the rs-algorithm, GTRAN, and one
only for the rs-algorithm, RSALGO.

The qd-algorithm is an algorithm which is related to orthogonal poly-
nomials, continued fractions, Padé approximants, the rs and ¢-algo-
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rithms. It consists in computing recursively the following ratios of de-
terminants

o - Heean) Bie)
+1 Hi(znt1) * Hi1(z0)

P 0 S Hiy9(2n) - Hi(2n41) .
k+1 Hiy1(2n) - Higr(zn41)

This algorithm, due to Rutishauser [378], is the following

e(()n)=01 Q§n)=£"—+1’ n=0,1,..
n

eﬁ") = q,(,"“) + e;:‘;l) - q,(:') , k=1,2,... ;n=0,1,...
(n+1) (n+1)
n e
ql(:-l-)l = L—e(z_f—-i k=1,2,...;n=0,1,...
k

It has been widely studied by several authors, see, for example, Henrici
[226] for a quite complete exposition. It has applications in the compu-
tation of poles of meromorphic functions and was the starting point for
the development of the LR algorithm for computing the eigenvalues of
a matrix. It is related to the rs-algorithm by

o -
+1 = n n
A

(n) "I(:'-;-)z 35:1-)1

[ = .
k+1 (n+1) _(n+1)
T+l Sk

Thus, because of its multiple connections with other algorithms (de-
scribed in Brezinski {60]), a particular subroutine, QDALGO, was de-
voted to it. For example if the qd-algorithm is applied to z, = A™S,
then

k (n) k _(n+2)
e n 1 9

e = Sa ey and efh = AS, U @+
i=0 ¢; n =o€

There is, of course, a connection between the qd and the w-algorithm
which was studied in section 2.3. We have

Wi = W, - [Hi(ans1)l” .
2 k=2 " Hi(ans2) - He-1(an42)
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Thus if the qd-algorithm is applied to the sequence (ay), then

(n) k (")
Wok —G"H (n+1)

=14
and
(n) (n) el(cr;-)l
Wak+2 = Wor * Ty
k+1

Particular rules for the rs and w-algorithms were recently obtained by
Fang Chen [155]. They seem to be quite interesting but they still need
to be studied in more details.

2.5 Rational extrapolation

We shall now construct a sequence transformation whose kernel is the
set sequences of the form

S zk L a2kl 4. 4 a

gk + bkl 4. 4 by

where (z,) is an auxiliary given sequence. Of course, this relation can
be written as

Sn=5—b1z;'Sn + a1z, — - — bz ¥ S, + arz*

which shows that this transformation can be put into the framework of
the E-algorithm by setting

92i-1(n) = :L',_.‘Sn ’ 92i(n) = z;i ) i=1,...,k.

The numbers E,(c ") , denoted by g( ") in this particular case, are given
by

1 S, =z, 2,8 ---zk1 k16 zkS,

k-1 k-1
o) 1 Sni2k Zni2k Znt2kSntak = Tppor TrpokSnt2k Thyop Sniok
2k — - -
1 S =z, 2,8, ..okl gk-1g) zk

n

k-1 k-1
1 Spt2k Tnt2k Tnt2kSntak ** Zypok TrpoxSntzk Thyop
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Thus, by construction, the rational function

ok +azk14 . tay
zk + byzk-14 ... 4 by

satisfies the interpolation conditions

Rap(zn+i) = Sn+i s fori=0,...,2k.

Rzk(z) =

Since xllnolo Rox(z) = gg',:), this shows that the sequence transformation

(Sn) — (gg',:) ) performs rational extrapolation at infinity thus gener-
alizing polynomial extrapolation obtained by Richardson’s process (see
section 2.2).

The numbers gg',:), together with the intermediate gg',:)*_l’s, are called
reciprocal differences and they are related by an algorithm very much
similar to the e-algorithm. It is the so-called g-algorithm which was
first used by Wynn with z,, = n [471] for the purpose of convergence

acceleration. It is as follows

9(-"1)= ’ 9(()")=Sna n=01,...
n n Tn+k — 2n
oY), = gfmtl 4 Indkil T e kn=0,1,...

g£n+l) _ 9,(:') ’

These interpolating rational functions can be constructed by means
of continued fractions. It is an interpolation process due to Thiele [432]
and studied by Nérlund [337]. Let us consider the continued fraction

n) T —ZTn z -z,
C(")(z)=a8)+| O |+I agn)+l|+---

with o = of™ — o{", for k = 1,2,... and a{™ = o{") = f(z,). Let

C,g")(z) be its k-th convergent (on continued fractions see, for example,
Jones and Thron [250] or Cuyt and Wuytack [131]), then the following
interpolation property holds

C,(;")(z,-) = f(zi), fori=mn,...,n+ k.

If we set C,ﬁ")(z) = Ag‘) (z)/ B,(‘")(z) then Ag',:)_ 1 Ag',:) ,Bgz) and Bg:?ﬂ
are polynomials of degree k in z and we have

AN =1 AP @) =af
BN (z)=0 B{(z)=1
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and for k =1,2,...
AP (z) = afM AP (2) + (2 — Znik-1) Aly(2)
B{"(z) = o B{?), (2) + (2 — Znts-1) B, (2).

If we set

k
(ﬂ)(z) - Za'(_%)zi

1=0

k
M) = Pef

1=0
k
Zb(2k+1)z;
1=0

k
BRG) = o™

1=0

B, (=)

then the preceding relations can be used to compute recursively the
coefficients a‘(k) and bsk) (which depend also on the index n but it was
omitted for simplicity) and they give

a((]o) = a(()") . ag—l) =1
=1, B =0
e R O L B
T e T T S
a1 o g(%=3)
0@ = Qe g 0k
N T B
o = (n) (2k D 4 g2k=)
p2-1) gn)_ 1 b(2k— SRR CE)
D L o) D g DL iy
B = o) p(k-7) b(zk 3)
B = Gmplk-D) g o p(2k-2)
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B = QDA gy BN D, im ke

k 2k—-2
)

Il

It is easy to see that

D=1 = )

a) _ gt R

Let us give a numerical example showing that this method can be
affected by rounding errors due to the computer’s arithmetic. For that
we start from a function f which is a rational function

f(z) = 0.752*+1 + 22* + 0.3 _ aep1z**! + auzt + 0
T ozk4+1.2zk-1 4+ 1.8 7 brzk 4 br_yzk-1 4+ by

Of course Ci41 must be identical to f. We obtained the following
results with a computer working with 16 decimal digits

k=1 ap=3.000000000000010-10" by = 3.000000000000010
a; = 2.000000000000006 b =10
a; = 7.500000000000004 - 10!

k=2 ay=3.000000000000084-10"1 b, = 1.800000000000138
a; =-1.17-10"13 b, = 1.200000000000010
a; = 2.000000000000003 b, = 1.0
az = 7.500000000000037 - 10!

k=3 ao=3.000000000000049-10-" b, = 1.800000000000036

a; = —8.68-10°15 b; = —5.06-10"17
a; = —6.62-10°15 b, = 1.199999999999997
az = 2.000000000000036 b3 =1.0

ay = 7.499999999999916 - 10~

k=4 ao=3.000000000005043-10-1 &, = 1.800000000003028

a; = —5.36-10"13 b, = —3.22.10-12

a = —8.19.10-13 b, = —5.10-10-12

a; = —1.04.10-12 b3 = 1.199999999995994
as = 2.000000000002907 by =1.0

as = 7.499999999991787-10!
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k=5

ap = 2.999999996357963 - 10~!
a; =1.18.10°10

a; =1.63-10°1°

a3 = 8.61-10"10

ag =6.27-1071°

as; = 1.999999997779250

ag = 7.500000004052835 - 10~1

ap = 2.99925 - 10!
a; = 4.87-107°

a; = -3.73.107°
az = —4.39.107°

as =1.12-10*
as = 3.24-10~4
ag = 2.34-1074
ar = 1.99950

ag = 7.50041-10"!

105

bo = 1.799999997814911
by = 7.08-10"10

b, = 9.61-10710

b3 = 5.19.10°°

by = 1.200000002753679
b5 =1.0

bo = 1.79955

b, = 2.92.10~4
by = —2.24 . 104
by = —2.63- 104

b4 = 6.76 * 10_4
bs =1.94-.1073
bg = 1.2010

bz = 1.0

Then the precision downgrades much more rapidly since for £k = 9 the
non-zero coefficients have no exact digits.

Let us now come back to the p-algorithm.

If the z,’s are invariant by translation of the sequence (S,) or if
the g-algorithm is computed with the same z,’s then, if (S,) is re-
placed by (aS, +b), gg',:) becomes agg,:) + b while ggﬁ“ becomes le:)ﬂ /a.

Moreover if (S,) is replaced by ((aS, + b)/ (¢S, + d)) then gg',:) becomes

(aeli? +3)/ (e + d).

For a fixed value of n, the sequence (gg',:))k can be computed by the
bordering method. However if we want to use the progressive form of
the p-algorithm, the sequence (gg',:),r])k must also be known which is

possible since these quantities are related to the solution of a system of
linear equations.

Let Rjx4; be the rational function with a numerator of degree k 4 1
and a denominator of degree k satisfying the interpolation conditions

R2k+1(z,.+,-) = Sn+,‘ 3 for: = 0, .o .,2k + 1,
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then it can be proved that R2i;1 has the form

gkt paizk 4+ o
CR41(2) = Rarna(e) = —
Qo1 ZF + 01251 + o+ by

Thus the system

k (n k-1 k k+i
Sn+izn+i9gk)+l +015n4iZnyi + tSnti—a1Zny i — -Gk = zn.-t:'

for i = 0,...,2k + 1 can be solved by the bordering method for a fixed

value of n and it gives the sequence (gg'&l)k. Then the progressive

form of the p-algorithm can be used

(n+1) _ (n) Tnik+2 — Tn
Ck+1 T Okt Ty (mtD)
Ck+2 ~ &k

Since the gg',gn are only intermediate quantities they can be elimi-
nated from the rule of the algorithm, thus leading to a cross rule for
the p-algorithm. But before doing this, let us generalize the rule of the
g-algorithm since it will be useful later. We consider an algorithm (the
v-algorithm) of the form

y™W=0, +™=s,, n=0,1,...
(n)
R (o R kn=01,...

7'(cn+1) _ 1'£n)

This form includes the ¢ and the p-algorithm since 7,(:') = eﬁ") if
a}c") = 1Vk,n, while 7,(:') = gﬁ") if aﬁ") = Zpik+l — Zn-

In section 2.6 we shall study two other algorithms of this form. Thus
it will be useful to derive a cross rule for all these algorithms. Such a rule
was obtained by Brezinski [40] who proved that the following relation
holds

n n n -1 n n n -1
a$P)y [‘71(*%-2 - ’7§k+1)] + a3ty [’11(vkt§) - 71(’k+1)] =
n n n -1 n n -1
otV [7§k+2) - 71('k+1)] +af [‘71(»1:) - 75:“)]

with 7 = 00 and (" = S, for n = 0,1,....
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Thus if, for a fixed value of n, the sequences (‘y.g:))'c and (72(,:“))’:
have been computed by the bordering method then the progressive form
of the above cross rule can be used to compute the whole array of the
v’s. It is

% " n n n n -1
7§k+2) = 7§k+1) + “gkﬂ) {agk)ﬂ ['nglz - 7:£k+1)] +
n n n -1 n n -1 -1
agty Mkt:) - 7:£k+1)] —afy) [‘752) - 7£k+1)] } :

As was the case for the ¢-algorithm (see section 1.9) a particular rule
for an isolated singularity can be obtained for these algorithms. It is

-1
n n T
'Yi(c+)1 =T (afe '+ (n+1))
Yk-1

where

(n+2)] 71
r= (ai'i"ﬂﬁ"_’l—ai".t‘)—aﬁ"))v,ﬁ':’;‘uaﬁ’:t”v.&':tﬂ[l _ ki ] n

ity
) 1 (n+2)] !
Voo n+1), (n L
afcri)l‘h?:)l [1 - '7;1%)—:, - afc—-;l) /2—32) [1 - lzﬂfl)] )
k-1 k-1

It holds for odd and even values of k.
The first term in the expression of » vanishes if and only if, Vk,n

ai) + o = 50 + .

Algorithms satisfying this property (as is the case for the ¢ and o-
algorithms) can be transformed by successive inversions into more stable
forms which can be used even in the case of several adjacent singularities,
a technique due to Cordellier [120].

This property is called homographic invariance.

If 7(':’2'1) = 7,2':;2) then 7,£T1'1) is infinity and, for an algorithm sat-
isfying the homographic invariance property, the singular rule reduces
to

i = (5D + el - o) f o)
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The subroutines EPSRHO and EPSRHA contain the above particular
rule.

On this question and on a more general p-algorithm, see Carstensen
[113]. Other techniques for rational extrapolation are described by Wuy-
tack [468], Bulirsch and Stoer [106] and Larkin [273].

2.6 Generalizations of the ¢-algorithm

We shall now study two generalizations of the ¢-algorithm. These gen-
eralizations, due to Brezinski [43], were not obtained from the kernel as
a starting point but by modifying directly the rule of the ¢-algorithm
and then looking for the properties of the new sequence transformations
thus obtained. As explained in section 1.2 it is much more difficult to
proceed like that and only a few properties of these transformations are
actually known. However, since they provide, in some examples, better
numerical results than other algorithms, we shall now discuss them.

In section 2.5 we consider the v-algorithm which covered the e-al-
gorithm (for a{™) = 1) and the g-algorithm (for &\ = Zp1k41 — zn)-
Thus the idea came to use other choices for the aﬁ") ’s related to a given

auxiliary sequence (z,).
The first generalization of the ¢-algorithm corresponds to the choice

aﬁ") = Az, = Zp41 — Zn-
The second generalization of the ¢-algorithm corresponds to the choice
aﬁn) = AZpik = Tntk41 — Tatk-

As explained in the first chapter, the study of a given algorithm has
to begin with the kernel of the transformation which it implements. For
finding this kernel one has first to express the quantities which are com-
puted by the algorithm as ratios of determinants. Then the implicit
form of the kernel can be obtained (or sometimes its explicit form if the
determinants involved in the ratios are not too much complicated), usu-
ally as a (linear or nonlinear) difference equation. Solving this difference
equation leads to the explicit form of the kernel. As shall see below it
was possible to obtain a ratio of determinants for the first generalization
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of the ¢-algorithm and then the implicit form of the kernel. It was pos-
sible to solve the corresponding difference equation only for k = 1 thus
giving the kernel of the sequence transformation corresponding to the
first even column of the array of this generalization. For the second gen-
eralization of the ¢-algorithm it has not yet been possible to express the
quantities computed as ratios of determinants. However it was possible
to obtain directly from the rule of the algorithm the explicit form of the
kernel for the transformation corresponding to the second column.

Let us begin with the first generalization of the ¢-algorithm. Its rules
are

eM=0, M=ys,, n=0,1,..
P B

€£n+l) _ escn) ’

Of course, although we used the same letter ¢, the quantities computed
by this algorithm are different from those obtained by the ¢-algorithm
unless z,4; — z, = 1 for all n.

To obtain determinantal formule for the €’s computed by this gener-
alization, we first have to generalize the operator A and its successive
powers. We know that if f is a linear function of S, ,...,S5,, where
P1,--.,Pn are arbitrary integer indexes, then

Af( Py Spn)=f(rpu°--1rpn)
where 7; = AS;.

Let us now set 7; = AS;/Az; and define the operator R in the same
way by
Rf(Spis--es8pa) = F(Tprse-sTpn)-

Clearly R generalizes A which is recovered if Vn,Az, = 1. Ris a
linear operator which transforms a constant sequence into zero.

Let v, = 8, - Az, then the successive powers of R are such that

Rky v
k+1 - n\| _ pk n
R ""‘A(Az,.)“R (2 (22)):

and it is possible to prove the
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Theorem 2.28
For the first generalization of the e-algorithm if we set el = ex(Sn)

2k —
then

v’l Y v’l-"k

Rvn see Rv"+k
Rfv, --- Rfv, 4

ex(Sn) =

Az, --- Az,

Rvn e Rvn.'.k

Ry, --. Ry,

and
Az, - Az,

R2 Un e R2 vn+k

" _ Rk+ly, ... Rk+ly, ..
Exky1 = 1/ex(rn) =
Rv, -+ Rugux
Rk'an v Rk+1vn+k

Thus this generalization can be put into the framework of the E-
algorithm with g;(n) = R'v,/Az, and thus we have the

Theorem 2.29

For the first generalization of the c-algorithm, a necessary and suffi-

cient condition that Vn, eg',:) = S is that Vn

k
(S, - S): Az, = E a;R'v,.

=1

Since R reduces to A if Vn,Az, = 1 then clearly this kernel is a
generalization of the kernel of Shanks’ transformation. It has not yet

been possible to solve this difference equation for an arbitrary value of
k. However for k = 1 we have the
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Theorem 2.30
For the first generalization of the c-algorithm, a necessary and suffi-

cient condition that ¥n,e(™) = S is that Vn

n-1

Sn=S+a]] X

1=0
with \; = 1+ cAz;.
Clearly if Vi, Az; = 1, the kernel is the set of sequences of the form
Sn = § + aA™ which is the kernel of Aitken’s A2 process.

The first generalization of the ¢-algorithm is quasi-linear. More pre-
cisely we have for the even columns

er(aS, +b) = aex(Sn) + b

and for the odd ones
1 _ 1
ex(ar, +b)  aer(rn)

if the auxiliary sequence (z,) is invariant by translation of (S,) or if the
same auxiliary sequence is used in both cases.

Let us now come to the second generalization of the ¢-algorithm whose
rules are (still using the same letter ¢)

eM=0, M=s,, n=01,...
er) = entl) g Intktl” Ttk kn=0,1,...

E;:H-l) _ sg:)

For this second generalization, it has not yet been possible to obtain
results similar to those of theorems 2.28 and 2.29. However, from the
rule of the algorithm, it can be seen directly that the same quasi-linearity
property holds and that we have the

Theorem 2.31
For the second generalization of the e-algorithm, a necessary and suf-

ficient condition that Vn,egn) = S ts that Vn

n-1

Sn-—-S+aH,\,~

1=0
with A\; = 1/(1 + cAz;).
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Clearly we recover again the kernel of Aitken’s A? process if Vi, Az; =
1 (or any arbitrary constant different from zero).
These two generalizations can produce much better results than the

e-algorithm for some sequences.
Let us take S, = 1 4 3e~14%» with z, = 1.1»"1. This sequence

converges to 1 and we have Sp = 1.73979, S, = 1.64314,..., §4 =
1.38631. We obtain

with the e-algorithm e,(,o) = 1.73799
with its first generalization e§°) = 1.00272
with its second generalization e,(,o) = 1.00224

Let us take now S, = 1+ 1/(n+ 1) and z, = In(n + 2). We have
S36 = 1.027 and

with the ¢-algorithm 9 = 1.004
with its first generalization e;(,g) = 1.000008
with its second generalization e:(,%) = 1.00000002

Finally let us consider S, = (n + 1)sin(n + 1)~! and z, = In(n + 2).
We have S3¢ = 0.99987 and

with the -algorithm el = 0.9999938
with its first generalization e:(,g) = 1.0000000027
with its second generalization ¢{Q = 0.99999999976

For the first and the second generalization of the ¢-algorithm, we have
respectively

(n)
7= (Swiz—S)/(Snir = S) =1 L
Sat1=5 | DSu41/AS, - Azari/Az, (1** generalization)
(n)

-5 Avnyr (Sat2=S)/(Sas1=S) =1 [ o o
Sori=S " Az, ASns1/ASa—Aeny/Aa, (2 generalization).

Thus it can be immediately seen that if 3a # 1 such that nﬁ_{!go(sn+1 -
S)/(S,— S) = a and if lim Az,,1/Az, = 1 then, for both generaliza-

tions, (eg") ) converges to S faster than (S,41) where § is the limit
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of (Sp). Moreover if (S,) converges to S logarithmically, that is if
nlggo(s,.ﬂ — 5)/(Sn — §) = 1, then the convergence can be acceler-
ated in some cases, namely if and only if the ratios in the right hand
sides of the above expressions tend to 1 when n tends to infinity.

The first and second generalizations of the ¢-algorithm are included
in the subroutines EPSRHO and EPSRHA. Their particular rules were
given in section 2.5 (-y-algorithm).

2.7 Levin’s transforms

Levin’s transforms can be considered as generalizations of Aitken’s A2
process and of the transformation E, corresponding to the first column
of the E-algorithm.

In section 1.3, we saw that the kernel of Aitken’s process is the set of
sequences of the form

Sa~S=a-AS,, n=0,1,...

In section 2.1, were saw that the kernel of the transformation E; is
the set of sequences of the form

Sn—S=a-g(n), n=01,...

where (g(n)) is a given auxiliary sequence.

In both cases the constant a can be considered as a polynomial of
degree 0. Let us now generalize and replace this polynomial of degree 0
by an arbitrary polynomial of degree k — 1 in (n + b)~! where b is any
non-zero real constant which is not a negative integer. Thus we are now
considering sequences of the form

Sa=5=g(n)- (a1 +aa(n+ )" + -+ ar(n+b)"* V), n=o,1,...

Of course, such sequences fit into the general framework of the E-
algorithm since they correspond to the choice g;(n) = g(n)(n + b)~(-1)
for i = 1,...,k. Thus the numbers E,(E"), that we shall denote by Lﬁ")
in this case, can be computed by the E-algorithm. But the E-algorithm
does not simplify in general and it is too complicated since a much
simpler algorithm can be derived.
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Multiplying both sides of the preceding relation by (n + b)*~! gives

Su - S
9(n)
If the operator A* is applied to the right hand side of this expression

we obtain zero identically since it is a polynomial of degree k — 1 in n.
Thus, Vn

(n+b)*1. =aj(n+ 0% '+ ay(n+ 852+ + a.

Since A* is a linear operator we have

1.9\ _o¢. (n +b)k!
at (("”)k '9('1)) =5 Ak( g(n) )’

and L{" is given by

o _ AF((n+8)1-S./g(n))

K S AR gmy) ¢ T b

According to the various choices of the auxiliary sequence (g(n)) we
recover the transformations of Levin [283]

o for g(n) = (n+b)- ASn-1, it is his u-transform,
o for g(n) = AS,_1, it is his t-transform,
e for g(n) = —AS,_1AS,/A%S,_,, it is his v-transform.

For these choices we set S_; = 0.

Of course many other choices are possible, such as g(n) = AS,, which
was proposed by Smith and Ford [413] and provides the best simple
remainder estimate for a sequence with strictly alternating differences
AS,. The various Levin’s transforms were experimentally showed by
Smith and Ford [414] to accelerate the convergence of a wide collection
of sequences.

If (9(n)) is invariant by translation or if the same (g(n)) is used then
Levin’s transforms are translative.
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The numbers Lﬁ") can be computed directly by using the well known
formula

k
AFuy =Y (-1)'Clunyi

1=0

with C} = k!/i!(k — i)! and we have

k
Y (1) Ch-(n+i+b)* 1 Sapifg(n+1)

k
S (-1)-Ci-(n+i+b)/g(n+1)

1=0

Due to the properties of the operator A* and of the binomial coef-
ficients C{, the numerators and the denominators of the L;:')’s can be
separately recursively computed by an algorithm due to Fessler, Ford
and Smith [158]. We set

O
™
Then
(n) _ Sn _
N, = 3m)’ n=01,...

) _ n(nt1) _ (R4D)-(n+ k4051 _
N = N CETETERY N™,  Ekm=0,1,...
and

m_ _1 _
Dy =3’ n=201,...

p) _ pitn) _ (n+8)-(n+k+b)?
k (n+k+b+1)F

k+1 — 'Dl(;n)’ k,n,=0,1,...

The factor (n + k + b)*~? and (n + k + b + 1)* have been arbitrarily
introduced into the algorithm in order to make the computations more
stable. Let us mention that a subroutine can be found in Fessler, Ford
and Smith [157].

The following result was proved by Sidi [404] when b =1
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Theorem 2.32
If Sn=2S5 -i-og(n)f(n)

where  f(n) ~ Eﬂ;/n‘ with By # 0 when n — oo,
1=0

o0
and  g(n)~ Z&.-/n“"" with a > 0,80 # 0 when n — oo

=0
then, if B # 0
Lﬁ") -5~ S _. nok (n — o0).
—-a
(%)
We can generalize Levin’s transform one step further by considering

a polynomial of degree k — 1 in z;;! instead of (n + 8)~!. Thus we are
assuming that (S,) has the form

S, — S =g(n)- (a1 +agzl 4ot ak,;(k—l))

or equivalently

S,.— S
k-1 9n
" g(m)

Applying k times the divided differences operator, that is applying
the operator §* leads to

Jk(zﬁ'l-f-'-'———-i)=0, n=201,...
g9(n)

Since &* is a linear operator we have the following generalized Levin’s
transform
5 (zk-1 - 5a/9(n))

5 (2571 /9(n))
We recall that the divided differences operator is defined by

=ayz5"! f a2k 2 4 .. 4 ap.

P,S") =

60("’") = Uy, n=0,1,...
6i+l(u") 5i(“n+l) - 6..(“")
Zntitl — Tn ’

i,n=0,1,...
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This is a slight generalization of the so-called generalized Richardson
extrapolation process due to Sidi [397] (it reduces to a method due to
Drummond [147] if 2, = n). In this process we take g(n) = b,zt~! and
thus we have

p() _ 85 (Sa/bn) _ NV
£ = (/b)) D™
with
N = -::'i, n=0,1,
Nt _ p(n)
N® = 2k E_ k,n,=0,1,
k+1 Tnt+k+1 — Tn ’
and

DM = 51—, n=0,1,...

n
(n+1) _ p(n)
p{, = Dy "=De”  pn=o01,...
Zntk+l — ZTn
which are exactly the rules for computing divided differences. Other
results on these transformations are given by Weniger [458], who also
derived new sequence transformations based on the forms

—S+y(n)2

1=0

(n +b).

or
Sn=5+g(n)
( g (—n - b),
where (a); = a-(a+1)-...-(a+j—1) denotes the Pochhammer symbol.

Clearly, they are also particular cases of the E-algorithm.
In first case, we have

g _g ko
(n+b)k-1 - ) = g a;(n+1i4b)g—i-1.

Since the right hand side is a polynomial of degree & — 1 in n, it will
be annihilated by applying the operator A* thus leading to the sequence
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transformation

st = A* ((n+ b)k_1 - Sn/g9(n))
Ak ((n+d)i-1/g(n))

Setting S(") N; () /D(") we have

N&™ - n=01,...

0 y(n)
n n k+b)-(n+k+b-1) n
N _ gty _ (nt N®  En=01..
k41 T Tk (n+2k+b)°(ﬂ+2k+b—l) ng ] L 0: ’
and

D™ = n=0,1,...

0 9(n)
(,,) (n+1) _ (n+k+b) (n+k+05-1) (n) Eon=0.1
Dy = Dy (n+2k+b)-(n+2k+b-1) Dt Bm=0.1,.

Of course, S, (") can also be computed directly by using the expression
for Ak,
In the second case, we have

Sn

(—n = b)k-1- ‘Ea.( n+i—b)_i.

(n) =0

The right hand side is again a polynomial of degree k — 1 in n and by
applying A* we obtain the following sequence transformation

M(n) — Ak ((—n - b)k—l . Sn/g(ﬂ)) _ Nk(n)
k Ak ((—n = b)k—1/g(n)) Dl(cn)

Sn
g(n)’
M = NPT

n=201,...

n—k+b+1. (n)

, k,n,=0,1,...
n+k+b+1 K A

and
D(()") — _L., n=0,1,...
9(n)
Dl(c'-:-)l = DY _ uﬂﬂ.pg), k,n,=0,1,...

n+k+b+1
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M ,S") can also be computed directly.

The subroutine LEVINT performs Levin’s transforms.

To end this section, let us mention that a generalization of Levin’s t-
transform, called the d-transformation, was proposed by Levin and Sidi
[286]. It works particularly well on sequences satisfying a recurrence
relation with variable coefficients of a special form.

2.8 Overholt’s process

Overholt’s process, which was proposed by Overholt [351], is very close
to a particular case of the E-algorithm but it does not fit exactly in its
framework since, as we shall see below, it is an approximation of it.
Let us assume that the sequence (S,) to be accelerated satisfies, for
all n
dn+1 = a'ldn + szﬁ +oeee

where d,, = S,, — § and where a, is a constant different from 1.
Thus, only theoretically since § is not known, the E-algorithm can
be applied with g;(n) = d,. In that case, as we saw in section 2.2, it

reduces to Richardson’s process since 9;21)1,1: =(=1)k1.d, ... dpyr
and we have

E(n) — dn+kE)£':)1 - dnE,(:_tl) _ (dn+k/dn)E;(:_)1 - E‘(::*l-l)
k dnik — dn dntk/dn -1

Since d, and d,;; are not known we shall replace d,,x/d, by an

approximation.
We have p
;H = ay + azdp + azd + - -
and thus
dn+k dn-l—k dn+k-l dn+l k
= . LR =a; +o(1).
dn dn+k—l dn+k—2 dn ! ( )

Thus if an approximation @; of a; can be obtained, then @ will be
an approximation of d,,.x/d,. Let us set

G = ASﬂ+l«:
N
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We have
_ _ Adpyx dnyk 1 —dnyki1/dnsk a; —1+0(1)
_ - . = 1)) 2T A
“ Adpyk-1  dppk-1 1 —dnyi/dnik— (a1 +0(1)) a; —1+0(1)
Thus, since a; # 1, @ = a; + o(1). Replacing, in the rule of the
algorithm, dpn44/d, by @ leads to Overholt’s process (the Eé")’s are
usually denoted Vk(")’s)

vM=8,, na=0,1,...

(ASnsr)* ViT) - (ASnyka) VI
(ASnsk)*—(ASnsr—1)*

The following result holds

Theorem 2.33
If Overholt’s process is applied to a sequence (S,) such that,

dnt1 = a1dn + azd? + - --
withd, = S, — S and a, # 1, then Yk and Vn

, k=1,2,...; n=0,1,...

v -

Vk(") =S+ appdt™ + appprdEF 4 -

with ag; = a; and

allc+l
l_—_ak_ﬂ— . [(a1 - l)ak’k+1 - (k + l)dzak,k] .
1

Due to this result, Overholt’s process is particularly well adapted to
the acceleration of fixed point iterations as we shall see in section 6.2.4.

Obviously it is a quasi-linear transformation but until now no deter-
minantal formula for the Vk(") is known although it exists as it can be
proved from the theory given in section 1.6.

From the rule of the algorithm, we immediately have the

Gk+1,k+1 =

Theorem 2.34
If Overholt’s process is applied to a sequence (S,) which converges to
S and if there ezist a < 1 < B such that Vn,ASp1/AS, € [a, ] then,

lim V{" = §.
n—oo

I Jim (ASpsx/ ASas)* = lim (V) - 5) [ (Vi) - 5) #1
then (Vk(")) converges to S faster than (Vk(f)l)
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Let us mention that a variant of Overholt’s process was considered
by Meinardus [318]. It consists in replacing in the rule of the algorithm
ASpik-1 by AS, and AS,,r by AS,+1. For this modification we have
the

Theorem 2.35
IfSn =854+ ad" + aA?" + ... 4+ @, A™ + O(IAl(""l)") then when n
tends to infinity

v =5+0 (|,\|,\('°+1)") , fork=0,...,7r—1.

This is in particular the case if S,+1 = F(S,) with (S,) converging
to S = F(S), F € C"ta,b], A\ = F/(S) and |F'(z)| < 0 < 1, Vz € [a,}].
The subroutine OVERHO performs Overholt’s process.

2.9 O-type algorithms

Let us consider again the e-algorithm. It can be written as

o, = ) + D

with D,(c") = (efc"H) - eﬁ"))- . We have

e, = Azt + ADY

where the operator A operates on the upper indexes. Thus we shall have
lim A52k+2/ At = 0

(which implies, with some further assumptions given in section 1.12,
that lim (el), — §)/ (el - §) = 0) if and only if

n—oo

lim ADJ),, /[ Aelit!) =

n—oo

If this condition is not satisfied then the sequence (Aegﬁ”) does

not converge faster than the sequence (Ae( )). In that case, we can
introduce a parameter wy in the rule of the algorithm which becomes

n +1
Ehmhs = €55 + @D .
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If w; is chosen such that

wir = — lim Aeg',:ﬂ) / AD.&,;:)+1

n—00

then the new sequence (Aegﬁ_z) thus obtained will converge faster than

(Aeg":)) and also faster the old sequence (Aegk)”) produced by the

unmodified algorithm.
However, in practical situations, the computation of wy is difficult
since it involves a limit. Thus we shall replace w; as given above by

o = - g™/ a0,

and the rule of the algorithm becomes (using the new letter © to make
the distinction)

oM =0, o=s,, n=0,1,...

eg'l:)ﬂ = eg'l:+:) g',?, k,n=0,1,...
(n+1)

o, = et A% T pm 4o,

AD{,,

with D) = (001 _ o) ™",

This algorithm, called the ©-algorithm, was first proposed by Brezin-
ski [36). The particular rules of the ©-algorithm are under progress, see
Redivo Zaglia [373]. The numerical experiments conducted by Smith
and Ford [413, 414] show that the ©@-algorithm is among the algorithms
which provide almost always a good answer. Of course, such numerical
experiments do not replace a theoretical proof and we shall now try to

understand the reason for its success and study the sequence (Og")).

It was observed numerically that the sequences (eg")) and (gg")), ob-
tained respectively as the first even columns of the ¢ and p-algorithms,
almost never give a good result simultaneously. If one of them works
well, the other one does not. On the contrary the results obtained with

(Gg")) are, most of the time, almost as good as the best result pro-
vided by (eg")) and (g(")) In the limit if S, = S + aA”, then ( ("))
is optimal since Vn, eg ") — S while 92 ;é S. On the other hand, if
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S, = S+ a(n + b)~! then (gg")) is optimal since ¥n, o = § while
eg") # §. Baut, in both cases, Vn, Og") = S. Thus the kernel of the

transformation O, : (S,) — (9(")) contains the kernel of the transfor-

mations ¢; : (S),) — (e(")) and g, : (S,) — (gg')). More precisely,
as proved by Cordellier [117], we have the

Theorem 2.36
A necessary and sufficient condition that Vn, Gg") = § is that (S,)
has one of the following form

1. S, =S5+ (So— S)A\" where So # S and XA # 0 and 1.

n-1
2. Sn="5+(So—8)[[ [1-d(i —m)™"| where So # S,d # 1 and
1=0
m and m + d are not integers.

n—

3. S0=55.=5+(5-8T]] (1—di-1) forn>1 where S, # 8

and d is not an integer. =

Let us remark that in the first case (S,,) converges if and only if |A] < 1
while, in the two other cases, it converges if and only if the real part of
d is strictly positive. When convergent, (S,) tends to S when n tends
to infinity.

Of course it would be much interesting to know the kernels of the
transformation @y : (S,) — (9( )) corresponding to the other
columns of the ©-algorithm. Up to nov':r, this has not yet been pos-
sible due to the lack of a determinantal formula for the Og,:) ’s and the
difficulty of the direct study from the rule of the algorithm. However,
from the theory given in section 1.6, it can be proved that Og',:) can be
expressed as a ratio of two determinants.

Concerning the convergence and acceleration, we have the

Theorem 2.37

If lim Og',:) = § and if there ezist a and  such thata <1 < 8 and

if¥n > N, DGt / DG, ¢ [, ] then lim 0F),, = 5.

Moreover if there ezists ar # 0 such that nlugo ((-)g'lzﬂ) - ) / D'YIZL =
lim AOGY/ADY), =ay then lim (07, ,-5) /(0" -5)=0.

n—>00
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The condition for acceleration clearly shows what is gained by using
the ©-algorithm instead of the ¢-algorithm. For the e-algorithm, ({2},
converges faster than (eg',:“)) if and only if "li_gxo (eg',:“) - S) / gl:?H
~1. For the ©-algorithm, it is sufficient that this ratio has a limit ax
different from zero and that (Aag,:“) / AD;',:?H) also tends to the
same limit, which is true under mild additional conditions given, for

example, in Brezinski [91] (see section 1.12).
Another way of formulating the acceleration condition of theorem 2.37

is to assume that there exists b # 1 such that lim (Og',:“)—-S)/

(6(") S) g":ﬂ) / Dg'&_l = bx. Under this condition (eg',:’,r,)n

converges to S faster than (0("“))

The subroutine THETA performs the ©- algorithm.

The procedure used to obtain the ©-algorithm from the ¢-algorithm
can also be applied to other algorithms in order to improve their ac-
celeration properties. This procedure, called the procedure 0, is fully
developed in Brezinski [65]. Let us consider a sequence transformation
T : (Sn) — (T,) written under the form

T, =S50+ D,, n=20,1,...

The O-type algorithm associated with T consists in the transformation
O(T) : (8n) — (O(Tn) = ©,),, given by

AS,
AD,

Of course, it must be assumed that AD,, # 0. If this is not the case
we shall only apply the procedure © to the subsequence of (T},) such
that this condition holds.

Obviously also, if T' is quasi-linear then so is O(T).

The kernel of the transformation T is the set of sequences such that
Vn,S, + D, = S. For the transformation O(T') we have the following
result which shows the improvement obtained by the procedure ©

en=S’;_

'Dn’ n=0,1,-

Theorem 2.38
Let us assume that Yn,D, # 0 and AD, # 0. A necessary and
sufficient condition that Vn,©,, = S is that 3¢ € C such that, Vn

Sn=8+¢cD,.
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Of course if the transformation T is written as
Tﬂ= "+p+D:" n=0,1,--

where p is a fixed non-negative integer, we can apply the procedure ©
and obtain

O = Snyp — AASBTP D!, n=0,1,...

For the transformation T, obviously (73) tends to S if and only if
(D) tends to zero and (T),) converges to S faster than (S,) if and only
if nli_{&(S,. — S)/D, = —1. For ©(T), we have the

Theorem 2.39 AS.
(©,) tendsto S i 0 AD,

if da < 1 < B such that Vn > N D,.+1/D ¢ [a, ﬂ]
(®,) converges to S faster than (S,) i 215; Dns _

1. This condition is satisfied if 3b # 1 such that ,,1.1_.120 (S,,.H S ) /(8n —
S) = nl_i_)I&D,.H/D,, = b. It is also satisfied if 3a # 0 such that
lim (S, — §)/Dp = lim AS,/AD, =a.

n = 0, a condition satisfied

The advantage of the second acceleration condition over the first one
is that it can also apply to logarithmic sequences while the first condition
cannot, see Brezinski [77).

Let us mention that if we consider the sequence transformation T :
(Sn) — (T = Sn41) then we can write

T, = 5.+ AS,.

Applying the procedure O yields

AS,

" Azg, A5

0, =5n

which is Aitken’s A2 process.

Let us now apply the procedure © to the E-algorithm. Since this
algorithm has a main rule and an auxiliary rule we can obtain various
algorithms by applying the procedure © either to the main rule, or to
the auxiliary rule or to both. Since, also, both rules can be written as
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above either with p = 0 or p = 1 then many possibilities can be studied.
We shall only consider here one of these possibilities in order to show
the improvement obtained over the E-algorithm.

Let us apply the procedure © to the main rule of the E-algorithm in
which p = 0; we obtain the following algorithm

T™M =S, ¢ =g(n), n=0,1,.5i>1
ATIS'—.)I. (n)

(n) _ mn) _ — =
™ = 1™ 2D0 ™, k=1,2,...;n=0,1,...
with
(n)
D = -S540,
Agl(:t)lk '
and

n n Ag -1, n
g,(:",) = 9£-’1.i — k18 (n)

and where A operates on the upper indexes.
Of course theorem 2.39 applies to this algorithm. But, in this case we
have
D) AT g/ - 1
D AT, g/ -1

and we have the more precise following result in the non-logarithmic
case

Theorem 2.40
If im T, = S, if 3a < 1 < B such thatVn > N, AT{"}) JAT, ¢

[a,8) and if b # 1, Tim g{") /o), | = by then, lim T{” = 5.
Moreover if by # 0 and if 3cx # 0 and 1 such that nlirgc (T,S':Tl) - S) /
(T,ff)l - S) = ¢i then (T,S")) converges to S faster than (T,g'_')l)
If this result is compared with theorem 2.9, we see that the accelera-

tion condition by = ¢, for the E-algorithm is now no more needed. We
only need that both limits exist but they can be different.
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Let us apply the E-algorithm with g;(n) = ASp4i-1 (that is Shanks’
transformation) and the preceding algorithm to the sequence

» = (0.95)"*1/(n+1),

forn=10,1,....

We obtain the following results (the first number corresponds to the
E-algorithm and the second one to the T-algorithm)

n (5n) (M, 1) | (B8, 1) | (B, )
0 ]] 0.95000000
1 || 0.45125000
2 || 0.28579167 | 0.20365202
0.05877243
3 || 0.20362656 | 0.12257430
0.01932949
4 [ 0.15475619 | 0.08302371 | 0.070156522
0.00412200 | —0.01399516
5 || 0.12251532 | 0.06000750 | 0.04522404
—0.00242632 | ~0.01086415
6 || 0.00976247 | 0.04519982 | 0.03113841 | 0.02778396
—0.00523243 | —0.00854903 | 0.00473557
For (S, = (-0.95)"*1/(n + 1)) we have
S3 = 020362656 E{V = 0.00832445 T© = —0.00471336
Se =-0.09976247 E{¥ =-0.00006298 T{" = —0.00000083

For the logarithmic sequence (S, = (n + 1)/(n + 2)) we obtain

S3 =
Se =
Se =
S12 =

0.80000000
0.87500000
0.90909091
0.92857143

EM = o.87500000 T
E) = 094444444 TV
ES) = 0.96875000 T{®
EY = o0.98000000 T

0.94444444
= 0.99900000
= 1.00000256
= 0.99999998

Let us mention that the rules of the E-algorithm can be written as

E,gn) =

E(':)l

_AED,
Agl(:'i)l,k

Ik-1.k
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Ad™ .

) _ ,m Ik-14  (n)

ki = k145~ "Ik k0
' Agl(c'-.-)l,k '

i>k

Thus they can be considered as obtained by the application of the
procedure © to (with the same letters)

ES‘) = Elg’:)l + 9('-'-)1,1:
an = dDtegth, i>E
This procedure can be used to obtain non-linear sequence transfor-
mations from linear ones as done by Weniger [458].

2.10 The iterated A? process

Instead of using, for example, the ¢-algorithm, Aitken’s A2 process can
be applied iteratively to the sequence (S,). That is, it is first applied to
(Sn), then again to the sequence thus obtained and so on.

We have the following algorithm

a5(()")=Sl'la n=01,...
(n+1) (n) 2
T -2
zf:‘) = zi")— (k . ) , k,n=0,1,...
+1 z£n-}-2) _ 2z£n+l) + z£u)

The motivation for studying the iterated A2 process instead of study-
ing the iteration of another algorithm can be considered as almost purely
subjective: Aitken’s process is very simple and efficient on linearly con-
vergent sequences. As proved by Delahaye [137] it is optimal, in three
different meanings, for such sequences (see section 1.11).

Let us consider the following sequence

So =1

a
Sn+] = 1+§:’ ﬂ=0,1,...

(S») is the sequence of the successive convergents of the continued

fraction J J |
a a a
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If a # —1/4 + c where c is a real nonpositive number, (S, ) converges
to the zero of greatest modulus of z2 — z — a = 0. If the iterated A2
process is applied to this sequence (S, ) then very interesting results are
obtained. First of all, it produces better results than the e-algorithm.
But it also shows that the linearly converging sequence (S,) (when a #

—1/4+ ¢ with ¢ < 0) can be transformed into the sequence zﬁ") . which

. ; is i () ™ _ g\ =

converges super-quadratically that is klixga (zk 1 .S') / (zk .S') =

0. It must be noticed that (e( )) converges only super-linearly, that is
Jim (49, - 5),/ (&9 - 5) =0

When a = -1/4, (S,) is a logarithmic sequence but (zfe")) con-

verges linearly while (eg',:) )k is still logarithmic. Thus (z( , can be

accelerated again by Aitken’s A2 process.

This is the only known example of the transformation of a linear
sequence into a super-quadratic sequence and of the transformation of a
logarithmic sequence into a linear one. The details of these results can
be found in Brezinski and Lembarki [94] and in section 6.1.4.

Other versions of the iterated A2 process and the iterated ©, trans-
formation are studied by Weniger [458].

As showed by Wynn [483] on numerical examples the repeated appli-
cation of an extrapolation algorithm can lead to a considerable improve-
ment of the results. Other examples can be found in Brezinski [56], in
Weniger [458] and in Bhowmick, Bhattacharya and Roy [29] who also
showed that repeated applications can improve the numerical stability
of an algorithm.

Let us consider the sequence of the partial sums of the series

z? 23

ln(1+z)=z—?+?—~-

forz = 1.

(0)

RRORRL

If we apply the e-algorithm again to the sequence e( ), €3 'y

(1)
(0 (1)

€45 €4 y...several times we obtain (number of exact dlglts)
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[ » ] (s.)] 1% appl. | 24 appl. | 34 appl. |

0] 0.35

" 1|f 0.55
21 0.69 2.00 1.14 0.93
3| 0.80 2.41 2.49 1.50
4| 0.89 3.57 4.09 2.53
5 | 0.96 4.08 4.63 4.34
6 || 1.02 5.12 5.35 6.35
7| 1.07 5.68 6.70 6.88
8| 1.12 6.66 8.40 7.79
9 || 1.16 7.26 8.88 9.22
10 || 1.20 8.20 9.57 10.38
11} 1.24 8.82 10.98 11.69
12 ) 1.27 9.73 12.75 12.72
13 || 1.30 10.38 13.15 15.49
14 || 1.33 11.27 13.79 15.80

Such a procedure is called the repeated application of the ¢-algorithm.
Applying iteratively the e-algorithm to the diagonal sequence e§,°),
e§°), ef,°), ... we obtain for the same example

| n 1l (S,) | 1% appl. | 27 appl. | 374 appl. ”

0| 0.35

1] 0.55 2.00 4.30 8.42
2 0.69 3.57 8.74 15.80
3 || 0.80 5.12 13.09

4| 0.89 6.66 15.80

5 i 0.96 8.20

6 | 1.02 9.73

71 1.07 | 11.27

The obtention of these results needs the same first 15 terms of the
series.

This procedure is called the associated application of the ¢-algorithm.

Although some theoretical results were obtained by Kateb [257], the
repeated application of extrapolation methods remains an almost unex-
plorated question. It is also possible to think about the composition (in
the sense of composing applications) of several sequence transformation
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that is
(82 B (1) B (747))
where T1,T,,... are any extrapolation method. This question has not

yet been studied.
The subroutine IDELTA performs the iterated A? process.

2.11 Miscellaneous algorithms

In this section we shall present some algorithms which are not, for the
moment, much developed but which however present some interest either
because of their theory or for their applications. The selection of these
algorithms was mostly a matter of taste or, more simply, knowledge and
we do not pretend to be comprehensive.

Since Aitken’s A2 process is one of the most popular and powerful
sequence transformation and since many more sophisticated algorithms
have it as their first step, we shall begin by its various generalizations
and follow the chronological order. The first generalization of Aitken’s
process is the T, transformation due to Gray and Clark [198]. Let m
be a strictly positive integer. We consider the sequence

(n) _ AS, : _
T+m = Sn Asn+m — AS (Sn+m Sn) 5 n 0, 1,. .

For m = 1, Aitken’s A2 process is recovered. Acceleration results
were given by the previous authors and by Streit [420]. When using
this transformation the main point is to find the best possible value of
the integer m. Of course it is easy to see that Vn, T} (") = § if and
only if Vn,Sp4m — S = a(Sp, — §) with @ # 1 or, in other terms if
and only if Vn, Spim = aSp, + (1 — a)S. f Vn,Spim >~ aSn + (1 — a)S
then the T,,, transformation will give good approximations of S. For
knowing whether or not the sequence (S,) has this form, it is possible
to compute the correlation coefficient of the sequences (S,) and (Sn+m)
for various values of m and to choose the value of m which gives the
coefficient closest to 1 in absolute value. This technique was proposed
by Jones [249]. This correlation coefficient can be computed from the
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first n + m terms of the sequence by

Let us mention that Jones [248] already used the same idea to deter-
mine the index for starting the application of Aitken’s process and that
this idea is also the basis for the selection procedure proposed in sec-
tion 3.6. Let us take the same example as Jones [249] since the results
found are not exactly the same as his. He considered

> cosiz x2 xz =2
- _r_r T _.. <z <2r.
S g z 6 2 + 2 , 0<z<2x

For z = 1.05, we have § = 0.2712229.... The values of o were
computed from Sop,...,S54m by the above formula with n = 5. We
obtain

0.819
-0.462
—0.984
—-0.650

3333
nmnnn
Y T

2] 5 [ 29 [ 7@ [ 79 | 79 ]
10 || 0.266864 | 0.278414 | 0.273838 | 0.271125 | 0.268887
20 || 0.270187 | 0.269757 | 0.270232 | 0.271243 | 0.296420
30 || 0.272224 | 0.273121 | 0.268132 | 0.271230 | 0.271649
40 || 0.270972 | 0.271876 | 0.271471 | 0.271220 | 0.270952
50 || 0.271000 | 0.270948 | 0.271054 | 0.271226 | 0.269844

Thus the values obtained agree with those of the correlation coefficient
which predicts that T'; 3 must be the best transform.

A generalization of the T,,, transformation to double sequences was
proposed by Streit [419)].

A further generalization was proposed by Delahaye [135] for acceler-
ating the convergence of linear periodic sequences that is such that

. S .- 8 .
nh—lvgo ”::.:I—S = i, fori=0,...,k-1
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with 8; # 0 and 1 and |Bo - ... Br-1] < 1 (a condition insuring the
convergence of (Sy,)). k is called the period and a numerical method
for determining k was given by Delahaye [133]. When k is known we
consider the transformation defined by

(Sntk — sn)2
Sn+2k - 2Sn+k + Sn ’

T"=S"+2k— n=0,1,...

which accelerates the convergence of linear periodic sequences of period
k. Its kernel is the set of sequences such that

S,,=S+aHﬂ,-, n=0,1,...
1=0

with a # 0 and B;4+x = 5.
If k is not known a sequence (k(n)) converging to k can be built (see
Delahaye [133]) and we can consider the transformation given by

2
(sn+k(n) - Sn)
Sn+2k(n) - 2Sn+k(n) + Sn ’

T, = n+2k(n) — n=01,...

which still accelerates the convergence of (S,).
A further generalization consists in taking

T, = Sn _ (S’l+P+" _ Sn) * (Sn+p+q - n+q)

s n=201,...
Sn+2p+r+q — Sntptr+g = Sntptq T Sntq

For all p,q and r such a transformation accelerates linearly converging
sequences. As showed by Benchiboun [24] such processes can be useful
for accelerating sequences which are neither linear nor logarithmic.

Another generalization of the A? process was given by Iguchi [234].
It is

T’Sn) — S"+2+w,(c")(5n+2—5n) , n=0,1,...

k
with w,(c") =) a¥ and a, = ASn41/AS.

We have =t
lim wf™ = a2 /(1-a2) =l

k—o0
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and it follows that
T = Spya + W) (Sniz — Sn) = 5.

This algorithm was proved to be useful for accelerating the conver-
gence of the power method for computing the dominant eigenvalue of a
matrix, see Iguchi [235], but it deserves further theoretical studies.

Let us now study some modifications of Aitken’s A2 process for accel-
erating logarithmically convergent series with terms having an asymp-
totic expansion of a known form. The first of these processes is due to
Drummond [148] who considered a series S = a; + a2 + - - - with

a, ~ An1

where 0 is a known negative constant. He proposed to replace the partial
sums S, =a;+az+---+a, by S; =a} + a3+ ---+ a;, where

1-0 [anGny1  Gn-18n
0 Aa, Aan,_y ]’

a, =an +

Thus
1-6 GnQni] _ S _ -1 AS,.-]AS”
o Aa, " [/ A28,

which shows that a factor (¢ — 1)/0 has been introduced in Aitken’s
formula. It can be proved that

S% = S, +

nT T
and thus the process can be iterated after replacing ¢ by 6 — 2, which
leads to the recursive algorithm obtained by Bjgrstad, Dahlquist and
Grosse [30]

* A(2_0) -
a, ~ —2-(1:—1)0 3

sM=s,, n=0,1,...
() A ¢(n-1)
(n _ (,.)_2k+1—0.ASk AS; _
Sk+l = Sk 2k _ 0 Azs(n—l) ’ n,k = 0, 1,...
k

who proved that this algorithm accelerates the convergence of all the
sequences of the set L of sequences of the form

S,.~S+n0o(c0+c1n'l+c2n'2+...) (n — o)
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with 8 < 0 and ¢g # 0, more precisely that
S,E") -§=0 (no—zk) (n — o0).

Instead of using this modification of Aitken’s process it is possible to
use the following modification of the g-algorithm (see section 2.5) due
to Drummond [148] and Osada [347]

Qg-nl)z ) an)zsn, n=01...;i>1
k-0
95:31 = Qﬁtﬁl)'i’w, k,n=0,1,...
— &k

As proved by Osada [347], for sequences of L
o5y — 5 =0 ((n+ k)°-2) (n — oo).
The main drawback of these processes is that they need the knowledge
of §. Drummond [148] proposed to estimate 8 by

1

an = ’
N TNY T

n=01,...

Bjgrstad, Dahlquist and Grosse [30] proved that for sequences of L
0,,~0+n"‘2-(to+t1n‘1+t2n“2+---) (n — o0)

with to # 0.

Thus the sequence (6,) can be accelerated by the previous modifica-
tion of the g-algorithm where 0 is replaced by —2, or by the modification
of Aitken’s process or by the E-algorithm. Numerical results and an-
other process called the automatic generalized g-algorithm can be found
in Osada [347).

Processes for accelerating sequences (depending on a parameter z) of
the form

Sn(z) = S(z) + 2" - [ao(z)(n +7) 7+ ai(z)n+ )+ ]

are given by Smith [412].
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Various generalizations of Aitken’s process were proposed by Kowa-
lewski [267] for accelerating the convergence of subsets of monotone log-
arithmic sequences. We set

An=1=(Sns1-85)/(Sa-S).

If (S,) is logarithmic, then (\,) converges to zero. If Vn, A, > 0 and
if there exists A > 1 such that

Tim (n+ 1) (ASa/ASns1 — 1) = A

then the sequence

_ AS,
bp-ASpi1/AS,—1°

n+p+1
+

n=01,...

T, =Sn

with b, = ntp converges faster than (S,), Vp.
If there exists g €]0,1] such that

Tim A, (1~ ASw41/AS,) " =0

then the sequence

_ AS,
(ASn1/08.)°-1"

converges faster than (S,). Another possibility is to consider
_(AS,)?
0A2S, ’
The following modification of the ¢-algorithm was introduced by Van-
den Broeck and Schwartz [447)

n=0,1,...

Tn=sn

T, = Sn n=01,...

e =0, =5,

n n+1 1
Egk)+1 = aei(.’k—l)'*' A
2k
1
e = B+ —5—
: Aeyly

When a = 1 we recover the ¢-algorithm of Wynn while for a = 0 we
obtain the iterated A? process (see section 2.10). The following results
on this algorithm were proved by Barber and Hamer [13].
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Theorem 2.41
Let F be the generating function of (Sy) that is

F(z) = Z Snpz".
n=0
IfF(z) = S(1 - z)1 [1 + A(1 - z)'\] and if we take a = —1 in the
modified ¢-algorithm, then Vn, 5‘(1") = S.

Theorem 2.42
Let (S,) be a sequence converging to S such that

Spo—S=an"+o0 (n"\) (n — o0)

with A > 0. If the modified ¢-algorithm is applied to (S,) with a = -1
then

) —§ =0 (n") (n — o).
Moreover if
Sa—5=an" (146077 +0(n ")) (n — o0)
then
e — § = anp, (n — o0)

with 9, = o(n"1) tfy>1and g, =0 (n~7) ify < 1.

The modified e-algorithm with a = —1 can be generalized by replac-
ing in its rule a by a, = — (1 - (-1)") /2. An application with an a
depending on k was given by Yue-Kuen Kwok and Barthez [487].

Generalizations of Aitken’s process were also given by Prévost [362,
366]. They are

AP i ( k ) (ASpik-2)' - (ASpyko1)t™
(A28, 4k-2)*

: Sn+i-
1=0
Aitken’s A2 process is recovered for k = 2. For all k, the kernel of this
transformation contains Aitken’s, the convergence of linear sequences is
accelerated but no other theoretical result is known for these transfor-
mations.
Now we set
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In©)(z) = =, LO)(z) =z,
n*+)(z)=1n(ln®)(z)), LE+)(z)=L®(zn®)(2)), k=0,1,...

Osada [346] defined the transformations T'(*) by

L(k) ((n - 1)AS,.-1 AS,._z)

L&) ((n — 2)AS,_2)-LK) ((n — 1)AS,_;)’

The case ¥ = (0 was considered by Kowalewski [267]. These trans-
formations are able to accelerate the convergence of some subsets of
logarithmic sequences as we shall see below.

As explained in section 1.11, Aitken’s A? process is a rational trans-
formation. Other rational transformations were studied by Osada [349]
who considered the transformations defined by

_ ASn-Z * hn (Sn-ln cesy Sn)
hpn(Sn—ky---3Sn) — Bn—1 (Sn—k—15-++ySn-1)
where h,, is a rational function of its k + 1 variables. We assume, as be-

fore, this transformation to be defined which means that its denominator
does not vanish. We set

T®) =8, 1 + k,n=0,1,...

Tn=Sn_1 [ nzo,l,...

fn (21, ) 3k+2) = h, (311 ceey zk+l)/ (zk - 3k+2) .

The kernel of this transformation, which clearly generalizes Aitken’s
A2 process, is the set of sequences such that Vn > k

fn(Sn—k,...,Sn,S) =Q

where a is a nonzero real number.
We set A\, = 1 — (Sp41 — 5)/ (S, — ). Osada [349] proved the fol-
lowing fundamental result

Theorem 2.43
Suppose that there ezists a nonzero real number a and a sequence (e,)
tending to zero such that Vn > k
fn (Sn-—ln ey Sm S) =a+ep,

suppose that there ezxist m and M, 0 ¢ [m, M| such thatVn > N >
k, m < (Sn+1—S5)/ (5, — S) < M, then a necessary and sufficient
condition that (T,,) converges to S faster than (S,) is that

,.li.lf,lo Aey /A, = 0.
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This condition is automatically satisfied if (Sp4+1 — S)/(Sn — §) does
not tend to 1 when n tends to infinity.

From this theorem, Osada [349] was able to prove that its previous
transformation, which is recovered if h,(z1,z2) = L) (n — 1)(z; — z1),
accelerates the convergence of some subsets of LOGSF.

We consider the following sets

AR)

{(Sn) € LOGSFI Ja > 0 such that nlgg) L®)py, = a}
B® = {(S,)€ 4®| lim L®InAe, =0}.

We have the

Theorem 2.44

Let (S,) € A®) for some k > 0. A necessary and sufficient condition
that
lim (T$ - 5) /(8. - 8)=10

n—oo

is that (S,) € B(®),

We have

e = A(S./AS.)/ A(1/AS,)

of) = A2(S./AS.)/ AY(1/AS.).
This remark gave Drummond [147] the idea of generalizing as
T{") = A¥(S,/AS,) [ A*(1/AS,).

He gave some numerical results showing the interest of such transfor-
mations but no theoretical results. Bhowmick, Bhattacharya and Roy
[29] found that for ¥ > 2 no improvement occurs for series with posi-

tive terms. Let us mention that the ©,-transformation (S, ) — (@g"))

is equivalent to the W-transformation of Lubkin [301] and that it was
proved to be based on an approximation of the main term of the Euler-
Maclaurin’s formula by Sato [386]. '

Finally another generalization of Aitken’s process was given by Meinar-
dus [318] and found to be quite effective for sequences generated by fixed
point iterations, namely
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y((]n) = Sn
n , Ay o (n
y, = y,‘,’+I—”!=W, with a{™ = (ASn1/AS.)*.

For k = 0, Aitken’s formula is recovered. This transformation can be
considered as a variant of Overholt’s process (see section 2.8).
Let us consider the partial sums of a power series

n

Sn = E ex(—z)*1, n=1,2...

k=1

For accelerating (S,), Longman [297] considered the sequence (5,)
given by

2n
5‘,. = E ckak(—z)k'l , n=12,...
k=1

with
1 1<k<n
a = 2n—k n
- -n '
1+2) g(i)z n+1<k<2n

It was proved by Longman [298] that it holds

= (c5) B(F) i

The sequence (S,) can be recursively computed by an algorithm due
to Lepora and Gabutti [282] which is as follows

Wn,Ozsn) ﬂ=1,2,-..
Wokei = (142) ' (Wopok +2 Wi k) , nk=0,1,...

and we obtain Wy, = S,,.
It was proved by Longman [297] that if

1
ek = /0 th-1g(t)dt
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then (S,) converges to § = / g dt faster than (S,). Numerical

examples can be found also in these papers.
A technique based on shifted Jacobi polynomials was considered by

Prévost [367)]. Let P{*?) be the usual Jacobi polynomials defined by
1
/ PEB)(2)PeB)(z) (1 -2)* (1+2)Pdz=0 if n¥m
-1

with the normalization

P,s"'ﬂ)(l) _ ( n+a ) '

n

The shifted Jacobi polynomials P (*#) are defined by
Pr@B)(z) = P(*P)(2z - 1).

