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We develop the dynamic renormalization group (RNG) method for 
hydrodynamic turbulence. This procedure, which uses dynamic scaling and 
invariance together with iterated perturbation methods, allows us to evaluate 
transport coefficients and transport equations for the large-scale (slow) modes. 
The RNG theory, which does not include any experimentally adjustable 
parameters, gives the following numerical values for important constants of tur- 
bulent flows: Kolmogorov constant for the inertial-range spectrum C K -  1.617; 
turbulent Prandt! number for high-Reynolds-number heat transfer Pt = 0.7179; 
Batchelor constant Ba= 1.161; and skewness factor $3 =0.4878. A differential 
K g model is derived, which, in the high-Reynolds-number regions of the flow, 
gives the algebraic relation v=0.0837KZ/g, decay of isotropic turbulence as 
K= O(t-J33~ and the von Karman constant K = 0.372. A differential transport 
model, based on differential relations between K, g, and v, is derived that is not 
divergent when K ~  0 and g is finite. This latter model is particularly useful near 
walls. 

KEY WORDS: Renormalization group; turbulence theory; inertial range; tur- 
bulence transport; Reynolds number; large-eddy simulation; computational fluid 
dynamics. 

1. I N T R O D U C T I O N  

T u r b u l e n t  flows occur  in m a n y  c i r cums tances ,  differing by  geomet ry ,  dr iv-  

ing mechan i sms ,  a n d  the phys i cochemica l  processes  tha t  t ake  place wi th in  

them. Pe rhaps  the m o s t  d i s t i ngu i sh ing  charac te r i s t ic  of  h i g h - R e y n o l d s -  
n u m b e r  t u r b u l e n t  flows is their  large range  of excited space and  t ime scales. 
I t  is well  k n o w n  (e.g., L a n d a u  a n d  Lifshitz, 1982) that ,  in  h o m o g e n e o u s  
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turbulence, dissipation-scale eddies are of order R 3/4 times smaller than the 
energy-containing eddies, where R is a (microscale) Reynolds number. In 
order to solve the Navier Stokes equations accurately for such a turbulent 
flow, it is necessary to retain order (R3/4) 3 spatial degrees of freedom. Also, 
since the time scale of significant evolution of turbulent flow is of the order 
of the turnover time of the energy-containing eddies, it is necessary to per- 
form R 3/4 time steps to calculate a significant time evolution of the flow. 
Even if these calculations require only O(1) arithmetic operations per time 
step, the requirement for computer storage would be O(R 9/4) and for com- 
putational work O(R3). In this case, even a mere doubling of the Reynolds 
number would require an order-of-magnitude improvement of computer 
capability. With this kind of operation and storage count, it is not likely 
that foreseeable advances in computers will allow the full simulation of tur- 
bulent flows at Reynolds numbers much larger than R=O(100-1000) 
already achieved. 

The second distinguishing characteristic of turbulence is the 
approximate universality of the properties of scales much smaller than the 
integral scale L in the flow. High-Reynolds-number turbulent flow is 
characterized by three different ranges of spatial scales: 

1. For wavenumbers k =  O(rc/L) the energy spectrum is strongly 
anisotropic and is not universal. The integral scale L reflects both 
the geometry of the flow and the physicochemical processes taking 
place on these scales. 

2. At much smaller scales, with wavenumbers satisfying 
rolL ~ k ~ kd = R3/4L-I, the velocity fluctuation spectrum E(k) is 
nearly universal and is approximately given by the Kolmogorov 
energy spectrum: 

E(k)= CKg2/3k 5/3 (1.1) 

with the Kolmogorov constant CK = 1.3 - 2.3. Here g is the rate of 
energy dissipation per unit volume in the flow. 

3. In the dissipation range, k > O(kd), the energy spectrum decreases 
exponentially with k. 

The existence of the universal inertial range characterized by the 
Kolmogorov law (1.1) has been checked experimentally for a large variety 
of turbulent flows. The Kolmogorov law has been confirmed experimen- 
tally in fluid and gas shear flows, in atmospheric boundary layers and in 
the ocean, in hydromagnetic and bouyancy-influenced flows, in jets, and in 
turbulence behind a grid (e.g., Monin and Yaglom, 1975). 
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The universality of the small scales can be formulated dynamically as 
follows. Fluid motions are governed by the Navie~Stokes equation 

#v 1 
0t ~- (v. V)v = - -  Vp + voVZv (1.2) 

P 

V . v = O  (1.3) 

and are subject to initial and boundary conditions. Here v(x, t) is the fluid 
velocity, p is the density, p is the pressure, and Vo is the molecular 
kinematic viscosity. The inertial-range spectrum (1.1) does not depend 
directly on geometry or boundary conditions; geometry and boundary con- 
ditions do affect the structure of large scales as well as the value of g that 
appears in (1.1). Boundary conditions can be considered from the view- 
point of small scales as a source of energy injected into the large scales, 
which subsequently cascade to the small scales. Using the analogy with 
equilibrimn statistical mechanics, in which small-scale fluctuations are 
independent of the details of the interaction of the system with a heat bath, 
we propose to replace (1.2) by the more general, but equivalent, equation 

0v 
+ (v- V) v = f -  _1 Vp + voV2v (1.4) 

P 

where f is a random force (noise) chosen to generate the velocity field 
described by the spectrum (1.1) in the limit of large wavenumber k. 

It is important to emphasize that no initial and boundary conditions 
are needed in (1.4), since the fluid described by (1.4) is stirred by the force f 
so that a statistically steady state with v # 0 can be achieved. The relation 
between the stirring force f and initial and boundary conditions will be dis- 
cussed further below. Equation (1.4) is a model that is statistically 
equivalent to the original Eq. (1.2) in the inertial range. This correspon- 
dence principle is the basis for the RNG method discussed in this paper. 

It is also known that Eq. (1.4) with the Gaussian random force defined 
by the wavevector-frequency correlation 

(f~(/~) ~(/~') ) = 2Do(2~) J+ 1 k~-P~j(k) 6(/~ + s 

with 

and 

Do = vokB Tip 

Pu(k) = 60 - k,kj/k2; /~ = (k, ~o) (1.5) 

describes both the static and dynamic properties of a fluid in thermal 
equilibrium independently of details of the fluid history and conditions on 
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its boundary (Landau and Lifshitz, 1982; Forster et al., 1977). Here d is the 
dimension of space, kB is Boltzmann's constant, and T is the temperature 
of the fluid. 

On this basis, we may postulate that Eqs. (1.3) and (1.4) with a 
properly chosen random force provides a correct description of the small- 
scale-motion of a wide class of turbulent flows. In the inertial range, 
solutions to Eqs. (1.3) and (1.4) are statistically equivalent to solutions to 
the original Eqs. (1.2) and (1.3) with initial and/or boundary conditions. 
Equation (1.4) can be viewed as a general model describing small-scale 
properties of turbulent flow in the inertial range. This equation will be used 
for the development of turbulence models using the renormalization group 
method. 

The present paper is organized as follows: The basic ideas of the 
renormalization group method are described in Section 2 following Forster 
et al. (1977). Modifications of this theory that enable us to evaluate the 
Kolmogorov constant as CK ~ 1.617 are also described in this section. In 
Section 3, a subgrid-scale turbulence model is derived using the RNG 
method. It is shown that this subgrid model is very close to the model used 
by Deardorff (1970) in the high-Reynolds-number regions of turbulent 
channel flow far from walls. 

In Section4, the RNG procedure is applied to the evolution of a 
passive scalar in a turbulent flow. The results of this analysis include the 
prediction of the turbulent Prandtl number P t =  0.7179 and the Batchelor 
constant Ba = 1.161 [see (4.3)]. In Section 5, the RNG method is used to 
derive turbulent transport approximations. The values of some basic con- 
stants of turbulent flows are found, including the skewness factor 
$3 = 0.4878 and the von Karman constant ~r = 0.372. The high-Reynolds- 
number version of the RNG form of the K g  transport model is also 
derived in Section 5. It is shown that v = O.0837K2/g, where K and g are the 
turbulent kinetic energy and mean dissipation rate, respectively. This K-g 
model is very close to the algebraic two-equation K-g models often used in 
turbulence modeling. This model also leads to the energy decay law 
K = O ( t  -1"33~ for homogeneous, isotropic turbulence. In Section 6, dif- 
ferential transport models are derived that are based on differential 
relations between K, g, and v. This model includes the important effects of 
destructive interference between molecular and eddy viscosities. 

The results of this work, which are summarized in Section 7, are in 
good agreement with available experimental data. They give some hope 
that the RNG method may provide a rational, yet workable, basis for tur- 
bulence theory in a variety of circumstances. In following papers, we shall 
present applications of these RNG-based turbulence closures. 



RNG Analysis of Turbulence 7 

2. R E N O R M A L I Z A T I O N  G R O U P  ANALYSIS OF 
F L U I D  D Y N A M I C S  IN A N  U N B O U N D E D  M E D I U M  

2.1. Introductory Remarks and Basic Models 

Renormalization group (RNG) methods were first developed in the 
context of quantum field theory. Wilson (1971) applied RNG ideas to the 
theory of critical phenomena and was able to solve the problem of the 
universality of critical exponents and the Kondo problem (Wilson and 
Kogut, 1974). In the mid-1970s, the theory of dynamic critical phenomena 
was developed. This theory deals with universal features of dynamics in the 
vicinity of the critical point (Hohenberg and Halperin, 1977). Dynamic 
RNG methods developed by Ma and Mazenko (1975) have been used by 
Forster et al. (1977) to investigate velocity fluctuations governed by the 
Navier-Stokes equation driven by a Gaussian random force. Their ideas 
have been developed by others (de Dominicis and Martin, 1979; Fournier 
and Frisch, 1978, 1983; Yakhot, 1981) to deal with the problem of 
hydrodynamic turbulence. In this section, we outline the basic ideas of the 
RNG method. The RNG method will be used in later sections to derive 
both turbulence transport equations for resolvable scales and subgrid 
models for large-eddy numerical simulations of turbulence. 

Consider the Navier-Stokes Eqs. (1.4) for incompressible flow subject 
to the random force f(x, t). Here we consider a random force specified by 
the two-point correlation: 

(~(k,  co)fjk ' ,  co') ) = 2Dok -Y(2~) d+l Pii(k) 6(k + k') 6(co + co') (2.1) 

where the parameter y is an arbitrary number. As mentioned in Section 1, 
the case y = - 2  describes fluid in thermal equilibrium driven by thermal 
noise. Since we are interested in studying strongly nonequilibrium flows, we 
concentrate on the case y > -2 .  

We introduce the Fourier decomposition of the velocity fields with an 
ultraviolet cutoff A = O(kd) 

vi(x, t) = fk dk de) ~< A (2n) d f ~ vi(k' co) exp(ikx -- icot) (2.2) 

The space-time Fourier-transformed equation of motion (1.4) is 

v,(/~) = G~163 f,(/~) 

i2~ G~ P~,,,(k) f vm(0) v.(/~-- c~) (2~)d~+ 1 (2.3) 
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where 

P,mn(k) = k., P,.(k) + k. P,..(k) 
(2.4) 

G~ co) - G~ = [ - i co  + v0 k2 ] -1 

Here we have introduced the formal parameter 2o (=  1) to facilitate the 
perturbation solution of (2.3) given below. Introducing the ultraviolet 
cutoff A in (2.2), we assume that the Fourier modes v(/~) vanish when 
k > A. This assumption is quite plausible, at least for the forcing (2.1) with 
y >  0, since the modes v(/~) corresponding to wavenumbers k > O(kd) are 
overdamped by the viscosity term in the equation of motion (2.3). 

