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The vorticity-stream function formulation of the two-dimensional incompressible Navier- 
Stokes equations is used to study the effectiveness of the coupled strongly implicit multigrid 
(CSI-MG) method in the determination of high-Re fine-mesh flow solutions. The driven flow 
in a square cavity is used as the model problem. Solutions are obtained for configurations 
with Reynolds number as high as 10.000 and meshes consisting of as many as 257 x 257 
points. For Re = 1000, the (129 x 129) grid solution required 1.5 minutes of CPU time on the 
AMDAHL 470 V/6 computer. Because of the appearance of one or more secondary vortices 
in the flow field, uniform mesh refinement was preferred to the use of one-dimensional grid- 
clustering coordinate transformations. 

1. INTRODUCTION 

The past decade has witnessed a great deal of progress in the area of 
computational fluid dynamics. Developments in computer technology hardware as 
well as in advanced numerical algorithms have enabled attempts to be made towards 
analysis and numerical solution of highly complex flow problems. For some of these 
applications, the use of simple iterative techniques to solve the Navier-Stokes 
equations leads to a rather slow convergence rate for the solutions. The solution 
convergence rate can be seriously affected if the coupling among the various 
governing differential equations is not properly honored either in the interior of the 
solution domain or at its boundaries. The rate of convergence is also generally 
strongly dependent on such problem parameters as the Reynolds number, the mesh 
size, and the total number of computational points. This has led several researchers to 
examine carefully the recently emerging multigrid (MG) technique as a useful means 
for enhancing the convergence rate of iterative numerical methods for solving 
discretized equations at a number of computational grid points so large as to be 
considered impractical previously. 
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The theoretical potential of the multigrid method has been adequately exposed for 
the system of discretized equations arising from a single differential equation (e.g., 
[ 15, 221). In fact, for 1-D problems, Merriam [ 151 has shown the likeness of the 
multigrid method to the direct solution procedure of cyclic reduction. This potential 
has been realized and demonstrated in actual solutions of sample problems [3, 5, 
8, 131. Application of the multigrid technique to the solution of a system of coupled 
nonlinear differential equations still poses several questions, however, that are 
currently being studied by various investigators [ 7, 21, 221. 

The present study represents an effort to employ the multigrid method in the 
solution of the Navier-Stokes equations for a model flow problem with a goal of 
obtaining solutions for Reynolds numbers and mesh refinements as high as possible. 
The fundamental principle of the multigrid procedure is first described briefly, then its 
application to the governing equations is discussed in detail. Finally, the results 
obtained for the shear-driven flow in a square cavity at Reynolds number as high as 
5000 and 10,000 are presented, together with the particular details that needed to be 
observed in obtaining these solutions. 

2. BASIC PRINCIPLE OF MULTIGRID TECHNIQUE 

Following Brandt and Dinar [7], the continuous differential problem considered is 
a system of I partial differential equations represented symbolically as 

Lj CT(X) = Fj(~), j= 1,2 ,..., 1, YED, 

with the m boundary conditions 

Bi o(2) = G,(Z), i = 1, 2 ,..., m, X E aD, 

(2.1) 

(2.2) 

where 0 = (U, , U, ,..., U,) are the unknown variables, X = (x,, x2,..., xd) are the d 
independent variables of the d-dimensional problem, Fj and Gi are known functions 
on domain D and its boundary c?D, respectively, and Lj and Bi are general differential 
operators. 

A finite-difference solution to the problem described by Eqs. (2.1) and (2.2) is 
desired in a computational domain with grid spacing h. With a superscript h to 
denote the finite-difference approximation, the linear system of algebraic equations 
resulting from a selected difference scheme can be represented as 

(2.3) 

A conventional iterative technique for solving Eq. (2.3) consists of repeated sweeps of 
some relaxation scheme, the simplest being the Gauss-Seidel scheme, until 
convergence is achieved. It is often experienced that the convergence of the method is 
fast only for the first few iterations. This phenomenon can be explained if one 
considers a Fourier analysis of the error. Brandt (51 has thus estimated the 
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magnitude of the smoothing rate p defined as the factor by which each error 
component is decreased during one relaxation sweep of the Gauss-Seidel procedure. 
It is observed that Gauss-Seidel relaxation produces a good smoothing rate for those 
error components whose wave length is comparable to the size of the mesh; the 
smoothing rate of more slowly varying Fourier components of the error is relatively 
poor. The multigrid method is based primarily on this feature. It recognizes that a 
wavelength which is long relative to a tine mesh is shorter relative to a coarser mesh. 
Hence, after the first two or three iterations on a given fine mesh, the multigrid 
method switches to a coarser mesh with step size 2h, where the error components 
with wavelength comparable to 2h can be rapidly annihilated. The fine-grid solution 
determined in the first step then needs to be corrected to reflect appropriately the 
removal of the Z&wavelength content from the error. Repeated application of this 
process over a sequence of grids constitutes the basic idea of the multigrid method. 

Accordingly, the multigrid method makes use of a hierarchy of computational 
grids Dk with the corresponding grid functions ok, k = 1, 2,..., M. The step size on Dk 
is h, and hk+, = fhk, so that as k decreases, Dk becomes coarser. On the kth grid, 
Eq. (2.1) has the discretized approximate form 

LjkUk = Fj”. (2.4) 

The operations of transfer of functions from tine to coarse grids or from coarse to 
fine grids, have been termed “interpolations” by Brandt 151. This terminology is 
somewhat unconventional when referring to transfer from fine to coarse grids. The 
alternative terminology of restriction and prolongation, used by Hackbush [ 131 and 
Wesseling [22], for example, is preferred here. The restriction operator Rip’ transfers 
a fine-grid function fik to a coarse-grid function ok-‘. On the other hand, the 
prolongation operator, denoted as Pi- I, transfers a coarse-grid function ok-’ to a 
tine-grid function fl”. 