They satisfy

1

/ P,: (a,ﬁ)(z)P':l(a,ﬁ)(z) (1 — z)a za dz=0 if n # m
-1
P;(=A)(0) = PEA(-1) = (-1)" ( " )
@By [ Pt
ooy (72)
and we have

P'-: (a.ﬂ)(z) — .go ( :t? ) ( n':‘ﬂ ) (z — l)izn—i.

Prévost considered the sequence

n=3(nte) (748 ) aise / meow

and he proved that if (S,) € TM,a > —1/2, a > 3 then

lim T, = th

n—oo0
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For example we consider

s,.=2[1- (1-:‘-3)’] , n=1,2,...

=1

It is a logarithmic and totally monotonic sequence. From the 17 first
terms of this series we obtain respectively

e-algorithm 1.61074762160818
g-algorithm 1.62231122658372
©-algorithm 1.62231122520473
Prévost algorithm 1.62233234119527
(a=1,8=0)

while §;7 = 1.56521360171339.

I 1
Sn=S +/ z"w(z)dz
0

where w(z) = O((1 — z)?) when z tends to 1 and is square integrable,
then Prévost [365] proved that the previous sequence (T}), constructed
with a = p and B = 0, converges to S faster that (S,).

If w has the form

1 1
U(z) 2/0 mdﬁ(t)
where a is a function of bounded variation and < 1, a+ b < 1 then, in-
stead of considering T, = ¢ (P,‘,‘(“'ﬂ)(z)) / P@B)(1) (with S, = ¢(z")),
Prévost used the transformation

Tn = c(Pa(2))/ Pa(1)

where P is the shifted Legendre polynomial on [0,1]. If a = —1 and
b = 0 then (7)) is still logarithmic but it converges to S faster than
(Sn). fa = -1 and b = 1 then we can consider

T, = c(Pa(2z + 1))/ Pa(3)
and we have

limsup [T — S|'/™ = 3 - V8 ~ 0.1716.

n—oo



2.11. Miscellaneous algorithms 143

There are some methods for accelerating the convergence that are
based on direct or inverse rational interpolation. They can be consid-
ered as extensions of the g-algorithm (section 2.5) and are described by
Wuytack [468], Larkin [273] and Miihlbach and Reimers [331].

Other methods consist in replacing the series to be computed (or its
tail) by an integral and then evaluating this integral by a numerical
method. For such a technique see Gustafson [205], Beckman, Fornberg
and Tengvald [17] and Gustafson [206).

Finally for power series, acceleration methods can be based on ap-
proximation techniques. This is, in particular, the case for Padé ap-
proximations which can be obtained via the ¢-algorithm. Other approx-
imations lead to various acceleration methods. See, for example, Della
Dora [141], Niethammer [334], Gabutti and Lyness [169], Prévost [366],
Gabutti [167], Loi [293], Gabutti [168], Walz [453], Wimp [466]. It is

not our purpose here to enter into the details of such transformations.
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Chapter 3

SPECIAL DEVICES

The aim of this chapter is to show how to use some special devices in
connection with extrapolation algorithms. As explained in section 1.4,
the problem of accelerating the convergence of a sequence is equivalent
to the problem of finding a perfect estimation of its error. As we shall see
below such a perfect estimation of the error can be obtained either from
a good estimation of the error or from the classical convergence tests for
sequences and series. We shall also see how to construct an asymptotic
expansion of the error in some cases, which will allow us to use efficiently
the E-algorithm. Another possibility is to extract a subsequence from
the sequence to be transformed and to accelerate its convergence. One
can also use simultaneously several sequence transformations and then,
at each step, select one answer among all the answers obtained from the
various algorithms. Under some assumptions such a selection procedure,
selects the best possible answer. The answers can also be combined
together, thus leading to composite sequence transformations. We shall
also see how to control the error in extrapolation processes. Finally when
acceleration is impossible, special devices to obtain a smaller error can
be used. Extrapolation in the least squares sense will also be discussed.

3.1 Error estimates and acceleration

In section 1.4, we saw that the problem of accelerating the convergence
of a sequence (S,) which converges to § is equivalent to the problem of
finding a perfect estimation (D,,) of the error that is such that

,E.%D"/(S -S,)=1
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If such a perfect estimation is known then the sequence
T,.=S,+D,, n=0,1,...

converges to S faster than (S,).
Sometimes only a good estimation (D,,) of the error is known, that is
such that Ja # 0,1 and finite

nli’xg D,/(S - S.)= a L.

In that case the convergence is not accelerated by the previous transfor-
mation since we have

lim (T, ~ 5)/(Sa - 8§)=1- a”l #£1,0.

T : (Sn) — (T4) is said to be a synchronous process for (S,), a notion
introduced by Germain-Bonne and Kowalewski [184]. Let us now see
how to construct from (T},) (or, equivalently, from (D,,)) a new sequence
transformation accelerating the convergence of (S,).

Three cases can happen.
First, if the value of a is known then the sequence

Up=8.4+aD,, n=01,...

converges faster than (S,). This is the easiest case but it is not often

seen in practice.

Secondly, if the sequence (S,,) is not logarithmic, that is if there exists
a and B with a < 1 < 8 such that Vn > N, (8,41 - 5)/(S. - S) € [a,B]
then it can be proved that

lim AD,/AS, = —a7'.

Thus, in this case, the sequence (Uy,) given by

Un = 5n - AD,

-D,, n=0,1,...

converges to S faster than (S,). This is exactly the application of the
procedure © (see section 2.9) to the transformation T and it is also
identical to the second standard process of Germain-Bonne [182].
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The last case is the most difficult one since it covers all the possible
situations. It is only assumed that Vn,S, # S. If a sequence (a,)
converging to a is known, then the sequence (U,) given by

Up=8.+a,D,, n=101,...

converges to S faster than (S,). The construction of such a sequence (ay,)
can be done by the so-called ACCES-algorithm (where ACCES stands for
ACcélération de la Convergence d’un Ensemble Synchronisable) due to
Litovsky [290]. This algorithm is based on the fact that the sign R,
of §, — S can be asymptotically obtained if a synchronous process for
(Sn) is known (see the DAQES-algorithm below). We assume that the
computation of D, needs only So,...,S,. The ACCES-algorithm is as
follows:

o Set S...] = T_1 =0.
e Forn=0,1,...

— compute T, = S,, + D,,.
— compute R, by the DAQES-algorithm (see below).
~ compute p(n) by
i) If R,D,, > 0 then
p(n) = max({—1} U {j € [0, n[ such that R,(T, — S;) <
0}).
ii) If R,Dy < 0 then
p(n) = max({-1} U {j € [0, n[ such that R,(2S, — T, —
5j) < 0}).
iii) If R,D, = 0 then
p(n) = -

— compute

mﬂ( %m) if Sn # Sp(n)

otherwise

""/-\

— compute

Un = Sn+anD, witha, = (1 -b,)"1 ifb, #1
Un = Sn ifb, =1
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It can be proved that (U,) converges to S faster than (S,) and that
there exists an index N such that Vn > N, the condition S, # Syn)
always holds. This algorithm shows that the problems of finding a syn-
chronous transformation or an accelerative one are equivalent.

Let us now describe the DAQES-algorithm for determining asymptot-
ically the sign R, of S,, — S. We shall use the notation < a,8 > to
denote [a,f] if a < # and [B,a] if B < a. We set

Tc(n) = ¢Tp + (1 — ¢)Sh.

Let (ax) be an auxiliary strictly decreasing sequence which converges
to zero. For example a; = 2-%. We shall denote respectively by A(k,n)
and B(k,n) the following assertions

A(k,n) : ﬁ < 8y T_1/a,(7) > #9

=k

B(k,n) : [) < Sj, Tija, () > #9

j=k
where @ denotes the empty set.
Then, the DAQES-algorithm is as follows:
e Set k=0.

e Forn=0,1,...

i) If A(k,n) is true then R, = sign D,.
ii) If A(k,n) is false and B(k,n) is true then R, = - sign Dj,.
iii) If A(k,n) and B(k,n) are false then R, = R, and k = n+1.

It can be proved that the sequence (R,) given by this algorithm is
asymptotically equal to the sign of S, — S that is AN,Vn > N, R,(S, -
S)> 0.

The subroutines ACCES and DAQES perform the ACCES and DAQES
algorithms.

The ACCES-algorithm was tried on the sequence

Sa=(m+1)"!-sina(n+1), n=0,1,...
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which tends to zero. If a(n + 1) is not a multiple of x, for all n, then
the ratio S,4+1/Sy, has no limit. S, has infinitely many sign changes and
the distance between two consecutive sign changes varies.

We took
To=S,+b(S2-8.), n=0,1,...

Obviously (T,) tends to zero and (T,/S,) tends to 1 —b. Taking a = 5.0
and b = 0.5 we got the following results

Ln{ S [ Rn | Un [ Ua/Sa |
1.0

0| —0.959.10+% .0 —0.325-10"18 0.339-10"18
1| -0.272-10t% | -1.0 | —0.117-101% 0.430-10%%
2 0.217-10%% | —1.0 | 0.559-10~* 0.258 - 10+%
3 0.228-10%% | —1.0 | 0.595-10-°! 0.261-10+%
4| -0.265-10"° | —1.0 | —0.555- 10702 0.209 - 10+
5| -0.165-10%t% | —1.0 | —0.312.1079 0.189.10%%
6| —0.612-10"°' | —1.0 | —0.822-10702 0.134.10%%
7 0.931-10791 1.0 | —=0.313-107°1 | —0.336-101%
8 0.945-10~ 1.0 | —0.319-107°1 | —0.337-10+%
9| -0.262-107° | —1.0 | —0.148-10792 0.563 - 100!

10 | -0.909-10-°! | —1.0 | —0.119.10-°1 0.131.10%%
50 | —0.993.10792 | —1.0 | —0.187-10-93 0.189.1079
100 | 0.708-10-°2 1.0 | —0.824-107°¢ | —0.116-10~2
150 0.564 - 10-92 1.0 | —0.489-.10-%4 | —0.869.1092
200 | —0.152-10792 | —1.0 | —0.760- 1095 0.501. 10702
250 | —0.398-10792 | —1.0 | —0.248-10~04 0.623 - 1002
300 | —0.585-10"%3 | —1.0 { —0.193.10-% 0.330- 10792

We see that the sign R,, of §,, — S is well determined by the DAQES-
algorithm for n > 4. We also see that the ratio (U,/S,) tends to zero
as predicted by the theory.

Thus the ACCES-algorithm accelerates the convergence of any se-
quence (S,) for which a synchronous transformation is known or, in
other words, for which a good (or a perfect) estimation of the error is
known that is such that

S-S,=aD, +0o(D,), n=0,1,...

aD,, appears as the first term in an asymptotic expansion of the error
S — S, with respect to some asymptotic sequence. In the next section we
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shall see how to obtain good and perfect estimations of the error from
the usual convergence tests for sequences and series.

But, before going to that case, let us explain how to accelerate the
convergence of a sequence for which a good estimation of the absolute
value of the error is known. The details and the proofs can be found in
Matos [312].

Let (S,) be a sequence converging to S and such that a sequence (D,,)
satisfying

nlLIEOIS,.—Sl/Dn =a#0

is known.
We consider the following algorithm:

e Choose ¢ and M such that ¢ < a < M.

e Forn=20,1,...

) AS, _ AS,

i) Iflm >MthensetT,.--S,,+D"_'_Dﬂ.‘_l n

. AS, _ AS,

ll) If m < € then set T, = S, AD, - D,
We have the

Theorem 3.1

If |S, — 8| = aD, + r, where n]ixgo Dni1/Dp =1 andr, ~ D, (n —
o) with hm D, /D, = Jim AD./AD, = 0 then the sequence (T,)
defined by the previous algorithm converges to S faster than (S,).
We recall that the notation u,, ~ v, means that nli_x’go U, /v, = 1.

In the case where (D,) converges linearly, we shall make use of a
different algorithm. We set

AS, AS
(1) — - L . (2) — __B8on
T" Sn AD" D" 3 Tﬂ S'l + Dn + Dn+l n
nd T — T,(.l) AT(z) T(z) AT(I)
n AT(z) AT(I)

Let us define the functions A and B by

o+1\ . e+l (e—1)(e+1)
Alr )"__+m('+g F—T) B Y PYX )Y Py
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-1 (e-1)(e+1)
@ (e+1)+(e-1)°

13(1~)=€§"—9l + M(r+g- "—“Li) with M=-2

and the sequence (T},) by
Tn = (e+ra)B(ra)T) + (rn — 0)A(rn) TV
+ (1= (e+7a)B(rn) — (rn — €)A(rn)) Trgs)

with 7, = AS,;1/AS,.
We have the

Theorem 3.2

Let (S,) be a sequence converging to S for which a sequence (D,,) such
that lim |S, — 5|/Dp = a # 0 and nlir&'Dn+1/Dn =pwithd<p<1
is known. Then the sequence (T,) given by the previous algorithm con-
verges to S faster than (S,). In this algorithm if the (usually unknown)
parameter p is replaced by 0, = Dy41/D,,, then the same acceleration
result still holds.

,(.3) as defined aboveis a so-called composite sequence transformation.
Such transformations will be studied in details in section 3.7.

3.2 Convergence tests and acceleration

As explained in the previous section, we shall now see how the classical
convergence tests for sequences and series can produce good and perfect
estimations of the error and, thus, convergence acceleration methods.

Let (z,) be an auxiliary increasing sequence with a known limit z.
Let us assume that (S,) also increases. We set R, = § — S,,r, =
z - 2,,A, = Az,/AS, and we assume that there exists 4 # 0 such
that (A,) converges to A. Then (S,) converges and Vn, we have

Tn

Tn . . s .
" <R,< A if (A,) is increasing

Tn >R, > In i (Ap) is decreasing.

Thus, in both cases, (r,/A) and (r,/A,) are perfect estimations of the
error of (S,) and the sequences (T,) and (U,) given by

z_zn
SRS S

AS,
Az,

Un Sn - “(zn—2z), mn=0,1,...
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both converge to S faster than (S,).

The preceding convergence test reduces to d’Alembert’s for z,, = AS,,
to Cauchy’s for Az,, = A" where A €]0,1[ and to Raabe-Duhamel’s for
z, = nAS,. In the first case U, is Aitken’s A? process. The choices z,, =
AS, also corresponds to Levin’s t-transform while z, = (n+1)AS, and
z, = AS,AS,_1/A2S,_, give respectively Levin’s u and v-transforms.

The use of such a convergence test for obtaining convergence acceler-
ation methods was introduced by Brezinski [77] and extended by Matos
[311] whose results will be now presented.

They are based on the following more general convergence test given by
Lyusternik and Yanpol’skii [305] for monotonous sequences.

We set Ax(m)=Azy/ASk4m. Then if l.i:!_l’i%fAn(m) >0 and Vn,r, <
+00 or if lim sup A4,,(m) <0 and Vn,r, > —oc then the sequence (S,) is
convergent.n fnmfact, in the first case we have Vn

Tn Tn
— mr <R < —"
supkzn Ak(m) = Tnim = msz,, Ak(m)
while, in the second case, the inequalities are reversed. Thus if, for m
fixed, (An(m)), converges to a non-zero limit then we have

Rn+m =1
n—oo rn/An(m)

which shows that (r,_,;/An—m(m)), is a perfect estimation of the error
of (S,) and we have the

Theorem 3.3
Let (S,) be a monotonous sequence and (z,,) a sequence converging to
a known finite limit z. If, for m fized, "li’nol‘> A, (m) ezists and is different

Jrom zero, then the sequence (T,) given by
Th=Sn+(z—2zn)/An-m(m), n=01,...

converges to S faster than (S,).

We shall now study various choices for (z,) and determine for each
choice under which assumptions on (S, ) the conditions of the preceding
theorem are satisfied.

We shall take m = 0 and, set A,, = A,(0).

The choice z, = AS, corresponds to d’Alembert’s test and leads to
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Aitken’s A2 process which accelerates sequences converging linearly.
The choice z,, = (1—p")/(1—p) where g €]0, 1] corresponds to Cauchy’s
test and leads to the first standard process of Germain-Bonne [182].
This process can be iterated under some additional assumptions and we
obtain the

Theorem 3.4
Let (S,) be a monotonous sequence such that, Vn

ASn = a7 +az05 + -+

withVi,a; #0 and1>p; > 02> :--> 0.
We consider the following algorithm

Tén) =85, n=0,1,...

AT™
(1 - ok+1) ’
Then, Vk, lim (T(7, - 8) / (T - 5) = 0.

T(") — T(") -

k1 = Ty k,n=0,1,...

Let us now consider the choice z, = AS,AS,.1/A%S, which corre-
sponds to Levin’s v-transform. We have the

Theorem 3.5
Let (S,) be a monotonous sequence such that 3\ €]0, 1], nll.r{.lo ASni1

[ ASn = A or ASn41/ASn—1 = An with lim A, =0, lim AS,/An =0
and Lim (Ant1 = An1) # 1. Then the sequence (T,) given by

(AS,)2A%8, 1

Tn=Sn - AS.+202%8, — AS.A2S,,,’

n=201,...

converges to S faster than (S,).

Let us now consider the choice z, = a,AS, where (a,) is an auxiliary
sequence. It corresponds to Kummer’s test and we obtain the

Theorem 3.6
Let (S,) be a monotonous sequence and (a,) an auziliary sequence
such that
lim a,AS, =0

n—oo



154 Chapter 3. Special devices

. AS,
Jim (%+1°-AT+1-—%) # 0.

Then the sequence (T,,) given by

an(AS,)?

Py Yrw. v L

T, =5, —

converges to S faster than (S,).

Let us now examine some possible choices for the auxiliary sequence
(an). If (S,) converges linearly and if (a,) converges to a limit different
from zero then the conditions of the preceding theorem are satisfied. The
;'roblem is not so simple for logarithmic sequences since it is a remanent
set and thus no universal choice for (a,) could exist.

Let LOGSF be the set of sequences such that "ILIEQ(Sn+1 -85)/(S.-5)=
nlirgo AS,41/AS,=1. This set is also remanent and it cannot be accel-
erated. This is the reason why we shall now study some of its subsets for
which a choice of (a,,) satisfying the assumptions of theorem 3.6 (and
thus giving an acceleration method) can be found.

Choosing a,, = n, we have the

Theorem 3.7
Let (S,) be a monotonous sequence of LOGSF such that 38 < -1,

e+ (5 -1) -0

Then the sequence (T,) given by

n(AS,)?

- =0,1,...
(nt DASny: —nas, ' =0

Tn = 5a

converges to S faster than (S,).

This procedure can be iterated under some supplementary assump-
tions and we obtain the

Theorem 3.8
Let (S,) be a monotonous sequence of LOGSF such that

ASn-i-l

a
AS, =1+;-(1+v,,), n=12,...
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with a < —1 and v, ~ Kn*(Inn)? (n —» oo) where a < 0 and B < 0 if
a=0.
We consider the following algorithm

™ =85,, n=0,1,...

n (A1)’

k,n=0,1,...
(n+ 1)ATY — AT’

T =1 -

Then, Vk, lm (T}, - 5) /(T{” - 5) =0.

The choice a, = n corresponds to Raabe-Duhamel’s and Gauss’ tests.
The assumptions of theorem 3.8 are satisfied if

AS, =cin™™ 4+ ean=2 4 ... withl<a;<az <---
or if
AS, = c;n~* (Inn)~P + con~>2(Inn)=P2 4 ...
with 3, <fB;<--- and 1<a;=as=--- or with 1<y <a<---

In these cases the convergence is accelerated even if the values of the
a;’s and B;’s are unknown, thus showing the interest of such transfor-
mations.

Let us give an application of theorems 3.7 and 3.8. It concerns the

Riemann ¢ function
HOEDI A
=1

which can be expressed as a continued fraction

E(t)=,—iJ+|—‘%J +|—‘;§—' +

with @, = —(1-n"1)" and b, = 1 — a,. Let (Cy) be the conver-
gents of this continued fraction. Kooman [264] using the results given
in Kooman [263] (see also Kooman and Tijdeman [265]) about second
order difference equations with rational coefficients proved that

——-——"“ e(ft()t) 1+——+0(:)
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=1-i+o(%).
n n

Thus the conditions of theorem 3.7 and 3.8 are satisfied for t > 1 and
we obtain the following numerical results (number of exact digits) for

t=3
n\k| 0 1 2 3 4 5 |
2 (119 1.06 1.74 243 3.22 4.07
3 (148 170 244 3.22 4.07 4.98
4 [1.69 212 292 3.77 4.68 5.64
5 [1.87 242 3.29 4.20 5.16
6 |2.01 2.67 3.60 4.56
7 |213 2.88 3.85
8 [224 3.06
9 |2.34

With t = 7, we find
n\k| 0 1 2 3 4 5 |
2 [3.27 331 448 564 6.79 7.96
3 | 410 446 562 6.78 7.95 9.14
4 |4.74 529 646 7.64 8.83 10.0
5 [5.25 594 7.13 8.33 9.55
6 |568 647 7.69 8.92
7 |6.05 6.93 8.18
8 |6.37 7.33
9 |6.66

Due to rounding errors the maximum number of exact digits obtained
was 12. After, precision deteriorates.
Let us now choose a,, = n -Inn which corresponds to Bertrand’s test

with p = 1. We have the

Theorem 3.9

Let (S,) be a monotonous sequence of LOGSF such that 38 < —1,
Jim (n+1)-In(n +1)- [ASs1/ASw — 14+ (n+1)7] = 4.

Then the sequence (T,) given by

_ (ASay?
bn - ASps1 — AS,’

T. = S»

n=01,...
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with

b = n+1l In(n+1)
" Inn
converges to S faster than (S,).

With some additional assumptions, this procedure can be iterated, thus
leading to the

Theorem 3.10
Let (S,) be a monotonous sequence of LOGSF such that

ASnt1 _ 1- 1 + B
AS, n+l (n+1)-In(n+1
with § < —1 and v, ~ ¢(Inn)~7 (n - o) wherey > 0 and ¢ # 0.
We consider the following algorithm

)-(l+un), n=201,...

T™ =S,, n=0,1,...

AT(")
™M = T k , kn=0,1,...
k+1 b" . ATISH.'-I)/AT,S") -1 ’
with
b=t 1 In(n+ 1)
"Toon Inn

Then, Vk, lim (T, - 5) /(T{V - §) =0.

Finally we consider the choice a, = n-Inn-Inyn-...-In, n where
In;;1 n = In(In; n) with In; n = Inn. It corresponds to Bertrand’s test

and we have the

Theorem 3.11
Let (S,) be a monotonous sequence of LOGSF such that 38 < —1,

AS 1 1
lim L Ml e — | =
—%0 p(n+1): [ 1+’n—}—1+ +L,,_1(n+1) A
where Ly(n) =n-Inn.....In,n.
Then the sequence (T,) given by
T, = S,— Ly(n) - AS, n=0,1,...

Ly(n+1)-AS,41/AS, — Ly(n)’
converges to S faster than (S,).
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Thus, as seen from the examples given above, the classical conver-
gence tests for sequences and series are powerful tools for obtaining per-
fect estimations of the error and constructing convergence acceleration
methods. In some cases, integral tests can also be useful. For example

if S, = Zf(i) where f(z) > 0 and decreasing for all z > 0, it is well
=1

known that Vn

Dry1 SRS D= [ f(2)ds.

If f(z) = 1/z? then (D,, = 1/n) is a perfect estimation of the error of

(8n)-

For series with positive terms, lower and upper bounds for R, whose
ratio tends to one are needed in order to obtain perfect estimations of
the error. Such bounds are known for some series, see Fabry [153].

For example we have

o ¢}
o For ) 1/n'*® witha >0

n=1

1 1
afnr iy <

ans’

o For ) 1/(n+b)'** with 5> 0
n=1
(n+k—2a-1) R < (n+b-1)
a(n + 1)1+ " = a(n + b)l+e

where k is any real number strictly greater than one.

a.nda:b]—

o) -1 -2
oy Ungl PP+ anP !t amP iy
[ ] For Un WIth - nr b ’;p—l b n})"‘z PP
"Z=l U, + by + b, +

a-1>0

(n+k—:a—1)un <R, < (n+ha— 1)u,

where h and k are real numbers such that A > b; + (a2 — b2)/(a +
1) > k.
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(1-b)-(2=b)-...-(n—b)

e For u,, with u, = and
,,z=:1 " (n+1)-(pt+a)-...-(p+a+n)
b>0,p+a>0
(n—p-a-2bu, (n+p+a+l)u,
<R,< .
(p+a+bd) " (p+a+b)

3.3 Construction of asymptotic expansions

As seen from theorem 2.10, the E-algorithm achieves its full power when
an asymptotic expansion of the error is known. However, this case is
not often gained in practice. We shall now see how to obtain such an
asymptotic expansion from the asymptotic expansion of AS, or from
that of 1/(S, — §). For the details and the proofs, the interested reader
is referred to Matos (309, 313]. This section is very technical and can be
omitted at a first lecture.

Let us assume that an asymptotic expansion of AS,, is known, that is

AS, = ayg1(n) + azgz(n) + - -

with Vi, im g;11(n)/gi(n) = 0, gi(n)-gi(n + 1) > 0 Va, lim gi(n +
1)/gi(n) = b;,0 < b; < 1. We shall now try to obtain an asymptotic
expansion of the error S,, — §. We set

oo

Ri(n)= ) gi(n+m+1)

m=0

and summing up the asymptotic expansions of ASn, ASn11,... we get
S—Sn=a1Ry(n—1)+ aRy(n-1) +---

If the R,’s are explicitly known, then the E-algorithm can be applied
and it leads to convergence acceleration at each column (theorem 2.10).
However, usually, this is not the case and we shall now see how to
estimate these R;’s. We shall set

Gi(n,p) = Ep: 9i(n + j)
j=0

and we have
R;(n — 1) = Gi(n,p) + Ri(n + p).
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Thus

§—Sn = a1G1(n,p)+a:G2(n,p)+ - - +axGi(n,p)+a1R:i(n + p)
+ asz(n + P) R GkRk(n +P) + A,.
where A,, designates the remainder. It is easy to see that Vi, nli_{!é Gi(n+
1,p)/Gi(n,p) = b; and nl_i_.lgo Gi+1(n,p)/Gi(n,p) = 0.

Thus in order to be under the conditions of acceleration for the E-
algorithm given by theorem 2.10, it is necessary to estimate the R,’s and
then to classify all the terms of the development of § — S,, to obtain an
asymptotic expansion of the error. The procedure for doing this work is
described in the following theorem

Theorem 3.12
Let (S,) be such that, Vn

ASn = a191(n) + azg2(n) + - - - + ax_19k-1(n) + ri(n)
with
i) nlitg gi+1(n)/gi(n) = 0 for i=1,...,k — 1 and where (gi(n)) is

such that AN,Vn > N, |ri(n)| < c|gr(n)| with ¢ > 0,ri(n) - re(n +
1) > 0 and nlirgogk(n +1)/gk(n) = ok with 0 < g < 1.

i) Vi = 1,...,k— 1,3Im; > 1 such that Jim gi(n + 1)/gi(n) = oi
with 0 < go; < 1 and for j = 0,...,m;, nlirgoAag)/Aas;’zl =
¢j,0 < ¢j < 1 with af) = g0} (n+1)/91)(n) - g; and lim af) =0
and where the g(7)’s are recursively defined by g(o)(n;zzi(n) and

g®)(n) = g®=(n) ALY with A1 = =1 (n-1)/Aglr—))(n—
1) (A operating on the indez n).

Let us now define the sequences (F’J(i)(n, p)) forp > -1 fized, j =
l,...,k—1landi=1,...,m; +2 by

(gi(n+p+1))°
ij(n +p+ 1)

F(n,p) = ~Gj(n,p) +
and _ 5
(45 (n+p+1))

- fori2> 2.
AgE¥(n 4 p+i)

F;(')("’P) =
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We assume that Vi< k, 3p; < m;+1 such that "l_ig’xo F.-(" i+1) (n,p)/gx(n) =
B; # 0 and Lim gi(n)/ F,-(p")(n,p) =0. Weset, fori=1,...,k—1

PP n) = FO(n,p) + 3 (~1YF(n,p).

j=2
Then
S — Sn = a1 DP)(n) + a2 D) (n) + - - - + ap_, D) (m) + ri(n)

with lim D®)(n)/ DI (n) =0 fori=2,... k-1,
nliglor;c(n)/D(p" l)(n) 0 and 3N, Vn> N, |ri(n)| < c|gr(n)| with ¢>0.

Of course, the procedure given is this theorem is quite complicated and
it is not so easy to check if its assumptions are satisfied or not. However it
must be understood that some sequences are really difficult to accelerate
and require such a treatment. The preceding theorem ensures that if the

E-algorithm is applied to (S,) with g;(n) = DP)(n) fori=1,...,k—1
then lim (E}") -~ s)/ (E,?:')l - s) =0fori=1,...,k—1. When k = 2
we have the

Theorem 3.13

Let (S,) be such that AS,, = ag1(n) + r2(n),Vn. If the conditions of
theorem 3.12 are satisfied for k = 2 then Vi < p,, the sequence (T,(."))
given by "

m'pgi)(n), n=0,1,...
1

T = 8, -

converges to S faster than (T,(;‘_l)) .
n

Other procedures and numerical results are given by Matos [309]. In
particular a generalization of the procedure of theorem 3.12 for logarith-
mic sequences can be found.

The case where an asymptotic expansion of AS,,/AS,_; is known was
considered by Overholt [352]. We assume that Vn

_ AS, r T )
Qn—ASn_l—a(1+n+n2+-~ .
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We shall say that the transformation T : (S,) — () is of P-order
p for (S,) if, Vn

ATn_c_p
AS,  nr

and we shall write T'(p)(S,)- Then we have the

+:’;i‘l+~- with ¢, # 0,p > 0,

Theorem 3.14
i) If T(p)(Sn) and U(g)(T,) then
U(p + ¢)(Sn)-

i) If T(p)(Sn) then Vn,

AT, rn—-p T )
=T b 2 F 24000,
AT, _, (1 + n + n? +

i11) If T(p)(Sn) then
1
(T~ 5)/(5. - 5)=0(L).
We shall now see how to construct such transformations.

Two cases will be considered

e 2-point formulz of the form T, = S, + AS,_;®,({pars}) where
{pars} is a set (possibly empty) of parameters such as a, n, ry, r,.

e 3-point formulz of the form T,, = S, + AS,_1®3(on-1, {pPars}).
These two cases can be treated in a common formalism by writing
T" = Sn + Qn—lAS -1

with

dn-1 = ¢({a,n—1,r}) for 2-point formula and
dn-1 = ¢(on-1,{a,n—1,r}) for 3-point formulze.

Thus in both cases the knowledge of a and r, is required for construct-
ing the transformation: As we shall see below, r, could also be needed.
We assume that a # 1 (non-logarithmic case).
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Let us first consider the case of 2-point formulae and assume that g,
is a rational function of its arguments having an expansion of the form

a a
q'z=a(ao+—nl+n—§+"')-
We have the

Theorem 3.15
Ifa#1 and
i) if ap = 1/(1 — a) then T has the P-order 1.
i) if ao = 1/(1 — a) and a; = a%r, then T has the P-order 2.
i) ifap = 1/(1—a),a; = airy and az = a? ((ap — 1)r? — aory + 12)

then T has the P-order 3.

Thus the knowledge of a is always needed. That of r, is needed

for constructing methods of P-order 2 and 7, is required for obtaining
methods of P-order 3.

Let us now consider 3-point formule and rewrite them as

Tn=Sn-1+Pn-1A5,1

with
1

Prn1=14gnq =7 —"—.
— @n — 0On

We assume that o,, is chosen such that it has an expansion of the form

by b
0’,,:a(b0+-l+—2§+---).
n n

We have the

Theorem 3.16
Ifa#1 and
i) if b = b; = 0 then T has the P-order 2.

i) if bo = b; = 0 and b, = —aor, with ap = 1/(1 — a) then T has
the P-order 3.

#4) if bp = by = 0, by = —aory and b3 = —ag ((ao— 1)r? + (1 -
2ap)r; + 2r;) then T has the P-order 3.
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For example, if

" n(en—-1 " n(en-1)-en-1

then the method has the P-order 3. For the choice

(en — a)2
(en ~1—-(a+1)/n)az,

On =

we have a method of P-order 4.

When a = 1 (logarithmic sequence) the choice p, = —n/(1+r;) leads
to a method of P-order 1 and p, = ri(r; — 1)"!(1 — 9,)~! to a method
of P-order 2.

To illustrate these processes, let us take again the example of the
continued fraction for the Riemann { function.

For t = 3, we obtain (number of exact digits)

[I n " Cn | P-order ITP-order 2 I]

2 FIQ
| 5187 214 1.78
8224 2.89 2.31
11 ‘2.50 3.36 2.64
14 Lz.m 3.71 2.88
17 || 2.87| 3.98 3.06
20 || 3.00 | 4.21 3.22

With t = 7, we have

|| n] Cn l P-order ITP-orderTH

2 1 3.27
4 5| 5.25 4.41 4.75
8 |l 6.37 6.15 6.29
11 || 7.15 7.26 7.27
14 || 7.75 8.07 7.97
17 || 8.24 8.70 8.53
20 || 8.65 9.23 8.99

Let us now assume that an asymptotic expansion of the inverse of the
error is known. Then the following procedure was proposed by Matos
[313]
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Theorem 3.17
Let (S,,) be such that, Vn

Sn— 8 = (a191(n) + azgz(n) +--- )"

with Vi, lim giy1(n)/gi(n) = 0, im gi(n + 1)/gi(n) = bi # 1 and Vj #
i,bj # bi, and 3k > 1 such that Lim 92(n)/(91(n)gk+2(n)) = ¢ #£ 0.
If the E-algorithm is applied to

g(n+1)
EM =5, + A8 s, n=0,1,...
Ag;

("-)=AS-M+S é&l(l) l i=1,...,kandn=0,1,...
go,. n Agl(n) n+1 Agl(n) ] 9 9 34y

then (E((,")) converges to S faster than (S,) and fori =0,...,k -1,
(E,(ﬂ)n converges to S faster than (Ei("))

n

When the sequences (g;(n)) are logarithmic (that is b; = 1) other
procedures described in Matos [310, 313] can be used. They have appli-
cations in convergence acceleration of some continued fractions.

Of course it was impossible, in this section, to be complete and to
present all the known procedures leading to an asymptotic expansion of
the error. Our aim was to show that such a construction was possible
(but difficult) in some cases, to give a flavour of some procedures and to
refer the interested reader to the literature on the subject.

3.4 Construction of extrapolation processes

In the preceding section we saw that if a quite complete information
is known (namely an asymptotic expansion related in some way to the
error S, — S) then acceleration is possible in some cases.

In this section we shall take a complementary point of view. We shall
assume that only a partial information on the error is known and try to
construct appropriate extrapolation processes. The details can be found
in Brezinski and Redivo Zaglia [97].

Let (S,) be a sequence converging to S such that for all n

Sn—8= Angn
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where (a,,) and (g,) are sequences which are known or not and which can
depend on the sequence (S,) itself. Since (S,) converges to S, (angn)
must tend to zero. In the sequel we shall assume that (g,) converges to
zero, an assumption which does not restrict the generality, but we shall
make no assumption on convergence of (@,). This formalism covers
many interesting particular cases

Sn—85=0(gn) which corresponds to |a,| < M,Vn.

Sn—~S=0(gn) which corresponds to lim a, = 0.

Spn—S=a191(n)+azg2(n)+--- where the g's form an asymptotic
sequence.

Thus S,, — § = a,g, with g, = g;(n)

and a, = a; + azg2(n) /g1(n) + ---=

a; + €, with ”lir{.lo en = 0.
Spn=cofo+:-+cenfn which corresponds to g, = —cn41

Or gn=—fns+1 OF gn = —Cnt1fn+t1-

The first situation was studied by Szabo [422] who used an extrapo-
lation algorithm identical to one of those given below.

We shall consider two cases: (a,) unknown and (g,) known, and (a,)
and (g,) unknown.

Let us begin by the case where (a,) is unknown and (g,) known.
We shall study three different extrapolation processes according to the
information we have on (a,).

We assume that an operator P is known such that Vr, P(a,) = 0 and
such that P(au, + b) = a P(u,) + b, Va, b and (u,).

Thus

P(ap) =0=P((Sn— 5)/gn) = P(Sn/g9n) — S P(1/9s)
and it follows that Vn
S = P(S5n/9n)] P(1/gn)-

This approach is due to Weniger [458] and it was already described
in section 1.3. Of course it leads to the exact result for all n but needs
a quite complete information on (a,).

Let us now require less information. We assume that an approxi-
mation (b,) of (a,) is known and we consider the sequence (T,) given
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by
Tn = Sp — bngn, n=01,..

We have the

Theorem 3.18
A necessary and sufficient condition that (T,) converges to S faster

than (Sy,) is that nlixgo b,/a, = 1.

In order to illustrate this theorem let us consider the sequence S,, =
n-sin(1/n),n = 1,2,... which converges to S = 1. We have

1 1 1
PP BV N T

and we shall take g, = 1/n? and b, = —1/6 + e, where (e,) is an
arbitrary sequence converging to zero. The assumption of the preceding
theorem is satisfied and we obtain the following results (number of exact
digits)

n Sn Tn Tn Tn
en=0.9" | e, =1/n | e, = 1/n?
1 0.80 0.05 0.00 0.00
10 2.78 2.46 3.00 4.00
20 3.38 3.52 3.90 5.21
30 3.73 4.33 4.43 5.91
40 3.98 5.03 4.81 6.41
50 4.18 5.69 5.10 6.80
60 4.33 6.30 5.33 7.12

In that case we have

T,-S gn
=1-b,- .
Sn_'S " Sn—'s

Thus an idea is to take b, = AS,/Ag, and we obtain the process

AS,

Tn'—'sn—'A—g_'gn’
n

n=201,...

which corresponds to an extrapolation at zero by a function f(z)=az+b
satisfying S, = f(9n) and Sp41 = f(gn+1). (Th) is also identical to
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the sequence (EY')) obtained by the E-algorithm with g;(n) = g, (see
section 2.1) or to the ©-procedure (see section 2.9).

For this transformation we have several results according to the asymp-
totic behaviour of (g,).

Theorem 3.19

If 3Ja < 1 < B,3N such thatVn > N,gn;1/9n & [a,B] and if 30 <
m < M such thatVn > N, m < |gny1/9n| < M then a necessary and
sufficient condition that (T,) converges to S faster than (S,) and (Sn+1)
is that nlllgo ant1/an = 1.

The conditions of this theorem are, in particular, satisfied in the fol-
lowing situations

i) n]i’q.loa,, =a#0,+00
ii) "li_x.go Aa,, = 0 and Im, 3N such that Vn > N,m < |a,|
iii) nll% lan] = 0o and 3M, AN such that Vn > N, |Aa,| < M.

Let us consider the sequence

i(i+1)
S,.:Z ( 2 )-z 1 n=12,..., |z|]<]1.
=1

We have

1 n

-1 _, 1 n(n+3)+ zn(n +1)
(1-z)3 (1-2)3 )

+ 2(1 - z)?

Sn

Taking g, = z™ it is easy to see that the assumptions of theorem 3.19
are satisfied and we obtain for z = 0.5

Lrll$ [T
1 [ 0.06 [ 0.30
4 || 0.46 | 0.96
9 | 1.49 | 2.23
14 || 2.68 | 3.59
19 || 3.96 | 4.98
24 || 5.28 | 6.40
29 || 6.64 | 7.83
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Theorem 3.20
Let us assume that nlixgo In+1/9n = 0.

i) If AM, 3N such thatVn > N,|ant1/an| < M then (T,) converges
to S faster than (S,,).

i) If 3Im,3M, 3N such thatVn > N,m < |a,| and |Aa,| < M then
(T,) converges to S faster than (S,).

it1) A necessary and sufficient condition that (T,) converges to S
faster than (Sp41) is that "ILIEO ant1/an = 1.

Let us consider the sequence

t A

which converges to S = ef. If t > 0 then g, = t"t!/(n + 1)! and
a, = —etfn with 0 < 6, < 1 and hm 6, =0. The condition #1) of the

preceding theorem is satisfied and we obtam fort =1.5

Lrll S | Tn |
1 011 0.25
4 || 118 2.80
7 | 3.03| 530
10| 539 | 8.09
13 || 8.11 |11.14
16 || 1111 | 14.38
19 || 14.38 | 15.40

Of course the condition iii) is more difficult to check than the two
others but it leads to better acceleration properties.

Theorem 3.21
Let us assume that lim In+1/9n = 1.
—00

i) A necessary and sufficient condition that (T,) converges to S

faster than (S,) is that lim 1= ani1/en _ 0.
n—oo 1 — gn/gn+1

ii)) A necessary and sufficient condition that (T,) converges to S

1-a,/an41
faster then (S, is that lim ————— = 0.
( ﬂ+1) n— o0 1 — gn+1/9n
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1 — an/ant1
1-gnt1/9n

~ % n~? which shows that the condition $i) is satisfied and we obtain

Let us take again S,, =n-sin(1/n) and g, =n~2. We have

1 {[0.80 [ 2.69 |
4 |1 1.98 | 4.68
9 |l 2.69 | 5.99
14 || 3.07 | 6.72
19 || 3.34 | 7.24
24 || 3.54 | 7.64
| 29 {| 3.70 | 7.96 |

Let us now come to the case where (a,) and (g,) are both unknown.
We shall begin by the particular case where g, = S,-; — § and we
assume that an approximation (b,) of (a,) is known.

We consider the process given by

_ Sn - bnsn—l

T, = ) R n=12,...

We have the

Theorem 3.22
A necessary and sufficient condition that (T,) converges to S faster
than (Sn—1) is that nli‘rga(a,. -1)/(bp—1) =1.

The condition of this theorem is, in particular, satisfied in the follow-
ing situations

i) limanznlirgxob,,zaaél

ii) "H_{l.:lo(a" —b,) =0 and Ja < 1 < B,3N such that Vn > N,b, ¢
[a, B].

Let us consider the sequence (S,) given by

Sn— S

—S———S-zésin(an+b/n), n=12,...
n-1"—
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We have g, = S,—1 — S and a,, = %sin(an + b/n). Choosing b, =

% sinan we have

2an+b/n' . b

a, — b, = cos 5 sin o—.

Thus the conditions i) hold and we obtain with So =0, 5 =1,a =2
and b=1

Lol S [ Tn |
1 0.00] 0.15
6 | 3.8 | 5.09
10 | 6.03| 7.51
14 || 842 9.81
18 || 10.87 | 13.60
22 || 12.71 | 14.35

Let us now consider the general case where (a,,) and (g,) are arbitrary
unknown sequences. Let (h,) be an approximation of (g,). We consider
the transformation given by

T,.=s,,—§%l-hn, n=01,...
n

We have the following results

Theorem 3.23

Let us assume that 3a < 1 < B,3N such thatVn > N,h,;1/h, &
[a,B). If nll.xgo gn/hn = a # 0,100 then a necessary and sufficient con-
dition that (T,) converges to S faster than (S,) and (Sp41) is that
i i fan = 1.

These conditions are satisfied by the sequence (S,) given by §, =
S + ang, for n = 0,1,... with g, = A"+ (0.5+ 1/In(n + 2)), a, =
2+ (n+1)"!and |A\| < 1. With h, = A" X =0.95and § = 1 we
obtain
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Ln [ S [T |
15 [0.11 ] 0.7
30 || 0.49 | 1.59

| 45 | 08¢ | 220
60 || 1.18 | 2.73
75 || 1.53 | 3.21
90 || 1.87 | 3.66
105 [| 2.20 | 4.09

Theorem 3.24
Let us assume that 3a < 1 < B,3N such thatVn > N h,;1/h, &
[a,B]. A necessary and sufficient condition that (T,) converges to S

. o Gntl In+1 hn
aster than (S,) and (Sp4+1) is that lim . . =1.
f (5n) (Sn+1) n—oo @, 9n  hny1

Let us consider the sequence (S,) given by S, = S + angn for n =
0,1,... with g, = A"*!'/(n+1),a,=2+(n+1)"'and |A\| < 1.

The conditions of the preceding theorem are satisfied by the choice
h,, = A**! and we obtain with A = 0.95and § =1

Lrll So |7 |
10 [[ 0.97 [ 0.64
20 || 1.48 | 1.47
30 (| 1.87 | 2.04
40 || 2.22 | 2.52
50 || 2.54 | 2.93
L 60 || 2.84 | 3.31

Finally we have the

Theorem 3.25
Let us assume that "lixgo hoy1/h, = 1.

i) A necessary and sufficient condition that (T,) converges to S
faster than (S,) is that

T (l_an+l‘gn+l. h, )_(1__ h, )_lzo,
n—=oo an gn hn+1 hnt1
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ii)) A necessary and sufficient condition that (T,) converges to S
faster than (Sp41) is that

lim ( an . gn . hn+l _ l) . (hn+1 _ 1>_1 - 0.
n—=0o0 \Gn+1 In+i hn h,

We consider the sequence given by S, = S +a/(n+b)forn =0,1,...
and b > 1. If h, = (n + 1)~! the conditions of the preceding theorem
are satisfied and we obtain with S =1,a=2and b =4

Ln] S | T |
10 {| 0.85 | 1.48
20 || 1.08 | 1.96
30 || 1.23 | 2.27
40 || 1.34 | 2.50
50 || 1.43 | 2.68
60 || 1.51 | 2.83

Sometimes the processes described above can be iterated.
Some of the transformations studied in this section have the form

Sn+1 - bnsn

T, =
n 1-9%,

n=01,...

If (S,) is a monotone sequence it can be interesting to know condi-
tions on (b, ) such that (T}) is also monotone either in the same or in the
opposite direction as (S,). Such conditions were studied by Opfer [342].
In particular when the monotonicity is reversed we obtain intervals con-
taining the limit S of the sequence (S,). For example we have the

Theorem 3.26

If (Sy) is strictly monotone, if (b,) is strictly monotone in the same
direction as (Sy) and if Vn,b, # 1 and nlirrgo b, = b # 1, then a necessary
and sufficient condition that (T,) be strictly monotone in the opposite
direction as (S,) ts that Vn,0 < b, < 1 and AS,+1/AS, < by(1l -
bn+1)/(1 = b,). A sufficient condition is that Vn,ASp4+1/AS, < b, < 1.

In this case S belongs to the intervals with endpoints S, and T),.
This method for controlling the error can be compared with that of
section 3.8.
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3.5 Extraction procedures

Logarithmic sequences, that is such that ulltg(s,.“ - S5)/(Sn-5)=1,
are difficult to accelerate. In section 1.10 we saw that they form a
remanent set and thus a universal algorithm for their acceleration cannot
exist. This is also true for some subsets of logarithmic sequences.

On the other hand, linear sequences, that is such that nliglo(s,.ﬂ -
S)/(8, — S) = a # 1, are easy to accelerate, for example, by Aitken’s
A? process.

Thus the idea came to extract, from a given logarithmic sequence, a
subsequence converging linearly and then to accelerate it. However such
a procedure is not always possible since, otherwise, it would be equiva-
lent to the possibility of accelerating all the logarithmic sequences thus
violating the result on remanence (theorem 1.12). Such an extraction
procedure is only possible for some subsets of logarithmic sequences as
we shall see below. But before explaining this point, we have to look if
the acceleration of a subsequence implies the acceleration of the initial
sequence.

Let (S,,(n)) be a subsequence of (S,). Let T : (Sa(,,)) +— (T,) be
a sequence transformation such that the computation of T, uses only
Sa(j) for j < n and such that

Tim (T, - §) / (s,,(,,, - s) = 0.

We would like to know if the acceleration of the subsequence (S,(,))
implies the acceleration of the initial sequence (S,). For that let us
define the sequence (t,) by

: _{S,. if n<a(0)
"= T if ali)<n<ali+l).

We see that ¢,, only depends on S; for j < n. We have the following
result

Theorem 3.27
If (Sn) is a monotonous sequence of real numbers, if a : N — N 1is
strictly increasing and if Ja > 0 such that
lim inf (s,(,,H, - s) / (sa(n, - s) - a

n—o00
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then
"li_’rgo(t,. - 85)/(S.—-S5)=0.

We shall now describe some extraction procedures and give the cor-
responding theoretical results.

Let (g(n)) be a given monotone logarithmic sequence converging to
zero, and let us consider the set S, of sequences such that 3X # 0,
lim (S, — §)/g(n) = A. We have the

Theorem 3.28
Let (a(n)) be defined by a(0) =0 and Vn > 1

a(n) = min {i > a(n — 1) : |g(¢)| < ¢"|g(0)[}

where p €]0,1[.
If (Sn) € Sy then (Sq(n)) converges linearly. Moreover

lim g(a(n+1))/g(a(n)) = Im (Sagns) = 5) /(Sam) - 5) =e.

Thus the set Sy can be accelerated by Aitken’s A? process and the
sequence (t,) constructed as above converges to S faster then (S,). As
proved by Keagy and Ford [258] the set S, in the previous theorem
cannot be extended by replacing the condition by a less restrictive one.

Under some additional assumptions, this procedure can be iterated as
explained by Brezinski, Delahaye and Germain-Bonne [93].

The result of theorem 3.28 only holds if (¢(n)) is a monotone loga-
rithmic sequence. From any logarithmic sequence converging to zero it
is possible to extract a monotone sequence as explained by Brezinski
[81). The extraction procedure is based on the remark that since the
ratio g(n + 1)/g(n) tends to 1 then there exists an index N such that
Vn > N,g(n+1)/g(n) > 0 which means that g(n) and g(n+ 1) have the
same sign. If g(n) > 0 a decreasing subsequence can be extracted while,
if g(n) < 0, an increasing subsequence can be extracted. The extraction
algorithm is as follows.

1. Set N = 0.

2. Set n =0 and 5(0) = N.
If g(6(0)) > 0 set k = 0. Otherwise set k = 1.
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3. Setj=1.Ifk=0goto4,if k=1 go to 5.

4. If g(b(r) + j) < 0 set N = b(n) + j, k =1 and go to 2.
If g(b(n)+37) > 0 and if g(b(n)+j) < g(b(n)) set b(n+1) = b(n)+7,
replace n by n + 1 and go to 3.
If g(b(n) + 7) > 0 and if g(b(n) + 7) > g(b(n)) replace j by j + 1
and go to 4.

5. If g(b(n)+ 7) > 0 set N = b(n) + j, k=0 and go to 2.
If g(b(n)+j) < 0 and if g(b(n)) < g(b(n)+j) set b(n+1) = b(n)+5,
replace n by n + 1 and go to 3.
If g(b(n) + j) < 0 and if g(b(n)) > g(b(n) + j) replace j by j + 1
and go to 5.

Point 4 corresponds to the case where Yn > N, g(n) > 0 while point 5
treats the other case. It must be noticed that, in practice, it is impossible
to know whether or not the index N such that Vrn > N, g(n+1)/g9(n) > 0
has been attained.

Let us now consider the following extraction procedure

step 0. Let X €]0,1[,a(0) = 0,n = 0.
step 1. Replace n by n + 1.
Set a(n) = a(n-1)+1.

Go to step 3.
step 2. Replace a(n) by a(n) + 1.
Go to step 3.
step 3. I [Sa(n)+1 — Sa(n)l < A"|S; — So| go to step 1, otherwise
go to step 2. '
We have the

Theorem 3.29
If(S,) is a monotone logarithmic sequence such that nl-l-orgo AS,1/AS,=

1, the subsequence eztracted by the preceding procedure satisfies

lim (Sa(n+1)+] - Sa(n+l)) / (Sa(n)+l - a(n)) = A

n—00

It was not possible to prove that this implies

lim (Sams1) = 5) /(Sagry - 5) = 2

n—oo
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in the general case although it is true for all the examples considered by
Smith and Ford [413].
Let us give some numerical examples to illustrate this procedure.
We set

Th = (Sa(,.+1)+1 - sa(u+1)) /(Sa(n)+l - sﬂ(")) :

(T,) is the sequence obtained by applying Aitken’s A2 process to the
subsequence (Sa(,,)). Since t, = T; for a(i) < n < a(i + 1) we shall
compare T; with S;(n41)-1-

e Example 1

E 1)2, = 1.6449340668, X = 0.3

Lnlla® | ra [Sapsn-1| Tn |
o[ o0]o0.082

1| 5|0.290

2| 11]0319| 15980 |1.578
3| 22]0315| 1.6196 |1.6336
4

5

6

7

39 [ 0.299 | 1.6313 1.644966
7310304 | 1.6375 1.644835
134 | 0.303 1.6409 1.6445422
245 | 0.302 | 1.6424 1.6449386

e Example 2
- So=1, Sp41=85.(1-5,/2), §=0, A=0.3

[n]a®)| rn | Samnin-1| T, I

0 0 | 0.067

1 4 | 0.401

2 8 10.286 | 0.0916 0.150

3 18 [ 0.304 | 0.0494 —-0.224

4 36 | 0.305 | 0.0270 0.00655
5 69 | 0.306 | 0.0149 0.000244
6 (| 129 | 0.301 | 0.00812 0.000118

Other extraction procedures can be found in Germain-Bonne and
Litovsky [185].
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3.6 Automatic selection

We are now faced with a great number of methods and procedures for
accelerating the convergence. Each of them works in specific cases that
is if the sequence to be accelerated satisfies some assumptions. However,
in practical situations it is often difficult (and in some cases, impossible)
to check if these assumptions are satisfied or not and thus the userisin a
quite uncomfortable situation. Thus the idea came to use simultaneously
several sequence transformations T; : (S,) +— (T'-(")) ,t=1,...,k
Then at each step n one can either choose one of the answers according to
some test or to combine all these answers together. The first procedure,
due to Delahaye [136], is called automatic selection and it will be studied
in this section. The second procedure, due to Brezinski [70], leads to the
so-called composite sequence transformations which form the subject of
the next section.

Let us explain in details the idea of automatic selection. We use
simultaneously several sequence transformations T;. For each value of
the index n, we thus obtain the answers Tl("), Té"), .. .,T,E"). For each

transformation ¢+ = 1,...,k and each index n, we denote by R'(") an
assertion, depending on i and n, which can be true or false. Then we
define the following count coefficients

o m) _ )] 0 if R,(") is false
' 1 if RS") is true
lr,(") = card {q € {0,...,n} such that R,(q) is true}
0 if R™ is false
2 = { max {q € {0,...,n} such that R, ..., R"""7*") are true}
if R™ is true.
Let r,(") be any one of the previous count coefficients. Then at each step
n, let i(n) be the smallest index such that
(n) _ ()
Tiw) = ax v
We set T,, = T"). Thus among all the answers Tl(") , Tz(") yeous T,f") , the

i(n)*
answer 1}((:)) has been automatically selected.
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For R,("), we can take one of the following assertions

lR,(") . Ti(n) — T..(""l)

or
2R : [T - 7Y = min |1V - 7Y
' ' ' 1<k d !
Before giving theoretical results on the preceding automatic selection
procedures (based on the 3 count coefficients and the 2 assertions given)
we need some definitions.

We say that the transformation T; is exact for the set S of sequences
if V(S,) € S,3N,Vn > N, T = Lim S,.
We say that the transformation T; is semi-regular for the set S of

convergent sequences if V(S,) € S such that 3N with Vn > N, T‘-(") =
T+ then IM,Vn > M, T™ = Lim §,.

p—oo

We say that T; is accelerative for S if V(S,,) € S, Jim (T.-(") - 8)/(Sn—
§) = Jim (T = T{V)/(Snss - $a) = 0.

We say that T; is fair for S if either T} is accelerative for S or V(S,) €
S,3¢ > 0,3N such that Vn > N, [(T{"*V = T{M)/(Sn41 — 50)| > .

We shall also denote by T?9 the transformation (S,) — (T,), ob-
tained by using the count coefficients "r,(") for p = 0,1 or 2 and the
assertions "R,(") for g=1or 2.

We have the following results

Theorem 3.30 \

LetS,,...,Sk, be k sets of convergent sequences and let S = U S,.
i=1
If Vi, T; is ezact for S; and semi-regular for S then the transformations
T, T?1, T2 gnd T?? are ezact for S.

Thus this result shows that the transformations 779 for p,q = 1 or
2 are, under some additional assumptions of semi-regularity, exact for
the union of the kernels of T',...,T; and, thus, that the best possible
selection has been made.

Concerning acceleration we have the following result
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Theorem 3.31
If Vi, T; is accelerative for S; and fair for S, then the transformations
T°2,T12 and T2 accelerate S.

This result shows that the transformations 772 for p = 0,1 or 2 select
among the transformations T}, ..., T; a transformation accelerating the
convergence and thus the selection procedure is optimal in that respect.

These results prove that an automatic selection procedure can lead
to a new transformation combining, under some assumptions, the best
properties of all the transformations used in its construction. It must
be understood, however, that such a new transformation is also limited
by theorem 1.12 on remanence and that, even by using such a selection
procedure, a remanent set of sequences could never be accelerated. One
can also imagine a selection procedure between selection procedures.
Another selection procedure will be presented in section 3.8.

Let us give a numerical example. We used the transformation 71:2
defined above since it is the only one to satisfy simultaneously the con-
ditions of theorems 3.30 and 3.31 but we slightly modify the selection
process in order to obtain a classification of all the transformations at
each step n. For that we order them such that

|aT{)| < [ATP)| < - < |ATY)|

and then we increase by k the count coefficient of the transformation ¢,
by k—1 that of the transformation ¢, . . ., by 1 that of the transformation
gr that is

P =) Lk 1o, i=1,..k
with (% =0 fori=1,...,k

Then the transformations are classified from the best one to the worst
one according to

r‘(’?) Z r'(:;) 2 PP Z r’(’:)

the index p; corresponding to i(n) as obtained above.
The transformations used were
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T,
T,
15

e-algorithm

p-algorithm with z, = n

©-algorithm
Richardson process with z, = AS,,
First generalization of the e-algorithm
withz, =1+ (n+1)"!
Second generalization of the e-algorithm
withz, =1+ (n+1)7!

Iterated A2 process

Overholt process

Levin’s t-transform

We consider the sequence

S, = —-sinan,
n

n=12,..

181

which converges to zero. The ratio S,;,/S, has no limit if a is a non
rational multiple of #. Moreover, as pointed out by Saff [385], in that
case, Vr there exists an infinite subsequence (ny) such that the ratio
Sn.+1/Sn, tends to r. For a = 3 we obtained the following results

(number of exact digits and p,,...,pk)

lnl Sal T [T | Ts [Ts [Ts | T | Tr |Ts | To |

4

0.87

3.62
1

0.86
9

5.62
8

1.85
4

1.34
7

1.34
3

3.62
2

1.93
5

2.61
6

0.89

6.50
1

0.87
9

5.46
7

2.78
3

1.34
8

1.63
5

7.02
2

2.97
4

3.67
6

0.90

6.50
1

0.88
9

5.34
6

1.60
5

1.65
8

1.86
7

6.96
2

1.96
3

4.58
4

0.92

9.39
2

0.88
9

7.79
4

2.16
7

1.49
8

2.15
6

9.16
1

2.56
5

5.52
3

0.95

9.39
1

0.90
9

7.96
3

1.33
7

1.90
8

241
6

9.21
2

1.92
5

5.73
4

0.97

12.28 10.90

1

9

8.09
3

1.89
7

1.61
8

2.69
6

11.17
2

2.69
5

6.06
4

10

1.01

12.28 {0.92

1

9

10.97
3

1.34
7

2.11
8

2.97
5

10.91
2

2.45
6

6.33
4
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H n ﬂ S,. lL T1 l T2 I T3 l T4 i T5 I Ts I T7 I Ts ] Tg—"
11 jl 1.04][15.18]0.93]11.74]1.87]1.72[3.25 [ 12.18[ 2.94 [ 6.58
1 9 3 71815 2 6 | 4

12[11.08{[15.18[0.95(11.33[1.55|2.28 | 3.54 [ 12.18 | 2.78 [ 6.78
1 9 3 71815 2 6 | 4

13]/1.13{/17.73[0.96 | 11.42[2.15[1.82 | 3.82|13.62 | 3.50 | 6.95
L 1 9 3 7] 815 2 6 | 4 ”

These results were obtained by using the last result delivered by the
corresponding subroutines. The line giving the order obtained by the
procedure means that, for n = 8 for example, the best transformation
was T (that is the e-algorithm), the second best was T7 (that is the
iterated A2 process) and the last one T, (that is the g-algorithm).

As seen from these results the selection procedure found the correct
order of the transformations for n > 10, but the first four best transfor-
mations were obtained for n > 8.

In section 3.7 we shall see how to use the preceding classification
procedure with composite transformations.

The subroutine SELECT performs an automatic selection between sev-
eral transformations.