In principle, we can use the zeroth-order ()~o =0)  solution of (2.3), 

v~ = G~ f,(/~) (2.5) 

as the basis to construct the pertubation expansion of v in powers of 2o. 
This problem has been solved formally by Wyld (1961) and Kraichnan 
(1961), although the resulting series is too complex to give very useful 
answers (see also Monin and Yaglom, 1975). However, it is less 
problematic to answer the following question: How are the long- 
wavelength modes v <(/~) belonging to the interval 0 < k < Ae r affected by 
the short-wavelength modes v>(/~) from a narrow wavevector band near 
the ultraviolet cutoff Ae r < k < A ?  This leads directly to the renor- 
malization group method, which enables us, in some cases, to find the 
infrared ( k ~ 0 )  asymptotics of correlations generated by the model 
(2.1)-(2.3). 

2.2. Elimination of Small Scales 

Following Ma and Mazenko (1975) and Forster et al. (1977), the 
RNG procedure consists of two steps. First, we write Eq. (2.3) in terms of 
the two components v > and v < of the velocity v: 

i2o 
v,(k) = G~ f,(k) - ~ -  G~ Pzm,(k) f Iv 2 (4) v~ < (s - 0) 

dO (2.6) + 2Vm > (q) V~ < (/~ -- 4) + V~ (q) V~ > (/~ -- 0)3 (27r)u+, 

In order to eliminate modes from the interval Ae r< q < A, all terms v > (0) 
in (2.6) should be removed by repeated substitution of (2.3) for v > back 
into (2.6). This generates an infinite expansion for v < in powers of 2 o in 
which v > does not formally appear. 
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Second, averages are taken over the part of the random force f> 
belonging to the strip Ae r < q < A. This procedure formally eliminates the 
modes Ae r< q < A from the problem. It can be shown readily that, after 
removing the modes Ae r< q < A, the equation of motion for v < can be 
written up to second order in 2o as 

( - ioJ + Vole ~) v r  ([~) 
i2o dO 

> fm (k - c)) (2~z)j+ 1 = f , ( /~)---~-P,m,(k)f  G~ G~ c)) f , ,  (4) > " 

d4 
i2~ P,m,(k) f v<~(4) v~<([c - q) (21r)u+ 2 1 

x P,,,,p(k - q) Pmz(q) q p ( ) (2rc)j+, 

+ O[(v <) 3 ] (2.7) 

The second term on the right side of (2.7) is an induced random force, 
denoted by Aft, with zero mean if the forces are assumed to be statistically 
homogeneous. 

Equation (2.7) is an approximation for v<(s that is valid in the limit 
k--, 0. It should be noted that, in addition to the terms accounted for in 
(2.7), the scale elimination procedure introduces terms like 

�89 f G~ f,,>, (q) v, < (k - q) 

which we neglect, since they vanish after averaging over the force f>. It 
should be emphasized that the mean square of such terms does not vanish, 
but they go rapidly to zero when k ~ 0 .  Another type of contribution 
generated by the scale elimination procedure and which is not taken into 
consideration in (2.7) is of the form 

f d0 23 6FP/~,,(k) v<(4) vff(/~--c)) (2~) 3 

where 6F is a "vertex" correction associated with the nonlinear term. It has 
been shown by Forster et al. (1977) that Galilean invariance implies that 
6F = 0 in the limit k--, 0. 
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In this work our goal is to assess the effect of small (and fast) eddies 
on the large (and slow) turbulent eddies. Thus, we are interested in the 
asymptotic description of the modes v<(k, co) in the limit k--+ 0 and co ~ 0. 
On the basis of previous applications of the RNG method to other physical 
systems, we may expect that the resulting analysis is still reasonably 
accurate for finite k, co in the inertial range. 

To begin the analysis of (2.7), let us evaluate the last term on the right 
side: 

2D0 p/mn(k ) f > 2 R,= -~.~(2~)d+ 1 _ IG~ G~ 

x P,,p(k - q) P,~.(q) q-Yvr d o (2.8) 

where the symbol ~ > indicates integration over the band being removed 

> d~ - dq d(2 (2.9) 
e r < q < A  - - o o  

where 0 = (q, O). Performing the frequency integration gives 

R,=  _)~ Vo(2~z) a+2D~ , p,m,,(k)f > P.~,o(k-qlPm, ,(qlq-v__7~7@7~o~Tq ~2 dR vr (/~1 (2.10) 

We shall evaluate (2.10) in the limit co ~ 0 and k ~ 0. Changing the 
integration variable by replacing q ~ q + �89 gives 

2Do~z 
Rt = - 21 (2re)d+ l voPtmn(k) 

•  P~p( lk -q )Pm~(q+ �89189  .... 2dqv/(/~) (2.11) 
--ico + 2v0q 2 + vok2/2 

Neglecting terms that are O(k 2) as k-~ 0 in the integrand on the right side 
of (2.11) gives 

2o2DortPtm,(k) 
R l=  2(2re)a+ 1 2 1~ o 

f >  -2 x q Iq+�89189189 

• Pmu(q + �89 vp (/c) dq (2.12) 

It is easy to check that, to O(kZ), 

Pn~(q - �89 Pm~,(q + �89 ~ P,,,n(q) + �89 - �89 (2.13) 



RNG Analysis of Turbulence 11 

Noting that P/m~(k)= -P ;m , ( -k ) ,  we conclude that the O(k) terms on the 
right side of (2.13) do not contribute to leading order in the integral (2.12). 
Thus, 

R ; -  
.;t~ DoP lm~(k ) 

2v~(2rc) a 

x [> q .v-4 (kup,;o(q) p~,(q) + q, ,p~(q) 1 

J L 

y + 2  k;q,] 
2 q2 j dq vr163 (2.14) 

The angular integration in (2.14) is easily caried out using the well- 
known relations 

f q~q/~d~'q=gG, f r dq (2.15) 

and 

Sd 
f q~q'q~eqadaq=d(d+ 2)(<5~/~6Y'~+<5~;'al~'s+<5~aar/')f qJ+3 dq (2.16) 

where Sa= 2~zJ/2/F(d/2) is the area of a d-dimensional unit sphere. Using 
(2.15) and (2.16), we obtain 

,< ~ f >  
P;m,(k) k,  vp (k) P~;,(q) Pmu(q) q .~.--4 dq 

= k2vt< (/c) q- d(d+ 2~) 

where 

Also, we find 

e = 4 + y - d  (2.18) 

Y+22 P;,,n(k) f>q-y-aq"f f-~kipnm(q)dqv;(lc)  

y + 2  e ~ -  1 
d(d+ 2) e 

- -  S~lk2v~ (2.19) 

Combining (2.17)-(2.19), the result is 

22Do Sa d 2 -  d -  e e ~r- 1 
- - -  - -  kZv~ (2.20) R,= Vo A~ (2~) 32(d+2)d e 
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This gives R ~ -Av(k )k2u  s o  the effect of this term is to modify the 
viscous term on the left side of (2.7). 

We conclude that, in the limit k--, 0, co--+ 0, the correction to the 
viscosity is given by 

22Do e (4+ y - a ~ ' -  1 
Av(O) = Am 2 ~ (2.21) 

voA 4+ y - d  

where 
- 4 & . l cl2 - c l -  ~ .  

A ~ -  ,/(2~)d, A J = 2  d ( d + 2 )  ' e = 4 + y - d  (2.22) 

Thus, the viscosity resulting from the elimination of the modes v > is 

( e(4+4_+y~dY d)r 1. t/ v ,=vo  \1 +Ad 22 (2.23) 

where the dimensionless coupling constant ,~o is defined by 

ft 0 -- : rl l/2/v3/2Ag/2 (2.24) 

Substituting this result into (2.7) gives the intermediate-state 
Navier-Stokes equations (without rescaling) 

v?([c) = G,([c)(f,+ Af)  

d4 
i2o Gr(/<) nl~,,(k) f v<(O) v,<, ( s  (2~z)d+ 2 J 

+ O[(c < )3] (2.25) 

where the intermediate-scale Green's function (propagator) is given by 

G, = (- ico H- v,k2) -I 

with v, given by (2.23). Equation (2.25) is defined on the domain 
0 < k < Ae r, unlike the original Navier-Stokes equation, which is defined 
on the larger interval 0 < k < A. 

2.3. Recursion Relations: Rescaling of  the Variables 

The next step of the R?qG procedure, following Forster et al. (1977) 
and Ma and Mazenko (1975), consists in rescaling the variables according 
to 

k' = ker; co' = coe~(r); V < (k, co) = {v'(k', co') (2.26) 
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Thus, the new variable k' is defined on the same interval 0 < k' < A as the 
wavevector k in the original Navier-Stokes equation. In terms of the new 
variables, given by (2.26), the intermediate Navier-Stokes equation is 

i,~(r) 
v'~(/~') = G,.(/~').f~ ( / ~ ' ) - ~  G,.(/~') P,mn(k') 

dO' + . . .  
XlV'(gt')V'm([C' C)') (2~)j+ , (2.27) 

where 
G~= [- ico+ v(r)(k')2] ' 

f'(]c') =f<(/c)e~(~)~ l(r) 

~(r) = & ~(r)e-r 17,- 

v ( r )  = v r e  ~('1 - 2,. 

(2.28) 

(2.29) 

(2.30) 

The correlation function characterizing the force f'(/~'), given by 
expression (2.28), can be constructed readily using definition (2.1) and the 
new set of variables (2.26): 

(f,'.(k, co)f/(k' ,  co')) = 2D'(2rc) d+ 'k  -vPii(k) cS(k + k') c~(co + co') (2.31) 

with 

D' = DO exp[3~(r) + (d+  y)r] 
~2 (2.32) 

Noting that the elimination of small scales does not influence Do, we 
choose the function { in such a way that D' = Do at each step of the RNG 
procedure: 

I~ d+y 1 {=exp c~(r) + ~ r j  (2.33) 

The procedure described so far is formally exact in the limit r --+ 0. To 
eliminate a finite band of k-space, one can iterate the above procedure by 
eliminating step by step infinitesimally narrow wavenumber bands. The 
coupling constants generated in this way depend on r and satisfy the 
following differential recursion relations, which follow from (2.22)-(2.24), 
(2.29), and (2.30): 
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Here we define z by 

dv 
-dr = v ( r ) [ z  - 2 + A S  2] (2.34) 

dD 
- - = 0  (2.35) & 

' ,236,  
dr 

& / d r  _= z 

and the dimensionless expansion pa ramete r  2 is defined in terms of 2(r), 
v(r), and D(r)  as 

~2 = 22D/v3A~ (2.37) 

The recursion relation for ;, can be derived readily f rom (2.34) (2.36): 

dY]dr = �89 ;,(e - 3 A j ,  2) (2.38) 

w h e r e ,  = 4 + y - d. 
Equa t ion  (2.38) implies that, if e < 0, the effective coupling constant  

,~ --* 0 when r --* oo. When  e > 0, ,~ tends to a fixed point  )~*: 

; ~ ,~* = (g /3Aj )  1/2 as r--+ oo (2.39) 

according to the formula  

2(r)  = ;to e*:r/2 ~1 
L 

3 -2 ~,:r q -- 1/2 
+ -  Aj2o(e - 1 ) (2.40) J 

At the fixed point  2*, the viscosity v(r) becomes r - independent  if 

z = 2 - e/3 (2.41) 

Treat ing ~ as a small parameter ,  the value of,{ should be evaluated in terms 
of the e expansion with the pa rame te r  A d calculated to the lowest order  in 
e. The accuracy and basis 6f this s expansion will be discussed below. 

