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Simple Phenomenological Theory of Turbulent Shear Flows
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The Johns Hopkins University
Baltimore, Maryland :
(Received 9 May 1968; final manuscript received 24 October 1968)

A rate equation is proposed to govern the variation of the effective turbulent viscosity. The effects of
generation, convection, diffusion, and decay are each represented by appropriate terms leaving only
two empirical constants to be determined by experiment. This rate equation together with the equa-
tions of motion form a closed system applicable to quasiparallel turbulent shear flows. For an incom-
pressible turbulent boundary layer with zero pressure gradient, solutions were obtained by assuming
local similarity and a linear growth of the boundary-layer thickness. Another problem, the turbulent~
nonturbulent interface at the outer edge of the boundary layer was treated by using the further as-
sumption that the large scale motion of the interface has no significant contribution to the Reynolds
stress. It can be shown that for a nearly homogeneous domain, Prandtl’s mixing length theory is a

limiting case of the present theory.

I. INTRODUCTION

The phenomenological theories associated with
such names as Taylor,' Prandtl,” von K4rman,® as
well as others, have recently received renewed at-
tention. There always were, of course, empirical
formulas used to caleulate a particular kind of
turbulent shear flow, such as a shape parameter
equation or an eddy viscosity formula for certain
kinds of turbulent boundary layers. The phenomeno-
logical theories considered here are different from
the mere empirical formulas. It is hoped that a
hypothesis based on the physics of turbulent motion
would yield a more general theory that can be applied
to different kinds of turbulent shear flow irrespective
of whether it is a turbulent flow along a wall, a free
turbulent flow, or a mixed case. Various earlier
attempts have met with different degrees of success.
Just to mention a few, there is the simple two-layer
concept of Clauser.* More recently, by generalizing

* Present address: Department of Mechanical Engineering,
University of Notre Dame, Notre Dame, Indiana.

(19115(}). I. Taylor, Phil. Trans. Roy. Soc. London A215, 1

2 L. Prandtl, Z. Angew. Math. Mech. 5, 136 (1925).

3 Th. von Karman, in Proceedings of the Third International
Congress on Applied Mechanics (A. B. Sveriges Litograsiska
Tryckerier, Stockholm, 1931), Pt. 1, p. 85.

* F. H. Clauser, in Advances in Applied Mechanics, H. L.
Dryden, Th. von Karmén, and G. ﬁuerti, Eds. (Academic
Press Inc., New York, 1956), Vol. 4, p. 1.

Miles’ results for wave generation by wind, Phillips®
proposed a new kind of eddy viscosity, the ratio of
the gradient of the Reynolds stress, and the second
derivative of the mean velocity. His eddy viscosity
is proportional to the product of the energy in the
cross-flow component of the velocity fluctuations
and the convected integral time scale. This idea is
very interesting since it postulates a mechanism
for the turbulent shear stress. Emphasis is more on
the physics of the turbulence than on the computa-
tion of the mean flow. Nevertheless, further studies
must be made to calculate the convected integral
time scales as well as the mean square of the eross-
flow velocity component; a direct application is
impossible without relying on actual measurements
of these quantities. On the other hand, in an attempt
to predict the turbulent boundary-layer develop-
ment under arbitrary pressure gradient, Bradshaw
et al.® transformed the turbulent energy equation
into an equation for the turbulent shear stress but
at the expense of introducing three further empirical
functions to express the turbulent intensity, its
dissipation, and diffusion in terms of the turbulent
shear stress. The results depend, of course, on how

-5 Q. M. Phillips, J. Fluid Mech. 27, 131 (1967).
¢ P. Bradshaw, D. H. Ferris, and N. P. Atwell, J. Fluid
Mech. 28, 593 (1967).
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successfully these functions were chosen. Another
new approach was suggested by Harlow and Naka-
yama.” Based on the turbulent energy equation, a
transport equation for eddy viscosity is derived by
introducing additional functions, which in turn are
assumed to be governed by other transport equations
involving correlation functions simplified by some
flux approximations. Finally, it results in a system
of a large number of equations containing a large
number of empirical constants and assumed func-
tional forms which must be known or approximated
in order to calculate any particular turbulent flow.

The phenomenological theory proposed here is a
very modest one. It is formulated in such a way as
to take into account the relevant mechanism of the
turbulent motion but only with the minimum com-
plications. The theory overcomes the objection of
“localness” of older theories by bringing in the past
history of the turbulent flow and also the lateral
diffusion of turbulence. However, it is still quite
simple since for the computation of turbulent shear
flows, only one more equation is added to the usual
equations of motion. This new rate equation governs
the turbulent viscosity, and it has only two universal
constants to be determined from the experiment.
If, in addition, the ‘“law of wall” is regarded as a
universal law, then the number of universal con-
stants for wall turbulence is reduced to one. Nat-
urally, elaborations and refinements are always pos-
sible at the expense of simplicity.

