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Abstract

Richardson extrapolation (RE) is based on a very simple and elegant mathematical idea that has been successful in

several areas of numerical analysis such as quadrature or time integration of ODEs. In theory, RE can be used also on

PDE approximations when the convergence order of a discrete solution is clearly known. But in practice, the order of a

numerical method often depends on space location and is not accurately satisfied on different levels of grids used in the

extrapolation formula. We propose in this paper a more robust and numerically efficient method based on the idea of

finding automatically the order of a method as the solution of a least square minimization problem on the residual. We

introduce a two-level and three-level least square extrapolation method that works on nonmatching embedded grid

solutions via spline interpolation. Our least square extrapolation method is a post-processing of data produced by

existing PDE codes, that is easy to implement and can be a better tool than RE for code verification. It can be also used

to make a cascade of computation more numerically efficient. We can establish a consistent linear combination of

coarser grid solutions to produce a better approximation of the PDE solution at a much lower cost than direct

computation on a finer grid. To illustrate the performance of the method, examples including two-dimensional turning

point problem with sharp transition layer and the Navier–Stokes flow inside a lid-driven cavity are adopted.

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

Richardson extrapolation (RE) is based on a very simple and elegant mathematical idea. It has been used

successfully in several areas of numerical analysis such as quadrature with the Romberg method or ODE

integrations that have smooth enough solution with the Bulirsch-Stoer method [21]. Its use in practical

situation such as computational fluid dynamics (CFD) is however questionable, because it is rare that all
mathematical hypothesis needed by RE are fulfilled by the numerical approximation. In most cases the

convergence estimates required by RE are not rigorously justified for the full CFD model. They are often
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deduced from simplified model equations. Furthermore, in three-dimension (3D), the meshes are usually

not fine enough to satisfy accurately the a priori convergence estimates that are only asymptotic relations in

nature. Finally the order of convergence of a CFD code is generally space dependent and eventually so-

lution dependent. One requires then three grid levels to provide an estimation of the order of convergence.

It is unlikely in 3D computation of complex flow problems that one can provide two or three solutions, on

progressively refined grids and with a coarse grid solution that has a satisfactory level of accuracy, to be

used in RE.

We propose a general extrapolation method, based on a least square approximation of order of con-
vergence, and will present both theoretical analysis and computational demonstrations with steady state

problems. We symbolically formulate our least square problem as follows: Let ui; i ¼ 1::3 be a family of

approximate solutions of the PDE problem N ½u� ¼ 0, provided on a family of meshes Mi. In the two-level

case, we construct the space dependant function a that minimizes

N ½au1 þ ð1� aÞu2�; ð1Þ

in some L2 space on a grid much finer than Mi; i ¼ 1::3.
In the three-level case, we construct a pair of space functions ða; bÞ that minimizes

N ½au1 þ bu2 þ ð1� a � bÞu3�; ð2Þ

in some L2 space on a grid much finer than Mi; i ¼ 1::3. This is a natural generalization of RE, since in RE,
one restricts the weight functions a and b to be space independent constants.

In this paper, we consider a situation where typically the ui functions are finite differences (FD), or finite

volume (FV) approximations of the Navier–Stokes equations. We then look for spectral approximation of

the weight functions with few modes. We will show in practical situations that

• Provided that one can obtain the definition of the residual of the PDE approximation, the existence of a

stability estimate on the approximation of the PDE�s problem and two grid solutions with increasing ac-

curacy, the method can find automatically the order of convergence.
• Using three different grid solutions (not necessarily with uniformly increasing mesh resolution) our

method provides a solution with improved accuracy.

It is also observed that our extrapolation formula re-scales the problem since the weight function should

be of order one. Furthermore, the order of convergence of the fine grid solution produced is based on the

multiplication of the coarse grid solution accuracy times the weight functions accuracy. The accuracy

requirement on a and b functions is therefore very modest and consequently the computational cost of the

least square problem itself will be negligible compare to a direct computation of the fine grid solution. In

this paper we have restricted ourselves to the linear least square theory, and tackle a nonlinear problem via
a Newton-like loop that starts from one of the grid solution ui. Nevertheless, our least square extrapo-

lation combined with a multilevel approach is general, and can be applied to variational formulation

problems (for example with Finite Element) as well as FV formulation. In this paper, we use mainly a

modified Fourier expansion for the unknown extrapolation weight functions. We will also present an

overlapping domain decomposition version of our least square problem that is useful to introduce some

adaptivity. Furthermore, since there are no boundary conditions required on a and b, complex geometry

should be naturally handled by fictitious domains with appropriate extension of ui in regular shaped

domains.
A major goal of our method is to have a practical and simple tool to enhance CFD accuracy and ef-

ficiency in the context of code verification.

In this paper, we illustrate the potential of the method with singular perturbation problem as a two-

dimensional (2D) turning point problem with sharp internal transition layer. Further, we show some

promising results for incompressible flows such as the cavity flow problem. We demonstrate first with the
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incompressible Navier–Stokes flow inside a lid-driven cavity that the RE method is not adequate. Then we

demonstrate that, as opposed to RE, we can gain one order of accuracy with least square extrapolation

provided that the coarse grid solution meets certain accuracy requirement. To be more practical, we use a

cascade of nonmatching embedded grid solution process. Such a practice is particularly useful in 3D com-

putation because in most cases one cannot afford three levels of uniform refinement while the coarse grid

solution provides still reasonable accuracy. In all these examples, the computational cost of our method is

negligible compared to the fine grid solution. Finally we believe that our least square extrapolation method

should be a more efficient tool than RE in the code verification context [3,13,15,17,19]. In particular, the
present method can be combined to cascade algorithm as discussed in [4–6,20].

The plan of the paper is as follows. In Section 2, we summarize basic properties of RE method and

evaluate its application to CFD. In Section 3, we present some basic approximation theory for least

square extrapolation applied to grid functions. In Section 4, we extend this technique to PDEs, and

report on numerical results of our method for turning point problem and steady incompressible

Navier–Stokes flows.

2. Basic properties of RE and computational implications

Let us first summarize some basic properties of RE in the context of approximation functions.

2.1. Extrapolation in a normed linear space

We are going to review briefly the properties of Richardson extrapolation. We will present two com-

plementary points of view that are asymptotic expansion for continuous function in a normed vector space,

and numerical approximation for discrete functions defined on a mesh. We will use lower case u for

continuous function and upper case U for numerical approximation.