For the restriction operator, the simplest possible form is “injection,” whereby the 
values of a function in the coarse grid are taken to be exactly the values at the 
corresponding points of the next fine grid, i.e., 

(Rt-lUk)i+l,j+l =“‘?i+I,2j+l* (2.5) 

Being computationally efficient, injection has been used very frequently, particularly 
in the initial phases of development of a multigrid program. In general, however, the 
restriction operator R :- ’ may be formulated as one of many possible weighted 
averages of neighboring fine-grid function values. Two such operators are the 
optimal-weighted averaging and the full-weighted averaging operators defined by 
Brandt [6]. It is significant to note that these two are equivalent for 1-D problems. 
For 2-D problems, optimal-weighted averaging involves fewer points than full- 
weighted averaging, which as the name indicates, involves all eight points (i f V, 
j f- a), v, u = 0, 1, adjacent to a given point (i, j). Hence, optimal weighting may be 
computationally more efficient than full weighting, but the latter provides better 
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stability and convergence properties to a multigrid technique, particularly for 
problems with rapidly varying coefficients. Full weighting is also preferred by 
Wesseling [22] who termed it “9-point restriction” because of the number of points it 
employs, i.e., 

(Ri-‘Uk)i+ l,j+ 1 = auk+ l,*j+ I 

+ QLU:i+*,*j+l + Ul;i+l,*j+2 + u:i,*j+l + uti+l,*jl 

+ 3kl”ti+2,*j+2 + Uti,*j+Z + u:i+*.*j + u:i,*,jl* (2.6) 

Wesseling also tested a 7-point modification of the above 9-point restriction operator 
and found it to be almost equally suitable. The optimal-weighted averaging operator 
of Brandt [6] is a 5-point restriction operator derivable from Eq. (2.6) by eliminating 
the influence of the four corner-point values and doubling the center-point influence. 

For the prolongation operator, the simplest form is derived using linear inter- 
polation. This has been indicated by Brandt to be suitable for second-order 
differential equations. Prolongation by linear interpolation introduces no ambiguity 
when the interpolated value is desired at the midpoints of the boundaries of a mesh 
cell. Two options are possible, however, for obtaining the interpolated value at the 
center of a cell. The choice of Rip ’ as defined by Eq. (2.6) suggests that the 
prolongation operator Pi_, also involve nine points so that the value at the cell 
center is obtained as the arithmetic mean of the four corner points. This leads to the 
9-point prolongation operator defined by Wesseling as 

(Pk1Uk-‘)*i+2,2j+l =+[“ftt,j+l + ufT:,j+l17 

(P~-,Uk-‘)*i+l,zj+*=~[U:,:,ji 1 + uf<:,j+Zl, 
(2.7) 

(Pf-lUk-1)2i+2,2j+2 = fIUfYll,j+l + ufY:,j+l + ufT:,,j+2 + uFT:,j+*l* 

The operators defined in Eqs. (2.6) and (2.7) have the important property that 
pfi-I is the adjoint of Rt-‘, i.e., 

(R;-‘uk, vk-’ )k-1 = (Uk,P;-,vk-‘)k, (2.8) 

where ( ) denotes an inner product defined as 

(2.9) 

This properly maintains the coarse-grid equation to be a “homogenization” of the 
fine-grid equation [2]. This is particularly important for nonlinear problems. In linite- 
element discretization, this property leads to coarse-grid operators defined as 

Lkp1 =Rk-LLkpk 
k k-, = (P;-,)*Lk&. (2.10) 
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Brandt and Dinar [7] indicate that the choice of the restriction operators is guided 
by rather definite rules, so that the only flexibility in a multigrid procedure is in the 
selection of the smoothing technique, i.e., the relaxation technique. While this may be 
true to an extent, even the limited experience of the present authors with the multigrid 
method indicates that, within the prescribed guidelines, some modifications in the 
restriction and the prolongation operators do influence the efficiency of the overall 
algorithm. Also, the definition of convergence in the finer grids appears to influence 
the final solution obtained. 

3. APPLICATION TO NAVIER-STOKES EQUATIONS FOR 
SHEAR-DRIVEN CAVITY FLOW 

The laminar incompressible flow in a square cavity whose top wall moves with a 
uniform velocity in its own plane has served over and over again as a model problem 
for testing and evaluating numerical techniques, in spite of the singularities at two of 
its corners. For moderately high values of the Reynolds number Re, published results 
are available for this flow problem from a number of sources (e.g., [9, 17, 19]), using 
a variety of solution procedures, including an attempt to extract analytically the 
corner singularities from the dependent variables of the problem [IO]. Some results 
are also available for high Re [ 161, but the accuracy of most of these high-Re 
solutions has generally been viewed with some skepticism because of the size of the 
computational mesh employed and the difftculties experienced with convergence of 
conventional iterative numerical methods for these cases. Possible exceptions to these 
may be the results obtained by Benjamin and Denny (41 for Re = 10,000 using a 
nonuniform 15 1 X 15 1 grid such that Ax = Ay ‘v l/400 near the walls and those of 
Agarwal [ 1 ] for Re = 7500 using a uniform 121 x 12 1 grid together with a higher- 
order accurate upwind scheme. The computational time required in these studies, 
however, is of the order of one hour or more for these high-Re solutions. The present 
study aims to achieve these solutions in a computational time that is considerably 
smaller, thereby rendering tine-mesh high-Re solutions more practical to obtain. 