II. THE BASIC EQUATIONS

In order to form a closed system of governing
equations for the mean motion, it is necessary to
determine the distribution of the Reynolds stress.
One can always derive an equation for the Reynolds
stress by averaging the appropriate products of the
equation of motion. The various terms in the equa-
tion for the Reynolds stress then can be identified
as convection, diffusion, production, and dissipation,
respectively (see, e.g., Rotta,” Sec. 8). Any direct
use of such an equation is hampered by the large
number of unknown correlation functions involved
and some hypothesis on their further relations is
needed to acecomplish “closure.”

Here, our approach is to make a simple “educated
guess” concerning the various terms based on the
corresponding physieal mechanism such as diffusion,
production, and dissipation. The dependent variable

" F. H. Harlow and P. 1. Nakayama, Phys. Fluids 10,
2323 (1967).

8 J. C. Rotta, in Progress in Aeronautical Sciences (Per-
gamon Press, Inc., New York, 1962), Vol. I1.
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chosen is the turbulent viscosity which, of course,
relates directly to the Reynolds stress. This was
chosen in preference to the turbulent energy simply
in order to avoid the need for one further assumption
relating the turbulent intensity to the Reynolds
stress. The Reynolds stress can be expressed as the
product of the eddy viscosity and of the mean
velocity gradient. This relation serves here only
as a definition for the eddy viscosity e

w’
= du/dy
The total viscosity ¢ + v = n is assumed to be gov-
erned by a rate equation and thus, it is dependent
on the past history through convection and on
nearby values through diffusion.

The eddy viscosity may be regarded as the ability
of a turbulent flow to transport momentum. This
ability must be directly related to the general “level
of activities,” and therefore, to the total turbulent
energy. The structure of the turbulent energy equa-
tion is, in fact, quite similar to the diffusion equation
or more precisely to the rate equation of a chemical
species. Here, one should make a small digression.

In general, any transportable scalar quantity F
subject to the conservation laws is transported ac-
cording to the equation
DF _ 9F

i T (u-V)F

ey

€

2

where ¢p is the flux of the quantity F due to dif-
fusion.
The usual form for the flux is

op = DFVF; (3)

where Dj is the coefficient of diffusion for the par-
ticular quantity F. In the present case the trans-
portable quantity is the total turbulent viscosity
n = ¢ + », where v is the molecular viscosity. The
flux of n in the diffusion term will then become

en = D, Vn, 4)

where D, is now the diffusivity of the quantity n.
Since the turbulent motion diffuses by itself, it is
reasonable to assume that the diffusivity D, = n.
In any ecase, the turbulent Prandtl number and
Schmidt number are both nearly unity so D,/n = 1.

The general rate equation for the total viscosity
n is proposed as

= V¥ -¢r + production — decay,

g_? + @ V)n =V-aVn) 4+ G — D, (5
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where u is the velocity vector, G represents the gen-
eration term, and D, the decay term. This formula-
tion was first presented by Kovasznay and Nee.’

The actual forms of G and D are “guessed’’ using
plausibility arguments; nevertheless, the success of
any such theory depends on the particular form
chosen. If they are chosen in a form that is too com-
plicated, there will be little hope of calculating any
concrete flow problems; on the other hand, if they
are oversimplified, the results may be easy to cal-
culate but not close enough to reality to be of any
real value.

First, let us consider the generation term. From a
rough analogy with the production of turbulent
energy, it is clear that it must increase mono-
tonically with the magnitude of the mean vorticity
|0U/dy| and also with the increasing level of tur-
bulent agitation, therefore, with n. There are, of
course, many functional forms possible.

By choosing the simplest form compatible with
the above requirement, the generation term is as-
sumed.

G = Aln —») (6)

aU
dy |’

where A is a universal constant of order unity.

For the decay term some clues may be obtained
from the analogy of n with turbulent energy. The
rate of decay of the energy of high-intensity homo-
geneous turbulence (such as grid turbulence) is, to
a very rough approximation, inversely proportional
to the square of the energy

Y

This leads to a decay law

w2 1/6t. (8)

The rate equation (5) in the absence of all other
terms (generation, convection, and diffusion) will
reduce to

n_ _p.

Y (9)

In an analogy with Eq. (7), we choose D == gn’.

In order to have a more appropriate behavior when

n — » (or e = 0) and for dimensional consideration,
the actual form chosen will be

D = %n(n —v), (10)

where B is another universal constant.

* L. 8. G. Kovasznay and V. W. Nee, Bull Am. Phys. Soc.
10, 683 (1965).
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Here, the characteristic length L is introduced in
order to make B a nondimensional “universal” con-
stant. In general, L will be a function of y. In the
region of the outer edge of a turbulent flow one may
choose L = 3§, the boundary-layer thickness, but
closer to the wall the choice L = y appears to be
reasonable in view of the fact that the characteristic
length for decay must be of the same order of magni-
tude as the scale of the largest eddy responsible for
the viscous dissipation of turbulence. The depend-
ence of the decay term on the distance from the wall
appears to be quite necessary to account for the
high rate of dissipation in the proximity of solid
boundaries, where the maximum dimension of the
dissipating eddies in the direction perpendicular to
the flow must be the same as the distance from the
wall.