Let E be a normed linear space, and k k its norm. Let p be a positive integer, h0 a positive real and

h 2 ð0; h0Þ. Let v be an element of E, and ui 2 E; i ¼ 1::3 that have the following asymptotic expansion [1],

ui ¼ vþ C
h
2i�1

� �p

þ d; ð3Þ

with C positive constant independent of h, and kdk ¼ oðhpÞ. If p is known then vir defined by the RE
formula,

vir ¼
2puiþ1 � ui

2p � 1
; i ¼ 1; 2 ð4Þ

satisfies

kv� virk ¼ oðhpÞ

and is therefore an improved approximation of v compared to each of the ui approximations.

From the numerical point of view, let Eh be a family of normed linear space ðEh; k kÞ, associated with a

mesh Mh used to approximate elements of ðE; k kÞ of pth order. For simplicity, we restrict ourselves to three
embedded meshes Mh=4 
 Mh=2 
 Mh. We denote then Ei the linear space corresponding to mesh Mh=2i�1 with

E1 
 E2 
 E3 
 E.
One rewrites (3) in Ei, as a set of equations,

Ui ¼ vþ Ci
h
2i�1

� �p

þ di ð5Þ
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with Ci ¼ ð1þ �iÞC, and �i ¼ oð1Þ. In these equations Cðh=ð2i�1ÞÞp is an approximation of the error of first

order. �i is for the second-order error term. di is a model for the h independent numerical perturbation

induced by consistency errors and/or arithmetic error. For example, in CFD calculation, one can use an

iterative solver to reach the discrete functions Ui; i ¼ 1::3 and di results from imperfect convergence of the

iterative solver. The Richardson extrapolate

V 2
r ¼ 2pU 3 � U 2

2p � 1
; ð6Þ

has then for error in E1,

v� V 2
r ¼ 1

2p � 1
ðd2
�

� 2pd3Þ þ Cð�2 � �3Þ
h
2

� �p�
: ð7Þ

The numerical perturbation is therefore weakly amplified by a factor ð2p þ 1Þ=ð2p � 1Þ.
Back to the asymptotic point of view, if the asymptotic expansion of ui is known at next order as for

example

ui ¼ vþ C
h
2i�1

� �p

þ ~CC
h
2i�1

� �q

þ d; ð8Þ

with q positive integer larger than p and kdk ¼ oðhqÞ, one can in principle eliminate hp and hq terms and get

a better estimate by combining u1; u2; u3 as

vir ¼
u1 � ð2p þ 2qÞu2 þ 2pþqu3

ð1� 2pÞð1� 2qÞ : ð9Þ

But for typical applications in CFD calculation the asymptotic order of convergence is not well es-
tablished [12,17–19,26,27].

One can derive from the set of all three asymptotic relations (3), the asymptotic estimate

p � log2
ku1 � u2k
ku2 � u3k : ð10Þ

If one considers fuig as a set of real numbers instead of a set of functions in ðE; k kÞ, combining (4) and
(10) gives the so-called D2 Aitken formula [11],

v2r �
u1u3 � ðu2Þ2

u1 � 2u2 þ u3
: ð11Þ

One can use (11) in a pointwise manner in CFD. However this formula has generally no rigorous basis in

the corresponding space of approximation.

From the numerical point of view, one gets from (5),

p ¼ log2 ð1
���� � cðpÞÞU

1 � U 2 � ðd1 � d2Þ
U 2 � U 3 � ðd2 � d3Þ

����; ð12Þ

where

cðpÞ � jð2p�1 � ð2p þ 1Þ�2 þ �3Þ ð13Þ

and j ¼ ð2p � 1Þ�1. In practice, one use the approximation

p � log2
U 1 � U 2

U 2 � U 3

����
����; ð14Þ
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in ðEh; k kÞ. The second-order error term �2 on u2 (respt. �1 on u1) has therefore 2p þ 1 (respt. 2p) more

impact on p calculation error than the second-order error term �3 on u3. It is interesting to note that the

‘‘pointwise’’ extrapolation

v2r ¼
U 1U 3 � ðU 2Þ2

U 1 � 2U 2 þ U 3
8x 2 M1

in (11) is very sensitive to numerical perturbation, because numerical perturbations are amplified by a

factor ðU 1 � 2U 2 þ U 3Þ�1. Aitken formula is therefore useless numerically unless the perturbation error di

is pointwise much less than the asymptotic order of convergence hp.

A main attribute of RE is its intrinsic simplicity. We are going now to consider its application to CFD

with practical examples.

2.2. Application of convergence order approximation and Richardson extrapolation to CFD

Let us consider a general CFD code for steady flows. We denote loosely U one of the flow field output

provided by this CFD code. It can be one of the component of the flow speed, the pressure, etc. We suppose

that we have three solutions Ui 2 Ei; i ¼ 1::3 with increasing accuracy on three different grids. To start with,
we assume that the corresponding meshes Mi are embedded, in such way that the size of each elements or
cells is halfed from Mi to Miþ1; i ¼ 1; 2. Let Ii: ðEi; k kÞ ! ðE0; k kÞ be an operator that interpolates these

flow fields from Mi to a common mesh M0. Let us assume that this interpolation has a convergence order

higher than the consistency error of the CFD code. This hypothesis is critical since, as we have seen before,

extrapolation formula may amplify numerical perturbations. In the simplest case, where one can project U 2

and U 3 into M0 � M1, there are no interpolation errors. Of course, with cell centered finite volume (FV)

approximation or with staggered grids in FD, this idealization is not true in practice. We will denote
~UUi ¼ Ii½Ui� the interpolated field M0. Further if one seeks an improved solution, then one should look for a

mesh M0 finer than any of all Mi; i ¼ 1::3. Then one can apply RE to the family of flow solutions ~UUi.
The asymptotic order of convergence of the solution process may not be known rigorously. The as-

ymptotic formula (14) provides a numerical approximation of p depending on the norm. One can then

apply the extrapolation formula (4) on M0. It is well known that this technique might be applied to practice

some code verification [19]. However we are going to show that RE may not work well in CFD, even if the

CFD code has been verified properly [13,17,19].

Further, we may adopt a slightly more general point of view and proceed with an arbitrary sequence of

grid solution with uniformly decreasing space step h1 > h2 > h3. Since the grids are no longer matched

uniformly, we use systematically a high order interpolation method on a fine mesh M0 of space step less
than h3.