To end this section let us present a new selection procedure based on
statistical ideas, but for which no theoretical results have been proved so
far. It is based on the multiple correlation coefficient whose properties
are fully described in Brezinski [89]. Let us first recall some definitions.
If z and y are random variables we shall denote by E(z) and E(y) (or
by Z and §) their expectations (mean values) and we shall set

cov(zy) = E((z — ) - (y - §)) = E(zy) - Z§

varz = cov(zz) = E ((z - 5)2) = E(2?) - 22
Let y,z,,...,zx be random variables. We define the multiple correlation

coefficient of y and z,,...,z; by

(ak, Cg'ax)

2 _
& = vary

where
a; = (cov(yzy),..., cov(yzk))T
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varz; cov(zy22) --- cov(zizy)
cov(zzzy1) varzy --- cov(zozi)

Cr =
cov(zrzy) cov(zizz) -+ varzg
We have 0 < gx <1 and
0 cov(yz,) --- cov(yzk)

cov(z1y) cov(zizy) --- cov(zizk)

rcov(zky) cov(zkz,) --- cov(Trzk)

|Ck|

(ar,Cilap) = —

As its name indicates, g, measures the correlation between y and
z1,...,Z; and it can be proved that if y = a + byz; + - - - + bgzy where
a,bq,...,b; are constants, then g; = 1.
ok can be recursively computed as follows

o Set y; ==z, z}=uwy//var y;-

t—1
e Fori=2,...,k computey; = zi—z cov(z;z})z;, z; = y:i/\/var y,
=1

k
¢ Then g} = Z lcov(yz?)|? Jvar y.

i=1

The relation y = a + byjz; + --- + bgzyx is very similar to the form
of the sequences belonging to the kernel of the E-algorithm since it is
the set of sequences such that Vn,S, = S + a;191(n) + -+ - + argr(n).
If a sequence has this form then Vn, E,(c") = 5. Thus the idea came to
use the multiple correlation coefficient to know whether or not a given
sequence (S,) is close to the form S, = S + a1g1(n) + - - - + arge(n).
For that we consider the S,’s and the g,(n)’s as realizations of random
variables. Since there are infinitely many such realizations, the multiple
correlation coefficient cannot be computed exactly but only estimated
by taking for an arbitrary sequence (u,).

1 m

E((un)) = m+1 & Un+i-

"
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Of course we must take m > k since otherwise g; would be zero. The
estimation of g; thus obtained, depends on n and m but if (S,) belongs
to the kernel of E; : (S,) — (E,g")) then Vn and Vm > k we shall
have g = 1. "

An automatic selection procedure for the E-algorithm can be built
upon the multiple correlation coefficient as follows

1. Let k and m > k be fixed integers.

2. Make sevgral chqices for the k auxiliary sequences in the E-algo-
rithm: (gi,...,91) fori=1,...,p.

3. For a given n, compute the multiple correlation coefficients g},
..y 0% corresponding to the various sets of auxiliary sequences as
explained above.
4. Let i(n) be the smallest index such that g’(") = max ol
<i<p
Use the E-algorithm with g&) = g:(")( j) and compute E,£ ),
Set T,S") = E,(C").
Add 1 to n and go to 3.

This selection procedures deserves further studies. Since

0hs1 = 0f + |cov(yz,:+l)|2/var y

the procedure can also be used to find the best possible value of k.

In section 2.7 we saw that the three Levin’s transforms, u, t and v
correspond to three different choices of the auxiliary sequence (g(n)).
Thus let us apply this selection procedure to them with & = 1 since it
is a particular case of the E-algorithm.

We consider the partial sums of the series In(1+z) for z = —0.9 which
converges to —2.302585092994046. We obtain the following numbers of
exact decimal digits (the u-transform was used with b = 0) for T

nw u J t v 1]
1.87 | 2. 15 2.93
10 3.88 | 4.10 | 4.60
15 || 5.49 | 6.09 | 6.38
20 || 8.25 | 7.98 | 8.48
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The correlation coefficients, computed with m = 5 and m = 8 respec-

tively, are

[fn ” u t v

5 || —0.9932 | —0.99938 | —0.99946
—0.9887 | —0.99894 | —0.99915

10 || —0.9981 | —0.99983 | —0.99990
—0.9964 | —0.99969 | —0.99982

15 || —0.9990 | —0.999936 | —0.999970
—0.9982 | —0.999877 | —0.999946

20 {| —0.99947 | —0.999970 | —0.999989
—0.99889 | —0.999941 | —0.999979

Thus we see that the correlation coefficient provides a good selection
test between the transformations used.

An application of this procedure for finding the best value of m for
the T4 ,, transformation was already described in section 2.11.

Selection procedures can be easily implemented on parallel computers.

3.7 Composite sequence transformations

As in the previous section, let us assume that k sequence transformations
are used simultaneously, T; : (S,) — (T‘-(")) fori=1,...,k. At each

step n, instead of choosing one result among Tl("),Tz("), . ..,T,E"), we
shall combine them. More precisely we shall define the transformation
T :(S,) — (Ty) by

To=Y T, n=0,1,...

1=1

T is called a composite sequence transformation of rank k. They
were introduced by Brezinski [70] who showed their interest by some

examples. If the coeflicients asn) are chosen such that Vn, 3i(n) with

af n) = 1 and ag-") = 0 for j # i(n) then we recover the automatic
seiection procedure as defined in the previous section.

Let K; be the kernel of the transformation 7} that is the set of se-

k
quences for which Vn, Ti(") = §. Of course, if (S,) € n K; then Vi and

1=1
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Vn, T{™ will be equal to S. Thus it will be interesting for T to share the
same property which leads to, Vn

k
T,=S5=5-Y a".
=1

k
Thus we shall have Vn, Z a‘(") = 1, a property assumed to hold in the
1=1
sequel.
Let us first study composite sequence transformations of rank 2. To
shorten the notations, let us write a,, instead of a{™ and a{™ =1 - a,.

Thus we have
T, =(1-a,)T™ + e, T, n=0,1,...

It will be interesting that the kernel of T contains the kernels of T;
and T;. This was, in fact, a property satisfied by the transformations
built by automatic selection (see theorem 3.30 of the previous section).
Thus we must have Vn,a, = 0if (§,) € K; and Vn,a, = 1if (5,) € K2.
This leads us to the choice

AT £ A(n) (m)
a, = - if AT. AT
AT — AT™ 2 # AT

a, = 0 otherwise

and we obtain in the first case

AT
T, = T(") _ 1 . T(") — )
booar - At e

and T, = T(™ in the second one.
T, can be written as

Tl(n) Tz(n)
’ AT AT
1 1
' AT™ AT

T, =
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T, can also be obtained by applying the procedure © to Tz(") if we
write it as Tz(") = T 4 D, with D, = T{™ — T™. Thus, results on
this composite sequence transformation T immediately follow from the
results given in section 2.9 on the procedure © and we have the

Theorem 3.32
Let us assume that Vn, Tl(") # Tl,("). A necessary and sufficient con-
dition that Vn,T, = S is that Ja; and a; with a; + a; # 0 such that

Vn,a; (Tl(") - S) + ap (Tz(") - S) =0.

When Tl(") = S, and Tz(") = 8,41, T is Aitken’s A2 process and the
condition of theorem 3.32 is exactly the condition defining the kernel of
this process.

For the convergence we have the

Theorem 3.33
If lim T(") = lim T( ") and if 3a < 1 < B such thatVn > N, ATZ(")/

n—oo

AT™ ¢ [a, 8], then lim T, = §.

We have now several type of acceleration results depending whether
or not one of the transformations T; accelerates the convergence.

Theorem 3.34
Ifnllm((") )/(T(") ):a:,élandiffla<1<ﬂsuch

that ¥n > N, (T"D - §) / (T - 5) ¢ [0, B), then lim (T, - S)
/(7 - 8) = 0. Moreover if a # 0, lim (T, - 5) / (Tz(") - 5) =0.

This result was improved by Sadok [381] who considered the case
where (Tl(")) is logarithmic. He gave the

Theorem 3.35

If (Té") - S)/(Tl(") - S) = a+a, witha # 1 and nllngoa,, =
0, if (7™ =-5) /(T - §) = 1+ b, with lim b, = 0, and if
nl—l-.lgo Aa,/b, =0 then T, — § = o(Tl(") - S). Moreover if a # 0,T,, —
§ = o(T{M - 5).

Of course similar results hold by exchanging T} and T5.
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Theorem 3.36
Let (Sa) be a non-logarithmic sequence such that lim (Tl(") -5 ) /

- 8)= i (n) _ -8 = i -
(Sa - §)=a and lim (T{" - 5) /(Sn - 5) = b # a. Then lim (T.
S)/(Sn—S)=0.

This result still holds if a or b is equal to zero. Finally we have the
following result in which the condition b # a is replaced by another one.

Theorem 3.37
If lim (T{” - §)/(Sa— ) = lim (T{" - §) /(5. - §) = a and

if 3a < 1 < B such that ¥n > N, AT{" /AT" ¢ [a,f] then lim (T, -
5)/(S — S) = a.
This result also holds when a = 0.

These results were extended by Draux [145]. Let r; be the largest
positive real number such that

(n) _
lim T; S

00 IS"_SIr.' =C|'

with |C;| < +oo for i = 1 and 2. He proved the

Theorem 3.38
If ry = rp, if Cy and C, are different from zero and if Cy # C; then
Lim (T, - §) /|S. - S| =0.

We also have the

Theorem 3.39
If "llnolo(S,.H ~ 8)/(Sn — S) = b and if one of the following assump-
tions is satisfied
a) be]-1,1]
b) b= 11 and (Sn+1—S5)/(Sn — S) = b(1 + a,) with Jlim a, =0,
(T = 5) /15a ~ 5 = Ci + A" with Tim (™ =0, |Ci| < +oo
and nli.rgo Aﬁ,(")/a,. =0fori=1and2

then
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t) if r1 > r2 and Cy # 0 we have ”lgrgo a, =0.

ii) if 1 = 72 and C; # 0 we have lim AT /AT{™ = ¢,/C,.
Moreover if Cy = 0 we have nlg{.lo a, = 0.

i) if ry > ry, C; = 0, ,,li,f{,glsn—sl"/(Té"’—s) ~ 0 and
lim (T§n+1) - S) /(Téﬂ) - S) = ¢ € [-1,1] we have nllxgo a, =

n—oo

If b = 1 the additional assumption of b) are not needed.

This theorem shows that the composite transformation T chooses au-
tomatically the best transformation among T; and T except in the case
i1). However in that case the assumptions of theorem 3.38 are satisfied
and convergence acceleration is obtained. In that case, if C; =1 it can
be interesting to take a transformation 7T slowing down the convergence
and such that »; =1 and C; > 1 as shown by Draux [145].

We shall now define composite sequence transformations of an arbi-
trary rank k. The results given below improve those of Brezinski [70].

Let us consider the previous determinantal formula for 7,, and just
increase the determinants as

™ .. )
AT ... ATS)
(n+k=1) (n+k—1
T = AT, o AT )
k 1 1
AT ... ATh)
AT.»(".'HC_I) . AT‘-(:.,-:k—l)

where A operates on the upper indexes and ¢ > 1. k must be strictly
less than the number of transformations used.

If T‘-(") = Sn+:i wWe recover Shanks’ transformation: ,-T,Ej) = ex(Sn) =

e

The numbers ,-T,g") can be recursively computed by the E-algorithm

where i + j = n.
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for a fixed value of n. If we set

EY = 1), i=0,1,...
and g(():), = ATi(:-l'-J_l)1 t=0,1,...,5=12,...

then we shall obtain E,(:) =it1 T,E") for all k and t.
Thus we obtain the finite triangular array from T},...,T,,

mT(gn) m—-lTl(n) m—2T2(n) m—STz(n) 1T,(,."_)1

If the index i is fixed, the numbers .-T,g") can again be obtained from
the E-algorithm. If we set

EM = 1™, n=0,1,...
and ¢{ = T TG, n=0,1,...,5=1,2,..

then we shall obtain E{™ =; T{™ for all k and n. Thus we obtain the
infinite array

T @
T® o
IO @ g0 o

Since the determinantal formula for ;T,E") is similar to that of the
E-algorithm, a similar result holds for the kernel. It is the

Theorem 3.40
A necessary and sufficient condition that Vn, ,-T,f") = § is that there
ezist ap, a,,...,ar with ag + - -- + ax # 0 such thatVn

ao (T = 8) + -+ a (T - 5) = 0.
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A necessary and sufficient condition that Vi, .-T,S") = S is that there
ezxist by, by,..., bk with by + -+ -+ b # 0 such that Vi

bo (T,-(") - 5) + o4 by (T‘("'Hc) - S) = 0.

Of course ag, ..., ax can depend on i and k and by, ...,b;r on n and k.
If the a;’s are independent of i and if the first condition holds for all 2,
then the result is also true for all i. If the b,’s are independent of n and
if the second condition holds for all n, then the result is also true for all
n.

These results generalize the relation defining the kernel of Shanks’
transformation (theorem 2.18) which is recovered for T,-(") = Spyi. It
also shows that the kernel of the transformation T} : (S,) — (,-T,g"))
contains the kernels of the transformations T}, . .., T;;x. The convergenc':a
and acceleration theorems for the E-algorithm (theorems 2.8, 2.10 and
2.11) immediately give results for ;T; but their conditions are usually
too difficult to check to be of any practical interest.

In applications we are dealing with a finite number of transformations
Ty,...,Tm. When applying the E-algorithm to the computation of ,-T,g")
for a fixed value of n, i + k must be strictly less than m. Such a re-
striction still exists when computing ,'T,E") by the E-algorithm for a fixed
value of ¢, but n can be arbitrarly large. Thus our second implementa-
tion of composite transformations (that is for 7 fixed) seems to be more
interesting than the first one since the number of terms is not limited
and sequences are really constructed instead of only a finite triangular
part of the array.

Let us give a numerical example and take the same transformations as
in section 3.6 and the same sequence. When ¢ = 1 and when the seven
best transformations are used in the last order given in section 3.6 the
E-algorithm gives (number of exact digits) forn > 9

| n|k=0]k=1]k=2]k=3]k=4]k=5[k=6|

9 || 12.28
10 || 12.28 | 12.84
11 || 15.18 | 13.56 | 13.56
12 || 15.18 | 17.81 | 13.85 | 14.27
13 || 17.73 | 16.58 | 16.88 | 15.35 | 14.19

14 | 18.52 | 17.81 | 16.22 | 16.73 | 14.46 | 13.68
15 || 17.56 | 17.59 | 17.68 | 16.44 | 16.46 | 13.78 | 14.51
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We made a systematical use of such a procedure, starting again from
the beginning the use of the E-algorithm for implementing the composite
transformation each time the order of the transformations obtained by
the automatic selection changes.

As it can be seen from the previous results, the use of a composite
transformation can improve the result of the best transformation. Then
the precision downgrades due to the introduction of transformations
with fewer exact digits and to the rounding errors in the E-algorithm.

Let us now consider the sequence S, ,, = e~5» with Sy = 1. The four
best transformations as found by the selection procedure described in
the preceding section are Richardson’s process, Overholt’s process, the
iterated A2 process and the £-algorithm. Using them, in this order, for
constructing the corresponding composite transformation with i = 1, we

obtain
[ [k=o]k=1]k=2]k=3]
4 4.51 [l
490 | 4.86

5
6 704 | 6.67 | 5.44
7 9.08 8.74 793 | 6.80
8 || 11.26 | 11.59 | 9.78 | 9.92
9 |l 14.75 | 13.55 | 13.16 | 9.87
10 || 15.71 | 15.71 | 15.01 | 14.71
11 | 15.41 | 15.41 | 15.41 | 15.41
12 || 99.00 | 99.00 | 99.00 | 99.00
When 99.00 is printed it means that full accuracy was achieved. The
column k& = 0 contains the results given by the best transformation
among the four ones involved in the process.
Let us mention that, instead of using a rank k composite sequence
transformation, it is possible to iterate rank 2 composite transformations
as follows

e Construct the composite transformation (7)) from (Tl(")) and
(7")-

o Construct the composite transformation (7})) from (T},) and (Tzf")).

o Construct the composite transformation (T7") from (T}) and (T,,("))
and so on.
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Such a procedure remains to be studied and compared with rank k
composite transformations.
The subroutine COMPOS performs the above composite sequence trans-
formation.

Composite transformations can be easily implemented on parallel
computers.

3.8 Error control

From the user’s point of view it is not enough to know that the sequence
(T) he obtained converges faster than the initial sequence (S,). It
would be better to have an estimation of the error or, still better, to
know a sequence of intervals containing the limit S of the sequence (S,)
and whose endpoints also converge to S faster than (S,). This section
is devoted to such questions and their answers. We shall set, as usual

T, = 8.+ D,, n=0,1,...
and we shall define the sequence (e,) by
T,-S=e,D,, n=01,...
Let b be a real nonzero number. We define (T, (b)) as
T.(})=S.+(1-8)D,, =n=0,1,...
and the interval I,,(b) by
1,(b) = [min (T5(b), Tn(-b)) , max (T (b), Tn(-b))] -

We have
[T (b) - S] - [Tn(-b) — S] = (e} — b°)D7

and thus we obviously have the

Theorem 3.41
A necessary and sufficient condition that Vb # 0,3N such that Vn >
N, S € I,(d) is that AN such thatVn > N, |e,| < |b].

S is the limit of (S,,) and the index N depends on b. If (T,) converges
to S faster than (S,) then (e, ) converges to zero and we obtain the
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Theorem 3.42
If (T,) converges to S faster than (S,) then Vb # 0,3N such that
Vn 2 N,S € In(b).

Thus it is quite easy to construct a sequence of intervals containing
asymptotically. If |a| < |b] then I,,(a) is strictly contained in I,(b) and
N, which is a function of b, tends to infinity when |b| tends to zero.

As seen from the numerical examples given by Brezinski [67], the
intervals I,(b) can be quite large and thus the error control is not quite
satisfactory. This drawback is due to the fact that (T,,()) and (T,,(—b))
do not converge to S faster than (S,). This can be avoided by using a
sequence (b,) instead of a constant value b. In this case, theorem 3.41
still holds if b is replaced by (b,,). If (T,) converges to S faster than (S,)
this condition is no more automatically satisfied and a supplementary
assumption has also to be introduced in order that the endpoints of
I,(b,) converge to S faster than (S,), thus leading to the

Theorem 3.43

If (T,,) converges to S faster than (S,) then a necessary and sufficient
condition that (T,(bn)) and (T,(—b,)) converge to S faster than (S,) is
that (b,) tends to zero.

A necessary and sufficient condition that 3N such that¥Vn > N, S €
I,(b,) is that AN such thatVn > N, |e,| < |b,]|.

This second condition shows that (,) cannot be arbitrarily chosen
and this remark leads to a second drawback since we want, of course,
both conditions to be satisfied simultaneously. This is possible in par-
ticular cases but, most of the time, additional assumptions have to be
introduced and their verification needs a sharp knowledge of the asymp-
totic behaviour of (S,) and (T,).

The best possible choice for b, is b, = e, since it leads to T,(e,) =
S. Of course this choice is impossible in practice since e,, is unknown.
However a choice such that (b,/e,) tends to 1 is expected to provide
a good alternative. Since e, = (T, — §)/D,, one can think of taking
b, = AT,/AD,, but this choice presents some other drawback. For that
reason we shall take

AT, 1

b= AD, T+ D.a/D.’

n=01,...
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and we have the

Theorem 3.44
Ifnl_i_{& Dyy1 /D, = "lll_,l{.lo ent+1/en # £1 then nlirgo bn/en = 1.

But this is not sufficient for our purpose since we need that the second
condition of theorem 3.43 be satisfied to have S € I,,(b,), and additional
conditions have to be introduced. Thus, instead of considering the end-
points T, (b,) and T},(—b,) we shall use the endpoints T;, (b,(1 + ¢)) and
T, (ba(1 — €)). Let Jyu(€) be the interval with these endpoints. We have

Tn(bn(1+¢€)) = Tn+ (1+¢)(-b.Dp)
T, (ba(1 - €)) Tn + (1 — €)(-b,Dy)

which shows that theorem 3.41 applies after replacing S, by T,,, D,, by
~bp Dy, b by € and e, by e/, such that T, — § = (1 — e},)b,D,,. But
T, - S = e,D,, and thus e/, = 1 — e, /b,. Finally we obtain the

Theorem 3.45
A necessary and sufficient condition that Ve # 0,3N such that Vn >
N, S € Jn(e€) is that AN such thatVn > N, |1 — e, /b,] < |€].

With the preceding choice of (b,) and under the assumptions of the-
orem 3.44, this condition is satisfied. Thus § € J,(¢) for all n > N and
the sequences (T, (bn(1 + ¢))) and (T, (bn(1 — €))) converge to S faster
than (S,) and also faster than (T},).

Let us illustrate this procedure by a numerical example. We shall
take for T, Aitken’s A2 process and the sequence S,;; = exp(—Sn)
with So = 1 which converges to 0.5671432904097838.

We obtain the following results

€ =0.5

n=0 0.5615158786644487 0.5753226908852316
n=>5 0.5671182846229792 0.5671677134657973
n=10 0.5671432057743461 0.5671433751618701
n=15 0.5671432901180999 0.5671432907014442
n=20 0.5671432904087798 0.5671432904107880
n =25 0.5671432904097804 0.5671432904097873
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e =0.01

0.5682812166526323 0.5685573528970480
0.5671433316609800 0.5671463696971711
0.5671425047559601 0.5671434933328164
0.5671432887742328 0.5671432921619833
0.5671432904039386 0.5671432904156055
0.5671432904097639 0.5671432904098039
0.5671432904097837 0.5671432904097840

=l A )
[—]

SIS
([ T | |

)

oS o>

We see that when ¢ is smaller, so are the intervals but, on the other
hand, for ¢ = 0.01 S belongs to the intervals only for n > 5 while for
€ = 0.5 this is true from n = 0.

It must be noticed that this procedure uses in fact two sequence trans-
formations namely (S, )+ () (Tn(bs)) and that (T,) converges to
S faster than (S,) and (T, (b,)) faster than (T,,). We say that these two
transformations accelerate the convergence of (S, ) in cascade. Any two
arbitrary transformations accelerating the convergence of (S,) in cas-
cade lead to the same result. Let us set T,(b) and I,(b) as before. We
assume that a second sequence transformation V : (S,) or (T,,) — (V3)
is known and we set

Va(0) =V =b(Vo—Ta) n=0,1,...

Jn(b) = [min (V,,(3), Va(-1)), max (V,(b), Va(-b))] n=01,...
We have the

Theorem 3.46

If"lirgo(T,.-—S)/(S,.—S) = nllt&(V,.—S)/(T,.—S) =0 thenVb # 0,3IN
such that Vn > N,S € J,(b) C I.(b). Moreover (V,(b)) and (V,(-b))
converge to S faster that (S,).

It must be remarked that with only one transformation, (7,,) con-
verges faster than (S,) but not (T,(b)). With two transformations ac-
celerating (5,) in cascade, (V;,) converges faster than (T,) but not faster
than (V,(8)). Thus, in order to control the error, more than accelera-
tion is needed if we want the endpoints of the intervals to converge faster
than the initial sequence. This is not a very surprising fact since, as ex-
plained in sections 1.4 and 3.1, convergence acceleration is equivalent to
estimating the error perfectly.
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It is possible to built an automatic selection procedure (see section 3.6)
on the error control. The idea is as follows: let us use simultaneously
several pairs of sequence transformations (T, V;) : (Sn) — (T,-(”), V.-("))
fori = 1,..., k. Thus at each step n and for each pair of transformations,
we have an interval

7(b) = [min (V0), V(=8)) ,max (VO (8), V(-b))]

with
v}(")(b) - Vi(n) -b (I/‘(") — T:'(n)) .

Let L'(-")(b) be the length of the interval J,-(")(b), that is

.

L@y =2- ol v -1

Let i(n) be the smallest index such that

+M" = max »{™
in) 7 i<k ¢

where r'(") = card {q €{0,...,n} such that L'(q)(b) = min L(-q)(b)} .
1<5<k 7

We set
T, = T{) and V, = V7).

(™ is the number of times that the interval J™)(b) was the smallest one
from the beginning. Thus, at the step n, we select the pair of transfor-
mations for which this number is maximum. Under some assumptions
this selection procedure exhibits interesting properties.

Let L; be the intersection of the kernels of T; and V; and let L be the
union of the L;’s. We assume that for all 4,L, is not empty.

We say that a pair of transformations (T}, V;) possesses the property
A for a set S of sequences if V(S,) € S such that 3IN,Vn > N,T,, =V,
then it implies that Vn > N, T, =V, = S.

We say that a pair of transformations (T}, V;) possesses the property B
for a set S of sequences in V(S,,) € S either lim (T.-(") - 5)/(5,. - 8)=

n—o00

lim (V") 5)/(T{"- 5) =0 or 3¢>0,3N such that va> N, [T - 5| /

n—00

|Sn — S| > €.
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We say that a pair of transformations (T;, V;) possesses the property
C for a set S of sequences if V(S,) € S,3a < 1 < B,3N such that
v > N, (V¥ - 5) /(T - $) ¢ [a, B).

We shall denote by S; the set of convergent sequences such that
(T..(")) converges faster than (S,) and (V,.(") faster than (T.-(")) .

Let S be the union of Sq1,...5%. " "

If (T,) and (V,,) are the sequences obtained by the above selection
procedure, let us set Vn

Va(bd) = Vo = b(Va — T)
and J,(b) = [min (V(3), Va(—b)) ,max (V,(d), Va(—0))]. We have the

Theorem 3.47

- If Vi, the pair (T;,V;) possesses the property A for L, then ¥(S,) €

L,3N such thatVvn > N, T, =V, = S§.

- If Vi, the pair (T;,V;) possesses the properties B and C for S, then

V(S,) € S,nli_{go(T,. - 8)/(S,—8)= nl_iglo(V,. - 8)/(T,-S)=0.
(Va(d)) and (V,(—D)) converge faster than (S,) and Vb # 0,AN such

thatVn > N, S € J,(b).

To end this section let us point out a fundamental practical point.
Under some assumptions, the theorems given above say that for all n
greater than N, S belongs to some interval. However such an N is
not known without adding supplementary assumptions. Such an N has
been attained if the interval at the step n+ 1 is contained in the interval
obtained at the step n, whatever n > N be. This is a good test for
having attained this N. Let us give some results obtained by Bellalij
[21] in which N is known.

Theorem 3.48

If T, = Sp41 (that is if D, = AS,), if (S,) is strictly monotone and
if AN such that Vn > N,0 < ASp4+2/ASn41 < ASny1/AS, < 1 then
Vn 2 N, S € In(bn) with bn = —AS,.H/AQS,,.

The assumption on the monotonicity of (AS,41/AS,) can be suppressed
by using two sequences (b,) and (c,) instead of (b,) alone.
We set, Vn

I5(b, ¢) = [min (T,(b), Tn(c)) , max (T5(d), Ta(c))],
and we have the
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Theorem 3.49
If (S,) s strictly monotone, if T, = Spt1, #f Vn,c, < by < 0 and if
dN such thatVn > N,
bn ASﬂ+1 Cn
< <
bn+1 -1- AS" - Cnt+1 — 1

then VYn > N, I, +1(bnt1,cnt1) 8 contained in I, (b, c,).
Moreover if"lirga bhAS, = nlerolo cnAS, =0 then Vn > N, S € I,(bn,cn).

To illustrate this result let us consider the sequence

g 1,1 1
n—1—2+§§+"'+;ﬁ,

which converges to 72/6 = 1.6449334066848226. . ..
The assumptions of the preceding theorem are satisfied with b, = —n

and ¢, = —(n + 1) and we obtain

n=0 15 1.75

n=>5 1.634246031746032 1.654654195011338
n=10 1.641365527309791 1.648309971754236
n=15 1.643170062856753 1.646630270469210
n=20 1.643885363063712 1.645951478766192
n =25 1.644239730568865 1.645611472681348
n =45 1.644706114934087 1.645158808460569

n=1,2,...

When (S,) is an alternating sequence, we shall separate it into two
subsequences

u, =52, and v, = Syy41, n=0,1...

and apply Aitken’s A? process to (u,) and (v,) separately thus obtaining
two sequences denoted by (u],) and (v},) respectively. We set, Vn

Jn = [min (u,, v),) ,max (u),,v})] .
The following result was proved by Bellalij [21]

Theorem 3.50

If(Sy) is an alternating sequence such thatVn, S, # S and AS,+1/AS,
# —1, if (up) and (v,) are monotone, if Vn, Au,y1/Au, <1 and Avpyq/
Av, < 1 and if (Aupy1/Auy) and (Ava41/Av,) are both either decreas-
ing or increasing then Vn,S € J,.
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When (AS,4+1/AS,) is a monotone sequence, Hillion [229] proposed
other intervals containing the limit. If (AS,) has the form AS, =
A".n".(ao + ajn~! +---) a process for simultaneously accelerating the
convergence and controlling the error was given by Bellalij [22].

Instead of controlling the error (that is computing an interval con-
taining the limit S) one can try to estimate it. We have

Tn=5n _, Ta—S5n
S - Sn - Sn - S )
Thus if |T,, — S| is small with respect to |S, — S| then T,, — S, is a
good estimation of the error S — §,,. That is, in particular, the case if
(T,.) converges to S faster than (S5,) and we have

lim (T, ~ 5,)/(5 - $a) = 1.

1

But, in that case, we also have
nn_{‘go(Tn = 85)/(Ta—Sa)=0

which shows that, for n sufficiently large, |T,, — S| is much smaller than
|Tn— Sn|- Thus |T,, — S,| can be taken as an upper bound of |T,, — §|.
If we have only

“%(Tn - 5)/(Sn—S)=a
then it is easy to see that

Tim (T~ $a)/(S = Sa) =1-a

lim (T, — 5.)/(S - Tn) = (1 - a)a™

which shows that |T,, — S,| can still be used for estimating the errors
|Sn — S| and |T, — §|.
If there exist a and b with -1 <a < b <1 and N suchthat \n > N

T.- S
Sp— S

~-1<a< <b<«1

then Vn > N
Tn — Sn

-b<
0<1 S %§_s.

<l-a<2
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b <T,,—S a 1

- < -
10T, 5. > 1-a <2

which again shows than |T,, — S,| can be used to control the error.
The construction of such sequence transformations (called contractive)
will be studied in the next section.

If we are given two sequence transformations T : (S,) +— (T,) and U :
(Sn) — (Up) they can be compared by similar techniques by replacing
Sn by T,,, T, by U, and T,, — S,, by U,, — T}, in the previous results.

Special devices for controlling the error and stopping rules based on
them where studied by Walz [452] in the case where

oo
Sn=8+) a; /2", n=0,1,...

1=1

with 0 < g9 < g2 < --- and the proper modification of Richardson
process (that is, in fact, the E-algorithm with g;(n) = 2"@) is used.
Walz gave a priori bounds which allow to estimate the errors of the
extrapolated values before starting the extrapolation process. He also
proposed stopping rules for deciding, during the process, if the accuracy
desired has been already obtained or not.

Let us also mention that, due to the connection between the e-al-
gorithm and Padé approximation, the special procedures proposed by
Brezinski (76, 83] for estimating the error of Padé approximants, can
be used for the e-algorithm. These procedures require additional terms

of the sequence in supplement to those used in the computation of the

eg',:)’s.

3.9 Contractive sequence transformations

As we saw in the previous sections, accelerating the convergence of a
given sequence (or a given set of sequences) can be a difficult task. For
a remanent set of sequences it is even impossible. Thus the idea came
to ask less and first to find a sequence transformation T : (S,) — (Th)
such that there exists |a| <1 with lim (T, — 5)/(Sn — §) = a. But, in
fact, as proved by Litovsky [290], the difficulty is the same since, if such
a transformation T is known, then it is possible by the ACCES-algorithm
to built another transformation accelerating (S,) (see section 3.1).
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In both cases, what makes the goal too difficult to achieve? It is
the fact that a certain ratio must have a limit which is not always the
case. Thus we shall suppress this requirement. Let us give an example
showing that sequence transformations not having this property can still
present a great practical interest.

We consider the sequence (S, ) given by S,, = (n+1)"! and Syp41 =
(<14 (-1)"-10"€) . (n + 1)~ for n = 0, 1,... and the transformation
defined by T, = (S2n + S2n+1)/2,n=0,1,.... We have

Tn=(-1)"-10"%-(n+1)7!

and the ratio T,,/S,, has no limit when n tends to infinity. However
|Tyn/S2n| = 10~ which shows the drastic improvement brought by the
transformation.

Let us begin by some definitions. Let T : (S,) — (T,) be a sequence
transformation such that the computation of 7, needs the knowledge of
5055 Sk(n)'

T is said to be a contraction (or is said to be contractive) on the
set S of sequences if V(S,) € S there exist two constants K, and K,
with —1 < K; < K; < 1 and an index N such that Vn > N, K; <
(Tn — 5)/(Sa — S) < K.

IfVn > N,K, < (T.-S)/ (s,,(,,) - s) < K, then T is said to be a
true contraction on S.

Let us first consider a general quasi-linear transformation of the form

Tp=F(Sn,...,Snsk), n=0,1,...

where k is a constant and the set Lin(a, 8) of real convergent sequences
such that Vn > N,0 < a < (Sp+1 — 5)/(Sn — §) < B. This set is not
remanent but it was proved by Delahaye [136] that it is not accelerable
by such a transformation. Thus an important question is to know if a
contraction on Lin(a, #) can exist or not, a possibility not forbidden by
its non-accelerability. Brezinski [82] gave the following result

Theorem 3.51

If there ezist K, and K, with —1 < K, < K, < 1 such that Vz; €
[af,B] fori=1...,k we have K; < F(1,z,,...,2x) < K;, thenT is a
contraction on Lin(a, ).

IfVy; € [B*,a~*] fori=1...,k we have K; < F(yk,..-,%1,1) < K3,
then T is a true contraction on Lin(a, B).
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Since Aitken’s A? process in one of the simplest and of the most pop-
ular sequence transformations we shall study its contraction properties.
It is easy to see that it is a contraction if and only if there exist K; and
K, with -1 < K; < K; <1 and N such that Vn > N,0 <1 - K, <
(1 -7,)/(1 —0n) <1~ K; < 2 and a true contraction if and only
ifVn > N0 <1-K; <7;Y(1-7)/(1 —0n) <1- K; < 2 where
Pn = (Sn+1 - S)/(S,. - S) and On = AS,H.]/AS,,.

Of course it is difficult in practice to check if these conditions are
satisfied or not. This is the reason why we shall restrict ourselves to the
following sufficient conditions

Theorem 3.52

Aitken’s A? process is a contraction on the set of convergent sequences
such that there ezist a,f,a’,0' witha < B <1, a < B < 1 and
268/ <1+aand N with¥Vn> N,a<r, <P and o’ < 9, < B'. In that
case Ky = (a-p')/(1-p') and K2 = (- a')/(1 - &').

Let us mention that if 0 < a then, as proved by Delahaye [136], the
condition on g, is always satisfied with o' = a(1 — 8)/(1 — a) and
B' = B(1 — a)/(1 — B). In that case the condition 28’ < 1 + a becomes
38 < 1+ a+ aff. However it must be noticed that the bounds given by
these o’ and B’ are usually quite large and it is better to use sharper
ones if they are known.

Similarly we can prove the

Theorem 3.53

Aitken’s A? process is a true contraction on the set of convergent
sequences such that there ezist a,8,a’,f' with0 < a<f<1,a' < f' <
1<a(3-28)and N with¥Vn > Nja<r,<fBanda <p,<f.In
that case K1 = (2a—aff’-1)/a(1-0') and K, = (28-a'B-1)/B(1-<').

Let us notice that a sequence (S,) can converge without the ratio
(Sn+1 — S)/(Sn — S) being bounded. For example if So = 1, 85,41 =
a, Sy, and S2n42 = b, 82041 We have Sy = ag-...-an-bg-...-b,_1 and
S2nt2 = @g*...°@n-bgo-...-by. Thusifa, = (—1)"-2" and b, = 8" then
(Sn) tends to zero but Spnt1/82, = (=1)" - 2" and S2n42/82p41 = 87"
and the sequence (S,4+1/S,) has three points of accumulation 0, +o00.

The conditions of the two preceding theorems are only sufficient.

Let us now consider logarithmic sequences. The set LOGSF of log-
arithmic sequences, that is such that Jim (Sn+1— 8)/(Sn—S5)= Jim
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ASn41/ASy = 1, is known to be remanent. Thus a contractive sequence
transformation on it cannot exist, and we shall consider its subset LOG2
which can be defined as follows. We write r, = 1 — A, where (A,)
tends to zero and assume that Vn, A, > 0. For any sequence of LOGSF,
Kowalewski [267] proved that (A,41/),) tends to 1. Thus we shall set
Ant+1/An = 1 — py, where (puy,) tends to zero. LOG2 is the subset of
LOGSF such that IN,Vn > N, u, > 0. We have the

Theorem 3.54
Aitken’s A? process is a contraction and a true coniraction on the

subset of LOG2 of sequences such that there ezist § > 0 and N with
Vn> N,0< p./A, < B.

It is not known whether or not LOG2 is accelerable.

Let us now study the contraction properties of the procedure ©.
We consider a sequence transformation T : (S,) —— (T,) where the
computation of T,, need the knowledge of So,...,S,+x. We can always
write T,, under the forms

Tn=S"+Dn= n+k+E’|’ ﬂ=0,1,...

If we apply the procedure O to these two forms we obtain two new
sequence transformations given by

en = Sn_"AA—z-’L‘Dn, ﬂ=0,1,...
e;: = Sn+k — AASE-HC -E,, n=0,1,...
We have the

Theorem 3.55

e Leta<fB<la<pf <land 28 <1+ a. If IN such that
Vn> N,a<r,<Banda' < D,y /D, <P thenVn> N,-1<
K, <(0,-5)/(Sn—S)< K, <1 with K, =(a-p)/(1-0)
and K, = (B — a')/(1 - a').

e IfVn> N,a < (Thy1 — S)/(Tn- S)<Panda’' < Dpy1/Dn < B
thenVn > N,-1< K; < (On—S)/(T"— S) < K; <1 with Ky
and K, as above.
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o Moreover if 0 < a < ' anda’ < B thenVn > N,K,/a < (O, -
5)/(Ta+1 - S) < K3/a.

e If¥n > Nya < r, < B and o < E,1/E, < ' then Vn >
N,-1<K; < (GQ—S)/(S,,.H;—S) < K3 <1 with K, and K, as
above.

e IfVn> N,a< (Tn41 - S)/(Tn—S)<Panda’ < E,,/E, <P
then Vn > N,-1 < K; < (0, - §)/(T, - §) < K2 < 1 with K,
and K, as above.

e Moreover if 0 < a < ' and o’ < f thenVn > N,K;/a < (O}, —
$)/(Ta41 - §) < Kz/a.

Obviously the preceding results must be completed by the study of
the contraction properties of other transformations and other sets of se-
quences. Instead of studying the contraction properties of existing trans-
formations, one can think about building contractive sequence transfor-
mations. This was the approach followed by Brezinski and Paszkowski
[96] who studied linear sequence transformations and chose their coef-
ficients in an optimal way. Let us consider the transformation defined
by

Té")=a05n+---+ak5n+k, n=0,1,...
with ag + -+ + ax = 1. We have

™ _§ Sps1— 8 Spik — S
S.os - WterTg g trrtaTg Ty
Sp+1— S
= ao+al's+l__s+“-+
ak.(5n+1—5_5n+2-5_ _ Sn+k—5)
Sn—'S Sn.+1"s o Sn+k—1—'S |

We shall consider the class of sequences such that there exist a and
B witha < fand N withVn > N,a<r, <f.
Thus
™ - §
Sn— 8§
and it is natural to ask for the polynomial

:a,0+017'n+"’+ak(rn""'rﬂ+k—1)

k
P(zy,...,2x) = Ea;zl Y ¥
1=0
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which minimizes

max Plzy,...,zx)l.
zla--w’k&[ayp]l ( 1, ’ k)l

This problem was completely solved by Paszkowski [353]. Its solution
depends on the respective values of a and § and different cases have to
be consider. They lead to different optimal linear contractive sequence
transformations. When applied to a sequence (S,) such that ¥Yn >

N,a < (Snt1— 5)/(8Sn — S) < B they produce a sequence (T,E")) such
that Vn > N, |(T{" - §) / (S - 5)| < Mk < 1. They are the following

l.0<a<f<1
2Sn+k - 2asn+k-—1 - ﬂk_l(ﬂ - a)sn
2(1-a)- A% - a)
ﬂk‘l(ﬂ _ a)
2(1-a)-p-1(-a)’
2.a<0<f<landa+82>0
28n+k — B51(a + B)Sn

™

M;

T(") -
¢ 2-B-(a+p)
ﬂk—l (ﬂ _ a)
M, 2 - Bk-1(a + B)

3.a<0<f<landa+p8<0

Snik = (@ + B) ¥isg (—a)* =1 Spyi
1= (a+p) TS5 (~a)k—i!
(8 - a)(—a)!
2-2(a+8) Tisp (o)
where 310 0 b; = by /2 + 31, bi.
4. a<0<fanda-f<1(k>1)

Sntk = @Snyk—1 + (B — @) Y'ia(—a)s 184
1-a+(f-a)Tisg(~a)!
(B - a)(—a)*~!
2(1 - a) + 2(8 - a) X' (—ayk—i-1

7™

M;

™
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b, a<f<0anda-8>1

(") 25041 = (@ + B)Sn
* 2-(a+4)
f-a
Mo = 3 a-p

When k = 1 all the cases (except 4 which is only valid for k£ > 1) reduce
to the last case which corresponds to the usual Chebyshev’s method of
acceleration since p;(z;) = (22; — a — 8)/(2 — a — ) is the Chebyshev
polynomial of the first degree on [a, 8.

Let us consider the sequence (S,) given by

S5.-8 _J 05-a, if a,<0
Spo1—-S ] 03-a, if a,>0

with a, = sin(a-n+b/n), So = 0,5 =1,e = 2 and b = 1. It corresponds
to the third case above with a = —0.5 and 8 = 0.3. We obtain (number
of exact digits)

nll S [T | oY [ | ]
0.00 ]| 0.89 [ 1.52] 1.73] 2.04 | 2.34
1.37 || 1.82| 2.73 | 3.06 | 3.42 | 3.70
1.68 || 2.66 | 3.02| 3.39| 3.68 | 3.99
3.51 || 3.97 | 5.67| 4.91| 5.23| 5.64
4 || 406 47| 548| 581 | 6.95| 6.66
10| 747 881 877 9.12| 9.47| 9.79
15 || 11.28 || 11.87 | 12.32 | 12.85 | 13.11 | 13.41

The values of M for k = 1 to 5 are
0.3636 0.1600 0.0754 0.0367 0.0181 .

W N ~O

Let us now look at true contraction. We assume that Vn > N,a <
(Sn — S)/(Sn+1 — §) < B and we obtain the following optimal linear
transformations having the property of true contraction (of course, al-
though the same notation is used, a and 8 are not the same as before).

l.L.a<0<f<landa+p82>0

25, - ﬂk—l(a + ﬂ)sn+k
2 - pk-1(a +p)

"
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2.a<0<f<landa+8<0

T(") — (a + ﬂ) Z :kz-(}( a)k-'“l Sn+k—-t
) 1-(a+8) /i3 (-a)t—i-1

3. a<f<O0anda-f<1(k>1)

T(") — Sn aS"+1 + (ﬂ a) 2’1—0 ( a)k—'-lsn+k-|
k - 1k—2 _ °
1-a+(f-a)Yilo(—a)—!

4. a<f<0anda-f>1

7@ _ 25kt = (a+B)Surk
) 2-(a+B)
5. 1<a<p
7 _ 25atk-1 = (a+B)Snsx
k - .

2-(a+8)

In these cases the coefficient M is the same as in the corresponding
case for contraction. Thus it is interesting to study the asymptotic
behaviour of Mj as k tends to infinity since it is a measure of the gain
obtained by the contractive transformation. We have

B - k-1
.0< :
ﬂkl
2.a<0<pf<landa+B20: M~ (8-a)- .
.a<0<pf<landa+<L0:
(Ca)ft
Mi~(B-a)-(1+a)-——ifa> -1,
p+1 1.~
M; 2(k—1) % ifa= -1, and
M; = (B-a)(1+a) fa<-1.

M = T a) T (et ) 1=a)



3.9. Contractive sequence transformations 209

4. a<f<0anda-f<1:
Mg ~ (ﬂ_a)(1+a) '(_a)k-—l ifa> -1,

2(1 - af)
Mk"‘ﬁ 1fa=1—1,a.nd
im My = 2% ifa< -1
k—o0 a —

5. a<f<0and a-B>1orl<a<pf: Misindependent of k.
Let us consider the sequence (S,) given by

Sn—3S8

m = -0.5+0.2 sin(2n), n = 0, 1, .o

with §o = 0 and § = 1. It corresponds to the fourth case above with
a=-1/0.3and § = —1/0.7. We shall only consider the case k = 1 since
other values of k are just a shift in the indexes. We obtain (number of
exact digits)

Lnl s 7" ]
0 || 0.00 1.14
1 | 0.50 { 1.29
2 || 0.68 | 1.70
3 || 0.94 | 2.02
4 || 1.46 | 2.33
5 || 1.67 | 2.55
10 || 3.35 | 4.59
15 || 4.78 | 6.45

The value of M; is M; = 0.2817.
In section 3.1 we saw that the ACCES-algorithm was able to construct
a sequence transformation accelerating (S5,) if a sequence (T,) such that
Jla| < 1
Jim (T, = $)/(S. - 5) =

is known.

We shall now ask less. We shall no more assume that the preceding
ratio has a limit but only that it is contained in a known interval. Then
the following result holds



210 Chapter 3. Special devices

Theorem 3.56

If there ezist ky < k, with 1 ¢ [ky, k), k) < k), with 1 & [k}, k)] and
N such thatVn > N,(T, — S)/(Sn — S) € [k1, k2] and a, € [k}, k)] then
the sequence U,, defined by

Upn = (Tn — anSn)/(1 - a,), n=0,1,...

satisfies V/n > N
ki — k. < U,—-S < ky — ky

) — 141< k,1 <k and
t) 1<k;—1_S,.—S‘lc;—1< tfl < k,1 <kjan
2ki>k2+1.

— k! — .
n)—1<k1 k2<U" S<k2 k1<1ifk2<l,k§<1and

1-K, =~ 85,-85 - 1-K
2k5<k1+1.

The two cases 1 < k; and k} <lorl < kjandk; <1 lead to an
impossibility which is not surprising since a,, must be an approximation
of (T, — S)/(Sn — S) as explained in section 3.1.

If 1 < ky < k; then (U,) is better than (T,,) since Vn > N

Ll M-k U-S_1 K-k

b ML T, S -k k-1 "

The simplest choice is T, = S,4; but in that case the preceding
assumptions cannot hold with 1 < k; < k,.

3.10 Least squares extrapolation

In section 2.1 we saw that the application of the E-algorithm to a se-
quence (5,) consists in writing

Snti=S+argi(n+i)+---+ argi(n + 1)

fori=0,...,k and then solving this system for the unknown S denoted
EM.

We shall now write this system for ¢ = 0,...,m with m > k and
then solve this overdetermined system in the least squares sense for the
unknown S which will be denoted by ,,.ESO since it depends on the three
indexes m, k and n.
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If we set
g = (gi(n),...,g(n+m))", i>1
9 = (1,...,1)T
V = (Sm'°°1sn+m)T

and if (u, v) denotes the scalar product between the vectors u and v with
components u; and v;, that is

(u,v) = uUp+ «** + Uy Uy

then we have

E(") \
1 (90,91)/(90,90) -+ (9o, 9k)/(g0s90) malk
i (gka gl))(gk, gO) te (gk’ gk))(gk, go) a:k

(g()s V)/(.qO7 gO)

(gln V)/'(gka 90)

Thus this system has the same structure as the system giving E,(c")
which shows that, for fixed values of m and n, the E-algorithm can be
used to compute recursively mE,g") fork=0,...,m.

Setting, in the E-algorithm

E(()j) - (931 )
(95> 90)

o) = Wn%) o1 andi=1,2,...
(91,90)

we shall obtain
E®) = EM.

For k = m, the least squares solution of the system is identical to the
value obtained by the E-algorithm applied to the S,,’s and the g;(n)’s.

If the values of n or/and m are modified, then the definition of the
scalar product is also modified and the computations have to be started
again from the beginning.
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The main advantage of least squares extrapolation is to be less sen-
sitive to small perturbations on the data. Let us, for example, take
Sn = 1/(n+ 1) and g;(n) = ASn+i-1 (that is Shanks’ transformation).
We know that we shall obtain E{™ = (k + 1)~!(n + k + 1)-1. Let us
add a random perturbation not greater than 10~ to the sequence (S,).
Then the g;(n)’s are also perturbed accordingly and we have for n = 0
and m =4

k +EY +E
perturbed S,,’s | unperturbed §,’s

0 0.4567459 0.4566666

1 0.1782071 0.1781660

2 0.0937578 0.0938178

3 0.0581327 0.0583216

4 0.0398319 0.0399999

Thus the smallest k is, the less the 4E,£0) ’s are sensitive to the pertur-
bation. When k = 4 we see that the results obtained (which are identical
to those given by direct application of the E-algorithm to (S,)) are quite
sensitive to perturbations since we should have E4(°) = 0.04.

Least squares extrapolation is treated in details by Cordellier [121].
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VECTOR EXTRAPOLATION ALGORITHMS

Very often in numerical analysis, vector sequences are obtained. This is,
in particular, the case in iterative methods for solving systems of linear
and nonlinear equations, in the solution of differential and partial dif-
ferential equations by finite differences or finite elements methods (see
Marchuk and Shaidurov [306, 307] on this topics), in the computation
of eigenelements of a matrix and their derivatives and in some other
subjects. Very often also the convergence of such sequences is slow and
convergence acceleration is mandatory. Of course it is possible to apply
separately on the sequences of each component an acceleration algo-
rithm. However vector acceleration methods were specially developed
for dealing with vector sequences. Usually vector extrapolation algo-
rithms are more interesting than the scalar ones on each component,
because their theory is more advanced and because, in particular, they
can be related to projection methods which are well known in numerical
analysis. Their theory recently attracted a wide attention, a review of
which was given by Smith, Ford and Sidi [415, 416] (see also, Sidi, Ford
and Smith [408]). It is not our purpose here to give the details of this
theory and we shall restrict ourselves to the description of the various
algorithms and their main properties and applications.

We shall begin with the vector e-algorithm, obtained by Wynn {473],
which is the first algorithm found for accelerating vector sequences. It
was obtained directly from the rule of the scalar algorithm and thus lacks
of a firm theoretical basis. This explains why very few theoretical results
on it are known and why they were quite difficult to get. To avoid this
drawback, another way for obtaining a vector generalization of Shanks’
transformation and the e-algorithm was explored by Brezinski [51]; it
leads to the so-called topological ¢-algorithm. Then we shall present the
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vector E-algorithm and the recursive projection algorithm which are the
two algorithms obtained chronologically after that. Then came the H-
algorithm and algorithms by Ford and Sidi [163] which can be used for
implementing economically the topological e-algorithm and the vector
E-algorithm in particular. A section will also be devoted to the vector
G-transformation.

As explained by Brezinski [86] all these vector sequence transforma-
tions (except possibly the vector e-algorithm) can be expressed by a
ratio of two determinants similar to that given in section 1.5

eo s o ek
a® ... o

(k)

a(.o) a
R = % k
bo --- b

... o®

.k)

.0) a£

af

where the e;’s are vectors and the a,(j) ’s and the b;’s scalars. The deter-
minant in the numerator of Ry is now a vector. It is the vector obtained
by expanding this determinant with respect to its first row by using the
classical rules for expanding a determinant. In other words, as explained
in section 1.5, we have

R = apeg + - - - + axex
where the a;’s are solution of the system of linear equations
agbo + « -+ + arbx =1
aoago) +---+ akagk) =
aoaﬁo) -4 akag‘) = 0.

This interpretation shows that (R,) can be computed recursively by
applying the bordering method to the previous system as seen in sec-
tion 1.8.
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As we shall see below the topological e-algorithm is recovered for the
choice e; = Sp4, ag-') =< ¥,ASn4itj-1 > and b; = 1 where y is an

P
arbitrary vector and < y,z >= Zy.-z,' where the y;’s and the z;’s are

the components of the (real or cc;mlplex) vectors y and z of dimension p.
In that case we shall have Ry = eg',:).

If we take e = Sp, ¢; = gi(n) for i > l,a_so) =< y,ASn4j-1 >,
ag-") =< y,Agi(n+j —1)> for i > 1 where A operates on the index
n,bo = 1 and b; = 0 for ¢ > 0 we obtain the vector E-algorithm and
Ry = E,(c").

Choosing ep = y,e; = z; for 1 > 1,a§-°) =<2,y >, as-") =< zj,z; > for
i > 1 where the z;’s are arbitrary vectors, b = 1 and b; = 0 for i > 1,
leads to the recursive projection algorithm (RPA) and we have Ry = Ej.
The compact recursive projection algorithm and one of its variants can
also be put into this framework.

Finally if ¢; = S,4, ag') = g;j(n + i) and b, = 1, we recover the
H-algorithm and we obtain R; = H ,g").

In the sequel we shall mainly consider two cases: bg = -« = b =1
and bg = 1, by = --- = by = 0. It is easy to go from one case to the
other one since

€ - € €o €1 — € €k — €k-1

@ ... agk) a§°) agl) _ ago) . agk) _ agk-l)

a;co) .. aik) ~ a;:o) ail) _ “5:0) .. a£k) _ aﬁk_l)
1 ... 1 | | 1 0 cer 0

ago) . agk) ago) agx) _ ago) . agk) _ agk-n

aio) L a;;k) a;;o) af) _ “io) . aﬁk) _'agc-n

All these algorithms fit into the framework of biorthogonality as ex-
plained by Brezinski [89]. Their properties of translativity were recently
studied by Sadok [384] whose results will be now briefly described.

We consider the vector sequence transformation T : (S,) — (T,)
given by

Tn=F(Sny. .y Sn+k), n=01,...
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where S, € C? and F : (CP)¥*! — CP. We shall say that F is transla-
tive on A if Vb € CP, Vzy,..., 2, € ACCP
F(zo+b,...,zx + b) = F(z0,...,2x) + b.

F is assumed to be twice continuously differentiable on A in the sense
of Fréchet. Let f: A¥+1 — A. We set

Dif (20, -y 2x) = 6f(z(3;.,zk).

D; f is the matrix whose elements are 8 f;/ (0z;) ; the partial derivative
of the ¢-th component of f with respect to the j-th component of z;.
We have the

Theorem 4.1
A necessary and sufficient condition that F be translative on A is that

there ezists f such that
F(20y-..,2k) = [Df(z0y---,2k)]"" - f(Z0y- -2 Zk)
with D2 f (zo, ..., z) identically zero on A and where D = Do+- - -+ D.

Let us recall (see Dieudonné [143]) that D?f is a multilinear appli-
cation. It is a linear mapping from L (CP, CP) into CP where L (CP,CP)
denotes the set of linear applications from CP into CP (that is the set of
complex p X p matrices).

This result was applied by Sadok [384] to the study of the translativity
of the H-algorithm (section 4.5) and the vector E-algorithm (section 4.3).
The interested reader is referred to this paper for details. An application
of this theorem to convergence acceleration will be given in section 6.1.5.

Let us now study in details vector extrapolation algorithms.

4.1 The vector ¢-algorithm
Let us again consider the rule of the e-algorithm
=0, M=s5,, n=0,1,...

e = M4 [ ], k=01,



4.1. The vector e-algorithm 217

Now if S, is a (real or complex) vector of dimension p and if e(_"l) is
the zero vector, then this algorithm can be used if the inverse y~! of the
vector y is defined. Of course this definition must reduce to y=1 = 1/y
if y is a vector of dimension 1, that is a (real or complex) number. We
shall take for the inverse y~! of the vector y the vector given by

-1 Yy
/] = —
(v,9)

where (y, y) is the scalar product of the vector y by itself that is

p P
y) =Y uT = lul
=1 =1

where ¥; denotes the complex conjugate of y; and |y;| its modulus. With
this definition of the inverse of a vector, the e-algorithm can be applied
to vector sequences; it is the so-called vector ¢-algorithm as obtained by
Wynn [473]. Up to now it has been impossible to obtain determinantal
expressions for the vectors ei") even by using computer algebra and it re-
sults in a great difficulty for finding the kernel of the vector ¢-algorithm.
This kernel was first obtained in the real case by McLeod [317] and
then another quite different proof for the complex case was given by
Graves-Morris [192]. It is as follows

Theorem 4.2
If the vector e-algorithm s applied to a sequence of complez vectors

(Sn) such thatVn > N

k
Y ai(Snyi = §) = 0
1=0

where S is a vector and the a;’s are complez numbers such that a; # 0
and ag+ -+ ax # 0 then Vn > N,eg',:) =3S.

It must be noticed that this relation has exactly the same form as the
relation defining the kernel of the scalar e-algorithm (theorem 2.18).
However, in the vector case, the condition is only sufficient while it was
also necessary in the scalar case.

Due to the Cayley-Hamilton theorem, such a relation is satisfied if
the sequence (S,) is given by S,41 = A S, + b,n = 0,1,... with an



218 Chapter 4. Vector extrapolation algorithms

arbitrary So where b is a vector and A a matrix. Since this result has
applications in the solution of systems of linear and nonlinear equations,
this question will be studied in details in section 6.2.

Obviously the vector ¢-algorithm is quasi-linear that is if (S,) is re-

placed by (a S,, + b) where a is a scalar and b a vector then sg',:) becomes
aeg',:) +b and eg',:?n becomes eg',:!H / @. But we even have more. Let eﬁ")
be the vectors obtained by applying it to the vectors S, and let e'ﬁ") be

those obtained from A S,, + b where b is a vector and A a unitary matrix
(that is A= = A* where the star denotes the transpose conjugate) then
) = Ac) + b and 2, = A€,

As in the scalar s-algorithm, the vectors with an odd lower index
are intermediate computations without any interest (except in one case
which will be studied in section 6.3.1). Thus they can be eliminated and
a cross rule for the vector ¢-algorithm is obtained. It has the same form
as the scalar one

E=C+[N-C)'+(S-c)y'-w-0o)']|”
where y~! = y/(y, y) for any non-zero vector y and with
C=ef™, N=ef), s =", W=e[F), E=f}),.
The initializations are e(()") = S, and e(_".} = oo0.
Of course, as in the scalar case, numerical instability occurs if two
adjacent vectors are almost equal. A particular rule which is more stable
was obtained by Cordellier [118]: if N,S and W are different from C

and if (N - C)~ 14+ (§ — C)~! is not equal to (W — C)~! then E can be
computed by

E=(aN+B8S -9W +XC)/(a+B8 -7+ A)
with
a=(N-C,N-C)-!, p=(5-C,5-C)"!, y=(W-C,W-C)}
and

A=ay(N—-W,N—-W)+py(W-S,W-S5)-af(S-N,S-N).
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If C is infinity, this rule reduces to
E=N+S5S-W.

Let us give a numerical example to illustrate the improvement brought
by this particular rule. We consider the sequence of vectors generated
by Sp = Sn—4/2 for n = 4,5,... with

1 1 0 0
So = 0 S = 108 S, = 0 S3 = 108
0 0 0 1

Then, from theorem 4.2, we should have ego) = 0. Using the normal
rule of the vector ¢-algorithm we obtain

0.61
e = | -0.36-10-8
0.83
while the particular rule gives
0.72-10-15
e = | 0.25-10-22
0.36-10-15

The vector ¢-algorithm and its particular rule can be implemented via
the subroutine EPSVEC.

In the vector e-algorithm, use was made of the inverse of a vector.
This inverse involved in its denominator the scalar product of a vector
by itself that is the square of its euclidean norm (that is its length).
Instead of the euclidean norm any other norm can be used and we can
define the inverse of the vector y as

-1 Yy

Yy o=
llyll?
For example one can take
Iyl = roax sl

or

ol = > luil.-
=1
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Thus we obtain a new ¢-algorithm whose properties were studied by
Brezinski [46]. Such an algorithm can be applied to a sequence of el-
ements of an arbitrary Banach space instead of CP. It was proved in

particular that the sequence (eg")) converges faster than (Sn41) for a
linear sequence, that is

Y, |57 - 5[/ 15 - 511 = 0

if (Sn) satisfies
Snt+1— S =8,(S5. - S)

where (a,) is a sequence of numbers converging to a €] — 1,1] or if
Sn—S=2"(y+en)

with —1 < A < 1,y € C? and (e,) a sequence of vectors converging to
zero.
To end this section let us mention that the e-algorithm can be applied

-1
to a sequence of matrices (S,) where now (Aef:')) is the inverse of

the matrix Ae(™ and ¢") is the null matrix.

4.2 The topological ¢-algorithm

As we saw in the previous section, the vector e-algorithm lacks of a deter-
minantal formula. This is because the starting point for its achievement
was the rule of the scalar algorithm. To avoid this drawback another
approach was proposed by Brezinski [51]. It will lead to a determinantal
formula and to a recursive algorithm, which is different from the vector
e-algorithm, called the topological e-algorithm.