Now we are ready to consider an incompressible
steady turbulent flow with no body forces present.
The turbulent flow is assumed to have reached its
“asymptotic” or “fully developed” state (meaning
that it is far from transition). For quasiparallel
flows, namely, in flows where the y directional
momentum is so small that its effect can be neglected,
the boundary-layer approximation can be assumed
to be valid.

For a two-dimensional steady quasiparallel flow,
the governing equations for the mean motion can
be written as

oU U _ _1ldp 1(2!1)
Uax+V6y_ pde Tay\"ay /> (1D
au  av
m, am o[ on N
Uax+V y_6y<n6y)+A(n ?) E 13)

— Fn(n — »).

The variable n is the sum of » and e. Townsend"
has pointed out that in the turbulent dispersion of
heat, the molecular diffusion and the turbulent dif-
fusion cannot be simply added for the reason that
the turbulent strain field also increases the molec-
ular transfer rates by increasing local instantaneous
gradients. But by allowing e to be a function of the
velocity gradient history since it is governed by the
rate equation, the interaction between ¢ and » is
considered to be a part of turbulent mechanism
governed by the rate equation, therefore, it can be

absorbed in 7.

(1915015‘. A. Townsend, Proc. Roy. Soc. (London) A209, 418
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Inside a fully turbulent region, the Reynolds stress
dominates so n >> ». In addition, in that region n
varies relatively slowly so the convection and dif-
fusion terms may each become so small that their
contribution can be considered as negligible com-
pared with generation and decay terms. In this
limiting case the generation term will be left to bal-
ance the decay term, and the rate equation is re-
duced to an algebraic equation
daU B

;i_y_ = Zin(n -

Aln —v)

v), (14)

immediately giving the formula for the total vis-
cosity

A 5 |dU

n=_-L"|-—

B idy

That is the well-known Prandtl’s formula with the

mixing length | = L(4/B)"".

For wall turbulence, I = Ky will be assumed with

K = 0.4, (see Schlichting''). Accordingly, A and B
must satisfy the relation

A = K°B

: (15)

(16)

and there will be only one disposable constant
(either A or B) to be determined from comparison
with experiments.

III. TURBULENT BOUNDARY LAYER WITH
ZERO PRESSURE GRADIENT

In order to test the validity of the proposed
method, some simple cases should be calculated.
Direct forward integration of Egs. (11), (12), and
(13) for a two-dimensional turbulent boundary layer
with zero pressure gradient has not been attempted;
first, because it would have required a considerable
amount of numerieal calculation. As a more modest
attempt the system of partial differential equations
was first reduced to a system of ordinary differential
equations by using the assumption of a local simi-
larity of the turbulent boundary-layer flow.

In contrast with the laminar case, the turbulent
layer even with zero pressure gradient does not have
complete similarity for all Reynolds numbers. For
a large Reynolds number flow, the turbulent energy
transfer requires more steps in the energy cascade
to reach the smallest eddy sizes where most of the
viscous dissipation takes place, than for lower Reyn-
olds numbers; consequently, two turbulent flows
with different Reynolds numbers cannot be com-
pletely similar. Or, in another way, this is shown by

1 H, Schlichting, Boundary Layer Theory (McGraw-Hill
Book Company, New York, 1960), p. 556.
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the differences in the thickness of the viseous sub-
layers relative to the total boundary-layer thickness.

Nevertheless, local similarity in the turbulent
boundary layer can still be assumed with a good
degree of approximation, if the thickness of the
sublayer is not included. The experiments conducted
by Clauser* and also by Klebanoff and Diehl'* have
shown that a zero pressure gradient turbulent bound-
ary layer exhibits an ‘“‘x-wise stability’” in the sense
that when the flow is disturbed, it tends to return
to its ‘“‘natural state.” Consequently, the mean
velocity distribution at any cross section (x = const)
along the plate depends primarily on the local param-
eters and only mildly on past history.

The zero pressure gradient turbulent boundary
layer grows monotonically. The growth rate has been
found experimentally to be approximately propor-
tional to the ¢th power of 2 within a wide range of
Reynolds numbers. When using the assumption of
local similarity, only the local growth rate will
enter into the analysis so the local boundary-layer
thickness can be expressed as a linear funetion of z,
and the growth rate coefficient is determined by the
local parameters.