2.4. Energy Spectrum 

The expression (2.33) fully determines the scaling (2.26). Homogene i ty  
relations can be constructed by demanding  that  the correlat ion functions 
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computed from the original and reduced (renormalized) equations of 
motion be the same for all k < A e - 2  

(2z0a+ I Vii(k, ~ )  - 
<v~(k, ~o) v~j(k', ~ ' ) )  
3(k + k') 6(~o + co') 

x �9 

= ~2e_a,_~(~ ) (v i (ke  ~, ~oe ) v j (ke ,  o)e~)) 
3(ke" + k'e ~) 3(~oe ~ + ~'e ~) 

(2.42) 

Noting (2.33) and that ~ = zr when z is constant gives the solution of (2.42) 
as 

v,Ak, ~o) = O [ k  ~=-v V(~/k=)] (2.43) 

The energy spectrum can be evaluated from (2.43) as 

d(.o 
E(k)  = Tr k J-  1 ~ V~/(k, ~ )  

J 

= O ( k - : - l + a - Y ) =  O(k  5/3+2/3[d .... )) (2.44) 

where we use expression (2.41) for z. 
The asymptotic solution (2.44) has been derived from the theory that 

takes into account only terms up to ,~2. This is justified in terms of the e 
expansion. A remaining problem is that the nonlinear terms generated by 
the renormalization procedure have been neglected. This problem is 
addressed next. 

2.5. Irrelevant Nonlinear Terms 

The typical nonlinear contribution in the Navier-Stokes equation after 
the elimination of small scales is 

v~< (/~) = NS + It(r) G(fr Pz,,,,(k) f P,,~v(q) G(q) 

x v ~ ( q , ) v r  < ~ dO dq1 

where NS symbolizes the terms in the Navier-Stokes equation taken into 
account in the RNG analysis given above. Performing the scale transfor- 
mation (2.26), we find that 

#(r)~,i to~2e-(2a+ 2),---_#o e (d-yl, (2.45) 
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in the vicinity of the fixed point where relations (2.26)-(2.33) hold. It 
follows from (2.45) that, when y <  d, the proportionality coefficient /~(r) 
tends exponentially to zero when r ~ 0% so that the new nonlinear con- 
tributions to the Navie~Stokes equation are irrelevant.  This means in turn 
that the solution (2.43) is asymptotically exact in the limit k-~ 0. On the 
other hand, if y > d, the theory diverges in the limit k --, 0, which is reflec- 
ted in the growing importance of the nonlinearities generated by the 
elimination of small scales (# ~ oe with r --, oe). If y = d, it follows from 
(2.44) that 

E ( k )  = O ( k  - 5/3) (2.46) 

The result (2.46) shows that the fluid driven by the random force (2.1) 
with y = d generates velocity correlations described, in the limit k ~ 0, by 
the Kolmogorov law (2.46). The only problem is that, as seen from (2.45), 
the nonlinear terms generated by the procedure are marginal, i.e., they 
approach a finite nonzero value. This means that formula (2.46) is not an 
exact solution of the problem in the limit k ~ 0, but is at the edge of the 
region of convergence (y ~ d - ) .  One can hope that in this case the con- 
tributions from nonlinear operators are not too large, although the 
justification for this conclusion is weak. However, it is gratifying that the 
nonlinear operators with y = d -  do not grow to infinity, so one can hope 
that they lead only to logarithmic corrections to (2.46), as in the theory of 
critical phenomena. 

2.6. Renormalized Equation of Motion 

The RNG method has allowed us to develop the equation of motion 
for the velocity field modes with k--, 0 averaged over the small scales 
q > Ae  -r .  The equation of motion at the fixed point is 

0v---~<-t- (v < -V)v < = f, __1 Vp + vV2v < (2.47) 
c3t p 

where v(r)  is the solution of the recursion reltion (2.34). It follows from 
(2.26) that, at the fixed point, the frequency scales as co ~ U. This implies, 
in turn, that the viscosity becomes k-dependent (since z = 2/3 when y = 
d =  3). Indeed, 

09 = O( k 2/3) ~ v( k ) k 2 (2.48) 

so v = 0(k-4/3), which is a result well known from the theory of isotropic 
turbulence. 
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Note also that in the derivation of (2.47) we neglected the correction 
to the random force whose correlation function is proportional to k 2. In 
the limit k ~ 0 this force is negligible in comparison with original forcing 
given by (2.1) with y <  -2 .  

The major drawback of the RNG method in the formulation given 
here is that it does not provide the proportionality coefficients needed for 
simulations of real flows. Another problem with the method is that it deals 
with a fluid stirred by a random force with a given coefficient Do. The 
latter problem is a major drawback, since in real flows the intensity of 
turbulent pulsations, which are proportional to Do, has to be determined 
from the dynamics of the problem. In the next sections, we shall rework the 
RNG method described above to resolve some of these problems and to 
make the RNG technique suitable for the derivation of subgrid scale and 
transport turbulence models. 

2.7. RNG Evaluation of the Kolmogorov Constant 

It has been shown above that the elimination of the modes v>(~) 
belonging to the band near the ultraviolet cutoff Ae r< q < A leads to the 
following corrections to viscosity at long space-time scales: 

)~2 D o e e r -  1 
Av(O)= A d 2 ~  (2.49) 

voA g 

where 

A d = ~  a Sa j  ' 71a=l d 2 - d - g .  
(2re) 2 d 2 + 2 d  ' e = 4 + y - d  

and Sa = 2rtJ/2/F(d/2) is the area of the unit sphere in d dimensions. From 
now on we consider only the case y = d - .  

The elimination procedure described in the previous section is 
accurate in the limit r--+ 0. We conclude that elimination of small scales 
with Ae-r  < q < A does not affect either the coupling constant ,~o or the for- 
cing amplitude D 0. The constancy of Do under this renormalization holds 
because, while the second term on the right side of Eq. (2.7) gives a zero- 
mean (averaged over k >) Gaussial; random variable with correlation 
function proportional to k 2, this correction cannot be absorbed in the bare 
force (2.1), whose correlation function is proportional to k y ( y >  -2 ) .  
Thus, D = D O and we must include a new random foce with correlation 
function proportional to k 2 in the renormalized Navier-Stokes equations. 
The fact that 2o is not renormalized is a consequence of Gaussian 
invariance (Forster et al., 1977). 

854/t/1-2 
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It is also possible to eliminate a finite band of modes Ae r < q < A by 
iterating the above procedure of eliminating an infinitesimally narrow band 
of modes but not performing the rescaling procedure (2.26). The goal of 
this unscaled iteration procedure is to generate a renormalized viscosity 
coefficient v=v(r )  and coupling constant 2,=){(r) while D(r)=:Do and 
2(r) = 20 still hold. While the elimination of an infinitesimal band of modes 
is justified by the use of second-order perturbation solutions of the Navier- 
Stokes equations [or by comparing with the results of applying Kraichnan's 
(1959) direct-interaction approximation to this system], the result of the 
iteration procedure is no longer justifiable in this way, The nature of the 
errors incurred by the iteration procedure must be clarified later. 

The functions v(r) and 2(r) are most easily determined by taking the 
limit r--* 0 in (2.23) in order to obtain the differential equation 

where 

dv/dr = Adv(r) 22(r) (2.50) 

22D~ e 4" (2.51) 
~.2(r) _ v3(r)A 4 

Since A ( r ) =  Ae r. Here we emphasize that the rescaling (2.26) is not done. 
The solution of (2.50)-(2.51) is 

v(r) = vo[l + 3AdJ.2(e4"- 1)] 1/3 (2.52) 

and 

)~(r)= 20e2r[l 3 -2 4r --1/2 + ~A a2 0(e - 1 ) ] (2.53) 

which coincides with (2.40) when y = d. In the limit r ---> 0% the parameter 
~- given by (2.53) approaches the fixed point 

2" = ( 4/3 A d) 1/2 =-- ( e/3 A a) 1/2 (2.54) 

It has been mentioned in the previous section that at the fixed point 
the coupling parameter (2.54) can be treated, from the point of view of the 

expansion, as a small parameter. Thus, in the zeroth order, neglecting the 
nonlinear term in the foced Navier-Stokes equation defined on the smaller 
domain 0 < k < Ae -r, one has that the velocity field is determined by 

where the renormatized propagator G(/c) is given by 

G(/~)= [ - i o 3 +  v(r)k 2] ' (2.56) 
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If only modes with wavenumbers larger than A(r) are removed by 
renormalization, then (2.45) gives a k-dependent viscosity in the limit 
r ----~ ogz 

v(k) = (~AdDo)mk 4/3 (2.57) 

where we have set 2 o = 1. 
Equation (2.55) leads to the energy spectrum 

1 Sdk 2 f~ 
E(k) = 2 (2n) a+ 1 - ~  Tr V~(k, 09) &o 

1 (2Do~2/3k_5/3 
2 ( 3 A a )  /3 \ tZTZ)a/ 

& )2/3 -5/3 
: 1.186 2Do(-~)~)jj k (2.58) 

Formula (2.58) has also been derived by Fournier and Frisch (1983). We 
remark that the numerical constants appearing in (2.58) and in later 
equations are evaluated at the fixed point to lowest order in e. Thus, Aa in 
(2.22) is evaluated at e = 0  as A3 :=0.2. 

To derive the Kolmogorov constant for the inertial-range power spec- 
trum we must relate D o in (2.58) to the mean rate of energy dissipation g. 
To do this we can use the solution (2.57) for v(k) and the equation for 
energy balance following the calculation of Kraichnan (1971). Substituting 
the inertial-range spectral law 

E(k) =: CKg2/3k 5/3 (2.59) 

into the energy balance equation in the inertial range gives l-Kraichnan, 
1971, Eq. (3.1); see also Leslie, 19'72] 

(3/SAa)l/2 (2DoS~(27z)d) 1/3 
C~ = 0.1904 

SO 

CK 1.496 (2D~ 1/6 = (2.60) 

Consistency between (2.59) with (2.60) and (2.58) requires that g and 
Do be proportional, namely, 

2DoSd/(2n) d = 1.594g (2.61) 
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Substituting (2.61) into (2.58) gives the energy spectrum 

ERN~(k ) = 1.61792/3k 5/3 (CK = 1.617) 

Yakhot and Orszag 

(2.62) 

The relation (2.61) will be used later in this paper to derive transport 
models. 

3. R N G  S U B G R I D  SCALE T U R B U L E N C E  M O D E L  FOR 
LARGE-EDDY SIMULATIONS 

Using (2.61), we can rewrite the result (2.52) of the RNG theory in 
terms of the total mean dissipation rate g as 

V r --P- Y0[-1 "-~ ag/v3A4(e 4" - -  1 ) ]  1/3 (3.1) 

where a =  1.594(3Ad)=0.120. The RNG subgrid scale turbulence model is 
derived as follows: Let A be the computational rash size and let Ao = ~/A 
be the wavevector corresponding to the scale A. Our goal is to eliminate all 
scales Ao ~< k ~< A from the problem. The corresponding subgrid model is 
given by (3.1) with the wavevector A o = A e  " expressed through zi. 
However, it is customary to express the viscosity in terms of A = 2A. Here, 
A is the width of a suitably chosen Gaussian filter. It is known from the 
theory of isotropic turbulence that the dissipation cutoff k a ~  A is not an 
independent parameter, but obeys the relation 

= A =  (e/v3) 1/4 

where 7 ~ 0.2 according to experimental data. Thus, relation (3.1) becomes 

I 1 + / ag 4 

where C =  a/74. Here, the Heaviside function, defined by H ( x ) = x  when 
x>~0 and = 0 otherwise, reflects the fact that r > 0  in (3.1). 