The starting point of this new approach is similar to Shanks’. We
consider a sequence of vectors such that, for all n

ao(.S',.-—S)+---+ak(S,.+k—S)=0

where S is a vector and the a;’s are scalars with ax # 0 and ag+- - -+ar #
0. The problem is to compute the vector §. If the a;’s are known then
S will be given by

S = aoSn + ¢+ @k Snik
ao+ -+ ak
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Thus let us compute these a;’s.
We have, by subtraction

aoAS, + -+ agASpyr = 0.

Let y be an arbitrary vector. We consider the bilinear form <y, u >,
defined by

P
<y, u>= Z Yiu,
i=1
where the y;’s and the u,’s are the components of y and u respectively.
Then we have, for all n

ap <Y, AS85,> +:--+ar <y,ASp4x>=0.

Writing this equation for the indexes n,n+ 1,...,n+ k — 1 and as-
suming without any loss of generality that the sum of the a;’s equals
one, we obtain the system

ao +--04 ak =1
ap <y, AS,> 4o+ ag <Y, ASp4k> = 0
a0 <Y, ASptk-1> +--++ ar <Y,ASp42k-1> = 0.

If the determinant of this system is different from zero (which will be
assumed in the sequel) its solution provides ao,...,a; and then S can
be obtained from

S =aoSnti + -+ Ak Sntkti

for any i. Thanks to the particular form of the right hand side of the pre-
vious system we obtain for S the determinantal formula (the numerator
having the meaning explained in the introduction of this chapter)

Spti Sntk+i
<y,Asn> te <y1ASn+k>
<y, ASn+k—1 > o0 <Y, ASnpok-1>
1 cee 1
<y,AS,.> e <Y,ASppk>
<y, ASn+lc:—l > - <y, ASﬂ+2k—1 >
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When ¢ = 0, we shall denote this ratio of determinants by ex(S,) and
when i = k we shall use é(S,). For other values of i, it will be denoted
i¢k(Sn). By construction we have the

Theorem 4.3

IfVn > N,ao(Sn—S)+---+ar(Sn+k—S) = 0 where S is a vector and
the a;’s are (real or complez) numbers such that ax # 0 and ap+- - -+ax #
0 then, Yn > N,ex(Sn) = S and éx(Sp) = S.

Obviously ex(aS, + b) = aex(Sn) + b and éx(aS, + b) = aéx(Sn) + b
where b is a vector and e a non-zero constant.

If (S,) is replaced by (A S, + b) and y by Ay where A is a unitary
matrix and b a vector then ;ex(A S,+b) = A ;ex(Sn)+b. If A is hermitian
regular, if (S,) is replaced by (4S5, + b) and y by A~y then the same
result holds. As pointed out by Midy [320] such a property is of interest
if the components of the vectors S, are physical quantities not of the
same dimension (in the physical sense) and if scaling is needed.

The vectors ex(S,) can be recursively computed by the so-called topo-
logical e-algorithm whose rules are as follows

e =0, M=s5,, n=0,1,...
(n) _  (n+]) y -
Eok41 = Ek—1 +<y,eg',:+l)—eg',:)> ) k,n=0,1,...
(n+1) _ _(n)
(n) _ L (n+D) €2k~ — €3 _
€tz = Eak T i = e y kn=0,1,...
<e£k+l) - 5gk)+1 ) eg,f )~ 62';?>

and we have

(M = ex(S () = y kyn=0,1,...
Cak ek( n) » E2kn <y, ek(ASn) >’ o >

When the dimension of the vectors is one, the rules of the topological

e-algorithm reduce to that of the scalar one and the above connection

also.
Let Hiy1(Sn) be the determinant in the numerator of ex(S,) then

Hiy1(<y,85.>) = <y, Hip1(Sn)> and we have

ﬁk+1(sn)
Hk(< Y, Azsn >)

_ Hiyr(<y,ASn>) - Hiy1(ASn)
ewi(Sn) = elSn) = gy, A28, >) - Ha(<y, A25,5)°

ek(sn)
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We also have the following recurrence relationship among these gen-
eralizations of Hankel determinants

Hi41(Sn) - He—1(<9, ASny1>) = Hi(Sn) - Hi(<y, ASni1>) -
He(Sns1) - Hr(<y, ASw>).

The proof for the topological e-algorithm is based on the fact that for
determinants similar to the numerator of ex(S,), determinantal iden-
tities generalizing those of Sylvester and Schweins hold as proved by
Brezinski [69]. The relation between the scalar Shanks’ transformation
and the vector ones is clear; one has

ex(<y, Sn>) =<y, ek(Sn)>=<y,€(Sn)> .

The subroutine EPSTOP performs the topological ¢-algorithm.
For computing recursively the é(S,)’s the second topological ¢-algo-
rithm can be used. It is as follows

6(—-n1)=07 58")=5m n=01,...
n +1 Yy
By = S+ — kyn=0,1,...

b
(n+2) e(n+1)
2k

(n) _ _(n+1) €2k _
€ = ¢ + , k,m=0,1,...
SR AR
and we obtain
- Y
Egz) = ek(sﬂ) ’ Eg’;l'-l = <y ék(AS")>.

In the preceding algorithms one can think of replacing the bilinear
form <y,u> by the usual scalar product

(y, u) = Z Yiu;.

Of course, when all the vectors are real, it leads to the same results.
However, in the complex case, the results obtained are usually different
although theorem 4.2 still holds. It must also be noticed that (y,u) is
not equal to (u, y) and thus the order of the vectors in the scalar product
is very important. These questions are discussed in details by Tan [428].
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For a fixed value of n (usually n = 0), the ;ex(S,)’s can be recursively
computed thanks to their connection with orthogonal polynomials as
described by Brezinski [63] (pp. 182-184). We set

ne-1(50)=0’ nCO(SO)zsn’ n=0,1’...
AV =pD =0, ka1, da=0
=1, PO =p" =0, ho=<y,AS>, dy=1.

Then for k = 0,1,... we compute

k
hy = Z <y, ASk4i> p,(k)

1=0

k
T = Y <Y ASkyip1> Pfk)

=0
ax = Y+ pg?l hi
Qg
B = ——
hy
C = —
k41 .
k
p)(;.:il) =1, Pg_kl+ 1= ng:;l) =0

P.(H'l) = P.('f)l + Bk+1P§k) - Ck+1P(k“l) , =00,k

k+1 ka1
dk.‘_l = Zp.( + ).

=0
Then we have, for i = 0,1,...

d, d di—
iek+1(S0)=Br41- 'J’:t:‘a'ck(so)'l' I::-.'H ex(S0)—Ch+1- d:+1 -;ex—1(So)-
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These vectors can be displayed in a double entry table as follows

oe-1 =10
0eo = So
1e-1 =0 0€1
180 = 81 0€2
2e_1 =0 1€1 oe3
260 = S 1€2
se_1 =0 2€1 1€3
3eo = S3 2€2
3€ 2€3
3€2
3€3

where ;e; =;ex(So) for simplicity. Thus, the preceding relation links the
vectors

1€k-1

™~

1€k

™~

i€k+1

i+1€k

We previously saw that, for obtaining the topological e-algorithm, we
have to solve a certain linear system which gives us the a;’s. In this
system we make use of the equations

ao <Y, AS;>+---+ar <y, AS;4x>=0

for i = n,...,n+ k — 1. Instead of this, we can use only the equation
for 1 = n but with k different vectors y;,...,yx. Thus the a;’s will be
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given as the solution of the system

ao +-..+ aj =1
ao<y1,AS,.> +---4 ag <y1,AS,.+k> = 0
a0 <Yr, ASp> +:-++ @ <Yy ASnik> = 0

provided its determinant is different from zero (which will be assumed
in the sequel and is only possible when k < p, the dimension of the
vectors). Thus we set

Sn Sn+k
<y1,AS,.> <y1,AS,.+k>

<yk’ ASn> s <yk, ASn+k>
1 1
<y1’ASn> vt <y11ASn+k>

El&:(sn) =

<Yk, ASn> o <Yk, ASnpk>

Obviously a result similar to that of theorem 4.3 holds and the prop-
erty of quasi-linearity as well. Although this vector sequence transfor-
mation was given by Brezinski [51], a recursive algorithm for its imple-
mentation was only recently discovered by Jbilou [244]. If we set

AS, - ASem
<Y1, ASp> -+ <Y1, ASn4k>
(n) <Yk, ASp> -+ <Y, ASppk>
A" = 1 ... 1

<y]’AS"> e <yl,ASn+k>

<yk,ASn> bl <yk,AS’|+k>
then we have

(") = AS,, @(Sa)=Sn n=0,1,...
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Then for k,n = 0,1,... we compute

<yk+1,ﬂ;(¢"+l) > €k(Sn)-— <yk+1,ﬂ£")> €k(Sn+1)

ex+1(5,) =
+l( ) <yk+1aﬁ](cn+l)> - <yk+liﬂl£n)>
o = <wrs1, B> B - <y, B > BHD
* <¥s1, 80> — <ypy, 80>

This algorithm is called the S3-algorithm. Its proofis a direct applica-
tion of the extension of Sylvester’s identity to the vector case. Although
it is very elegant, this algorithm presents the drawback of needing the
construction of two arrays of vectors. If their dimension is large then
the algorithm is very much storage consuming. This drawback can be
avoided as follows.

If we set

o) =<3, 6>

then these quantities are exactly those computed in the auxiliary rule of
the scalar E-algorithm with g;(n) =< ¥, AS, > and the auxiliary rule
of the §B-algorithm reduces to that auxiliary rule. Thus we finally have
the following algorithm

EO(Sﬂ)z Sﬂ., g(():) =<y|’Asn>, n=0,1,--. ; iz 1.
Then for k= 1,2,...and n =0, 1,... we compute

g’(cn+12 .
Ek(sn) = =L

-1(5n) = 5™ & - k—1(Sns1)
(1) _ _(n)
k-1,k — Jk-1k

() _ b 00~ 9 0

Iks = n
9 - o™
This algorithm is exactly the H-algorithm which will be studied in
more details in section 4.5.
The choice of the arbitrary vectors y and ¥, . .., yi in these algorithms
is an open problem.
Instead of the e-algorithm, vector sequences can also be extrapolated
by the vector Padé approximants of van Iseghem [443] which share the
same algebraic properties and have similar applications (see chapter 6).

, fori>k.
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4.3 The vector E-algorithm

For obtaining a vector version of the E-algorithm, almost the same path
as for the topological e-algorithm has to be followed. We consider a
sequence of vectors such that, for all n

Spn =S + a191(n) + - - - + argr(n)

where S is a vector, where the (g;(n)) are auxiliary known vector se-
quences and the a;’s are (real or complex) numbers. The problem is to
compute the unknown vector S. By subtraction, we have

AS, = a1Agy(n) + -+ + arAgi(n)
which can be written as
a0AS, + a;Agi(n) + -+ -+ arAgr(n) = 0
with ag = —1. If y is an arbitrary vector then we have, for all n
ao <y, ASp,> +a; <y,Agi(n)> +---+ ax <y, Ag(n)>=0.

Writing this equation for the indexes n,n + 1,...,n + k — 1 leads to
the system of linear equations

4

ap = -1
a0 < y,ASp, > 481 < y,A91(n) > +---+ ax < y,Agk(n) > = 0

a0 <Y, ASnik-1>+
a1<y, Agi(n+k-1)>+- -+ ar<y, Agr(n+k—-1)> -0

.

If the determinant of this system is different from zero (which will be
assumed in the sequel) then its solution provides ay,...,a; and then S,

which will be denoted by E,(c") since it depends on n and k, is given by
§ = —aoSn — a1g91(n) — - - - — axgk(n).

Thanks to the particular form of the right hand side of the previous
system we obtain the following determinantal formula, where the nu-
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merator has the meaning explained in the introduction of this chapter

Sn 91(n) oo 9k(n)
<y,ASp> <y,Agi(n)> <y, Agi(n)>

| <y, ASnp1 > <y, Agi(n+k-1)>--- <y,Agi(n+k—-1)> 7

E,g") =
<y,Agi(n)> cen <y, Agk(n)>

<y,Agi(n+k-1)>.-- <y,Agr(n+k-1)>
By construction we have the |

Theorem 4.4
IfVn > N,S, = S+ a191(n) + - - - + argr(n) with ax # 0 then Vn >
(n) _
N,E;" =S.

The vectors E,g") can be recursively computed by the vector E-algo-
rithm which is as follows

Eg”)=s,,, g&?:g;(n), n=0,1,...;i>1.
Then, for k = 1,2,...and n = 0, 1,...
(n+1)

<y, E 17 - EI(:':)I > . g(n)
1 k-1,k
<y, 9t - g >
+1
o SHO)mehe> e
Ik-1, (nt1)  _(n) Ik-1k .
<Ys9rk-1k ~ Ik1k

Obviously if (S,) and (gi(n)) are replaced by (¢S, +b) and (ag;(n)+b)
where a is a scalar and b a vector then E,(c") and g,(:,-) become respectively

EIE") = Elgr-.-)l -

o)

a E,(c") +banda g,(c',:-) + b. If y is replaced by a y, E,(c") and g,(c',:-) remain
unchanged.

From the rule of the algorithm, it can be proved by induction that it
holds

Theorem 4.5
IfVn > N,S, = S + a191(n) + az292(n) + - - then Vn > N,E,(c") =
S + ak419k k+1(n) + Gky2gk ki2(n) + -+ - .
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For the choice gi(n) = ASn4i-1, wWe recover the generalization of
Shanks’ transformation studied in the preceding section.

The subroutine VEALGO performs the vector E-algorithm.

Another algorithm for implementing the vector E-algorithm and some
others will be studied in section 4.6.

A particular rule for the vector E-algorithm was given by Brezin-
ski [79]. It allows to jump over breakdowns and near-breakdowns thus
avoiding division by zero and improving the numerical stability of the
algorithm. Let us mention that there is a misprint in Brezinski [79]: k
in the upper indexes of the last row of the numerator and of the denom-
inator has to be replaced by m. This particular rule is as follows (A
operating on the upper indexes)

El(c") 9l(c:2+1 e 9l(c?lZ+m
<y, AEM> <y, Ay,(:,2+, > .- <y, Ag,(:,2+m>

(n+m~

-1 -1 1
<y, AE£"+m ) > <y Agls:?kfl-"l' ) >+ <Y, Agk,k+m ) >

ER =
<Al > o <y Al >

-1 -1
<y, AglEmI > <y, AglEmT) >

and a similar relation for 91(:21:..:' by replacing the E,(:j )5 is the first column
of the numerator by the g,(c”') ’s. For m = 1, this relation reduces to the
rule of the E-algorithm.

Because of its generality, it will be very much interesting to have
acceleration results for the vector E-algorithm.

The first result is due to Wimp [467] who proved the

Theorem 4.6

IfVi,3b; # 1 such that im <y,gi(n+1)> / <y,9i(n)>=b;, ifVj #
i, b; # b; and if 35 such that "li'llolo <Yy Sn41— 8>/ <y, Sn— §>=b;
then Vk, Lim <y EM-8> /<y, S5n-5>=0.

Moreover if for m # 3, llgm(m)ll/ <y, 9m(n) >= O(1) and if

_ <yY,en>
<y¥,9j(n)>

+9i(n){| = o(llenll)

€n
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where en = Sp — § then lim ”E,(c") - S"/ [|Sn — S|l = 0.

Other results were obtained by Matos [314]. However a drawback of
the generality of the algorithm is the complexity of the results.

We first need some definitions. Let I = {1,2,...,N} or I = N and
let p be the dimension of the vectors concerned.

We say that {(gi(n)),i € I} belongs to Frn(I,p) if and only if the
sequences of vectors (g;(n)),, satisfy the following conditions

i) Vi € I,nE%gf(n) = 0for j = 1,...,p where gf(n) is the j-th
component of the real or complex vector g;(n).
ii) Vi € I, let j; € {1,2,...,p} be such that Vj € {1,2,...,p},3C,N
(both depending on i and j;), Vn > N,
- |si(m)/9fi(m)| < €,
. lim gi(n + 1)/gf () = b; with [bi] < 1,
- lim g% (n)/gf(n) = 0,

n—oo Ji+1

. Vk # i, by # b;.

We say that {(gi(n)),i € I} belongs to Froc(I,p) if and only if the
sequences (g;(n)), satisfy the following conditions

i) Vi EI’,.li.If,log{(") =0forj=1,...,,p.

ii) Vi € I, let j; € {1,2,...,p} be such that Vj € {1,2,...,p},3C,N
(both depending on i and j;), Vn > N,

- oim)/gfim)| < c,

- g¥i(n + 1)/gf(n) = 1 + ui(n) with u;(n) ~ a;/n, a; # 0,
and u;(n)/ux(n) = a; (1 +ﬂ.~k(n)) with a;x # 1, Bir(n) ~
air/Inn,Vk < i and k € I,

. lim g#%!(n)/gf(n) = 0,

n—oo 71+1

- Vj #3i, 3K,M (both depending on i and 7), Yn> M, |Agg'(n) /
Agf‘(n)lSK (A operates on n).
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We have the following results

Theorem 4.7 .
Let us assume that Vn, S, = S + Za,-g.-(n). If {(gi(n)), i€l =

s=1
{1, ..., k}} € Frin(I,p) and if y satisfies ,.l_i.% (v, 9i(n)) /g{'(n) =
a; # 0,Vi € I or if {(gi(n)),i€ I} € Froc(Il,p) and if y satisfies
(v,9i(n)) /g (n) = a; (1 + Bi(n)) with B;(n) ~ K;/Inn,Vi € I, then

EM™_s
lim ) =0 Viel.
=[5
Theorem 4.8
Let us assume that Vn, S, = S + Za,-g,-(n). If the conditions of

1=1
theorem 4.7 hold with I = N then 3C,N,Vn > N

|ES - 5| < Cllgatmll, viel

There are some cases where it is easy to find a vector y satisfying the
conditions of the previous theorems

i) if Vi € I,j; = m then y can be taken as a vector with all compo-
nents equal to zero except the m-th which is one.

i) If Vi € IVj # ji, lim g}(n)/g¥(n) = 0 and {(gi(n)),i€I} €
Fuin(I,p) or if gi(n)/gii(n) ~ Kij/lnn and {(gi(n)),i € I} €
Froc(I,p) then the choice y = (1,1,...,1)T satisfies the above
conditions.

Matos [314] also compared the vector E-algorithm to the scalar one
applied on each component of the vectors separately and concluded that
their acceleration properties are equivalent. The only advantage of the
vector E-algorithm is that it needs less arithmetical operations.

The choice of the arbitrary vector y in this algorithm is an open
problem.
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4.4 The recursive projection algorithm

There is a very strong connection between vector extrapolation algo-
rithms, fixed point iterations and projection methods. It will not be
developed here into details and we refer the interested reader to Sadok
[382], Brezinski and Sadok [101], Brezinski [89] and the papers men-
tioned in their bibliographies. However let us present some algorithms
for recursive projection, relate them to vector extrapolation processes
and give some of their applications. Let y,z;,z,,..., 2], 22,... be vec-
tors. We shall use the notation < -;.> to designate either the bilinear
form or the scalar product defined in the previous sections. We consider
the determinants

Y T e Tk
<21,¥Y> <21,Z1> ¢ <2Z1,Tk>
Ny = . . .
2k, Y> <26,21> o <2k, Tk >
<21yZ1> < <Z1yZTg>
Dy = : :
<2k 1> 00 < ZgyTf>
T; F 2 Ty
<21,2;> <2Z1,21> <+ <Z1yZ>
Ni; = . . .

L2y ;> < Zpy1> o0 K2k Tg>
We set

Ni Ni,i
Ey = — d ;= —.
k Dk an 9k Dk
Using an extension of Sylvester’s determinantal identity to determi-
nants whose first row consists of vectors (as in Ni and Ny ;), Brezin-
ski [69] proved that the vectors Ej can be recursively computed by the
following algorithm called the recursive projection algorithm (RPA in

short)

Eo=y, goi=2;, 21
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< 2k, Ego1>
Ex = Exoy———————-gk1k, k21
< 2Zky Gk-1,k >

ki = Gk-14i— bl T/ SEE Ge-1k, $>k2>1
<ZkyGk-1,k >
This algorithm is not very simple since, as the E-algorithm, it involves
a principal rule for the E’s and an auxiliary rule for the g’s. For that
reason let us introduce some more notations in order to propose a more
compact algorithm involving only one single rule. We set z; = y,

z, Zit+1 e Zitk
NO <21,2;> <21,Zi+1> -+ <21,Ti+k>
k= : :
2y i > <ZhyZi41> 0 <ZgyTitpk>
<21,Zi41> ¢ <21,Zi4k>
D’(:) — . .

<2k, Zi41> - <ZpyTigk >

and e{) = N{)/D{.
Since zo =y, obviously D{”) = D, N\ = N; and N{") =(=1)kNg x4
Thus
p©
6= Bx sad of) = (-Dgen oy
k

The vectors ef) can be recursively computed by the following algo-
rithm called the compact recursive projection algorithm (CRPA in short)

e((,‘ =z, 120
Q]
§ : <Zk,€. 1> i+1
el e£11—<z ’e(‘+:)> 5:—1)’ k>1,1>0
1651

Thus the RPA and the CRPA compute the same vectors recursively,
namely e}co) for k = 1,2,.... They require the same storage and the
same number of arithmetical operations and we shall distinguish them
only when necessary (in particular when the gi_, i’s of the RPA have an
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interesting meaning and since they are simpler than the corresponding
eg_)l’s of the CRPA).

Some variants of these algorithms will be seen at the end of this sec-
tion but, for the moment, let us review some of their applications and
connections.

Let us set P, = y — Ex and w; =<z;,y>. Then we have

<z, Pr>= w;, fori=1,...,k.

If now y, z,, z3, ... are elements of a vector space E and if we replace
< zj,z; > by L;(z;) where L; is a linear functional on E (that is an
element of the dual space E*) then Py € span (z;,...,2x) is the solution
of the general interpolation problem

Li(P)=w;, fori=1,... k.

and the RPA becomes

Py=0
wi — Li( P
P = P+ k(kl)'gk—l,ka E>1
Li(gk-1k)
90: = Z, 2 >1
Li(gk-1,) .
i = Gk~ L i, i>k2>1.
gk, 9k 1, Lk(gk..l’k) Gk—-1,k »

The connection between the RPA and the general interpolation prob-
lem can be fully exploited in the framework of biorthogonality as ex-
plained in Brezinski [89]). In particular, the RPA can be used for com-
puting adjacent families of formal orthogonal polynomials and thus Padé
approximants. It has also many other applications.

Let us now consider the case where <, > is the usual scalar product
(-y-) and where 2; = z;. Then P is the orthogonal projection of y
on the subspace spanned by z,,...,z; and the RPA was named after
this property. The P’s are the truncated Fourier sums of y and the
RPA performs the Gram-Schmidt orthonormalization of the z;’s since
(z’?' z"f) = §;; where

1%,

9k-1,k
(Ik-1k » Gr—1.4)"?

zp =
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In that case we have

Ey=y, goi=2zi, i>1

Ex = Ej_,- (¥, 9e-14) gk-1k, k21
(9k—-1,k » Gk-1.k)

(zi 5 gk—1%) )
=< k-1, 1> k21
(9k-1,k » Gk-1,k) Fk-1k»

9ki = Gk-14 —

which shows that the principal rule of the RPA is identical with the
projection method of Rosen [376] for nonlinear programming in which
the auxiliary vectors needed are computed by the auxiliary rule of the
RPA. We also have from the CRPA

=y, =gz, i>1
(+1)
i f Y,€_ i .
e;:) = efcll‘—'((ﬁll)_’e&l)a i20, k21
(k27 ex7y)

Let us now consider the system of linear equations
Az = b
where A4 is a symmetric positive definite matrix. If we set
y=A"1, =z;=A"1, 2z =A%

then (zj,z;) = (A"'*'j_lb, b) = ciyj—1 and (zj,y) = (A"’lb, b) = ci
which shows that the knowledge of A~! is not needed for computing
these scalar products. From the determinantal formula for E; and that
for the conjugate gradient method given by Brezinski [63] (p. 87) we see
that the vectors Py = y— E; are exactly those obtained by the conjugate
gradient method. The same vectors can also be obtained by the topolog-
ical ¢-algorithm but less economically since this algorithm does not use
the fact that for a symmetric matrix (4°'b, 47b) = (4'+7b,b). In the case
of a nonsymmetric matrix we can take z; = (AT). b. Thus the RPA is
very much connected with projection methods used for solving systems
of linear and nonlinear equations and it is, in particular, related to the
algorithms of the ABS class as described by Abaffy and Spedicato (2],
to the method of Sloboda [411] and that of Pugachev [368].
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There are some variants of the CRPA which can be of interest. Using
the same notations as above, we set

20 _ N
k Dl(:_l) :

Then, the following recursive scheme holds
Eg) =z, 1>0
S{i+1)
) = U 0 gD, o, k>
i)
< Zky ek__l >

Let us now set

o
k Clg:‘)
where
1 1
C’(:")z <Z),.ZB,'> s <2, T4k >
<2k, ;> 0 <2y Tipk >
Then
&) = ;, i>0
5(¥)
s~ 50) < 2k, €1 > _(i+1) _ 5(3) :
& = &’,— ) 0 . (e,c_1 - ek_l) , 120, k> 1.

<z, &y — &L, >
These two algorithms are respectively called the first and the second
variant of the CRPA.

Brezinski [79] gave a particular rule for the CRPA which can be used
to jump over breakdowns or near-breakdowns. It is as follows

e,(:) ees ei‘-{-m)
< Zk4+1y ei‘) > cer < 2Zgga, e’(cl+m) >
e(l) _ < Zk4+m) e£’) > e <L Zktm, e(kl-I—m) >
k+m — - .
" <zepr,ef V> o < 2k+1,e;(;+"‘) >
(+1)

t+m
< Zk4my € > e <3k+mye£- )>
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If m = 1, this relation reduces to the rule of the CRPA. Similar rela-
tions can be obtained for the variants of the CRPA.

The RPA, the CRPA and their variants possess quasi-linearity proper-
ties. If y and the z;’s are replaced by ay and az; where a is a scalar then
the quantities computed by the various algorithms are also multiplied
by a. If the z;’s are multiplied by a, the quantities computed by the
algorithms remain unchanged. The addition of a vector b does not lead

to interesting properties.
The subroutine CRPA performs the CRPA and its two variants.

4.5 The H-algorithm

Let us now consider the ratio of determinants

Sn o Sn+k
gi(n) -+ gi(n+ k)

g(n) - gi(n+ k)

B = 1
gi(n) -+ gi(n+k)
gi(n) - 9k(n.+k)

where the S,,’s are vectors and the g;(n)’s scalars. The vectors H,E") can
be recursively computed by the H-algorithm
Hén) =8n, 9(()::) = g;(n) ’
n=01...;1>1

(n)

(n) _ (n) k-1 (n+1) (n)

Hy = H\ - (n+1) (n) ( k-1 _H-l) ’
Ik ~ Ik-1,k

n=01,...; k=1,2,...

(n)
n n 9 - k n n
gl(c,i) = gl(:-)l,i N CYSY) L m (gi—t}i) - gl(:—)l.i) ’

Ji-1k ~ Jk-1.k
n=0,1,...; k=1,2,...;t> k.

This algorithm, first introduced by Brezinski [66], was named after
Henrici since it can be used for implementing a vector sequence trans-
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formation due to Henrici [225] (p. 115) which corresponds to the choice
k = p, the dimension of the vectors, and g;(n) = (Sn+1 — Sn, &;) where
e; is a vector whose components are all zero except the i-th which is
one. This transformation can be used for solving systems of nonlinear
equations as will be explained in section 6.2.4.

The H-algorithm can also be used for implementing the vectors €x(S,,)
defined at the end of section 4.2 which corresponds to the choice g;(n) =
<¥i,AS,>. For g(n) = (2, S,.),Hk") is identical to the vector éﬁ") of
the second variant of the CRPA while for g;(n) =<y, ASp4i—1 > it is
identical to the vector eg',:) = ex(S,) of the topological e-algorithm.

The subroutine HALGO performs the H-algorithm.

A particular rule for jumping over breakdowns and near-breakdowns
can be obtained for the H-algorithm. It is as follows

H,g") o HM™

(n) (n4m)

Ikk+1 " Ikk+1

+

g™ — 9I(c',‘k)+m gl(c',lk+"r‘n)
k+m - 1 e 1
n+

1 PPRRRE

+

Ihom g

and a similar relation for g,(c'j_)m,‘- by replacing the H ,Ej) ’s in the first row

of the numerator by the y,(cf,) ’s.

The H-algorithm is identical to the application of the scalar E-al-
gorithm simultaneously to each component of the vectors S,, with the
same auxiliary scalar sequences (g;(n)). Thus the results of section 2.1
on the scalar E-algorithm remain valid. Theorems 2.1, 2.2 and 2.3 still
hold where now the a;’s are constant vectors. Theorem 2.8 remains
unchanged. Theorems 2.9 and 2.10 are true with the conditions and the
results holding for each component of the vectors E,(:")’s. The quasi-
linearity properties also remain true.

Henrici’s vector sequence transformation, that is for ¥ = p and g;(n) =
(ASn,e;), was studied by Sadok [383] who gave the following results
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based on the formula given by Brezinski [79]
B = S, - A (42) 7 AS,

where A} is the p X p matrix with columns A‘S,,...,A'S,4,—1 for
i=1,2and A, = A].

First of all if H,g") and ﬁ,(,") are the vectors respectively obtained
by applying Henrici’s transformation to the vector sequences (S,) and
(A S, + b) where A is a regular matrix and b a vector, then

H™M =AH™ +b

which shows that a generalization of the property of quasi-linearity
holds.
Concerning the kernel of Henrici’s transformation, we have the

Theorem 4.9
Assume that Vn,det (A%) # 0 for i = 1 and 2. A necessary and

sufficient condition that Vn, H,(,") = S is that Vn,
ao(SO —S)+'--+a,,(S,.+p— S)= 0
where the a;’s are complez numbers witha, # 0 andag+ ---+ap = 1.

Before giving an acceleration result, we need a definition. We consider
a matrix A, with columns af,...,a}. The sequence (4,) is said to be
uniformly invertible if and only if for all n > N,a? #0fori=1,...,p
and there exists a strictly positive constant ¢ (independent of n) such
that

P
|det Aa] > ¢ [T lla?ll,
=1
where ||a7 ||, = (af, a)"/”.
The following fundamental result was proved by Sadok [383]

Theorem 4.10
Let (S,) be a sequence of complez vectors converging to S and such
that
Snt1—-S=(B+B,)-(S.—-S), n=0,1,...
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where B and B,, are matrices with o(B) < 1 and Jim B, = 0. If the

sequence (A,) is uniformly invertible then H,(,") ezists for n sufficiently
large and

Lt
22 s, =5,

This result shows that Henrici’s transformation can be considered as
the generalization to vectors of Aitken’s A2 process since, as seen as a
consequence of theorem 1.8, Aitken’s process accelerates scalar sequences
such that S,41 — S = (B+ B,) - (5. — S), n = 0,1,... where B and
B,, are scalars with |B| < 1 and "li.ncl‘> B,, = 0. Moreover, when p = 1,
Henrici’s transformation reduces to Aitken’s.

Henrici’s transformation can be implemented via the H-algorithm or
by QR factorization of the matrices A2 with updating. See Sadok [383]
for the details.

Let ¢; : (Sp) — (t,(-")) for ¢ = 1 and 2, be two vector sequence trans-
formations. A generalization to the vector case of composite sequence
transformations (see section 3.7) was given by Sadok [382].

Let A be the p X p matrix whose columns are Atf") yeens At,("'”"l) .
Then the vector composite sequence transformation T : (S,) — (T,)
is defined by

To=e+ (1-22 (1)) 7 (4 -4), m=01,..

It can be proved that T, is identical with H{™ if g;(n) is the i-th
component of the vector tg") - tg"). Thus (T,) can be computed by the
H-algorithm. The following results were given by Sadok [382] (see also,
Brezinski and Sadok [101])

Theorem 4.11

If lim " = Lim i = 5, if Vn, Al is regular and if AN,3y €
10,1[ such that Va > N, A2 (A1) < 7 then ¥n > N,A% - AL is
regular and lim T, = 5. Moreover if Jim "tg") - S"/ [I1Sn = S|

Jim | - S|/ 1155 - Sl =0 then lim ||T., - 5||/1S» - S| = 0.

n—oo

As is often the case when going from dimension one to higher dimen-
sions, there are several possible generalizations of composite sequence
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transformations. Thus we can also define the vector composite sequence
transformation V : (S,) — (V) by

Vo=t - (12-72) - (82 - A1) 7 (€0 - o), m=0,1,...

* where T is the p X p matrix whose columns are t.(-"), ey t.(""'” =1)_ This
transformation can be implemented by the CRPA acting on 2p-dimens-
ional vectors as follows

(n) ) (n+i-1) (n+i-1)
0 t t -1 .
el = ( e )’ ) = ( " i) _ ) i=1..,p

and then

D = ) (eflpem) - (‘Quek) e
ST T D) - ()

k=1,...,p;i=0,...,p— k

where e; is the vector whose all components are zero except the i-th one
which is equal to one. The first p components of the vector c,(r,o) are equal
to the vector V,.

For this second vector composite sequence transformation, a conver-
gence result similar to that of theorem 4.11 can be proved but not a
similar one for acceleration.

More generally the RPA (or the CRPA) can be used for implementing
Henrici’s transformation. We set

S'l Asn+|'—l .
= , i = , =1,...,p.
= (om ) == (S50), e

For any vector v = :1 of dimension 2p we define < z;,v> as equal
2

to the i-th component of v; — v;. Applying the RPA gives a vector E;
whose first p components are those of H,(,").
To end this section, let us consider the particular case where g;(n) =
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€n+i-1. Then we have

Sm -+ Spik
Cn (ST cn+k

Cnt+k~-1 °*° Cn42k-1
H(") — n
k 1 ces 1

cﬂ o e cn+k

Cn+k—-1 °°* Cni2k-1

which shows that this transformation is a generalization to the vector
case of the G-transformation discussed in section 2.4. For that reason
we shall set G,(c") = H, ,ﬁ") and we have

(n+1) (n+1)
(1-B52) -t - -
Te+1 Tr+1

with G'((,") = S, where the scalars r.(") are given by the rs-algorithm.
Thus the Gi")’s can be computed either by this vector G-transformation
or by the H-algorithm with g;(n) = cnti-1.

When ¢, =<y,AS, > we recover the first generalization of Shanks’
transformation given in section 4.2 and we have Gg") = ex(Sn) which
can be computed by the topological ¢-algorithm. However the vector G-
transformation is more economical in storage and number of arithmetical
operations as stated by Brezinski [60].

As shown by Gander, Golub and Gruntz [172] other projections meth-
ods used for solving systems of linear and nonlinear equations can be
put into the above framework and thus implemented either by the H-
algorithm or by the bordering method. We have

k
2" = D biSn+

=0
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where the b;’s (which depend on n and k) are solutions of the system

bo+--+b=1
bog1i(n)+---+brgu(n+k) = 0

bogk(n) + -+ -+ bkgr(n+ k) = 0.

If gi(n) =<y, ASp+i-1 > werecover the first generalization of Shanks’
transformation given in section 4.2. If g;(n) = (ASn4i-1,AS,) we ob-
tain the minimal polynomial extrapolation method (MPE). For g;(n) =
(A%Sp4i-1,AS,) we have the reduced rank extrapolation method (RRE)
and for g;(n) = (yi, ASn) the modified minimal polynomial extrapola-
tion method (MMPE). Other algorithms for implementing these methods
will be described in the next section where references are given.

4.6 The Ford-Sidi algorithms

In section 2.1, we studied an algorithm obtained by Ford and Sidi [162]
for implementing more economically the E-transformation. Ford and
Sidi [163] generalized this algorithm to the vector case thus obtaining
several interesting algorithms. We set

.qm(n) s gm(n + k- 1)
Gy = : :
Im+k-1(R) -+ gmik-1(n+ k1)
bn e bn+k
n gm(n) - gm(n+k)
A OES :

Im+k-1(n) <+ Gmik-1(n+ k)

When the b,’s are scalars then f;"™(d) is also a scalar and when they
are vectors it is a vector. We set

Gi™=1 and f™(b)= b,

and we define the following ratios of determinants

5m0) = i)
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where I = (1,...,1) and

nm ™ (b)
T, ™ (b) = gt
k Grtl

We have

st = Tons

This formalism covers many vector sequence transformations and pro-
jection methods; let § = (S,) be a sequence of vectors, then

i) if gi(n) = (ASn,¥i+1) where the y;’s are arbitrary vectors then
S,':’O(S ) are the vectors obtained by the modified minimal polyno-
mial extrapolation method of Sidi, Ford and Smith [408].

ii) if gi(n) =< ¥, ASntm > then we recover the topological -algo-
rithm, SP%(S) = ex(S,) = V.

iii) if gi(n) = (AS;, AS,) then S;""(S) are the vectors obtained by
the minimal polynomial extrapolation method of Cabay and Jack-
son [109].

iv) if gi(n) = (A%S;,AS,) then §"(S) are the vectors given by
the reduced rank extrapolation method of Eddy [149] and Mesina
[319).

v) SM(8) = H{™ of the H-algorithm.

vi) if gi(n) =< z;, S, > then S"'(S) = é';c") obtained by the second
generalization of the CRPA and T}!(S) = e( ") given by the CRPA.

vii) if bo = Sn,b; = Gi(n) for i = 1,...,k, gm4i(0) =< y, ASn4; >,
Im+i(§) =<9,AGj(n +i)>,fori=0,....,k—1land j =1,...,k
then T"™(S) is identical to the vector E( ") obtained from the
vector E-algorithm with E( ") = = S, and g( ) = G;(n).

Thus this formalism covers all the vector transformations previously
studied. We shall now see how to compute the S;"™(S)’s and the
T;"™(8)’s when m is fixed and also when m varies withnasm=n+g¢
where ¢ is a fixed integer.
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Let us set g; =
Sp™(6)

TP (b)
where

n

Ck

di

In the case where g;(n)

computed by the CRPA.

(9i(0), (1), .-

Chapter 4. Vector extrapolation algorithms

.). For a fixed value of m we have
SErH(b) — g SE™(b)

1-c}
n,m(b) dn n+ll,m(b)

Sl':’_"l.(gm+k l)
Spy ™ (9mk-1)
Tk-l (9m+k-1)
Tn+1 m(9m+k 1)

=< 2i,Sn >, Tg"™(S) is more economically

Let us now consider the case where m = n + ¢, ¢ being a fixed integer.
For simplification and without any ambiguity we set

SE(b) = Sp(b), ol
Sp(b) = Sg™7l(b) and Tp(b) =

Then we have

Sk (b)

Se(b)
k (b)
7 (b)
with

(b)) = Tp"t(b),
T+ (b).

Sp_1(b) — £ Spti ()

1-c
Sp_,(b) — &pSptl(b)
1- c,c

P (6) - BRTH ()
1(8) - RTLH ()

St_1(gn+q+k-1)
524 (gntgrk-1)
Si-1(gn+q-1)
531-11 (gn+q-1)
T¢ 1(gn+qtk-1)
TI:‘;‘-II (9n+q+k-1)
TP 1(9n+q-1)
f,:n:—ll (9n+q-l ) .
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The following four-term recurrence relations also hold (there is a mis-
The corrected for-

print in the formulz given in Ford and Sidi [163).
mulz were sent to us by the authors)

Sp(d) "“(b) SpT(b)
SI':'(gn+q) Sk-l-l (9n+q) Sl?.:l(gnﬂ)
n - Sk (gn+q+k) Sl'c.jl (gn+q+k) Sl? + (gn+q+k)
Ska(b) = 3 3 1
Sl?(gn+q) Skjlp11(9n+q) SE+1(9n+q)
SP(nta+k) Spti(gntqrk) SEt'(gniqtr)
e THe) IR
Tl?(gnﬂ) Tk-ll (gn+q) Tl?-: (9n+q)
2 (b) = TP (9n+a+k) Titi(9n+otk) Tpt'(gnig+k)
+1 - n n
+l(9n+q) T jl(9n+q)
Tk—l (gnt+q+k) TPt (gntq+k)

Finally when n is fixed and m varies we have

Spm(b) - epSp™ 1 (8)
Sn,m(b) = 1 —
o (b)) — P T ™ (b
Tk ' (b) = 1-— dmk ( )
with
m Sl'czl"l‘(gm'l‘k—l)
Ck nm—1
Sk (9m+k—1)
a T (9m+k—1)

Tl:"m‘l(gm+k—l) '

Some special cases are treated by Ford and Sidi [163]. They also
compare the number of arithmetical operations of the various algorithms.

4.7 Miscellaneous algorithms

In this section we shall review some extensions to the vector case of
various scalar algorithms studied in the second chapter.
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The first of this algorithm is an extension of the ©-algorithm due to
Brezinski [51]. Its rules are as follows

o™ =0, oM=s,, n=0,1,...

e  _ @(“tl) + ___y___ k,n=0,1,...
2k+1 2k-1 <y, Ae(n)
egvl:)+2 — 9(n+1) ¥ w(n) £2)+1 , k,n=0,1,...
with
wﬁ") - %% Ae("H)
<z, AD(,JH >
( )
oy, = (AG i QN
< Aezk?i-v AOy;

where y and z are two arbitrary vectors such that the denominators do
not vanish. This algorithm will be called the generalized ©-algorithm
(GTH).

Other generalizations of scalar algorithms were proposed by Osada
[348]. They use either the bilinear form

P
<z,¥y>= E h
=1
where z;,...,z, and y,..., Y, are the components of the vectors z and
y € CP respectively or the usual scalar product

p
(z,9)= Z ziii.
=1
In the last case we recall that the inverse z—! of the vector z is defined

as
-1_ Z

"~ (z,2)

The generalizations due to Osada are the following. First an exten-
sion, called the Euclidean W transform (EWT) of Lubkin’s W transfor-
mation

z

Wé"’:S,., n=0,1,...
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W, = wihh -
<aw* ) aw{nd s
<AWY), AW AW ArwnD s
k=1,2,...;n=3k3k+1,...

AW,

Then a vector W transform (VWT) whose rules are

w =8, n=01,...
(AW"“” aw¥)
(AW,E',‘;"’,AW"_"”)) '

Wi = W("‘1)+(1—

(lowies) ™ -2 awies?) ™+ awies?) )7
k=1,2,...;n=3k,3k+1,...

Theoretical results similar to those given at the end of section 4.1 hold
for the sequence (Wl(")) obtained by the EWT.

In the GTH the scalar product can be used instead of the bilinear form
thus leading to the vector ©-algorithm (VTH) which is

e =0, oW=s5,, n=0,1,...
n n n)\ !
egk)ﬂ = ngﬁ) + (A@§k’) ) k,bn=0,1,...
A@(n""l)’Ae(ﬂ)
93&2 — va;ﬂ) ( 2k+1 2k+l) Aa(n+1) . kn=0,1,...

(87051, a2053),,)

The scalar p-algorithm can also be generalized in two different ways.
First a vector g-algorithm (VRA) whose rules are

(")=0, g(()")ZSn) n:O,]_’...
n n -1
dh = dV+(k+1)-(ag”), kn=01,..

Then a topological g-algorithm (TRA) which is

g(_“1)= gg")=Sn, n=0,1,...
n n 2k + ]_
ngzn = gk+}) + ‘(‘_"“‘)L k,n=0,1

<y,Ag( )> ’
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() o e, (2k+2)Aen (a+1)

[ = k,n=0,1,...
2k+2 2k <Ag("+1) Agg',:!n ’ ’ ’

Of course in the case of a vector sequence any scalar algorithm can
always be applied componentwise.

Let us give a numerical example to illustrate these algorithms.

We consider the system of equations

z+zy+y? =0
z2-2z+y? =0
z + 22 =0

whose unique real solution is z = y = z = 0 and whose Jacobian at the
solution is

|
N
oo o
oo o

Thus Newton’s method will converge only linearly. Starting from
zo = 0.1, yo = 0.5 and 2y = 1 we obtain the following results (— log,, of
the supremum norm of the error) with y = z = (1.5, 2.5, 3.5)T

[ & [liter.|vEA [MPE [EWT [VWT | W [GTH [VvTH | © |

la 1 [[0.30
2 [{0.60| 1.09| 0.32
3 1l0.91] 2.47| 3.42
4 ||1.21| 4.99( 549 3.67| 2.88| 2.98 3.73| 2.98
Ts 1.51| 5.49| 7.50| 5.03| 4.19| 4.33| 3.82| 5.04| 4.33
6 [|1.81| 6.29| 9.72| 6.67| 5.81| 5.97| 5.48| 6.67| 5.97
7 |2.11] 9.17|12.24| 8.61| 7.75| 7.92| 7.43| 8.61{ 7.92
8 [2.41|11.02|15.10 | 10.85| 10.00|10.13| 9.69|10.85|10.17
9 [12.71]13.76 | 18.24| 13.40| 12.55|12.72| 12.24| 13.40 | 12.72
10/ 3.01}15.72| 18.66 | 16.26 | 15.40|15.58 | 15.10| 16.26 | 15.58

To end this section let us mention the following generalization of
Aitken’s process which can be found, for example, in KfiZek and Neit-
taanmaiki [268]

AS,
T, = n+1+1_;na n=12,...
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with ¢, = Z (AS and where (AS,); is the i-th component of
(Asn l)t
the vector AS
These algorithms deserve further theoretical studies.
In his thesis, Germain-Bonne [182] introduced a vector sequence trans-
formation which generalizes Aitken’s A? process but which is different
from the preceding ones. He considered the ratios of determinants

Sn Sn+1 Sn+k
(ASn,ASn)  (ASn,ASny1) -+ (ASn, ASnik)

(Asn+k—la Asn) (Asn+k——la ASn+1) te (Asn+k—l ’ Asn-}-k)
1 1 .. 1 )
(AS,, AS,) (ASn, ASpy1) -+ (ASn,ASnik)

Tlfn) =

(Asn+k——1, Asn) (Asn+k—l’ ASn+1) tee (ASn+k—l ’ Asn+k)

These vectors can be recursively computed via the RPA by setting

_ Sn Asﬂ+l 1 - '—Asn+i—1
= ( Sni1 ) s ( ASnsi ) “e ( ASntica )
and (Zj, Z.’) = (A5n+j_1,ASn+,') - (ASn+j—1’ASn+i—-l)- Thus we are
working with vectors of 2p components and the first p components of
the vectors Ej given by the RPA will be the vectors T,E").

The case k = 1 was rediscovered by Zienkiewicz and Léhner [488] and
it was used for accelerating dynamic and viscous relaxation procedures
in problems coming from finite elements.

Another generalization of Aitken’s process was studied by Graves-
Morris [193] who used

T = (AS,, AS,)

nT Ut (AS,, A2S,)

This formula is a kind of mixture between the vector ¢-algorithm and
the vector-valued Padé approximants and its study was motivated by its

numerical performances.
Other generalizations of the form

Tn=sn+an'ASn

ASn-i—l, n=0,1,...
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can also be found in the literature. The case a, = — (AS,, A2S,)/
(A%S,,A2S,) was studied by Irons and Tuck [237] and the choice a,, =
~||ASnll, /||A%Sa]l, was made by Karrholm [256].



Chapter 5

CONTINUOUS PREDICTION ALGORITHMS

Up to now we were concerned with the problem of finding an esti-
mation of § = n]ingo Sp from S, Spt1y. ..y Snt+k O, equivalently, from

SnyASp,...,AkS,. We shall now be interested in obtaining an approxi-
mation of § = tli‘f.t f(t) from £(t), f/(t), ..., f*¥)(t). This is the so-called
continuous prediction (or extrapolation) problem and for that purpose
we shall either use the algorithms given in the previous chapters for
the sequence (S,) defined by A™Sp = f(")(t) (or another related defini-
tion) or their so-called confluent forms. Such a procedure for predicting
S = tlirgo f(t) has to be compared to the previous algorithms when ap-

plied to S, = f(t,) where (t,) tends to infinity. Of course, by a change

of variable, the continuous prediction algorithms could be used for calcu-

lating S = tlim f(t). As we shall see in chapter 6, they have applications
—a

in the computation of Cauchy’s principal values and improper integrals,
among others. The idea of continuous prediction algorithms is due to
Wynn [472] who first obtained the confluent form of the e-algorithm.
However in order to explain the process followed by Wynn we shall make
use of a simpler example, namely Richardson extrapolation process and
we shall see that its confluent form is the Taylor expansion. Then we
shall study the confluent forms of Overholt’s process, the scalar and
topological e-algorithms, the p-algorithm, the ©-algorithm and proce-
dure, the G-transform and finally the E-algorithm.

Instead of producing a set of sequences, continuous prediction algo-
rithms will produce a set of functions and we shall say that the function
G converges to S faster than the function F if

lim (6(t) - 5)/(F(6) - $) = .

Of course we shall assume that the function f to which a continuous
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prediction algorithm is applied is sufficiently differentiable.

The construction of continuous prediction algorithms can be done by
two different ways. The first one will be explained in section 5.1. It con-
sists in modifying the rules of a sequence transformation and obtaining
a function transformation called the confluent form of the correspond-
ing algorithm for sequences. The theoretical study of such a function
transformation is then often a quite difficult task since, as for some se-
quence transformations, the starting point is the rule of the algorithm
itself. The second approach consists in assuming that some relation of

the form
R(£(), £(1), -, f9(t),S) = 0

holds for all ¢ and then to compute §. This approach is similar to the
approach described in section 1.2 for sequences although less developed.
The only quite general results in this domain are those given by Brezin-
ski [42] which are quite similar to the results due to Pennacchi [355] and
explained at the beginning of section 1.11. Both approaches will be used
in the sequel. The notion of kernel introduced in the first chapter can
be easily extended to continuous prediction algorithms. Let T': f — ¢
be a function transformation. The kernel K7 of T is the set of functions
f such that V¢, g(t) is constant.

5.1 The Taylor expansion

We shall illustrate the process followed by Wynn for obtaining the con-
fluent form of the e-algorithm from the scalar ¢-algorithm on a simpler
example, namely Richardson extrapolation process as explained in sec-
tion 2.2. This process can be written as

™ = 5,
7™ _ g+

™ — 7™ g .k "7k  kp=01,...
k+ k " Zntk+1 — Zn 7

Let us replace z,, by t + nh and assume that T,E") represents the value
of the function T} at the point z,,. Setting f(z,) = S, we obtain

To(t + nh) = f(t + nh)

t+nh Ti(t 1)h)—Ti(t + nh
Ti+1(t + nh) = Ti(t + nh)- k++n1 T ( + (n + )h) k(t+n ).
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Letting now h tend to zero gives the confluent form of Richardson
extrapolation process

To(t)=f (t)

Tipa(t) = Tk(t)—m -Ti(t), k=0,1,...

It is easy to see that

T(t) = 1) - t£(0) + -+ S ok g

which is the truncated Taylor expansion of f around zero (that is with
h = —t). Thus we don’t obtain any new interesting algorithm but this
example clearly shows how to obtain the confluent form of a sequence
transformation by replacing the discrete variable n by the continuous
variable z =t + nh and then letting A tend to zero.

5.2 Confluent Overholt’s process

Let us assume that, for all ¢, f satisfies
00 .
=85+ a[f(t).
i=1

The problem is to find approximations of §. Proceeding as in the
scalar case, leads to the confluent form of Overholt’s process which is as
follows

Vo(t) = £(t)

Vk+l(t) = W (t) - :ff::((tt)) Zki? ’ k= Oa 1,...

and we have the

Theorem 5.1 o
Kf(t)=5+ a;[f'(t)] thenVk>1

=1

Vi(t) =S + i ai'(l—%) ( k. ) (1-14)- [f’(t)]

i=k+1
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Let us now assume that the confluent Overholt’s process is applied to
a function f such that tlim f(t) = S. Then we immediately have the

Theorem 5.2
A sufficient condition that Vk > 1, ‘lixglo Vi(t) = S is that 3e > 0 such

that Vit > T, |f"(t)/ £(2)| > e
A necessary and sufficient condition that Vi, converges to S faster

than Vi is that
- F) Vi(t)
B -5ttt
The main drawback of the confluent form of Overholt’s process is that

Vi must be obtained in closed form and then differentiated which means,
most of the time, that computer algebra has to be used.

5.3 Confluent ¢-algorithms

The confluent form of the scalar e-algorithm was obtained by Wynn [472]
as explained in section 5.1. The discrete variable n is replaced by z =

t+nh, e;',:) is replaced by e2x(z) and eg',:?ﬂ by A~ 'ezx41(z). Then we let
h tend to zero and we obtain the confluent form of the scalar ¢-algorithm

e-1(t) =0, eo(t) = f(t)
€k+1(t) = ek—l(t)'*' e_;‘% ’ k=0,1,...

This algorithm is quasi-linear which means that if f(t) is replaced by
af(t)+b where a # 0 and b are constants then £2x(t) becomes a eax(t)+b
and €2x41(t) is replaced by e2x+1(t)/a.

As said in the introduction of this chapter, the starting point for the
study of the confluent ¢-algorithm is the rule of the algorithm. So we
know from our experience with scalar algorithms that it is important to
be able to express the £x(t)’s as ratios of determinant. Let us set

HY@) = 1

F)(t) forO() ... flatk=1)(g)
(@) = : s z
f("+"'l)(t) f("""‘)(t) f(n+2k—2)(t)
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These functional Hankel determinants satisfy the same recurrence re-
lation that the Hankel determinants defined in section 2.3

HP@)=1, BP@="@), a=0,1,..
n n n n n 2
B 0)-HZ() = B @) 0)- (B @),
k=12,...;n=0,1,...
It was proved by Wynn [472] that we have the

Theorem 5.3

(0) (3)
eu() = 200 = B0
H,“(t) Hy (1)

As in the scalar case the e2;4+1(t)’s are intermediate computations
without interest. Thus we see that the computation of the ex(t)’s can
be conducted by, at least, five different methods. First, the rule of the
confluent e-algorithm can be used. However it must be noticed that, as
was the case for the confluent form of Overholt’s process, it implies that
the closed form of €x(t) is known and then differentiated (by computer
algebra). The second method consists in using the result of theorem 5.3
and computing recursively the functional Hankel determinants as ex-
plained above. The third method is based on the fact that the ratio of
determinants for e2x(t) is exactly the same as the ratio for wg? in the
w-algorithm (see section 2.3) with a, = f(")(t). In fact the w-algorithm
was derived by Wynn [484] for implementing the confluent form of the
scalar e-algorithm. Let us consider the system of linear equations

aof(t) + a1 f'() + -+ - + ar fO)(2) =1
ao f'(t) + a1 f(t) + - - - + ar fH1)(2) =0

;Iof(k)(t) + alf(k+l)(t) 4ot akf(”‘)(t) = 0

Then ag = H,gz)(t) /H,(:i)l(t) which shows that e54(t) = 1/a9. Thus
the €2x(t)’s can be obtained recursively by solving this system by the
bordering method explained in section 1.8.

Finally another method for computing £x(t) is to apply the scalar &-
algorithm to the sequence (S,,) defined by A"S, = f(")(t) forn = 0,1, ...
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and we shall obtain eg,? = €2k(t). Thus, of course, the other algorithms
for implementing Shanks’ transformation can also be used: G-transform,
E-algorithm, ...

The following relations were also proved to hold

2
LeX0)
BO(t)- HP (1)
2N (@) - B, ()

Eak2(t) = ex(t) -

e;k(t) [ngz)(t)] 2
, __HP@-H\¢)
Ens1(t) = - [le(t)i'z .

Let us now study the kernel of the confluent form of the ¢-algorithm.
We have the

Theorem 5.4
A necessary and sufficient condition that Vt > T, e2(t) = S is that
Vi>T
fA)=S+arf'(t)+---+afO(t)

where the a;’s are constants independent of t or, in other words, that

ft)=S5+ i A;(t)emt + i [Bi(t) cos b;t + C;(t) sin b;t] "

=1 i=p+1

withr; # 0 fori = 1,...,p, where A;, B; and C; are polynomials in ¢
such that, if d; is equal to the degree of A; plus one fori =1,...,p and
to the mazimum of the degrees of B; and C; plus one fori = p+1,...,q,

one has ) ]
Ydi+2 ) di=k

=1 i=p+1

This result is similar to that of theorem 2.18 for the scalar ¢-algorithm.
Some other algebraic properties of the confluent form of the £-algorithm
can be found in Brezinski [55]. Let us now give some convergence results.
Such results are only known for totally monotonic functions. We say
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that the function f is totally monotonic (in [T, c0) to be more precise)
V> T,
(—l)kf(k)(t) 20, k=0,1,...

Such functions are also called, sometimes, completely monotonic.

Obviously if f is totally monotonic, there exists § such that § =
Lim (1)

It is known, see Widder (462] for example, that a necessary and suffi-
cient condition that f be totally monotonic in [0, 00) is that there exists

a bounded and non decreasing in [0, 00) such that
fmz/ e~*tda(t), Vi € [0, 00).
0

Moreover Vk > 0 and Vt > T, H,go)(t) > 0. But, if f is totally mono-
tonic, then so is (—1)* (¥) and thus (—l)k"H,gn)(t) > 0,Yk,n > 0. From
these inequalities the sign of €;(t)’s can be obtained and we have the
following result, Brezinski [38]

Theorem 5.5
If the confluent form of the c-algorithm is applied to a totally mono-
tonic function f thenVk > 0 and ¥Vt > T

ex(t) 20, et1(t) <0
en(t) S0, £5,4(t) <0
0 < e2k+2(t) < e2x(2)
E2k+1(t) < €2k-1(t) 0.

From these inequalities it can be immediately proved

Theorem 5.6
If the confluent form of the e-algorithm is applied to a function f such
that ‘lim f(t) = S and if there ezist two constants a # 0 and b such that
—00

af + b is totally monotonic, then
t]il’gigk(t)——-s, k=0,1,...

Contrarily to the results given in section 2.3 for totally monotonic
sequences it has not yet been possible to prove that £5x, 2 converges to
S faster than £,;. This result is certainly not always true since, for the
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totally monotonic function f(t) = 1/t, we have ez (t) = 1/(k + 1)t and
thus

E2k42(t) _ k+1
e2k(t) k+2

It also remains to study the convergence of the sequence (£2x(t)), for
alt > T.

The confluent form of the topological ¢-algorithm was defined and
studied by Brezinski [50]. In section 4.2, we assume that the S,,’s and y
were vectors. More generally the same formulze, algorithms and results
hold if the S,’s are elements of a vector space E on R or C, if y is
an element of its dual space E* that is a linear functional on E and if
<+, +> denotes the bilinear form of the duality that is if <y,u> denotes
the number obtained by applying the linear functional y to u € E. In
that case the eg',:)’s are elements of E while the eg',:),rl’s are elements
of E*. For defining the confluent form of the topological ¢-algorithm
we need E to be a space of differentiable functions of R into RP. Thus
f(t) will denote a p-uple of real differentiable functions (f;(t), ..., fu(t))
and y = y(t) will be a differentiable application of E into R that is
y(t) : f£(t) = (fi(t),..., fp(t)) —<y(t), f(t)>€R.

The confluent form of the topological ¢-algorithm was obtained by
replacing n by z = t + nh, eg',:) by eax(z), eg'&_l by h~legry1(z) and
then letting h tend to zero. Its rules are

e-1(t) =0, eo(t) = f(t)

y
t) = )+ ——— k=0,1,...
e2k+1(t) eak-1(t) + <V, (0> ) y 1y
’
t
£2k+2(t) = €2k(t)+ ezk() k=0,1,...

<e€y1(t) s €5:(t)> ’

where y is independent of t.
Thus the £2;(t)’s are elements of E and the £3,41(t)’s are elements of
E* which depend on t although y does not.

Algebraic results similar to those of the confluent form of the scalar
e-algorithm can be obtained. First a similar property of quasi-linearity
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holds. Let us set
(1) ces f(n+k—1)(t)
r(n <¥, f("+1)(t)> <y, f(ﬂ+k)(t)>
() = : :
< y’ f(n+k—l)(t) > ces < y’ f("+2k—2)(t) >

and H"(t) =<y, BM(t)>.
By Sylvester’s identity we have

BR8P0 = BP0 B0 - B0 - BT
with H{(t)= B (t)=1, A"(t)= f(t) and B™(t)=<y, f™)(t)>.
The following determinantal formulz hold
Theorem 5.7

(O) t)
P10
0 oy
(3)(t)
E2k+1(t) =
HC), ()
g g
_ H () - Hy 'y (2)
€2k+2(t) = €2k(t) H;Ez)(t)'ng.)l(t).

If we set ex(t; f) =€2x(t) then we see that 2541 (t) =y/<y, ex(t; f')>.

It can be proved, from theorem 5.7, that the result of theorem 5.4 still
holds, the condition being now only sufficient and we shall not recopy
it.

From the practical point of view, the £2;(t)’s are not computed by
the rule of the confluent form since it involves differentiation, but by
the recurrence relations of Hankel determinants and the relations of
theorem 5.7. They can also be obtained by using the bordering method
for solving the system

ag = 1
ao <y, f'(t)> +-- -+ ax <y, FED()> = 0

a0 <y, fR()> +-- -+ ar <y, [ (t)> = 0



262 Chapter 5. Continuous prediction algorithms

and then computing
e(t) = aof(t) + a1 f(8) + - - + ae fE)(2).

