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SUMMARY 

A theory which provides a continuous velocity and shear 
distribution for turbulent flow near a smooth wall is developed. 
The analysis also forms the basis for the theoretical calculation 
of the velocity profiles and resistance owing to roughness or vortex 
generation. The theory checks well with experimental data. 

SYMBOLS 

y 
a 
D 
u 
u'', v' 

p 
M 
T 

r 
I 
K 
K 

e 
k 

f 
V 
R 
V 

W 

t 
turb 
max 

u* 

y* 

h 
k* 

a* 
A* 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

= 
= 
= 
= 

distance from wall 
pipe radius 
pipe diameter 
mean local velocity parallel to wall 
velocity fluctuations parallel and normal to flow 
mass density 
coefficient of viscosity 
shear stress 
velocity correlation coefficient 
mixing length 
universal constant in I = Ky 
modified universal constant 
eddy viscosity 
size of roughness 
friction factor = 8rw/p V2 

average section velocity 
Reynolds Number = VD/p 
kinematic viscosity 
subscript denoting wall 
subscript denoting turbulence 
subscript denoting turbulence 
subscript denoting maximum 

u/VrJp 
\/rw/p-y/v 

VTJP-I/P 

Vrjp-k/v 
V rw/p•a/v 
constant 

INTRODUCTION 

TH E PURPOSE of this report is to present an analysis 
which will yield a continuous velocity and shear 

distribution for turbulent flow near a smooth wall. 
The results of such an analysis should be particularly 
useful in the s tudy of convective heat transfer by 
liquids over a wide range of Prandt l Number. The 
report pertains to incompressible fluids only. 

I t is found tha t the theory fits the measured velocity-
profile da ta for smooth walls. The analysis also leads 
to the theoretical calculation of velocity profiles and 
friction factors for rough pipes and /or vortex generators. 

ANALYSIS 

When the Navier-Stokes equations are writ ten in 
terms of mean velocities and fluctuations from the 
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mean and then averaged with respect to time, rearrange­
ment of the resulting equation allows the total shear 
stress r to be identified as 

r = fx(du/dy) — pu'v' (1) 

where u is the mean velocity parallel to the wall, u' 
the instantaneous fluctuation of velocity in the direc­
tion of u, vr the cross fluctuation of velocity in the 
direction normal to the wall, y the length scale normal 
to the wall and measured positive from the wall, p 
the density of the fluid, and p, the coefficient of viscosity 
of the fluid. The first term on the right-hand side of 
Eq. (1) represents the effect of viscosity on the mean 
flow whereas the second term is the Reynolds stress. 
In turbulent flow away from a wall, the Reynolds 
stress is of considerably greater magnitude than the 
viscous stress; however, the more a smooth wall is 
approached, the greater becomes the role of the viscous 
stress until finally, a t the wall, viscosity predominates. 

The viscous effect of the proximity of the wall may 
be estimated in the following manner : 

Consider an infinite flat plate undergoing simple 
harmonic oscillation parallel to the plate in an infinite 
fluid. As was shown by Stokes,1 the amplitude of the 
motion diminishes from the wall as a consequence of 
the factor exp( — y/A) where A is a constant depending 
upon the frequency of oscillation of the plate and the 
kinematic viscosity v of the fluid. Hence, when the 
plate is fixed and the fluid oscillates relative to the plate, 
the factor [1 — exp( — y/A)] must be applied to the 
fluid oscillation to obtain the damping effect on the 
wall. Now, according to Prandtl , the total shear 
stress for turbulent flow is writ ten as 

r = fx(du/dy) + prV^-Vv7* (2) 

where r is the correlation coefficient defined by u'v' = 

vn. Introduction of the mixing lengths 

h and h defined by vun = h du/dy and V vn = 

h du/dy, respectively, then gives 

r = fi(du/dy) + prlMdu/dy)2 (3) 

The quant i ty rkl2 is finally lumped into one overall 
length / to yield 

r = ixipu/by) + pl2(du/dy)2 (4) 