Governing D@erential Equations and Boundary Conditions 

With the nomenclature shown in Fig. 1, the two-dimensional flow in the cavity can 
be represented mathematically in terms of the stream function and the vorticity as 
follows, with the advective terms expressed in conservation form: 

Stream Function Equation: yfxx + yyy + u = 0. (3.1) 
Vorticity Transport Equation: 

wx.x + UYY - ReKvpL - (v,~>,l = Re w,. (3.2) 

Boundary conditions. The zero-slip condition at the nonporous walls yields that w 
and its normal derivatives vanish at all the boundaries. As is well known, this 
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FIG. 1. Cavity flow configuration, coordinates, nomenclature, and boundary conditions. 

provides no direct condition for o at the walls. Theoretically, this should not pose a 
difficulty if the equations for u and v are solved simultaneously and if all boundary 
conditions are imposed implicitly. In practice, however, the boundary conditions for 
o are derived from the physical boundary conditions together with the definition of w 
as given by Eq. (3.1). 

Thus, at the moving wall y = 1, j = J: 

vJ=o, (3.3) 

*J = -‘(/yy = -(vJ+ 1 - ~VJ + WJ- ,)/Ay2, (3.4) 

where wJ+, is evaluated from a third-order accurate finite-difference expression for 
w,,, which is a known quantity at the boundary, i.e., 

WY,= c2y/,+ 1 + 3~J-661//~-l + VJ-I)/(~AY). (3.5) 
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The resulting expression (3.4) for wJ is then second-order accurate (see 1121). 
Expressions for w at other boundaries are obtained in an analogous manner. 

Discretization 

The discretization is performed on a uniform mesh. In fact, with a multigrid 
solution technique, nonuniform mesh or grid-clustering coordinate transformations 
are not essential since local mesh refinement may be achieved by defining 
progressively liner grids in designated subdomains of the computational region. 
Second-order accurate central finite-diferrence approximations are employed for all 
second-order derivatives in Eqs. (3.1) and (3.2). The convective terms in Eq. (3.2) are 
represented via a first-order accurate upwind difference scheme including its second- 
order accurate term as a deferred correction, as formally suggested by Khosla and 
Rubin [ 14). This ensures diagonal dominance for the resulting algebraic equations, 
thus lending the necessary stability property to the evolving solutions while restoring 
second-order accuracy at convergence. 

Relaxation Scheme (Smoothing Operator) 

In the multigrid method, the role of the iterative relaxation scheme is not so much 
to reduce the error as to smooth it, i.e., to eliminate the high-frequency error 
components. Due to the coupling between governing equations (3.1) and (3.2) as well 
as through the vorticity boundary conditions (Eq. (3.4)), sequential relaxation of the 
individual equations (3.1) and (3.2) would have poor smoothing rate. For example, 
smooth errors in w could produce high-frequency error components in the vorticity 
solution via the boundary condition for w. On the other hand, a convergent solution 
of each equation at each step would constitute a very inefficient procedure. An 
appropriate approach consists of relaxing the coupled governing equations (3.1) and 
(3.2) simultaneously and incorporating the vorticity boundary conditions implicitly. 
A coupled Gauss-Seidel procedure or a coupled alternating-directing implicit scheme 
may be used for this purpose. Rapid convergence, however, of the coarsest-grid 
solution as required in the full multigrid algorithm [6] can be safely assured by the 
use of these methods only when the coarsest mesh is not too line. On the other hand, 
for the driven-cavity flow at high Re, too coarse a grid does not retain enough of the 
solution features and cannot, therefore, provide an appropriate initial approximation 
to the fine-grid solution for high-Re flow. Hence, the present work employs the 
coupled strongly implicit (CSI) procedure of Rubin and Khosla [ 181. This scheme is 
a two-equation extension of the strongly implicit procedure developed by Stone 1201 
for a scalar elliptic equation and may be viewed as a generalization of the Thomas 
algorithm to two-dimensional implicit solutions. Its effectiveness has been 
demonstrated by Rubin and Khosla [ 181 via application to a number of flow 
problems. The present authors have also found it to be useful in conjunction with the 
multigrid technique [ 111. The procedure may be approximately likened to incomplete 
lower-upper (ILU) decomposition which is considerably more efficient, manifesting 
lower values of the smoothing factor p than the simple Gauss-Seidel relaxation 
procedure. 
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Prolongation and Restriction Operators 

The prolongation operator was always chosen to be the 9-point operator given in 
Eq. (2.7) except for converged coarse-grid solutions where cubic interpolations were 
used as suggested by Brandt [6]. For the restriction operator, simple injection as well 
as the 5-point operator (optima1 weighting) and the 9-point operator (Eq. (2.6)) were 
employed. While the first two generally provided convergent solutions, 9-point 
restriction led to improved convergence for the very high Re cases computed. 

Multigrid Procedure 

For the present nonlinear problem, the full approximation scheme (FAS) was 
employed, rather than a correction scheme. Also, the full multigrid (FMG) algorithm 
was preferred over the cycling algorithm since a converged coarse-grid solution is 
generally obtainable by the CSI procedure used for relaxation. It is possible that, for 
the higher-Re cases computed, the cycling algorithm could also be used with the first 
approximation of the finest-grid solution being provided by the solution of a 
preceding calculation with a lower value of Re. Finally, the “accommodative” version 
of the multigrid procedure was used so that convergence as well as convergence rate 
were monitored during the process of relaxation on a given grid in order to control 
the computational procedure, particularly with respect to switching from one grid to 
another. The accommodative FAS-FMG procedure used here follows that detailed 
by Brandt [6]. This procedure is briefly described below. 