It must be noticed that < y,e2x(t) > is equal to £2x(t) obtained by
applying the confluent form of the scalar ¢-algorithm to <y, f(t) >. Thus
if <y, f(t) > is totally monotonic then the convergence of <y, €ea(t) >
to <y, S> holds by theorem 5.6.

5.4 Confluent g-algorithm

The confluent form of the g-algorithm was obtained by Wynn [472] by
the same method he used for the ¢-algorithm. Its rules are

e-1(t) =0, eoft) = £(¢)
ok+1(t) = ex-1(t)+ k,“;t; k=0,1,...

Let H{"”(t) be the functional Hankel determinant obtained by replac-
ing f0)(t) in H, (")(t) by f()(t)/i!. Wynn [484] proved

Theorem 5.8

7o —(3)
()= ZED gy = 6T
Hy'(¢) k+l(t)

Let 0x(t) and §2x(t) be the functions obtained respectively by apply-
ing the confluent form of the p-algorithm to f(t) and

_a+bf()
f(t)— C+df(t)

where ad — bc # 0; then

a + b oau(t)
c + doa(t)

The g24(t)’s can be computed by the rule of the confluent g-algorithm.
However, as for the other confluent algorithms, this method requires to
know the closed form of gx(t) and then to differentiate it. Another

G2x(t) =
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method is to use the recurrence relations for the functional Hankel de-
terminants with the initializations H{")(t) = £(")(t)/n!. Another possi-
bility is to use the w-algorithm (see section 2.3) with w,(,") = f(»)(t)/n!
and we shall have wg,:) = p2k(t) and wgi) = 1/p2k+1(t). Finally the scalar
¢-algorithm applied to the sequence (S,) defined by A"S, = f(")(¢)/n!
for n = 0,1,... will provide eg,)c) = 02k ().

In section 2.5, we saw that the p-algorithm is connected to rational
interpolation and continued fractions. Now, when using the confluent
form of the p-algorithm, all the interpolation points coincide and we
obtain the so-called Thiele expansion formula which generalizes Taylor’s

e+ )= 0) 4+ al’Zt)J+] hd e

with ai(t) = ok(t) — ex-2(t), k =1,2,....

While Taylor’s expansion terminates if f is a polynomial, Thiele’s
terminates when f is a rational function with the same degrees in the
numerator and the denominator or with the degree of the numerator
equal to that of the denominator plus one. Let us replace t by 0 and A
by z, then Thiele formula becomes

f(z)=f(0)+'—:—1J +i:_2) ..

with ax = ag(0). Let Cr(z) = Ax(z)/Bi(z) be the successive conver-
gents of this continued fraction. Then Aji_;, Aok, Box and By are
polynomials of degree k in z. If f is expanded into a formal power series

f(z) = Z izt
1=0
and Cj(z) also, then it can be proved that
f(z) - Ci(2) = O(*+) (=~ 0).

Looking at the degrees of Ay and B and at the definition of Padé
approximants (see section 2.3) this means that we have

Cax(z) = [k/k]f(z),  Cak-1(z) = [k/k - 1]f(2).
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Thus there exists a relation between the confluent form of the g-
algorithm and the qd-algorithm (see section 2.4) which is related to
Padé approximants and continued fractions, see Brezinski [63]. We have

1
—02k02k+1¢£ ) =

- n _
Q2kQ2k-1q ° =

and the qd-algorithm can be used for computing the a;’s and recipro-
cally.

By the link between Padé approximants and orthogonal polynomials
there is also a connection between the confluent p-algorithm and formal
orthogonal polynomials as explained by Brezinski [60). Let ¢ be the
linear functional on the space of polynomials defined by c (z*) = ¢, for
i =0,1,.... {P}issaid to be a family of formal orthogonal polynomials
with respect to c if, for all k, P, has the exact degree k and

c(z‘Pk(z))zo, fori=0,...,k-1.

Such polynomials satisfy a three-term recurrence relation and can be
computed via the confluent form of the p-algorithm as follows. We set

P_y(z)=0, Pz)=1, B1=Po=1, p-a(z)=0, go(z) = f(z).
Then for k = 0,1,... we do
e computation of gzx41(0) and g2x42(0).

e computation of

Bak+1 = 02641(0) — 026-1(0)

Bak+2 = 02k42(0) — 024(0)

Biyy = B2k + Bak+2
+ B2kBak+1P2k+2
1
Ck =
+ Bok-182P2k+1

Perr(z) = (2 + Bes1)Pi(z) — Crs1Pe-a(z).
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5.5 Confluent G-transform

The confluent G-transform, called by its authors Gray, Atchison and
McWilliams [197] a higher order G-transformation, is a mixing of con-
fluent and scalar transformations. It is defined by

f(t) f(t+h) f(t + kh)
L) F(t + kh)

f'(t+h) f'(t + 2h) f'(t+ (k+1)h)

Gty < L (ic ~1h) fle : BR) - ft+ (2} ~ 1)h)
O L £/t + kh)

Fe+R)  f(t+2R) - F(t+(k+Dh)

Ft+(k—1)h) f(e+EkR) o Fi(t+(2k - 1)h)

Gi(t) can be recursively computed by the G-transform given in sec-
tion 2.4. Let (S,) and (z,) be the sequences respectively defined by

So=f(t+nhk), z,=f(t+nkh), n=0,1,...
then applying the G-algorithm gives
G = Gy(t+nh), kn=0,1,...

By construction we have the

Theorem 5.9
IFVt>T, f(t) = S+ a1/ () +---+ar fF)(2) then Vt > T,Gi(t) = S.

t

In particular if f(t) = | e *“g(z)dz where g satisfies a homogeneous

linear differential equation of order k with constant coefficients then the
condition of this theorem is satisfied and we obtain

Gi(t) = /oo e **g(z)dz.
o
If we let h tend to zero in the confluent G-transform then we have

;1.1_1.,1(1] Gk(t) = Ezk(t).
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5.6 Confluent E-algorithm
Let us assume that, for all ¢, f satisfies
f(t) = 5+ a191(t) + - - - + argu(t)-
The problem, which is similar to the problem solved by the E-trans-

formation for sequences, is to calculate S. Differentiating the preceding
equation leads to the system

ft) = S+agi(t)+---+ arg(t)
fi(t) = argi(t) +---+ argi(t)
00 = ag®0) -+ + age).

Thus S is given as a ratio of two determinants which will be denoted
by Ek(t)
&) £ - O
a(t) ai@) - o)

yk.(i) yi.(t) al(eki(t)
gi(t) - ¢M()

Ek(t) =

G - o0

By construction we have the following result

Theorem 5.10
IFVE>T, f(t) = S+ ayg1(t) + - - - + argi(t) then Vt > T, Ex(t) = S.

This functional transformation contains several cases studied in the
previous sections. For g;(t) = t' we recover Taylor’s expansion. The
choice g;(t) = f(*)(t) leads to the confluent form of the &-algorithm.

Let v be an arbitrary function. Let us define the element z; of the
dual space by

< z;,v>=vl)(t).
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Then Ei(t) is similar to the ratio defining Ey in the RPA and thus it
can be computed by this algorithm which is, in this case

Eo(t) = f(t), 90,(t) = gi(t), i2>1
(k)
Ei(t) = Eeaa(t)- ’f,’:) 1 k), k21
“1k(t)
y(k) () .
ai(t) = gr-14(t) - ;,;:,:—)I‘—E-gk_l,k(t), i>k>1

where the upper index designates the k-th derivative with respect to ¢.
The Ei(t)’s can also be computed by the scalar E-algorithm applied to
the sequence (S,) defined by A"S, = f(")(t), n = 0,1,... and with the

auxiliary sequences g("-) given by A"g(o-) = g(") t),n=0,1,..., and
0, 0, '
we shall obtain E(*) = Ey(t).

5.7 ©O-type confluent algorithms

Let us first begin with the confluent form of the e-algorithm and follow
the same method as in the scalar case for obtaining the ©-algorithm.
The confluent ¢-algorithm has the form

e-1(t) =0, eo(t) = f(t)

€r+1(t) = ex-1(t) + Di(t)  with Di(t) = & (t)

Thus €5, , , will converge faster than ¢/, (that is tlirg Eak42(t) /e (t) =
0) if and only if
Jim Do (t)/e(t) = —1.
If this condition is not satisfied we can introduce a parameter w; in
the rule of the algorithm which becomes
€ak+2(t) = 2x(t) + wiDak41(2)

the rule for the functions with an odd index being unchanged. If w; is
chosen as

= — hm €9x(t)/ Dory1()

then the new ¢f, . , will converge faster than &;.
For this new algorithm we have (keeping the same Greek letter ¢)
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Theorem 5.11

A necessary and sufficient condition that YVt > T,es(t) = S is that
Vt>T

f(t) = S+ce ™
or f(t) = [(1-wo)at+ ]t/ -wo) |

The first case corresponds to wy = 1 and the second one to wp # 1.
Since the computation of wy is difficult because it involves a limit, let
us replace it by an arbitrary function wi(t) In that case we have the

Theorem 5.12
A necessary and sufficient condition that Vt > T,e;(t) = S is that
Vt>T

ft)=5+ec- exP/__—a-l-t-ﬂo(t)
where Qy(t) = wo(t).
Of course, due to the previous relation for w;, we are naturally led to
the choice
wi = —€9(t)/ Dosa(t)
and we obtain the confluent form of the ©@-algorithm
0.,(t) =0, Go(t) = f(¢)
92k+1(t) = ezk_l(t) + —— (t) kE=0,1,...
0,,(t)-0 t
O2k42(t) = Oun(t) + ”‘( ) na(f) k=0,1,...
0%k41(2)

Of course the usefulness of this algorithm is limited by the fact that
its implementation needs the closed form of the ©.(t) and their differ-
entiation. This is the reason why we shall not give here more results on
it and refer the interested reader to Brezinski [55, 56).

The same procedure (the procedure @) can be applied to any contin-
uous prediction algorithm whose rule can be written as

T(t) = a(t) + b(t).

The ©O-type algorithm associated with this algorithm consists in the
continuous prediction algorithm (which has not yet been studied)

0(t) = at) - i) -(0).
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APPLICATIONS

Of course the fundamental domain of application of the algorithms stud-
ied in the previous chapters is convergence acceleration. In numerical
analysis and in applied mathematics and sciences, sequences are very
often obtained. They come from series, continued fractions and infi-
nite products which are used, for instance, for computing special func-
tions, see, for example, Nikiforov and Uvarov [336] or Spanier and Old-
ham [417]. They also come from perturbation series obtained from per-
turbation theory and from asymptotic series derived from differential
equations, difference equations, integration by parts, Laplace’s method,
steepest-descent methods for finding the asymptotic behaviour of some
integrals, etc., see, for example, Bender and Orszag [25]. In numerical
analysis many methods are iterative or depend on a parameter h. This
is the case in methods for solving systems of linear and nonlinear equa-
tions, for computing eigenelements of a matrix and their derivatives, in
quadrature methods, in methods for solving ordinary and partial differ-
ential equations, in methods for integral equations, in approximation, in
numerical differentiation, etc.. Thus the field of application of extrap-
olation and convergence acceleration methods is quite wide: numerical
analysis and applied mathematics.

But these methods also present another interesting characteristic.
They can be used not only for the purpose of convergence accelera-
tion but they are also able to furnish new methods for the solution of
some problems. A well known example of this situation is Steffensen’s
method for solving a nonlinear equation which is obtained by cycling
with Aitken’s A? process. Some other examples will be discussed below.

Another interesting feature is their connection with various rational
interpolation and approximation procedures thus leading to their use
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in the solution of such problems which are now very much in demand.
Finally let us mention their intimate link with biorthogonality which is
connected with very many other topics, see Brezinski [89], such as pro-
jection methods, the method of moments and that of Lanczos, the con-
jugate and biconjugate gradient methods, some statistical methods such
as the jackknife, ARMA models, and the multiple correlation coefficient,
least squares, Fredholm equations, orthogonal and biorthogonal poly-
nomials and some generalizations as well, Fourier expansion, Galerkin’s
method, Laplace transform inversion, splines, Borel summmation process,
the 7 method, etc.. But, may be, their most important connection is
with Padé approximants and continued fractions which received much
attention since two decades because of their wide applications in nu-
merical analysis, approximation theory, number theory, linear filtering
and digital processing, theoretical physics, quantum mechanics, quan-
tum field theory, and in many applied sciences such as circuit theory,
fluid mechanics, dynamical systems and fractals, nuclear and molecular
physics, biology, electronics, chemistry, etc.. For a bibliography contain-
ing about 6000 items, see Brezinski [88].

6.1 Sequences and series

Although it is not possible to base any conclusion on the effectiveness of
a particular acceleration method on purely numerical results, we tried,
in this section, to give a flavour of the possibilities of the various meth-
ods studied in the previous chapters. Of course we do not claim to be
exhaustive but we do hope however that the numerical results will help
the reader in the understanding of the theory and in the choice of an
algorithm or a device adapted to his particular problem.

6.1.1 Simple sequences

The sequences we used can be classified into three categories according
to their law of construction

1. Sny1 = F(Sn)
2. Sp = f(zn)

3. Sp=anb,
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where (z,),(a,) and (b,) are given auxiliary sequences. The first case
will be treated in section 6.2.4 since it is related to fixed point methods.

Into the second category we find sequences like S, = e where (z,)
tends to zero. According to (z,) the ratios (Sp4+1 — 1)/ (Sn — 1) and
ASp41/ASy can present very different and interesting behaviours. The
same is true for sequences as S, = z;!sinz,.

This last example also fails in the third class of sequences which is
quite general. For example if b, = 1 for all n then §, = ap-...-
a,. Assuming that (S,) tends to zero the ratio (S,+1/Sn) can present
strange characteristics. For example if a3, = —2",a3,41 = 2"*! and
a3,+2 = 8" it has three accumulation points which are —oo0, +00 and
0. The same is true with a3z, = 0.9 + 0.05/(n + 1),a3pn41 = 0.7 +
(—0.5)"*! and a3zn42 = (@3n—1 +0.9025/a3,-1)/ 2. But, in this case,
the convergence of (S,,+1/5n) to its three accumulation points 0.9, 0.7
and 0.95 is quite different since it is logarithmic, linear and quadratic
respectively. Finally let us also mention that (e,) can be randomly
chosen in [a,b] with ~-1 <a<b< 1.

Let us consider the sequence (S, = e®») where (z,) tends to zero.
Thus (S, ) converges to 1 and we have

Sny1—1 z
;'-:1—1 - Z:l-(l-f-En), n=1,2,...
ASnt Znt1 AZny ’
—_nyl . Inwl T Tnvl =12,...
Asn z, Azn (1 + 5") ] n 1, ’

where (¢,,) and (¢,) both tend to zero.

Let us first take z,, = (—l)l"/zj/n, n = 1,2,... where |a] denotes
the integer part of the positive real number a.

In that case

-1 -
S2n+l =1 lim S2n+2 1 _

nlltoo S2n -1 n—oo S2n+1 -1 1
. ASy4 . ASay2

lim —=22ntl _ lim —=2nt2 _

Lim S +o00 JLim Samis =0

Using the first 20 terms of the sequence (5,) we obtain the following
best numbers of exact digits (— log,, |absolute precision|)
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e-algorithm : 3.18
g-algorithm with z,, = n : 1.42
©-algorithm : 1.95
Richardson process with z, = AS, : 2.35
First generalization of the ¢-algorithm with z, =1 + n~! : 2.55
Second generalization of the ¢-algorithm with z, =1+ n~! : 2.74
Iterated A2 process : 1.05
Overholt process : 1.29
Levin’s t-transform : 0.62
We have
S-l—ﬁ+fi+ﬁ+...
S TR TR T

Thus we can try to apply the E-algorithm with g;(n) = zi, and we
obtain the following results (number of exact digits)

[l 0 1 [2[3]4[5 6] 7 |89 [10]
1 [[0.00
0.41 [ 0.51
0.55 [ 1.20 | 1.52
0.55 1.392.22{2.71
0.65 | 1.54 | 2.54 3.49 |4.11
0.81[1.77|2.83 |3.94 | 4.97 | 5.68
0.88 [ 1.97 3.11|4.29 |5.49 | 6.60 | 7.38
0.88 [ 2.05 | 3.32 |4.60 |5.89 | 7.16 | 8.34 9.19
0.93|2.12[3.47 | 4.87 |6.25 | 7.61 | 8.96 | 10.19 | 11.09
1.02|2.25 | 3.62 [ 5.08 | 6.57 | 8.03 | 9.47 | 10.87 | 12.14 [ 13.10
1.06|2.37|3.78 | 5.27 [ 6.83 | 8.40 {9.93 | 11.42 | 12.86 | 14.09 | 15.1

© o0 DO W N

—
[l —]

Let us now take

z, = (o.9+ “mnz") 1, n=1,2,...

with zo = 1. Obviously in that case nl_i_gxo Zn41/2Zn = 0.9 and the condi-
tions of theorems 2.8 and 2.10 about the convergence and the accelera-
tion for the E-algorithm are satisfied.

From the first 20 terms the best results are (number of exact digits)
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e-algorithm

o-algorithm with z, = n

©-algorithm

Richardson process with z, = AS,
First generalization of the £-algorithm with z,, =1 + n~1!
Second generalization of the ¢-algorithm with z,,

Iterated A process
Overholt process
Levin’s t-transform

The E-algorithm gives

1+n-1

273

2.76
0.54
0.36
0.55
2.00
1.16
0.29
0.70
0.82

in\k] O [ 1 ]2

| 8 |4 ]5]6] 7 [8]9]10]

1

WO oo -3 bW

-

- o

0.00
0.00
0.00
0.00
0.00
0.12
0.10
0.18
0.29
0.30
0.35

0.00
0.19
0.23
0.29
0.53
0.62
0.67
0.85
0.95
1.01

0.26
0.69
0.86
1.01
1.22
1.38
1.53
1.70
1.86

0.93
1.45
1.72
1.85
2.12
2.37
2.52
2.74

1.81
2.41
2.65
2.85
3.21
3.46
3.65

2.86
3.43
3.73
4.02
4.38
4.67

3.95
4.58 | 5.16
4.975.88
5.26 | 6.27
5.66 | 6.60

6.52
7.23
7.66

7.92
8.69

|

9.30

Let us now consider the sequence

Sn=(1+£) 9
n

which converges to § = e~.

n=1,2,..

With the 9 preceding transformations we obtain respectively for the
last computed result the following numbers of exact digits for z = 1
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ﬂ_n u Sn l € l e | o IR.lch] 1%t¢ ]2""5LA2 IOver. | Lev. tJ]
3 10.89]1.06) 2.83 |0.89| 1.06 | 0.33|0.57|1.06] 1.06 | 1.22
410.99)1.19] 3.33 |2.60| 1.26 {0.38|0.56}1.19| 1.28 | 1.31
5 (/1.07|1.37| 5.55 {3.09} 1.40 | 0.28/0.56 | 1.49| 1.44 | 1.51
711.20|/1.59| 8.51 {5.81| 1.61 |0.26|0.56 | 1.87| 1.67 | 1.76
9 (1.30(1.77|11.56{6.71| 1.77 | 0.24 | 0.56 | 2.21 | 1.84 | 1.96
11)/1.3811.92(11.90|8.29| 1.90 | 0.240.56 | 2.51( 1.97 | 2.13
13)/1.4412.04(13.46|7.75| 2.00 {0.23 | 0.56 | 2.96 | 2.08 | 2.26

For other values of z the behaviour of the various transformations is
quite similar.

Let us now consider the sequence

In(1 + z,.)]""l""'

ne ’ n=1,2,...

where (z,,) is an auxiliary sequence tending to infinity. (S,) converges
to S = e, see Monchamp and Chamaraux [323].

With z,, = n + 1 we obtain

"n {{ Sn ] ET e | © |Rich.|1%¢ |2 ]| A? | Over.ILev.T"
31/0.80]/0.98/2.96{0.80{ 0.98 1 0.33(0.53{0.98| 0.98 | 1.21
711.10/1.51)3.32|3.42| 1.563 | 0.27}0.39 [ 1.77| 1.59 | 1.66
11§ 1.2711.833.863.58 | 1.81 | 0.24 | 0.51 | 2.54| 1.88 | 2.04
15 1.402.07|4.55|3.58 | 2.01 | 0.24 | 0.52 | 2.29 | 2.09 | 2.30
20/ 1.52{2.304.67|3.58| 2.19 |0.25|0.49 | 3.14| 2.28 | 2.55

With z,, = 2" we have

ILnJ S,.l € J e | © lRich.ll“eJ2""e] A? IOver.LLev. tl]
31(1.10] 1.93 {0.74/1.10] 1.93 | 0.27]0.55[1.93 | 1.93 | 1.15
7 2.33| 4.68 |1.82|3.67| 4.48 | 0.30| 0.50 | 4.52 | 4.47 | 4.76
9 ||2.95]| 6.46 |1.81|5.81| 5.31 |0.30|0.64 |4.77| 5.31 | 7.08
11{/3.56| 7.87 |2.65]5.18| 6.12 [ 0.29|0.23 | 4.73 | 6.12 | 7.67
15({4.78 |10.96 | 2.84 | 6.18 | 7.68 | 0.25| 0.20 | 8.90  7.68 | 10.90

Let us now consider the sequence

Sn = (cosz, +a sinz,.)ll"‘, n=1,2,...
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where (z,) is an auxiliary sequence converging to zero. This sequence
tends to § = e as proved by Monchamp and Chamaraux [323).

With z,, = 1/n we obtain fora =1

an " Sn l 3 I e J @JRich.' 1% I ondg I A? IOveerev.jI
3110.6210.771 1.72 {0.62] 0.77! 0.05( 0.29]0.77{ 0.77 { 0.81
510.79/1.06 4.06 [1.97|1.12|-0.08]{ 0.43}1.16| 1.16 | 1.20
710.91]1.29) 6.85 |3.84(1.33}|—-0.26(—-0.15|1.52] 1.38 | 1.47
911.01}1.46| 9.33 j4.841.48|-1.06] 0.0411.88] 1.5 | 1.67
11)/1.08/1.61110.82 |[7.75| 1.61 0.11| 0.07|2.48] 1.68 | 1.83
181/1.28(1.9913.47 {9.86] 1.92 | —0.05]| 0.07|3.34} 2.00 | 2.24

With z,, = 0.8" we found

[n] Sn| ¢ | o | © |Rich.[1%|2"d| A? |Over.|Lev. t]
" 3 ||0.48) 0.53 0.020.48) 0.53 10.33]0.39| 0.53] 0.53 | 0.21

5 |(0.62| 0.16 | —0.50(1.00| 0.59 | 0.32|0.39 | —-0.51| 0.66 | 0.83
7 110.77} 2.19 | 0.91(1.00| 0.05 ]0.32(0.39| 1.78| 0.43 | 2.31 #
91093 2.13 | 1.18[1.55|0.40 |0.32]0.39| 3.48( 1.27 | 2.63
11 + 1.11 4.21 1.1313.1911.41 {0.32(0.41 | 4.46| 3.29 | 4.31
20 “ 1.94/10.56 | 2.36|4.43]9.36 ]0.32/0.37| 7.50|11.54( 7.40

As a last example let us take
Sn=ay-...-ayn, n=1,2,...

with a3, = 0.9 + 0.05/(3n + 1), azp41 = 0.7 + (—0.5)3"+2 and azp4z =
(a3n-1 + 0.9025/a3,-1)/2 with a_; = 0.9. The sequence (5,) converges
to zero but the ratios (S,41/S5,) have three accumulation points which
are 0.9, 0.7 and 0.95 (the square root of 0.9025). Thus the convergence
of (Sn+1/S5n) to these values is quite different since it is logarithmic for
the first one, linear for the second one and quadratic for the last one.
Thus such a sequence will certainly be difficult to accelerate and with
the nine algorithms we obtain (number of exact digits)
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[b[[s,. [ € | o | © |Rich.| 1% | 27 | A% | Ov. | Lev.t|
0.080.00/ -0.05| 0.08{ 0.00| 0.02| 0.03(0.00{0.00| 0.00
0.260.03| -0.02| -1.47| -0.01| 0.04| 0.06/0.03{0.00] 0.21
0.2810.00(-0.06| 0.21( 0.10; 0.02] 0.05{0.00]0.29| 0.23
0321034, 1.61| 0.27|-1.55|—0.62| 0.360.24|0.29] 0.25
0.4811.12{-0.15! 0.30|—-1.73] 0.02{-0.03{0.25]0.29 | 0.25
0.50{1.13; 0.32| 0.19(-1.46|—-0.07| 0.380.24|0.51| 0.65
910541.12f 0.93{ 0.26|—2.06| 0.03| 0.54]0.24)0.51 0.48
10}10.7011.13| 0.27| 0.21|-2.33(-0.07| 0.22]0.24|0.51| 0.47
11§0.7211.12f 0.55| 0.45{—-1.90(-0.02{ 0.19{0.24|0.73| 0.33
12((0.76 |2.06{ 0.16( 0.24|—-2.27|(—-0.07( 0.22(0.46{0.73| 0.85
13(10.92|2.87| 0.50| 0.35(-2.66|—0.03] 0.20|0.46(0.73| 0.71
1410.942.91|-1.38(-0.36| —2.13| 0.00|-1.280.46(0.95 | 0.66
15/10.98(2.86f 0.31| 0.39]|-2.34(—0.03|~-0.32]0.460.95| 0.00
16 1.14 |3.50 | -0.32| —1.20| —-2.25| —0.07| —0.11|0.46 | 0.95 | 1.06
17)/1.16 {3.36| 0.52| 1.55|-2.01{-0.03|—0.29|0.461.17| 0.93
18((1.2113.46(-0.27| 1.12|-2.26|—-0.06| 0.17[0.68|1.17| 0.82
19(1.36 (4.40| 0.81| 5.52{-2.81{-0.03| 0.15{0.68{1.17| 1.11
20(/1.3814.39| 0.60| 1.89|—-1.34]|-0.07|-—-0.36|0.68(1.39( 1.27
21{{1.43(4.40{ 0.84| 0.64|-2.03|—0.02| 0.09/0.68|1.39| 1.14
22(1.584.89| 0.90| 1.18|-3.36|—0.08|—-0.660.68|1.39| 0.90
23(1.60(4.86| 0.85| 0.82(-2.42| 0.18|-0.59(0.68|1.61| 2.45
24(11.65(4.88| 091 0.79{—-0.55|—0.08|—-0.59|0.90|1.61| 1.48
25((1.80{7.32| 0.79| 0.80|—-4.24| 0.03|-0.59{0.90|1.61|1.32
26(/1.83]5.71| 1.08] 0.81|-3.35|—0.08|—-0.59|0.90]1.83| 0.69

W =3 <M O

Then a division by zero occurs in Overholt’s process and we obtain
for n=50

[n [S-]| € | o | © |Rich. | 1% [27e] A2 |Over. [Lev. t
[[50][3.60]10.51[2.23[1.64] —0.63] —0.17]2.02[1.79] 1.83 | 3.47 ||

Thus, on this example, almost all the algorithms, except the ¢-algo-
rithm, behave almost chaotically. Richardson’s process is always very
bad and the generalizations of the ¢-algorithm also which is strange
since the choice (z, = 1 + 1/m) for the auxiliary sequence provides
an algorithm which can be considered as intermediate between the &-
algorithm and the p-algorithm. For n = 19, the ©-algorithm gives quite
a good result and then loses its precision.
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Of course, no final conclusion can never be extracted from purely
numerical results, but the preceding examples show that if nothing is
known about the asymptotic behaviour of (S,) or of related ratios such
as (Spy1— 5)/(Sn — S) or AS,41/AS, then it is difficult to make a
good choice among all the existing sequence transformations. In partic-
ular it seems difficult to find the adequate auxiliary sequence (2, ) for the
two generalizations of the ¢-algorithm. However, as seen in section 2.6,
when a suitable sequence (z,) can be found then these generalizations
can work quite well. Such questions were studied by Petit [356] but the
results obtained are too complicated to be of a great practical interest.
In such a case the best strategy seems to use an automatic selection
procedure (see section 3.6) and/or a composite transformation (see sec-
tion 3.7). Contractive sequence transformations can also be useful when
acceleration cannot be achieved (see section 3.9).

Of course, when possible, one has to built a well adapted procedure
as explained in sections 3.1 to 3.4.

The previous examples were constructed specially for illustrating our
algorithms and the corresponding theoretical results. But, of course,
extrapolation methods have many actual applications.

In many branches of applied sciences the solution of problems arises
as a series which is usually slowly converging (when it does). Thus it
is not surprising to find applications of extrapolation methods in the
corresponding literature. To name a few we refer the interested reader
to van Dyke and Guttmann [441] who solved by Shanks’ transforma-
tion an old controversy about the critical Mach number, to Weniger,
Grotendorst and Steinborn [459], Weniger and Steinborn [460], Groten-
dorst, Weniger and Steinborn [204], Grotendorst and Steinborn [203],
Weniger [457], Belki¢ [19] and Killingbeck [261]. An extensive study
on the question was conducted by Guttmann [207] who compared var-
ious extrapolation processes on several series. He concludes that the
©-algorithm was clearly the most generally successful. It was the best
method for four of the first eight test functions, second best for three
and third best for one, which strengthens the conclusions of Smith and
Ford [414). Let us mention that MAPLE programs for several transfor-
mations are available, see Grotendorst [201] and Grotendorst [202].

Let us also mention that several numerical examples with divergent
series were conducted by various authors. However the theoretical study
of the behaviour of nonlinear transformations for such series is not much
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developed except for the ¢-algorithm when applied to Stieltjes series that
is

f(z)=cot+crz+caz® +---
with ¢; = / z'da(z) with a bounded and nondecreasing in [0, c0). On

this question see Brezinski and van Iseghem [103].
As a numerical example let us take the sequence of the partial sums
of the series

z2 3
In(1 —-Z 4T ..
(1+z)==2 5+t 3

for z = 2. We obtain the following results (— log, [relative error|)

[n] 5= [ ¢ | ¢ [ © [Rih[1%e[2%%] AZ Jov.| Levi]
5|—-0.56] 2.59 | -0.21| 2.15]1.17 (0.49]0.54 | 2.72{1.19| 4.20
10)| —1.78| 5.28 | —0.84| 6.74|1.08 |0.99{1.02} 6.10|1.13| 9.24
15 —3.11| 8.36 | -1.39/10.35| 1.08 [0.88 | 1.69 | 12.64 | 1.13 | 13.96

20| —4.50111.12| -2.14|13.83| 1.08 [1.49|2.11 [13.23|1.13 | 13.57

6.1.2 Double sequences

Several attempts have been made for generalizing the scalar algorithms
of chapter 2 to double (or multiple) sequences. They can be classified
into two categories: the methods transforming double sequences into
one-dimensional ones and the others. Into the first class are the methods
of Levin [285] and Albertsen, Jacobsen and Sorensen [7]. These proce-
dures were synthesized and extended by Haccart [208] who showed how
to use the E-algorithm for their implementation. They were proved to be
particular cases of a whole class of multidimensional convergence accel-
erators based on multivariate Padé approximants by Cuyt [128] who pro-
posed new methods by using multivariate rational Hermite interpolants.
The second class of methods generalizes the T,,-transformation and
thus is a generalization of Aitken’s A? process.

Let us begin by the first class of methods and consider a multiple
sequence (Sp, n,...n,)- We shall set for simplicity n = (n1,...,n,) € NP
and write S, = Sp,,..n,- Let w be an application from N to NP. We
shall assume that w is continuous at infinity which means that every
neighborhood of infinity in NP is the image of a neighborhood of in-
finity in N by w and that w is a one-to-one application. With these
assumptions if
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lim S§5,=85

Ny1,eBp—00 =

then
lim S, = S.

Thus the treatment of multiple sequences is brought back to the one-
dimensional case and the E-algorithm can be used with

ES) = Sy, i=0,1,...

g = gi(w(@)), i=0,1,... and j = 1,2,...
and we obtain
Su(i) Su(i+k)
a(w(@) - ga(w(i+ k)

g(w(@) --- gu(w(i+ k)
1 1
gi(w(@)) -+ gi(w(i+k))

EY) =

a(w(@) - ge(w(i+ k)

Thus, according to the choice of the g’s, we obtain several transfor-
mations. The first two were proposed by Haccart [208]. If we take

95(w()) = Sw(iss) — Sw(i+i-1)
then we obtain a generalization of Shanks’ transformation such that
E,(:) = S, Vi if the sequence (S,) satisfies, Vi
ao (Sw(i) - 5) +-ootak (Sw(i+k) - 5) =0

with ag + -+ + ax # 0.
A particular case of this transformation was studied by Cuyt [125].
We set
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and we apply the scalar ¢-algorithm to

p-1
e§) =Y (-1y ( p; ! ) Oi—j-
3=0
A generalization of this idea will be discussed below.
Another generalization of Shanks’ transformation can be obtained
with
w(i) = (n1 + ik, ..., np +ikp).

Let now a be another one-to-one application from N to NP, If we take
9i(w(7)) = aw(i)+a(s)

with S, = Z a,, then we recover the generalization of Shanks’ trans-
n=0

formation due to Levin [285). We shall have E{) = §, Vi if the sequence

(Sn) satisfies, Vi

k
Swii) =5+ Z €5 Qy(i)+a(s)-

j=1
Finally for the choice

9;(w(8)) = Sa(it1)4w(i) = Sa(i)+w(i)

we recover the transformation introduced by Albertsen, Jacobsen and
Sorensen [7] for which no recursive algorithm for its implementation was

given. We have E{) = §, Vi if the sequence (S,) satisfies, Vi

bo (sa(i)+w(0) - 5) + oot by (Sa(i)+w(k) - 5) =0

with bo+~--+bk-',£0.

Generalizations of the one-dimensional Levin’s transforms (see sec-
tion 2.7) are also given by these authors. They fit into our general
framework and can be implemented via the E-algorithm.

As shown by Cuyt [128] all these methods are particular cases of
multivariate general order Padé approximants as defined, for example, in
Cuyt [126]. Using this technique, it is possible to derive a whole bunch of
multiple sequence transformations which generalize the transformation
of Cuyt explained above.
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For example, in the case of double sequences, we can set

n n
D VoSinin Y YkSinin
h=0 h=0
VOSin+1,jn+1 tec Vksin+1 WJn+1

E(n) _ Vosin+kajﬂ+k Vlcsi,,+k,jn+k
ko= 1 .. 1

Vosin-l-l’jn-{-l Vksin-{-l»jn-}-l

VOSin+k.jn+k Vksin+k.jn+k

with Vi, S5, iy = Sip—dm.jn—em — Sin-dm—1,ja—em — Sin—dm.in-em-171
Sin—dm—1,jp~€m—1-
This transformation can be implemented by the E-algorithm again.
Let us now come to the second class of methods. They were first
proposed by Streit [419] and then extended by Haccart [208]. We set

and

Streit’s transformation is

Sm+lc,n+l - Smn

n 11 = 9mn
Tk 1) = Smn + TR —50)

with Rpn(ky1) = amtk,ntt/amn.
Haccart’s transformation is

Tmn(k’l) = Smn + sm+k,n — Sm+k,n—l : (Sl,n-H - Sln) +

Sln - Sl,n—l
Smn - Sm—- n
Smn o omola, (Sm+k1 — Sm1) -

Sml - Sm—l,l

Several convergence and acceleration results on these two transforma-
tions were given but their conditions are difficult to check in practical
situations and we shall not give them for that reason.
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Let us apply these techniques to

J+1 1
S = Z O / / 924V _ 5109 = 1.386204361119891 ...
) 2:—1 z+y

The method of Albertsen et al. and the second method of Cuyt give
respectively in columns 1 and 2

ES® 1183518 1.292352
E®  1.228489 1.374224
E®  1.304007 1.359011
E{"® 1.320094 1.373649
E(" 1.360150 1.385863
E® 1374274 1.386177
E(Z® 1.371675 1.386366
E® 1.385897 1.386298

The method of Streit and the first method of Cuyt using the e-
algorithm provide

T.3(0,1) = 1.2250000 &* = 1.3302949
Ts5(0,1) = 1.3454861 ‘°’ = 1.3963958
Te7(0,1) = 1.3763421 ("’ = 1.3868720

Ti0s(0,1) = 1.3839863 g°) = 1.3863089
le‘u(o, 1) = 1.3858309
T14]13(0, 1) = 1.3862521

Other transformations are discussed by Wimp [467] and Higgins [228].

6.1.3 Chebyshev and Fourier series

In many applications one has to sum Chebyshev and Fourier series

% , ;
f(z) = - + g(ak cos kz + b sin kz)

flz) = % + }: axTi(z)
k=1
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where T} is the Chebyshev polynomial of degree k. These polynomials
can be recursively computed by

To(z)=1, Ti(z)==
Tni(z) = 2zTh(z) — Taoa(z), n=12...

When z € [—1, +1] they are directly given by
T, = cos(narccosz).

Such series can be transformed by means of the e-algorithm applied
to their partial sums, see, for example, Kiefer and Weiss [260]. However
the usefulness of the e-algorithm can be improved if the series to be
treated are first transformed with the help of their conjugate series,
thus generalizing a technique proposed by Wynn [480].

If we set z = €'%,¢co = ap/2 and ¢ = a; — ib; for k = 1,2,... then the
above Fourier series becomes the real part of

f(2) = }: cx 2~
k=0

If we set 6 = arccosz and z = €'® then Ti(z) = cosd and the above
Chebyshev series becomes the real part of

f(z) =) et
k=0

where ¢y = a9/2 and cx = a; for k =1,2,...
Thus, in both cases, the application of the ¢-algorithm to the partial
sums of the series f gives its Padé approximants

e = [n+ k/k]4(2).

Let us give some numerical examples. We first consider the Fourier
series

. 1 (=1)~+t
f(z)=2 slnz-5-31n2z+---+—Tz——-smnz+--- .

For z €] — w, [ it converges to z. Its conjugate series is

—1\n+1
-2 (cosz—%-cos2z+--.+(—%—-cosnz+---)
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and the preceding Fourier series is the real part of

—2i (z—%22+---+

where z = €' = cosz + isinz.

If the &-algorithm is applied to the partial sums of the Fourier series
(column 2) or to the partial sums of the new series (column 3) we obtain

Chapter 6. Applications

for z = 0.2
n Fourier series e-alg. to e-alg. to 1
Fourier series new series h
[0 [[ 0.39733866 0.39733866 0.39733866 “
1 || 0.79203193-10-2 | 0.79203193-10~2 | 0.79203193 - 102
2 || 0.38434863 0.19932690 0.20765249
3 || 0.25670589 0.20067920 0.19625942
6 || 0.33313636 0.19999999 0.20000985
For z = 2 we have
n Fourier series e-alg. to e-alg. to
Fourier series new series ||
2 |1 0.23891204 - 10! | 0.24159138- 10! | 0.19878926 - 10!
3 [[ 0.18944412-10! | 0.26879099 - 10! | 0.19735744 - 10!
6 || 0.21387211-10! | 0.20280599- 10! | 0.19998642 - 10!
9 |l 0.18612218- 10! | 0.19986396 - 10! | 0.20000040 - 10!
12 || 0.21278589- 10! | 0.19992951 - 10! | 0.20000000 - 10!

The use of the e-algorithm for summing certain Fourier series arising
in the automatic temperature adjustment of buildings leads to a gain of
time of 60 per cent, see Nowakowski [340].

6.1.4 Continued fractions

Continued fractions have important applications in numerical analysis
(see Jones and Thron [251]) and in applied mathematics. In particular
they are used for computing many special functions of mathematical
physics, see, for example, Patry [354]. Thus an important topics is their
acceleration which can be achieved either by using the methods devel-
oped in this book or by the technique of modification and converging
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factors as described by Lorentzen and Waadeland [300] (see also the re-
view paper by Jacobsen [239]). In fact, as we shall see below, these two
approaches are very much complementary since extrapolation methods
can be interpreted as modifications using special converging factors.

Let us recall some definitions and give our notations. Let C be a
continued fraction

C=b +’__Jal +r12_J+... Chg4 T
0 bl bz 0 b1+ az

b+ -

where the a;’s and the b;’s are complex numbers. Let C, be its n-th

convergent
a an A,
=b e = —
Cn=bo+ ril—l +:--+ ,—bn—1 B,

and R,, its n-th tail

_ Qnt1 I an+2J ...
R" B bn+l +[ bn+2 +

Then obviously

—_— a] o o 0 an —_— al . e an Rn
C"’“*rbTJ* +lm—+1?f'"’°+l‘bTJ+ m—,.”rTJ'

Moreover a
1
R, = nt

- bn+1 + Rn+l
with Ry = C - b,.
Thus this relation cannot be used in practice for computing the se-
quence (R,,) since, usually, the value of C is not known.
The partial numerators and denominators A,, and B, can be recur-
sively computed by the well known formula

A1=1, Ay=bo
B_1=0, By=1
An = bndp1tandn-2
B, = b,B,.1+a,B,_, n=1,2,...

Thus we have

C = An + Rn An—l
Bn + Rn Bn-—l ’
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Since R,, is unknown we shall replace it by an approximation r,,. Thus
setting

_ A, +wA,, _
s"(w)_B,.-i-wB . n=0,1,...
we see that
Sa(0)=C,

Sn(an+1/bn+l) = Cn+l
Iim Sn(ill) = Cn-—l
— 100

w

Sa(Rn) = C.

Replacing (R,) by (rn) and considering the sequence (C; = Sn(rs))
is called a modification of the continued fraction and (r,) is called a
sequence of converging factors. The problem is the choice of (r,) such
that (C};) converges to C faster than (C,) (which is always assumed to
converge in the sequel).

General results in this direction were given by Brezinski [73].

From the relation

Ci-C _ 1-dp,
Co—-C 1-dp-(Cn-C)/(Cai-C)

with d,, = r,/R,,, one can easily prove the two following theorems

Theorem 6.1
F3a <1< B,3N,¥n > N,(Cn — C)/(Cn-1 - C) ¢ [a,f] and if
lim r,/Rn =1 then Jim (Cr-C)/(Cn—-C)=0.

If the ratio (Cp — C)/(Cn-1 — C) tends to 1 let us set
(Cn = C)/(Cn-1 = C)=1+pn

ra/Rn =1+ a,.
We have the

Theorem 6.2
If im an = lim f, = lim an/Ba = 0 then lim (C; - C)/(Cn -
C)=0.
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Let us now show how to connect converging factors to acceleration
methods or to the equivalent notion of perfect estimation of the error as
explained in section 1.4.

Let (D,) be an arbitrary sequence and let us take

__ Dphy
Dn + Cn - Cu—l

Tp =

where h, = B,,/B,_;. Then it is easy to see that
Sn(rn) = Cn + Dn

Sn(ra) —C _ ) _Dn_

C.-C C-0C,
Thus (Sp(rn)) converges to C faster than (C,) if and only if (D,) is
a perfect estimation of the error of (C,) that is lim D, /(C-Cn)=1.
Conversely if a sequence (r,) such that Jlim (Sn(ra) = C)/(Cn-C) =

0 is known then
Cn - Cn—l

D,=-r,- T

is a perfect estimation of the error of (Cy).

On the other hand if we are given a sequence transformation T :
(Cn) — (T,) of the form

- Cn gn+1 — Cn+l gn _ Cn+1 - Cn
Tn = =Clnyl — ——— " In+1
In+1 ~ gn gnt+1 — gn

then Tn = "+1(7‘n+1) with Tn+l = —Bn+1 g,,+1/B,. gn.

Thus any sequence transformation of this form (which includes Richar-
dson extrapolation method, Aitken’s A? process, the E-algorithm, Over-
holt’s process, ...) can be considered as a modification of the continued
fraction and reciprocally.

We shall see later a particular case where (r,) can be chosen according
to the conditions of the above theorems but, for the moment, let us
consider a very instructive example, namely

a a
C_1+ﬁ_! +’T" +oe
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whose convergents satisfy

Co=1

Cot1 =1+ =

o n=0,1,...
n

The case a = 1 corresponds to the continued fraction of Fibonacci
and C = (1 + v/5)/2 is the famous golden section. This case was con-
sidered by Phillips [357] whose used the iterated Aitken’s A? process
to accelerate its convergence. The case of an arbitrary value of a was
treated by Brezinski and Lembarki [94] who accelerate its convergence
by the iterated A2 process and by the ¢-algorithm. In both cases such
an extrapolation method produces a subsequence of (C,).

If a # —1/4 + ¢ where c is a real non positive number then (C,)
converges to z; the zero of greatest modulus of z2 —z —a = 0. Otherwise
(Cr) does not converge. Let (zﬁ"))n be the sequence obtained by the

k-th iteration of Aitken’s process (see section 2.10) to the sequence of

convergents of C = b + [%J + ’%-’ + +--and let (eg',:)) be the sequence
obtained by application of the -algorithm. Then we have
Theorem 6.3

Z}:) = C(n+k+1)2~-1

eg'l:) = Co(k+1)+k(k+2)-

This result is very much interesting since it shows the acceleration
brought by both processes. We shall now assume that a # —-1/4 + ¢
with ¢ < 0. The main results are the following (for the whole bunch of
them see the paper by Brezinski and Lembarki [94]). We set r = z,/z,
where z; is the zero of smallest modulusof z2 —~z —-a=0and z; = C
the other one.

Theorem 6.4
Ifa# —-1/4+ c with c < 0 then

1. lim (z£"+l) - C)/ (zﬁ") - C) =r2*

n—oo0

2. lim (2{7,-C)/ (=" -¢) =0

n—o00
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3.

Jim (o2 -C)/ (e - )" =0

k]i.‘&( z(nt1) C)/( (")—C)=0
Jim, (457 - )/ (4 - ¢) =4
lim (e, - €) /(59 - ¢) =
Jlim (ef,-C)/ (5 -¢) =0
Jim (5 - 0) /(e - €) = 0

- Jim, (27~ 0) /(e - €) = Jim (7 - €) /(e - €) =0,

the first result holding only for k > 2 since z{™ = ™.

Ifa=—-1/4 then

10.

11.

Jim, (o7 - 0)/ (4 - 0) =1
i (o~ €)/ (o2 - ) =172

12. khm (= -¢)/ (2" -¢) =1/2

13. lim (zk n+1) C’)/ (zﬁ") - C) =1

1. lim (4 -C) /(R -0) =1

15. Jim (i), - C) /(5% - €) = (k+1)/(k+2)

16.

17.

18.

i (- C)/ (- ) =2

I (4-0)/(8-0)

ix (z(") C)/ (eg',:) - C) = (k +1)/2* and
31 i (o0-0)/ (-0 =

8

3

IV8

Let us comment these results.

When a # —1/4 + ¢ with ¢ < 0, the sequence (C) converges linearly.
For the iterated application of Aitken’s process, each column (that is k
fixed and n tending to infinity) converges linearly (result 1) but faster
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than the preceding one (result 2). Result 3 is very important since
it shows that a linearly convergent sequence can be transformed into
a sequence converging super-quadratically. Result 4 claims that each
diagonal converges faster than the preceding one. If the e-algorithm
is used, each column converges linearly (result 5) but faster than the
preceding one (result 6). Result 7, although less important than result
3, shows that a linearly convergent sequence can be transformed into
a diagonal converging super-linearly. Each diagonal converges faster
than the preceding one (result 8). Result 9 shows that Aitken’s iterated
process is always a better accelerator than the ¢-algorithm.

When a = —1/4, the sequence (C,) converges logarithmically. For
the iterated application of Aitken’s process, each column also converges
logarithmically (result 10) and not faster than the preceding one (re-
sult 11). Result 12 is very important since it shows that a logarithmic
sequence can be transformed into a linear one (which thus can be accel-
erated again by Aitken’s process). However there is no gain from one
diagonal to the following one (result 13). If the e-algorithm is used,
each column is logarithmic (result 14) and does not converge faster than
the preceding one (result 15). Each diagonal is logarithmic (result 16)
and there is no gain from one diagonal to the following one (result 17).
Finally result 18 shows that Aitken’s iterated process provides better
results than the e-algorithm.

A continued fraction of the form C = b + ’% + I_ZJ + --- is called

1-periodic (or periodic for short). The Fibonacci continued fraction has
this form. We shall now consider a general continued fraction satisfying
Iim a, = a and ”lixglo b, = b. Such a continued fraction is called limit

n-->00
periodic. It can always be transformed into an equivalent continued

fraction (that is with the same sequence of convergents) where all the
b,’s are equal to 1. Thus let us consider the continued fraction

C’:'%—' +(al_2l + -

where the a,’s are complex numbers tending to a limit a. Before trying
to accelerate this continued fraction we need to study its asymptotic
behaviour. A well known and old result says that such a continued
fraction converges linearly under some conditions on a. The reciprocal
of this result was obtained by Brezinski and Lembarki [95] who proved
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the

Theorem 6.5

Let us consider the continued fraction C = 011 + 1112

"lim a, = a. A necessary and sufficient condition that there ezists a
- 00

complez number r with |r| < 1 such that Jim (Cry1-C)/(Cr-C)=r
is that there ezists a complez number a witha # —1/4+c and ¢ < 0 such

that nlixglo a, = a. Moreover a and r are related by a = —r /(1 +7)? and

+ .- - with

r = —z, /(1 + z,) where z, is the zero of smallest modulus of z*+z—a =
0.

The condition on a insures the convergence of the continued fraction.
r = 0 if and only if a = 0 and if » = 1 then a = —1/4. This theorem has
important consequences since it does not only show that limit periodic
continued fractions converge linearly if a # 0 but that they are the only
ones to do so. It means that a continued fraction converging linearly
with |r| < 1 is necessarily limit periodic. It follows from the theory
of remanence explained in section 1.10 that a universal algorithm for
accelerating the convergence of all continued fractions which are not
limit periodic cannot exist.

Let us now see how to accelerate limit periodic continued fractions.
This goal can be achieved either by a modification with constant con-
verging factors or by Aitken’s A? process which is known to accelerate
linearly converging sequences. For such a continued fraction it can be
proved that nlgglo R, = z, the zero of smallest modulus of z2+z —a = 0.

Thus, according to theorem 6.1, we must choose a sequence (r,) also
tending to z; and the easiest choice is to take r, = z; for all n. This
choice was extensively studied and it was proved by Niethamnmer and
Wietschorke [335] that

Lim (Snt1(21) = C) /(Sa(z1) = C) = 7" = 1

where § = lim (@n+1 — a)/ (an — a) is assumed to exist and it can
n—

be proved that, if » # 0, the sequence (S,(z1)) converges faster than
(S$»(0) = C,). But now, thanks to the result of theorem 6.5, the same
procedure can be applied iteratively as explained by Brezinski [75]. The
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sequence (S,(z1)) can be considered as the successive convergents of the

continued fraction
. _ g ay a3
C* =by+ |—J1 + I———ll +

where the a}’s and bj have expressions given by Thron and Waade-
land [433]. Since (S,.(z1)) converges linearly then, by theorem 6.5, the
continued fraction C* is limit periodic and the modification process can
be again applied. The method and the results can be summarized as

follows.
We consider the continued fraction

— o az
C-—bo+’T1 +’—1—] +
with ll_m ap, = a # —1/4 + ¢ with ¢ < 0. We assume that a # 0.

1Wesetb()-b and ()—a,.forn—12 . We set £k = 0 and
a©® = q.

2. Let C,(,k) = A,(,.k) / B,(.k) be the successive convergents of

®) _ 8 4 l l
c® =4 4 &

We set S(k)(w) (A(k) + wA(k) )/(Bg‘) + wB,(,"'_)l) ,n=0,1,...

3. Let zgk) be the zero of smallest modulus of z2 + z — a(¥) = 0.
We set r(¥) = —z{F) /(1 + zsk)) . Then

i (589 () -€)/ (- ¢) =0

4. We assume that there exists §(*) such that lim vl /6,(,") = (%)
with 68 = a{¥) — a(*). Then we have

lim (S,(.’:Ql ( (k)) c) / (3'(‘k) (zﬁ")) _ C) = p(B) §(K) = p(k+1)

n—»o00

If §(%) = 0 or if 5(*) does not exist, the procedure has to be stopped.
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5. We set

Cle+1) = plk+1) o+ | N o) |

| 1 [ 1

with
b(()lc+1) - zgk) + b(()k)’ a§k+1) - 6§k) /(1 + zgk)) ’ ‘h(k) =0,

alk+1) = g®) %(.ky[(l +z§k))2(1 ; r(k).y'(lk))(l +r"°)7,(.k_)1)]:"= 1,2,..

a.nd7 J(k)/J(k_)l for n=2,3,...
We have

lim aft+) = —r4) /(14 p040)" = ok 2 /g g o

with ¢ < 0 and a(k+1) £ 0. We also have
zgk+1) _ _r(k+1)/(1 + r(k+1)) i

6. Replace k by k£ + 1 and return to 2.

As proved by Levrie and Bultheel [287] this procedure is equivalent
to the method proposed by Jacobsen and Waadeland [241, 242].
Let us consider the example

z/2 z/6
. n n
that is aiy = z,43p = m-zand A4l = m-zfornz

1,2,...
Then lim a, = z/4 and §0) = —1. If z = 24 we have zgo) =2,700 =

-—2/3,29) = —2/5 and r(!) = 2/3. Moreover

600, /80 =1- A, with A, 20 and lim A, =0.

n—oo

The ratio A,4+1/A, takes alternatively the values 0 and +00 and lim

n—oo
g.)ﬂ / 5(2) = lim ﬁgi)“ / 6211 .2 = —7/3. The continued fraction C(?)
is not limit penodlc and the procedure has to be stopped.
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Instead of modification let us now use Aitken’s A2 process to accel-
erate the convergence. As explained at the beginning of this section,
Aitken’s process can be interpreted as a modification of the continued
fraction and it corresponds to the choice

r = Gn+1
n — .
hni1

We can prove that nli’rgo r, = z; and we have the

Theorem 6.6
Let (C7) be the sequence obtained by applying Aitken’s A2 process to
(C,) where a # ~1/4 + c with c < 0. Then

lim (C;—C)/(Ca=C)=0.

It can be proved that, under some additional assumptions, (C;) con-
verges linearly and thus Aitken’s process can be applied again as we did
for modifications.

It is also possible to accelerate limit periodic continued fractions by the
T, m transformation as showed by Lembarki [280]. This transformation,
defined by Gray and Clark [198), is a generalization of Aitken’s process
which is recovered for m =1

CntmACn — CaACrnim

(m) —
Ix AC, — ACnim

n=0,1,...

We have the

Theorem 6.7
If the T ,, transformation is applied to a limit periodic continued frac-
tionwitha#0anda# —1/4+candc <0 thenVm>1 andVk > 0

Jim (T4 - C) [ (Gue - €) 0.
This transformation was compared to (Sn(z,)) by Lembarki [280].
The preceding results show the importance of the knowledge of the

asymptotic behaviour of continued fractions for their acceleration. This

is the reason why this question was studied by Brezinski [78].
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First, as proved by Lembarki [280], any continued fraction

_ a az .
C—b0+|—l;1_J +|_bz—' +

with convergents C,, = A,/ B, can be transformed, if Vn, B, # 0, into
the equivalent one

' _ a) a3 l a3 J
o' =borp ) i) i +

such that its convergents C}, = C,, = A}/ B), are such that Vn, B], = 1.
Thus in that case the recurrence relation reduces to

Co=bo, Ci=b+a
C:I = (1 - a;)C’—l +a‘,0’_2, n= 2,3,..-

and we have

AC,_
a:,=~AC"_;, n=23..
Since C, = bp+a; —a;-az +---+ (-1)""'a; - ...- a, then the

usual convergence tests for series can be used for obtaining convergence
conditions for the continued fraction. In particular d’Alembert’s test
says that if there exists K < 1 and N such that Vn > N, |a,] < K, then
(Cr) converges.

As explained in section 3.2 these convergence tests can also be used for
the construction of perfect estimations of the error and thus convergence
acceleration methods.

Thus let us consider a continued fraction of the form

_ ay Qs I as J
C—'bO‘l"—l—l +|—T—a2 +l1_aa +

Let 0 < pp < p; < --- be an infinite strictly increasing sequence of
positive integers and let

0'1[

| 1

a |, a

1-a) +|1—a{,

C' = by + +l | +---
be the continued fraction with convergents C} = C,, for n = 0,1,...
Let » be a complex number. The main results are the following
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Theorem 6.8
A necessary and sufficient condition that

lim (CPn+1 - Cpn)/ (Cpn - Cp,,_,) =r

n—o0
is that lim a) = —r.
n—oo
This result does not assume the convergence of the continued fractions

C and C'. Using some results due to Delahaye [134] (see section 1.12)
we have the

Theorem 6.9
We assume that Vn,C), # C},,.

i) If r| # 1 then there ezists z € C such that lim (Chir—2)/
(CL — z) = r if and only if Jim AC;,, /AC] =r.

i) If |r| <1 and if lim AC, ., /AC; =r then (C}) converges to
a limit C' and im (ci,.-¢C)/ (C.-C)=r.

#i) If [r| > 1 and if lim ACL,, /AC, = r then Jim [CL| = o0
and ¥z € C, im (Coj1—2z)/ (Ch—2)=r.

It must be noticed that the statement i) does not imply the conver-
gence of (C.) to z.
Finally we have the following result on the continued fraction C itself

Theorem 6.10
A necessary and sufficient condition that
lim (Cp,+1—Cp,)/(Cpn — Cpo-1) =7

7n—00

is that lim a,, = —r.

n-—o00

These results generalize those on limit periodic continued fractions
(theorem 6.5).

Another interesting case is that of limit k-periodic continued fractions
that is such that

nli{%oam-l-nk:rma m=0,1,...,k-1

where ro,...,r;_1 are complex numbers. Of course r,, = r, k. Their
asymptotic behaviour follows from the preceding results and we have
the
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Theorem 6.11
A necessary and sufficient condition that

nli_.fgo (Cm+nlc - Cm+nk—1 )/ (Cm+nk—l - Cm+nk—2) =Tm
is that "lix{.xoam.,.,.k =—rp form=0,...,k-1.

Other results of this type are given by Brezinski [78] who also obtained
the acceleration result

Theorem 6.12
Let us assume that |rg-... - t—1| < 1 and that

l+ro+ro-r1+-edroeriee.-th2#0
14rm+r-rotcecdrergec o1 £0
14+ kg +rp_1-ro+ - +Tp_1 To ... T3 F#0.

If, for m = 0, . ..,k - 1, nli»ngo (Cm+nk+2 - Cm+nk+l)/ (Cm+nk+l -
Cmink) =Tm then (C,) converges to a limit C and ”lixgo (Cmtnk+1—C)/

T To+To "1+ +ToTy... Tk
0
l+ro+ro-ry+--+ro-Tr-... Th—2
q = P1+r T+ dr1r2-...- 7
1 —
1+rm+r-r24-cc+ror2-...o T
O Th-1+Th—1To+ "+ Thk_1°T0° e Tk—2
-1

14 re—1+rh1-Tot -+ Tpo1-To oo Th3

Moreover the sequence T,gk)) obtained by the Ty transformation

n
converges to C faster than (C,).

Other acceleration results for limit k-periodic continued fractions are
due to Lembarki [281] and others (see the bibliographies of the papers
contained in Brezinski [87]).

The case of k-periodic continued fractions is treated by Lembarki [279]
in his thesis.
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At the end of section 3.3 (theorem 3.17) we saw how to accelerate
the convergence of sequences for which an asymptotic expansion of the
inverse of the error is known. As shown by Matos [313] these results
apply to some continued fractions.

If we consider the case of

= it a2 cee
C—-1+’—1—J +’—1J +

with a; = i™ (@p + a1i~! + azi"2 + -.-) where m is an integer, then it
was proved by Hautot [215] that

Cn — C = (bo + b191(n) + baga(n) + ---)7!

where the g;’s form an asymptotic sequence. Then the algorithm given
in section 3.3 can be used.

For example for the continued fraction with a; = —1/4 — 0.009/4? the
number of exact digits is multiplied by 6.2. If a; = —(2i + 3)2/16(i +
2)(i + 3) the number of exact digits is multiplied by 6.6.

These results were used by Draux [144] for accelerating sequences of
Padé approximants.

6.1.5 Vector sequences

In numerical analysis, vector sequences which need to be accelerated are
usually produced by iterations of the form

zn+l=Azn+b’ n=0’1’...

where z¢ and b are given arbitrary vectors of dimension pand Aapxp
matrix.
The matrix I — A is assumed to be regular and we shall denote by z
the vector satisfying
z=Az +b.

Let Ay,...,Ap be the eigenvalues of A and vy, ..., v, the corresponding
eigenvectors. If the vectors vy, ..., v, are linearly independent, if |A;| >
[A2] > <+ > |Apl, and if (zo,v;) # 0 and (y,v;) # 0 for i = 1,...,p then
Brezinski [49] proved the
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Theorem 6.13
If the vector (or the topological) e-algorithm is applied to the sequence
(zn) then, for k=0,...,p—1

P
ey -2~ ) Aty (n — oo)
i=k+1
(n) 1 Yk+1

£ ~ . n — oo
2 AT (Yet1, Yk+1) ( )

where the y;’s and the z;’s are vectors related to the v;’s.