Formula (3.2) express the renormalized viscosity in terms of g and the 
filter length scale A. It is important that g is a flow parameter that does not 
depend on the scale Ao = Ae -r. This means that 



RNG Analysis of Turbulence 21 

so that g can be expressed entirely through the resolvable field v <. This 
makes it possible to use formula (3.2) for large-eddy simulations. Writing 

v(r) (or: + av<x 2 ,  
e=7-v ex, 77,) (3.3) 

and substituting into (3.2), we obtain 

v = v  o l+H~2(2~vo3V~TXj+-d-s ] - C  (3.4) 

It follows that, when agd4/2(2~)4v 3 >> C, 

av'<+ avr (3.5t v = c, A 2 0x, ~?x, 

where c 2 = a/2(2rc) 4, so that 

c, = 0.0062 (RNG) 

Formula (3.5) is the well-known Smagorinsky (1962) eddy viscosity, 
which has been widely used in large-eddy simulations. Deardorff (1970, 
1971) was the first to use relation (3.5) for large-eddy simulations of shear 
flows. Deardorff (1971) argued that Cs~0.005 worked best. Moin and Kim 
(1981) performed their simulations of wall-bounded shear flows with 
G ~ 0.003. However, in order to prevent the turbulence in the wall region 
from decaying, Moin and Kim redefined the average dissipation g as the 
turbulent dissipation and separated effects of mean shear from the fluc- 
tuating shear as in a turbulence transport model. They defined g as 

where 

g= �89 (Si j -  (s i j )  ) 2) (3.6) 

avr &. 
S~= - - f f -  

cqxj c~x~ 

and ( . - - )  stands for the horizontal average over all scales. Moin and Kim 
also neglected the effect of random forcing due to subgrid-scale motions. 
They pointed out that their calculated turbulent intensities were insensitive 
to variations of the constant in (3.5) by 40%. Thus, we conclude that the 
agreement between calculated and "experimental" data are rather good. 
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Although the renormalized equation of motion derived in this section 
is basically the same as that used far from the wall by Deardorff and 
others, it differs significantly in the wall region, where formula (3.5) is not 
valid. In the wall region the renormalized Eqs. (3.4) do not lead to a tur- 
bulent eddy viscosity proportional to A 2. Near the wall, the argument of 
H(x) in (3.4) is negative, so v = v0. 

Relations (3.1) and (3.4) are, strictly speaking, valid at the fixed point 
or in the limit r--* oo. However, we shall use these formulas for the 
calculation of turbulent flows in the entire interval 0 ~< r < oe. The nature of 
the errors incurrent can be illustrated by the limit r ~ 0: 

e ~r 1 
vr = Vo + A~22 

which is asymptotically accurate [see (2.23)]. Thus, the result is accurate 
in both limits r--* oo and r-~0. Equations (3.1) and (3.4) describe the 
smooth transition between these two asymptotic solutions. 

3.1. Role of  the Random Force 

Another important feature of finite systems is the role of the random 
force generated by the elimination of small scales. This force is a zero-mean 
Gaussian force given by the second term on the right side of (2.7). The 
analytic expression for the correlation function of this force is 

( f~(k) fk(k ' ))  = D'(2n) a+ Jk2pv.(k) 3(k +/~') (3.7) 

where 

D' = 2D~2~3 f dg~ P/ran(k) P,~v(k) Pm~(q) P,..(k - q) ( . 2 ~ )  d + 1 

• q-a lk  - q l  - a[G~ )121G~ (l)12 (3.8) 

The integrals in (3.8) are readily evaluated, giving 

D ' - B  /3022 e9"-  1 
- d v3oA9 9 

(d=3) 

1 d 2 - 2  Sa 
B a - 2  d(d+ 2) (2n) d 

(3.9) 
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The recursion relation for D'(r)  is derived readily: 

dD' _ B d  Do -2 
dr (r) (3.1o) 

For the approximate evaluation of (3.10) we take the coupling con- 
stant ,~ = 2 ,  at the fixed point and find, using y = d - ,  

4 d 2 -  2 2DoSa/(2n)  ~ 
D ' ~  (eSr-  1) 

15 d 2 - d  A 5 

or, in other words, introducing the dissipation cutoff kd and the cutoff 
corresponding to the largest eliminated scales kc, we have 

4 d2_2 [(%5 ] 
D'~1"59415  d 2 dk- L\g/ - 1  (3.11) 

Far from the wall, where kSk , ,  >> l, the induced noise is smaller than 
the stirring force if 

4 d 2 - 2  e g 
k2~  (3.12) 

15 d 2 - d k,S ~5 

and thus 
(k/k,,) s < 1 (3.13) 

This always holds when k ~ k c. If, on the other hand, k ~ k,, the induced 
noise is comparable with the stirring force and cannot be neglected. It is 
clear that the role of this noise is most important in the buffer region where 
kd ~ k C. Indeed, setting kd/k,. = O(1), we conclude that in the buffer layer 
the bare and induced noises are of the same order. 

4. T U R B U L E N T  H E A T  A N D  MASS T R A N S P O R T  

In this section, we apply the renormalization group method developed 
above to the problem of the distribution of a scalar advected by a turbulent 
fluid. The method is a combination of the ideas developed in the works of 
Forster et al. (1977) and the approach described in Sections 2 and 3. 
Despite the fact that modeling of flows coupled to a scalar field is of much 
practical importance in the description of heat and mass transfer, previous 
analytic theories have not led to much quantitative success. A passive 
scalar is governed by the equation of motion 

OT/Ot + (v. V) T =  ZoV2T (4.1) 
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where the turbulent velocity v is the solution of the Navier-Stokes 
equation. 

To analyze advection of a passive scalar governed by (4.1), we assume 
that the random temperature field, mixed by a turbulent fluid, is isotropic 
at small scales and is independent of the integral scale L. According to the 
Kolmogorov (1941) theory, the dynamics of the scalar field at scales much 
smaller than L are characterized by g, v, and Z0, and the rate of dissipation 
~? of fluctuations of T: 

L-  f r lx, ,) dx-- - of - x  
8t 2 

(4.2) 

In the inertial range, transfer of T fluctuations dominates dissipation, 
so the spectrum depends only on g and /V (see Batchelor, 1959) and the 
inertial-range scalar spectrum is 

Er(k)  = Ba g~_ k - -5/3  (4.3) 

Here the constant Ba is called the Batchelor constant. 
Another milestone of phenomenological modeling is the idea, 

proposed by Reynolds and extended by Prandtl and Colburn, that in the 
limit of large Reynolds number R the distributions of velocity and of 
passive scalar are similar. This leads to the inference that, at large R, the 
eddy viscosity v and eddy diffusivity Z are similar, so that 

= pFl = X/v (4.4) 

is nearly a constant. Here P, is the turbulent Prandtl number. The near 
constancy of c~ in (4.4) has been confirmed experimentally in a variety of 
flows. The value cr (P,=0.7-0.9) has been widely used in 
engineering studies. 

Repeating the argument presented in Section 1, we model small scales 
by adding a random force to the right side of the Navier-Stokes equation. 
To derive the renormalized equation of motion, we Fourier transform (4.1) 
to obtain 

T(f~) = -i2'ok, g~ f D(O) T(fr - dl) dO (4.5) 

together with the Navier-Stokes equation 

v,(/~) = G~ - i2~ Pzm,(k) G~ f Urn(0) Un(s - -  q) dO (4.6) 

(2re) a+l 

(2re/+~ 
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Equations (4.5)-(4.6) are defined on the domain ~/L < k  < kd, where L is 
the characteristic dimension of the system and k,~ is the Kolmogorov's dis- 
sipation scale, kd..~ 0.2(g/V3o) 1/4. The bare propagators G~ co) and g~ co) 
are defined by 

G~ co) _= G~ = ( - ico + Vo k2) - '  (4.7) 

gO(k ' co) _ gO(/~) = ( - / co  + Z0 k2) 1 (4.8) 

Our goal is to eliminate modes v > and T > belonging to the wavenumber 
strip kde r <~ k <<. k j  and to derive an equation of motion for the modes v < 
and T < belonging to the domain roll <~ k <~ k,,e " 

It has been shown in Section 2 that the renormalized Navie~Stokes 
equation after elimination of small scales is (2.25) with modified viscosity v~ 
given by (2.23) and the random foce Af induced by the small-scale 
elimination procedure. 

To develop the RNG procedure for Eq. (4.5), we rewrite it as 

T(/~)= -i2'ok~g~ v#(O) T < ( s  dO 
(2~) a+l 

- i2'ok, g~ [v~>(0) T < ( / c - 0 )  

dO (4.9) + ,,<(q) r>([c-O)+v?(O) r> ( s  (2~)d+, 

To eliminate modes from the interval k a e - r <  k < kd, all terms v>(/~) and 
T > (/~) should be removed as in Section 2. This introduces a formal expan- 
sion in powers of 20 and )@ This procedure 1eaves the bare coupling con- 
stants 2 o and 2; intact in accordance with the Galilean invariance of the 
equations of motion. Upon constructing the formal expansion for T in 
powers of 20 and 2; in which v > and T > do not apear, one averages over 
the part of the random force f> belonging to the strip k a e - r  < k < kd. This 
procedure formally eliminates the modes v > and T > from the problem. 

After removing, the modes kale-"< k < ka, one can write the equation 
of motion for T<(k) up to the second order in 2; as 

( - ico + Zo kz) T < (it) 

dO 
= - i2'ok l f v~ (q) T< ([~ - q) 

(2~) a+ 1 

dO +, (4.10) - 2(2~) 2 Do T-<k,k,, y [G~ 2 gO(/~_ 0) q vp,,(q) 
(2,~ )d 
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When the second term on the right side of (4.10) is evaluated in the limit 
k--* 0, ~o--* 0 it can be identified as a correct ion to the bare diffusivity, 
namely 

klk,, f> AZ = - ~ -  2(2~))2Do [G~176162 -v dO (4.11) (2~z)d+ 1 

As in Section 2, the integration in (4.11) is carried out  over O= (q, m), 
where kae-  r < q < kd" For  k -* 0, the result is 

_ d ~  (,~;)2V~ e e r -  1 

AZ = Kd Zo + Vo ~; (4.12) 

where Kd= SJ(2~) a and the effective dimensionless coupling constant  is 

' ] '  /) 1/2/u3/262 (4.13) J~O~t~0"u0 / ' 0  '~d 

It may be shown that if 2o = 2; = 1, one can set ,~(r) = ;P(r) at each 
step of the renormalizat ion procedure.  By iteration, it is possible to 
eliminate modes from the finite band kae - r<  k < kd generating the renor-  
realized viscosity v = v(r) and coupling 2 = 2(r). Taking r ~ 0, one derives 
the differential equat ion for the renormalized diffusivity (with d =  3) 

dz 2 ,~2v2 
- -  K 3 (4.14) 

dr 3 )~(r) + v(r) 
where 

Using (2.50) and (4.14) gives 

) [~-  2o2Do e 4r 
k~ v3(r) (4.15) 

= A3"i2 3~3 c~ (4.16) 

where c~ = z(r)/v(r) and 4 3 = 1/5. 
Equat ion (4.14) may  be solved exactly using (2.52) and (2.53), with 

the result 

oL-a (l+~)/(o+b) a + b  (b-~)/(,+b) 1 (4.17) 

I-1 + ~ '~ '~o,~ 

where 

a = �89 - 1  + [1 + 4 ( d -  1)/d.33] 1/2 } = �89 - 1  + (43/3) ~/2] ~.1.3929 

b = �89 1 + [ 1 + 4 ( d -  1 )IDA3 ] 1/2 } = �89 1 + (43/3) ~/2 ~ 2.3929 
(4.18) 



RNG Analysis of Turbulence 

Thus, with d= 3, 

- 1.3929 o.6321 ~+2.3929 

~-~--- 1 . ~  % + 2.3929 

27 

0.3679 

= - -  (4.19) 

In high-Reynolds-number, fully-developed turbulence where Vo/V--*O, 
c~ ~ 1.3929 and the turbulent Prandtl number is Pr =0.7179 (P, = c~-~). 