Furthermore, when it is assumed tha t / = Ky, where 
K is called the universal mixing constant, Eq. (4) 
becomes 

r = fi(bu/dy) + pK2y2(du/dy)2 (5) 

which is supposed to represent mean fully developed 
turbulent flow near a wall. However, such fully 
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developed turbulent motion occurs only beyond a 
distance sufficiently remote from the wall t ha t the very 
eddies themselves are not damped in turn by the 
nearness of the wall. Indeed, near a wall, the damping 
factor would be [1 — exp( — y/A)] for each mean 
velocity fluctuation in Eq. (2), and hence Eq. (5) 
should be modified to become 

r = n(bu/by) + PK2y2[l - exp(-y/A)]2(du/dy)2 (6) 

in order to take into account the mean motion all the 
way to a smooth wall. 

One could argue tha t the presence of the wall modifies 
the universal constant so t ha t 

K = K[l - exp(-y/A)] (7) 

or t ha t the mixing length must be changed to 

l = Ky[l - e x p ( - V ^ ) ] (8) 

I t is convenient to write Eq. (6) in dimensionless 
form. Thus, put t ing 

u* = u/Vrw/p y* = Vrjp-y/v (9) 

where TW is the shear a t the wall, Eq. (6) becomes 

T/TW = (du*/dy*) + K2y*2[l - exp( - ;y* / ,4*) ] 2 X 

(du*/dy*y (10) 

in which A* is a constant of the turbulence. Further­
more, 

K = K[l - exp(- ;y*A4*)] (11) 

h = Ky*[l - exp(-y*/A*)] (12) 

where /* = \Zrw/p-l/v. 

According to Eq. (1), the Reynolds stress rt is 
obtained from 

r = fx(bu/dy) + Tt (13) 

in which rt = — puV. Hence, with Eq. (9), 

rt = r — rw(du*/dy*) (14) 

whence rt/rw = (r/rw) — (du*/dy*) (15) 

The eddy viscosity e is obtained from 

r = n(du/by) + e(du/dy) = (n + e)(r«//x)-(dw*/£>?*) 

(16) 

so tha t e//x = [ ( r / r j / (d t t* /d :y* ) ] - 1 (17) 

Smooth Wall 

For boundary-layer flow with zero pressure gradient, 
dr/dy = 0 at the wall and therefore r fe3 rw near the 
wall. Hence, Eq. (10) yields 

du* 2 

ty* 1 + V l + 4K2y*2[l - e x p ( - 3 / * / ^ * ) ] 

whereupon 

2dy* 

(18) 

0 1 + V l + 4X2^2[l - exp(-;y«,/4*)P 
(19) 

Then, from Eqs. (15) and (17), respectively, 

rt/rw = 1 - @u*/dy*) (20) 

e/pt = [l/(bu*/by*)] - 1 (21) 

30 

20 

TURBULENT 
(PARTLY ROUGH) 

LAMINAR 
- u*=y*—v-f-

LAUFER DATA 
Re 

o 50,000 
• 500,000 

i TURBULENT 
j (FULLY ROUGH ) 

EQ.32 

10 I0< KT !0H 

FIG . 1. Semilogarithmic plot of velocity profiles for turbulent flow near smooth and rough walls. Comparison of theory and ex­
periment for a smooth pipe. 
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For large y*, Eq. (19) becomes 

u* = const. + (1/K) In y* 

16 

(22) 

which is the von Karman law for fully turbulent flow— 
i.e., where viscosity does not affect even the mean flow. 

The above analysis applies to a smooth wall under 
which condition the proximity of the wall has a stabiliz­
ing effect upon the eddies owing to viscosity. Of 
course, the opposite could be argued—namely, that 
the wall loses its control of the fluid elements with 
distance from the wall according to the same law. 