If |A\;] < 1, the sequence (z,) converges to z and the rate of con-
vergence is O (A}). When applying the e-algorithm to (z,) then, for
k=0,...,p— 1, each sequence e:(,;) also converges to z and the rate

n

of convergence is O (1\2 +1)' This shows that the gain brought by the
e-algorithm depends on the distance between consecutive eigenvalues.
Now if [A1] > --- > [A;] > 1> |Ar41| > +-+ > |Ap], then (z,) diverges.
However we can still apply the e-algorithm to (z,). The sequences
(sg',;))n will diverge for £k = 0,...,7 — 1 but they will converge to z for

k=r,...,p—1 and the rate of convergence will be O (Ag +1) . Thus the
e-algorithm can accelerate the convergence of such sequences and even
transform a diverging sequence into converging ones. The same type of
results can be obtained by the iterated vector A? process. Numerical
results can be found in Wynn [473] and Brezinski [56].

The previous theorem was extended by Sidi, Ford and Smith [408]
who proved the

Theorem 6.14
If vy,...,v, are linearly independent, if |A1| > --- > |A;| > |Ap41] 2
[Arg2| 2 -+ 2 |Apl, and if (y,v;) # 0 for i = 1,...,r then the vectors
eg,') obtained by applying the topological €-algorithm to (z,) satisfy
) -z = A@AL(1+40(1),  (n— o)

where A(n) is a nonzero and bounded vector for all sufficiently large n.

This result was still extended to the case where the matrix A is de-
fective by Sidi and Bridger [407]. We recall that a matrix is said to be
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defective if the algebraic multiplicity of one of its eigenvalues exceeds
its geometric multiplicity (that is the number of linearly independent
eigenvectors associated with it). In other words A is nondefective if
and only if there exists a nonsingular matrix X such that X 14X =
diag(A1,...,Ap), see Golub and van Loan [187]. If A is defective there
exists a regular matrix X such that X~1AX = diag(Jy,...,J,) where
J; is a Jordan block of dimension r; of the form

(A.' 1 \

\ i )

Let us denote by v11,v12,- .., V15, V21,22, « +y ¥2rg5+ « o3 Vply Vu2y + -y
¥yr, the columns of X. Then vj; is the eigenvector corresponding to A;
and vj; are the principal vectors corresponding to A; for ¢ = 2,...,r;.
These vectors are linearly independent and we have

v

rj
To—T = Z Za,-,-v,-.'.

J=1i=1
Let p; be the largest integer for which a;,. 41 # 0. We have the
Theorem 6.15

If |Ar] > |Ar41] =+ o« = |Argtl > [Ar4e41|, the vectors eg',:) obtained by
applying the topological c-algorithm to (z,) are such that

e -z = A(m)nP "

where k = Z(p, + 1) and where A(n) is a bounded vector, provided
=1

r

H (!h yjl’j) #£0

i=1
where

pi+1
Yie=| Y @iivii-g | A;%, for ¢=0,...,p;.

1=q+1



6.1. Sequences and series 301

The proof of this result, which is quite difficult, and numerical exam-
ples can be found in Sidi and Bridger [407].

Since the vectors eg',:) are usually better approximations of z than
Zn42k, a useful idea is that of cycling

o at the beginning of the (n + 7)-th iteration z, is known

o we set ug = z,, and compute u;41 = Au; + bfori=0,...,2k for
some value of k

e then the ¢-algorithm is applied to uo,...,us; and it gives eg(,?

o then we set 2,41 = eg‘,)c) and begin the next iteration.

Such an idea is known for a long time. In particular, as we shall see
below, if it is applied to a system of nonlinear equations instead of linear
ones and if k = p, the dimension of the system, then the sequence (z,)
thus produced converges quadratically to z under some assumptions (see
section 6.2.4).

For linear systems, cycling can be very effective if k is small com-
pared to p. Gander, Golub and Gruntz [172] have recently applied this
technique to systems arising from the discretization using centered dif-
ferences of elliptic partial differential equations with Dirichlet boundary
conditions. Up to 10 digits were gained during the extrapolation phase.
The method also works even if the basic iterations u;,; = Au; + b are
not convergent. This technique have applications in statistics as shown
by Gander and Golub [171]. It needs further theoretical research.

Numerical results showing the gain brought by the e-algorithm (with-
out cycling) were given by Espinoza [152] for a system of equations
obtained by discretization of a partial differential equation by finite dif-
ferences. The gain can be above 40%.

Another acceleration process was proposed by Iguchi [236]. It consists
in constructing a new sequence (y,) by

Yn = Tpy2 + Wy (2n+2 - zn)

with
_ (Azn+1’ Azr|+l)
(A%z,, 2p42 — z4)

wn=
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Other generalizations of Aitken’s process or the ¢-algorithm for accel-
erating sequences generated by a matrix iterative method were given by
Baron and Wajc [14] and by Miellou [321).

A general acceleration result for some vector sequences was recently
given by Sadok [384]. We consider a vector sequence transformation
T : (S,) — (Ty) of the form

Tn=F(Sny---ySn+k) » n=0,1,...

where S, € CP and F : (CP)**! —— (CP). F is assumed to be quasi-
linear (see chapter 4) and thus there exists f such that F(zo,...,zx) =
[Df(zo,---,2k)] " f(z0,-..,2k) With D?f(zo,...,z) identically zero
(theorem 4.1). We have the following acceleration result

Theorem 6.16
Let (S,) be a sequence of vectors such that

Sut1—S=(A+Bn)(S.-5), mn=0,1,...

where A is a square matriz with o(A) < 1 and (B,) a sequence of square
matrices converging to zero. If da > 0 such thatVz € {v € CP||jv|| = 1},
Ideth (z,Az,...,A"z)l >aand f (z,Az,...,A"z) =0 then

I = Sl = o(lISn - S1I) (n — oo).

This result generalizes theorem 1.8 to the vector case. It is true,
for example, for Henrici’s transformation (see section 4.5) but the vec-
tor generalization of the scalar E-algorithm given by Wimp [467] is not
translative in general and thus it does not always accelerate the conver-
gence of such a sequence (S,,).

A review of extrapolation methods for vector sequences can be found
in Smith, Ford and Sidi [415] (see also Smith, Ford and Sidi [416]).

6.2 Systems of equations

As we shall see in this section some of the previous algorithms can be
used for the solution of systems of equations. If the system is a lin-
ear one then the algorithms lead to the exact solution after a finite
number of arithmetical operations that is they are direct methods for
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systems of linear equations. Among them are the scalar, vector and
topological ¢-algorithms. In particular the topological ¢-algorithm gives
the same sequence of iterates as the biconjugate gradient method. In-
stead of using this algorithm, the bordering method can be used and it
also provides the same iterates. Since in this method it is known how
to avoid breakdown or near-breakdown we have in hands a process for
avoiding this drawback in the biconjugate gradient method. If our al-
gorithms are applied to a system of nonlinear equations they provide
derivative-free methods with quadratic convergence under the usual as-
sumptions. These methods are related to projection methods and a
wide literature recently appeared on the subject. We shall also see in
this section how extrapolation can be used in regularization and penalty
techniques and in continuation methods for nonlinear equations. The
connection between sequence transformations and fixed point iterations
will be emphasized.

6.2.1 Linear systems

When solving a system of linear equations by an iterative method we
usually construct a sequence of vectors by

2n+1=Azn+b7 n=0,1,...

where z is a given arbitrary vector, A a square matrix and b a vector.

If the spectral radius of A is strictly less than one, then the matrix
I — A is regular and the sequence (z,,) converges to z = (I — A)™' b the
unique solution of the system. We have

Tpp1 — 2 = A(zp — z) = A" (2 - 2).

Let P be the characteristic polynomial of A and let p be its degree
(the dimension of the system). Then, by the Cayley-Hamilton theorem,
Vn

A" P(A)(zo—2)=0

that is, if we set P(t) = ag + a1t + - - - + a,tP, Vn
ao(zn — 2) + a1(Tnt1 — 2) + -+ + ap(2Zn4p — z) = 0.
Moreover, since I — A is regular, 1 is not a zero of P, that is

ag+---+ap, #0.
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These results hold even if the spectral radius of A4 is not strictly less
than 1 but under the only condition that J/ — A be non-singular. Thus
if the scalar, the vector or the topological ¢-algorithm is applied to the
sequence (z,) then, by theorems 2.18, 4.2 or 4.3, we have Vn, eg';,) =z=
(I — A)~" b which shows that these three algorithms are direct methods
for solving systems of linear equations. The above result can be refined
and we obtain the more complete one due to Brezinski (48]

Theorem 6.17
Let us apply the (scalar, vector or topological) e-algorithm to the se-
quence of vectors

Zpny1 = Az, + b, n=20,1,...

where z¢ is a given arbitrary vector.

If I — A is regular let us denote by m the degree of the minimal poly-
nomial of A for the vector 2o — z and by r the eventual multiplicity of
its null zero. Then, Vn > 0

eg(.r‘::)r) =z.

If I — A is singular and if b belongs to the range of I — A (which
means that the system has infinitely many solutions) let us denote by m
the degree of the minimal polynomial of A for the vector zo — z, by r the
eventual multiplicity of its null zero and by q the multiplicity of its zero
equalto 1. Thenifqg=1,Yn>0

eg'(':l:)r)-l’ =z

and if ¢ = 2,Vn
eg'(‘:u:)r)—3 =2
where z is a constant vector.

If I — A is singular and if b does not belong to the range of I — A
(which means that the system has no solution) let us denote by m the
degree of the minimal polynomial of A for the vector z, — zo, by r the
eventual multiplicity of its null zero and by q the multiplicity of its zero
equalto 1. Thenifq=1,Yn >0

(n+r)

e2(m—r)—l =2

where z is a constant vecior.
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Let us recall that the minimal polynomial of A for an arbitrary vector
u is the polynomial P of smallest degree such that P(A)u = 0. This
polynomial is a divisor of the characteristic polynomial. This theorem
shows that the e-algorithms are direct methods for solving systems of
linear equations even when the sequence (z,) diverges and even if I — A
is singular and the system has infinitely many solutions. In that case
however it is not known which solution is obtained nor is not known
if the constant vector z have some connection with z. Similar results
concerning the case where (z,) is obtained by a k step iterative process
were given by Brezinski [48].

Since the ¢-algorithms are direct methods for linear systems it is in-
teresting to study their possible links with other direct methods. It was
proved by Wynn [478] that the vector ¢-algorithm has no relation with
the conjugate gradient method except in a very special case. As showed
by Brezinski [63] such a connection exists for the topological e-algorithm
and we have the

Theorem 6.18

Let (yx) be the sequence of vectors obtained by the conjugate or the
biconjugate gradient method for solving (I — A)z = b with yo = 0 and
let (eg,)c)) be the vectors obtained by applying the topological e-algorithm
with y = b to the sequence z,41 = Az, +b,n=0,1,... with zo = 0 then

v =, k=0,1,...,p

where p is the dimension of the system. Moreover

0 b ... BkF-1p
co cl LY ck
Ck-1 Ck *°** C2k-1
Ye = —
cl ) ck
Ck °°* C2k-—1

with ¢; = (b, B'b) and B = I — A.

The conjugate gradient method is a well known method for symmetric
positive definite systems. It can be found in many textbooks, see, for
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example, Golub and van Loan [187]. The biconjugate gradient method is
a generalization which applies to arbitrary matrices, see Fletcher [159).

A severe limitation in the use of the biconjugate gradient method is the
possible occurrence of a breakdown (and in this case the algorithm stops)
or of a near-breakdown (and in this case the propagation of rounding
errors causes failure of the convergence). For example, Joubert [252]
reported a breakdown in this algorithm for

1 -1 0 0
1 1.0 0
B=I-4= 0 0 3 -1
0 0 1 3

and almost every starting vector y;. If we use the &-algorithms such a
breakdown (or near-breakdown) is curable. In the scalar and the vec-
tor c-algorithms we already saw that particular rules in which rounding
errors propagate less exist and that these rules can be extended to the
case when a division by zero occurs. The corresponding subroutines
(see chapter 7) use these rules (which are only valid if no more than two
adjacent vectors in the same column are equal or near-equal). Using
these subroutines with the particular rules allows to solve the preced-
ing system. For the topological ¢-algorithm (and thus for the bicon-
jugate gradient method) no such particular rules are known. However

we saw that the sequence (eg):) ) can be recursively computed by the

bordering method (introduction of chapter 4) and that breakdown or
near-breakdown can be avoided in the bordering method (section 1.8).
Thus we now known particular rules for avoiding breakdown or near-
breakdown in the biconjugate gradient method, see Brezinski, Redivo
Zaglia and Sadok [98, 99)].

When the matrix B is symmetric the topological e-algorithm is uneco-
nomical since it computes (b, B'b) for i = 0,...,2p— 1 without using the
property that (B’b, B'b) = (b, B't7b). This drawback can be avoided
by using the recursive projection algorithm or the compact recursive
projection algorithm (section 4.4) as explained by Brezinski [68]. The
solution of a system of linear equations can also be obtained via the
H-algorithm (section 4.5). Since these methods are projection methods
on a subspace, a more detailed study will be given in section 6.2.2.

To end this section let us mention that the e-algorithms are very
uneconomical for solving a linear system of dimension p since the com-
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putation of eg(:,) = z needs the storage of 2p + 1 vectors. However the
numerical stability is sometimes better than in other direct methods. As
we shall see in section 6.2.4, the main interest of these algorithms mostly
lies in the possibility of obtaining quadratic derivative-free methods for
systems of nonlinear equations. Such algorithms can be used for acceler-
ating the convergence of matrix iterative processes by cycling with k < p
the dimension of the system. We set (see section 6.1.5)

U = Tp
uy = Aug+b
Uy = Aug+b

then the e-algorithm is applied to the vectors ug,u;,...,uz; and we
take z,,. = eg(,?. Methods of this type were studied by Jennings [246],
Hafez and Cheng [210], Hafez et al. [211] and Lawther [276]. Realistic
applications can be found in Espinoza [152] who obtained a gain of time

of 37 per cent (with k = 1) for the Dirichlet problem for the Laplacian.

6.2.2 Projection methods

It is not our purpose in this book to develop projection methods. How-
ever since the ¢-algorithm, the H-algorithm and some variants of the
CRPA can be viewed as projection methods when applied to the solution
of systems of linear and nonlinear equations we shall devote a section to
this topics but we shall restrict ourselves to the material relevant to our
subject.

Due to their use in the solution of systems of equations, projection
methods have recently received much attention. They can be divided
into two classes namely the c-algorithms and the polynomial meth-
ods. Polynomial methods include the minimal polynomial extrapola-
tion method (MPE) of Cabay and Jackson {109], Vorobyev [450] and
Germain-Bonne [182], the reduced rank extrapolation method (RRE)
due to Eddy [149], Mesina [319], and Kaniel and Stein [255] and the
modified minimal polynomial extrapolation method (MMPE) of Brezin-
ski [61], Pugachev [368], and Sidi, Ford and Smith [408].

The convergence and the stability properties of these methods were
studied by Pugachev [368], Sidi [399], and Sidi, Ford and Smith [408].
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The methods are showed to be bona fide acceleration methods when ap-
plied to vector sequences produced by a matrix iterative method whose
matrix is diagonalizable. The case of defective iteration matrices was
studied by Sidi and Bridger [407]. It was proved by Sidi [401] that
the MPE, the RRE, the MMPE and the topological ¢-algorithm, when
applied to vectors generated by a matrix iterative method, are Krylov
subspace methods and are thus equivalent to the conjugate gradient,
the conjugate residual and the generalized conjugate gradient methods
and that the error analysis of these methods can be unified. Another
framework for their unified treatment was provided by Beuneu [28] and
Jbilou [244). Recursive algorithms for the implementation of the MPE,
RRE and MMPE were given by Ford and Sidi [163], Sidi [406] and by
Brezinski and Sadok [101] for the MMPE.

Let us now present these methods as in Jbilou and Sadok [245). Let
(S») be a sequence of vectors of C?. We shall denote by A’ ni the px k
matrix whose columns are A'S,,...,A*S, x—1 and by Y, x the p x k

matrix whose columns are the given vectors y( n.. o y,£ Y, will be
the transpose conjugate matrix of Y, . We set

-1
Tok = Sn = BL 4 (YisA2,) " Yix ASa.

Ify(") = ASn4i-1 we obtain the MPE. If y(") = A%S,,i-1 we obtain

the RRE and for y( ") = y; we have the MMPE. In the case where k = p
and y; is the i-th vector of the canonical basis of C? we recover Henrici’s
transformation (section 4.5). Using the Schur complement it can be
proved that

S, e Sork
(yf )’ Asn+k)

£)

(o1 As..+
(v ,AS,.+k)

)
(,857) - (64500

-

)
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Of course the matrix ¥,?, A2, is assumed to be regular. Thus the vec-
tors T,  can be recursively computed by the H-algorithm with g;(n) =
(y,(") s AS,H.,-,l) or, when yf") = y; which corresponds to the MMPE, by
the §3-algorithm (see section 4.2) or by the second variant of the CRPA
(see section 4.4). The other methods can be implemented by the algo-
rithms of Ford and Sidi [163] which are given in section 4.6. As showed
by Lembarki [278] many other projection methods can be implemented
by the RPA.

All these methods are direct methods for solving the system of linear
equations z = Az + b when applied to the sequence (z,) generated by
the matrix iterative process

zo given
Tpyy = Az, + 00, n=20,1,...

As we shall see in section 6.2.4 they provide quadratic derivative-free
methods for systems of nonlinear equations.

To end this section let us mention that the ¢-algorithm can be ex-
tended for constructing intersection projection matrices by using gener-
alized inverses instead of the inverse of a vector (which is in fact a gen-
eralized inverse) and that it has applications in the solution of systems
of linear equations in the least squares sense, as studied by Pyle [370].

6.2.3 Regularization and penalty techniques

When solving a system of linear equations
Az =b

the ill-conditioning of the matrix A can amplify errors on the data thus
leading to a poor accuracy in the computed solution. A technique, called
regularization and due to Tikhonov [434], enables to partly avoid this
drawback. It consists in solving

(A+eB)z(e)=b

where B is a given matrix. If A 4 ¢B is better conditioned than B then
the computed solution of this system can be less sensitive to perturba-
tions on the data and a better accuracy can often be achieved.
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We have

z(e)=(I+eM) 'z
where M = A~!B. Thus formally
z(e) = (I—€M+62M2 -e3M3 + )z

the series converging if |¢|¢(M) < 1, and polynomial extrapolation can
be used to obtain better estimates of z from (z(e,)) where (e,) is a
sequence converging to zero. Such an extrapolation can be performed
by using Richardson process on each component of the vectors z(ey,)
or equivalently by the H-algorithm with g;(n) = ¢! and the theoretical
results of section 2.2 apply.

Let us consider the Hilbert matrix given by a;; = 1/(i + j — 1) for
P
,5,=1,...,pand b; = Za;j. The solution of the system Az = b is
Jj=1
z;, =1fori=1,...,p. Taking B = I and extrapolating we obtain for
the maximum norm of the error and p = 4

e=10"¢ 0.178-1073

0.190-10°6
e=10"7 0.180-10~* 0.192-10°1°

0.191-10-8 0.474-10°12
e=10"% 0.180-10°° 0.454-10°12

0.187.10°1°

e=10"% 0.180-10°

We see that, as stated by the theoretical results of theorem 2.15, the
error behaves as (0.1)" in the first column and as (0.1)?" in the second
column. After, the errors due to the conditioning and the computer’s
arithmetic become preponderant.
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For p = 10 we have

e =10"1 0.330
0.102
e=10"20.125 0.324.10"!
0.331-10! 0.100-10!
€ =10"30.422.10! 0.101-10"1 0.289 - 102
0.103- 10! 0.289 - 102
€=10"0.135-10"! 0.290-10-2
0.297-102

€ =10"5 0.402-102

Similar techniques can be applied to the solution of systems of linear
equations in the least squares sense. If A is either singular or rectangular
we have to solve

A*Az = A"
where A* is the adjoint of A (that is the conjugate transpose). Instead
of solving this system, the regularized system

(A*Az + eB)z(e) = A™b

is solved for various values of ¢ and then extrapolated.
Let us consider the rectangular system given by Ribiére [374]

60 30 20 15 12 18 939
30 20 15 12 10 10 378
140 105 84 70 60 0o | = 1420
210 168 140 120 105 11 1725
504 420 360 315 280 _93 3367
420 360 315 280 252 2284

With B = I we obtain
e=10"6 0.723-10°1

0.825-103
e=10"7 0.797-102 0.504-10°°
0.460-104 0.123-10°%
€ =0.5-10"7 0.401-10~2 0.126-10°° 0.247-10-
0.574-1075 0.252-10-6
e=10"8 0.807-10°3 0.303-106
0.847-10°6

€ =0.5-10"8 0.404-1073
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As explained by Marchuk and Shaidurov [306, 307], z(¢) is the solution
of the minimization problem

min (|| Au - b))% + ¢ [|Bu*)

where ||v||? = (v,v). Thus the techniques of regularization and ex-
trapolation previously described can be extended to the solution of the
functional equation Az = b in an Hilbert space, in the least squares

sense. The solution of
min | Au — b

is replaced by the solution of the regularized problem
. 2 2
min (|| Au - b]|% + € || Bu?)

where B is some linear operator. Under some assumptions, whose details
can be found in Morozov [327], this minimization problem is equivalent

to solving
(A*A +eB*B) z(e) = A™b.

This problem can be solved for various values of ¢ and then extrapo-
lated as explained above. This technique has applications in differential
and integral equations, such as the Laplace transform inversion (see sec-
tion 6.4.4), in numerical integration and differentiation, in smoothing
processes, in the solution of nonlinear equations by continuation meth-
ods. By changing ¢ into 1 — ¢, perturbation methods can also be put
into this framework and extrapolated (see Bender and Orszag [25] for a
description of perturbation methods) and Shanks’ transformation, that
is Padé approximation, can also be much useful. Several applications
are given by Ribiére [374].

From the practical point of view, the method of regularization presents
two problems: the choice of B and that of €. The ¢,’s must be taken
so that the conditions of theorem 2.15 are satisfied. Of course this case
can be achieved by taking the ¢,’s sufficiently small but, in that case,
the regularized equation will be almost as ill-conditioned as the initial
equation. If large values of the ¢,’s are taken, the conditioning will be
better but the z(e,)’s will be bad approximations of z and extrapolation
will not improve their accuracy. Thus the choice of the ¢,’s must take
into account these two opposed facts, an almost heuristic procedure. An
analysis can be found in Gastinel [176].
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Let us now say a few words about the regularization of other opera-
tor equations. We consider the numerical solution of Fredholm integral
equations of the first kind

/.. b K(z,y) f(y) dy = 9(z)-

K and g are known and the problem is to find f. This problem is
usually ill-conditioned and a regularization technique was proposed by
Bakushinskii [12]. It consists in solving

b
ef(=) + j K(z,3) f(y) dy = g(2)-

If small values of ¢ are chosen then the problem is as ill-conditioned as
the initial one. Thus one has to take larger values of ¢. However, as
mentioned above, the solution of the regularized problem will not be
a good approximation of f in that case. Thus a possibility is to take
several values of ¢ (not too small) and then to extrapolate, a technique
proposed by Caldwell [110] and used to solve potential problems of the
Dirichlet type.

Regularization techniques different from that of Tikhonov can be used.
They are described by Engl [151] and can be extended to nonlinear
equations.

Let us now consider the nonlinear constrained optimization problem

Minimize f(z) subject to g;(z) > 0fori=1,...,m

where z € R, f : R — R, g; : R® — R. The inequality constraints
can be replaced by equality constraints g;(z) = 0fori=1,...,m.

If the constraints cannot be eliminated it is necessary to make a com-
promise between the minimization of the objective function f and the
feasible region for z. This conflict leads to penalty function methods
whose simplest one is

Minimize ¢(z,¢) = f(z) + 51; Em:g?(z)

=1
Let z(¢) be the solution of this unconstrained minimization problem.
Under some assumptions Lim z(e) = z* the solution of the initial con-
strained optimization problem, see for example Ciarlet [115].
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The penalized problem can be solved for various values of ¢ and the
solutions can be extrapolated by using Richardson’s process.
For example let us take the problem considered by Fletcher [160]

whose solution is z} = z3 = 1/+/2 = 0.70710678....

We obtain the following results with extrapolation

Minimize — z; — z; subject to 1 —z? — z2 =0

| e [[zi(e)==z2(e) | k=1 k=2 | k=3 |
1 W 0.8846462
101 | 0.7308931 | 0.7138094
102 || 0.7095936 | 0.7072269 | 0.7071605
10-3 || 0.7073566 | 0.7071080 | 0.7071068 | 0.7071068
10-4 | 0.7071318 | 0.7071068 | 0.7071068 | 0.7071068
10-5 || 0.7071093 | 0.7071068 | 0.7071068 | 0.7071068

They show the improvement obtained by extrapolation. On penalty
function methods see Minoux [322] for their theory and Haslinger and
Neittaanmaiki [214] for their application in optimal shape design.

As for regularization the choice of the £’s is the result of a balance. If ¢
is chosen small, in order that z(¢) be close to z*, then the problem could
be ill-conditioned thus leading to numerical difficulties in the solution
of the unconstrained problem. If ¢ is too large then z(¢) will be a bad
approximation of z* and no gain could be brought by extrapolation.
Heuristic techniques for the choice of the ¢’ s are given by Minoux [322]
among others.

The generalized reduced gradient (GRG) is a method due to Abadie [1]
for solving nonlinear constrained optimization problems. For finding the
direction of displacement at each step use is made of the conjugate gradi-
ent procedure of Fletcher and Reeves [161)] which is an iterative method
whose convergence is often quite slow. Its convergence has been accel-
erated by Aboun [3] using the vector ¢-algorithm and by Rahmani [372]
by the topological ¢-algorithm. The numerical tests performed on eight
problems show that a gain in the number of iterations between 5.4%
and 60.8% can be brought by the ¢-algorithms. For some problems the
computing time is divided by 2.8. The parallelization of the procedure
is also possible.
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6.2.4 Nonlinear equations

There is a very strong connection between sequence transformations
and fixed point methods for solving z = g(z) where g : RP — RP. The
most well known example of this connection is that between Aitken’s
A? process and Steffensen’s method in the case p = 1. We have

Tn = Sn — (Snt1 = Sn)” n=20,1,... for Aitken’s process
Sn+2 - 2Sn+1 + Sn ’ 7
and
a2
Tpy1=2Zn— (9(zn) — 20) , n=0,1,... for Steffensen’s method.

9(9(zn))—29(zn) +2n

More generally let T : (S,) — (Tn) be a quasi-linear sequence trans-
formation defined by

To=F(Sn,..-sSn4k), n=0,1,...

For solving the fixed point problem z = g(z) we can associate to it
the iterative method

Zat1 = F(zn,9(2n),- --1glc(zn)) ) n‘= 0,1,...

where g;41(t) = g(gi(t)) and go(t) = t. Conversely to any fixed point
iteration of this form, we can associate a sequence transformation of the
previous form.

In the case p = 1 the properties of the sequence transformation and
the fixed point method can be related. Assuming that F' is quasi-linear
and that g is differentiable in the neighborhood of the fixed point z we
have

v 2= (an - 0) F(1, 21T wlen) )

and .
9i(za) — z = [¢'(2)]" (zn — 2) + o(20 — 2).

Thus gathering the results of Wimp [467] (p. 113) and Brezinski [81]
we have the



316 Chapter 6. Applications

Theorem 6.19

Let (S,) be a sequence converging to S and such that 3a # 1, _’
(Sn+1 — S)/(Sn — S) = a. Let z be such that z = g(z) and g'(z) # 1.
Then a necessary and sufficient condition that (T,,) converges to S faster
than (S,) for all (S,) satisfying the previous assumptions, is that lim

(zn+1 — 2)/(zn — z) = 0 for all g satisfying the previous assumpt:o';;w

Thus the acceleration of linear sequences and the super-linear conver-
gence of the fixed point method are closely related.

We also recall that a necessary and sufficient condition for a sequence
transformation to accelerate linear sequences is to be exact for geometric
progressions (a consequence of theorem 1.8) and that a necessary and
sufficient condition for fixed point methods to converge super-linearly is
to be exact for g(z) = az+b (which means z; = z, Vz¢). The conditions
of the above theorem are satisfied for Aitken’s process and it is known
that Steffensen’s method has order 2 if ¢'(z) # 1.

As explained above the use of extrapolation methods for constructing
fixed point iterations consists in a procedure called cycling since the
process can be written, as

U = 2Tn
u = g(uo)
ur = g(ur-1)
Zpy1 = F(uoyur,...,ux).

Overholt’s process (section 2.8) was built for that purpose. In that
case if g is sufficiently differentiable in a neighborhood of z, if g'(z) # 1

and if z,,4; = V( ) then the sequence (z,) thus obtained has order k.
For k = 2 this procedure is identical to Steffensen’s method.

There are various other ways of using extrapolation methods for im-
proving fixed point iterations. They can be found in Brezinski [44],
Nourein [338], Claessens, Loizou and Wuytack [116), Brezinski [56], Cuyt
and Wuytack [131].

Cycling with the ¢-algorithm and k = 1 is exactly Steffensen’s method.
Cycling with a higher value of k& was studied by Achakir (5] and Ort-
loff [344] (see also Ortloff and Bohm [345]). The complex dynamics of
such a procedure was studied by Iserles [238]. It has order k + 1.
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Steffensen’s method has order 2 and each iteration needs two function
evaluations. Thus its efficiency index is 21/2 = 1.414...
A variant was proposed by King [262]. It is as follows

1 = 9(30), T2 = 9(21)
Yo=2%o, N1 =21

Tny2 = g(yn+1)

y =y Ynt+1 — Tn42
nt+2 = Yny1 - T
1- Kn+1

with Kn+1 = (2"+2 - zn+1)/ (yn-H - yn)‘

This process has order (1 + \/5) /2 = 1.618...but it requires only one
function evaluation per iteration. Thus its efficiency index is 1.618...
which is better than Steffensen’s method and identical to that of Regula
Falsi (secant method).

If the basic iterations u;;1 = g(u;) have an order k greater than one,
then Aitken’s process has to be replaced by

Sn+l - Sn

Tn=5-—01

where d is a particular zero of
tt4tv-1 4. 4t—a=0

and ¢ = AS,1/AS,. Then, as proved by Jones [247], the sequence
(zn) will have order k? (instead of 2k — 1 as showed by Ostrowski [350]).

If a is positive then the polynomial t* + t¥~1 4 ... 4+ t — a has only
one real positive zero and d must be taken as this zero. Moreover a is
positive if the sequence (u;) is monotone. If (u;) is not monotone it is
alternate and then we can replace it by (uz;+2) and k by k2.

For sequences of order strictly greater than one, the procedures for
controlling the error presented in section 3.8 are particularly effective.
If we set T, = z,41 then we can write T, = z, + Az, and T,(b) =
z, + (1 — b)Az,. (T,) converges to z faster than (z,) since its order is
greater than 1. Thus, by theorem 3.40, 3N such that Yn > N, z belongs
to the intervals whose endpoints are T,,(—b) and T,,(b). Moreover the
sequences (T,(+b)) have the same order than (z,).

Let us now come to the case where g’(z) = 1 always for one equation
in one unknown. This is the case when f(z) = z — g(z) has a multiple
zero. We shall present the results obtained by Sablonniére [379].
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We consider the sequence z,41 = g(z,) with

oo

gE Ay = {g(z) =z+ Eaﬁ.;z‘”" with ag41 < 0} .
=1

In that case z,, — z = O(n'l/q). For some subsets of A; and A; it is

possible to obtain more terms in the asymptotic expansion of z,, — z
which allows to construct suitable extrapolation processes.
For each g € A, there exists a unique function ¢

9 oo
Y(z) = Z diz™' + colnz + Ec,-z‘
=1

i=1
satisfying the relation
¥ (9(z)) =1+ ¥(=).
Thus
¥(zn) = ¥ (9n (z0)) = n + ¥(20).
The coefficients of ¥ can be obtained from those of g and then the

asymptotic expansion of z,, — z is deduced from the last relation.
Let us consider the following subsets

A'l={g€Al’c0¢0}’ -4'1'={9€A1,co=0},
AL = {g € Az,a4 #0,c0 # 0}, AY = {g€ Az,9 odd,co # 0},
AY = {g € Az,g 0dd,co = 0}.

Let us set D(uy,) = AupAuyyq /A%y, . Thus Aitken’s A2 process can
be written as
Tn = tnt1 — D(un).

We consider the algorithms
s B men ol (HE0) 0 a)

A2 H zs,o) =T, zs‘k) = zs'k_'_—ll) — (gk_t_q-__l.) D (zg‘-l))

2k -1
Aai o9 o0, o) = oD - (421 p (o).

We have the
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Theorem 6.20
For k > 1 and when n tends to infinity

i) if g € A} for ¢ =1 or 2 and if the algorithm A, is used then
z®) —z = o(n-(k+1)/0)

ii) if g € A] for ¢ =1 or 2 and if the algorithm A, is used then
z® — z = o(n—(2k+1)/q)

i11) if g € AY and if the algorithm Aj; is used then

zslk) 2= O(n—(2k+1)/2) )

The same results hold if, instead of the previous algorithms A,, 4, and
A3 the k-th iterate of the ®;-algorithm is used. Both procedures can
also be combined to obtain a slightly better rate of convergence. Let
us denote by O;(u,) the application of the ©@,-algorithm (that is the
second column of the @-algorithm) to the sequence (u,). We consider
the following algorithms

() () = gk=D) _ 2k+¢1—1) (k=1)
Ay oz, Zny, Yn ( 7k 1 D(zn ),

M = 0, (zD), 2 = (4 + (2k - 1)) / (28).
A5 -’I:s.o) = Zp, !Ir(.k) = zg:ll) - (%:_;) D (zs'k—l)) ’
2 = 0, (z(+), 2B = (29 + (4k - 3)z) / (4k - 1).
We have the

Theorem 6.21
For k > 1 and when n tends to infinity

i) if g € A}, for ¢ =1 or 2 and if the algorithm A, is used then

z) — 2 = O (n=(k+1)/a)
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i1) if g € AY and if the algorithm A5 is used then
z®B) _z = O(n-(2k+1)/2) .
Thus a better convergence rate is obtained for A]. These results were

extended by Sedogbo [389] to a modification of the £-algorithm. He
obtained a better result for AY’ by considering the modified e-algorithm

ef,"l)= i e,()")=z,,, n=20,1,...
n 1 Ax
5§=+)1 = eﬁ'ﬁ)"'m, k,n=0,1,...

with Ax =1/(4k + 1), Azky1 = 4k + 3 and we have the

Theorem 6.22
If g € A} then when n tends to infinity

e -z = O(n‘(“k“)/’) )
Let us now consider the following algorithm
ho o o9, oo D (V)
2k =@, (zg“l)) , 2 = gy 4 a2k,
We have the

Theorem 6.23
For k > 1 and when n tends to infinity

i) if g € A} for ¢ = 1 or 2 and if the algorithm Ag is applied with
ek = (2k+q—1)/(2k - 1), & = 1/2k and A\ = (2k — 1)/2k then

zg‘) -z = O(n—(2k+1)/9)

ii) if ¢ € A} and if the algorithm Ag is applied with cx = (3k —
1)/(3k - 2), 7x = 2/3k and A\ = (3k — 2)/3k then

z®) _z = O(n‘(s"'“))
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iit) if g € A and if the algorithm Ag is applied with ¢, = (4k —
1)/(4k — 3), yx = 2/(4k — 1) and A = (4k — 3)/(4k — 1) then

zs‘k) = O(n-(2k+1)/2)

iv) if g € AY' and if the algorithm Ag is applied with ¢, = (5k —
1)/(5k - 3), v« = 4/(5k + 1) and A\ = (5k — 3)/(5k + 1) then

zgc) —z = O(n—(5k+2)/2) .

Let us consider the case g(z) =z + cosz — 1, g € A]. We obtain
[nf[k=0] k=1 | k=2 | k=3 ]
0| 0.300 [ —0.171-10"2 | —0.182-10~° | —0.249- 108
0.255 | —0.103-1072 [ —0.945-10"6 | —0.908-10~°
0.223 | —0.671-10"3 | —0.538-10"6 | —0.333-10~°
0.198 | —0.464-10"3 | —0.328-10~% | —0.112-10"°
0.179 | —0.336-10"3 | —0.211-10"6 | —0.334-10"1°
0.163 | —0.251-10"3 | —0.141-10-% | —0.316-10~11
0.149 | —0.193-1073 | —0.976- 107
0.138 | —0.152-1073 | —0.696 - 10~7
8 |[ 0.129 | —0.122.10~3 | —-0.508 - 10~7

-~ DN OV W N

For the class A} still more interesting algorithms and precise results
were given by Sablonniére [380].
He considered the four algorithms (n > 1)

i)
£ o, o) =g,
n n+1 n+1
e, = ety + k/(egkiz) - Egl:)-z)
e = et + (k+1) /(RTY - ey)
ii)

d((,") = Zp, dsc") = & (d,(:l)l) where

a+l Au,-Auyy
a A2y,

Ja(un) = Un41 —
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tM =z, M=4 (tﬁ'l)l) where

Atnyi (ni1 — 5(un))

and
Atnyr — Ab(un)

0(tn) = tn41 —

6(un) = un41 — AuAuyy,y /Azun

iv) the ©-algorithm.

For these algorithms we have the following results, assuming that (z,)
tends to zero (which does not restrict the generality)

Theorem 6.24
If g € A} then

i)
.,;.oo ("ezk) /Eg'i) 2) =keo/(k+1)
(")/fg? 2 = co/n
i)
iz ( d(")/dﬁ")l) = cof (k +1)
k—.oo( dg:r)l/d(" ) = co/n
iii)
Tim (at{ /¢7)) = —co/ k(k +1)
lim (ke + 1)1 /6{%,) = ~co/n
iv)

lim n(i')(") / Gg',:)_ ) = —cowk+1/ wk where

wl—l 02—05andwk+1———(—1-—_i-. Yk )

lim (k(k+1)0%) /6f}) ;) = ~co/n.
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Let us notice that the sequence (wy) tends to zero very rapidly. More
precisely k! (k — 1)lwiy = O(1/k) and klim (k- 1)lwi = 0.
If these four algorithms are compared together then we obtain the

Theorem 6.25
If g € A then

lim d{" /el = 1/k!

n_mt(") /df " = (=1)k/k!
m O /t™ = k1/(k + 1)lwksr = O(L/k).
n-—»oo 2k k

Thus the best algorithm among the four is the ©-algorithm.

When f(z) = z — g(z) has a zero of known multiplicity m, this multi-
plicity can be introduced in the algorithm to have quadratic convergence
as for a simple zero. For example, Steffensen’s method becomes, see Bre-
zinski [36]

Ug = Tp,
u; = g(uo)
up = g(u;)

Tpy1 = uo—mby with b = (Auo)z/Azuo.

When the multiplicity m is unknown, Achakir [5] proposed a method
with quadratic convergence in which a sequence (m,) converging to m
is built such that m,1; = m + O(z, — z). It is as follows

Ug =Ty

u; = g(uo)

uz = g(w)

u3 = g(uz)

Tnil = U — K_E)— bo with b,‘ = (Au;)2/ Azu,- and Mpy1 = 2—:;)

Let us consider, for example, the case
z =sinz

which has a zero of multiplicity 3 at zero. We obtain with zo = 0.5
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n || Modified Steffensen’s | Achakir’s method m,
method

1 —-0.25-10"! 0.41-10! 2.62

2 -0.14.10~4 0.28-10—4 2.9969

3 I —0.45-10714 0.87-10°10 2.9999908

Then a division by zero occurs. These results were obtained on a VAX
computer with 33 decimal digits in extended precision.

Let us consider again iterations of the form

Znt1 = F(z,), n=0,1,...

We have

Znt1 =2 + (20 — z)Fvln

with F), = F'(z + 0,(z, — z)) and 8, € [0,1). Subtracting z, to both
sides we obtain
z—- Az, —z F),

1-F

Tpn =

If |F}| is small compared to |Az,| (which is true if F”(z) = 0) then

- ~z—Az,.
"T 1-F

which shows that the sequence (z,) can be extrapolated with the rational
form of the E-algorithm that is with g,(n) = Az, and g(n) = z, F,.
Since F}, is unknown we shall approximate it by

g - F(Sa) = F(San) __AS,
" Sn - Sn-l Asﬂ-l )

Let us consider again the case F(z) = sinz. We obtain the following
numbers of exact digits
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z, | E™ | EM
0.07
0.13 | 0.22
0.17 | 0.28 | 0.67
0.20 | 0.33 | 0.97
0.23 | 0.37 | 1.19
0.26 | 0.40 | 1.37
0.28 | 0.42 | 1.51
0.30 | 0.45 | 1.64
0.32 | 0.47 | 1.75
0.33 | 0.49 | 1.85
10 || 0.35 | 0.50 | 1.94
12 || 0.38 | 0.53 | 2.10
14 || 0.40 | 0.56 | 2.24
19 || 0.45 | 0.62 | 2.52

W o0~ UL i W - OIS

Ef") corresponds to Aitken’s A? process. We tried other algorithms
on this example and the best one seems to be the ®-algorithm.

We obtain for the last value computed by the algorithms

n=4 n=7 n=12 n=15 n=16

e-algorithm  0.42 0.55 0.72 0.79 0.82
g-algorithm (.78 1.01 1.32 1.43 1.54
©-algorithm  0.85 1.76 4.28 4.49 6.20
Richardson 0.46 0.61 0.76 0.82 0.84
1% gener. ¢ 0.02 0.03 0.00 0.01 0.00
2"d gener. ¢ 0.09 0.10  0.09 0.09 0.09
Iterated A2  0.49 0.72 1.24 1.34 1.28
Overholt 0.48 0.64 0.80 0.87 0.89
Levin t 0.40 0.64 0.80 0.88 0.90

Then the precision of the @-algorithm deteriorates due to cancella-
tions errors.

If the condition F"”(z) = 0 is not satisfied (as for F(z) = e~%) then
the preceding method does not work well. For this example we obtain
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T [5P [P

n

0 || 0.45

1 || 0.66 | 1.58

2 || 0.93 | 2.09 | 0.17
5 || 1.66 | 3.57 | 0.18
10 || 2.89 | 6.03 | 0.18
15 || 4.12 | 8.50 | 0.18

In both cases the computation of E{" with gs(n) = f. does not
improve the results and it can even deteriorate them.

We shall now consider the case where p > 1 that is systems of non-
linear equations written as z = g(z). For such systems the following
cycling procedure is proposed

e choose zg
o (n + 1)-th iteration

Up = Zp
Ui = g(ui)’ i=0,...,d,

where d,, is the degree of the minimal polynomial of the matrix
g'(z) for the vector z, — z (see section 6.2.1 for the definition).

e Then set
zn+1 = To,dn

where T, ; denotes one of the projection methods studied in sec-
tion 6.2.2 that is the MPE and the RRE.

Such procedures for solving a system of nonlinear equations have
quite a long history. They were first proposed by Brezinski [33, 41]
and Gekeler [177] who both used the scalar or the vector ¢-algorithm.
They studied the convergence of the sequence (z,), which is obviously
quadratic for most of the examples, but there was a gap in their proofs.
The same gap can be found in the works of Skelboe [410] for the MPE
and Beuneu [28] for another class of extrapolation methods. A full sat-
isfactory proof of the quadratic convergence of (z,) was given for the
first time by Jbilou and Sadok [245) who proved the
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Theorem 6.26

If I — g'(z) is regular, if ||g'(u) — ¢'(v)|| < L|ju—v|| for allu,v e D C
RP, if 3a > 0 such that Vu € Dy — {2}, a,(u) > a where Dy C D and
an(u) = y/det (H:(u)Hn(u)), Hn(u) being the matriz whose columns
are

g(w) -9 M) .
loi(a) —gi(@)] Fri=hede

with ¢°(u) = u and g*(u) = g (¢9*~'(u)) and d, the degree of the minimal
polynomial of g'(z) for the vector z, — z, then there ezists U C Dy such
that Vzo € U, the sequence (z,) constructed above converges quadrati-
cally to = that s

lnss = 2ll = O (len ~ 2[%)

This theorem is also true when Tg 4, = eg?,)" obtained by the topo-
logical e-algorithm (see Le Ferrand [277]). It seems to be true for the
vector c-algorithm although an entirely satisfactory proof has not yet
been obtained. The case of Henrici’s method was studied by Ortega and
Rheinboldt [343], section 11.3.5, page 373. This theorem is still true for
a wider class of methods under a supplementary assumption.

If the matrix I — g'(z) is singular, a regularization technique due to
Yamamoto [486] can be used.

It must be noticed that we have not assumed that g is a contraction or,
in other words, we have not assumed that the sequence (u;), computed by
the basic iterations u;4+; = g(u;), converges. If (u;) diverges rapidly then
numerical instability can occur and this instability can cause the loss of
the quadratic character of the convergence or even of the convergence
itself. In that case the basic iterations have to be replaced by

uUip1 = 4 + an (9(u) — u;), i=0,...,d, (or2d,).
Let Ay,..., A, be the eigenvalues of g’(z) and let C be the open disc
of the complex plane with center at -1 and radius 1. Then, as proved by

Brezinski [53], these new basic iterations are numerically stable if a,, is
chosen such that

ap(Ai-1)€C for i=1,...,p.
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Such an a, exists only if all the (A; — 1)’s have their real parts of the
same sign. If it is not the case it is possible to minimize the numerical
instability by taking a,, such that

an(A—1) € C with |A - 1| = max|}; —1|.

Of course such a procedure is difficult to implement since the A,’s
are, in general, unknown. To avoid this drawback Wynn [485] proposed
to choose a, as follows after setting ap = 1. At the beginning of the
(n + 1)-th iteration we set

Vo = Zp
v =V + anp_ (9(”0) - v)

and then a, is computed by

_ llv1 — wol|
llg(v1) — v1 — g(vo) + woll

a, =

where the norm of the vector y is taken as
= max |y;
ol = max |ui

y; being the i-th component of y. After having determined a, by this

method the modified basic iteration are computed again from up = z,.

Many numerical results with the ¢-algorithm are given by Brezinski [56).
Let us give one more example. We consider the system

z=azy3’+ b
y= alel-l-.‘l:y + b

with a — b = a' + & = 1. Its solution is z = —1 and y = 1. The
eigenvalues of the Jacobian matrix at the solution are

a-ad+ \/(a’- a)? - 8aa’
3 .

A=

Ifa=a'=1/2than A\; — 1 € C for i = 1 and 2. Thus we can take
a, = 1 in the basic iterations which are in this case u;+; = g(u;). We
obtain
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Ln | Zn | Y |
o 0.0 0.0
1] -1.32 0.917
2 || —1.011 1.0014
3 || —1.000017 0.9999984
4 | —1.000000000035 | 1.0000000000020
5 || —0.9999999999999999 | 1.000000000000000

Let us now takea = 1 and @’ = 10. Wehave A\; -1 = -5and A\, -1 =
—6 and the stability condition is satisfied by the choice a,, = 0.25 since
we must have 0 < a, < 1/3. We obtain

Ln Zn | Y |
0] 09 0.9
1| -1.073 1.012
2 || -1.041 0.984
3 || —1.0050 0.9968
4 || -1.000041 0.999968
5 || —1.0000000020 0.9999999985
6 || —0.9999999999999999 | 1.000000000000000

If we take a,, = 0.5 then the stability condition is not satisfied and

we have

Lol 2. [ o |
0 -09 |09

3 | —1.060 | 0.953
6 || —1.043 | 1.015
10 | —1.003 | 1.003

For higher values of a,, the program stops by an overflow.

If the above automatic determination of a,, is used then we obtain for

a=1,a" =10,z9 = —0.9 and yo = 0.9
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an ” an ] Tn+1 | Yn+1 ﬂ
0 || —0.1154 | —0.8886 1.0866
1 —0.0471 | —0.9170 0.9548
2 || —0.0928 | —0.9273 1.0773
3 —-0.1262 | —0.9791 0.9918
8 || —0.1055 | —0.99878 0.99878
9 (| —0.1042 | —0.99956 0.99923
10 || —0.1085 | —-0.999945 0.99981
11 || —0.1131 | —0.99999942 0.9999931
12 [| —0.1181 | —0.99999999983 0.9999999940
13 || —0.1199 | —1.000000000000004 | 0.9999999999999959

As we can see from these results the values of a, found are outside
the disc C. However we obtain quite a rapid, although not quadratic,
convergence.

6.2.5 Continuation methods

The main problem for solving nonlinear equations f(z) = 0 by an itera-
tive method is to find an initial approximation belonging to the domain
of convergence of the solution. A possibility for obtaining such a starting
point (or, in other words, to widen the domain of convergence) is to use
a continuation method (also called homotopy method).

Let g(z) = 0 be another equation whose solution z, is known. We
consider the equation

H(z,t) = (1 - )f(2) + tg(z) = 0.

We have
H(za 1) = g(z)
and H(z,0)= f(z).

We assume that the solution z(t) of H(z,t) = 0 depends continuously

on t. We have z(1) = z,.
A continuation method, as described for example by Ortega and
Rheinboldt [343], consists in partitioning the interval [0, 1] as

to=1>t, >t >--->tn=0
and solving the equations

H(z,t;)=0, i=0,...,N
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by some iterative method where the solution of the i-th problem is used
as the starting point for solving the (¢ + 1)-th problem. If ¢; and ¢,
are sufficiently close such a starting point will belong to the domain of
convergence.

Instead of partitioning the interval [0, 1] into a finite number of sub-
intervals we can also take a sequence (t,) with

to=1>tL1>t2>:--->0

and lim t, = 0. Let us set z,, = z(t,,), the solution of H(z,t,) = 0. We

n—00
shall now show how to extrapolate the sequence (z,) which converges

to the solution z of f(z) = 0 and make use of four strategies
1. Exact solution of H(z,t,) = 0 (to the computer precision).
2. Inexact solution of H(z,t,) = 0 by making only one iteration.

3. Knowing z,,_; and z,_», exact solution of H(z,t,) = 0 with the
Aa’n—2
Atn—2

starting point y, = z,-2 — th_2-

4. Same as 3 but inexact solution with one iteration.

Let us give the results obtained (number of exact digits) with g(z) =
1 — e~ whose solution is z = 0.5671432904097838.... The iterative
method used was Regula Falsi (since this method needs two starting
points we took z,, and z,, +0.1). The sequence (z,,) was then accelerated
by

Az,

Tn=2n— 2
n

“tn, n=01,...

and ¢, = 0.1".
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Strategy 1 Strategy 2 Strategy 3  Strategy 4

[rl2nt1] Tn [¥[2n41] Tn [[Zas1]| Tn ﬂEmI T. |

0129 | 1.27(8( 0.84 | 1.32{ 1.29 | 1.27 0.84 | 1.32
1231 3.52|7 236 | 1.96( 2.31 | 3.52 6 2.26 | 2.01
2]1331] 5546 3.38| 4.78) 3.31 | 5.54|5] 3.32 | 4.11
3{1431} 7.54|6( 438 | 691 4.31 | 7.54|5]| 4.31 | 6.26
41531 95416 5.38 | 8.42(5.31| 9.54[4|l 5.31 | 9.50
‘5 6.31 |11.54 (6| 6.38 {10.29( 6.31 {11.54 |4 | 6.31 | 12.02
6] 7.31 113.54|5|[ 7.38 | 11.97| 7.31 | 13.54 |4 ) 7.31 | 14.17
,7 8.31 {15.62|5| 8.38 [13.75| 8.31 | 15.62 {4 || 8.31 | 15.66
8 9.38 [15.30

where v is the number of iterations for obtaining the exact solution.

As we can see from these results the four strategies work quite well
since the number of exact digits is roughly doubled. The number of iter-
ations needed for solving exactly the problem is only slightly decreased
by using strategy 3. The results obtained by strategy 4 are a little bit
better than those given by strategy 2.

Other homotopy methods are described by Keller [259].

These results are given here only to show a new application of extrap-
olation methods but no theory exists so far.

6.3 Eigenelements

In this section we shall see how the e-algorithms (scalar, vector and
topological) can be used in eigenelement problems. Of course since al-
gorithms for computing eigenelements are iterative, they can first be
used for their acceleration. However it will not be our aim to develop
this point of view here, but we shall present another more interesting
feature of the c-algorithms: as we shall see the ¢-algorithms give us
new methods for computing the eigenvalues of a matrix. This is not
a surprising fact since, as we saw in section 6.2.1, these algorithms are
direct methods for solving systems of linear equations and such methods
(as Gaussian elimination or Householder factorization) lead to iterative
methods for computing eigenvalues. Thus the ¢-algorithms will give us
an extension of the Rayleigh quotient (or power) method for comput-
ing simultaneously several eigenelements. Another interesting problem,
having many applications, is the computation of the derivatives of the
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eigenelements of a matrix whose elements depend on parameters. In this
case, the ¢-algorithms will give a direct method for solving the problem.

6.3.1 Eigenvalues and eigenvectors

The Rayleigh quotient (or power) method is a well known method for
computing the dominant eigenvalue and the corresponding eigenvector
of a matrix. It is as follows. We consider the sequence of vectors

Zpy1 = Az, n=0,1,...

where 2 is a given arbitrary vector. Let y be an arbitrary vector. We
set yn = (¥,Z,) and we consider the sequence

s"=y"+1/yn, ﬂ=0,1,...

Under some assumptions (S,) converges to the dominant eigenvalue
of A. Let Ay,..., A, (p is the dimension of A) and v,,...,v,, be the
eigenvalues of A and the corresponding eigenvectors. If we assume that
v1,...,vp are linearly independent, that |A;| > [Az| 2 |As] > --- > |A,),
that (z¢,v1) # 0 and that (y,v;) # 0 then (S,) converges to A; and we
have

Sn - Al = 0 [(Az/Al)n].

After having obtained A, either the matrix A or the method can be
modified in order to obtain the sub-dominant eigenvalue A;. But, of
course, the drawback of this procedure is that it can only be started
after achieving convergence to A; since the knowledge of the value of A
is needed for performing a deflation of A or a A-difference.

Thanks to the results given in section 6.1.5, the e-algorithms can
be used to compute simultaneously several eigenvalues thus giving an
extension of the Rayleigh quotient method. There are two possibilities:
to apply the vector or the topological -algorithm to the vector sequence
(zn) or to apply the scalar e-algorithm to the scalar sequence (y,,). In the
first case we shall obtain sequences of scalars converging (under some
assumptions) to the eigenvalues and, at the same time, sequences of
vectors converging to the eigenvectors while, with the scalar ¢-algorithm,
we shall only produce scalar sequences converging to the eigenvalues. Of
course, using the scalar e-algorithm, saves much time and storage but,
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on the other hand, the eigenvectors will have to be computed separately
afterwards (by solving systems of linear equations).
The algorithm is the following

e Choose z¢ and y such that (zo,v;) # 0 and (y,v;) # 0 for i =
1,....m<p.

o Compute 2,4, = Az, and y, = (y,z,) forn =0,1,...

e Apply the vector ¢-algorithm to (z,) and set

a,(:") = y,eg',:"'l))/ (y,eg',:)) , k=0,....m-1;n=0,1,...
y,eg',:)_,_l)/ (y,eg',:i})) , k=0,....m-1;n=0,1,...

or apply the scalar e-algorithm to (y,) and set

bﬁ") _

c;n)zeg,;m/eg,;), k=0,....m-1n=0,1,...
dﬁ")zeg',:)“ eg',:ﬂ), k=0,....m-1;n=0,1,...

We have the following result, which is a direct consequence of theo-
rem 6.13

Theorem 6.27

If M| > [Xe| > <<+ > [Am]| 2 [Amga| 2 =+ 2 |Ay| then, for k =
0,...,m—1, the sequences (ag') ) , (bﬁ")) , (ci")) and (dﬁ")) converge to
At+1 when n tends to infinity. Moreover, with the vector e-algorithm

lim eg',:)

n—oo (

Instead of the vector ¢-algorithm, the topological ¢-algorithm can
be used. We can also make use of the iterated vector or scalar A2
process. The rate of convergence of the four previous sequences is
O [(Ak+2/Ak+1)"] and thus they can be accelerated by the scalar e-

algorithm producing sequences (eg;) ) such that

¥ 5g'l:)) = lim (y’ eg'i)“) Eg'l:) = Vk+1

n—o0

e8a) = Mt + O [(Mkrgr2/Mer1)"] (n — o).

Variants of the preceding methods exist and can be implemented. As
shown by the examples given in Brezinski [56], it seems that the preced-
ing methods can suffer from severe numerical instability which comes



6.3. Eigenelements 335

from the many scalar products needed. Thus they must be programmed
very carefully and, in particular, the scalar products must be computed
with the correction proposed by Pichat [358] which is explained in sec-
tion 7.2. These methods deserve further studies both on the theoretical
and practical levels.

Let us return to the initial Rayleigh quotient method for computing
A1. If the scalar e-algorithm is applied to the sequence (S,) thus, as
seen above, we shall have

) = A1 + O [(Age2/M)"] (n — o).

2q

An important application of this procedure is the determination of the
optimal value w,p; of the parameter w in the over-relaxation method.

We have to solve the system Az = b. Let D be the matrix formed
by the diagonal of A, —FE its strictly lower triangular part and —F its
strictly upper triangular part.

We set
M = (D - wE)/ w, w#0
N=[(w-1)D+wF]/w
L,=M"IN
c=M"1p

and we consider the iterations
Tpt1 = Lyzn + ¢

where z( is arbitrarily chosen. This is the so-called over-relaxation
method (SOR).

When the matrix A is symmetric positive definite and block tridiag-
onal (a situation which arises often when discretizing boundary value
problems) the optimal value wop; of w (that is the value leading to the
fastest convergence) is given by (see Varga [448])

-1/2
Wopt = 2 (1 +4/1- |)\1|)

where }A; is the dominant eigenvalue of L. Thus we have to determine
A1. We first begin the iterations with w = 1 and use the Rayleigh
quotient method for obtaining A;, that is we compute

Sn = (¥, Aznt1)/ (v, Az,) , n=20,1,...
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which converges to A; as O [(A2/A1)"]. In order to obtain faster conver-
gence, the scalar ¢-algorithm is applied to (Sy), thus leading to a better
estimation of \,. After having obtained A, the iterations are continued
with w,,; as given by the formula above.

Let us apply this procedure to the 200 x 200 tridiagonal matrix with
a;; = 2,841 = @i41,; = —1, the other elements being zero.

We have A\; = 0.999755728800233 ..., wope = 1.969221..., S100 =
0.999367119297927 and eg)g) = 0.999693452381627.

With the exact value of w,,; we add one exact digit every 71 iterations.
If A; is estimated by S;g0 then w = 1.950919 and we only gain one exact
digit every 200 iterations. If \; is estimated by sg,g) then w = 1.965582
and we shall gain one digit every 111 iterations. Thus an important
improvement can be brought by ¢-algorithm in this case.

6.3.2 Derivatives of eigensystems

Many problems of engineering and physics require the computation of

the partial derivatives of the eigenvalues and eigenvectors of matrices

whose elements depend on parameters. This is, for example, the case

in optimal design of aircrafts, system identification of structures, and

reanalysis of structures when some parameters are slightly changed.
This problem can be solved by direct methods. We have

Az; = \jz;, i=1,...,p

where A is a p X p matrix.

We assume that the elements of the matrix A depend on parameters
P1,P2,---,Pm and we shall denote respectively by A, ;, z; ; and A; the
partial derivatives with respect to p; of ), z;, and the matrix A (that
is A; will be the matrix whose elements are the partial derivatives with
respect to p; of the corresponding elements of A). We have

Ajz; + Az;',- = XijZi + Ai zi 5.

If z; is normalized such that z}z; = 1 (where the star denotes the
conjugate transpose) then, by differentiation, we shall have

ziz; ;=0
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and we obtain

Aij = =2 (A-X\N1) zi; +z]Ajz;
zij = [(4; - AijI)zi+ Azi;]/ A

Thus A;; and z; ; can be directly obtained by solving this linear sys-
tem of p + 1 equations in p + 1 unknowns. However the solution of this
system raises many numerical problems due to the ill-conditioning which
leads Rudisill and Chu [377] to propose the following iterative method

e = 2I(A-NDu+ziAjz;
urt1 = [(Aj — pe D) zi + Aug)/ Ais k=0,1,...

It was proved by Andrew [9] that if A is nondefective and if ug is
chosen to satisfy

ziug =0
then, Vk

P
e =zii+ 3 A/ N) ur
r=1
r#s
where the y,’s are some vectors. Thus if [A;| > |Az| > |Asz] 2 -+ > |Ap]
and if ¢ = 1, (ux) and (pi) tend respectively to z; ; and A, ; when k
tends to infinity and the rate of convergence is O (I)q / All"). Fori#1,
the sequences (ux) and (u;) fail to converge due to the presence of terms
in (A;/ /\.')'c for r < 1 which grow exponentially.