The Batchelor constant Ba in (4.3) can be evaluated from the 
equations of motion at the fixed point using the modified Pao (1965, t968) 
theory. The equation for the energy spectrum can be written in the vicinity 
of the fixed point as 

c~E(k, t) 2D ~ Sd k 1 ~t - ~ + T(k, t ) -  2vk2E(k, t) (4.20) 

where now v stands for the total viscosity derived using the RNG method. 
It is important to notice that, since g is proportional to Do, no new dimen- 
sional parameters are involved in (4.25). The rate of nonlinear energy 
transfer from wavenumbers less than k to wavenumbers greater than k is 

W(k) = f ~  7"(k', t) dk' (4.21) 

where 

t ) = 2 D o ~ k  ~ + T(k',t) (4.22) P(k, 

Following Pao (1965, 1968), we assume that the function W(k) is k- 
independent in the inertial range and that the dimensionally correct 
prescription 

m(k) = 2ypgl/3kS/3E(k) 

holds. In a statistically stationary state, Eq. (4.20) becomes 

(4.23) 

d 
-~ W(k) + 2vk2E(k) = 0 (4.24) 

Substituting (4.23) into (4.24) gives a differential equation for E(k). The 
solution of this equation satisfying the condition 

2v f k2E(k) dk= g 
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is 

(3 ) E(k) = CKk-5/3~ 2/3 exp - ~ ~ 1/31)k4/3 (4.25) 

with CK = 1/(27p). In the inertial range, W(k) = g. 
The Batchelor constant may be derived using Pao's formulation if we 

introduce the scalar transfer function Wr(k), which satisfies 

dWr(  k ) 
dk t- 2~vEr(k) = 0 (4.26) 

Equation (4.26) with e =  1.3929 follows from the steady-state transport 
equation for the scalar. It follows from (4.24) and (4.26) that 

dW(k)  E(k) CKg 
(4.27) 

dWT(k) aEr(k) ~" Ba" 

The differential Eq. (4.27) is solved by assuming that, in the inertial range, 
g and N are constant, so that 

CK~ 
W(k) _ Wv(k) (4.28) 

a. Ba. N 

Pao's theory in the inertial range gives 

Wr(k ) = 

so that we must require that 

Ba = CK/a = 1.16 (4.29) 

This number is in good agreement with experimental data, B a ~  1.2 1.4 
(see Monin and Yaglom, 1975). 

5. R N G - B A S E D  T U R B U L E N C E  T R A N S P O R T  A P P R O X I M A T I O N S  

Turbulence transport approximations can be constructed using the 
RNG in several ways. In this section, we begin by deriving an RNG-based 
algebraic turbulence model. Let us assume that the integral scale L = ~t/Af 
corresponds to the largest fluctuating scales in the system. This means that 
v(k)=rc(k) is assumed to be nonfluctuating if k < A  F. Eliminating all 
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modes from the interval A f <  k < A ,  we obtain the equation of motion 
governing the man velocity ~=V.  The (turbulent) viscosity can be 
obtained from the relation (3.1), 

3 1.594g _ C (5.1) 
V=Vo I + H  3 4 

voAf 

The result (5.1) is derived by systematic averaging over the small-scale 
isotropic fluctuating velocity components. It may be argued that formula 
(5.1) is valid only for the description of isotropic homogeneous turbulence, 
since it does not include the effects of strong anisotropy. However, it has 
been shown (Sivashinsky and Yakhot, 1985; Yakhot and Sivashinsky, 
1986; Bayly and Yakhot, 1986) that in some cases strongly anisotropic 
small scales are effectively decoupled from the man velocity field V, so that 
(5.1) may still hold. The integral scale L = ~ / A  i in (5.1) should be viewed 
as corresponding to the largest scale within the inertial range. This point 
will be considered in detail in the next section. 

It is convenient to express A i i n  (5.1) through more familiar and more 
easily observable properties of the flow. To do this, we compute the 
isotropic part of the turbulent energy K, 

f A ~ g2/3 3 
K = E(k)  dk = 2 CK - -  

r A~/3 

3 1.617 Aul.594 1.195 (5.2) 
2 vA~ vA~ 

where we use 

v = (3~j  1.594)1/3(~/A.~)1/3 (5.3) 

which follows from (5.1). Eliminating A s between (5.2) and (5.3) gives the 
turbulent viscosity expressed in terms of the energy K and dissipation rate 

v=cvK2/g  (5.4) 

4 3 ~ 1/3 2 with c~ = ~(1.594~Aa) /C  K ~0.0837. This relation, which is usually called 
an algebraic K g  model, has been widely used in turbulence modeling 
(Launder and Spalding, 1972; Reynolds, 1976; Launder et al., 1975). The 
"experimentally" determined coefficient c,,=0.09 is quite close to 
cv = 0.0837 obtained here by the RNG method. 
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Relation (5.4) can be obtained by a somewhat different, although 
equivalent, calculation. Let us write the total turbulent energy density as 

K =  2 ~ f  v2(x, t) d3xdt (5.5) 

where V and Ta r e  the (large) space and time extents of the flow. Introduc- 
ing the Fourier decomposition (2.2) gives 

1 dO (k - ,  O, co -~ O) (5.6) K= ~ f vi({]) vi(k-Ct ) (2rg)4 

Here k ~ 0 stands for k ~ kmi n = A j ,  where d F is the smallest wavevector at 
which the system dynamics is isotropic. 

To evaluate (5.6), we rewrite the integral in terms of the decom- 
position into the v > and v < components: 

aq + 2 f ~ ? ( q ) ~ ( f z - q ) - -  2K=f v;(dl)v<(s (-~)4 
a4 

+ ; v/> (q) v2(]~ - q) (2=)4 

dO 
(2~p 

(5.7) 

where the integration in the last term on the right is carried out over the 
interval k d e - r ~  k <~ k• = A. To leading order in 2o, the expression (5.7) is 

2 K ~ f v r  V~([c-O) + Q > - Q < + Q >  (5.8) 

where 

d0 Q> =2Dof IG~ -3 (27c)4 (y=d=3) (5.9) 

The integral Q > is evaluated as 

Q> _ 2DoSd/(2=) d e > - 1 (5.10) 
Vo A2 2 

It follows from (5.7)-(5.10) that the kinetic energy can be decomposed into 
the part due to components v < and an additional contribution Q > that 
takes into account eliminated modes from the interval k d e - r <  k < k d. 

The result (5.10) can be iterated as done earlier in this paper. Replac- 
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ing v0 and A by v(r) and A(r), we have that the differential relation for 
Q(r) is simply 

dQ 2Do Sd 
dr v(r) A(r) 2 (2re) d 

2Do Sd d 2r 
(5.1t) 

3 3  ] -2 [  4r __ 1 ) ]  1/3 Vo A2 (27t) d [1 -}-~,,d,~ote 

The recursion relation (5.11) is easily integrated in the limit of fully 
developed turbulence 3Aa22ear>> 1. Integrating up to the scale Af gives 

3 2DoSd/(2n) a 
Q = (5.12) 

2 vA~ 

Substituting (5.12) into (5.8) and keeping in mind that Q< ~ 0  when 
k ~ At, we obtain 

3 2DoSd/(21r) a 
K~4  vm~ (5.13) 

so that 
K= 1.195g/vA~ 

which is identical to (5.2). Note that it follows by eliminating g from (5.2) 
and (5.4) that 

lOv2A~ = K (5.14) 

The algebraic model (5.4) is valid only in the strongly turbulent 
regions of the flow. To account for the low-Reynolds-number parts of the 
flow, the recursion relation (45.11) must be integrated everywhere, 
including regions where 33" ~2 4,.,,~ O(1 ). This gives the differential trans- ~ J  d,~O g 
port model that is derived in the next section. 

In the above discussion, we have given the basic steps of the averaging 
procedure that will be used to  derive transport models. The basic idea of 
the method is summarized as follows: To obtain the mean of any nonlinear 
term in the velocity field, say Y, we compute Y(k) in the limit k ~ 0. This is 
done by repetitive averaging over shells in wavevector space Ae-r<~ k <<. A 
using the Navier-Stokes equation to remove unwanted modes. Eliminating 
all modes from the interval Ai<  k < A leads to the evaluation of Y. 

To illustrate the procedure again, we shall compute the skewness 
factor o~3, defined as 

- g~ = ( o v ~ / O x ~ ) ~ / E ( O v ~ / O x , ) : ]  ~/: - A / B  ~/~ (5.~ S)  
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First we calculate 

A = ((~l) l/aX1 ))3 

do dO. 
= -ifqlQ1(k-q-Q),Vl(O)vl(o,)v~(fc-O-o,)(27c)ed+ 2 (5.16) 

in the limit k--. 0. 
Decomposing the velocity field into v < and v > components, we 

rewrite (5.16) as 

f aO do, A = A < - i  q ,Q , (k -q -Q) , (a+b+c+d+e+f+g) (2rO2d+ 2 (5.17) 

where the seven terms a-g are given by 

a= v? (q) v~ (o,) v~ (f~- o -  O, ) 

b = v? (q) v? (O,) v~ (# - q -  O,) 

c = v? (q)v;(O,) ,~ (# -  q -  O,) 

d = v? (c)) v? (O,) v~ (1~ -- c) -- O,) (5.18) 

e = v?(gl) v~(o,) v?(fc-- dl- O,) 

g = v~ (q) v~ (O,) v~ (f~- O-  O,) 

and 

dO do, 
A < =  - i fq lQl(k-q-O) ,vr  (5.19) 

We have to evaluate (5.17), eliminating modes v > from the problem 
using the Navier-Stokes equation. Averaging over the random force f>, we 
find the following contribution from expression a of (5.18) to the integral 
(5.17): 

A . =  - 2 D o  f q l Q l ( k - q -  Q)I 

x [[G~ + O,)I 2 G~ Plm.(q) P,. (q + Q) 

x Iq + QI-Y v? (O)  v2(/~ -- O,) 

- IO~ 2 G~ 

dOdo, 
x q y V?(O,) Vm<(J~ - O,)] (2~)2d+2 (5.20) 
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The frequency integration is performed readily: 

A ~ -  
7~ 
v~2Dof  q~Ql(k-q-Qhq2+ [q+Qi  2 [P~,dq)Pl , , (qt -Q)lq-q-QI y-2 

dq dO 
- P,m.(q + Q) P , . ( q ) q - e -  2] D? (Q) ~)rr < (/~ -}- Q) (2rc)2a+, (5.21) 

It is clear that the expression in the square brackets in the integrand of 
(5.21) goes to zero when Q---, 0. Thus, we have to expand the integrand of 
(5.21) in powers of the small ratio Q/q < 1 and retain the first nonvanishing 
contribution. This can be done conveniently if we shift the variables in 
(5.21) by replacing q ~ q -  Q/2 and let k-~ 0. Thus, 

A . =  
21tD0 f (q -Q/2)~  QI(q+Q/2)I  

v 2 J 2q2+�89 

Q --y-- 2 )'(IPlmn(q--Q) Pln(q-~ -Q) q-4--~ 
__ Plmn(q_]_Q) Pln(qQ ) q Q .... 2 1 <  ^ < v, (Q) v m ([c - O) dq dO. 

