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Abstract The goal of this paper is to present a versatile
framework for solution verification of PDE’s. We first gener-
alize the Richardson Extrapolation technique to an optimized
extrapolation solution procedure that constructs the best con-
sistent solution from a set of two or three coarse grid solution
in the discrete norm of choice. This technique generalizes the
Least Square Extrapolation method introduced by one of the
author and W. Shyy. We second establish the conditioning
number of the problem in a reduced space that approximates
the main feature of the numerical solution thanks to a sensi-
tivity analysis. Overall our method produces an a posteriori
error estimation in this reduced space of approximation. The
key feature of our method is that our construction does not
require an internal knowledge of the software neither the
source code that produces the solution to be verified. It can
be applied in principle as a postprocessing procedure to off
the shelf commercial code. We demonstrate the robustness
of our method with two steady problems that are separately
an incompressible back step flow test case and a heat transfer
problem for a battery. Our error estimate might be ultimately
verified with a near by manufactured solution. While our pro-
cedure is systematic and requires numerous computation of
residuals, one can take advantage of distributed computing
to get quickly the error estimate.
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1 Introduction

This paper addresses the challenge of Solution Verification
(SV) and accuracy assessment for computing complex Partial
Differential Equation (PDE) model. Our goal is to provide a
postprocessing software infrastructure that can be connected
to any existing numerical simulation software, for exam-
ple, widely used commercial applications such as ADINA,
ANSYS, Fluent, Numeca, Star-CD etc. and provide an a pos-
teriori error estimate to their simulation. Important design
decisions are based on simulation done with these software.
Unfortunately, we know that to verify a numerical solution,
that is to provide a quantitative assessment on the numerical
accuracy of the solution, is difficult.

The problem of accuracy assessment is a necessary step
that should be treated between the code verification step and
the code validation step to complete the global task of pro-
viding a reliable virtual experiment tool [1,2].

Our major goal in this paper is to pursue our work on the
design of a new method that offers a general framework to do
solution verification efficiently [3–5]. The standard approach
in applied mathematics to handle the problem of solution
verification is to work on the approximation theory of the
PDE. For each specific PDE problem, the right Finite Ele-
ment (FE) approximation may provide the correct a poste-
riori error estimate [6]. Unfortunately, this approach may
require a complete rewriting of an existing Computational
Fluid Dynamic (CFD) application based on Finite Volume
(FV) for example, and lack generality. Usually a posteri-
ori estimators fails if the (nonlinear) PDE solution is stiff
or if the grid resolution is not adequate. Since grid refine-
ment itself is based on a posteriori estimator, this leads
to an obvious problem. Large Reynolds number flow are
common in many applications, including turbulence prob-
lems. For those applications rigorous solution verification
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may not be achievable by the current state of the art of
numerical analysis. The difficulty of SV is even greater for
complex multi-physic coupling. The general practice in sci-
entific computing is to simulate PDE’s, for which neither
applied mathematics, nor numerical analysis, guaranty the
result.

Because of the time lag between the development of rigor-
ous mathematical tools and the common scientific comput-
ing practice, our goal is to improve existing SV tools such as
the convergence index of Roache et al., and the Richardson
Extrapolation (RE) technique [7,8], that are used daily by
practitioner, by something more elaborate and reliable that
can take both advantage of existing a posteriori estimators
when they are available, and new distributed computing tools
since SV is computer intensive.

Our method for a posteriori error estimate relies on four
main ideas that are:

• Reformulate the problem: in place of solving the problem
of error estimation at once, it is embedded in an optimum
design framework. This latter will determine the best pos-
sible solution form: a reduced set of two to three existing
numerical results of a same problem produced by an inde-
pendent simulation tool.

• Independence form approximation theory framework: in
most of the case, detailed knowledge of the approxima-
tion theory framework used to modelize the PDE’s and
produced the numerical solutions is at best limited and
in the worst case completely inaccessible. A better solu-
tion will be to permit the processing of the underlying
set of discrete (non) linear equations without using a
priori information on the approximation theory frame-
work.