The solution on grid Dk is denoted as u k. This is prolongated to the next finer grid 
Dkt ’ using the prolongation operator to provide an estimate for ukt’ as 

U k+’ -pt+‘uk* est - (3.6) 

This estimate is used as the initial guess for the solution on grid Dkt I, i.e., for solving 
the equation 

Lk+lUktl =Fktl (3.7) 

Convergence is defined to occur when the norm ekt, of the dynamic residuals of 
Eq. (3.7) is below a specified tolerance, sk+, , i.e., 

ek+l <‘ktl? (3-g) 

with ek+, taken to be 10m4 in the present work. It must be recognized that this 
assigned value for ek+, remains in effect only until the first multigrid cycle is 
executed, during which Ed+ I is redefined as described later in Eqs. (3.13) and (3.14). 
During the relaxation process, the convergence rate for Eq. (3.7) is also monitored 
and compared with the theoretical smoothing rate of the relaxation procedure used. 
Accordingly, if the ratio of the residuals eI+ I and et:: for two consecutive iterations 
n and (n + 1) is smaller than the smoothing rate of the scheme, the iteration process 
is continued. Following convergence, k is incremented by unity and the steps 
indicated by Eqs. (3.6) and (3.7) are repeated. This is continued until k = M, i.e., 
convergence on the desired finest grid is achieved, yielding the required final solution. 
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If, at any stage of the relaxation process for k # 1, i.e., for all but the coarsest grid, 
the convergence rate is not satisfactory, i.e., if 

flt1 
ektl let+, > v, (3‘9) 

where q = ,LJ, the scheme smoothing rate, then a multigrid cycle is interjected in the 
procedure. The multigrid cycle consists of computing a coarse-grid correction u:+ , to 
the evolving line-grid solution u$,’ by solving the equation 

LkUk -P, k+l - (3.10) 
where 

fk & Lk(Rk kt,~;&‘)+R;+l(fk+l -Lk+‘u;&‘). (3.11) 

If (k + 1) is currently the finest level, then f”” = Fkt ’ This correction is used to . 
improve the old line-grid solution according to the relation 

u k+’ = z&l + P;+l(u;t 1 -R;, ,u::,‘). new (3.12) 

Convergence of Eq. (3.10) is defined to occur when the residual norm ek for this 
equation is smaller than the residual norm ek+l for the finer grid, i.e., when 

ek < ck= de,+, (3.13) 

where 6 < 1; the value used was 6 = 0.2. 
Following the correction according to Eq. (3.12), the solution of Eq. (3.7) 

proceeds as before. 
If the solution of Eq. (3.10) itself does not exhibit a satisfactory convergence rate, 

defined in a manner analogous to Eq. (3.9), then a second multigrid cycle may be 
performed by going to a yet coarser grid Dk-’ to enhance the convergence rate of 
Eq. (3.10). Thus, a sequence of multigrid cycles may be nested, one inside another, to 
solve the current finest-grid equation effkiently. On the currently finest grid Dkt ’ in 
this nest, convergence should be attained to within the estimated truncation error rk 
so that, corresponding to Eq. (3.8) the convergence criterion used is 

ektl cEktl=aqrkT (3.14) 

where Tk is the norm of (Fk -fk), a = (hk+ /hk)‘, and q = 1 for second-order 
accurate discretization. As will be discussed in the next section, modification of 
Eq. (3.14) to include aq, with q > 1, appears to influence the converged numerical 
values of the solution. 

4. FINE-GRID AND HIGH-RE RESULTS FOR DRIVEN CAVITY 

The correctness of the analysis, the solution procedure, and the computer program 
were assessed by first obtaining fine-mesh solutions for the case with Re = 100 for 
which ample reliable results are available in the literature. This case was also 
intended for experimentation with some of the parameters associated with the 
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multigrid procedure, namely, selection of q in Eq. (3.9), values qr and q, for q in 
Eq. (3.14), the coarsest mesh width, the finest mesh width h,, and the prolongation 
and restriction operators. It was observed that h, is the most important parameter, 
especially for high Re. Also, as Re increased, very coarse grids could not be included 
in the procedure. The smoothing factor ,u for the CSI procedure used is expected to 
be smaller than that for the Gauss-Seidel scheme. Nevertheless, for Re = 100 and 
400, r = 0.5 was used. The value of q had to be increased gradually with Re; for 
Re = 10,000, v = 0.7 was needed. Similarly, a time step of infinity could be used in 
the vorticity equation for Re up to 3200 but had to be reduced rather rapidly as Re 
increased. For Re = 10,000, At = 0.1 was required. The corresponding values At, 
used by Benjamin and Denny [4] in conjunction with the AD1 solution procedure for 
the case with Re = 10,000 were smaller than this by several orders of magnitude; this 
may also partly explain the reduction in computational time achieved by the present 
solution technique. Initially, q = 1 was used in Eq. (3.14). For Re = 100, this proved 
adequate in the respect that the results agreed well with available solutions. But for 
Re > 1000, the values obtained, for instance, for 1 vmin / at the center of the primary 
vortex were somewhat lower than the published solutions. Better comparison resulted 
from the use of q > 1. This is because increasing q enforces continuation of the 
iteration process and leads to some further reduction of the dynamic residuals ek+ , , 
while also modifying the actual solution simultaneously. The results published by 
most previous investigators have been obtained subject to the convergence criterion 
that the relative change in two successive iterates of the solution at each 
computational point be below a prescribed small value. Frequently, the choice of this 
value is not related to the truncation error in the finite-difference approximation. On 
the other hand, in the present computational procedure, convergence on the finest grid 
is defined in terms of the truncation error. Hence, the results presented here employed 
q, = 4 and q,,, = 5, except for the cases with Re = 7500 and 10,000 which used 
q* = 4. 