After simple algebra we obtain 

2x___Do f -v 4 v < = v~(Q) - -  Aa v2 3 q2QIQnPlm(q) PJ,~(q)q - I (Q) < ~ 
daq qQ 

(2~)2d+ 1 (5.22) 

The angular integration in (5.22) leads to A , = 0  when d = 2  and, when 
d = 3 ,  

A ~ -  5 2DoS 3 1 e 2r-  l ( r3 dO 
210 (2~) 3 v~A 2 2 J Q~[v~(~)]2 (5.23) 

It can be shown that the contributions from the terms a, b, and c to 
the integral in (5.17) are all equal to (5.23) and that d, e, f and g do not 
contribute to (5.17) in the lowest order of the e expansion. Thus 

15 2DoS 3 1 e2r-  l [ Q~[vr d o A = A  < (5.24) 210 (2~) 3 v2A 2 2 (2~z) a+l 

The relation (5.24) can be easily iterated if we notice that, for d =  3, 

dO 1 
v f QZ[v~ ( 0 ) ]  2 (2n)a+ ~ = gl = ~ g (5.25) 

854/1/1-3 
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is independent of r. The result for A is 

15 _ t r 2DoS3e2~ dr 
A = A < ( r )  - 2-1-0 el Jo ( 2 r c ) 3 A 2 v 3 ( r )  (5.26) 

This result for A is best evaluated by rewriting it as 

15 fo ~~ 2DOS3 e 2r dr 
A = A < ( r ) - - ~ l - d g l  (2~)3 A2v3(r) 

15 2DOS3 s 2DOS3 eZ"dr 
+ ~ gt ~ (2~)3 A2v3(r) (5.27) 

It follows from (5.27) that, in high-Reynolds-number, fully-developed 
turbulence, 

15 2DoS a gl 1 2DoS a g 
A < -  420 (2~) d v3A~ - 420 (2~) a v3A~ (5.28) 

Next we compute 

B = ~ q~v~(g]) v~([c - el) 
(2rc) u+' J 

(5.29) 

in the limit k--, 0. It is easy to show that, to the lowest order in 20, 

dO 
B = B < + f q~ IG~ 2 P ~ ( q )  2Doq -3 (2~) 4 (5.30) 

The integration in (5.30) leads to the result 

l 2DoS a r 
(5.31) B = B < - t  15 (27c) av  o 

Iterating the procedure, we find that, in regions where v > Vo, 

1 2DoSj/(2rO u 
R < = (5.32) 

20 v 

Combining (2.61), (5.28), and (5.32) gives 

A < {2DoSa/(2~)d'] 1/2 
S~: (r) = (B < )3/~ = 0.1336 \ ~ / (5.33) 
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At the fixed point, (2.51)-(2.54) give with d =  3 

2Do Sd 8 
- -  = 13.333 (5.34) 

v'A~ (2~/ 3~  

so that 

S S (r) = 0.4878 (5.35) 

We see that Sr is independent of r, so that S S ( r ) =  $3 =0.4878 in the 
limit r ~ 0. This result is in good agreement with the experimental values of 
the skewness factor $3 = 0.4~0.6 (see Section 7). 

It should also be mentioned that the RNG result that 53  = 0 in two- 
dimensional isotropic turbulent flow is an exact result (Herring et at., 
1974). 

5.1. Energy Equation 

The result (5.4) shows that, within the framework of the present RNG 
theory, the total viscosity is entirely determined by two characteristics 
of turbulent flow: the kinetic energy K and the dissipation rate g. Now 
we apply the RNG method to derive the equation governing the kinetic 
energy K. The equation of motion for K(x, t) follows directly from the 
Navier-Stokes equation (Tennekes and Lumley, 1972; Monin and Yaglom, 
1975) 

OK 0 02K 
a t  + (~ -V)K= P - D - ~x~ Pgi + Vo 0x--~ (5.36) 

Here v = ~r + v', where V = ( v )  is the (local) average velocity, K =  !/v '2 \ 2 X  / ,  
the production term P is given in terms of the eddy viscosity v r as 

p vr/O~i O~j'~ 2 
= ~- ~0-~v + ~xTx.) -= 2vr,,~ (5.37) 

and 

O = Vo(OV',/&y (5.38) 

Our goal is to evaluate the mean value of K(x, t), defined as 

R=;fd t fvK(X, t )  d3x=K(k, co) (k ~ 0, co--, 0) (5.39) 
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To evaluate (5.39), we Fourier transform (5.36): 

dO 
K(/~) = G~ - D(/~)] - i2ok,G~162 f v~((t) K(fc - q) 

(2~) ' 

dO (5.40) -- i'~okiG~162 f P(q) ui(f~- q) (27c)4 

In (5.40), the expression for the Fourier transform p(]~) of the pressure is 
obtained easily from the Navier-Stokes equation and the incompressibility 
condition as 

k~k,, dO (5.41) p(fO = ---dr- f  v,(q) v,.(f~- q) (2n) 4 

We observe that, except for the last term on the right side, (5.40) is 
precisely the equation for a passive scalar K with "molecular diffusivity" 
)% = Vo and "force" P - D .  The renormalization-group procedure for such 
an equation has already been developed in Section 4. 

Our concern now is to evaluate the role of the pressure-velocity 
correlation in the turbulent diffusion of kinetic energy K. To do this we 
decompose modes into their < and > components and express the last 
contribution to the right side of (5.40) as 

YK = -- i2okiG~162 

x ~ [p<(q) v2(fc-O) + p>(O) v?(f~-o)+ p<(O) v,>( ~ -  q) 

dO (5.42) + P > (q) v/> (]~ - 8)] (2g)4 

with 

q~q~ 
P(q) = - ~ o  ~ f [ G <  (Q)v~  ( q -  (~) + 2G > ( Q ) v ~ ( ~ -  Q) 

d(~ (5.43) + V~>(0)V~(4--O)] (2~Z)4 

All contributions to (5.40) up to 2 o can be obtained by substitution of 
(5.43) into (5.42). Elimination of the modes v>(k) from the interval 
kde-~< k < k,~ is carried out using the zeroth-order solution of the Navier-  
Stokes equation with subsequent averaging over the part of the random 
force acting in the domain kde-~< k < ka. 
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All contributions to the equation of motion (5.40) stemming from 
(5.42)-(5.43) can be classified into two types of terms: 

Y~ = 2gkl I q~q# v> (Q ) v;  (q - 0)  v f  (it - el) dO dO 
d q2 (2rt)8 

dO ~ki f q~'q# IG~ 5(q) T (--~n)4 v ;  (k) = 0 (5.44) 

and 

Y~ = ~2k, f q~q~ ~> (0) ~r I k -  4) ~r ( 4 -  0) - -  j q2 

,~ 2~k i ~ q=q,~ p~i( k j q2 

dO do 
(2re) 8 

- q )  [ k - q [  -3 IG~ 3) (5.45) 

and can be neglected in the limit k--*0. Thus, the pressure-velocity 
correlations do not contribute to the equation of motion for K to second 
order in the coupling parameter, which is considered small in terms of the e 
expansion. 

Recalling the results of Section 4 for the RNG description of a passive 
scalar, it follows from (5.40) that the RNG equation for mean turbulent 
kinetic energy is 

0K 0 OK 
_ _  _ ( ~ K y  - -  ~t ~ - ( { ' V ) K = P - D + - ~ x ~  (?x, 

where the "turbulent Prandtl number" ~K is found from the algebraic 
relation 

c~ K -  1.3929 o.63 c~K__+2.3929 0.37 v0 (5.46) 
0---. 3-92-9 3.3929 = v-~ 

which is just (4.19) for the case Zo = v0. Here the turbulent viscosity v r is 
given by (3.2)-(3.3). 

At this level of approximation, the dissipation D ~ g. For the produc- 
tion term that involves the unknown Reynolds stress v~vj, one can use 
different types of closures, including 

P ~ 2vrS~ (5.47) 

P ~ 0.3K(2S~) 1/2 (5.48) 
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Thus the K equation is 

OK v r ( 8  G 8Vj~ 2 8 8K 
- g + - -  ~Kvr (5.49) 

8x~ 8x~ 

or  

OK O ~3K 
0t + (~" V)K= 0.3(2S}11/2 - g + ~ x  i ~Kv ~ (5.50) 

Next we need to derive an equation governing the turbulent dissipation g. 

5.2.  E q u a t i o n  f o r  t h e  D i s s i p a t i o n  R a t e  

The mean dissipation rate is defined in general by 

g = ~ V o ( & / & j  + & j & , ) 2  = ~(i) ( i  --, o) (5.51) 

It can be argued that strongly anisotropic fluctuations of the velocity field 
do not contribute to turbulent diffusivity (Sivashinsky and Yakhot, 1985; 
Bayly and Yakhot, 1986; Yakhot and Sivashinsky, 1986). Thus, we are 
interested in evaluating the isotropic part of the dissipation, defined as 

= Vo(aV,/axi) 2 = ~(~) ( i  - ,  o) (5.52) 

To evaluate (5.52), we write the equation of motion for 

e(x, t) = Vo[gVi(X, t)/c?xi] 2 (5.53) 

Taking the time derivative of (5.52) and using the Navier-Stokes equation, 
we find 

8e 8vi O F/ 8v~ 8p 82v~,7 
- -  = 2% - -  L~ ' - vz & 8xi ~x.i Ox, ~x, + v~ ~xl2)J (5.54) 

or  

8e 2VoaViSvzavi (3e 82e 2v2( 82v, ~2 
5; = - % Ox, Ox, ~'~+~~ \ ~ /  (5.55) 

To derive the equation of motion for g(x, t) = e(k, t) in the limit k ~ 0, 
we take the Fourier transform of (5.55): 

dO _ Y~(1)-  ~ ( 1 ) -  y3(~) (5.56) 
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where 

dO (5.57) g~ = 2v 2 gO f qj(k - q)j q,(k - q), vjO ) vjs  - q) (2~z) 4 

dO (5.58) Y~ = - 2 i v  o g~  i f qj(k - q)j vi(O) p(fc - q) (2~) 4 

Y~= - 2 i v o g ~  f q j Q j ( k - q - Q ) , v j O ) v l ( Q ) v i ( [ c - O - Q )  d ~  dO (5.59) 
(2~) 8 

and the bare propagator is 

0 2 -1 gO= (_co +)Gk ) (5.60) 

Here o_  )~ - Vo is the bare diffusivity of the dissipation rate e. 
To eliminate small scales from the problem, we decompose the velocity 

v and the scalar field e into the two components v < and v > and e < and e >, 
respectively. Thus, 

~ ( k ) =  ig~ 

+ v~(O)e>(/~-O) (-~n)4- Y~- ~ -  Y2 (5.61) 

and 

Y~ = 2v~ gO f qj(k - q)i q,(k - q), 

x [ 2 v # ( O ) v ~ ( s  O)] + (Y~)< (5.62) 

I~ = - 2iv o g~  i f qj(k - q)j 

x [v?(q)  p >([c-q)+v?(q)p < ( I t - q )  

+ v ? ( O ) P > ( f ~ - O ) ]  + ( ~ ) <  (5.63) 

y3 = _ 2ivo gO f qjQj(k - q - Q), 

dO dO. x ( a + b + c + d + e + f  + g )  (-~n)s +(Y3)<  (5.64) 
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where we have introduced the notation Y(v < ) -  Y<. The expression (5.64) 

(~-o-0) 
b = ~?(O) ~ ( 0 . )  ~2([r - q -  O) 

c = ~2 (q) ~ (0) v? (2: - q - Q) 

d= ~? (q) ~?(0_) v 2 ( ; : - q -  O) 

e = v2(Ct) v[(Q.) v 2 ( k -  q -  Q) 

f =  vr v?(O.) vr q -  0.) 

g=v?(O) v?(O) v ? ( [ c - q - Q )  

for I73 involves seven contributions: 

= v~(q) vf(O) v? 

(5.65) 

The elimination of the modes v > and e> from (5.61)-(5.65) is carried 
out as above: all modes ~> in (5.62)-(5.65) are eliminated using (5.61) and 
the modes v > are eliminated using the Navier-Stokes equation. This 
generates an infinite expansion in powers of the Reynolds number. Next, 
averages are taken over the random force for kae- '<  k < ka. The resulting 
equation does not include the modes v > and e>. The results are calculated 
to the second order in the coupling parameter/T. 

The integral term in (5.61) is similar to the equation for a passive 
scalar e. The RNG scale elimination procedure for a passive scalar has been 
described above in detail. Thus the sole effect of the second, third, and 
fourth terms within the integral on the right side of (5.61) is to generate a 
correction to the bare diffusivity: 

d -  1 2DoSa 1 e 4 r -  1 
617~- d (2re) a vo0~ ~  4 4 (5.66) 

It is easy to show that the contribution of the pressure-velocity 
correlation term (5.63) is equal to zero to second order in )~o. This agrees 
with the concl!asion of Hanjalia and Launder (1972). 