Here, it is convenient to make a further assump-
tion. The inertia term in the momentum equation
is approximated by the introduction of an effective
crossing velocity or entrainment velocity V,
U _ _y U
9y

For the case of self-similar boundary layers, the
introduction of the effective cross velocity V, offers
a real advantage by eliminating the derivatives with
respect to x. Introducing the stream function ¢
(the usual definition)

¥(@,y) = Udly — aF(n)]. (18)

The nondimensional distance from the wall will be
defined as

(17)

n = y/a(x), (19)

where §(z) is the boundary-layer thickness; finally,
the growth rate constant is defined as

_ @)
a="7 (20)

The mean velocity components then become
U= Ul — F'(n)], 21

V = UsalF(n) — nF'(n)], (22)

2 P, S. Klebanoff and Z. W. Diehl, NACA Report 1110
(1952).
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and the inertia terms become

U _ UaF”

oU
Ug-i- V@ 5

(n— F)

au
= —aqU.(n — F) e (23)
The “effective crossing velocity”’ can now be defined
as

Vi) = aUus(n — F).

In a similar manner, the convection terms in the
rate equation (13) for the turbulent viscosity can
also be expressed with the same V,().

In order to estimate V, let us consider a simple
“power law”’ for the mean velocity profile

(24)

1/m
UQ _ {1; for <1 25)
© 1 for n > 1.
The stream function then becomes
m (m+1)/m
n— for <1
1
F=, ™7 (26)
1
>
m 1 for 9 > 1.
The effective crossing velocity
m {m+1)/m
a U, for n < 1
1
V() = +om @)
m
aUm(l+m+n—1) for n > 1.
As a numerical example, let us assume m = 8. The

variation of V,(y) across the layer is then quite
close to the linear one (Fig. 1),

Vi) & aUan (28)

80 in the subsequent analysis we assume that the
V, varies linearly with the distance from the wall.

The momentum equation (11) and the rate equa-
tion (13) now can be written as

w0 _ i (,00)
‘dy  dy\ dy/’ (29)
dn d(dn) av
e = \n Al —v) 15—
dy = ay\May) AR (30)
B
— = nn — ).
Yy

We now introduce the nondimensional wvariables
N, = n/”) Ul = U/u*:
Vl = V,/u*, Y, = u’*y/”'
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Fia. 1. The assumed linear variation of the effective cross-
ing velocity V', is compared with the exact variation caleulated
tt;y assuming a “}th power law” for the mean velocity distri-

ution.

Here, only the ‘“wall” parameters were used for
nondimensionalization. The “outer’’ parameters (U.,
and 6) will enter explicitly only after integration.
The nondimensional effective crossing velocity V,
can be written as

V=~ =kr%¥ -y,

Uy, v

3D

where k, the new ‘‘growth parameter,” will be deter-
mined by the outer flow parameters. The system
of nondimensional equations now becomes

aU, d

au, _ d_ dU)
- kY, ar. = av, (N1 ar.) (32)
oy 9N, _ d ( le)
kY, dY, dY,\'''4dYy,
U N(N, -1
A, -0 - p TS ey

These equations are nonlinear and in order to solve
them by an analog computer, eight multipliers are
required to perform the necessary number of multi-
plications and divisions. Unfortunately, at the time
the calculations were performed that number of
multiplications was not available. Consequently, the
system of equations was transformed in order to
make them tractable by using fewer multiplers. Let
us define the transformation (suggested by F. H.
Clauser)

dY, = N, dt (34)
and denote the total shear stress as
_ au,
T = Nl le (35)
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Equations (32) and (33) become

— kY, r =7, (36)
—~ KY.N{ = NU 4 AW, — D7
— BNI(V, — 1)/Yi.  (37)

The prime indicates differentiation with respect to
the new variable {. Equations (36) and (37) require
only five multipliers instead of the original eight for
Eqgs. (32) and (33).

The actual integration eannot start from the wall
as the approximation is poor in, and near, the sub-
layer region. Near the wall, the “law of the wall”’
is assumed to be valid, so Eqs. (36) and (37) are
integrated only from some point near but outside
the sublayer within the logarithmie region.

The “law of the wall” is usually stated as

U_dlpusy
Uy Cy 14

(38)

Consequently, the boundary conditions at ¥, = Y,
will be chosen as

(1/e)) In Yy + ¢,

r,,,/ui = 1,

Uo

]

To =

NO = CIYO - AY%, .

N} = (.Y, — \YD(c, — 20Y ),
aN,
iv, = ¢ 27\ Y,.

Y, is the value of Y, where the integration starts.
The constants C; and C, have been obtained from
experiments and are usually assumed to be 0.4 and
5.2, respectively. Other quantities with the subseript
0 are values of the variables at the position ¥, = Y.
As Y, must be chosen quite near the wall, the total
shear stress = can be approximated by the value of
wall shear 7,.. The value of C,Y, is obtained by divid-
ing the wall shear by the local value of the derivative
of the mean velocity. This is essentially a two-point
boundary-value problem but is handled as an initial-
value problem with variable initial conditions. There-
fore, the parameter A has been introduced as a
“dummy parameter” to slightly vary the initial
conditions in order to meet the other boundary con-
ditions at the free stream edge.

We must, of course, first assume numerical values
for the universal constants A and B appearing in the
rate equation.