Rough Wall (Vortex Generation) 

The stabilizing effect of the wall can, however, be 
nullified by introducing an artificial mixer at the wall— 
viz., roughness. When sufficient roughness is intro­
duced to stir up the motion near the wall (vortex 
generation), the factor exp( — y*/A*) should disappear 
from the above equations so that Eqs. (11), (12), 
and (19) should become, respectively, 

K = K (23) 

/* = Ky* (24) 

du*/dy* = 2/[l + V l + (2Ky*)2] (25) 

which integrates to 

u* = 
l / l - Vl + {2Ky*Y 
K 2Ky* 

In 2Ky* + V l + (2Ky^) \\ (26) 

For large y*, Eq. (26) becomes 

u* = const. + (1/K) In y* 

which is again the von Karman law for fully developed 
turbulent flow. 

It is expected that Eq. (26) should represent the 
beginning of fully turbulent flow clear to the wall— 
i.e., flow which feels only the effect of viscosity on the 
mean motion and not a viscous effect of the nearness 
of the wall on the individual eddies. 

The above results for flow in the vicinity of both 
smooth and rough walls are also approximately valid 
with a pressure gradient in the direction of the flow 
because the shear stress near the wall is approximately 
equal to the wall stress. 

COMPARISON WITH EXPERIMENT 

Velocity Profiles 

Fig. 1 shows a semilogarithmic plot of the mean-
velocity data obtained by Laufer2 for fully developed 
turbulent flow in a smooth pipe at two Reynolds 
Numbers—namely 50,000 and 500,000—based on the 
diameter of the pipe. Also plotted in the figure is 
Eq. (19) when K = 0.4 and A* = 26. It appears 
that the theory follows the data quite well. 

u * = y * | \ / 

r/; 

V EQ.26 
(K=0.4)-

SMOOTH WALL 
/EQ. 19 
K =0.4,A^26/| 

LAUFER DATA— 
IRe | 
|o 50,000 
• 5Q0,Q00 

10 20 30 40 
y* 

50 60 70 

FIG. 2. Comparison of theory and experiment for turbulent flow 
near the wall of a smooth pipe. 

For a smooth wall, the asymptotic curves at the 
wall and out in the so-called fully developed turbulent 
flow are, respectively, 

u* = y* 

u* = 5.24 + 5.75 logio y* 

(27) 

(28) 

Fig. 2 is a Cartesian-coordinate plot of the Laufer 
data and Eq. (19) for the range y* < 70. 

It should be mentioned here that, in order to fit 
Eq. (19) to Nikuradse's smooth-wall data,3 it would be 
necessary that A* = 27. 

The velocity profile for the beginning of complete 
roughness, Eq. (26), is plotted in Fig. 1 with K = 0.4. 
The asymptote in the stream is 

u* = —1.325 + 5.75 logio 3>* (29) 

Eq. (26) is plotted also in Fig. 2. Of particular interest 
is the fact that only one constant, K, appears in Eq. 
(26). _ 

It is evident from the smooth-wall curve of Fig. 1 
that the viscous damping effect of the wall extends 
out to about 3/* = 60. Therefore, it is expected that 
any roughness elements should also extend to about 
y* = 6 0 before they completely nullify the viscous 
influence of the wall. Thus, if there are no viscosity 
effects for roughnesses greater than k* = y/rw/ p X 
k/v = 60, where k is the average roughness size, 
then the general velocity profile beyond the roughness 
protuberances would be, from dimensional analysis, 

u* = const. + (1/K) In (y/k) (30) 

= const. + (1/K) In ** + (1/K) In y* (31) 

so that, from Eq. (29) when K = 0.4 and k* = 60, 

u* = 8.95 - 5.75 logio k* + 5.75 logio y* (32) 

The two regions of flow, one under viscous influence 
of the wall and the other with a wholly rough wall, 
are indicated in Fig. 1. In the region of viscous 
influence of the wall, the roughness height k* is less 
than 60—i.e., for k* < 60, the nearness of the wall 
still shows some effect through viscous damping. 