• Integration with available a posteriori estimators: indus-
trial and research lab simulation tools might already make
use of some form of error estimators. They have been
tested and proved to be efficient. The optimization pro-
cedure of our framework should enable the use of this
existing estimators when possible.

• Support distributed computing: like most of the software
involving numerical computations, error estimation can
be a fairly expensive procedure in term of computer oper-
ations and time. As a mean of decreasing the time cost,
the calculation should be performed in a distributed envi-
ronment when computers are in their idle state.

The plan of this paper is as follows: Sect. 2 describes
the general method; Sect. 3 gives some examples with two
benchmark problems; Sect. 4 gives a description of our post-
processing module; Sect. 5 discusses some limits of the
method and the conclusion.

2 Method

We describe in the following the main ideas without seeking
an exact formal mathematical description of a given specific
PDE problem.

We consider a boundary value problem (� is a polygonal
domain and n = 2 or 3):

N [U (x)] = S(x), x ∈ � ⊂ Rn, U = g on ∂�. (1)

We assume that the PDE problem is well posed and has a
unique smooth solution. Let (E, ||.||E ) and (F, ||.||F ) be two
normed linear space, Nh : E → F be the operator corre-
sponding to the problem solved by the code. It can be a finite
volume approximation of (1) on a family of meshes M(h)

parametrized by h > 0 a small parameter. In practice we
look for an approximation of the accuracy of the solution Uh

on the mesh M(h) produced by the code C that operates on
the data Sh :

C : Sh → Uh .

The smaller h, the finer should be the discretization. Let
ph denotes the projection of the continuous solution U onto
the mesh M(h). We assume a priori:

||Uh − ph(U )||E → 0, as h → 0. (2)

We assume, therefore, that the code has been verified, and that
the convergence to the exact continuous solution is satisfied.

The objective is to verify the solution produced by the
code, not the code itself. We will get an error estimate versus
a very fine grid solution U∞ that is never computed, because
the cost is prohibitive. We will skip the index h when it is
not essential. The space E, F have in practice (very large)
finite dimensions when they are for the discrete solutions on
M(h∞), and discrete data Sh∞ .

We assume that the code C has a procedure that provides
the residual, i.e. V → ρ = N (Uh) − N (V ), where V ∈ E ,
ρ ∈ F . We note that most of the commercial code offers this
feature or either provides a (first order explicit) time stepping
procedure:

U n+1
h − U n

h

dt
= N (U n

h ) − S. (3)

The residual is then ρ = U 1
h −Uh
dt . We assume that the follow-

ing problem

N (u) = s, ∀s ∈ B(S, d),

is well posed for s ∈ B(S, r), where B is a ball of center S and
radius r in (F, ||.||F ). There should exist a unique solution
for all data in B(S, r) and the dependency of the solution on
these data is supposed to be smooth enough to use a second
order Taylor expansion.
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Let us suppose that N (Uh) ∈ B(S, r), that is

||ρ||F = ||N (Uh) − S||F < d. (4)

We would like to get an error estimate on e = Uh − U∞ =
C(S + ρ) − C(S). A Taylor expansion writes

C(S)=C(S + ρ)−(ρ · ∇s)C(S + ρ)+ 1

2
ρ · [ρ · R(S)], (5)

where ||R(S)||E ≤ K = sup
s∈B(S,d)

||∇2
s C(s)||E .

Therefore,

||e||E ≤ ||ρ||F

(
||∇sC(S + ρ)||E + K

2
||ρ||F

)
. (6)

This completely general error estimate point out to two dif-
ferent tasks:

• Task 1: compute an accurate upper bound on
||∇SC(S + ρ)||.

• Task 2: obtain a solution U∞+e that gives a residual ||ρ||
small enough to make the estimate useful, i.e. compatible
with (4).