In particular, the approximation of the convergence order p is taken to be a solution of the nonlinear

equation

hp
1 � hp

2

hp
2 � hp

3

¼ kU 1 � U 2k
kU 2 � U 3k : ð15Þ

We are going to consider two different codes for the steady state, 2D laminar lid-driven square cavity

flow with the Reynolds number, Re, in the range of 20–1000. This is a well-established test case in the

literature [12,18]. Our first code denoted Cx�w is based on the FD approximation of the 2D vorticity x –

stream function w formulation of the incompressible Navier–Stokes equation with either central FD for the

convective term or first-order upwinding [18]. The mesh is squared and regular. We avoid a singularity of

h�1 order at the end points of the sliding side of the unit square cavity by choosing a speed at the sliding
wall as in [2]
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w
on

¼ �x2ð1� x2Þ: ð16Þ

Formally this code provides second-order accuracy, except that in practice neither the vorticity or the

stream function are in C4ðð0; 1Þ2Þ which is required to justify Taylor expansion truncation errors.

The steady solution in Cx�w is reached by first-order time stepping with explicit Euler Scheme. The stop

criterion is

kqk1 < h3:5; ð17Þ

where h is the space step and q the residual for the vorticity equation. Post-processing with RE uses spline

interpolation, which satisfies our accuracy requirement.

Our second code, denoted Cv�p, is a FV code with centered cells for the 2D Navier–Stokes equation

written in velocity–pressure formulation. The convective terms are approximated by first-order upwind or

second order central differences depending on the local cell Reynolds number. For a detailed description of

the computational procedure, we refer to [25,26]. In principle this code has varying order p 2 ð1; 2Þ of
accuracy depending on the local cell Reynolds number. A second version of this code uses second-order

upwinding everywhere for the convective terms. We have confirmed the well-known fact that this FV code

handles better the singularity at the corners than Cx�w. Interpolation in post-processing is based on the

Lagrangian interpolation with either 9-point or 16-point formula properly adjusted near the wall. It was

checked carefully that the interpolation procedure used uphold the accuracy of the CFD solution.

Both Navier–Stokes codes has been verified in the following sense:

• Using forcing functions and/or exact divergent free analytical solution, we have checked that the discret-

ization errors is what we can expect from the theory.
• The programming errors that can affect the numerical answer, have been removed by checking with in-

dependent coding the discrete residual output.

• We verified that the code output is consistent on several type of hardwares and robust with respect to

parametric input such as space step or Reynolds number in the present range of investigation.

• Roundoff errors and robustness of iterative solvers have been double checked by comparing single and

double precision, and by studying the impact of stop criterium.

We first analyze the convergence properties of the Cx�w code. Figs. 1–3 show the convergence order of

the solution and its RE solution for Reynolds number 20, 100 and 400. We have generated a sequence of
grid solutions with a regular grid of space step hj ¼ 0:1=j with j ¼ 1::10. Let us denote now Uj to be the

corresponding grid solutions, and let ~UUj be the interpolated grid solution on the finest grid via spline in-

terpolation. We let also ÛUj be the projection of U 2j into the coarser grid of space step hj.

In these figures, we compare the order estimate from the solution of the nonlinear Eq. (15) with in-

terpolated grid solution on the finest grid ~UUj, i.e., pjþ1 solution of

hp
j � hp

jþ1

hp
jþ1 � hp

jþ2
¼ k ~UUj � ~UUjþ1k

k ~UUjþ1 � ~UUjþ2k
ð18Þ

and the order estimated based on the solution projected on the coarse grids, i.e.,

pjþ1 ¼ log
kUj � ÛUjk

kUjþ1 � ÛUjþ1k

 !
= log

hj

hjþ1

� �
: ð19Þ

The first two results with Re ¼ 20, and Re ¼ 100 (see Figs. 1 and 2), are obtained with second-order

central differences for the convective terms. The solution should be formally second order. For the stream

function, we observe that the convergence order increases slowly to its asymptotic limit 2. We observe that
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the spline interpolation errors decreases with the space step and has little effect on the convergence order for

the smallest space steps. For the vorticity, the situation is more complicated because of the singularity at the

corners of the sliding wall. As a matter of fact the difference between L1 and L2 errors revealed this local

singularity (see Figs. 1 and 2). We have also an overestimation of the convergence order of the grid solution

projected on the coarse grid.

Fig. 2. Convergence order approximation for Cw�w code with Re ¼ 100: s, curve for coarse grid projection solution; *, curve for fine

grid interpolation solution.

Fig. 1. Convergence order approximation for Cw�w code with Re ¼ 20: s, curve for coarse grid projection solution; *, curve for fine

grid interpolation solution.
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The third result with Re ¼ 400 shown in Fig. 3, was obtained with first-order upwinding for the convective

terms. The convergence is extremely poor for the coarse grid solutions, j ¼ 1::3. For the stream function. We

observe that the convergence order increases slowly to its asymptotic limit of 1. For the vorticity, the situation

is rather interesting because the singularity at the corners of the slidingwall is worse than in two previous cases.

Heuristically the code behaves like first-order outside the boundary layerswhere the diffusion is negligible, and
second order where the error on the diffusion term is dominant. This explain why in L1 norm the convergence

order is a nonmonotonic curve. As a matter of fact for low grid resolution the error in the boundary layer is

dominant and the error on viscous term can be worse than the error on convective terms.

A more detailed analysis can be done by plotting the convergence order of our solution using the as-

ymptotic formula (10) in a pointwise manner

pðxÞ ¼ log2
j ~UUj � ~UU 2jj
j ~UU 2j � ~UU 4jj

8x 2 M0: ð20Þ

We observe that the formula is singular at grid points where ~UU 2j ¼ ~UU 4j within roundoff error. This is not
in contradiction with a convergence in L2 or possibly L1 norm. We therefore should not take into account

the evaluation of pðxÞ at grid points where ~UU 2jðxÞ � ~UU 4jðxÞ � h3j . The surface plots of pðxÞ in Fig. 4 shows

two curves starting from the wall where this cancellation phenomenon destroys the validity of p order

approximation. The slide y ¼ 0:2 in Fig. 5 of the surface plot of convergence order of Fig. 4 exhibits the

typical singularities � 1=x of the convergence order corresponding to these two curves.