It remains to evaluate (5.62) and (5.64). After elimination of the modes 
from the interval A e - ' <  k < A, the expression for Y~ can be written as 

2DoSa 2 1- -e  - ( 2 + a - y ) ~  
Y~=(Y~)<+YI+Y2+2 (--~) a v~ 2 + d - y  (5.67) 

where 

Yl = - 4v2Do f q,q;(k - q),(k - q)j G~ G~ - 0) IG~ - 0)12 

x P~/ffq) P~r6(k-q) P ,~(q-Q)  I q - Q I  Y G<(O) vr  dq dO 
(2n) 2a+2 

(5.68) 
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and 

Y2 = - 8v~Do f[G~ - 0)[ 2 G~ - Q) G~ (k - q ) ] 2  

d4 dO 
q " G (O) G (5.69) 

Here  Ae - "  < q < A and the wavevectors  Q and k belong to the interval 
A s < k < Ae -~, so that  Q/q < 1 and k/q < 1. We are interested in the limit 
k - ~  0. After the frequency integrat ion is performed,  (5.68) becomes 

Yt = - 8ZtDo 
"9 o 

• f [q" (k-q)]2 P~e(q) P~a(k- q) Ppa(q- Q)Iq -QI-Y 2 
(q2  + ik  _ q]Z)(q2 + [q - Q ] 2 )  

x dq dO 
(2~) a+l  (2jz) a+ '  

(5.70) 

and 

y2 = - - -  
8 ~  

Do 
v o 

• f [q. (k -  q)]2 Pi~(q) P&a(q- Q)Pia(q)q -~' 

( k -  Q) (2rt)d+ 1 i (5.71) 

The  integrat ions over  the wavevector  q in (5.70) and (5.71) can be 
carried out  if we expand  the integrands in powers  of Q/q < 1 and k/q < 1. 
Second-order  terms in Q/q produce  correct ions propor t iona l  to 

Q2v2(0 ) dQ = O [ e ( k ) ]  in the limit k ~ 0. The  four th-order  terms p ropor -  
tional to k 2 ~ QZv2(Q) dQ = O[k2e(k)] give rise to addi t ional  correct ions to 
diffusivity that  must be taken  into account.  Thus,  expanding  the integrands 
in (5.70) and (5.71) in powers  of  Q/q and k/q, we obta in  to second order  in 

(d=3) 

2Do Sd g e > -  1 
y,  = 0 . 2 1 7 - -  

(27z) a v2A 2 2 

d -  1 2DoSa R 2 D o  e 4 r -  1 
r -  0.18 - -  - -  k2g (5.72) 

d (2~) a v v~A 4 4 
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2DoSa g e 2r-  1 
y2 = -0 .250  (2=) a v~A2 2 

d -  1 2DoSa ~ 2Do e 4 r -  1 
+ 7 (27z) ~ r+0.18v2A4 k2g (5.73) 

It is interesting that the correction to the diffusivity of e from the term Y~ 
vanishes because the last terms in (5.72) and (5.73) cancel each other 
identically. 

To eliminate small scales from (5.64)-(5.65) we use a procedure 
similar to the one developed to evaluate the skewness $3. It is easy to show 
that to second order in 22, contributions to (5.63) coming from the terms c, 
d, e, f, and g vanish. It is an elementary, although tedious, calculation to 
show that 

d -  2 2DoSa g e 2" - I  
r~=(Y~)< ~ 

d + 2  (2~) a v2A 2 2 

d -  2 2DoSj 1 e 2r-1 
+ i - -  

d ( d + 2 )  (2re) d v~A 2 2 

dO 
• I QJvf (Q) vJ< (4) v~(/~ - O - Q) 

d4 
(2~)2d + , (5.74) 

In the case of isotropic, homogeneous turbulence, the last term in 
(5.74) vanishes. If V~ r O, this term is responsible for the production of the 
dissipation rate g. For now, let us neglect this term and substitute (5.66), 
(5.72), and (5.74) into (5.60). The result is 

a4 ~(s = - ig~k, ~ v , (4)  ~(k - 4)  (2~) ~+1 

- + I-  ;I0.2,  o.2 o) 
2DoSa g e2r-1 22DoSav A 2 ( l - e - 2 r )  ] 

• (27z) ~ v~A 2 2 ~ o 2 ~- P (5.75) 

where P stands for the production term, which will be considered below. 
The propagator g~ in (5.75) is 

g~ = [ - i c o  + (•o + 6g~)k 2] -~ (5.76) 

and 6Z, is given by (5.65). Equation (5.75) is defined on the interval 
A ; < k  <Ae -~. 
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The functions Y[~-3) in (5.75) are those in (5.56)-(5.58) but with v <, 
g~, and v replacing v, gO, and v o, respectively. This renormalization 
procedure can now be iterated. The result is 

~= - ig~kl f o'(q) ~([~ - O) - -  
dO 2Do Sa 

(2~z)a+l ag, (2~r)a 

2Do Sag 
+ bg~ (2~) a + g~/5 (5.77) 

where the parameters a and b are determined 
derived from (5.75): 

from the recursion relations 

db ( d -  2 1 
- = -  -275) dr -0.033 + v2(r ) A2(r ) (5.79) 

and 

g~= [--ico + c~.(r)vk 2] (5.80) 

The inverse Prandtl number c~,: is defined by (4.19) with c%= 1 [so c~ ~ 
given by (5.46)]. 

The recursion relations (5.78) and (5.79) can be solved in the limit of 
high Reynolds number when r--* oe. Using (2.52), one obtains the result 

a = 3vA 2 (5.8l) 

3 (  d - 2 )  1 (5.82) 
b = ~  - 0 . 0 3 3 + ~ - ~  v2A2 

Thus, the equation of motion governing the man dissipation rate g is 

De /5 2 2DoSa g 2DoSa ~3 ~g 
Dt = - 3 v A f  (--f~)a +O.2505v2-A} ( ~ ) a  +~x  e~V~x ~ (5.83) 

Using (2.61), (5.2), and (5.14) to eliminate Do, A f, and v, we obtain the 
dissipation equation 

Dg gz 0 (?g 
__ = / 5 _  1.7215 7 ~ + ~ -  c ~ v - -  (5.84) 
Dt t~ ox~ Oxi 

and 

da 
drr = -2v(r )A2(r)  (5.78) 
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For homogeneous turbulence, (5.84) with /5--0 and the energy 
equation 

DK/Dt  = - g  (5.85) 

show that homogeneous isotropic turbulence decays at high Reynolds 
number like 

K =  Kl( t  - to) -1/0.72J5 = Kl( t  - to) ~.3307 (5.86) 

for suitable constants to, KI. This result agrees well with experimental data 
(Monin and Yaglom, 1975). 

To evaluate the production term P, let us consider the last term on the 
right side of (5.74). In the case of shear turbulence V f # 0 ,  so the major 
contribution to the integral in (5.74) comes from wavevectors coresponding 
to the largest scales in the system. Examination of the structure of this 
Fourier integral shows that it is given by 

d - 2  2 D o S d e  2 r -  1 r~(k)  O~i (5.87) 
/5 = d (d+ 2) (2~c) a 2 vZA 2 ~?-~j 

where r{(k)  is the contribution to the Reynolds stress - v i u  j at wavenum- 
ber k. This relation can be iterated if we note that a calculation similar to 
that used to derived (5.2) shows that r~/(k) < v(r) d2(r) is proportional to g, 
so it is independent of r in the inertial range. Thus, 

d/5 d -  2 1 2DoS d 2 < O~i (5.88) 
dr d (d+ 2) v3A 4 (2re) a v A r y  6xj 

Noting that, to leading order in Lo, we may assume that z~7(k) is 
statistically sharp at A f ,  we obtain 

d -  2 2DoSa/(2rr) a _ 0~  
/5 = - d (d+ 2----~ vZA.~- r~ Oxj (5.89) 

in the high-Reynolds-number limit. Using (2.61) and (5.14) to eliminate 
Do, v, and Af, we conclude 

/5 = - 1.063 --~ ~,j - -  (5.90) 
K Oxj 

Thus, the high-Reynolds-number version of the g equation is 

1.7215 - - =  + - -  c~v (5.91) 
Dt c~xj K c~xi c?xi 



R N G  Analysis of Turbulence 45 

As a consistency check, notice that it follows from (5.74) and (5.89) 
that 

y3(k  --, O) = 2Vo(aV./ax:)(avl /ax:)(av, /ax:)  

= O(d- 2)/(d + 2)] = 0 (5.92) 

when d =  2. It can be shown directly that i:3 = 0 when d =  2, using the 
incompressibility condition V. v = 0. 

The result (5.91) allows us to calculate the von Karman constant. We 
express all parameters in wall coordinates: 

v K ~v~ v Y+-YV*', v~ =z"'', v + = - - ' ,  K+=--5-', g + =  ," v + = - -  
l: 0 p / ) ,  I ) ,  V o n o 

where %. is the wall shear stress. Consider a boundary layer in which all 
parameters are functions of the distance to the wall only. We use the simple 
version of the closure: 

i~j= 2oX/+~)  (5.93) 

In a stationary state, Eqs. (5.49) and (5.91) in the region where K is con- 
stant (in wall coordinates) give 

(Or+?_ 
v+ \@+] g+ = 0  (5.94) 

and 

1.063 g2+ \ o y + :  - 1.7215 K2+ 
c~)' + c3y + 

(5.95) 

Using (5.93) in wall coordinates, the Navier-Stokes equations are simply 

I y F_+ = ~v+ (5.96) 
- R ,  v+ c~y+ 

so v+ c~v+/@+ = 1 when y+/R, ~ 1. Using this, we obtain 

g+ = l/v+ (5.97) 

so that, using (5.4), 

K+ = 3.4159 (5.98) 
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Substituting (5.97) and (5.98) and ~ = 1.3929 into (5.95) gives 

v = Ky+ (5.99) 

with the yon Karman constant 

1.7215 - 1.063~ ~/2 
to= ( 1.3929- 3.416 |j ~0.372 (5.100) 

Thus it follows from (5.96) that 

v+ =2.688 In y+ + c (5.101) 

Yakhor and Orszag 

6. D I F F E R E N T I A L  T R A N S P O R T  M O D E L  

The high-Reynolds-number version of the algebraic K-e model derived 
in this work is given by relations (5.4), (5.48), (5.49), and (5.83). It is clear 
from (5.83) that in low-Reynolds-number flow regions where K ~ 0  the 
algebraic model is poor because of uncertainty of terms of the type g/K. To 
derive a model valid in both high- and low-Reynolds-number regions of the 
flow we must solve the RNG differential recursion relations introduced in 
Section 5. The results for this differential transport model presented here 
have been obtained with the collaboration of Dr. A. Yakhot. 

Let us first solve Eq. (5.11) for the function Q = 2K: 

2 dK= 1.594 g ge2' (6.1) 
dr v(r) A2(r) - v(r)A 2 

or  

dK 1.594 g 
(6.2) 

d[l/A2(r)] 4 v 

From (2.52) and (5.2) we obtain 

1 
d A 2 

3 fz df 

2 Y (3~,~ 1.5994g/v 3) 1/2 

where 

~- Y/YO 

and 

(6.3) 

(6.4) 

y ~  (~3 _~_ C -  1) 1/2 (6.5) 
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Substituting (6.3)-(6.5)into (6.2) gives 

K 
d ~  = 1 .7288v~/2-  

d~ 
(6.6) 

Y 

The differential relation (6.6) expresses the total viscosity v in terms of 
the kinetic energy K and the mean dissipation rate g. When v/v o >> 1, the 
solution to (6.6) is identical to the algebraic model (5.4). 