Task 2 is the purpose of the Optimized Extrapolation Solution
(OES) method, while Task 1 can be achieved by a sensitivity
analysis of C.

2.1 Task 1: stability estimate

Let {bE
i , i = 1, . . . , N }, (respt. {bF

i , i = 1, . . . , N }) be a
basis of Eh, (respt. Fh) and ε ∈ R such that ε = o(1).
Let (V ∓

i )i=1,...,N , be the family of solutions of the following
problems:

N (Uh ∓ εVi ) = S + ρ ∓ εbi .

We get from finite differences the approximation

Ch∞ =||∇SC(S+ρ)||≈
∥∥∥∥∥
(

1

2
(V +

j −V −
j )

)
j=1,...,N

∥∥∥∥∥+O(ε2).

(7)

We can get in a similar manner an approximation of the norm
of the Hessian ∇2

s C(S+ρ). For ρ small enough, we can verify
that the upper bound is given at first approximation by:

||e||E ≤ Ch∞||ρ||F . (8)

The column vectors V ∓
j can be computed with embarrass-

ing parallelism. It is, however, unrealistic to compute these
solutions that lies on the fine grid M(h∞).

To make this task manageable, we have to reduce the
dimension of the problem. We use the following two obser-
vations: while the solution of a CFD problem can be very

Fig. 1 Mappings and vector spaces

much grid dependent, the conditioning number of the prob-
lem is in general much less sensitive to the grid. The idea is
then to compute an approximation of Ch∞ by extrapolation
from an estimate of two or three coarse grid computation
of Ch j . Further, let us assume that the fine grid M(h∞) is
a regular Cartesian grid. The number of terms to represent
accurately the projected solution Ũ j , j = 1, . . . , 3 with a
spectral expansion or a wavelet approximation at a given
accuracy is much less than the dimension of the coarse grid
used in a Finite Element/Finite Volume computation. We pro-
pose to use preferably a grid Mh∞ that has enough regularity
to allow a representation of the solution U∞ with some form
of reduced representation, using either trigonometric expan-
sion or wavelets.

The grid Mh∞ may have many more grid points than nec-
essary. Therefore, it might not be computationally efficient
to perform a true fine grid computation, but we do not have
to do this computation anyway.

Further, regular grids are far more easy to construct. If for
some reasons Mh∞ has to be unstructured, we can also use
spectral elements. An ideal method might be to use a proper
orthogonal decomposition that captures the main feature of
the solution [9].

Let us denote Ê and F̂ the spaces corresponding to one
of these compact representation of the solution and residual.
Let (b̂E/F

j , j = 1, . . . , N̂ ), be the corresponding base with

N̂ 
 N . Let q̂E/F be a mapping E/F → Ê/F̂ , respectively,
qÊ/F̂ be a mapping Ê/F̂ → E/F , and let Ĉ : Ŝh → Ûh

be the code that uses this postprocessing of the residual and
solution.

Figure 1 illustrates the relation between the different dis-
crete spaces, along with the corresponding mappings. The
mapping q̂E can be a least square approximation of the
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solution u into Ê , acting as a filter on the solution, while
qÊ is a projection onto E .

The construction of qE and q̂E , respectively, qF and q̂F

does not consider the nature of the true approximation space
used in the code C since the implementation details are most
of the time unavailable: the mappings involve only the
discrete representations of the functions.

To summarize the procedure for Task 1, the estimate on
Ch∞ will be applied to verify the code Ĉ based on the com-
putation of (V̂ ∓

j , j = 1, . . . , N̂ ) vectors on the coarse grids

M(h j ), j = 1, . . . , 3 done by the code Ĉ. We notice that the
computation of the vector V̂ ∓

j can be done with embarrassing

parallelism. Further, because ε is small the code Ĉ can use as
an initial guess in its iterative process the solution Uh that is
hopefully very close to the unknown Ûh ± εV̂ ∓

j .