The slide y ¼ h in Fig. 6 is the closest to the sliding wall. It shows two additional zones near the end

points where the convergence order is obviously less than satisfactory. It therefore confirms the poor

performance of the code Cx�w in the neighborhood of the corner of the sliding side for large Reynolds
number. The singularity of the vorticity solution at the corner is therefore not totally removed by the wall

condition (16). RE can be applied to our interpolated grid solution, as shown in Figs. 10–12. To analyze the

result is not straightforward, because we have moderated size of data with inadequate accuracy and because

the convergence properties of the x � w code are peculiar along the sliding wall. We will comment on these

results in combination to least square method results in Section 4.2. We now consider the FV code

Fig. 3. Convergence order approximation for Cw�w code with Re ¼ 400: s, curve for coarse grid projection solution; *, curve for fine

grid interpolation solution.
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employing the velocity-pressure formulation, which gives more robust solutions and leads to easier inter-

pretation of Richardson extrapolation accuracy.
We refer to [27] for an extensive study that provides the sensitivity of the result with respect to the choice

of the norm and the effect of the accuracy of the interpolation formula. One can conclude from these

experiments that the FV approach is more robust to singularities than the FD method. Nevertheless, one

still observes a lower order of convergence near the corner of the sliding wall for Re ¼ 1000. According to

[27], for most of the cases with low Reynolds number, it can be shown that second order RE reduces the

error in discrete L1, L2 and L1 norms. For higher Reynolds number such as Re ¼ 1000, RE fails to improve

the error in the L2 norm when the coarse grid is not fine enough. Overall, RE can improve the order of

accuracy but not consistently.

Fig. 5. Slide y ¼ 0:2 of space dependant convergence order approximation for Cw�w code with Re ¼ 100.

Fig. 4. Surface plot of space dependent convergence order approximation for Cw�w code with Re ¼ 100.

M. Garbey, W. Shyy / Journal of Computational Physics 186 (2003) 1–23 9



From these experiences and the basic theory of RE in Section 2.1, we conclude that there are many
factors affecting the performance of RE. First of all the convergence order of a solution process is usually

space dependent. It is clear for example in the case of the hybrid treatment of convective terms depending

on the local cell Reynolds number. It is also well known that grid refinement may lead to grid solution that

cannot be compared uniformly as in the RE definition used so far. Let us mention also that for pseudo-

spectral approximation used in CFD, the convergence order is not even algebraic: in other word the

convergence order increases with the grid refinement [23], There are therefore no way to justify RE with

constant weights formula in this context. Further, in practice with FE or FV, it is not clear that the

convergence order is satisfied because one often cannot afford a mesh fine enough to get close to asymptotic
estimates. This is typically the case in 3D computations. It is therefore desirable to extend the concept of

RE to solve CFD problem. We present in the following section a new extrapolation method that has been

designed to solve some of the limitations of RE.

3. Least square extrapolation for numerical functions

We go back to the mathematical framework of Section 2.1, and set E ¼ L2ð0; 1Þ. Let u be a function of E.
Let v1h and v2h be two approximations of u in E such that v1h; v

2
h ! u in E as h ! 0. A consistent linear ex-

trapolation formula writes formally av1h þ ð1� aÞv2h. As a matter of fact, this formula must be a independent
when v1h ¼ v2h ¼ u. In p order RE the a function is a constant. We adopt here a more general point of view

than RE: we look for a convergence order that is space dependent. Further, we do not require that v2h is a
uniformly more accurate approximation of u than v1h.

We define then the following problem:

Pa: Find a 2 Kð0; 1Þ 
 L1 such that av1h þ ð1� aÞv2h � u is minimum in L2ð0; 1Þ.
The space of function Kð0; 1Þ will be defined later on. Let us note, first that if 1=ðv1h � v2hÞ is in L1ð0; 1Þ,

we get

a ¼ u� v2h
v1h � v2h

: ð21Þ

Fig. 6. Slide y ¼ 0:01 of space dependant convergence order approximation for Cw�w code with Re ¼ 100.
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This problem has therefore a unique solution in L2ð0; 1Þ. Second, if v1h � v2h vanishes, we can approximate

then vih by a wi
h function in L2ð0; 1Þ such that

wi
h � ui

h ¼ OðhqÞ ð22Þ
and

1=ðw1
h � w2

hÞ 2 L1ð0; 1Þ: ð23Þ
In order to solve the modified problem Pa with asymptotically equivalent data ðw1

h;w
2
hÞ. We take then q a

positive integer such that q > p where p is the expected order of convergence of vh as h ! 0. We get then

a ¼ u� w2
h

w1
h � w2

h

ð24Þ

and a 2 L2ð0; 1Þ.
We observe further that we need to find only a rough approximation of a function because the con-

vergence order of vh approximation is multiplied by the convergence order of a approximation as stated in

the following lemma.

Lemma 1. If aM � a ¼ 0ðM�1Þ as M ! 1 and v1h � v2h ¼ 0ðhpÞ then

u ¼ av1h þ ð1� aÞv2h þOðhpÞ �OðM�1Þ: ð25Þ

Proof. A simple computation gives

u� ðaMv1h þ ð1� aMÞv2hÞ ¼ ða � aMÞðv1h � v2hÞ: � ð26Þ

Finally the arithmetic cost to find an approximation of a solution of Pa must be in practice much lower
than the cost of a ‘‘fine grid solution’’, v3h that will provide the same order of accuracy than the extrapolated
function. Kð0; 1Þ must therefore be a finite linear space that can be represented by few basis functions.

In the present work, we set Kð0; 1Þ to be the space of a functions

a ¼ a0 þ a1 cosðxpÞ þ
X

j¼1::M
aj sinððj� 1ÞxpÞ: ð27Þ

with aj; j ¼ 0::M reals.

We will first review some basic properties of Kð0; 1Þ in the approximation of L2ð0; 1Þ functions.

Lemma 2. Let a be in L2ð0; 1Þ Let xj ¼ j=M be a regular discretization of ð0; 1Þ. There is a unique trigono-
metric polynomial

aM ¼ a0 þ a1 cosðxpÞ þ
X
j¼1::M

aj sinððj� 1ÞxpÞ

that interpolates a on xj. aM converges to a in L2ð0; 1Þ as M ! 1. Further, if a 2 C2ð0; 1Þ, the convergence
aM ! v is pointwise and of order M�2 in (0,1) and M�3 away from the end points.

Proof. We observe that a0 þ a1 cosðxpÞ interpolates a at x ¼ 0 and x ¼ 1. Let us define f a periodic function
in L2 such that f ðxÞ ¼ aðxpÞ � a0 � a1 cosðxpÞ on (0,1) and f ðxÞ ¼ �f ðxÞ. for x 2 ð�1; 0Þ. The result comes
from the classical Fourier approximation theory applied to f (see [10] and its references). �

We can now derive an approximation for least square approximation of L2ð0; 1Þ functions.
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Lemma 3. Let a be in L2ð0; 1Þ. Let xj ¼ j=N be a regular discretization of (0, 1). Let M be an integer such that
M � N . There is a unique trigonometric polynomial aM ¼ a0 þ a1 cosðxpÞ þ

P
j¼1::M aj sinððj� 1ÞxpÞ that

minimizes the discrete L2 normX
j¼0::N

ðaðxjÞ � aMðxjÞÞ2; ð28Þ

where aM converges to a in L2ð0; 1Þ as M ! 1 while the ratio M=N stays constant and is less than one.
Further, if a 2 C2ð0; 1Þ, the convergence aM ! v is pointwise and of order M�2 in (0,1) and M�3 away from the
end points.