A set of values of A and B subject to the constraint
of Eq. (16) were determined by comparing the cal-

V. W. NEE AND L.
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culated results for 7,,. with the available experi-
mental results.

Still another nondimensional parameter k" rep-
resenting the growth rate of the layer given by Eq.
(31) must be found. From general dimensional rea-
soning, it is expected that the constant “k” will
depend on the Reynolds number of the layer

= Uma-

14

R;

In the actual analog computation procedure we
have chosen values for A, B, k, Y, then integrated
and the results gave the corresponding value of R;.

We also know that the solution for n must satisfy
the outer boundary condition n = » outside the
interface. Since in analog computation we can only
adjust the initial conditions, we will do so by chang-
ing the value of the parameter \. From the solution
for n that satisfies the outer boundary conditions,
the position of the interface y; gives the boundary-
layer thickness

= Yl

v interface v

The average position of the interface is ; = 0.78 8."

" From the integrated solution of the velocity, the
value of U./u, is simply the value of the solution
at the interface where U = U,

(ﬁ) _ U
u* interface u*

The value of the corresponding Reynolds number
R; can be obtained as

(39)

(40)

) w
v v / \u,
By definition, the skin friction coefficient is
2
u
¢, =2 (U—*w) : (42)

Now, the results can be discussed as follows:
The distribution of the turbulent viscosity ob-
tained here depends on two parameters

_ Uoos _ <g>1/2'
T \2

R; = and
v
It is known from the experimental results of Kleban-
off** and Townsend'* that the normalized turbulent
viscosity n/u,é is nearly constant, and does not

Uy

U.

13 P, 8. Klebanoff, NACA Technical Note 3178 (1954).
14 A, A. Townsend, Proc. Cambridge Phil. Soc. 47, 375
(1951).
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Fic. 2. Calculated maximum total turbulent viscosity as a
function of the Reynolds number.

depend on R; (see, e.g., Hinze).'

From the present calculation, the maximum value
of the turbulent viscosity num../u, 6 is plotted against
R; in Fig. 2. This quantity is indeed approximately
independent of the Reynolds number.

Computations were made with different sets of
values for the two universal constants A and B. For
each pair of values of A and B the value of 7,,.:/u,, &
was calculated. For the set of values 4 = 0.133 and
B = 0.8, Ns/u, 8 = 0.070, the value closest to the
ones obtained both by Klebanoff and Townsend.

The calculated distribution of the mean velocity,
shear and turbulent viscosity distribution are all
given as a function of the position without taking
into account the instantaneous position of the inter-
face due to intermittency. The experimental results
all give the long time averaged velocity U(y) as a
function of the distance from the wall. The present
calculation can be compared directly with experi-
ments only if the statistical distribution of the posi-
tion of the superlayer is taken into account (see
Corrsin and Kistler,” Klebanoff,” and recently,
Fiedler and Head.” Thus, the average position 7,
and the standard deviation o of the superlayer are
both well known from experiments. Furthermore, the
probability density was found to be nearly Gaussian
by all the experimenters.

Let us assume that the instantaneous interface
position y.(¢) has a probability density distribution
p(y:); furthermore, the entire layer expands and
contracts proportionally to y; so any value of n or
7 found at a position 7 will fluctuate slowly according
to this “breathing” of the layer,

n(@, 1) = nlg + y'®], (43)

% J. O. Hinze, Turbulence (MeGraw-Hill Book Company,
New York, 1959), p. 493, Fig. 7.17.

18 S. Corrsin and A. L. Kistler, NACA Technical Report
1244 (1955).

17 P, 8. Klebanoff, NACA Technical Report 1247 (1955).
a :386§1 Fiedler and H. R. Head, J. Fluid Mech. 25, 719

966).
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Fia. 3. Distribution of the total turbulent viscosity across
the boundary layer. Above: Original calculation for fixed
position of interface. Below: Corrected for theYfluctuation
of interface position (Gaussian distribution) and ‘compared
with experiments of Klebanoff1s (open circles) and Townsend!¢

where
y’(t) — yi(t) - ¥

g[yi(t) — 74 for § < ..
When the intermittency is “averaged out,” the
observed wind tunnel data will give average values of
w@) = [ n@+ @) dy. @
The probability density distribution p’(y’) is similar
to p(y.) except its standard deviation ¢’ = (#/4§;) o
is assumed to be linearly decreasing toward the wall
[Eq. (44)].

The calculated solution of the turbulent viscosity
n(y) obtained from present theory and the “smeared”’
7(7) have been compared with both Klebanoff’s'
and Townsend’s' experimental results in Fig. 3. The
curves begin in the wall region just outside the sub-
layer, then reach a maximum value near y/§ =
0.3, and then drop rapidly near the interface. Outside
the interface n — v as expected. The “smeared”’
values, of course, agree much better with experi-
ments.