There are several issues that needs to be carefully investi-
gated when applying this procedure. Let us mention two of
them. First, our method assumes that the spectral properties
of the operator follows some fairly regular asymptotic prop-
erties for the coarse meshes under consideration as h → 0.

This hypothesis should be verified and/or may not be true.
Second, ε must be chosen carefully as a function of the mesh
size, in order to avoid a dramatic inaccuracy on the stability
estimate of Ch∞ . We recall, however, that we are only looking
for an order of magnitude of Ch∞ and not its true value.

Let us discuss our second task that is to compute a solu-
tion on the fine grid that is good enough to recover an error
estimate.

2.2 Task 2: optimized extrapolation

Let M(h1) and M(h2) be two different meshes used to build
two approximations U1 and U2 of the PDE problem (1). A
consistent linear extrapolation formula should have the form

αU1 + (1 − α)U2,

where α is a weight function. The consistency results from
the fact that for carefully chosen α, the approximations U1

and U2 can also be expressed with the same relation.
In classical RE the α function is a constant. In our opti-

mized extrapolation method α is an unknown space depen-
dent function solution of the following optimization problem,
where G is an objective function to be defined:

Pα : Find α ∈ �(�) ⊂ L∞,

such that G(αU1 + (1 − α)U2) is minimum.

The OES, if it exists, is denoted Ve = αU1 + (1 − α)U2.
Whenever U1 − U2 
 U − U2 in some set of non zero

measure, it is necessary to modified the extrapolation for-
mula. Indeed, outliers should not affect globally the least

square extrapolation and α is chosen to be a bounded func-
tion, independent of the spatial discretization. A potentially
more robust approximation procedure is to introduce a third
approximation U3. The three level problem to be solved is as
follows:

Pα,β : Find α, β ∈ �(�) ⊂ L∞

such that G(αU1 + βU2 + (1 − α − β)U3) is minimum.
If the three approximations U j , j = 1, . . . , 3 coincide at

the same spatial point, the local accuracy cannot be improved
using extrapolation method only.

For computational efficiency, �(�) should be a finite vec-
tor space of very small dimension. The objective function G
might be derived from any existing a posteriori error esti-
mators, if possible. Our ambition is to provide a numeri-
cal estimate on ||U j − U∞||, j = 1, 2, without computing
U∞ explicitly. The solution U j can be verified then assum-
ing (2).

The fine mesh M(h∞) should be set such that it captures
all the scales of the continuous solution with the level of accu-
racy required by the application. We have a priori h∞ 
 h1,
h2. Both coarse grid solutions U1 and U2 must be projected
onto M(h∞). We will denote Ũ1 and Ũ2 the correspond-
ing functions. We choose then to minimize the consistency
error for the numerical approximation of (1) on a fine mesh
M(h∞). The objective function is then

G(Uα) = ||Nh∞ Uα − Fh∞||, (9)

where Uα = αŨ1 + (1 − α)Ũ2.
To reduce the dimension of this problem we search for

the unknown weight functions in a small space that can be
described either by trigonometric expansion, wavelet expan-
sion, or possibly spectral elements. If� is the physical domain
for the CFD solution, the unknown weight function can be
extended to a square domain (a, b)n, such that � ⊂ (a, b)n .