Proof. First we construct from the set of basis function b0ðxÞ ¼ 1, b1ðxÞ ¼ cosðxpÞ, bjðxÞ ¼ sinððj� 1ÞxpÞ;
j ¼ 2::M an orthogonal basis using the Gram–Schmidt process as follows. Let us denote this new

basis fei; i ¼ 0::Mg. Since fbj; j ¼ 2::Mg is already an orthogonal family, we set ej ¼ bj; j ¼ 2::M . Then we

set

e0 ¼ b0 �
X

j¼2::M
ðb0; ejÞej=kejk ð29Þ

and

e1 ¼ b1 � ðb1; e0Þe0=ke0k �
X

j¼2::M
ðb1; ejÞej=kejk: ð30Þ

The least square approximation of a is then its L2 projection into Kð0; 1Þ using the orthogonal basis ej.
The convergences properties follow from Lemma 2. �

We have now a solution to the approximation problem Pa or its modified analog if we have possibly to

modify locally the vih function at neighborhood of points where v1h � v2h cancels as in Eqs. (22) and (23).

From Lemmas 1 and 3, we have

Theorem 1. If u; vih; i ¼ 1; 2 2 C1ð0; 1Þ, 1
v1
h
�v2

h
2 L1ð0; 1Þ and v2h � v1h ¼ 0ðhpÞ then av1h þ ð1� aÞv2h is an

0ðM�2Þ � 0ðhpÞ approximation of u.

We observe that special care must be done if

v1h � v2h � u� v2h; ð31Þ

in some set of nonzero measure XS . This situation is typical of insufficient local convergence of CFD codes –
see Fig. 4 for example. Further, one expect that the least square approximation wh ¼ av1h þ ð1� aÞv2h of u
with a 2 C0ð0; 1Þ will be a poor approximation in XS . However, this is consistent with the fact that (31)

means that the convergence of vh at points in XS fails! One can constraint the least square approximation

problem by imposing that the a approximation stays bounded by q. These outliers points will therefore not
affect globally the least square extrapolation as long as we impose a to be a bounded function independently
of h. At grid points where (31) holds, the extrapolated function will coincide asymptotically with v2h which is
the best that one can get under such condition.

In order to define a more robust approximation of u, we introduce the second problem as follows:
Pa;b: Find a; b 2 Kð0; 1Þ such that

av1h þ bv2h þ ð1� a � bÞv3h � u ð32Þ

is minimum in L2ð0; 1Þ.
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If one can partition ð0; 1Þ into two overlapping subset X1 [ X2 ¼ ð0; 1Þ of nonzero measure intersection,

such that 1=ðv1h � v3hÞ is in L1ðX1Þ and 1=ðv2h � v3hÞ is in L1ðX2Þ, then it can be shown that this problem has a

solution in L2ð0; 1Þ. Although uniqueness is no longer guaranteed, in practice, since we only look for a low

order least square approximation, we do reach a unique solution. While we can use a singular value de-

composition method (SVD), as recommended in [21] to account for the fact that the linear system can be

either over- or under-determined. It may not be desirable because SVD requires much more arithmetic

operations than directly solving the normal set of equations when M � N . In practice, it is unlikely that

v1h � v3h � u� v3h and v2h � v3h � u� v3h in some set of nonzero measure. In the neighborhood of grid points
where this is not the case, there is no convergence of vih, and one can locally modify these functions in order
to retrieve v3h as the best fit.

Another type of improvement to the least square approximation presented so far may come from the

domain decomposition point of view. It is common to introduce adaptivity to approximate functions that

have strong gradient in space. Since we use trigonometric polynomial on regular grids to approximate our

weight functions, we rather introduce an (adaptive) overlapping domain decomposition approach of our

least square extrapolation problem Pa or Pa;b in order to possibly increase the accuracy locally. We proceed

as follows. Let ðaj; bjÞ; j ¼ 1::n be a set of overlapping intervals such that

a1 ¼ 0 < a2 < b1 < a3 < b2 < � � � < bn ¼ 1: ð33Þ

We assume that the end point of ðaj; bjÞ coincide with some grid points xk; k ¼ 0::N . Let Mj; j ¼ 1::n be
such that

P
j¼1::n CardðMjÞ � N . The Kð0; 1Þ space is then the set of functions

aM � faj; for x 2 ðaj; bjÞgj¼1::n; y ¼ ðx� ajÞ=ðbj � ajÞ; ð34Þ

such that

aj ¼ a0j þ a1j cosðypÞ þ
X

k¼1::Mj

ak
j sinððk � 1ÞypÞ: ð35Þ

This overlapping domain decomposition technique is standard and can have variant with different type

of matching conditions and overlap.

Now let us focus on a difficulty that is most relevant to the application side. In practice, we work with

grid functions solution of discretized PDE problems as in Section 2.2. So we will denote as before
Ui 2 Ei; i ¼ 1::3 three grid functions defined onMi grids, that are approximations of a grid function U 2 E0.

We suppose that the corresponding grid M0 has constant space step h0. We do not suppose that theMi grids

have regular space step, neither we need to suppose that the sequence of Ui functions has increasing order

of accuracy. We denote then as in Section 2.2 ~UUi ¼ Ii½Ui�, the grid function on M0 obtained by high order

interpolation. The least square extrapolation problems are then, respectively

Pa: Find a 2 Kð0; 1Þ 
 L1 such that

a ~UU 1 þ ð1� aÞ ~UU 2 � U ð36Þ

is minimum in L2ðM0Þ.
and

Pa;b: Find a; b 2 Kð0; 1Þ such that

a ~UU 1 þ b ~UU 2 þ ð1� a � bÞÞ ~UU 3 � U ð37Þ

is minimum in L2ðM0Þ.
The least square procedure to solve these problems is therefore standard and as mentioned before, one

can use SVD to diagnose and overcome possible numerical difficulties. Furthermore, several statistical tools

are available to control the accuracy [22]. However the choice of the interpolation tool is critical. It is
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desirable to use a high order Lagrange interpolation method or spline. To anticipate the results of the

following section, we will see that the interpolation procedure may obey some constraint as smoothness and

that spline interpolation is preferable in the context of PDEs.