Figures 2a and b show the velocity profiles for u along vertical lines and c’ along 
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horizontal lines passing through the geometric center of the cavity and through the 
center of the primary vortex in the flow. The origins for these graphs for various 
values of Re have been displaced for clarity of the profiles. The thinning of the wall 
boundary layers with increase in Re is evident from these profiles, although the rate 
of this thinning is very slow for Re > 5000. The near-linearity of these velocity 
profiles in the central core of the cavity is indicative of the uniform vorticity region 
that develops here for large Re. The high-Re profiles of u exhibit a kink near y = 1, 
while a similar behavior is observed for the u profiles near x = 1. Such behavior has 
been reported by some previous investigators, and is seen to persist in the present 
line-grid solutions. This would imply that the velocity distributions near these walls 
are not extremely sensitive to mesh size. The values of I// and w at the vortex center 
are observed to be considerably more sensitive to mesh size than these velocity 
profiles. 

Included in Fig. 2 are the available results of [ 1, 16, 171. For Re = 100, all results 
agree well with one another as well as with the present solutions, indicating that for 
this value of Re, the coarser grids employed by the previous investigators were quite 
adequate. As Re increases, however, the inadequacy of coarse meshes gradually 
becomes apparent. This is particularly evident in the solutions reported by Nallasamy 
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Results for u-velocity along Vertical Line through Geometric Center of Cavity 
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AI.07503 

AI.23 176 

-0.32393 

AI.38324 

-0.43025 

a.43590 

AI.43154 

0.00000 

I .ooooo 

0.47221 

0.47783 

0.48070 

0.47804 

0.34635 

0.20673 

0.08344 

0.03 111 

-0.07540 

-0.23 186 

-0.32709 

-0.38000 

-0.41657 

-0.42537 

-0.42735 

0.00000 
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and Prasad [ 161. Nevertheless, the fourth-order accurate spline method of Rubin and 
Khosla [ 171 remains satisfactory with a 17 x 17 mesh at Re = 1000. Also, the third- 
order accurate scheme of Agarwal [ 1 ] performs well with a 121 X 121 grid at 
Re = 7500, but the corresponding computer time is quite large. Unfortunately, 
Benjamin and Denny (41 did not present any velocity data, although their solutions 
are considered to be very accurate for high Re. 

In view of the above remarks, the present line-mesh results should be very useful. 
Consequently, Tables I and II list the numerical values corresponding to the velocity 
profiles shown in Fig. 2 for lines passing through the geometric center of the cavity. 
Only typical points, rather than the entire large set of computational points, along 
these profiles have been listed. Care has been taken to include the points of local 
maxima and minima for all values of Re; these points are underscored. 

The streamline contours for the cavity flow configurations with Re increasing from 
100 to 10,000 are shown in Fig. 3. A magnified view of the various secondary 
vortices is also included. The values of I,V along the contours shown are listed in 
Table III. For Re = 400, the results from a 129 X 129 grid as well as a 257 x 257 
grid are presented in order to demonstrate that the 129 x 129 grid is adequate for 
moderate values of Re. Although a comparison is not shown in this figure, the extent 

TABLE II 

Results for u-Velocity along Horizontal Line through Geometric Center of Cavity 

129m 
grid 

pt. no. x 100 400 1000 

Re 

3200 5000 7500 10,000 

129 1 .oooo 

125 0.9688 

124 0.9609 

123 0.953 1 

122 0.9453 

117 0.9063 

111 0.8594 

104 0.8047 

65 0.5000 

31 0.2344 

30 0.2266 

21 0.1563 

13 0.0938 

11 0.078 1 

10 0.0703 

9 0.0625 

1 0.0000 

0.00000 

-0.05906 

-0.0739 1 

-0.08864 

-0.10313 

-0.16914 

-0.22445 

-0.24533 

0.05454 

0.17527 

0.17507 

0.16077 

0.12317 

0.10890 

0.10091 

0.09233 

0.00000 

0.00000 

a.12146 

-0.15663 

-0.19254 

-0.22847 

-0.23827 

a.44993 

-0.38598 

0.05 188 

0.30174 

0.30203 

0.28124 

0.22965 

0.20920 

0.19713 

0.18360 

0.00000 

0.00000 

a.21388 

-0.27669 

a.33714 

-0.39188 

a.5 1550 

a.42665 

-0.3 1966 

0.02526 

0.32235 

0.33075 

0.37095 

0.32627 

0.30353 

0.29012 

0.27485 

0.00000 

0.00000 

xJ.39017 

a.47425 

a.52357 

-0.54053 

a.44307 

-0.37401 

-0.31184 

0.00999 

0.28 188 

0.29030 

0.37119 

0.42768 

0.4 1906 

0.409 17 

0.39560 

0.00000 

0.00000 

-0.49774 

a.55069 

-0.55408 

XI.52876 

a.41442 

-0.36214 

X).30018 

0.00945 

0.27280 

0.28066 

0.35368 

0.4295 1 

0.43648 

0.43329 

0.42447 

0.00000 

0.00000 

a.53858 

-0.55216 

-0.52347 

a.48590 

Jx41050 

a.36213 

a.30448 

0.00824 

0.27348 

0.28 117 

0.35060 

0.41824 

0.43564 

0.44030 

0.43979 

0.00000 

0.00000 

-0.54302 

-0.52987 

-0.49099 

-0.45863 

-0.4 1496 

-0.36737 

-0.307 19 

0.0083 1 

0.27224 

0.28003 

0.35070 

0.41487 

0.43 124 

0.43733 

0.43983 

0.00000 
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RE-100. UNIFORM GRID (129x129) 