An estimate can be made of the velocity profile 
when the roughness is within the v'scous influence of 
the wall—i.e., k* < 60. It was seen above that the 
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a/k 
15 
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60 
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507 

LOG,0 Re 
FIG. 3. Friction factor for flow in a rough pipe. 

K 

0.3 

0.2 

0.1 

\ 
^"X=K =0.4 

^SMOC 
E( 

(K=0. 

)TH WAL 
3.11 
4,A*=2<: 

L 

>) 

0 10 20 3 0 4 0 50 60 70 

FIG. 4. Modifiedjuniversal constant for turbulent flow near a 
smooth wall. 

10 20 30 40 50 60 70 

FIG. 6. Eddy-viscosity variation for flow near a smooth wall. 

F I G . 5. Modified mixing length for turbulent flow near a smooth 
wall. 
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F I G . 7. Turbulent shear-stress variation for flow near a smooth 
wall. 
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beginning of the complete roughness effect was felt 
on the flow when the roughness protuberances pro­
jected out sufficiently far from the wall to disrupt the 
viscous effect of the wall. Thus, the factor exp(—y* -f-
^4*) was artificially eliminated. However, this can 
be expressed mathematically by adding a local vortex-
generation factor exp(—y*/26) to the damping factor 
— exp(—y*/26). But the vortex-generation factor 
should grow with the size of the roughness, and, 
therefore, such a factor should have the form 
exp( — 60y*/26k*) so that , a t y* = fe* = 60, the dis­
turbance factor owing to roughness just offsets the 
damping factor. Obviously, as k* changes, the 
roughness factor remains similar. The velocity profile 
including roughness then becomes 

Cy* 2dy* 

J o l + V l + 4i£2
3 '*2[l - e x p ( - y * / 2 6 ) + 

exp(-60;y*/26&*)j2 

(33) 

so t ha t the damped universal constant and damped 
mixing length become, respectively, 

K = K[l - exp(- ;y*/26) + exp(-60;y*/26&*)] (34) 

h = Ky*[l - exp(- ;y*/26) + 
exp(-60;y*/26&*)] (35) 

Some velocity profiles outside of the roughness elements 
are plotted in Fig. 1. I t is seen t ha t the smooth wall 
results when k* — 0. On the other hand, if Eq. (32) 
is assumed to hold for all sizes of roughness, then 
it will be found that , for smooth effects, it is not 
necessary t ha t k* = 0 bu t rather t h a t k* = 4 because, 
from Eqs. (28) and (32), 

5.24 = 8.95 - 5.75 log10 fe* 

whence k* = 4. I t seems more logical, however, t ha t 
k* = 0 rather than k* = 4 represents a smooth wall. 

Friction Factor 

I t is readily shown tha t the mean and maximum 
velocities of the semilogarithmic profile are related by 

(umax - F ) / v V p = (S/2K) = 3.75 (36) 

where V is the average section velocity and K = 0.4. 
Also, the friction factor / for pipes is given by 

/ = 8ra/PV* (37) 

Hence, from Eqs. (28)—with y = a, (36), and (37), 
there results for a smooth wall 

V$7f = 1.49 + 5.75 log10 [ V W P ' M ] (38) 

= 1.49 + 5.75 logic [Vffc<V/2)-(D/v)] (39) 

= 1.49 + 5.75 logio ( 1 / 4 A / 2 ) + 5.75 log10 (RVf) 

(40) 

= - 2 . 8 4 + 5.75 log10 (RVf) (41) 

in which D = 2a and R = VD/v. Hence, upon divi­
sion by v'8> the friction law for a smooth wall becomes 

W / = ~ 1 . 0 + 2.04 log10 (RVf) (42) 

However, the test da ta of Nikuradse3 indicate t ha t 
the constants should be adjusted so tha t 

1 / V ? = - 0 . 8 + 2 log10 (RVf) (43) 

For the beginning of complete roughness, Eq. (29) 
gives 

1 / V / = - 3 . 3 + 2 log10 (RVf) (44) 

Eqs. (43) and (44) are plotted in Fig. 3 along with 
curves faired through the rough-wall da ta of Nikuradse.4 

I t is seen tha t the semitheoretical formula, Eq. (44), 
crosses all roughness curves a t approximately the 
end of transition for each relative roughness. This 
result is particularly interesting because only one 
constant, K, entered in the derivation of Eq. (44). 
Thus, the concept of generation of vortices by roughness 
appears justified. 