As a matter of fact, no boundary conditions are required on
the unknown weight functions. Let {θ j , j = 1, . . . , m} be
the set of basis function of �(�). We look for the solution
of the optimization problem

Find (α j ) j ∈ Rm , such that

∥∥∥∥∥∥G

⎛
⎝

⎡
⎣ ∑

j=1,...,m

α j
 j

⎤
⎦ Ũ1

+
⎡
⎣1 −

∑
j=1,...,m

α j
 j

⎤
⎦ Ũ2

⎞
⎠

∥∥∥∥∥∥
F

(10)

is minimum.
We have a similar formulation for the three level OES

described in [3,4], that is:
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Find (α j ) j (β j ) j ∈ R
m , such that

∥∥∥∥∥∥G

⎛
⎝

⎡
⎣ ∑

j=1,...,m

α j
 j

⎤
⎦ Ũ1 +

∑
j=1,...,m

β j
 j Ũ2

+
∑

j=1,...,m

[1 − α j − β j ]
 j Ũ3

⎞
⎠

∥∥∥∥∥∥
F

(11)

is minimum.
Further, we need a filtering process of the solution to have

this minimization procedure numerically efficient.
In practice the interpolation of the coarse grid solution to
the fine grid Mh∞ introduces spurious high order oscillations
that may make the optimization process (10) unreliable. The
postprocessing q̂F regularized the problem. We can obtain
easily the result when the weight function is a scalar function.
To make this computation robust we use a surface response
methodology [10] that is rather trivial in the scalar case. This
procedure computes a lower order polynomial best fit of the
function ||G(αŨ1 +(1−α)Ũ2)|| by sampling α according to
the expected convergence order range of the code. The mini-
mization on α is then done on this polynomial approximation
by a standard method. The sampling process is a cumber-
some embarrassing parallel process that can take advantage
of a computational grid [11].

It is, however, impractical when the dimension of the
problem for the α search is more than few units. One may
use a combination of genetic algorithm and local optimiza-
tion search to solve the nonlinear optimization problem (10).
There is an extensive knowledge and set of available opti-
mization software [12] that we can reuse indeed. We have
observed in our experiments that if the solution provided
by the CFD code is very coarse, the use of space depen-
dent weight functions might not be required. Similarly, if the
solution is very accurate and the code has uniform conver-
gence, we do not need either space dependent weight func-
tion. But, in the case of stiff problems we would like to get
some adaptivity on the construction of the weight function.
This is an open problem that we are currently working on
[13]. After exposing the theoretical concepts behind the opti-
mized extrapolation method, we are now going to present
different numerical illustrations of this work.

3 Applications

We have selected two test cases, one in fluid dynamic and
one in heat transfer. Further details on these numerical sim-
ulations can be found in [14].

We will carry through our method starting from two coarse
grid calculations only. The minimization problem is the
following:

Fig. 2 Coarse unstructured mesh for the backward facing step test case
generated by ADINA

Pα : Find α ∈ R

such that G(αU1 + (1 − α)U2) is minimum.
For the sake of simplicity, we restrict ourselves to α being

a constant function on the domain (α ∈ R).
Both test cases are solved with the finite element com-

mercial package named ADINA. We could have used indeed
another commercial package for this demonstration. ADINA
is a comprehensive finite element software that enable analy-
sis of structures, fluid simulations, and fluid flow simulations
with structural interactions. More information can be found
at http://www.adina.com/.

3.1 Backward facing step flow

We are going to consider first a steady incompressible viscous
flow in the backward facing step configuration.

The incompressible flow is governed by the following
equations

∂u
∂t

+ u · ∇u + ∇ p = ν�u,

(12)
∇u = 0,

where ν is the viscosity of the fluid.
Figure 2 shows an example of an unstructured coarse mesh

used for the calculation of the backward-facing step flow at
Reynolds number 500.

The length of the cavity is Lx = 10, the width is L y = 2,
and the size of the step is 1. The inflow is set to be a Poiseuille
flow with maximum velocity 1U.I. The outflow is left free.
We assume no slip boundary conditions on the walls. In
this simulation, the number of quad elements are separately
10,347 on the fine grid G∞, 1,260 on the coarse grid G1, and
2,630 on the coarse grid G2.