The low-Reynolds-number modification of the equation for the man 
dissipation rate g can be written as 

D g p _ fi + [~ 0 ~? g 
D~= 4-~x cqv ~ (6.7) 

where the functions P, fi, and tb are derived from the following relations: 

and 

P= -o.o8889-~ %~ (6.8) 

fi i 3 d~ 
d ~ = -0.8267 v~/Z y~ (6.9) 

~; d~ 
d~e .  = -0.5764 vU2-~- ~ (6.10) 

Equation (6.8) is a direct consequence of expressions (5.14) and (5.4). 
The differential relations (6.9) and (6.10) can be obtained readily from 
(5.78)-(5.79) using the procedure (6.1)-(6.6). Detailed derivations and 
applications of this differential model will be published elsewhere. 

7. DISCUSSION 

The RNG method developed here is based on a number of ideas. First, 
there is the correspondence principle, which can be stated as follows. A tur- 
bulent fluid characterized in the inertial range by scaling laws can be 
described in this inertial range by a corresponding Navier-Stokes equation 
in which a random force generates velocity fluctuations that obey the scal- 
ing of the inertial range of the original unforced system. The dynamical 
equation with the random force is the basis for the systematic elimination 
of small scales and calculation of the renormalized transport coefficients. 

Second, the RNG procedure is, strictly speaking, valid only in the 
asymptotic limits of s ~ 0 and R--* ov in which the scaling relations are 
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derived in the vicinity of the fixed point. What are the limits of validity of 
the RNG procedure? It is known from experimental data that the proper- 
ties of turbulent fluids are approximately independent of the width of the 
inertial range if the Reynolds number is large enough. We believe that the 
results of the RNG fixed-point calculations can be aplied to any fluid that 
demonstrates Kolmogorov-like scale-invariant behavior in some range of 
the wavevectors and frequencies. This situation resembles the theory of 
critical phenomena in the sense that the critical exponents computed at the 
fixed point are approximately valid in the vicinity of the critical point when 
I ( T -  T,.)/TcI ~ 1 (where T~ is the critical temperature). 

The major drawback of the theory presented here is that, according to 
(2.45), the higher nonlinearities generated by the RNG procedure are 
marginal, i.e., they do not exponentially go to zero when the iteration 
parameter r ~ oo. As discussed in Section 2, we can hope that these terms 
produce small logarithmic corrections to the results derived here. It is 
interesting that the same kind of problem arises in the derivation of the 
hydrodynamic equations from molecular dynamics by the small-scale 
elimination procedure. It is well known (Dorfman, 1975; Wood, 1975) that 
the so-called super-Burnett coefficients, which are neglected in the Navier- 
Stokes equation, are weakly divergent, while the molecular viscosity com- 
puted in terms of time-correlation functions is finite. These weakly 
divergent coefficients are not known to upset the results of classical 
hydrodynamics based on the Navier-Stokes equation. We can hope that 
the marginatity of the nonlinear terms generated by the RNG method are 
unimportant. Of course, this hope does not have a solid theoretical basis, 
so the value of the RNG method should perhaps best be judged by com- 
parison of its predictions with experiments. 

The magnitude of the Kolmogorov constant calculated here, 
CK = 1.617, agrees with experimental data. However, measurements of CK 
do not allow an unambiguous interpretation of experimental data. The 
most widely accepted value for C K is C K ~ 1.4-1.7. Similarly, the value of 
the turbulent Prandtl number derived here, P,=0.7179, is close to 
P,=0.7-0.9 accepted in the engineering literature (Landau and Lifshitz, 
1982; Monin and Yaglom, 1975). 

The RNG calculation for the skewness factor g3 gives 33 = 0.4878. 
Experimental data on $3 are quite scattered. Frenkiel et aI. (1979) reported 
g3=0.47-0.48 and $3 = 0.41-0.44 measured in water and wind tunnels, 
respectively. The measurements of Antonia et al. (1984) in a plane jet 
showed 83 = 0.43. It must be mentioned, however, that the masurements of 
Wyngaard and Tennekes (1970) in an atmospheric boundary layer showed 
that, as the Reynolds number increased, the skewness factor $3 grew from 
$2 ~ 0.6 to $3 ~ 1. It is possible that the Reynolds number dependence is 
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due to large-scale anisotropy effects, which are quite strong in the planetary 
boundary layer measurements. The role of the anisotropy on measurements 
of $3 has been discussed by Antonia et al. (1984). 

The RNG derivation of the transport model given in Section 5 deser- 
ves more discussion. The RNG procedure is based on the elimination of 
small scales, which are assumed to be isotropic. The fact that such a grossly 
simplified picture of turbulence leads to a K-g model with v=GK2/g, 
cv = 0.0837, and the von Karman constant K =  0.372 deserves comment. 
Two basic questions that may be asked are: First, why does turbulence 
modeling based on oversimplified models give reasonable results? Second, 
why is it widely found in the engineering literature that more sophisticated 
schemes, such as third-order closure models, do not lead to substantial 
improvement over existing K-g models? The second question may be 
understood on the basis of the present theory: Higher order nonlinear con- 
tributions are asymptotically unimportant and lead to small corrections to 
the results based on the second-order closures. 

The first question is much more difficult to answer. Existing schemes 
do not take into account the strongly anisotropic eddies that dominate the 
wall layer. It is well known from experimental data and direct numerical 
simulations that the turbulent energy distribution in a channel flow has a 
pronounced maximum very close to the wall, namely at y+ ~ 13-18. In this 
region, the turbulent viscosity, defined as v, = -vit;i/(O~i/Ox~), is very small. 
On the other hand, far from the wall, the turbulent intensity is much lower, 
but the turbulent viscosity is v t~0 .08R, ,  which is many orders of 
magnitude larger than molecular viscosity. The inevitable conclusion is that 
not all turbulent eddies interact with mean flow and, consequently, not all 
eddies contribute to turbulent viscosity. The same effect is found in studies 
of the relaminarization of turbulent channel flow in a strong magnetic field. 
It can be shown that, if the magnetic field is large enough, turbulent chan- 
nel flow becomes strongly anisotropic and the velocity profile and the fric- 
tion coefficient approach those of laminar flow. The total turbulent inten- 
sity, however, remains quite high. It seems that strongly anisotropic scales 
may not interact with the mean flow. 

The interaction of small-scale flows with large-scale perturbations has 
been studied analytically by Sivashinsky and Yakhot (1985), Yakhot and 
Sivashinsky (1986), and Bayly and Yakhot (1986). It has been shown that, 
if the small-scale flow is sufficiently anisotropic, it either decouples from the 
large-scale flow or gives its energy to the large eddies. Only when small 
scales are sufficiently isotropic do they increase the dissipation of large 
scales and thus give rise to a positive turbulent viscosity. The wall region of 
the channel or pipe flow is dominated by strongly anisotropic structures 
(streaks) which do not interact directly with the mean flow and thus do not 

854/1/1-4 
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cont r ibu te  to tu rbulen t  viscosity. Thus,  it is poss ible  for the m a x i m u m  of 
turbulent  kinetic  energy to be loca ted  where the turbulen t  viscosity is close 
to zero. The weak coupl ing  of s t rongly  an i so t rop ic  scales to the mean  
mot ion  may  be the reason for the success of  turbulence  model ing  based on 
the e l iminat ion  of i so t ropic  eddies from the inert ial  range dynamics  and for 
the appa ren t  success of R N G  methods  for turbulence.  

A C K N O W L E D G M E N T S  

We are grateful to Dr. A. Yakho t  for numerous  suggest ions which 
influenced the course of this work. We also acknowledge  suppor t  by the 
Air  Fo rce  Office of Scientific Research under  con t rac t  F49620-85-C-0026, 
the Office of  N a v a l  Research under  cont rac ts  N00014-82-C-0451 and 
N00014-85-K-0201,  and  the N a t i o n a l  Science F o u n d a t i o n  under  grants  
MSM-8514128 and ATM-8414410.  

R E F E R E N C E S  

Antonia, R. A., Chambers, A. J., and Anselmet, F. (1984). Phys. Chem. tIydrodyn. 5, 368. 
Batchelor, G. (1959). J. Fluid Mech. 5, 113. 
Bayly, B., and Yakhot, V. (1986). Phys. Rev. A, in press. 
Deardorff, J. W. (1970). J. Fluid Mech. 41, 453. 
Deardorff, J. W. (1971). J. Comp. Phys. 7, 120. 
De Dominicis, C., and Martin, P. C. (1979). Phys. Rev. A 19, 419. 
Dorfman, R. (1975). In Cohen, E. G. D. (ed.), Fundamental Problems in Statistical Mechanic's, 

North-Holland, Amsterdam. 
Forster, D., Nelson, D., and Stephen, M. (1977). Phys. Rev. A 16, 732. 
Fournier, J. P., and Frisch, U. (1978). Phys. Rev. A 17, 747. 
Fournier, J. P., and Frisch, U. (1983)~ Phys. Rev. A 28, 1000. 
Frenkiel, F. N., Klebanoff, P., and Huang, T. T. (1979). Phys. Fluids 22, 1606. 
Hanjali~, K., and Launder, B. E. (1972). J. Fluid Mech. 52, 609. 
Herring, J. R., Orszag, S. A., Kraichnan, R. H., and Foxz, D. G. (1974). J. Fluid Mech. 66, 

417. 
Hohenberg, P. C., and Halperin, B. 1. (1977). Rev. Mod. Phys. 49, 435. 
Kolmogorov, A. N. (1941). Dokl. Akad. Nauk SSSR 30, 299. 
Kraichnan, R. H. (1959). J. Fluid Mech. 5, 497. 
Kraichnan, R. H. (1961). J. Math. Phys. 2, 124. 
Kraiehnan, R. H. (1971). J. Fluid Mech. 47, 525. 
Landau, L., and Lifshitz, E. M. (1982). Fluid Mechanics, Pergamon, New York. 
Launder, B. E., and Spalding, D. B. (1972). Mathematical Models of Turbulence, Academic 

Press, New York. 
Launder, B. E., Reeee, G. J., and Rodi, W. (1975). J. Fluid Mech. 68, 537. 
Leslie, D. C. (1972). Developments in the Theory of Turbulence, Clarendon Press, Oxford. 
Ma, S. K., and Mazenko, G. (1975). Phys. Rev. B 11, 4077. 
Moin, P., and Kim, J. (1981). J. Fluid Mech. 118, 341. 



RNG Analysis of Turbulence 51 

Monin, A. S., and Yaglom, A. M. (1975). Statistical Fluid Mechanics, Vol. 2, MIT Press, 
Cambridge, Massachusetts. 

Orszag, S., and Patera, A. (1981). Phys. Rev. Lett. 47, 832. 
Pao, Y. H. (1965). Phys. Fluids 8, 1063. 
Pao, Y. H. (1968). Phys. Fluids 11, 1371. 
Reynolds, W. C. (t976). Annu. Rev. Fluid Mech. 8, 183. 
Sivashinsky, G., and Yakhot, V. (1985). Phys. Fluids 28, 1040. 
Smagorinsky, J. (1963). Monthly Weather Rev. 91, 99. 
Tennekes, H., and Lumley, J. L. (1972). A First Course in Turbulence, MIT Press, Cambridge, 

Massachusetts. 
Wilson, K. G. (1971). Phys. Rev. B 4, 3174. 
Wilson, K. G., and Kogut, J. (1974). Phys. Rev. 12C, 77. 
Wood, W. W. (1975). In Cohen, E.G.D. (ed.), Fundamental Problems in Statistical 

Mechanics, North-Holland, Amsterdam. 
Wyld, H. W. (1961). Ann. Phys. 14, 143. 
Wyngaard, J. C., and Tennekes, H. (1970). Phys. Fluids 13, 1962. 
Yakhot, V. (1981). Phys. Rev. A 23, 1486. 
Yakhot, V., and Sivashinsky, G. (1986). Phys. Rev. A, submitted. 