RE=400, UNIFORM GRID (129x125 

Eddy EL, 

.d 

RE = 1000, UNIFORM GRID (129~129) 

RE=400, UNIFORM GRID (257x257) 

0.2 0.4 0.6 0.8 1.0 
x * 

FIG. 3. Streamline pattern for primary, secondary, and additional corner vortices. 
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Eddy TL, 
RE = 3200, UNIFORM GRID (129x 129) 

Y 

0.6 

Eddies BL,. BL2 

Y 

0.2 

0.0 

Eddy TL, RE = 5000, UNIFORM GRID (257x 257) 

0.0 x 0.2 
1.0 

Y 

0.8 

0.6 

FIGURE 3 (conhued) 
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Eddy TL, 
RE = 7500, UNIFORM GRID (257x 257) 

RE = 10000, UNIFORM GRID (257x 257) 

0.6 

Y 
Y 

FIGURE 3 (concluded) 
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TABLE III 

Values for Streamline and Vorticity Contours in Figs. 3 and 4 

Stream function Vorticity 

Contour 
letter Value of (I/ 

Contour 
number Value of v 

Contour 
number Value of w 

k 
I 

m 

-1.0 x lo- IL7 
-1.0 x lo-’ 
-1.0 x loms 
-1.0 x 1om4 
-0.0 100 
-0.0300 
-0.0500 
-0.0700 
-0.0900 
-0.1000 
-0.1100 
-0.1150 
-0.1175 

0 1.0 x 10-n 0 0.0 
1 1.0 x 10-7 fl *to.5 
2 1.0 x lo-” +2 *1.0 
3 1.0 x 10. 5 +3 zt2.0 
4 5.0x lo-5 f4 f3.0 
5 1.0 x 1om4 5 4.0 
6 2.5 x 10mJ 6 5.0 
7 5.0 x 10-J 
8 1.0 x 10-j 
9 1.5 x lo-’ 

10 3.0 x 10-j 

of the various secondary vortices is in excellent agreement with that reported by 
Benjamin and Denny [4]. The present results, however, are computationally more 
efficient. 

In Fig. 4 we show the vorticity contours corresponding to the streamline patterns 
presented in Fig. 3. Again, the values of w along these contours are listed in 
Table III. As Re increases, several regions of high vorticity gradients, indicated by 
concentration of the vorticity contours, appear within the cavity. It is seen from 
Fig. 4 that these regions are not aligned with the geometric boundaries of the cavity. 
It is for these reasons that uniform mesh refinement was used in the present study. 
Possible suitable alternatives appear to be the use of a basically modified non- 
Cartesian coordinate system and of a solution-adaptive local mesh refinement. An 
often-compared quantity for cavity flows is the vorticity at the midpoint of the 
moving wall or the minimum value of o at this boundary. Hence, the values of w at 
several selected points along this boundary are listed in Table IV, with the minimum 
value indicated by the underscore. These values of mrnin agree very well with the 
results tabulated in [4]. 

As seen from Figs. 3 and 4, fine-mesh solutions exhibit additional counter-rotating 
vortices in or near the cavity corners as Re increases. The effect of Re on the location 
of the centers of these vortices is shown in Fig. 5. In terms of the notation shown in 
Fig. 1, the letters T, B, L, and R denote top, bottom, left, and right, respectively; the 
subscript numeral denotes the hierarchy of these secondary vortices. Thus, BR, refers 
to the second in the sequence of secondary vortices that occur in the bottom right 
corner of the cavity. As is well known, the center of the primary vortex is offset 



RE = 100, UNIFORM GRID (129x129) RE = 400, UNIFORM GRID (129x129) 

RE = 400, UNIFORM GRID (257x257) 
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RE = 1000, UNIFORM GRID (129x129) 

FIG. 4. Vorticity contours for flow in driven cavity. 

towards the top right corner at Re = 100. It moves towards the geometric center of 
the cavity with increase in Re. Its location becomes virtually invariant for Re > 5000. 
All the secondary vortices appear initially very near the corners (or near the wall, in 
the case of the vortex TL,) and their centers also move, though very slowly, towards 
the cavity center with increase in Re. At the larger values of Re considered, the 
convection of these secondary eddies is evidenced by the direction of movement of 
the centers of these vortices. 