The distribution of the total shear stress has been
similarly compared with the experimental results in
Fig. 4. Near the wall, it was adjusted to the wall
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Fre. 4. Distribution of shear stress across the boundary
layer. Above: Original calculation for fixed position of inter-
face. Below: Corrected for the fluctuation of interface position
and compared with experiment of Klebanoff.13

shear 7,. It decreases monotonically and drops to
zero just after passing the interface. The experimen-
tal points follow our computed curve very closely.
The mean velocity profile shown in Fig. 5 also agrees
well with experimental results. The detail of the
flow near the interface is treated in more detail in
the next section. The skin friction resistance law is
plotted from a number of pairs of corresponding
values of ¢; and R;, each pair obtained from a sep-
arate integration. For the smooth plate, the results of
the present calculation were compared with the ex-

£ Uzy%

Vg

T T —T
2 4 6 8 t

Fia. 5. Distribution of the mean velocity across the bound-
ary layer. Above: Original calculation for fixed interface.
Below: Corrected for Gaussian distribution of interface posi-
tion and compared with experimental data?? (shaded ares).
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<Calculated |
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F16. 6. Calculated skin friction coefficient for smooth plate
(solid line) compared with experiments of Schultz-Grunsw??
and Smith and Walker.2¢

log{Ua8Yy)

periments of Schultz—-Grunéw'® and Smith and
Walker® in Fig. 6; agreement appears satisfactory.

For rough plates, the equation for the mean ve-
locity in the logarithmic region ean be written in
the form (see, e.g., Clauser®)

U

o5m¥Y 452 - 2V
v u

*

(46)

3
where AU/u, represents the shift caused by rough-
ness.

In order to obtain solutions for the various types
of roughness, one can simply change the initial con-
ditions for the velocity by assigning different values
of AU/u, at the starting point (Fig. 7). The result
for each integration will then give the corresponding
values of ¢, and R; for the assigned roughness param-
eter AU /u,.

In order to demonstate the plausibility of the
proposed rate equation, the four terms in the rate
equation were plotted separately in Fig. 8.

IV. ASYMPTOTIC SOLUTION OF
" THE OUTER EDGE

As the turbulent boundary layer propagates out
into nonturbulent flow, its thickness grows, and it
entrains the outer nonturbulent field. This action
of the turbulent front (or the superlayer) must im-
part vorticity to the irrotational fluid through vis-
cous action, and in the meantime the interface itself
is being continuously distorted by the motion of the
large eddies inside the turbulent regime.

Here, the important assumption was made that
the action of the large-scale motion merely displaces
the front but is not responsible for any significant
amount of “ingesting” of large ‘“‘chunks” of the
nonturbulent fluid.

19 F, Schultz-Grunéw, NACA Technical Memorandum
986 (1940).

20 D, W. Smith and J. H. Walker, NASA Technical Report
R-26 (1959).
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It is known from abundant experimental evi-
dence®''® that the flow in the layer near the wall is
governed primarily by local parameters while the
outer part of the flow is affected more by the up-
stream conditions.

Let us define the mean velocity U(y, y:) as (see
Betchov and Criminale®) the average of the in-
stantaneous velocity only during those times when
the superlayer is located between y; and y; + Ay..
The conventional mean velocity, denoted here as
U(#) can be obtained by averaging U(#, y:) over-a
long time just as was done for n(y) [Eqs. (43), (44),
and (45)],

U = [ Vg vpwddy. @D
The function U{#, y.) is approximated as
U@, y) = [U®))y=ps+v» (48)

while ' is defined by Eq. (44).

Near the outer edge we consider the structure of
the flow relative to the interface; the interface can
then be thought of as being immobilized at a con-
stant position 7,. \

In the simple model here, we turn the coordinate
system parallel with the interface. Note the fact that
the interface is not a streamline, the flow enters
through the interface with a mean normal velocity,

V0=Um(dgi_.d_a_’£>,

dx dz (49)

where §.(x) is the average position of the interface
and §, (z) is the displacement thickness. In the region
near the interface one may assume V, = const. The
origin of the new normal coordinate z is along the
average interface and not along the undisturbed
flow direction (or along the wall). (The angle between

( :;41)1 Betchov and W. O. Criminale, Phys. Fluids 7, 1950
1964).
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F16. 8. Balance of
the four terms of the
rate equation across
the boundary layer.

old and new coordinate is so small that the scales do
not change significantly.)