To provide a rigorous measurement of the error we con-
struct a near by manufactured solution [15] that is within
1/1,000 of a very fine grid solution. This procedure forces
the RHS and boundary conditions of the back-step problem
in such a way that we get an exact solution to NS that is
very close to the back step problem. We obtain then an exact
measurement of the numerical error for this manufactured
solution. The manufactured solutions are constructed from
the following set of basis functions
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Fig. 3 Evaluation of the stability constant for the modified NS problem
in L2 norm

uk1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos

(
k1π

x

Lx

)
sin

(
k1π

y

L y

)
,

− sin

(
k1π

x

Lx

)
cos

(
k1π

y

L y

)
,

(13)

that satisfies the divergence free condition and

pk2 = cos

(
k2π

x

Lx

)
cos

(
k2π

y

L y

)
. (14)

That is defining a reduced representation space for the solu-
tion verification procedure.

Figure 3 shows the evolution of the stability constant as
the size of the reduced representation space increase. This
results implies that only a limited number of basis functions
are needed to represent the numerical solution. Figure 4 gives
the error for the OES versus the fine grid solution in L2

norm computed in a reduced space generated by trigonomet-
ric functions. The low horizontal line is the true error in L2

norm for the OES obtained previously. One observes that the
extrapolation on the stability constant that combines the cal-
culation of the estimate on both coarse grids with the best
α obtained in the OES process does improve the accuracy
of the error estimate. The fundamental result in this figure is
that we can provide an upper bound on the numerical error of
the simulation for each coarse grid calculation within 10%
of the “true” error.

3.2 Battery

The model, for our second example is governed by the energy
equation:

Fig. 4 Evolution of the error versus the manufactured solution with
the L2 norm for the modified NS problem

∂

∂xi

(
ki j (T )

∂T

∂x j

)
+ Q(T )

= ρcp(T )
∂T

∂t
, on � × (0, t), (15)

with i , j running from 1 to 2 for this model. This two dimen-
sional problem is solved in a square domain � = (0, Lx ) ×
(0, L y). T is the temperature, t is time, ρ is the material
density, cp is the specific heat as a function of T , Q is the
volumetric heat source as a function of t , and ki j is the ther-
mal conductivity tensor as a function of T .

The boundary conditions are:

• −
(

ki j
∂T

∂x j

)
· n = h1(T )(T − T∞) + σε1(T

4 − T 4∞)

on �N1 , (radiation, convection),

• −
(

ki j
∂T

∂x j

)
· n = h2(T )(T − T∞) + σε2(T

4 − T 4∞)

on �N2 , (radiation, convection),

• −
(

ki j
∂T

∂x j

)
· n = h3(T )(T − T∞)

on �N3 (convection),

where T∞ = 313.0 K, ε1 = ε2 = 0.25, σ = 5.670 × 10−8

is the Stefan-Boltzmann constant (W m−2 K−1), and h3 =
1.0(W m−2 K−1). The functions h1(T ), h2(T ), and cp are
given by tables.

The temperature is initialized to T0 = 313.0 K in the struc-
ture. The difficulty of this study is due to the fact that the
structure is compounded of different materials, for which
coefficients might depend on space and temperature, and
finally, two regions will undergo a phase change. The prob-
lem is therefore very stiff and the solution is almost discon-
tinuous near the wall as shown in Fig. 5. To simulate the
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Fig. 5 Steady state solution of the heat transfer problem

heat transfer in this structure, we have used quad elements in
each physical subdomain. The total number of elements for
the fine grid G∞ is 57,258 and the coarse grids G1 and G2

have 8,767 and 21,072, respectively.
Figure 6 gives the numerical error in L2 norm as the func-

tion of the number of basis functions used. We need the order
of 400 basis functions to reach a plateau in the error estimate.
Once again we obtain an a posteriori error estimate on the
coarse grid solution within 10% of the “true” error versus the
reference solution on M(h∞). To be more specific, we are
able to estimate a solution with an absolute error of 0.2 K,
using coarse grid solutions with absolute errors of 10 K.