The computational advantage gained by use of the MG procedure is best illustrated 
in terms of the behavior of the root-mean square (RMS) value of the dynamic 
residuals of the discretized governing equations in the finest grid. In Fig. 6 we show 
the finest-grid RMS residuals for w and o obtained during a single-grid computation 
with h = & (solid curve) as well as a multigrid calculation with h, = & and M = 6 
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RE = 3200, UNIFORM GRID (129x129) 

RE = 7500, UNIFORM GRID (257x257) 

RE = 5000, UNIFORM GRID (257x257) 

RE= 10000, UNIFORlVl GRID (257 x 257) 

FIGURE 4 (continued) 

(solid and dashed lines). Flow configurations with Re = 100 and Re = 1000 have 
been examined. In both cases, even the single-grid calculations exhibit a rapid initial 
decay of the RMS residuals for y as well as w during the first 4-6 iterations (work 
units). Thereafter, the solid curves show a marked decrease in their slope. Employing 
the multigrid process after these first 4-6 work units tends to retain the initial decay 
rate for the errors during the overall computation. 

It is important to mention two points with respect to the MG curves in Fig. 6. 
First, the solid portions of the MG-curves correspond to the relaxation step 
(smoothing) on the finest grid while the dashed portions correspond to the coarse-grid 
correction due to the MG cycle. Second, although convergence was defined on the 
basis of the arithmetic average of the RMS residual in u and u/, the convergence rate 
was examined in terms of the RMS residual in o alone. It is perhaps for this reason 



TABLE IV 

Results for Vorticity w along Moving Boundary 

Re 

X 

0.0000 

0.0625 
0.1250 
0.1875 
0.2500 
0.3125 
0.3750 
0.4375 
0.5000 
0.5625 
0.6250 
0.6875 
0.7500 
0.8125 
0.8750 
0.9375 
1 .oooo 

100 

4O.OllO 53.6863 
22.5378 34.635 1 
16.2862 26.5825 
12.7844 21.0985 
10.4199 16.8900 
8.69628 13.7040 
7.43218 11.4537 
6.5745 1 10.0545 
6.13973 9.38889 
6.18946 9.34599 
6.82674 9.88979 
8.22110 11.2018 

10.7414 13.9068 
15.6591 19.6859 
30.7923 35.0773 

1000 3200 

75.5980 
51.0557 
40.5437 
32.2953 
25.4341 
20.2666 
16.8350 
14.8901 
14.0928 
14.1374 
14.8061 
16.0458 
18.3120 
23.8707 
42.1124 

- 

10,000 

126.670 
89.3391 
75.6401 
61.7864 
47.1443 
35.8795 
28.9413 
25.3889 
24.1457 
24.4639 
25.8572 
27.95 14 
30.4779 
34.2327 
49.9664 

146.702 
103.436 
91.5682 
77.9509 
60.0065 
45.8622 
37.3609 
33.0115 
3 1.3793 
31.5791 
33.0486 
35.3504 
38.0436 
41.3394 
56.7091 

- 

180.927 209.452 
125.131 145.073 
111.115 127.928 
98.2364 116.275 
75.6334 90.023 1 
56.9345 67.1400 
45.9128 53.5905 
40.3982 46.8271 
38.3834 44.3287 
38.695 1 44.6303 
40.6123 46.8672 
43.5641 50.3792 
46.8901 54.3725 
50.0769 57.7756 
61.4046 66.0352 

0.92 
Vortex TL, 

Y 

0.91 

0.90 

ow891 Re=:200 , 1 

0.05 0.06 0.07 0.08 
x 

0.70 

Y 

0.65 

0.60 

Primary Vortex 

.50 0.55 0.60 0.65 
x 

Vortex BL, 

0.20 

FIG. 5. Effect of Reynolds number 

. Vortex BR, 

0 Vortex BR 
0.151 

2 
1 I I I 1 

0.75 0.80 0.85 0.90 0.95 1.00 
x 

on location of vortex centers. 
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FIG. 6. Convergence of single grid and multigrid computational procedures. Single grid (h = &) 
Re= 100: (O)e,, (W)e,; Re= 1000: (A)e,, (*)e,. Multigrid (h,, = &, A4 = 6) Re = 100: (0) e,. 

De ,; Re= 1000: (A)e,, (O)e,. 

that w exhibits a much more desirable convergence behavior than v because the 
convergence rate is indeed the parameter that comprises the basis for interjecting an 
MG cycle in the solution procedure. Some further improvement in the overall 
convergence process may be possible by also including the convergence rate of v/ in 
the criterion controlling switching to the coarse-grid correction step. 

Finally, a comprehensive survey of the properties of the primary and secondary 
vortices in the driven-cavity flow is provided in Table V. Some of these are directly 
comparable with the numerical data listed in [ 1, 41. In particular, attention is drawn 
to the values of vmin and cc),,,, for the primary vortex. The present calculations for 
Re = 7500 with a 257 X 257 grid exhibit a stronger secondary vortex BR, than 
reported by Agarwal [ 11. Consequently, the present primary vortex is somewhat 
weakened. Nevertheless, the approach of o,.~, to the infinite-Re value of 1.886 is 
clear, although this value is approached “from below” for the present solutions. 

581/48/3-7 
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TABL’E 

Properties of Primar:y 

Number Property 100 400 
- 

Primary Vmin 

w V.E. 
Location, x, y 

1000 

-0. I 17929 
2.04968 

0.5313, 0.5625 

First Wmax 
T W V.C. 

Location, x, y 

4. 
VL 

-0.103423 
3.16646 

0.6172, 0.7344 

- 

-0.113909 
2.29469 

0.5547, 0.6055 

- - 

BL vmax 
W Y.C. 

Location, x, y 

HL 
VI. 

BR Wmax 
W V.C. 

Location, x, y 

4 
VL 

Second ‘Ymin 
BL wv.,. 