Let us illustrate the numerical accuracy and sensitivity to perturbation of our least square extrapolation

method. We consider two examples with the C0 function

vðxÞ ¼ x in ð0; p=2Þ; and vðxÞ ¼ p � x;2 ðp=2; pÞ ð38Þ

and the C1 function

vðxÞ ¼ expðsinðxÞÞ � 1þ p
4
xð1� xÞ: ð39Þ

For simplicity, we have taken v vanishing at the end points x ¼ 0; p.
The grid function Vh on the embedded grid G1 
 G2 
 G3 are given using one of the following as-

ymptotic expansions structures,

vh ¼ vþ hv1 � h2v2 þ h4v3 ð40Þ

and

vh ¼ vþ h2v1 � h4v2; ð41Þ

with vi of order one in ð0; pÞ. The function vi is chosen such that the cancellation phenomenon such as (31)
occurs at some points. Further, we apply extrapolation to noisy data, ~vvh ¼ vh þ rh, with rh being a small

random perturbation function. In Fig. 7, we show limits and success of the least square extrapolation

presented here. In this numerical experiment, the three grids Gi; i ¼ 1::3 are embedded with increasing

number of grid points 13, 25, and 49. The final result is the mean of the error in L2 norm, given on G4 that

has 97 grid points with order ten computations with different arbitrary random noise of given fixed size

from 10�1 down to 10�5. Spline is used to interpolate the grid function data on the fine grid G4. Each weight

function a and/or b is computed using M ¼ 5 modes only. We observe that the two-level and three-level

extrapolation fail to improve the second order RE, for nonsmooth function as (38) when the asymptotic
expansion vh converges to v at second order as shown in Fig. 7(a). This is mainly due to the fact that the

weight functions are computed in the Fourier space, and the Gibbs phenomenon affects the second-order

accuracy. However, we see some improvement for data corresponding to first-order convergence, i.e., (40)

expansion – see Fig. 7(c). For smooth functions as in (39), as shown in Figs. 7(b) and (d), the three-level

extrapolation approximation always gives good result, as opposed to the two-level method that can suffer

from the cancellation phenomenon. In Figs. 7(e) and (f), we consider the case of varying order of con-

vergence, i.e., we cut off v1 in (40) to be 0 in (0; p=2). We observe that the least square extrapolation is

definitively an improvement on fixed order RE in this situation. In all cases our least square extrapolation
method give better result than first- or second order RE, whatever is the size of the noise rh added randomly
to each level grid function Vh, whatever is the convergence order of vh to v.

So far, we have restricted our presentation to one-dimensional (1D) approximation. The extension to

multidimensional problem is straightforward on tensorial product of grids. However this in principle limits

us to problems with very simple geometry. In fact our least square extrapolation method should be gen-

eralized naturally to complex geometry problem by fictitious domain technique [8]. As a matter of fact, it is

straightforward to embed any general domain X 
 Rn into a box ð0; 1Þn after an eventual rescaling of space
variables. We impose then M0 to be a tensorial product of 1D grid with constant space step in each space
direction of (0,1).

We extend then the functions ~UUiðxÞ and U for x 2 X \M0 to grid functions defined on M0 using tech-

nique similar to [7] or [14]. Once again using domain decomposition, one can do refinement in subdomains
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with regular grids. Another promising generalization is to take advantage of body fitted meshes generated

by PDEs [28,29], since the Fourier expansion technique is insensitive to change of variables as long as it is a

smooth transformation.

We are going to extend now our least square extrapolation method to construct approximate solutions

of PDE problems in square domains.

4. Least square extrapolation for PDEs

In classical RE methods applied to PDEs solution, one supposes that the order of convergence of the

sequence of functions ui; i ¼ 1::3 is known. The fact that these functions are solution of a discrete ap-

proximations of the PDE problem is never used directly. On the contrary, our criterion to determine the

weights in the present least square extrapolation formula is to approximate the PDE problem itself. So we

intend to approximate a fine grid solution of the approximation problem rather than to approximate di-
rectly the exact solution as in RE.

Fig. 7. Sensitivity and accuracy experiment of extrapolation methods for given analytical functions. s, for G1; *, for G2; +, for G3;

O, for R1; }, for R2; �, for LS1; I, for LS2.
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4.1. Computational algorithm

Let us denote formally

L½u� ¼ f with u 2 ðEa; k kaÞ and f 2 ðEb; k kbÞ; ð42Þ

a linear PDE problem and its numerical approximation,

Lh½U � ¼ fh with U 2 ðEh
a; k kaÞ and fh 2 ðEh

b; k kbÞ; ð43Þ

parameterized by a mesh step h.
Suppose that we have the stability estimate

kUka 6ChsðkfhkbÞ; ð44Þ

with s real but not necessarily positive. If the truncation error, qh ¼ Lh½U � uh� satisfies the estimate

kfhkb ¼ 0ðhqÞ with q > 0, then the numerical method is sþ q order. Since the operator is linear, at first sight,
both q order and sþ q order RE formula should give asymptotically the same improved solution. In

practice, the estimate (44) may not be optimal. One therefore should rather use the q order Richardson

extrapolation formula that minimizes the residual.

Let us restrict ourselves to two-point boundary value problems in (0,1). We recall that we intend to get
an improved approximation of the PDE�s solution on the fine grid M0 of space step noted loosely as h. We

extend our least extrapolation problem formulation for PDEs problems as follows.

Pa: Find a 2 Kð0; 1Þ 
 L1 such that

aLh½ ~UU 1� þ ð1� aÞLh½ ~UU 2� � fh ð45Þ

is minimum in L2ðM0Þ.
and

Pa: Find a; b 2 Kð0; 1Þ such that

aLh½ ~UU 1� þ bLh½ ~UU 2� þ ð1� a � bÞLh½ ~UU 3� � fh ð46Þ

is minimum in L2ðM0Þ.
We are going to focus our study in this paper on the practical use of this new methodology. The

mathematical theory for given classes of linear operators need to be developed in future work. We remark

that it is essential that the interpolation operator gives a smooth interpolant. As a matter of fact, if Lh has

second-order derivatives, we will use spline interpolant that preserve C2ð0; 1Þ continuity. For conservation
laws, one may require that the interpolation operator satisfies the same conservation properties. For
chemical problems, one may require that the interpolant preserve the positivity of species.