4 Software implementation

4.1 Algorithm

The algorithm of our method writes in its simplest version

1. Call coarse mesh: generate the (coarse) meshes M(h1)

and M(h2). If hi is the average space step for the grid
M(hi ) we should have h2 < h1 but this is not necessary.

Fig. 6 Evolution of the error versus the fine grid solution for the heat
transfer problem

2. Call fine mesh: generate a fine mesh M(h∞) that is sup-
posed to solve all the scales of the problem. M(h∞)

is preferably a structured mesh. We must have h∞ 

h1, h2.

3. Call solver: solve the problem on M(h1) and M(h2),
possibly in parallel.

4. Call projection: project the coarse solutions U1 and U2

onto M(h∞) and post-process them to avoid spurious
oscillations due to the interpolating function.

5. Solve minimization problem: we can create, for example,
sample solutions Uα = [αŨ1 + (1 − α)Ũ2] and/or use
an off the shelf optimization package.

6. Get stability constant: compute in parallel an increasing
set of perturbed solutions Uh ± εV ±

i until eventually
convergence of the stability estimate.

4.2 Performance issues

Step 5 and Step 6 of our algorithm are source of large set of
cumbersome computations. Looking at Figs. 3 and 4, one can
observed that about 1,000 basis computations are required for
a proper evaluation. Each of this computation can take sev-
eral minutes depending on the size of the problem at hand.
This computation time take into account the few explicit time
step needed to smooth the high frequency components of
the projected approximation on the fine grid. Thus a sim-
ple sequential implementation might required several days.
The key feature that make our solution verification proce-
dure effective is its natural parallelism. Indeed, each of the
computation can be done independently of the others since
they are not sharing any information. So one can schedule
the tasks to be perform in parallel. In order to perform this
task efficiently, we need to keep track of which tasks have
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Fig. 7 Task distribution for
effective distributed
computation in OES context

been completed, and how to distribute the remaining tasks.
This information can be centralized on a master node that
will allow a natural load balancing of the tasks among the
computational nodes. This is an important element for
the distributed computation, because it dynamically adjusts
the workload of the computers depending on their availabil-
ity and the calculation to perform. The last level to take into
consideration is the user control interface. Even though the
procedure can be parallelized, the execution time might not
always be negligible. So the user should be able to check and
control remotely the execution of the verification procedure.
For this reason, a software interface that does not need to
run on the master node, or the computational node has been
developed.

Figure 7 reflects the interaction between the components
of the system. The idea is to take advantage of a network of
computers by limiting the communications to few megabytes
of data only, and only once computations are finished. Those
computations are done on slave nodes that have knowledge
only of the existence of the master node. A computational
nexus distributes the task dynamically, self-adjusting to the
deficiencies of the network or the availability of the computa-
tional nodes. The limiting factor of the process is the number
of slave nodes we can access simultaneously, since the com-
putation is virtually scalable. More over, each task in Fig. 7
makes use of a different programming language. The user
interface is written in C#. The communications protocol on
the master and computational nodes are handled by java code
for portability reasons. The preprocessing interfaces that are
the core of our method are written in C++. And finally, the

Fig. 8 Overview of performance for a simple parallel implementation

computational code, that is the one providing solutions to be
verified, can be of any kind.

We use a standard three-tier client/server/slave architec-
ture. The a posteriori estimate takes then a very small fraction
of the time that it would take to compute the fine grid solu-
tion. More details on this parallel implementation can be
found in [11].

Figure 8 shows the performance improvement for three
setups using a three-tier architecture. This first column is for
a sequential execution, the second column is for an hetero-
geneous network of computers, and the third column is the
expected execution time with a parallelized interpolation.
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Fig. 9 Overview on error
control and secure data transfer

This implementation of the solution verification procedure
is independent of the operating system or architecture used.
The java communication interfaces only requires the Java
Runtime Environment to be present on the target machine.