Location, x, y 

4. 
VI 

1.74877 x lo-6 
-1.55509 x lo-’ 

0.03 13, 0.039 1 
0.078 1 
0.078 1 

1.25374 x lo-’ 
-3.30749 x 10-l 

0.9453, 0.0625 
0.1328 
0.1484 

- 
- 

1.41951 x lomJ 
-5.69697 x lo-’ 

0.0508, 0.0469 
0.1273 
0.1081 

6.42352 x IO-’ 
-4.33519 x 10-l 

0.8906, 0.1250 
0.2617 
0.3203 

-7.67738 x IO-“’ 
9.18377 x IO-’ 
0.0039, 0.0039 

0.0039 
0.0039 

-1.86595 x lo-@ 
4.38726 x 10-j 
0.9922, 0.0078 

0.0156 
0.0156 

2.31129 x 10 -’ 
-0.36175 

0.0859, 0.078 I 
0.2188 
0.1680 

1.75 102 x 10 mi 
-1.15465 

0.8594, 0: 1094 
0.3034 
0.3536 

- - 

BR vlnli” 
W V.E. 

Location, x, y 

HI. 
VL 

-9.31929 x IO-’ 
8.52782 x 10-j 
0.9922, 0.0078 

0.0078 
0.0078 

Third 
BR 

Wmax 
Location, x, y 

HL 
VI 

- 
- 
- 
- 

- 
- 
- 
- 

Work units 18.84 18.08 31.56 
CPU seconds 53.59 215.05 92.27 
Mesh points 129 257 129 
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V 

and Secondary Vortices 

409 

3200 5000 7500 10,000 

-0.120377 
1.98860 

0.5 165, 0.5469 

7.27682 x lo-” 
-1.71161 

0.0547, 0.8984 
0.0859 
0.2057 

9.7823 x 10m4 
‘1.06301 

0.0859, 0.1094 
0.2844 
0.2305 

3.13955 x 10-l 
-2.27365 

0.8125, 0.0859 
0.3406 
0.4 102 

-6.33001 x lo-’ 
1.44550 x 10-2 
0.0078, 0.0078 

0.0078 
0.0078 

-2.51648 x lo- 
9.74230 x IO-’ 
0.9844, 0.0078 

0.0254 
0.0234 

-0.118966 
1.86016 

0.5117, 0.5352 

1.45641 x 10-l 
-2.08843 

0.0625, 0.9 102 
0.1211 
0.2693 

-0.119976 -0.119731 
1.87987 1.88082 

0.5117, 0.5322 0.5117, 0.5333 

2.04620 x lo-’ 2.42103 x 10 ’ 
-2.15507 -2.18276 

0.0664, 0.9141 0.0703, 0.9 14 1 
0.1445 0.1589 
0.2993 0.3203 

1.36119 x lo- 
-1.53055 

0.0703, 0.1367 
0.3 184 
0.2643 

3.08358 x lo-’ 
-2.66354 

0.8086, 0.0742 
0.3565 
0.4180 

-7.08860 x lOm8 
1.88395 x lo-* 
0.0117, 0.0078 

0.0156 
0.0163 

-1.43226 x 10m6 
3.19311 x lo-* 
0.9805, 0.0195 

0.0528 
0.0417 

1.46709 x 10-l 1.51829 x 10 ’ 
-1.78511 -2.08560 

0.0645, 0.1504 0.0586, 0.1641 
0.3339 0.3438 
0.2793 0.2891 

3.28484 x 10-j 3.41831 x lo-’ 
-3.49312 -4.05 3 1 

0.7813, 0.0625 0.7656. 0.0586 
0.3779 0.3906 
0.4375 0.4492 

-1.83167 x 10-l -7.75652 x lo-’ 
1.72980 x 10. 2 2.75450 x 10 -’ 
0.0117, 0.0117 0.0156, 0.0195 

0.0234 0.0352 
0.0254 0.044 1 

-3.28148 x 10.’ -1.31321 x 10 -’ 
1.41058 x 10-l 3.12583 x 10-l 
0.9492, 0.0430 0.9336, 0.0625 

0.1270 0.1706 
0.0938 0.1367 

- 
- 

- 
- 

1.58111 x lO-9 5.66830 x 10 my 
0.9961, 0.0039 0.9961, 0.0039 

0.0039 0.0039 
0.0039 0.0039 

78.25 70.8125 68.50 99.5 
207.26 734.49 705.62 986.65 

129 257 257 257 
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SUMMARY 

Fine-mesh solutions have been obtained very efficiently for high-Re flow using the 
coupled strongly implicit and multigrid methods. The various operators and 
parameters in the multigrid procedure were examined, especially for high-Re flow. 
The use of 9-point restriction, or full-weighting, was found to be superior to 5-point 
restriction, or optimal weighting. The finest mesh size employed in the grid sequence 
continues to be a very significant parameter. The smoothing factor of the iteration 
scheme was seen to be influenced by the physical problem parameters, namely, Re. 
The definition used for convergence on current tine grids was also observed to 
influence the final solutions. 

The robustness and the efficiency of the overall solution technique has been 
demonstrated using the model problem of flow in a driven square cavity. Detailed 
accurate results have been presented for this problem. Up to 257 x 257, i.e., 66049 
computational points and Re as high as 10,000 have been considered, with CPU time 
of 16 to 20 minutes on the AMDAHL 470 V/6 computer. The present results agree 
well with published fine-grid solutions but are about four times as efficient. 

Future effort includes consideration of primitive-variable formulation; true 3-D 
solutions may be possible in the foreseeable future, with practical CPU time 
requirements, by use of multigrid techniques. 
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