For the purposes of the present calculations in the
outer part of the layer, the flow can be assumed to
be independent of x. Consequently, the mean mo-
mentum equation will reduce to

au d(dU)
a (,aU

—yv. %Y _
° dy, dy, dy./’ (50)

where the new independent variableis y, = y — ..
As far as the rate equation is concerned, at the outer
edge the dissipation term drops off at least as fast as
n®. The generation term is more significant since it is
largely responsible for the creation of turbulence.
The transport and diffusion terms are both high
(see Fig. 8). Taking all these facts into account, it
appears reasonable to neglect the decay term in the
outer edge region. Thus, the rate equation reduces to

dn _ d ( dn) dU
—y & [, — )&,

Ay, dys dys) T Al =) dy, (51
Similar to Eq. (34), a new variable ¢(y,) is substi-

tuted as the new independent variable

n do = v dy,. (52)

The momentum equation can be integrated at once,
to give ‘
daUu
T =M= 7o exp [2alp: — )], (53)
Y1
where 2a = V,/v and we define: r = 7, for ¢ = o;,
¢ = ¢; is now the nominal position of the interface,
where n = 2y or e = ».
After carrying out the same transformation of
variables, the simplified rate equation becomes

d'n A au

d
a?+2a£+?n(n—u) | =0 9

By using the definition of 7, the last term can be
substituted .from Eq. (53) and the system of two
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equations can be combined into a single one

d 4
7 =)

+ 209 4
de

-exp [2a(e: — ¢)] = 0. (55)

The complete solution of Eq. (55) can be obtained
as

n = +vexp lalg; — ¢)]

.[CJ1 (2 exp [alp; — ‘P)])

rer (Copae - )|, 6o

where b = Arp™%, C and C, are integration con-
stants, and J; and Y, are the first-order Bessel
functions of the first and second kind, respectively.

One boundary condition can be obtained from
the fact that far outside the turbulent boundary
layer ¢ — ©,n — » (or ¢ — 0). Using this condition
and defining the nominal position of the interface
(¢ = ;) where n = 2y, the solution becomes

n=»4? eXpJE‘ggj;)“ ol g, (3 exp [alp: — @])-
(57)

In the region near, but outside the interface, the
value of the argument of the Bessel function is
small. By means of the asymptotic expansion of the
Bessel function for small values, the solution (57)
can be expressed as

n = v + v exp [2a(e: — ¢)]. (58)

In this region near the superlayer, the shearing
gtress becomes

7 = 20Uj exp [2a(es — ¢)]. (59)

Here, the value 2vU} is used to replace the value
ro in Eq. (53). The constant U} denotes the mean
vorticity (velocity gradient) at the nominal position
of the interface (where n = 2v).

By dividing Eq. (59) by Eq. (58), the distribution
of the mean velocity gradient becomes

2U; exp [2alp; — ¢)] .

U =1+ exp [2alp; — ¢)] (60)
Note that

o —> ®, U —>0,

¢ = ¢ U’ = Ui,

p—> —®, U’ — 2U;.

V. W. NEE AND L. 8. G. KOVASZNAY

The asymptotic value of U’ inside the fully turbulent
interior of the layer is considered as a parameter
to be determined.

The mean velocity distribution itself can be ob-
tained by integrating Eq. (60) once more with respect
to ¢ and again using the transformation nde = vdy,,

Ule) = Uo — U = (U3/a) exp [2a(e; — ¢)].  (61)
Here, the boundary condition U — U., since
U—0U—-U.)

has been included in the outside flow.

The eddy visocity differs from the total viscosity
only by the constant kinematic viscosity », so we can
easily obtain

@ > ®©,

e = v exp [2a(e; — ©)]. (62)
And finally, the Reynolds stress
au — ., __exp [dale; — @)]
“dy = PV T exp oo, — ]

The above relations were all given as function of
the transformed independent variable ¢. We must
transform them back to again be expressed as func-
tions of the physical coordinate y, = y — ..

The relationship between ¢ and ¥, can be obtained
by integrating Eq. (52),

= exp [2a(p — ¢i)]
+ 2a(p — @) — 1, (64)

where y; is defined so that ¢ = ¢; when y = y;, or
¥ = 0.

A simple explicit inverse relationship between y
and ¢ cannot be given; consequently, a tabulated
function &[(V,/»)(y — %.:)] is introduced and all
the asymptotic solutions are expressed by it. (See
Table I.) We have, the total viscosity (Fig. 9)

(65)

the mean velocity gradient (or mean vorticity) (Fig.
9)

2ay, = 2a(y — y.)

n = v+ v®,

V=13 @
the total shear stress
T = 22U}®, (67)
the eddy viscosity
e = vd, (68)
the Reynolds stress
e‘% = 20 %5 : 69)
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Tarwx I, Tabulated function & of the asymptotic solutions

of the outer edge.
(Vo/9} (¥ — Y3) 4
© 0
11
5,99 0.0067
4.92 0.018
3.95 0.049
2.86 0.135°
1.63 0.3679
1.05 0.549
0.38 0.818
0 1
-1.15 1.649
-2.72 2.718
—4 98 4.48
—6.17 5.47
-8.39 7.389
-10.23 9.025
—13.68 12,18
—16.58 14 .88
—22.10 120.00
—~35.60 33.1
—57.60 54.6
and, finally, the mean velocity defect
14
0=v.-v=2Ug (70)

Vo

It is clear that the eddy viscosity ¢ the mean
velocity defect U. — U, the shearing stress, and the
Reynolds stress all increase slowly from zero in the
outside flow, near the interface they grow rapidly,
but inside the region they all grow almost linearly.