While the architecture of the system is fairly straightfor-
ward, one has to be concerned by several other aspects, start-
ing with security and error checking. The data to be exchange
between the control interface,the master node, and the com-
putational nodes can have a sensitive purpose, from medical
data relative to a patient condition to physical data for DOD
projects. It is therefore necessary to pay special attention on
how the data is transferred.

4.3 Error control

In the three-tier architecture on which our method relies to
be cost effective make use of computers and network that can
be completely different by nature (but supporting java tech-
nology). Also, because of the mix of computational intensive
and communication processes, it is important to access what
are the problems and which components are involved. And
this on each entity. Figure 9 outlines the control points of
our software and Fig. 10 gives a short description of each
element.

4.4 Security

The implementation is done using SSL Sockets instead of
simple sockets. That means the communication between the
different components is encrypted based on SSL public/
private keys to generate the “session key”. The control

interface owns the public key, the master node own both
the private and the public key and the computational nodes
own the public key. Security issues dictate this distribution of
the keys. The question remains of where the keys should be
stored.

In the SSL scheme, the communication is secure but any
computational node can obtain the public key to exchange
information with the master. It is the confidentiality, integrity
and authentication concept for data security. Both Confiden-
tiality and Integrity is realized with the SSL sockets, but there
is no control on the authentication. That is why an authen-
tication method has been implemented between the master
node and the slave nodes to ensure that only “allowed slaves”
can communicate with the master node.

In our architecture, login and password are encrypted and
stored in a file, thus providing the authentication source for
the Master. When a computational node wants to commu-
nicate with the master, the SSL is initiated, then the master
asks the computational node a login and a password. The
computational node find there authentication data in an other
encrypted file. This file is created either the first time the com-
putational node socket initiates, or when the socket loads and
does not find the file in its root directory. The administrator
that launches the socket will then be prompted for the login
and the password. In the authentication process, if a com-
putational node has a wrong login or a wrong password, the
control interface is notified by some data sent on the SSL
socket, the SSL tunnel is closed, and a pop-up notifies the
user of the console that one or more slaves did not authenti-
cate properly (data displayed on the result graph). Figure 11
shows the communication process between the Master and
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Fig. 10 Description of controls

Fig. 11 SSL communication
scheme

the Slaves regarding the establishment of the SSL tunnel and
the authentication process.

The overhead generated by this control statement and by
the SSL sockets encryption is negligible with respect to the
time needed to execute a task on the computational node.
More specific mechanism should be applied when computa-
tional nodes are in cluster with private IP address. One can for
example create a new level in the hierarchy by giving some
scheduling control to the node of the cluster that is owning a
public IP address.

The next section presents our conclusion on the optimized
extrapolation method and its implementation using distrib-
uted computing.

5 Discussion and conclusion

In this paper, we have explored a new framework to provide
a posteriori error estimates for CFD simulations produced
with a commercial package. The challenge comes from the
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fact we do not have access to the source code, neither we
may know precisely what approximation is used. In such
context the only method that is used by practitioner is mesh
refinement. This process is time consuming and may not even
be possible for complex PDE problems. We have proposed an
alternative solution that still uses a fine mesh as a reference,
but do not require the calculation of the CFD solution on this
fine mesh.

There are indeed several limits to our method. Let us men-
tion two of them.

The first drawback of our method is that it is computa-
tionally intensive and requires hundreds of evaluations of
a residual. On the other hand, this process has embarrassing
parallelism and constitute an effective way of using a network
of distributed computers. Both OES and sensitivity analysis
presented in this paper can be speedup by using state of the
art optimizers. This new development is part of our ongoing
research.

The second drawback is that if both coarse grid solutions
are dramatically inaccurate we should not be able indeed
to retrieve an accurate solution from OES. Hopefully, the
sensitivity analysis might be able to catch this failure as it
is the case, for example, for meta-stable solution with the
steady viscous burgers problem.
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