However, as remarked by Tan [423, 424, 425, 426] in a series of papers,
if the e-algorithm (scalar, vector or topological) is applied to (ux) then,
thanks to theorems 2.18, 4.2 and 4.3 on its kernel, we shall have

eg';22=z.~,,-, m=01,...

Thus the ¢-algorithm has transformed the preceding iterative method
into a direct one. The performances of these algorithms in the pres-
ence of rounding errors was investigated and a refinement procedure
suggested by Tan [425).

Another extrapolation method was also proposed by Tan [425]. He

sets 1 = 1 and
w¥ =uw, k=0,1,...
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and then computes
T Al - Ar+1 ’

IfAj# A forj=2,...,7+2 then

w® =z, + z (A,,/Al)"zp, r<p-2
p=r+2

where the z,’s are some vectors.

This procedure can be extended to the non-dominant eigenelements.
Tan [427, 429] also used the minimal polynomial and the reduced rank
extrapolation methods which are shown to be effective. When the partial
derivatives of several eigenvalues and eigenvectors are needed, simulta-
neous iteration can be used as described by Tan and Andrew [430]. It
consists in generating a sequence of r X r matrices, (M), and a sequence
of p X r matrices, (Uy) as follows

M, = (X*X)'X*(4;X + AU, — UA)
U1 = (A_,'X-{-AUk—XMk)A_l, k=0,1,...

where A = diag(A,...,A;) and X is the p X r matrix with columns
Z1,...,2Z,. It is assumed that z7z, = 1 for i = 1,...,p. Application of
the vector or the topological ¢-algorithm to this method again yields the
exact solution.

Numerical results can be found in the above mentioned references.

6.4 Integral and differential equations

Extrapolation algorithms have several applications in the solution of
integral and differential (ordinary and partial) equations.

When using implicit methods for integrating ordinary differential equa-
tions one has to solve, at each step, a system of nonlinear equations.
This solution can be obtained via the derivative-free methods described
in section 6.2.4. The solution of boundary value problems can be trans-
formed into the solution of initial value problems by shooting methods.
Such a procedure also involves solving systems of nonlinear equations.
The solution of boundary value problems on a semi-infinite interval can
be improved by extrapolation.
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New methods (nonlinear and A-stable) for the integration of ordinary
differential equations can be constructed from the confluent form of the
g-algorithm or from Padé approximation.

The inversion of the Laplace transform, which has so many important
applications, can be obtained by rational interpolation and approxima-
tion of the image and then inversion of this rational function.

Finally extrapolation procedures can be used for improving the ac-
curacy of the solution of partial differential equations obtained by dis-
cretization methods. The E-algorithm can also be used in the minimiza-
tion of functionals obtained in variational methods.

Of course when integrating numerically differential equations, it is
possible to use several step sizes hg, hj,... and then to extrapolate the
approximate values of the solution at the coincident points thus ob-
tained. Such an application of extrapolation methods was studied by
Gragg [189, 190], Bulirsch and Stoer [107] and more recently by Deufl-
hard [142].

6.4.1 Implicit Runge-Kutta methods

When integrating stiff differential equations numerically it is mandatory
to use A-stable methods. It is well known that linear explicit A-stable
methods do not exist and thus one has to use implicit one step methods
of the form

Yn+1 = Yn + ho (""'mym Tn+1yYn+i, h)

(where y,, is an approximation of the solution at z,,) or implicit multistep
methods of the form

aeyYnt1 + o+ aoyn-ke1 = A(Bef(Zni1,Ynt1) +---+
Bof(Zn—k+1>Yn—k+1)) -

In both cases y,4; is given implicitely as the solution of a system
of (usually nonlinear) equations and thus the derivarive-free methods
described in section 6.2.4 are very useful.

For example, the vector e-algorithm was used by Alt [8] in semi-
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implicit Runge-Kutta methods. Such method is defined by
k, = f(zn+01hyn +anhk)

k2 = f(zn+82h,yn +a21hky + a2 hkz)
k, = f(zn+0rhsyn+arlhkl+"'+arrhkr)
Yntl = Yn+ h(clkl +---4+ crkr)

where the 0;’s, the a;;’s and the ¢;’s are constants chosen so that the
method has the highest possible order.

Thus, at each step, r systems of (nonlinear) equations have to be
solved for obtaining k;, ks,...,k,. These solutions can be obtained by
the derivative free methods described in section 6.2.4, where the starting
initial value for the iterations is given by an explicit method thus leading
to very fast and efficient processes.

6.4.2 Boundary value problems
Let us consider a system of p differential equations of the first order
v'(t) = £(t,(¢))

where y : R — RP and f : R X RP — RP, f satisfying a Lipschitz
condition.

Let a <t <ty < --- < t <b, be k distinct points in the interval
of integration and let g : (RP)* — RP. The solution of the preceding
systems is subject to satisfy the multipoint boundary conditions

g(y(t1),-..,y(tx)) = 0.

In order to integrate this system, we have to transform it into an initial
value problem, that is we have to find the missing initial conditions
z = y(a) € RP such that

g (y(tla z)’ veey y(th z)) =0
where y(t,z) is the solution of the differential equation satisfying
y(a,z) = z.

Thus the problem of finding z reduces to the solution of a system of p
equations in p unknowns which are the components of z. This system of
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equations can be very efficiently solved by the derivative free methods
explained in section 6.2.4.

We choose arbitrarily a value zo for u and we set ug = z9. We
integrate (numerically) the system with uo as an initial condition and
we obtain approximate values y;(uo) of y(ti, ug) for i = 1,...,k. Then
we compute

u; = ug + a g (y1(o), - .-, yk(uo))

where a is some non-zero parameter.

We integrate numerically the system with u; as an initial condition.
We obtain approximate values y;(u;) of y(¢i,u;) fori =1,...,k and we
set

uy = uy + ag(y1(u), ..., ve(w1))-

And so an up to uy, where p is the dimension of the system.

Then we apply to vector e-algorithm or the topological ¢-algorithm to
the vectors ug, uy,...,u, and we obtain a vector denoted by eg,). We
set

T = eg:,)
and we start again the whole business with up = z; and so on.

If the conditions of theorem 6.26 are satisfied then the sequence (z,)
converges quadratically to z.

The advantage of this procedure on shooting methods using finite dif-
ferences is that the dimension of the system to be solved is equal number
of unknown initial conditions and not to the number of discretization
points in the interval of integration.

Instead of using the e-algorithm for solving the system, we can use
Henrici’s method and the H-algorithm thus saving much computational
time since only ug, u,,...,u,4; are needed at each step.

Let us consider the example given by Brezinski and Rieu [100]

yi(t) = w2(t) —ya(t)
¥2(t) = vi(t) + v2(t)
y3(t) = wi(t) + ya(t)

with the conditions

11(0)=1, w(1/2)=e-4, y3(1)=-4-ec—¢.
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This boundary value problem has a unique solution which is

yl(t) = 2-¢
ya(t) = —4—(42—2)et + e
ya(t) = —4— (4¢—3)e' + 2

and the missing initial conditions are
1n(0)=1, 3(0)=-1, y3(0)=0.

Using a Runge-Kutta method with an error less than 0.5- 10~° and
starting with zo = 0, the vector ¢-algorithm gives

z; = (0.921428452,—0.951029784, —0.100612601)
z, = (0.999698042, —1.002885341,—7.49 - 10~)
z3 = (0.999999542, —0.999997855, —3.70-10-7)
zs = (0.999999995, —0.999999996,~1.10-10-10),

The next iterations give the same values as z4 and thus the boundary
value problem has been solved with the same accuracy as the numerical
integration procedure used. The Runge-Kutta method was used 24 times
(4 iterations and p = 3) for obtaining these results.

A problem related to the preceding one and which can be treated by
a similar method is that of free boundary. Let us give a very simple
example for illustrating it. We consider the differential equation

¥'(z) = f(z,9(z)), =€ [a,}
with the boundary conditions

y'(a)
y'(b)

where yo and 2 are given but where b is unknown but satisfies

Yo
29

G (b,3(b)) = 0.
The problem consists in finding b.

If we set
z(z) = y'(z)
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the problem becomes

v'(z) = 2(z)
Z(z) = f(z,y(z))
2(a) = w
z2(b) = =z

and thus we have to find the missing initial condition y(a) and the value
of b, that is we have to solve the system

z(y(a),d) = 2(b) = =
G(b,y(d)) =

This system can be solved by one of the derivative free methods ex-
plained in section 6.2.4.

For a survey on free and moving boundary problems see Cryer [124].

Let us now consider the case of second-order two-point boundary value
problems on the semi-infinite interval (@, 00). A technique for dealing
with such problems is to replace the boundary condition at infinity by
the same condition at z = R for a sufficiently large value of R. The
practical difficulty is to decide what large means.

Croft [122] proposed to use several values of R and to extrapolate the
computed solutions at the various points in the intervals of integration.

We consider the problem

¥"(z) - (1+ f(z))y(z) =0, y(0)=1, y(oco)=0

with lim f(z) =0 and / |f(z)|dz < oo.
T—>00 0
The general solution of this problem is
¥(z) = Ay (z) + Byz(z)

with y1(z) = e (¢1 + o(1)) and y2(z) = e=% (c2 + o(1)).
Imposing the boundary conditions y(0) = 1 and y(R) = 0 we obtain
a solution ygr(z) given by

_ p2(R)n(z) - y1(R)y2(z)
yr(2) = y2(R)y1(0) — y1(R)y2(0)

while the exact solution is y(z) = y2(z)/y2(0).
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Let us now take a sequence (R,) of values of R tending to infinity and
set E,(z) = y(z) — yr.(z). We have

y2(2)y1(0) — 31(2)y2(0)  y2(Rn)

En(=) = v2(Rn)y1(0) — y1(Rn)y2(0)  32(0)
and
En+(l(;) = lim e—z(RnH-Rn).

Thus if R,4+1 = R, + c the convergence is linear and can be ac-
celerated by many algorithms such as Aitken’s A2 process, Levin’s u-
transformation, the e-algorithm, the ©@-algorithm,....

If R, = ¢ with ¢ > 1 then lLim Ent1(z)/ En(z) = 0. The conver-
gence is super-linear and does not need, in general, to be accelerated.
When needed the processes given by Jones [247] can be used.

If nllxxgo (Rn4+1 — Rn) = 0 (which is the case if, for example, R, =

1+ tyy %) then lim Eny1(z)/ En(z) = 1. In this case it will

be difficult to accelerate the convergence since the set of logarithmic

sequence is not accelerable.
Another alternative is to use the E-algorithm since

e
yl(O)e—Rn — yz(O)cRn -

C(z) ,—2r [ 1(0) _r ]

— . rll4+———=-¢ oo,

v2(0) v2(0)

Since the asymptotic expansion of the error is known we can use the
E-algorithm with the auxiliary sequences

gi(m) =R, =12,

E, ~ C(z)-

We have
gi+1(n)/ gi(n) = ¢ and Lim g;41(n)/ gj(n) =0

gi(n +1)/ gj(n) = e~ 2 Rns1=FRn),
Thus if "]ireo(R,.“ —Rp) = b # 0 then lim gi+1(n)/ gi(n) = b;
with b; # 1 and Vi # j, b; # b; which shows that all the conditions of
theorem 2.10 are satisfied and it follows that, Vk > 1

lim (E{” - y(z))/ (E"EY - w(2)) = 0.

n—00
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Let us consider the example

with y(1) = 2¢7! and y(oo) = 0. Let us choose R, = 2.1 + n- 0.1 for
n =0,1,.... We shall extrapolate the approximate solutions at z = 1.5.

y'(z) - (1+2/2%) y(z) =0

We have y(1.5) = 0.371884 and we obtain

With the E-algorithm and R,, = 2.4+ n.0.4 forn =0,1,... we have

| ¥ra(1.5) |

A2

0,

0.308751
0.322974
0.333765
0.342026
0.348397
0.353341
0.357198
0.360221
0.362600
0.364478

0.367695
0.368996
0.369875
0.370475
0.370888
0.371176
0.371377
0.371519

0.373826
0.373190
0.372770
0.372490
0.372301
0.372173
0.372086

0.324417
0.301638
0.326916
0.426446
0.368589
0.372489
0.371911
0.371909
0.371890

| k=0 [k=1[k=2[k=3]k=4]k=5]k=6]k=1]

342026
360221
367145
.369910
371048
371526
371729
371816

Other examples can be found in the paper by Croft [122].

Semilinear singular perturbation problems can be extrapolated by
Richardson process, see Herceg, Vulanovié¢ and Petrovi¢ [227].

Richardson extrapolation of multi-grid methods for the solution of

375068
372794 .372219
372167 .372008
371977 .371929
.371916 .371900
.371895 .371890
.371888 .371886

371987
371921 .371918
.371897 .371896 .371896
.371889 .371888 .371888 .371888
.371886 .371885 .371885 .371885 .371885

boundary value problems is described by Hackbusch [209].
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6.4.3 Nonlinear methods

Let us consider the initial value problem

¥'(z) = f(z,y(z)), =z€[a,b
y(a) = yo.

We set

9(t) = y(z + h - 1/1).
Thus

y(z + h) = lim g(2).

Let us take the confluent form of the g-algorithm (see section 5.4) to
estimate this limit. We have

29"(t)
g”(t)

with ¢'(t) = t™2y/(z + h — 1/t) and ¢"(t) = -2t 3y'(z + h - 1/t) +
t4y"(z + h - 1/t).

Taking p,(t) as an approximation of y(z + k) and ¢t = 1/h, Brezin-
ski [47] obtained the following one step explicit formula

o2(t) = 9(t) -

2hy!?
Yn+1 = Yn + 2![:‘ — hy:{

with y;, = f(zn,yn) and y;] = f;(zm Yn) + y:.f;;(zm Yn), Yn being an
approximate value of the exact solution at the point z,, = a + nh.

The great advantage of this method is that it is explicit and A-stable.
Moreover it has order 2.

Let us apply it to

¥'(z) =1+ y(z)/r with y(z) =1

whose solution is y(z) = z(1 + Inz). We obtain the following relative
errors

[ 2z h=001 | Ah=002 | a=004 ]
1.10 |{ —0.23-10-° [ —0.92-10~°
1.20 || —0.37-105 | —0.15-10~* | —0.60 - 10~*
1.30 || —0.46-10~5 | —0.18 - 104
1.40 || —0.52-10~5 | —0.21-10~* | —0.84 - 10~*
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If this scheme is applied to y'(z) = —10y(z) with y(0) = 1 and
compared with the improved Euler method which has the same order
but is not A-stable we obtain the following relative errors

h z | Above A-stable | Improved Euler
method method j]

0.01 |[ 0.3 0.25.10-2 —0.54-10~2

0.6 0.50-10-2 —-0.11.10?

1.0 0.83-10-2 -0.18-101
0.04 || 0.6 0.79-101 -0.24

1.0 0.13 -0.43
0.16 || 0.96 0.97 -0.15.104

In the preceding formula hy” can be replaced by its approximation
Yh —¥h_,. We now have a two-step formula with the same order 2 which
is also A-stable.

This formula can be derived in a different way which allows general-
ization. We have

(#) = ¥(zn) + (2 — 2n)f(zm 9(ea) + EL (2 geal) + -

Since y(z,) is unknown, we shall replace it by y,, and consider the
Taylor series

g(z) =yn+ (2 _zn)f(zmyn)+ g':——Twn)ﬁ‘.f,(“’m!ln)‘*"”

Let [m/k], be the Padé approximant of this series with a numerator
of degree m and a denominator of degree k. Then we shall take

Ynt1 = [m/k]g (Zn+1)-

Our preceding method corresponds to m = k = 1.

Such methods have been studied by Wambecq [454]. They have been
extended to systems of differential equations either by treating sepa-
rately each function of the system or by more vectorial methods, see
Wambecq [455]. Replacing the derivatives of f by approximations leads
to multistep methods. Prediction-correction methods based on similar
ideas can also be derived. A survey of these nonlinear methods can be
found in Cuyt and Wuytack [131). As in the linear case, they can be
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coupled with mesh refinements and extrapolation techniques similar to
those described by Gragg [190]. However it must be remarked that the
presence of a denominator in such methods can give some difficulties
due to a possible division by zero.

6.4.4 Laplace transform inversion

The inversion of the Laplace transform is a very important problemn due
to the many applications of the Laplace transform and it is the subject
of a vast literature. It is not our purpose here to give a survey of the
numerical methods for solving this problem but only to emphasize on
methods based on extrapolation techniques.

The inversion of the Laplace transform consists in finding the function
f when F is known and

Flp) = /o ” ePtf(2)dt.

We shall consider two cases for our knowledge of F: some of the
coefficients of its Taylor expansion around zero are known or its values
at some points of the complex plane.

In the first case f can be replaced by a rational approximation, namely
a Padé or a Padé-type approximation, and this rational function is then
inverted, an idea originally due to Longman [296]. For inverting a ra-
tional function it must be first decomposed into its partial fractions
which means that its poles must be computed. In the case of Padé type-
approximation these poles are known. In the case of Padé approximation
their computation can be replaced by a device, involving the summation
of an infinite series, which will be described below. Although there is a
connection between Padé approximation and the ¢-algorithm (see sec-
tion 2.3), we shall not describe this method here because its properties,
and in particular its convergence, are strongly related to properties of
Padé and Padé-type approximants and we refer the interested reader to
van Iseghem [444] and Brezinski and van Iseghem [102].

Let us now assume that F(p,) is known for n = 0,...,2k + 1 where
the p,’s are distinct points in the complex plane. A method due to
Fouquart [164] consists in constructing an interpolating rational func-
tion with a numerator of degree k and a denominator of degree k + 1
in p since we must have p]ilg F(p) = 0. This rational function can be
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obtained by the algorithm for rational interpolation described in sec-
tion 2.5 (pp. 102-104) where the g;c")’s are computed by the p-algorithm
with the initializations

o) =1/F(pn) , n=0,...,2k+1

(instead of F(p,) since the numerator has degree k and the denominator
k+1).

Now let us describe how to invert a rational function without decom-
posing it into partial fractions. It is an algorithm due to Longmam and
Sharir [299] which is as follows. Let F have the form

PPtapm e tan
pn+blpn—l+"'+bn

F(p)=A

with m < n and let f be the function of which F is the Laplace trans-
form. Then f has the form

R Yk Lk

with

Vg = Ukym + Q1 Ukgm—1 + *** + CGm Uk, k=0,1,...
and

Uk = 0 for k=0,...,n—2

Up-1 = 1

Uk = —(bluk_1+“’+bnuk—n)a k=nmn+1,...

The series giving f is convergent and usually its convergence is fast
enough. However if f converges too slowly, its convergence can be ac-
celerated by the e-algorithm.

The subroutine INVLAP performs this method for the Laplace trans-
form inversion.

Let us first give a numerical example showing the propagation of
rounding errors in the procedure. In section 2.5 we already saw that
rounding errors can affect rational interpolation. Moreover the inver-
sion of the Laplace transform is known to be an ill-conditioned problem.
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Let us take
2p? +11p+ 6

Fp) = 5 o 1 26p 7 24
which is the Laplace transform of

@) = e~2t _ ¢=3t | 94t

_ 27 , 109, 447, 1837 . 7527 , 30709 ,
= 2Tt -grtt gt g o
124767 o 505117 o 2039127 ,,
- t g0 _ ...
+ 5 o Lt

We obtain the following coefficients for f

0.2000000000000182 - 10!
—0.7000000000003372 - 10*
0.2700000000003619 - 102
—0.1090000000002967 - 10°
0.4470000000020648 - 103
—0.1837000000012881 - 104
0.7527000000074291 - 10*
—0.3070900000040410 - 10°
0.1247670000021011 - 106
—0.5051170000105436 - 106
0.2039127000051420 - 107

Let us now take
Flp)=In(1+a?/p?),  f(t)=2(1-cosat)/t.

For k=17,p,=0.1+nhfor n=0,...,2k+1,h=2/(2k+1)and a = 1.0
we obtain the following results for the partial sums f; of the series

t=-1.0 f(t) = -9.19395388-10"!
fs(t) = —9.19518557-10"!
t=-0.6 f(t) = —5.82214617-10"!
fs(t) = —5.82235377-10-!
t=-02 f(t) = -1.99334221-10""
fs(t) = -1.99336600-10-!
t= 0.2 f(t) = 1.99334221-10-!
f5(t) =  1.99334361-10-"
t= 0.6 f(t) = 5.82214617-10"!
f5(t) 5.82215743 - 10-!

5.82214468 - 10!

Ss(t)
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A better accuracy was not achieved by using more terms of the series.
The inversion of the Laplace transform can also be achieved by com-
puting the Bromwich integral

L [ otp(p)d
@) =55 F@)dp
where ¢ is such that F is regular in the half plane Re (p) > c. For

this purpose Levin [284] proposed a modification of its t-transformation,
called the P-transformation, which consists in the computation of

k
21 ( f ) (+1)* Ij+1(t)e"(j+l)t/F(c+i(J'+ 1))

ct -
Pi==Re =
* [k o k-1 i)t (0
Y )G e Fe i+ 1))
Jj=0

J+1
where I;;q(t) = / e'**F(c + iz)dz. These integrals can be evalu-

ated by any quadl(')ature formula, for example by the Gauss-Legendre
procedure.

The P-transformation is justified when F is such that there exists s
so that p* F(p) is analytic and has no branch point at infinity but in fact
the numerical examples show that this transformation is also efficient
for other types of singularities of F.

Let us give some examples

o F(p)= (2 +1)7"%, f(t) = Jo(t), e = 0.1

[t [1Pa-7) ]
2.0-10-14
1.2.10-13
1.9-10-1
5.0-10-14
6.0 - 10-14

00 BN

1

o F(p) =p2exp (-p~1/?), c = 0.001,
1

70 = 5= [T uern (—5) Jo(2v) du,
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[t TPa-f01]

o F(p) = ﬂnl, f(t) = —sint Si(t) — cost Ci(t), c=1

pP+1
[t T1Pa- £ ]

0.1 0.9-10°°

1.0 || 3.0-10°12
2.0 1.0-107
401 1.0.10-14

In these examples the integrals I;;,(t) were computed by the Gauss-
Legendre quadrature formula up to 14 exact digits.

For the regularization of integral equations see section 6.2.3.

Richardson extrapolation of the iterated—collocation method for inte-
gral equations of the second kind on an arbitrary mesh is described by
Lin, Sloan and Xie [289].

6.4.5 Partial differential equations

When solving partial differential equations by finite differences or fi-
nite elements methods the problem of finding the most efficient meth-
ods ... is therefore of paramount importance as stated by Marchuk and
Shaidurov [307] who devoted a whole monograph to the extrapolation
of finite difference methods by Richardson process.

It is not possible to give here even a survey of this book; let us only
say that it studies the application of Richardson method to first-order
ordinary differential equations, to the one-dimensional stationary diffu-
sion equation, to elliptic equations, to nonstationary problems, to inte-
gral equations, to quasilinear equations, to eigenvalue problems and to
boundary layer problems.

The initial Russian version of this book was written in 1979, that is
before the discovery of the E-algorithm, and this is why the authors said
that the problem of finding more efficient algorithms [than Richardson
extrapolation process] is a very pressing one.
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Thus, in this section, we shall mainly emphasize on extrapolation by
techniques different from Richardson’s and refer the reader interested by
Richardson’s process to the previously mentioned book (French transla-
tion, Marchouk and Shaydurov [306]).

Solving partial differential equations by finite differences or finite el-
ements methods produces a sequence of vectors and thus any vector
extrapolation process (chapter 4) can be used for their acceleration. In
particular, some examples involving the vector ¢-algorithm are given by
Wynn [473] when he first proposed this algorithm.

A general approach to the extrapolation of discretization techniques
was given by Qun and Tao [371]. We consider the linear operator equa-
tion

Lu=f

where L : X +— Y, u € X, f € Y, X and Y being Banach spaces.
After discretization of this problem, it reduces to

Lnu(h) = fu

where h is the step size and ,llm}) u(h) = u. If the problem is multidimen-

sional and if p denotes its dimension then h = (hy,...,h,) and, under
some assumptions, we have

wh)=u+ Y cxh®*+ 0 (|am)
1<[k{<m

with k = (ky,...,kp), |k| = ky +--- + k, and k% = Rk . pfr.
Let N,, be the number of elements in the index set I,,, = {k,1 < |k| <
m}. We consider the N,, equations

uh/)=v+ ¥ h2’=/ 92(kn)  yn eI,
1<k<m

P
with h /2" = (hy /2™ ..., h, /27 ) and (k,n) = Z k;n;.
i=1

Solving this system gives v which is a approximation of order |h|?2™+!1
of u. This solution can be obtained by using the E-algorithm.

Another application of the E-algorithm was given by Morandi Cecchi
and Redivo Zaglia [325) who considered the Cauchy problem for the bi-
harmonic operator, an ill conditioned problem in the sense of Hadamard.
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If the initial data are not analytical but only differentiable a certain num-
ber of times, one can think of approximating these data by polynomials
and then solving the problem. However, due to the ill-conditioning of
the problem this procedure leads to a bad result. The difficulty can be
avoided by reducing the problem to the minimization of a functional
subject to linear inequalities. This problem can be solved by linear pro-
gramming or by least squares with normal equations as shown by Can-
non and Morandi Cecchi [111]. It consists in approximating a function
f(6) by the linear combination

£*(6) = codo(8) + - - - + cxdi(6)

where the ¢;’s are given functions. The constants ¢;’s are determined
such that the system f*(6;) = f(6;), i = 0,...,m — 1 is satisfied in the
least squares sense. It is an underdetermined problem which becomes
overdetermined by adding the tangential and normal derivatives at the
points ;. The solution of this problem was obtained by Morandi Cecchi
and Redivo Zaglia [325] with the help of the E-algorithm. It compares
very well with the other methods for the accuracy if the algorithm is
totally reapplied on each test point. If only few points are needed,
the accuracy obtained by the E-algorithm is greater than for the other
methods.

The use of the E-algorithm in partial differential equations seems to
be promising but it needs further studies.

6.5 Interpolation and approximation

It is not the purpose of this book to discuss the questions of interpolation
and approximation. However since the solution of these problems can
make use of some of the algorithms described above we shall now give,
for the sake of completeness, a list of such applications with references.

The E and MNA algorithms play a central réle in interpolation, ex-
trapolation and rational approximation problems. First they were used
by Havie [221, 220, 222] and by Havie and Powell [223] for interpo-
lation by generalized rational functions. The MNA-algorithm was ex-
tended by Loi and McInnes [294] for generalized rational interpolation
and Loi [291, 292] showed how to jump over an isolated singularity in
order to avoid division by zero and breakdown of the algorithm and also
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how to use it for computing separately the numerators and the denom-
inators of the classical Padé approximants. An algorithm, based on the
MNA-algorithm, is given by Loi and McInnes [295] for constructing the
quadratic approximants of Shafer [390].

The case of multivariate interpolation by Neville-Aitken type for-
mulz is treated by Gasca and Lebron [174], Miihlbach [330] and Gasca
and Mihlbach [175]. In a series of works, Cuyt [126, 127], Cuyt and
Verdonk [129, 130], and Verdonk [449]. show that the E-algorithm can
be used in multivariate rational Hermite interpolation since these func-
tions can be expressed as ratios of determinants similar to those defining
the E-algorithm. A number of interesting particular cases also fit into
this framework such as univariate rational interpolants, univariate and
multivariate Padé approximants, and partial Padé approximants due to
Brezinski [80] which, as shown by Prévost [364], can be obtained by the
E-algorithm.

Vector Padé approximants, which are rational functions with a com-
mon denominator approximating simultaneously several power series in
the sense of Padé, were introduced by van Iseghem [442]. They are
related to vector orthogonal polynomials which can be recursively com-
puted by an algorithm, due to van Iseghem [445], which is similar to
the MNA-algorithm. Vector Padé approximants can also be obtained
by the RPA and the CRPA and they can be used for accelerating the
convergence of vector sequences as done by van Iseghem [443].

Finally let us mention that the product Pi(z)Vik41(z), where P, and
Vi1 are respectively the orthogonal polynomial of degree k and the
Stieltjes polynomial of degree k + 1 with respect to an arbitrary definite
functional, can be recursively computed by the E-algorithm as stated
by Brezinski [74]. These polynomials are useful in Kronrod’s method
for estimating the error in Gaussian quadrature methods, a procedure
extended to Padé approximation by Brezinski [76].

Among the interesting questions about the approximation of func-
tions is that of the computation of the poles and zeros of meromorphic
functions. Let f be a meromorphic function for |2| < R, 0 < R < +o00.
We have, for =z sufficient small

f(z)=co+erz+epz? +---
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Let p;,p2,...,pNn be the poles of f counted with their proper multi-
plicity (0 < N < +00) and such that

0<|p1| < Ipal £--- < R.

It is well known that the qd-algorithm (see section 2.4) provides se-
quences tending to the pi’s under some assumptions, see Henrici [226].
The speed of convergence of these sequences was investigated by Prévost
[363] who also showed how to use the ¢-algorithm for treating this prob-
lem. Let us give his results.

Theorem 6.28
If the qd-algorithm is applied to the sequence (c,) (that is with q§") =
cnt1/en forn=0,1,...) and if, for k< N -1

IPe-1] < |k} < Pr41l,  (with po = 0)
: (n) _ -1
then ”1_1_{& 4G =P -
Moreover if, for k < N — 2
|Pr—2] < |Pk-1| <|Pk| < |Pr+1] < |Pr42] (or 0<|p1| < |p2| < |p3| for k=1)

and |py/pi+1| # |Pk-1/px| then

tim, (o - i) / (7 - Bi) = o

n—00
with a; = pr/Pr+1 of |Pk/Pr+1| > |Pk—1/Pk| and ax = pr—1/px otherwise.

Due to the connection between the qd and rs-algorithms (see sec-
tion 2.4) the same results are valid for the sequences (r£"+l) / r,(c"))

obtained by this algorithm with rg") =e¢c, forn=0,1,...

Due to the connection between the qd and ¢-algorithms the same re-
sults still hold (with the supplementary assumption |p;| # 1 for i =
1,...,k—1) for the sequences (eg',:;) / eg',:)_z) and (eg',:)_ . / eg',:ﬂ)) ob-
tained from this algorithm with e‘(,") =c, forn=0,1,...

Since the convergence of the sequences converging to p;l obtained by
these three algorithms is linear they can be accelerated by Aitken’s A2

process.
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If we want to compute the zeros of f we set

9(2) =1/1(2)

and apply the previous algorithms to the computation of the poles of g
which are the zeros of f. For that purpose the progressive form of the
¢-algorithm is appropriate. Such a process can be, in particular, used to
obtain the zeros of a polynomial f.

It is possible to compute simultaneously the poles of several meromor-
phic functions by an extension of the qd-algorithm to the vector case due
to van Iseghem [446].

6.6 Statistics

There are many connections between statistics and the methods pro-
posed in the previous sections. For example the link with least squares
is well known. In section 3.6 we saw how to compute recursively the
multiple correlation coefficient and, conversely, how this coefficient can
be used for an automatic selection between several sequence transfor-
mations. Slowly convergent and even divergent series occur in statistics
in the computation of the moments of estimators. For summing these
series it is possible to use extrapolation methods or continued fractions
as done by Bowman and Shenton [31, 32]. These methods proved to be
very effective. As we shall see below, the ratio of determinants involved
in the jackknife statistics is exactly the ratio defining the E-algorithm
and thus this algorithm provides a recursive method for its implemen-
tation. The determination of the parameters in an ARMA model makes
use of Hankel determinants which are the same as those appearing in
the rs and e-algorithms and thus these algorithms can be used for solv-
ing the problem. One can also think about accelerating the convergence
of Monte-Carlo methods by extrapolation, a possibility never studied
before.

On the other hand, it is also possible to use some techniques developed
in statistics (in linear filtering and time series analysis, for example) to
built new methods for predicting the unknown limit of a sequence and
thus accelerating its convergence. An account of such procedures is given
in chapter 12 of Wimp [467] based on a previous work by Higgins [228].
These possibilities have not yet been fully exploited.
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6.6.1 The jackknife

The jackknife is a well known statistical procedure for bias reduction.
It was described by Gray and Schucany [199].
Let 6,,0,,...,0;,1 be k + 1 estimators of § such that

E[6;- 0] =§a,~,-b,-(0), for j=1,...,k+1

where the a;;’s are given and the b;’s are unknown functions of 8 (E[-]
denotes the expectation that is the mean value).

The jackknife consists in considering the following ratio of determi-
nants X ) X
6, 6z - Ok
a1 @12 - G141

Gkl Qg2 °°° Gkk+1
1 1 ... 1
@11 G2 c°° @) k41

G (él, .o .,ék+1; G.'j) =

@kl @k2 - Gk k+1

G (él,. . .,ék+1;a|'j) is called the k-th order generalized jackknife. If
b;(0) = 0 for i > k, then taking the expectation of both sides, shows
that G (él, ceey ék+l; a,-,-) is an unbiased estimator of 4. If it is not the
case, the jackknife produces an estimator of lower order bias.

Of course the ratio in the definition of G (él, ceey ék+l; a.-,-) is exactly
the ratio considered in the E-algorithm and applying the E-algorithm
with the initial values

Eé")=é" and géf?:a,-,. forn,i=1,2,...,
gives
EM=¢(b O ki 0 for k,n =1,2
k U \Uny--yUniki@in) » or X, n 1byene

Thus the E-algorithm provides a simple and efficient method for im-
plementing the jackknife. If a;; = zj then Richardson extrapolation
method can be used while the case a;; = ¢;4;_ can be implemented by
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the G-transform. Another possibility for computing recursively G(él ,

s Okpn; a,-,-) for increasing values of k is to use the bordering method

as described in section 1.8.

The properties of the E-algorithm given in section 2.1 can be trans-
lated into properties for the jackknife. In particular, we immediately
have, from theorems 2.1 and 2.2

Theorem 6.29
If E [0 - 0] = Za,]b (6) for j = 1,2,... then, for alln E[G(é" ,

.y 0n+ks am)] - 0 + bk+1(0)gk J+1 + bk+2(0)gk k42 + -
Ifbi(6) = 0 for i > k, then E [G (8 n,...,a,,+k,a,-,,)] = 9.

If we set
o o]

En = E a;nb;(0)

1=k+1

then we have
E [G (ém ) én+k; ain)] =0+ Ein)

where E;c") denotes the quantity obtained by applying the E-algorithm
o E((, ") = = €, and g( ) = a;n. Thus we obtained, as a by-product of the
E-algorithm, some results which were proved for the jackknife by other
techniques, see Gray [194]. These questions are developed in Brezin-
ski [90].

In practice the estimators 6; are obtained by deleting some values
from the sample as explained by Efron [150].

6.6.2 ARMA models

A time series is a sequence of observations ordered in time. It can be
considered as realizations of a stochastic process X; whose value, which
depends on the time t, is a random variable. If the observations are
made at equally spaced intervals of time we shall denote them by X; for
i€l
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(X;) is said to be a second order stationary process if

VielZ, E[X,] =0
Vi,j € Z, E[X;X;]exists and depends only on i — j

(where E designates the mean value that is the expectation operator).
Let us assume that E [X2] # 0. We define the autocorrelation func-
tion of the process by, Vi € Z

oi = E[XoX,] [E[X3].

A process such that go = 1 and Vi # 0, g; = 0 is called a white noise.
A second order stationary process is said to be an autoregressive moving
average process of order (p,q) if, Vi € Z

2 9
Xi+) o Xij=¢€i+) bjeij
=1 7=1

where (e;) is a white noise. We shall speak of an ARMA(p, ¢) model.
This model is said to be minimal if the polynomials

P q
A(z) =1+ Za;z‘ and B(z)=1+ Zb;z‘
i=1 =1
have no common zero and if their zeros are outside the unit disc.
An important problem in statistics is to find the values p and ¢ of the
minimal ARMA(p, ¢) model of (X;).
As proved by Beguin, Gouriéroux and Monfort [18] a second order
stationary process has a minimal ARMA(p, q) representation if and only
if

P
Vn>q-p+1 Ea,—gn+;=0 with ap #0 and a, =1

1=0
P
and Ea;gq_p.,,; # 0.
1=0
Of course, due to the properties of Hankel determinants, this is equiv-
alent to
Hi(0n-k+1) =0 VYn>gqg+1 and Vk2p+1

Hp (Qn—-p+l) :lé 0 Vn2> q
Hi (0g-k+1) #0 Vk 2> p.
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Thus, in order to find the values of p and g of the ARMA model, one
can compute the Hankel determinants by their recurrence relation and
check if they are zero or not.

Another possibility, which was studied by Berlinet [27], is to apply the
rs-algorithm or the ¢-algorithm to the sequence (p;). Since the quantities
computed by these algorithms can be expressed as ratios of determinants
whose numerators are precisely the determinants whose equality to zero
is to be checked we immediately have the

Theorem 6.30

A second order stationary process admits a minimal ARMA(p, q) rep-
resentation if and only if one of the following equivalent conditions is
satisfied

)Vn>q-p+1,8" =c#0 and s #£c.
) Vn>q-p+1,r" =0 and r{5P) # 0.

i) Vn< —q—p, s = c#0 and 8PV 2.
iv) Vn< —qg-p-1, ";(;-:-)1 =0 and rﬁ;‘{"’) # 0.
v) Van-—p+1,e$:) =0 andeg‘,’,_p) #0.

The case of multivariate ARMA models was treated by Berlinet [26]
by using the matrix and vector ¢-algorithms.

6.6.3 Monte-Carlo methods

Monte-Carlo methods were introduced by S. M. Ulam around 1945.
They were developed by J. von Neumann and N. Metropolis when work-
ing on the neutron transport equation in Los Alamos. The early history
of this method is given in Grant Cooper [191]. It consists in solving a de-
terministic mathematical problem by means of a probabilistic analogy
using random numbers. Monte-Carlo methods have very many appli-
cations in physical problems when modelling is too difficult. We refer
the interested reader to the classical treatise of Hammersley and Hand-
scomb [212] and to Novak [339] where more recent references can be
found. Monte-Carlo methods also have applications in numerical anal-
ysis and, in particular, for optimization and numerical integration. To
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illustrate the process we shall describe how they can be used for com-
puting an approximate value of a definite integral. Of course, since there
exist many very powerful quadrature methods, the use of a8 Monte-Carlo
method is not justified in this case and it will only serve as an illustra-
tion. However, for computing multiple integrals, Monte-Carlo methods
become an attractive tool as explained by Lambert [271].

Let us assume that we want to compute an approximate value of

1=/01 f(z) dz.

Let z be a random variable uniformly distributed in [0, 1]. We consider
the random variable y defined by

y = f(z).

The mean value of y is

Elyl= [ f(e)de=1

and its variance (the square of the standard deviation o) is

o2 =var(y) = E [(y - I)2] = /01 f(z)dz — I.

Let z,,...,z, be n realizations of the random variable z, that is n
random numbers uniformly distributed in [0, 1] which are obtained, in
practice, by using a random number generator. We set y; = f(z;) for
i =1,...,n. An estimator for E(y] is given by the arithmetical mean ¥

Of course, since the y;’s are random variables, § is also a random
variable and it is easy to see that E[g] = I and that var(y) = o?/n.

In order to check whether or not ¥ is a good estimation of I we can
make use of the inequality of Bienaymé-Chebyshev which says that

Pr(lg—-I|>aoc/v/n) <1/a2
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where Pr(u) designates the probability for the event u to be true. This
inequality tells us that the probability that ¥ does not belong to the
interval (I — a0 /\/n ,I + a0 [ /n] is smaller than 1 /a?. Thus, when n
is large, this probability is quite small and ¥ is a good estimation of I
with a high probability.

Before giving an example let us mention a computational problem due
to the computer’s arithmetic. For obtaining ¥ we shall have to compute
Y1 +y2 + -+ -+ yn for a large value of n. It is well known that, due to the
possible cancellation errors, such a computation is numerically unstable.

A procedure for correcting the error due to the computer’s arithmetic
in such a sum was proposed by Pichat [358]. It will be described in
section 7.2.

Let us now give a numerical example. The random number generator
was taken from Neelamkavil [333].

We want to compute

1 oo
I=/ zsinz‘ldz=/ z73sinz dz.
0 1

We have

/Z_SSinz dz = —:?'_1_ . (cosz + smz) _ }-/ sinz dz

z T 2 T

and thus

o0 1
I=/ a:_asinz:dz=—2--(sin1+cosl)—
1

(3 -siw)

DN

where Si(t) is the sine integral defined by
t
Si(t) = / z~ ! sinz dz.
0

Taking the value of Si(1) = 0.9460830704 from Abramowitz and Ste-
gun (4] we obtain
I~ 0.3785300171.

Let S, be the result obtained by the Monte-Carlo method described
above with a sample of size k,,, that is

1 kn
Sn = k_'z.f(zl)
ny=1
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where the z,’s are uniformly distributed in [0, 1].
By the Bienaymé-Chebyshev inequality we know that

ao ao 1
Pr(S I— —, I+ — 1-=.
r(,.e[ Vkn’ +\/7=:])> a?
For accelerating the convergence of the sequence (S,) we shall use the
transformation studied in section 3.4 given by
ASn
Ag" g'l ]

It is quite easy to prove that

Tn=S”-‘ n=0,1,--.

1
Pr(T, € [I — aoch,, I + aoh,)) > 1 - o

. In+1
with A, = n n
(‘/— \/En-}-l)/,g +1 = gnl-

The question is to know whether or not ¥n, h, < 1 /1/k,,. The answer
to this question depends on the choice of (g,). It seems suitable to
choose g, = k, 12 In that case the preceding inequality is satisfied
if kpy1 > 9k,. We shall also try g/, = k;! for which the inequality
is satisfied if k,4y > 4k, and g/ = k, 3/2 for which the inequality is
satisfied if k, 11 > 3 k,,.

We obtain the following results (number of exact digits) with k,4; =
5k,

Il n || Sa. |Tnwithg, | T, with ¢/ | T,, with g7
10 1.49 1.04 1.28 1.37
! 50 1.45 0.78 0.90 0.94
250 0.97 1.39 2.26 1.75
1250 1.58 1.60 1.60 1.59
6250 1.59 2.12 2.58 2.27
31250 2.14 2.35 3.08 3.84
156250 3.11 3.10 3.51 3.75

781250 || 4.03

In these results the conditions on (k,) are satisfied only for (g/,) and
(9%) and we see that, for n large enough, we obtain a better accuracy
with (g;,) and (g}/) but not with (g,). Let us now take k,;1 = 10k,
which satisfies the conditions in all the cases.
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Il n || S« |7T.withg, |T, with g/, | T, with g ||

10 1.49 0.75 0.89 0.93

100 0.95 1.53 1.31 1.27

1000 1.26 2.13 1.72 1.67

10000 1.65 2.17 3.54 2.73

100000 2.60 3.37 » 3.55 3.36
1000000 3.30

The results obtained with T, are better (for n large enough) than those
obtained by S, but not than those obtained by Sn;;. With g, = k5 /2

the condition h, < 1 / Vknyt1 is satisfied if \/kny1 < —+/k, which is
obviously impossible.

For this example o = 1.0843656 which explains why the results ob-
tained are not very decisive for the values of k, considered.

The generator of pseudo-random numbers used was that described
by Neelamkavil [333] which is reported to have been successfully imple-
mented on 8-bit and 16-bit microcomputers. It consists in generating
the sequence

To = 13
Ppy1 = 5137, (mod. 23%)
Tny1 = Tny1 /2%,

6.7 Integration and differentiation

Numerical methods for the computation of definite integrals depend on
the number of points in the domain of integration. Thus they produce a
sequence of approximations converging to the exact value of the integral.
The same is true in methods for numerical differentiation. Extrapola-
tion processes are often very useful for accelerating the convergence of
such methods. Historically it is well known that Romberg’s method for
accelerating the trapezoidal rule was the starting point for further de-
velopments and the rebirth of extrapolation techniques. The numerical
methods for the computation of Cauchy’s principal values and improper
integrals depend on a parameter tending to zero or infinity. In these
cases, extrapolation by continuous prediction algorithms can be much
useful. Acceleration methods can also be used for deriving new (nonlin-
ear) quadrature formula.
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6.7.1 Acceleration of quadrature formulse

The trapezoidal rule is a method for computing approximate values of
the definite integral

I= /a ’ f(e)de.

It consists in computing
n-1
T,=T(h) = 3 |f(a)+2 Y f(a+ih) + £(8)
=1

where h = (b — a)/n.

If f is continuous in [a, b] then the sequence (T},) converges to I when n
tends to infinity. Moreover if f is 2k +2 times continuously differentiable
in [a, )] then, by the Euler-Maclaurin formula, we have

T(h)=1+ Zk: a;h?% + Ri(h)

=1

where Ri(h) = O (h2*+2).

If, for some function f, Ri(h) is identically zero, then T'(h) is a polyno-
mial of degree k in A2 and I is the constant term of this polynomial (that
is its value at the point zero). This constant term can be computed by
interpolation without knowing the coefficients a,’s as follows. First we
compute T (h,) forn = 0,1,...,k and then the value at the point zero of
the interpolation polynomial passing through the points (h2,T(h,)) for
n=0,1,...,k. Let us denote by T,Eo) this value. If Ri(h) is identically
zero then T,So) is equal to I. If Ry(h) is not identically zero then T,So) isa
much better approximation of I than T'(ho),...,T(hx). This is the idea
behind the well known method due to Romberg [375). It became really
widely used after its rigorous error analysis by Bauer [15] and the study
of the convergence of the sequence (T,So)) to I when k tends to infinity
by Laurent [274]. In particular Laurent proved that the sequence (h,)
cannot be chosen arbitrarily for insuring the convergence but that we
must have for all n, A,/h,;1 > a > 1. This is the so-called condition
(a) which is satisfied, for example, by taking h,4+1 = h,/2 which was
the choice made by Romberg for reducing the number of evaluations of
the function f. The values of the preceding interpolation polynomials at
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the point zero can be recursively computed by the Neville-Aitken scheme
(that is by Richardson extrapolation scheme as described in section 2.2)
which becomes since k,, = ho/2" the well known Romberg’s method

T{™ = T (ko [27) , n=0,1,...

+1 n
T:fi)l = 4’°+1T,£" - T’S ! )
4k+1 1

k,n=0,1,...

This method was derived heuristically by Romberg and its interpreta-
tion by extrapolation at zero by polynomials in h? was only given later
by Laurent [275] in his thesis. We have the

Theorem 6.31

i) Vk fized, lim T, = I.
ii) Vn fized, lim T™ = I.
k— oo

iii) Vk fized, T,E") -I=0 (hﬁ"“) when n — oo and
lim (70 - 1)/ (T, - 1) = 0.

n—oeo

Of course if f is 2m + 2 times continuously differentiable in [a, b] the
results 441) are valid only for ¥ < m. The results i) and i) are true for
any continuous function in [a, b] (by theorems 2.16 and 2.17).

Let us apply Romberg’s method to the computation of

1
I= / 9= 4 615120516841260. ..
o =+ 0.01

with ho=1/3.

We obtain (number of exact digits that is — log, (IT,E") -1 l / I) which
explains that some values can be less than one and even negative when
there is no exact digit)
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[k=0|k=1|k=2[k=3|k=4[k=5|k=6|k=7[k=8]
—0.47
0.13
-0.11 0.62
0.57 1.17
0.28 1.16 1.86
1.08 1.85 2.74
0.71 1.83 2.74 3.89
1.72 2.73 3.89 5.37
1.20 2.69 3.89 5.37 7.22
2.50 3.87 5.37 7.22
1.74 3.78 5.36 7.22
3.45 5.31 7.21
2.32 5.13 7.18
4.54 7.07
2.91 6.70
5.70

3.51

Since each column converges faster than the preceding one, we can
apply the procedure described in section 3.8 for controlling the error.

Let us give the intervals with endpoints Vk(") (-%) and Vk(") (b) where
Vi) = 70 - () - 719).

For k = 8 and n = 0 we have Téo) = 4.615120792632863 and we obtain
for various values of b the following intervals

b=0.5 [4.615113048839706,4.615128536426023]
b=0.3 [4.615114984787995, 4.615126604777330]
b=10.1 [4.615118856684575, 4.615122728581154]
b=0.05 [4.615119824658719,4.615121760607010]
b=0.03 [4.615120211848377,4.615121373417352]

For smaller values of b, I does not belong to the interval.

Instead of extrapolating at zero by polynomials in A2, the trapezoidal
rule can be accelerated by extrapolating at infinity by rational functions
in 1/h%. This can be done by the p-algorithm with z, = 1 /h2 as
suggested by Brezinski [34] who proved that it has a slight advantage
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over Romberg’s method. For the same numerical example we obtain

o =5.58

oV =4.89 0¥ =4.65

o8V =4.67 oV =4.6199 (¥ =4.61537

o =4.62 o=4.6154 o{V=4.6151273 (") =4.615120586

o8V =4.6157 (¥ =4.6151293 o{?) = 4.615120593
0" =4.615155 o{" =4.6151206
0¥ =4.6151212

Rational extrapolation of the trapezoidal was also considered by Bu-
lirsch and Stoer [108].

When the function f to be integrated has singularities in the interval
of integration then the Euler-Maclaurin formula no more holds and thus
the error T'(h) — I of the trapezoidal rule no more has a series expansion
in A%, In that case it is first necessary to obtain the asymptotic expan-
sion of the error and then to find a suitable algorithm for extrapolation
which eliminates progressively the successive terms in this expansion.
Such a technique was used by Havie {216, 217, 218] in several situations.
Of course all these extrapolation algorithms, based on an asymptotic
expansion of the error, are particular cases of the E-algorithm (see sec-
tion 2.1) and they led Schneider [388] and Havie [219] to their deriva-
tion of this algorithm. This is also the case of the methods derived
by Fox [165] and J. A. Shanks [393, 394]. There is a wide literature
on Romberg’s method, which is now classical and is discussed in any
textbook of numerical analysis without giving reference to Romberg’s
original paper (a proof of genuine celebrity), and we shall not enter here
into all the details and variants. The interested reader is referred to the
survey paper by Joyce [253] or to Piessens et al. [360] or to Lyness [304].

It was showed by Kahaner [254] that when the integrand f has an
integrable endpoint singularity of algebraic or logarithmic type (that is,
for example, f(z) = /z g(z) or f(z) = z%(1 — z)Pg(z) with a,8 > —1
and g smooth enough) then extrapolation by the e-algorithm provides
better results than Romberg’s unmodified method but that it requires
more function evaluations than a properly modified Romberg scheme.
This shows again the superiority of the E-algorithm (which was not yet
found at that time) in which the successive terms of the asymptotic
expansion of the error can be introduced when they are known. In the
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case of an algebraic endpoint singularity we have
T(h)—-IT=a1h* +a2h** +--- with 0<aj<az <:--

If the a;’s are known, the E-algorithm can be used with g;(n) = A%:.
For h, = ho /2" error bounds were obtained by Walz [452], see also
Walz [451]. If the a;’s are not known the procedure of Christiansen and
Petersen [114] described in section 2.2 can be used or that of Werner
and Wuytack [461].

For a logarithmic endpoint singularity we have

T(h)—lz(al+bllnh)h°'+l+(a2+b2]nh)h°‘+2+...

and the E-algorithm can be used if a is known. When a or the a,’s are
unknown then the ¢-algorithm provides an interesting alternative.

When the weight function has algebraic and logarithmic endpoint sin-
gularities, that is when computing

I= /l f(z)(Q - z)*2? (- Inz)* dz with a+v> -1,8> -1
0

then Levin’s transformation can be used as showed by Sidi [396]). Some
cases can be treated by Romberg’s method after a change of variable,
see Hunter [231)].

In Romberg’s scheme as described above, Tl(") is exactly Simpson’s
rule and thus the subsequent columns in the table accelerate this rule.
Similarly other quadrature methods can be accelerated by extrapolation
procedures as the rectangular rule, see Laurent [275].

Let us now discuss the possible extrapolation of Gaussian quadrature
methods. For such methods the asymptotic expansion of the error is
usually unknown and thus the E-algorithm cannot be used. The only
information available has the form

Spn—-1= O(g,.)

where S,, is the approximation of

I= /: f(z) w(z)dz

obtained by the Gaussian quadrature formula with n + 1 points corre-
sponding to the weight function w on [a,b] and where g, is a known
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function of n. Thus we shall try to extrapolate the sequence (S,) by the
method described in section 3.4 which is in fact the first column (El("))
of the E-algorithm, namely

AS';
Tﬂ - Sn - A

“Gn, n=201,...

n

Let us, for example, consider the computation of

1 e2::
1:/ dz = nly(2).
—1\/1—-.1:2z mlo(2)

We have Iy(2) = Jo(2¢) whose value can be obtained by the algorithm
given by Moshier [328] which achieves a precision of 8.6-1078. We have

I=17.1615284390499388380.

By the IMSL library subroutines we have I = 7.1615284390502566548.
If we set w(z) = (1 — z2)~'/2 then the Gauss-Chebyshev quadrature

method can be used, that is

sn = i Aif(zi)

1=0
. n 214+ 1
with A4; = o) and z; = cos m 1 2 X3
It can be proved that
27l’f(2"+2)(fn)
n—J = ———2% with ¢, € [-1, +1].
Sn =1 4n+1(2n + 2)! with £n € [-1, +1]
If we take g, = m then nlglgo gn+1/9n = 0. Moreover
22 < fU(£) < 2%e?,  VEe[-1,+1]
and thus

4e~1 < fi2ntd) (En+1)/ F2n+2) (€,) < 4et

which shows that the conditions of theorem 3.14 i) are satisfied and it
follows that (T,) will converge to I faster than (S,). It is impossible to
check whether the condition of theorem 3.14 iii) is true or not (and, in
general, it is not) and we obtain the following results
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[EXN Sn l T |

"1 6.842965459611574 | 7.151477124036244

2 || 7.151474267446758 | 7.161354399030198
3 || 7.161354398779038 | 7.161526543435953
7.161526543435945 | 7.161528424887133
| 7.161528424887133 | 7.161528438973225
7.161528438973225 | 7.161528439049938
7.161528439049938 | 7.161528439050256
7.161528439050256

The subsequent results are equal to the last values which seems to
confirm that Moshier’s algorithm does not achieve full accuracy.

00 =3 O OV b

6.7.2 Nonlinear quadrature formulae

In section 6.4.3 we gave nonlinear methods, based on the confluent form
of the p-algorithm or on Padé approximants, for integrating differential

equations.
Of course the problem of computing a definite integral

b
I= / £(t) dt
can be turned into the initial value problem

¥'(z) = f(z)
y(a)=0

x
since y(z) = / f(t) dt and y(b) = I. Thus this problem can be solved
by one of the I;Iethods described in section 6.4.3. We set h = (b—a)/N,
yo = 0 and then we compute

_ 2hf%(a + nh)
Ynt1 =Unt G r G T k) — h f(a + nh)

forn=0,...,N — 1. yy will be an approximation of I. In this formula
h f'(a+ nh) can be replaced by the approximate value f(a+ (n+1)h) -
f(a + nh). As showed by Wuytack [469], these two methods have an
error proportional to k2. Thus extrapolation can be used for improving
the accuracy.
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Let us give some numerical examples with the two preceding methods.
These examples show that when f is a smooth function the classical
linear methods, such as the trapezoidal rule or that of Simpson, give
better results than the nonlinear ones. However when f has a pole near
the interval of integration then the nonlinear methods provide better
results. Let us first take

1 ez
/ —©  dz = 3.0496468....
o (3-e%)

We obtain the following values
[ N ] 1** method | 2"¢ method ||

4 3.1679644 | —63.753354
14 || 3.0573798 76.984314
24 || 3.0619517 3.6495883
34 | 3.0507182 3.2750184
44 || 3.0502605 3.1694384

1 s T
For / Stz - 3.5496468. .. we have
0

(3—e)

“ N ” 1%t method ] gnd methodJJ

4 3.0308452 1.9979022
14 || 3.5070085 39.378940
24 || 3.5367515 4.1958131
34 || 3.5436232 3.7937413
44 || 3.5461874 3.6796189

The second method seems to suffer from instability.

6.7.3 Cauchy’s principal values

Let us now assume that the integrand f has a singularity at point ¢ €

[a, b] but that
c—€ b
tig ([ s [ seorae)

exists. This limit is called the Cauchy’s principal value of the integral
and it is denoted by

I=vp. /b f(z) dz.
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For computing an approximate value of this integral it is possible to
use the trapezoidal rule or the midpoint approximation if none of the
points of the quadrature formula coincides with ¢ or a suitable modifi-
cation of these methods in the other case. Then the Euler-Maclaurin
formula for the error can be adapted and Romberg’s method can be
modified accordingly for extrapolating the results thus leading to a par-
ticular case of the E-algorithm. This was the approach followed, for
example, by Hunter [233], Lyness [302] and Hivie and Simonsen [224].

We shall now propose two new approaches to this problem. The first
one consists in taking a sequence g9 > €; > --- > 0 with "]i__{{,l‘> En =10

and computing (by any quadrature rule) an approximation S, of

I, = /., T Hz)dz + / ;u f(z)dz

and then to accelerate the convergence of (S,) by any of the extrapola-
tion methods studied above.

The second approach consists in setting ¢ = 1/t and computing (by
any quadrature rule) an approximation g(t) of

10=["" s@de+ [ se)ds

and then using the confluent form of any extrapolation algorithm (see
chapter 5) to obtain an approximation of

I= !].im I(t)

from g(t) and the derivatives of I(t).

These two procedures have not yet been studied from the theoretical
point of view but let us illustrate them by a numerical example. We
consider the principal value

1 oz
I= v.p./ - dz = Ei(1) + Ey(1).
-1

Using the tables of Abramowitz and Stegun [4] we obtain to 10 digits

I = 2.114501750
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and with the IMSL library subroutines we get
I =2.114501750751457.

In the first procedure the two integrals in I,, have been computed by
Romberg’s method with a precision of 1.6 - 10~° at least. The sequence
(Sy) thus obtained have been accelerated by Aitken’s A? process, the

first column of the p-algorithm and linear extrapolation (that is we con-
. n AS,
sidered the sequences (eg")) ) (gg )) and (T,l = Snp — Ac, e,.) )- We

get the following results (number of exact digits)

o with ¢, = 0.7"1, n =0,1,..

Sn eg") gg") T,
0.17 | 1.63 | 0.37 | 1.66
0.33 | 2.08 | 0.51 | 2.13
0.49 | 2.53 | 0.65 | 2.60
0.64 | 2.99 | 0.80 | 3.06
0.80 | 3.45 ] 0.96 | 3.53
0.95]3.92 (1.11} 3.99
1.11 | 4.38 | 1.26 | 4.46
1.26 | 4.85 | 1.42 | 4.92
1.42 | 5.31 | 1.57 | 5.39
1.57 | 5.78 | 1.73 | 5.85
10 ([ 1.73 {1 6.24 | 1.88 | 6.32
11 || 1.88 | 6.70 | 2.04 | 6.78
12 ] 2.04 | 7.17 | 2.19 | 7.25
13| 2.19}| 763|235 7.71
14 || 2.35 | 8.10 | 2.50 | 8.17
15 || 2.50 | 8.56 | 2.66 | 8.64
16 || 2.66 | 9.03 | 2.81 | 9.10
17 || 2.81 | 9.49 | 2.97 | 9.57
18 || 2.97

WO oo IO O W= Ofa

(egn)) and (T,) converge faster than (S,+2) but not ( Qg"))-

. 1
o with ¢, = n—+—2,n=0,1,...
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Sn eg") gg") T,
0.32 ] 0.80 | 2.68 | 2.13
0.50 | 0.92 | 3.07 | 2.59
0.62 | 1.02 | 3.36 | 2.93
0.72 | 1.10 | 3.61 | 3.19
0.80 | 1.17 | 3.81 | 3.41
0.87 | 1.23 | 3.98 | 3.60
0.93 | 1.28 | 4.14 | 3.76
0.98 | 1.32 | 4.28 | 3.91
1.02 | 1.37 | 4.40 | 4.04
1.07 | 1.40 | 4.51 | 4.16
10 || 1.10 | 1.44 | 4.62 | 4.27
11 ll 1.14 | 1.47 | 4.72 | 4.37

WO =~IDU bW~ oS

1.17 | 1.50 | 4.81 | 4.46
. 1.20 | 1.53 | 4.89 | 4.55
14 || 1.23 | 1.56 | 4.97 | 4.63
Lls 1.25 | 1.58 | 5.04 | 4.71
h1.28 1.60 | 5.11 | 4.78

(gg")) and (T,) converge faster than (S,;2) but not (egn))'

The second procedure described above is more difficult to use since it
needs the computation of the derivatives of I(t). We have

r'@) = e2[fle-t) + f(c+¢7)]
") = -273[f(c—t)+f(c+t7)] 474 £ (c-t7) - (c+t7Y))-
Using the confluent forms of Overholt’s process, the ¢-algorithm, the

p-algorithm and the Taylor expansion we have respectively
()
I"(t)

elt) = 10~ 0

Vit) = I(t) - T2 = ea(t)

To(t) = I(t)—tI'(t)+£22--I”(t).