For elliptic problems, it is convenient to post-process the interpolated functions ~UUi; i ¼ 1::3 by few steps

of the relaxation scheme

V kþ1 � V k

dt
¼ Lh½V k� � fh; V 0 ¼ ~UUi; ð47Þ

with appropriate artificial time step dt. As a matter of fact this procedure dampens the high frequencies that
are introduced by the interpolation and significantly amplified by derivatives operator. This filtering process

happens to be critical in the application of the least square method to the Navier–Stokes equations, as will

be discussed later.

The solution process of Pa and/or Pða;bÞ can be decomposed into three consecutive steps. First, inter-

polation from Gi; i ¼ 1::3 to M0 that has a number of arithmetic operations proportional to CardðM0Þ, i.e.,
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the number of grid points of M0. Second, the evaluation of the residual on the fine grid M0, that has the

same asymptotic order of arithmetic operations. Third the solution of the linear least square problem with

M unknowns. If we keep M of the same order as CardðM0Þ1=3, and use a standard direct solver for sym-

metric system to solve the normal set of equations, the arithmetic complexity of the overall procedure is still

of order CardðM0Þ; i.e., it is linear.
To push further the practical use of our method, we observe that it can be generalized in a straight-

forward way to nonlinear PDE problem, via a Newton-like loop. To be more specific, let us denote

N ½u� ¼ f ; ð48Þ

the nonlinear problem. A Newton scheme results in a sequence of linearized problem denoted here,

JðuÞ½v� ¼ g: ð49Þ

Let us consider first the two-level extrapolation case. We will solve a sequence of Pa problems

Pak : Find ak 2 Kð0; 1Þ 
 L1 such that

akþ1Jhðak ~UU 1 þ ð1� akÞ ~UU 2Þ½ ~UU 1� þ ð1� akþ1ÞJhðak ~UU 1 þ ð1� akÞ ~UU 2Þ½ ~UU 2� � gh ð50Þ

is minimum in L2ðM0Þ, starting from initial condition a0 � 0, until kakþ1 � akk is less than some tolerance

number. The convergence of this scheme is not guaranteed, and as usual in Newton like method the initial

guess should not be too far from the final solution, i.e., the grid solution on M0 should not be too far from
the grid solution on G2.

The algorithm for the three-level extrapolation case is based on the identical concept. In order to proceed

with the evaluation of our method, we now consider two linear and nonlinear examples for which tradi-

tional RE does not work properly.

Our least square extrapolation method is coded as an independent program from the original PDE code

that produce the grid solution. The algorithm is as follows:

Step 1: compute the spline interpolation of each grid solution onto a common fine grid solution M0.

Step 2: compute once and for all the set of functions:

L½eið ~UU 1 � ~UU 2Þ�; ð51Þ

for the two-level case, and additionally

L½eið ~UU 2 � ~UU 3Þ�; ð52Þ

for the three-level case, where the ei are the basis function of K.
Step 3: solve the least square problem Pa or Pa;b.

We choose a Fourier expansion for each weight function a and b that has M terms with
M � CardðM0Þ1=3, to keep a linear cost for the complete procedure when the direct solution of the normal

set of equations is giving good result. An SVD, if needed will lead however to more intense computation [9].

If the problem is nonlinear, then we repeat steps 1–3 as many Newton iterations are computed. We have

used a Matlab implementation of this procedure independent of the code that generates the grid solutions.

The numerical experiments thereafter are restricted to 2D problems in square domains. We refer to [6] for

previous experiments with a 1D viscous steady Burgers problem that has a boundary layer.

4.2. Numerical evaluation

In all numerical experiments presented below, we will use the following abbreviations: G1 for direct

numerical solution, without any extrapolation, on grid N1 � N1, G2 for direct numerical solution on grid

N2 � N2; . . . ; etc., R1 for RE assuming first-order convergence using G2 and G3 data, R2 for RE assuming
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second-order convergence using G2 and G3 data, LS1 for two-level least square extrapolation using G2 and

G3 data, LS2 for three-levels least square extrapolation using G1, G2, G3 data.

In Figs. 8–12, we report on the error of the coarse grid solutions G1, G2 and G3 as well as RE and least

square extrapolation versus the exact grid solution on G4 for increasing resolution with G4. the curves cor-

responding to solutions on coarse grids G1, G2, G3 are processed after being interpolated on the fine grid G4

with spline interpolation. The error variations in these results with respect to the grid size of G4 are caused by

projection inaccuracies from spline interpolation. RE as well as least square extrapolation used the data from

G1, G2 and G3 that have been obtained after spline interpolation on G4. RE and least square extrapolation
are therefore providing grid solution directly on G4 that are compared to the exact grid solution on G4.

The matlab conventions are used for label, that is, �s� for squares, �d� for diamond, �v� for triangle (down),
�p� for pentagram, �h� for hexagram.

4.2.1. 2D turning point problem

In this section, we consider the following 2D turning point problem,

�Duþ aðx; yÞ ou
ox

¼ 0; x 2 ð0; pÞ2; ð53Þ

aðx; yÞ ¼ x� p
2

	
þ 0:3 y

	
� p
2




: ð54Þ

We define this problem in such a way that the transition layer of � order thickness centered on the curve

aðx; yÞ ¼ 0, is not parallel to the x or y axis. Therefore, the problem has really a 2D structure. The three
levels solutions are provided by a finite difference code that has second order central difference approxi-

mation of the diffusion term and first-order upwinding for the convection term. One uses either a direct

sparse LU linear or GMRES solver [16,24] since the matrix is nonsymmetric. Because of the discrete

maximum principle satisfied by the discrete operator, we avoid creating spurious oscillations. Further, if the

grid is not fine enough, one observes that the solution may not be accurate in the transition layer but that

Fig. 8. Application to a turning point problem with � ¼ 0:1. x axis is for the number of grid points N in each space direction for G4. y

axis gives in log10 scale the errors in maximum norm. �s� for squares, �d� for diamond, �v� for triangle (down), �p� for pentagram, �h� for
hexagram.
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the solution can still have first-order accuracy outside the layer. It can be observed that the solution ac-

curacy behaves as second order in L1 norm if the grid is not fine enough because the error on the diffusion

term dominates. Figs. 8 and 9 report on the accuracy of the two-level and three-level least square ex-
trapolation versus RE assuming either first- or second-order convergence. The errors are given in L1 norm.

The curve with hexagram signs gives an accurate estimation of the discrete solution error between the exact

Fig. 9. Application to a turning point problem with � ¼ 0:01. x axis is for the number of grid points N in each space direction for G4. y

axis gives in log10 scale the errors in maximum norm. �s� for squares, �d� for diamond, �v� for triangle (down), �p� for pentagram, �h� for
hexagram.