The mean velocity gradient or mean vorticity is
also interesting. It grows from zero and asymptot-
ically reaches the value of 2U} in ‘a relatively short
distance. The thickness of the superlayer A forms
a Reynolds number of the order of 10 with the cross-
section velocity V, (Fig. 9),

Vo Afv & 10.

An estimate of the thickness of the superlayer A
was made earlier by Corrsin and Kistler.' By using
an argument based on diffusion, they found A to be
of the order of the Kolmogoroff length A =~ (,°/&')"*,
and the propagation velocity-of the turbulent front
was estimated to be proportional to (vw’)*’* (where
%’ is the rate of energy dissipation per unit mass,
and v’ is the root mean square value of the vorticity).
Corrsin and Kistler’'s value of A agrees reasonably
well with an estimate based on a partial analysis
of Lessen.”

From a consideration of the balance of the con-
vection and diffusion of vorticity, the entrainment
velocity V, can be estimated to be of the order of

8 M. Lessen, NACA Report 979 (1950).
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F1a. 9. The distribution of total turbulent viscosity and mean
vorticity across the interface.

(®'v)* [see Eq. (12.8) of Rotta’]. The Reynolds
number of the superlayer based on the Kolmogoroff
length obtained by Corrsin and Kistler becomes
A _ (QIV)IM(VS/(I)/)IM

l'. a 14

=1,

which is within an order of magnitude of the value
obtained above.

Experimenters have obtained the distribution ‘of
the eddy viscosity e by d1v1dmg the measured value
of Reynolds stress —puv by the measured value of
the mean velocity gradient. In this outer region, the
value of the mean velocity gradient is almost zero.
Therefore, the experimentally available values of
¢ are too uncertain to be compared directly with the
analytic solution. However, we can match the mean
velocity solutions with the experimental mean ve-
locity defect distribution.

- According to Corrsin and Kistler'® and Klebanoff,"”
for a boundary layer with zero pressure gtadlent
the mean position of the interface is 7, =~ 0.78 &
and y,(f) fluctuates with an rms value of ¢ 2 .0.14 5.
With these values, the long time average mean ve-
locity defect U. — U can be plotted by * ‘smearing”’
the solution aceording to the Gaussian distribution
of y; as given in Egs. (47) and (48). Using the meas-
ured data presented in Clauser,” we find that for
the best fit we can determine the constant 2U} inside
the turbulent region. From the similarity form of
the defect law, we may write

2U5 = K(u,/3). (71)

The bést fit for the constant K was found to be K =
9.4. This constant determines the slope of the mean
velocity distribution. And through the value of the
friction velocity u, in Eq. (71), the effect of the pre-
sence of the wall is brought in. The calculated asymp-

2 P, H. Clsuser, J. Aeron. Sci. 21, 2 (1954).
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Fia. 10. Calculated asymptotic mean velocity defect pro-
file in the outer region of the boundary layer compared with
experiment of Clauser.23

totic mean velocity defect U. — U is then compared
with the experimental data in Fig. 10.

Recent measurements were made in the inter-
mittent region of the turbulent boundary layer
by Kibens and Kovasznay.” A special electronic
technique, conditional sampling, permitted the mea-
surement of the ‘“instantaneous mean velocity pro-
file” through the interface and the results confirm the
existence of the linear range with X = 9.2.

V. CONCLUSIONS

A rate equation has been proposed for the total
turbulent viscosity n = e + v. It includes the effects
of generation, convection, diffusion, and decay. The

generation and decay terms in the rate equation are

“guessed’’ by using dimensional reasoning and plau-
sibility arguments. They involve two ‘‘universal

24V, Kibens and L. 8. G. Kovasznay, Bull. Am. Phys,
Soe. 13, 827 (1968).
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constants” 4 and B. Prandtl’s “mixing length the-
ory” ig obtained as a limiting case of present theory
inside a highly turbulent region where the convection
and diffusion effects are negligible. Comparison with
experimental results obtained for the turbulent vis-
cosity in turbulent boundary layers with zero pres-
sure gradient suggests the choice of A = 0.133 and
B = 0.8.

The rate equation, the momentum equation, and
the continuity equation for the mean flow form a
closed system of parabolic partial differential equa-
tions. At least in principle, a direct forward inte-
gration using a digital computer can be performed
to calculate the downstream development of the
mean velocity, shear stress, as well as the turbulent
viscosity profile.

Explicit results for the mean velocity profile and
other flow properties of the outer edge (superlayer)
have been obtained in closed form by making the
additional assumption that the large scale motion
plays no important role in maintaining the Reynolds
stress. The thickness of the superlayer was found to
be of the order of 10»V;' where V, is the entrain-
ment velocity.

By accepting the ‘“law of the wall” as valid near
the boundary, the mean velocity, shear stress, and
total viscosity of a locally similar turbulent boundary
layer with zero pressure gradient have been cal-
culated by analog computer. Agreement with the
experimental results is satisfactory.
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