The general formula for complete roughness (inde­
pendency with Reynolds Number) is now deducible 
from Eqs. (32), (36), and (37), whence 

Vs/f = 5.15 - 5.75 logio k* + 5.75 log10 a* (45) 

where a* = V w V a/v- Division by \ / 8 gives 

1 / V / = L82 - 2.04 logio (a*/ife*) (46) 

which agrees well with the experimental formula—viz., 

1 / V ? = 1-74 - 2 log10 (a*/fe*) (47) 

representing the horizontal relative roughness lines in 
Fig. 3. I t is noted t ha t the only constant necessary 
to be evaluated experimentally in the derivation of 
Eq. (46) was K in I = Ky. 

I t is also possible to estimate theoretically the 
friction curves in the transition region of Fig. 3—i.e., 
curves of various relative roughness connecting the 
curves of Eqs. (43) and (44). Thus, one such curve, 
curve A, is obtained for a/K = 60 through use of 
Eqs. (33), (36), and (37) with arbi trary k* and the 
relation 

RVf = W2-h-(a/k) (48) 

Curve A has the proper trend. 

Other Properties Near a Wall 

Figs. 4 and 5 show the distributions of the damped 
universal constant and of the damped mixing length 
according to Eqs. (34) and (35), respectively, for 
K = 0.4. 

Fig. 6 gives the corresponding eddy viscosity ac­
cording to Eq. (21) for r = rw. Also plotted in Fig. 6 
are the assumptions of Taylor5 and Prandtl ,6 and of 
von Karman. 7 The shear distribution, Eq. (20), is 
shown in Fig. 7. Direct measurements of the cross 
correlation u'v' are apparently not available for y* 
less than about 100. 

{Continued on page 1036) 
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u = v = o 

V A 
y A 
Y A 

F I G . 15. Constant pressure delta wing. 

a highly cambered one and is characterized by logarith­
mic infinities in slope a t the leading and trailing edges 
and along the centerline. 

The reverse-delta constant pressure wing is obtained 
by the superposition 

Gs(x, y, z; e0, c) = — (l/2)G6(x, y + b, z; e0, c) + 
(l/2)G6(x, y — b, z; — e0, c) — €0Gb(x, y, z; 1, c) 

where b is given in Eq. (11). This field is indicated in 
Fig. 16. 

Since any polygonal plan form which does not have 
streamwise tips (parallel to the x axis) and which is 
symmetric about a streamwise axis can be parti t ioned 
into isosceles triangles like those of Figs. 15 and 16, 
these fields may be combined to obtain a constant pres­
sure wing of such a plan form. In such a superposi­
tion, the singularities in downwash in the component 
flows will cancel except on the boundaries of and down­
stream of the vertices of the resultant wing. 

CONCLUDING REMARKS 

The foregoing represents a very convenient method 
of treating polygonal source sheets and constant pres-
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F I G . 16. Constant pressure reverse delta wing. 

sure regions in potential flow. The Prandtl-Glauert 
transformation may be used to extend this t rea tment 
to subsonic compressible fields. 

In addition it would appear t ha t the constant pres­
sure delta wings might be superposed to provide an 
approximate model for the general lifting wing. Pre­
liminary a t tempts to construct such a model, using a 
scheme similar to the horseshoe vortex superposition 
of Falkner,4 were not successful. The difficulties en­
countered appeared to be chiefly due to the presence 
of singularities in downwash associated with the edges 
of the triangular vorticity patches and the lack of a 
rational basis for locating downwash control points. 
Work in this direction is being continued. 
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