Fig. 10. Application to the lid-driven cavity problem and Cw�w code with Re ¼ 20. x axis is for the number of grid points N in each

space direction for G4. y axis gives in log10 scale the relative errors in maximum norm and L2 norm.
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grid solution on G4 versus the exact continuous solution of the turning point problem. This estimate uses as

an approximation of the exact solution the projection on G4 of the embedded G5 grid solution of space

step half of G4 space step.

The number of Fourier modes in the approximation of the weight a; b is 4 in each space direction. We
observe that for both cases � ¼ 0:1 and � ¼ 0:01 in Figs. 8 and 9, R1 gives better results than R2. This is an
indication of the fact that the transition layer is not under-resolved.

Fig. 11. Application to the lid-driven cavity problem and Cw�w code with Re ¼ 100. x axis is for the number of grid points N in each

space direction for G4. y axis gives in log10 scale the relative errors in maximum norm and L2 norm.

Fig. 12. Application to the lid-driven cavity problem and Cw�w code with Re ¼ 400. x axis is for the number of grid points N in each

space direction for G4. y axis gives in log10 scale the relative errors in maximum norm and L2 norm.
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We observe in Fig. 8 with � ¼ 0:1, and modest base grid sizes, namely, N1 ¼ 17, N2 ¼ 23, N3 ¼ 29,

meaning that we have on average only one or two grid points in the transition layer for the G3 solution, our

least square is as accurate as the G4 grid solution. As a matter of fact the error for the G4 solution labeled

with hexagram stays above the error for the least square approximations of G4 solution (see the curves with

square and losange labels). This is still true when the RE fails for N P 70. The least square extrapolation

also gives satisfactory results in Fig. 9, where � ¼ 0:01, N1 ¼ 39, N2 ¼ 49, N3 ¼ 59, but R1 predicts the grid

solution on G4 with an error less than or equal to the error with the exact continuous solution for N 6 110.

In all cases LS2 is more accurate than LS1, especially for large N values. In these experiments, LS1 and LS2
predict the fine grid solution with an error less than the fine grid approximation of the exact solution for N

as large as 150: we gain therefore more than one order of convergence.

This turning point problem confirms the potential of our method but is relatively easy to solve. Let us

consider now the lid-driven cavity flow problem considered previously in Section 2.2.

4.2.2. The square cavity flow problem

We consider the Cx�w code based on FD and test case described in Section 2.2. In Figs. 10–12, we report

L1 and L2 errors for stream and vorticity functions with Reynolds number Re ¼ 20, 100, 400. In Figs. 10–

12, we take as the exact solution to measure the error, the direct numerical solution on grid 101� 101 for

Re ¼ 20, and those on 111� 111 grid for Re ¼ 100 and Re ¼ 400. The goal is to approximate accurately a

grid solution on G4 finer than G3. As before, we denote N � N the size of G4. For Re ¼ 20, the grids G1,

G2, G3 are, respectively, 11� 11; 21� 21, 31� 31. For larger Reynolds number, we have, for obvious
reasons, to increase the coarse grid dimension. The three coarse grids are 21� 21; 31� 31; 41� 41 for

Re ¼ 100 and 41� 41, 51� 51, 61� 61 for Re ¼ 400. Since x can be large and W is small, we give, in fact,

relative errors instead of absolute values. We recall also that Figs. 1–3 report on the order of convergence

for the same data and parameters. The first two lower Reynolds number computations have been done with

central differences. The Re ¼ 400 case has been performed with first-order upwinding.

For the parameter of the experiment considered here, we look at data that have unsatisfactory accuracy.

The RE, R2 improves the G3 grid solution in all cases except for small N. More puzzling is the fact that R2

gives better results as N increases, with fixed G2 and G3 data. This is an artifact that can be explained as
follows. First we consider the exact solution to be the same as the direct numerical solution on a fine grid,

and second the order of convergence is far from the theoretical asymptotic estimate (see Figs. 1–3). For

larger N values the R2 error will eventually increase. We report here only on LS2 results. Further, we use 3

Newton loops in each case, and did check that more Newton loop result in little improvements.

Our first experiments with LS1 and LS2 based on the method described so far do not improve the RE

method but rather give the same level of error. The result presented here needs a tricky additional post-

processing. We found it critical to relax the interpolated solutions G1, G2 and G3 on G4 via the spline

method, with few steps of the time integration of the Navier–Stokes equation. In all cases then LS2 gives
significantly better results than R2 for the vorticity function. This relaxation procedure act as a smoother,

and was not necessary for the previous turning point problem. We did use 10 times steps (respt. 20 and 40)

for Re ¼ 20 (respt. Re ¼ 100 and Re ¼ 400). The artificial time step is given by the CFL condition on the

convective terms. We speculate that x–w problem requires smoother interpolated data than spline inter-

polation can bring, because, it is in fact a fourth order problem on the stream function. In particular, we did

check that the few relaxations steps that we post-process on spline interpolated solution from G1, G2, G3

data had very little effect on the size of the residual. Further, we verified that doubling the number of

relaxation did not change the final result.
LS2 improves also the stream function prediction. However this is not necessarily true in our last ex-

ample with Re ¼ 400, apparently due to the fact that the accuracy of G1, G2, G3 data is poor. As a matter

of fact R2 should give in theory worse results than R1. But this is not the case in the results of Fig. 12. Since

we use first-order upwinding in this test case, it shows that the error is dominated by the viscous effect.
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A refined approximation of the weight function a and b in this region may lead to significant improvement

of the method. We have now a basic set of tools as comparisons of RE or Least square approximations that

can be combined to control the accuracy and select the best data. This should be a topic of further in-

vestigations.

5. Conclusions

We have presented a new extrapolation method for PDEs that is more robust and accurate than RE

applied to numerical solutions of PDE problems with inexact or varying convergence order. This gener-

alized extrapolation should also be a better tool for code verification than RE when the convergence order

of a CFD code is space dependent. There are still many open questions brought by this paper. In particular

a posteriori estimates and adaptive domain decomposition may lead to better choices of representation of

the unknown weight function in the extrapolation formula. Criteria to relax the constraint on the accuracy

of the coarse grid data for efficient least square extrapolation need be further developed. In future work, we

plan to extend the application of our least square extrapolation method to more complex flow problems,
especially with general geometry via fictitious domain technique. For large problem, it should also be

interesting to exploit the potential parallelism of our post-processing algorithm and accelerate cascade

algorithm with our extrapolation technique.
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