For the previous example we obtain by computing again g(t) by the
same procedure (number of exact digits)
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[t [ o) [Va®)=ext) [ e2(t) | To(t) |

10 1.02 1.32 4.28 0.55

100 2.02 2.33 7.28 1.556
1000 3.02 3.33 10.28 2.556
10000 4.02 4.33 13.28 3.55
100000 5.02 5.33 16.41 4.55

Since the exact value of I was known to us only to 16 digits it was
not possible to know if the precision of g,(t) still increased but for the
other methods we have

| t I gt [Wi(t)=eat) | To(t) |
1000000 6.02 6.33 5.55
10000000000 9.27 10.18 8.61

These results can be compared with those of Hunter [232] for the same
example.

The sequences (g (tn)), (€2 (tn)), (02 (tn)) and (T3 (t,)) can be accel-
erated by Aitken’s A2 process, the first column of the g-algorithm and
linear extrapolation with ¢, = 1/t, (denoted by (T3)).

With ¢, = 10"*! for n = 0,1, ... we obtain (number of exact digits)

¢ Extrapolation of (g(t,))

gt [ & [ ] 1 ]
1.02 6.20 | 2.02 | 5.24
2.02 9.20 | 3.02 | 8.24
3.02 | 12.20 | 4.02 | 11.24
4.02 | 15.21 | 5.02 | 14.24
5.02 | 16.88 { 6.02 | 16.71

W - O3

o Extrapolation of (e2(t,))

eata) | €M [V ] T |
1.32 6.20 | 2.33 | 5.24
2.33 9.20 | 3.33 | 8.24
3.33 12.20 | 4.33 | 11.24
4.33 15.21 | 5.33 | 14.24
5.33 16.88 | 6.33 | 16.71

W= o3
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o Extrapolation of (p2(t,))

" n " gg(t,,)gLe!") gg)_ T,
4.28 | 12.78 | 7.28 | 5.24
7.28 | 16.81 | 10.28 | 8.24

0
1
2 || 10.28 | 16.86 | 13.28 | 11.24
3
4

13.28 | 16.86 | 16.18 | 14.24
16.41 | 16.86 | 16.86 | 16.71

o Extrapolation of (T,)

T [ [ T
0.55 | 5.20 | 1.55 | 4.24
1556 | 8.20 | 2.6 | 7.24
[I 2.556 | 11.20 | 3.55 | 10.24
3.55 | 14.20 | 4.55 | 13.24
4.55 1 17.13 | 5.55 | 16.15

W= O

| i

All these methods seem to work quite well but they still need to be
studied and justified from the theoretical point of view.

6.7.4 Infinite integrals

In this section we shall be concerned with the computation of infinite
integrals of the form

I=/a°°f(z)dz.

Let us set

F(t):/atf(z)dz, t>a.

Thus for ¢ sufficiently large F(t) is usually a good approximation of
I. But, on the other hand, if t is large it is quite difficult to obtain a
good numerical approximation of F(t) by a quadrature rule. To avoid
this drawback it is possible to use values of t quite close to a and then
an extrapolation method. In the literature two such approaches can be
found



6.7. Integration and differentiation 379

o computation of (S, = F(t,)) where t;<t; <t;<---and "]jlg t, =

oo and extrapolation by a scalar algorithm such as the ¢-algorithm,
the p-algorithm, ... or, more generally the E-algorithm.

e computation of F(t) for a fixed value of t and extrapolation by the
confluent form of some algorithm such as the ¢-algorithm.

In this section we shall review these two approaches and propose a new
one combining them. It will consist in applying a confluent algorithm
first for different values of t (for example the confluent form of the -
algorithm will produce the sequence £2x(to), €2k(t1), - . - for a fixed value
of k) and then to accelerate the convergence of this sequence by a scalar
algorithm. This new approach remains to be studied from the theoretical
point of view.

Let us give a very simple example to illustrate the effectiveness of
these approaches. We consider

o0
I =/ e Fdx=e""°.
We have
Ft)=e®—et=I—-et=I-F'(t).

Thus F(n) = I — e~ which shows that applying Aitken’s A? process
to (F(n)) will give I exactly. On the other hand if the confluent form of
the e-algorithm is applied to F(t) then, by theorem 5.4, €2(t) = I. Thus
both approaches give the exact result (if the integral F(t) is computed
exactly).

Let us begin our review by scalar extrapolation algorithms. In order
to be able to choose the best possible extrapolation algorithm for the
sequence (S, = F(t,)) we must first derive the asymptotic expansion of

I- F(t) =/ f(z) dz
t
and then choose (t,). Such an analysis was given by Sidi [398] when
f(z) = u(8(z)) e*)h(z)
where u denotes either the sine or the cosine function, 8 € A(™), ¢ € Ak)

and xlim #(z) = —o0 if k > 1, h € A, AU denoting the set of

— — 00
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infinitely differentiable functions for all z > a and having an asymptotic
expansion of the form

a(z) ~ zji a;z™* (z — o0)

where j is a non-negative integer.

With these assumptions 8 has the form 6(z) = 6(z) + A(z) where 4 is
a polynomial of degree m and A € A(®). Similarly ¢(z) = ¢(z) + A(z)
where ¢ is a polynomial of degree k and A € A(),

Therefore

=) = ¢9(=)§(z) with §(z) = e'2(2)
e¥(®) = e#(=)\(z) with A(z) = er().

If we set
B*(z) = 277 h(z)é(z)A(z)B(z)
then 8* € A(®) and we have
I — F(t) = t°+7e*(®) {cos B(t)by (t) + sin 8(t)ba(t)}
with ¢ = min(-m + 1,—k + 1) and

bi(t) { Re g*(t) if f(z)=Reg(z)
‘ Imf(t) if f(z)=Img(z)
by(t) = { ~Im B*(t) if f(z)=Reg(z)
2 Reg*(t) if f(z)=Im g(z)

a(z) = e¥@eHp(z).

It follows from this analysis that if ¢, < t; < t, < ... are taken as
the consecutive zeros of sind(t) (or of cosd(t)) then I — F(t,) has an
asymptotic expansion of the form

I- F(ty) = g(ta) Y_ ait;*
=0
where

@) = { ¢ B(t)t"+7e%(t)  if the t),s are the zeros of sind(t)
9 = sinG(t)t°+7e®!)  if the t/s are the zeros of cosd(t).
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Thus the sequence (S, = F(t,)) can be efficiently extrapolated by the
W-algorithm (see section 2.1).
For example if

I= / sm rz? dz— 1/2

then u(z) = sinz, 6(z) = 8(z) = 722/ 2, ¢(z) = constant and v = 0.
The t,’s are the zeros of 7z2/2 = (n + 1)7 and thus ¢, = /2(n + 1).
Since m = 2 and k = 0 we have ¢ = —1. It follows that g(t) =
cos (vt2/2)/t and g(tn) = (—1)"*!/t, and we obtain

w®
0.4997
0.500002
0.499999991
0.50000000004
0.4999999999998
0.5000000000000009

t o

— 0 =~ Ot W =

1

Examples are also given by Hasegawa and Torii [213].

Fourier and Hankel transforms can be treated by this procedure. Ex-
amples are given by Sidi [395] but, at this time, the W-algorithm was
not yet found and extrapolation was performed by modifying a proce-
dure due to Levin and Sidi [286] which is based on the D and d ratio-
nal transformations. For other rational transformations, see Sidi [398].
These transformations were still extended later by Gray and Wang [200].
The W-algorithm was also proved to be efficient for divergent oscillatory
infinite integrals that are defined in the sense of Abel summability that
is if we set

f(z) = e f(=), E>0
F(t) = / f.(z) dz
I, = /:o fe(z)dz

we say that I is defined in the sense of Abel summability if

lim I, = 1.

e—0+
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For example if

o0
I=/ z2Jo(z) dz
0

we have m = 1, §(z) = z, v = 3/2. The t,’s are the zeros of sint, thus
t, = (n+ 1)x and g(t,) = (—1)“t?./2. We obtain

0
[ w
0l —-1.65
3 il —0.9999657

6 || —0.99999999438
9 H —0.9999999999991695

12 || —1.0000000000001010

For the theory and other numerical examples, see Sidi [400] and
Sidi [402, 403] for a review of these techniques. The convergence is
studied by Sidi [405]. The same idea was used by Toda and Ono [435]
for convergent integrals. They computed

I = /0 ” emont f(z) dz

with @, = 2™" for n = 0,1,.... Obviously nlixgo I, = I. The sequence
(I,) was then extrapolated by Richardson’s process. The theoretical
study of this method was done by Sugihara [421] who also proposed to
compute

Jn = /:o e~ f(z)dz

followed by Richardson extrapolation. If both methods are applied to

o
/ sin(z +1) 1 _ 0.50406706190692837198 . ..
[} (z + 1)2

we obtain
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n I, T,{o) for I, Jn T,(.O) for J,,
0 || 0.35478 0.40605

1 || 0.42905 | 0.50333 0.46696 | 0.52786

2 || 0.46893 | 0.51063 0.50675 | 0.565278

3 || 0.48756 | 0.50456 0.52005 | 0.52556

4 || 0.49614 | 0.504057 0.51636 | 0.50093

5 | 0.50019 | 0.50406647 0.51055 | 0.50153

6 || 0.50215 | 0.5040670622 0.50729 | 0.50434

7 {1 0.50311 | 0.504067061949 0.50567 | 0.50409

8 || 0.50359 | 0.504067061906947 0.50486 | 0.504638

9 || 0.50383 | 0.50406706190692817 || 0.50446 | 0.504067158

A modification of the W-algorithm was introduced by Sidi [403]. It
can be applied to the computation of convergent or divergent oscilla-
tory integrals. This modification of the W-algorithm consists in taking
9(tn) = F(tn41) — F(tp) in the algorithm instead of the previous g
obtained by a tedious asymptotic analysis of I — F(t). With this modifi-
cation the assumptions to be checked only involve §. Let us also mention
that an acceleration technique closely related to Euler’s transformation
was studied by Lyness [303], see also Gabutti [166]. Since it is impos-
sible here to enter into the details and to present all the results and
algorithms, the interested reader is referred to the literature.

Let us now review the second approach. The first transformation
which can be considered as a confluent algorithm was introduced by
Gray and Atchison [195]. With our previous notations it consists in

setting
F(t + h) - R(t,h) F(2)

G: (F(t),h) = T—R(t, h)
where R(t,h) = f(t + h)/f(t) and h > 0.
Obviously (F(0), h)
Gi(F(t),h) -1 _
B Fe+ -1 0
if and only if

im FO+R) —F) _RGE) |
twoo I—F(t+h) 1-R(t,h)

Of course this transformation has little value if ‘lim R(t,h) =0 or 1.
—00
To avoid this drawback Gray and Atchison [196] introduced a parameter
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a in the process
F(t+ h) - F(¢t)
I - R(t,h)
_ . 1—R(t,h) I-F(t+h) =
fa= tl_lglo Ri,h)  FETh) = F(@) then G, (F(t), k) converges
to I faster than F(¢ + h) when t tends to infinity. In practice the com-
putation of a needs the knowledge of I and thus the procedure cannot
be used directly. However if

- R(t, ).

G1(F(t),h)=F(t+h)+a-

1 1
lim ( - ) = 00
s \F+ B 70
then I’Hospital’s rule can be applied to the preceding ratio and we obtain

Jim - (¢ + b) /5 11/ £+ B) - 1/ 50
*= lim [f(t+h) - f(2)]/ '(2)

If lim R(t,h) =a# 0 and 1 then o = 1 and G (F(t), h) is identical

to G1 (F(t), h).
The same drawback can also be avoided by considering the new trans-

formation

F(ht) — R(t,h) F(t)
1 - R(t,h)
with R(¢,h) = h f(ht)/f(t). This transformation was studied by Atchi-
son and Gray [10] and other generalizations by Gray and Atchison [195].
However the most interesting generalization of G; was given by Gray,
Atchison and McWilliams [197] who considered

G (F(t),h) =

F(t) F(t+h) ---  F(t+kh)
£(t) f(E+R) - f(t+kh)
f(t+h) f(t+2h) --- f(t+(k+1)h)
Gu(F(t), ) = Ft+ (’; —1)h) f(t *1‘ kh) f(t+ (21" ~Lh) |
£(t) F(E+R) - f(t+ kh)
fle+h)  f(E+2R) - f(t+(k+1)h)
e+ (k—1)h) f(t+kR) - f(t+(2k—1)h)
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These ratios of determinants can be recursively computed by the E-
algorithm (section 2.1) or by the G-transformation (section 2.4) which
was derived for that purpose.

Let us consider the computation of

-
I= / SNZ 4z = T = 1.570796326. ..
0 z 2

We obtain

absolute error
F(107) 1.5390290796 0.032
G, (F(9r),x) = 1.5707884696 0.0000077
G, (F(Tx),«) 1.5707952217 0.0000011
G3(F(5x%),n) 1.5707961387 0.000000188
G4(F(3~x), =) 1.5707962057 0.000000121

When h tends to zero then the confluent form of the e-algorithm is
recovered, more precisely

hl_l_’lilo Gy (F(t), h) = ezk(t).

Moreover these two transformations have the property that if f sat-
isfies a linear differential equation of order k¥ with constant coefficients
then

G (F(t), h) = exi(t) = I.

The main difference between higher order G-transformations and the
confluent form of the ¢-algorithm is that the first method requires the
numerical computation of several integrals F(t), F(t + h),..., F(t + kh)
while the second process needs the computation of only one integral
(and of no integral at all if t = a) and the knowledge of the functions
" ..., f28 (which can often be obtained by a computer algebra
program). Thus if the confluent form of the ¢-algorithm (or of the other
algorithms described in chapter 5) is applied to

F(t) = / *f(z) dz

then F'(t) = f(t), F"(t) = f'(t) and so on.
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Let us for example apply the confluent form of the ¢-algorithm to

r

e—l‘

—dz = 0.219383934...

Chapter 6. Applications

We obtain

Ltll  F@) | eaft) ea(t) |  es(?)
1 0 0.18393972 | 0.21021682 | 0.21917633
2 |} 0.17048342 | 0.21559518 | 0.21881745 | 0.21938119
3 i 0.20633555 | 0.21878232 | 0.21932348 | 0.21938384
4 || 0.21560458 | 0.21926771 | 0.21937545 | 0.21938393
5 || 0.21823564 | 0.21935863 | 0.21938252 | 0.21938393
6 || 0.21902385 | 0.21937796 | 0.21938367 | 0.21938393

Reciprocally if I is known, the procedure can be used to obtain ap-
proximations of F(t) for a fixed value of t, see Brezinski [56] for the
details and numerical examples.

Let us now combine a confluent algorithm with a scalar extrapolation
method.

For example we can try to extrapolate each column (or each row) in
the preceding table by using Aitken’s A2 process. We obtain

0.21459634
0.21906532
0.21934808
0.21937871
0.21938304
0.21938376

0.22381166
0.21950073
0.21939142
0.21938465
0.21938402
0.21938394 ll

1% row
2nd row
374 row
4th row
5th row
6th row

0.21927850
0.21937959
0.21938363
0.21938393

0.21936098
0.21938318
0.21938389

0.21883652
0.21935491
0.21938140
0.21938393

0.21588292
0.21913913
0.21935511
0.21938387

1%t c~lumn
274 column
374 column
4th column

Thus the extrapolation of the columns gives good results while that
of the rows does not increase the precision. Such a procedure needs to
be theoretically studied.
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6.7.5 Multiple integrals

Let us now assume that we want to obtain an approximation of

I=./Cf(z)dz

where z € RP and C is a domain in RP. Such integrals are usually
approximated by using a one dimensional quadrature rule successively
for each variable thus leading to a so-called product quadrature rule.
For example let us assume that we have to compute

b rg2(z)
I:/ / f(z,y) dydz.
a Jg(z)

This can be written as

I= /:F(::)d::

92(=)
where F(z) = /( ) f(z,y)dy.
nlzr

I is approximated by a quadrature rule of the form

I~I,=Y A" F(z).

=0

Then, in this formula, F(z;) is again approximated by a quadrature
formula

m

F(z;) ~ Y BI™ f(zi,y;).

=0

The value of m and the quadrature formula (that is the B;-"')’s and the
y;’s) can depend on the index i and we finally obtain an approximation

of I of the form _
>3 o™ (2isl).

1=0 5=0

When C is a simplex or an hypercube and when the trapezoidal rule
is used then the Euler-MacLaurin expansion can be generalized even if
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f has vertex and edge singularities, see Lyness [304] or De Doncker-
Kapenga [132] for reviews and references. Then if an asymptotic expan-
sion of the error is known it is possible to use a well-adapted extrap-
olation method to accelerate the convergence of a sequence of product
quadrature rules.

For example Genz [180] used the e-algorithm in a local adaptative
procedure (see also Genz [178, 179]). But since, as mentioned by Ly-
ness [304], almost all the product quadrature formulz have an error of
the form

I, - I =ay g1(n) + az g2(n) + - --

where the functions g; are like n=% or n~%i - Inn and satisfy
Jlim git1(n)/ gi(n) =0

it seems appropriate to extrapolate by the E-algorithm (or simply to
solve the underlying system of linear equations). This was the method
followed by Hollosi and Keast [230]. Numerical results can be found
in De Doncker-Kapenga [132]. They show that, starting from 8 results
obtained by the product trapezoidal rule the best of which having a rel-
ative error of 0.453 - 10~!, one can obtain an error of 0.102-10~7. As
stated by this author, the use of extrapolation methods in automatic
integration works for a large class of problems without reference to the
specific integrand behaviour. But, on the other hand, as pointed out
by Lyness [304] eztrapolation in numerical quadrature is very useful and
even optimal for a small class of problems, is convenient but not optimal
for a much wider class; but there is a huge class of problems for which it
15 not relevant or appropriate and should not be used. Thus these tech-
niques still need some more studies before being efficiently implemented
and used in an adaptative quadrature package.

The extrapolation of infinite double integrals of the form

1= [" [7 f(z,3) de dy

was studied by Levin [285] by generalizations of the confluent form of
the e-algorithm and the G-transformation.
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6.7.6 Numerical differentiation

The formula for approximating the derivatives of a function are well
known. For example

[£(z + h) - f(2)]/ h
or [f(z+h/2) - f(z - h/2)]/h

are approximations of f/(z) while f(z) can be approximated by

[f(z + 2h) — 2f(z + h) + f(z)]/ h?
orby [f(z+ h) - 2f(z) + f(= - h)]/ K.

By Taylor’s formula we have, if f is sufficiently differentiable

[f(z + k) - f(z))/ h = f'(z) + arh + azh® + - ..

[f(z + h/2) = f(z — k/2)]/h = f'(z) + a1h? + a3h* + -

[f(z +2h) - 2f(z + k) + f(z)]/ h? = f'(z) + bih + boh? + ...
[f(z + h) — 2f(z) + f(z — h)l/ B® = f"(=z) + B1A® + B3h% + - --

where the coefficients depend on the higher derivatives of f. Thus, due
to the expansion of the error, Richardson extrapolation is well adapted
to these formulae with h as the variable in the first and the third cases
and h? in the others.

Let us give a numerical example taken from Laurent [275]. It consists
in applying the second formula to f(z) = 1/(z—1) with z = 0. We have

hn T ("

1 | -1.3333333 | —1.3333333
1/2 | -1.0666667 | —0.9777777
1/4 | —1.0158729 | —1.0003527
1/8 | —1.0039216 | —0.99999862
1/16 | —1.0009775 | —0.99999998

W= ofl3

6.8 Prediction

Up to now, extrapolation methods were used to predict the value of the
limit S of a sequence (S,,) knowing some of its terms, say So, S1,. .., Sn-
We shall now use extrapolation methods to predict the values of the
unknown terms of the sequence, that is S,41, Sn+2,... and so on.
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Such an idea was first formulated by Gilewicz [186] who used the
expansion into a formal power series of Padé approximants to estimate
the unknown coefficients of a series. The same idea was also exploited
by Sidi and Levin [409]) who used the so-called t-transformation which
is a rational approximation of the Padé-type for power series.

Of course the same type of idea can be used for sequences instead
of series. Since Aitken’s A2 process is one of the most popular and
successful extrapolation method we shall first use it for predicting the
unknown terms of a sequence. Then, because of its generality, we shall
make use of the E-algorithm. But before going into the details let us
explain the basic idea of prediction as given by Brezinski [71].

In section 1.2 we saw that an extrapolation method consisted in writ-
ing the system of equations

R(Siy...,Sit+q,S)=0, i=n,...,n+p

where R depends on p unknowns a,,...,a, and then to solve it for
obtaining the value of the unknown S (which usually depends on the
ﬁl;sli index n and on k = p + ¢ and was denoted, for that reason, by
™).

kHa.ving determined, by this procedure, the values of a,,...,a, and
S = T,E") it is now possible to obtain an approximate value S,(_i:?,_l of
Sn+k+1 by solving the equation

R (Suters o Sus S T1) =0

Then an approximate value S,(:;',:lz of Sp+k+2 can be obtained by
solving the equation

R (Sn+p+2’ sy Sn+k; S,(,ﬁ:;:l.p S,(.':::l.zi T’En)) =0

and so on. Since these approximate values S,(_’_‘;Zl_‘ fori =1,2,...depend
on the indexes n and k, they are indicated in the upper position. If n is
fixed it will be dropped and similarly for k.

Aitken’s A2 process corresponds to p = ¢ = 1 and

R (uo,u1,u) = u; — u+ a;(uo — u) = 0.

We have )
(ASn+1)

Tz(") = Sn+2 - Azsﬂ
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and thus
s = s, i=0,...,n+2
AS, n )
Sy(.:-)i+2 = Spy2+ —A_.S:fl . (Sr(ﬂ-)i+l - Sn+1) ) 1=1,2,...

Let us study the difference S, it2 — S,(.';_).. +2 When n goes to infinity.
We have the

Theorem 6.32
Let (S,) be a convergent sequence such that IM, N,Vn > N,|AS, .1/

AS,| <M. ThenVi>1, nll’ngo (5n+i+2 - Sr(n’-.:-)i+2) =0.

Thus the greater n, the better the predicted values. We also have the
more precise result

Theorem 6.33

Let (S,) be a convergent sequence such that there ezists a with lim
n—o00

ASni1/AS, = a. ThenVi > 1, lim (Spyisz — S{0ys)/ ASsr = 0.
Moreover ifa # 0, then Vi > 1, nli’r{.lo (S,.+,-+2——S,(:_'|_),-+2)/AS,,+.-+1 =0.

Let us take S, = 0.9"/(n + 1). We have the following results

n 1 n + l+ 2 Sn+.’+2 - Sy(x'-;-)i-}-'.' (Sn+.'+2 - S,(:L),-_*_Z)/AS,‘.,.I
05 7 -0.12297 0.68319
114 7 —0.04371 0.49809
2|3 7 —0.01446 0.28343
3|2 7 —0.00398 0.12138
411 7 —0.00071 0.03147
01 3 —0.02884 0.16023
1(1 4 —0.00825 0.09404
2|1 5 —0.00313 0.06132
3 (1 6 —-0.00141 0.04286
4|1 7 —0.00071 0.03147
01 3 —0.02884 0.16023
0]2 4 —0.06059 0.33662
0|3 5 -0.08709 - 0.48382
04 6 —-0.10752 0.59732
0|5 7 —-0.12297 0.68319
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The last results show that the precision decreases when n is fixed and
when i increases which is not surprising. This fact can be rigorously
proved in the following case

Theorem 6.34
Let (S,) be a sequence converging to S and such that Vn, AS, < 0

and AS, _ AS
1 2
<...<1.
AS, < AS, <1
Then, Vn
§—8SM <. o< Spps— S, < Spya-ST, <

where S(™) = lim S('_',,),+2

1—00

The assumptions of this theorem are satisfied, in particular, by to-
tally monotonic sequences that is such that Vk,n,(—1)*A*S, > 0 (see
section 2.3). The assumption AS,+;/AS, < 1 for all n is not restrictive
since if AS,4+1/AS, = 1 for some index n then Vi > n, AS; = AS, and
the sequence cannot converge. Totally monotonic sequences also satisfy
the assumptions of theorems 6.32 and 6.33.

Let us now assume that R has the form

Sn=S—ayq(n)—---—argr(n) =0

where, as in the E-algorithm (see section 2.1), the auxiliary sequences
(9i(n)) can depend on (S,). Then, performing the same procedure as
above, we obtain, for t = 1,2,...

0 1 gi(nt+k+i) --- g(n+k+i)

Sn 1 91(n) .- 9k(n)
glkm) _ RETTE ain+k) --- g(n+k)

ntk+s T 1 P (n) v gk(n)

1 gi(n+k) - gu(n+k)

If g1(n+ k +4),...,9x(n + k + i) depend on Sg,...,Sntkti—1 We
shall replace in their expressions S,x4+1 by S,(:;al, veoy Sptk+i-1 by

k,n
S, r(;+k?l-t -1°
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The predicted values S,('ﬁ::l_, can be recursively computed by a general-

ization of the Neville-Aitken scheme for polynomial interpolation which
is due to Miihlbach [329]. It is the so-called Miihlbach-Neville- Aitken
algorithm (MNA for short), a particular case of which is the E-algorithm,
see Brezinski [62]. Assuming that Sy,...,S,, are known, then for j > m
and n + k < m, this algorithm is as follows

S =50, 95 = 9iln) - 0ils).
n=01,...; i=1,2,...

(k-1,n+1) (k—1,n)
gk _  glk-1m)_S; -5;
3 j

n
1k
n+1 n y
’ 9£_1,:3 - gl(c—)l,k

n=01...;k=12,...

(nt+1) _ (n)
(n) _ _(n 9k-1,0 — k-1, _(n)
Iki = k=147 T(mr1) ()  Ik-1k>

k-1k ~ Jk-1,k
n=0,1,...; k=1,2,...; 1> k.

Since the rules of this algorithm are the same as those of the E-
algorithm, except for the initializations, it can be implemented by using
the subroutine EALGO (see section 7.3) for the E-algorithm.

We have the following convergence result

Theorem 6.35
Let (S,) be a convergent sequence. If Vi, there ezists b; # 1 such
that Lm gi(n + 1)/gi(n) = b; and if Vj # i, b; # b; then Vi, k, lm

(Sr(.'i:li"swkﬁ) =0.
If g;(n) = z!, then the MNA-algorithm reduces to the Neville-Aitken

scheme for polynomial interpolation and we have,for j > mand n+k <
m

sgoa")zsn’ n:o,l,...

(k—1,n41) (k-1,n)
S}k,n) — S}k_l'") _ ‘sj - SJ

'(zﬂ—zj) ’

n=0,1,...;k=1,2,...

Tntk — Tp

In both cases, if n+ k > m, the unknown exact values S,;,4+1,..., Sn+k
have to be replaced by the predicted ones.
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If 3b # 0,41 such that "liglo Zn+1/Zn = b then the conditions of
theorem 6.35 are satisfied.

Let us give an application of prediction techniques to the solution of
a parabolic evolution problem as considered by Morandi Cecchi, Redivo
Zaglia and Scenna [326). We are looking for a numerical solution of

y—Au=f inQr
u|aq = 0, t>0
u(z,0) = uo(z) in Q

where u = u(z,t),f = f(z,t),Qr = 2 x [0,T] and @ C R?, (d =
1,...,n).

Under suitable conditions, described by Morandi Cecchi and Nocif-
oro [324], the following variational formulation of this problem has a
unique solution

find v € L2 (0,T; H}(?)) such that

I3 (Y, V8) = (u, o)l dt = [ (f, 8)dt + (uo(2), #(0))
V¢ € L2 (0,T; H3(Q)) with ¢(T) =0 and

(-,-) being the inner product in L?(0).

We consider a discretization with respect to t at the values t, = 0 <
t) <--- <ty =T. In every slab Q X [t,,,2,41] we take a finite element
discretization of the variational problem with the approximate solution
and the test functions in S}(02) ® P? ([t,, tn+1]) where SF() is the finite
element space of piecewise polynomials of degree p in 2, A the mesh
parameter, and P9 ([t,,t,+1]) is the set of polynomials of degree ¢ in
[trn tn-l-l]-

Going from one slab to the next one, the continuity in time of the
approximate solution is imposed. Thus we obtain an iterative process
giving the solution at time t,,; from the solution at time t,. This
method is equivalent to applying first Galerkin finite elements in space
and then finite differences in the time t.

If f is independent of ¢ we obtain an iterative scheme of the form

U™ = MU™ +b

where U™ is the solution at t, = n-At(n =0,1,...,N —1) in the nodes
of the subdivision of Q.
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We are interested in obtaining UV from U°,Ul,...,U™ where m <
N. This can be done by the prediction techniques described above.

Denoting by U" € RV» the vector of the coefficients of U™, we con-
sider, for example, the following initial boundary value problem with
homogeneous Neumann initial conditions

domain Q= (0,x), Np,=21, T =1sec, N =200
initial condition ug(z) = cos(z)
exact solution u(z,t) = e~ cos(z).

Applying the prediction algorithm obtained from Aitken’s A? process,
only the first three time level values (ﬁo, —171, ﬁz) are sufficient to predict
U(T) with, at least, the same precision as that given by the method itself.
In the following table the exact solutions U-O, T" and the number of the
exact significant digits for the approximated and predicted solutions at
ty = T are shown. Because of the symmetry in the behaviour of the
solution, in the table only N,/2 + 1 nodes in space are reported.

node Exact solution Approx. sol. [ Pred. sol.
[N T n. of sign. digits
1 1.000000 | 0.367879 2.539 2.539
2 0.987688 | 0.363350 2.539 2.539
3 0.951057 | 0.349874 2.539 2.539
4 0.891007 | 0.327783 2.539 2.539
5 0.809017 | 0.297621 2.539 2.539
6. | 0.707107 | 0.260130 2.539 2.539
7 0.587785 | 0.216234 2.539 2.539
8 0.453990 | 0.167014 2.539 2.539
9 0.309017 | 0.113681 2.539 2.539
10 || 0.156434 | 0.057549 2.539 2.539
11 | 0.000000 | 0.000000 all all

Other examples with homogeneous Dirichlet initial conditions can be
found in Morandi Cecchi, Redivo Zaglia and Scenna [326].
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Chapter 7

SOFTWARE

In the first section of this chapter we shall describe the general direc-
tions for use of the subroutines which can be found on the floppy disk
provided with this book. The second section deals with some questions
and problems related to computer arithmetic. The list of the programs
contained in the floppy disk is given in section 7.3 together with some
explanations about them.

7.1 Programming the algorithms

We shall now give the general principles which govern the use of the
subroutines performing an extrapolation algorithm for scalar and vector
sequences.

Let us take the example of the ¢-algorithm. The situation is ab-
solutely the same for the other algorithms. The simplest method for
programming the e-algorithm is to store in the computer’s memory all
the ei")’s. Starting from a given number of terms of the initial sequence,
the columns in the e-array are then computed one by one from the two
preceding ones. Notice that, due to the rule of the e-algorithm, each col-
umn contains one term less than the preceding column. Thus, starting
from S, ..., Sk one can only compute the triangular array of figure 7.1.
The same is true for the progressive form of the algorithm; then starting
from So,...,S; and e(()o), ceny s}co) the array is filled up descending diag-
onal by descending diagonal, each diagonal having one term less than
the diagonal above it.

If a new term, Sk, is added then the new ascending diagonal e((,k"'l),
egk), ceny eﬁl), 5;:21 is easily computed. The same is true for the progres-

sive form of the algorithm.
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e(_f’l) =0

E‘(-_,o) = So
e(_ll) =0 e£°)

el _ S 0
e(_zl) =0 eV

6(2) = Sz

e
e(()k—l) — S

e(_kl) =0 e§k°1)

e((,k) = Sk

Figure 7.1: The ¢-array.

Let us assume now that we want to reduce the computer storage. The
simplest method for implementing the ¢-algorithm is to store only the
last two columns, then to compute the new column and to make a shift.
However this procedure suffers from a capital drawback: if it is wanted
to add new terms, Sk, Sk+2, ... all the computations have to be done
again. This drawback can be avoided by keeping, in the computer’s
memory, the last ascending diagonal e((,k),egk_l),egk—z), . .,eio). Thus,

if a new term e((,k“) = Si41 is added, sgk) is computed from e(_kf D ) e((,k)

and eg‘“). Then follows the computation of egk-l) from e((,k), egk_l) and
egk). After that, e;(,k-z) is obtained from egk-l),ey‘_z) and egk_l) and so
on. Thus, gradually, a new ascending diagonal replaces the old one. In
order to program this technique more easily, some auxiliary storage is
needed as explained by Wynn [474, 476].

Some algorithms are more difficult to program and, in particular,



7.1. Programming the algorithms 399

some of them need the storage of several diagonals and of some other
auxiliary quantities or arrays. However, from the user’s point of view,
the situation is the same and this technique allows a very easy use of
the algorithms and of the corresponding subroutines.

INIT=0

computation of S,

l

CALL of the subroutine

—

n=n+1

Figure 7.2: The flowchart of the programs.

The subroutines have to be used in parallel with the computation
of the successive terms of the sequence (S,). These successive terms
are computed in a loop. After the computation of each new term of the
sequence, a CALL of the subroutine is made and the subroutine computes
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the new ascending diagonal as far as possible (or up to a certain column
according to the choice of the user). Then the subroutine returns to
the main program, in the loop where the terms of the sequence are
computed. Of course, before beginning the loop, the subroutine must
be told (by setting the flag INIT to 0, which will be put to 1 by the
subroutine) that it will be given a new sequence to transform. The
normal forms of all the algorithms were programmed in that way, see
Brezinski [56].

Thus the use of the subroutines is described by the flowchart of figure
7.2, where NBC is the maximum number of calls (see also the pseudocode
given in section 7.3).

The subroutines using a particular rule for avoiding numerical insta-
bility are more difficult to program. Indeed the particular rules are only
valid when two adjacent quantities in a column are nearly equal and they
can no more be used in the case of three nearly equal quantities. Thus
such points of instability must be located by pointers as explained by
Wynn [476] (see also Brezinski [56]). However, using such a subroutine
is exactly the same as using a subroutine without particular rules.

7.2 Computer arithmetic

Extrapolation algorithms are often subject to an important propagation
of rounding errors due, most of the time, to cancellation. Thus these
algorithms must be programmed with great care and, as explained in
the previous chapters, particular rules for avoiding (when possible) nu-
merical instability have to be used. However this is not always possible
and we shall give a numerical example for illustrating this point. This
numerical example was already mentioned in section 1.9.

If Aitken’s A2 process is applied to the sequence (S, = A") where
A # 1 then, Vn, we must have eg") = 0. We made use of the five
following formulae which are equivalent

Ty: €Y = (SaSnsz = 5211) [ (Snsz = 25ns1 + S0)
T, : €gn) = (S,.S,.+2 - S£+1)/(S,.+2 + S5, - 25".’.1)

Ts: e = Snt1 =~ (Snt2 = Snt1) (Snt1 —~ Sn)/ (Snt+2 — 25n+1 + Sn)
Ti: €Y = Spr1~ (Snsz = Snt1) (Snt1 = Sn)/ (Snsz + Sn = 25n41)
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Ts: 5 = Sny1+1/(1/ (Sntz — Snt1) = 1/ (Sns1 — Sa)) -

The sequence (S, ) has been computed in double precision but the

computation of eg") has been done in single precision. The computations
have been conducted on a VAX computer (1st line) and on a ZENITH
Supersport PC/Computer (with a mathematical coprocessor) (2nd line).

We obtained the following results with A = 0.9997

In]l i | T T T, | Ts |
11 —1.0000000 | —0.5000000 | —0.5098506] 0.2449247] —0.5095115
—0.5098506 | —0.5098506 | —0.5098506 | —0.5098506 | —0.5098506
2| 0.5000000| 0.5000000] 0.2450747| 0.2450747| 0.2450722
0.2450747| 0.2450747| 0.2450747| 0.2450747| 0.2450747
3 | —1.0000000 | —0.5000000 | —0.5086511| 0.2452246 | —0.5089999
—0.5086511 | —0.5086511 | —0.5086511 | —0.5086511 | —0.5086511
41| 0.5000000] 0.5000000| 0.2453744| 0.2453744| 0.2454439
0.2453745| 0.2453745| 0.2453745| 0.2453745| 0.2453745
5| 0.0000000| 0.0000000| 0.2456741| 0.2456741| 0.2456981
0.2456741| 0.2456741| 0.2456741| 0.2456741| 0.2456741
6 || 0.0000000| 0.0000000 | —0.5065536 | 0.2458239 | —0.5065745
—0.5065536 | —0.5065536 | —0.5065536 | —0.5065536 | —0.5065536
7 [/=1.0000000 | —0.5000000 | —0.5062542| 0.2458239 | —0.5063213
—0.5062542 | —0.5062542 | —0.5062542 | —0.5062542 | —0.5062542
8[| 0.5000000| 0.5000000| 0.2459735| 0.2459735| 0.2450050
0.2459736 | 0.2459736| 0.2459736| 0.2459736| 0.2459736

Then the results oscillate continuously between false values except for
the VAX which gives the right answer from time to time with formula T}
and Tz.

Let us now consider the sequence

which converges to §

IS'n+1

So =1

exp (—Sn) ,»

= 0.5671432904....

n=20,1,...

It can be proved that its
convergence is accelerated by Aitken’s A? process and we obtained the
following results




402 Chapter 7. Software
an lr Tl T T2 T T3 T4
0.5822261 | 0.5822261 | 0.5822261 | 0.5822261 | 0. 5822261
0.5822261 | 0.5822261 | 0.5822261 | 0.5822261 | 0.5822261
10 || 0.5671424 | 0.5671484 | 0.5671438 | 0.5671438 | 0.5671438
0.5671438 | 0.5671438 | 0.5671438 | 0.5671438 | 0.5671438
15 || 0.5671901 | 0.5670865 * * *
* * * * *
25 || 0.5526316 | 0.5250000 * * *
* * * * *
26 || 0.5454546 | 0.6000000 * * *
* * * * *
27 || 0.5833333 | 0.5833333 * * *
* * * * *
28 || 0.5000000 | 0.7500000 * * *
* * * * *
29 (| 0.5000000 | 0.5000000 * * * ”
* * * * *

(with * = 0.567143).

Formula T; and T, (which are known to be numerically unstable)
always give 0.5 for n > 29 on the VAX computer and thus the sequence
(eg")) converges to a wrong answer. Notice that the same formulz give
the right answer on the ZENITH computer.

As mentioned in section 6.6, sums are often to be computed specially
in vector extrapolation algorithms. Due to possible cancellation errors
such a computation is often unstable. However the arithmetic of the
computer can be corrected by using a procedure due to Pichat [358]

n

we want to compute S = Z Yi

=1

e set Sl =n

o fori=1,...,n—1,do
Si+1=8i + ¥in1
e = —9i41 + S.- + ¥i41 if IS'I 2 Iyl"l'll
ei=—Siy1+¥ip1+ 8 if|Si| < |gisal

n-1
=8, + Z €.

=1

e compute T



7.3. Programs 403

It can be proved that all the digits of T are exact up to the precision
of the computer if it works with a check digit.

Some compilers (usually on micro-computers) perform the interme-
diate computations with a precision higher than the precision used for
representing the results in the computer’s memory (which can be true,
in particular, when a coprocessor is present). In such a case the above
correction does not bring any improvement and other techniques must
be used depending on the number of arithmetical registers. They are
described in details by Pichat and Vignes [359].

Let us give a numerical example for illustrating the procedure.

1000
S$=1+41000-10"" =1+ }:10“"‘

=1

has been computed without and with Pichat’s correction on an EPSON
HX 20 computer working with 6 decimal digits in single precision. We
obtained from our BASIC program

” m I S ” without correction I with correction ”

1 101 100.999 101

2 11 11.0002 11

3 2 2.00005 2

4 1.1 1.10002 1.1

5 1.01 1.01001 1.01

6 1.001 1.00095 1.001

7 1| 1.0001 1.00012 1.0001

8 {| 1.00001 1.00000 1.00001

On a ZENITH Supersport computer with an arithmetical coprocessor
and working with 7 decimal digits in single precision, our FORTRAN
program gave the exact results without correction.

7.3 Programs

The floppy disk provided with this book contains subroutines for most of
the extrapolation algorithms described in the preceding chapters. They
have been written in FORTRAN 77 and we tried to make them as portable
as possible. Subroutines for some extrapolation algorithms were already
given by Brezinski [56, 59, 64]. These subroutines were all completely
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rewritten and their programming have been improved and often simpli-
fied. A complete description of the programming techniques used can
be found in Redivo Zaglia [373]. The transcription of all the subrou-
tines into another language (such as PASCAL) was made very easy using
structured programming.

For each algorithm we give a main program showing how to use it
(with the same name as the principal subroutine, preceded by the letter
M) and two files containing the corresponding numerical results (with
the same name as the main program). In the file with the extension
.PC, the user can find the results obtained on a PC with the Microsoft
FORTRAN Optimizing Compiler. The second file, with the extension
.VAX, contains the results obtained with the VAX FORTRAN Compiler.

The principal subroutines are (in alphabetical order)

ACCES  ACCES algorithm

BLBORD Block bordering method

BORDER Bordering method

COMPOS Composite sequence transformations
CRPA CRPA algorithm

EALGO E-algorithm

EPSRHA Simultaneous g and ¢-algorithms and generalizations
EPSRHO  p-algorithm, ¢-algorithm and its generalizations
EPSTOP Tolopogical e-algorithm

EPSVEC Vector ¢-algorithm

GTRAN  G-transformation

HALGO H-algorithm

IDELTA  Iterated Aitken’s A? process
INVLAP Laplace transform inversion
LEVINT  Levin’s transforms

OMEGA  w-algorithm

OVERHO Overholt process

QDALGO qd-algorithm

RICHAR Richardson process

RSALGO rs-algorithm

SEALGO Simultaneous E-algorithm

SELECT  Automatic selection

THETA ©-algorithm

VEALGO Vector E-algorithm

VGRAN  Vector G-transformation

Let us give general comments on the subroutines implementing ex-
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trapolation procedures. More detailed explanations can be founded in
each of them.

¢ Before the first CALL of a subroutine for treating a new sequence,
the input/output integer argument INIT must be set to 0. Its value
is changed to 1 by the subroutine during the first CALL. As long
as INIT has the value 1, the subroutine considers that it is treating
the same sequence as in the preced’ng calls. Thus for treating a
new sequence, this argument has to be reset to 0.

o The input (or input/output) integer argument MAXCOL controls
the last column to be computed in the array. For example, for
the e-algorithm, MAXCOL must be even (if not it is replaced by
MAXCOL-1) and the subroutine returns after the k-th CALL

e if k < MAXCOL+1 and k is odd
), if k < MAXCOL+1 and k is even
ki~ L MAXCOL) jf k > MAXCOL.
That is we shall obtain successively

call 1 ego)

call 2 Egl)

call 3 ego)

call 4 59)

call MAXCOL e\ xcoL_»

call MAXCOL+1 €% xcoL

call MAXCOL + m  e{"2)

Usually the last diagonal or the last row which has been computed
in the array is also given.
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There are no error and/or warning messages printed in the subrou-
tines but the occurrence of an error and/or a warning is indicated
by a nonzero value of the output (or input/output) integer argu-
ment IER. Its output value is a code indicating the nature of the
error and/or the warning. Each subroutine has its own codes and,
for some of them, IER must be reset to 0 after an error and/or a
warning.

The subroutines do not print the results. They are all returned by
arguments.

At the beginning of each subroutine, the user could find its pur-
pose, usage, a list and a description of the arguments, remarks,
explanations about the dimensions of the arrays, and a list of the
routines eventually required.

There are several types of arguments.

input Must be initialized in the calling procedure and is not mod-
ified by the subroutine.

output Cannot be a constant, a parameter constant or an expres-
sion. However such an argument must not be modified by the
user because it is used in the next call of the subroutine.

input/output Must be initialized in the calling procedure but
not as a constant, a parameter constant or an expression.
The routine returns an output value through it.

Some subroutines need the use of working arrays. They appear
in the list of the arguments of the subroutines because their di-
mensions must be given in the calling procedure. Such working
arrays must not be modified by the user between two consecutive
calls of the subroutine. They can only be used after the end of the
loop containing the CALL of the subroutine.

For arrays with two dimensions, only the last one can have an
assumed-size declarator. The first dimension must be given as
specified through the argument IR. Only overpassing this first di-
mension is checked. In each subroutine, the dimensions of the
various arrays are given in the remarks.
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¢ In order to avoid division by zero, the input argument EPS is used
to check if the absolute value of a denominator is less than EPS.
Thus EPS must be positive. If EPS is negative or equal to zero,
then a division by zero can occur because the subroutines do not
control whether or nor EPS is a negative or zero real number.

e All the arguments which are not integers must be declared in a
DOUBLE PRECISION statement.

o The parallel use of the subroutines described in section 7.1 does
not allow to treat simultaneously several sequences with the same
subroutine. In order to show how to avoid this drawback, the sub-
routine SEALGO for the E-algorithm has been specially written.
The other subroutines can be modified in a similar way.

e Since some extrapolation algorithms are quite similar, they have
been gathered in a single subroutine. Two subroutines of this type
have been written. They are

LEVINT for Levin’s transforms
EPSRHO for the p-algorithm, the ¢-algorithm
and its generalizations.

With each of this subroutines, it is impossible, in the same calling
loop, to transform a sequence by several of the transformations
contained in the same subroutine. This drawback can be avoided
for the g and ¢-algorithms by using the subroutine EPSRHA.

A similar subroutine can be written for Levin’s transforms.

¢ The subroutines which are not directly connected with an extrap-
olation algorithm have a different use which is explained in each
of them. They are ACCES, BLBORD, BORDER and INVLAP.

The main programs for using a subroutine implementing an extrapo-
lation algorithm could be written according to the following pseudocode

1. Specifications for variables and constants
list of integer variables and parameter constants
list of real variables and parameter constants
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2. Specifications for parameter constants
MAXCOL, NBC, EPS, ...
3. Specifications for vectors and matrices
list and dimensions of integer arrays
list and dimensions of real arrays
4. Initialization
INIT=0
other initializations required by the algorithm
5. For n =0to NBC-1 do
computation of S,
computation of other quantities required by the algorithm
CALL of the subroutine
control on IER warning/error index
print the intermediate results
end for

Let us now list the examples used for testing the various subroutines.

e ACCES
Forn=0,1,...

Spn = -sina(n + 1)

n+1
D, = b(s2-s5.)

with ¢ = 1.0 and b = 2.0.

¢ BLBORD
[11 11 -1 0 -1)/1) [-2)
11 20 1 1 -1 2 13
11-10 2 -2 0 3 -2
-11 20 -1 1 2 4 | =] 22
00 00 1 1 2 5 25
00 00 1 1 1 6 18
\ 0 0 00-102}\7)\9)
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e BORDER

409

Hilbert matrix of dimension n (a;; = 1/(i + j — 1)) with the right

hand side computed such that the solution is z; = 1 for 2

1,...,n.

e COMPOS
Forn=1,2,...
with e = 3.0.

e CRPA
Forn =0,1,...

Sn = sin(an)/n

(zn); = cosj /(n+ 1)

with (z;); = sin(kj) for £ = 1,2,... where (a); is the j-th compo-

nent of the vector a.

e EALGO
Forn =0,1,...
Sn =
gi(n) =
o EPSRHA
Forn=1,2,...
1% sequence
2nd gequence
374 sequence
4th sequence
e EPSRHO
Forn=1,2,...
Sn
Tn

1(n+1)

AS,H.,'._] ) 1= 1,2,. .o

n?.0.8"

1/n Zpo=n

sin (0.8 - n2) - 0.9"" =z, = n?

1/n3 Z,=n
= 1/ln*(1+n)

In(1 + n)
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EPSTOP
Forn=1,2,...

y = (l,...,l)T
(S,.)J- = j5-08"+n-09"

where (S5,), designates the j-th component of the vector S,.

EPSVEC
identical to the example for EPSTOP

GTRAN
Forn=1,2,...
Sn = 1/n
z, = AS,
HALGO
Forn=1,2,...
(Sn)j = l/nj

gt'(n) = (Asu)l ’ i= 1,2 .o

where (AS,), is the first component of the vector AS,,.

IDELTA
Forn=1,2,...
Sn=1/n
INVLAP
F(p) = In(1+a?/p?)
pi = 01+i-h, i=0,...,2k+1
f(t) = 2(1 - cosat)/t
t = -1.0+(j—1)-04, j=1,...,5

with a = 1.0,k =3 and h = 2/(2k + 1).
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e LEVINT
Forn=0,1,...
z? Lk
Sn=z—F 4+ (CU0 0

which converges to In(1 + z).

e OMEGA
Forn=1,2,...
Sn=1/n
e OVERHO
Forn=1,2,..
Sn=1/n
e QDALGO
Forn=1,2,...
z, = (-1)"*120.57 - 17.5(n+ 1)
e RICHAR
Forn=1,2,...
z, = 1l/n
S, = =z
¢ RSALGO
Same example as for QDALGO
e SEALGO
Same example as for HALGO
¢ SELECT
Same example as for COMPOS
e THETA
Forn=1,2,...

Sn = 111(1 + Sn—l) with S() =1.

This sequence tends to zero.
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e VEALGO
Same example as for HALGO

e VGTRAN
Forn=1,2,...
Snt1 = Sn-1/2
with
1 1
So=|1 01}, S=1| 2
0 1
and
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sequence 69

autocorrelation 360

automatic selection 178, 184, 197

barycentric formula 15
Bertrand test 156

bias reduction 358
biconjugate gradient 306

Bienaymé-Chebyshev inequality 362

biharmonic operator 353
biorthogonality 235
block bordering method 31
bordering method 30
boundary,

second—order 342

free 342

value problems 340
breakdown, 25, 36, 237, 239, 306

near 25, 36, 237, 239
Bromwich integral 351

cancellation errors 28, 35
cascade 196
Cauchy,
principal value 373
problem 353
test 152
Chebyshev,
polynomials 283
series 282
compact recursive projection al-
gorithm 234
comparison of sequences 47

completely monotonic function 259

composite transformation 185, 241

composition of transformations 130

Index

computer arithmetic 400
condition a 366
confluent,
E-algorithm 266
e—algorithm 256
form 254
G-transform 265
Overholt process 255
o—algorithm 262
©-algorithm 267
©-procedure 268
topological e-algorithm 220
conjugate gradient 236, 305
conjugate residual 308
constrained optimization 312
continuation methods 330
continued fractions, 99, 102, 128,
155, 164, 165, 263, 284
convergents 285
limit periodic 290
modification 286
periodic 287
tail 285
continuous prediction algorithms
253
contour integral 26
contraction, 202
optimal 205
contractive transformation 201
control of the error 193
convergence,
acceleration 2
faster 2, 48, 253
linear 16
linear periodic 132
logarithmic 2
non-logarithmic 146
order 51, 162, 188



Index

speed 50
super linear 51
tests 151
converging factors 286
correction of a sum 402
correlation coefficient, 131, 182
multiple 182
count coefficients 178
covariance 182
cross rule, 34, 81, 106, 218
extended 37
CRPA 234, 242
cycling 301, 316, 326

d’Alembert test 152
DAQES-algorithm 148
defective matrix 299
definite integral 366
deflation 333
A? process, 1, 7, 8, 16, 18, 25, 34,
43, 125, 203, 400
generalized 131
iterated 128
degree of acceleration 44
derivatives of eigenelements 336
determinant,
vectorial 20, 214
determinantal,
formule 9, 18, 214
identities 10, 223
diagonal 27
difference equation 5
differences,
divided 116
reciprocal 102
differential equations 338
differentiation 365, 389
Dirichlet 301, 395
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discretization techniques 353
divergent integrals 381
divided differences 116

E-algorithm, 55
confluent 266
vector 228
efficiency index 317
eigenelements, 332
derivatives of 336
eigenvalues 332
eigenvectors 332
elliptic PDE 301
endpoint singularity 369
e—algorithm, 10, 27, 78, 99, 216,
220
confluent 256
confluent topological 220
generalizations 108
topological 220
vector 216
e—array 27, 81
equations,
difference 5
differential 338
Fredholm 313
integral 313, 338
linear 303
nonlinear 315
partial differential 301, 352
systems 302
error,
bounds 193
cancellation 28
rounding 34, 38, 400
error control 193
error estimation, 145
good 146
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perfect 12, 145
estimation of the error 145
Euclidean W transform 248
Euler theorem 14
Euler-Maclaurin formula 139, 366
evolution problem 394
exact transformation 179
expansion,

asymptotic. 69, 159

Taylor 254

Thiele 263
expectation 358
extended cross rule 37
extraction procedures 174
extrapolation,

algorithm 8

construction 165

least squares 210

method 5

rational 101

Thiele 58, 102
EWT-algorithm 248

fair transformation 179
faster convergence 2, 48, 253
feasible region 313
Fibonacci 288
finite elements 394
fixed point,
iterations 120
method 315
~ Ford-Sidi algorithms 244
form,
normal 26
progressive 28
formula,
determinantal 19
Euler-Maclaurin 139, 366

Index

Gaussian quadrature 370
quadrature 366
Fourier,
series 282
sum 235
transform 381
Fredholm equation 313
free boundary 342
function,
completely monotonic 259
objective 313
totally monotonic 259
¢ 155
functional Hankel determinants 257,
261

G-algorithm 96, 243
G-transformation 95, 265
Galerkin method 394
y-algorithm 106
Gauss—Chebyshev quadrature 371
Gauss test 155
Gaussian quadrature formulae 370
general interpolation problem 235
generalized,

e—algorithm 108

remanence 39

Richardson extrapolation 117

©-algorithm 248
Germain-Bonne transformation 74,

251
geometric progression 17
good estimation of the error 146
Gram-Schmidt orthonormalization
235

GTH-algorithm 248

H-algorithm 227, 238
Hankel,
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determinant 78, 80, 222, 257,
261

transform 381
Henrici 238
Henrici transformation 239, 308
homogeneity 12
homographic invariance 107
homotopy 330

ill-conditioning 309
implicit function theorem 6
improper integrals 378
IMSL 375
infinite integrals 378
instability, 28, 400

numerical 28, 400
integral,

definite 366

divergent 381

equations 313, 338, 352

improper 378

infinite 378

multiple 387

oscillatory 381

test 158
integration 365
interpolation, 354

by rational functions 102, 348

conditions 6

inverse 45

problem 235
invariance by translation 12
inverse interpolation 45, 143
inverse of a vector 217
iterated Aitken A2 process 128
iterated collocation 352

jackknife 358
Jacobi polynomials 141
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k-normal transformation 43
kernel, 4

explicit form 5

implicit form 5
Krylov subspace 308
Kummer test 153

A—difference 333
Laplace transform inversion 348
least squares, 312
extrapolation 210
Legendre polynomials 142
Levin transforms 113
limit periodic continued fraction
290
Lin(a, 8) 202
linear,
periodic sequence 132
sequence 16, 43
systems 303
linearly converging sequence 16,
43
LOG 41
LOG2 204
LOGSF 41, 154, 203
logarithmic sequence 2, 41
Lubkin W-transformation 139

MAPLE 277
matrix,
defective 299
iterative process 298, 309
mean value 358
method,
A-stable 339, 346
ABS 236
biconjugate gradient 306
bordering 30
conjugate gradient 236, 305
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conjugate residual 308
continuation 330
extrapolation 5
fixed point 315
homotopy 330
minimal polynomial extrapo-
lation 307, 326
Monte—Carlo 361
multistep 339
nonlinear 346
Pichat 402
polynomial 307
power 333
prediction—correction 347
projection 307
rectangular 77
reduced rank extrapolation 244,
307, 326
regula falsi 331
Romberg 76, 366
Runge-Kutta 339
shooting 338
SOR 335
Steffensen 315
minimal polynomial 305
minimal polynomial extrapolation,
244, 307, 326
modified 244, 307
minimization, 312
constrained 312, 354
unconstrained 313
MMPE 244, 307
modification of continued fraction
286
Monte—-Carlo methods 361
MPE 244, 307, 326
Miihlbach—Neville-Aitken 393
multi-grid method 345

Index

multiple integrals 387
multistep methods 339

near-breakdown 25, 36, 237, 239
Neumann conditions 395
Neville-Aitken scheme 367
non-accelerability 39
non-logarithmic sequence 142
nonlinear,

equations 315

methods 346

programming 236

quadrature 372
normal,

form 26

transformation 43
numbers,

pseudo-random 365

random 365
numerical instability 28, 400

objective function 313
w-algorithm 94, 101, 257
operator equation 353
operator R 109
optimal contraction 205
optimality 42
optimization,

constrained 313

problem 312
order of convergence 51, 162, 188
orthogonal polynomials 98, 224,

264

oscillatory integrals 381
over-relaxation 335
Overholt process, 119

confluent 255

P-order 162



Index

P-transformation 351
Padé approximation 92, 227, 298,
347
parabolic evolution problem 394
parallel computer 185, 193
parallel use 399
partial differential equations 301,
352
particular rules 34, 38, 218
penalty technique 309
perfect estimation of the error 12,
145
periodic,
continued fraction 288
sequence 132
permutation—perturbation 32
perturbation,
method 312
problems 345
p—algorithm 62
Pichat method 402
pivoting 32
Pochammer symbol 117
poles 348, 355
polynomial method 307
potential problem 313
power method 333
prediction 389
prediction—correction method 347
principal value 373
problem,
boundary value 340
optimization 312
semilinear perturbation 345
procedure,
extraction 174
© 124, 204
© confluent 268
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process,
Aitken A2 1, 7, 8, 16, 18, 25,
34, 43, 125, 203, 400
generalized Aitken A2 131
Overholt 119
p 58
Richardson 72
stationary 360
stochastic 359
summation 2, 58
synchronous 146
product quadrature 388
progressive form 28
projection, 235, 243
method 307
property,
A 197
B 197
C 198
pseudo-random numbers 365

qd-algorithm 99, 356

quadrature formulz, 366
Gauss—Chebyshev 371
Gaussian 370
nonlinear 372
product 388

quasi-linearity 11

Raabe-Duhamel test 152, 155
random numbers 365

rank k 185

rate of convergence 48

ratio of determinants 8, 18
rational extrapolation 57, 101
rational transformation 16, 42, 138
Rayleigh quotient 333

reciprocal differences 102
rectangular method 77
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recursive,
projection algorithm 233
schemes 21
reduced rank extrapolation 244,
307, 326
regula falsi 331
regular transformation 1
regularization 309
remanence, 39
generalized 39
g—algorithm, 102
confluent 262
rhombus 27
Richardson process, 72
generalized 117
Riemann ( function 155
Romberg method 76, 366
rounding errors 34, 38, 400
RPA 233
RRE 244, 307, 326
rs—algorithm 96
Runge-Kutta methods 339

SB-algorithm 226
Schur complement 308
secant method 331
second—order boundary value prob-
lem 342
selection 178, 184, 197
semi-regularity 179
semilinear perturbation problems
345
sequence,
asymptotic 69
asymptotic behaviour 47
comparison 47
double 278
linear 16, 43

Index

linear periodic 132
linearly converging 16, 43
logarithmic 2, 41
non-logarithmic 142
sub 174
totally monotonic 87
totally oscillating 90
vector 298
series,
Chebyshev 282
Fourier 288
Stieltjes 278
time 357
Shanks transformation 9, 78, 98
shooting method 338
singularity,
endpoint 369
smoothing process 312
SOR method 335
speed of convergence 50
stability 28
stationary process 360
statistics 357
Steffensen method 315
Stieltjes series 278
stochastic process 359
stopping rules 201
subsequence 174
summability,
Abel 381
summation process 2, 58
super linear convergence 51
synchronous process 146
systems,
equations 302
linear 303
nonlinear 315



Index

t-transform 114
T-algorithm 126
T,m transformation 131, 294
tail of continued fraction 285
Taylor expansion 254
test,
Bertrand 156
Cauchy 152
convergence 151
d’Alembert 152
Gauss 155
integral 158
Kummer 153
Raabe-Duhamel 152, 155

algorithm 121
confluent algorithm 267
generalized 248
procedure 124, 204
Thiele,
expansion formula 263
extrapolation 58, 102
time series 357
Toeplitz theorem 2
topological e-algorithm, 220, 327
confluent 260
topological g—algorithm 249
totally,
monotonic function 259
monotonic sequence 87
oscillating sequence 90
TRA 249
transform,
Euclidean W 248
Fourier 381
confluent G 265
Hankel 381
Levin 113
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t 114

ull4

v114

vector W 249
transformation,

accelerative 179

composite 185, 241

composition of 130

contractive 201

exact 179

fair 179

G 95

Germain-Bonne 74

Henrici 239, 308

homogeneous 12

k-normal 43

Lubkin W 139

normal 43

P 351

quasi-linear 11

rational 16, 42, 138

regular 1

semi-regular 179

T, 131, 294

universal 39

Shanks 9, 78, 98

translative 12

W 139
translativity 12, 215
trapezoidal rule 76, 366
triangular recursive schemes 21
true contraction 202

u-transform 114

unconstrained minimization 313
uniform inversibility 240
universal transformation 39

v-transform 114
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variance 182 W transform 249
variational problem 394 vectorial determinant 20
vector, VRA 249

E—-algorithm 228 VWT 249

e-algorithm 216 .

G-transformation 243 W-algorithm 71

Padé approxi ts 227, 251, W-transformation 139

355 white noise 360
g—a.lgorithm 249 zeros 355
sequences 298 ¢ function 155

©-algorithm 249





