
An Efficient High-Order Algorithm for Solving
Systems of Reaction-Diffusion Equations
Wenyuan Liao,1 Jianping Zhu,1 and Abdul Q. M. Khaliq2

1Department of Mathematics and Statistics
Mississippi State University
Mississippi State, MS 39762

2Department of Mathematics
Western Illinois University
Macomb, IL 61455

Received 29 May 2001; accepted 27 September 2001

An efficient higher-order finite difference algorithm is presented in this article for solving systems of two-
dimensional reaction-diffusion equations with nonlinear reaction terms. The method is fourth-order accurate
in both the temporal and spatial dimensions. It requires only a regular five-point difference stencil similar to
that used in the standard second-order algorithm, such as the Crank-Nicolson algorithm. The Padé approx-
imation and Richardson extrapolation are used to achieve high-order accuracy in the spatial and temporal
dimensions, respectively. Numerical examples are presented to demonstrate the efficiency and accuracy
of the new algorithm. c© 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 340–354, 2002;
Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10012

Keywords: high order algorithms; reaction-diffusion equations; extrapolation and interpolations

I. INTRODUCTION

We consider the following equation

wt = D1wxx + D2wyy + f(w, x, y, t), (x, y) ∈ (0, 1) × (0, 1), t > 0,

w(0, y, t) = g1(y, t),w(1, y, t) = g2(y, t), y ∈ [0, 1], t > 0,

w(x, 0, t) = h1(x, t),w(x, 1, t) = h2(x, t), x ∈ [0, 1], t > 0,

w(x, y, 0) = q(x, y), (x, y) ∈ [0, 1] × [0, 1], (1.1)

Correspondence to: Abdul Q. M. Khaliq, Department of Mathematics, Western Illinois University, Morgan 476, 1 Uni-
versity Circle, Macomb, IL 61455-1390 (e-mail: A-Khaliq@wiu.edu)
c© 2002 Wiley Periodicals, Inc.



ALGORITHM FOR REACTION-DIFFUSION EQUATIONS 341

where D1 and D2 are diagonal matrices of dimensions p × p with positive coefficients, f(w, x,
y, t) ∈ Rp is a nonlinear vector function, and w ∈ Rp is a vector of p dependent variables to be
solved. For many application problems in science and engineering, it is desirable to use high-order
numerical algorithms to compute accurate solutions. To simplify the discussion, we will first start
the development of an efficient high-order algorithm using the scalar and linear version of Eq.
(1.1) with constant coefficients

ut = auxx + buyy + f(x, y, t), (x, y) ∈ (0, 1) × (0, 1), t > 0, a, b > 0. (1.2)

The result will then be generalized to systems of nonlinear equations similar to that given in (1.1).
It is well known [1] that the standard central difference operators δ2

x and δ2
y defined by

(uxx)ij ≈ 1
h2

x

δ2
xui,j ≡ 1

h2
x

(ui−1,j − 2ui,j + ui+1,j),

(uyy)ij ≈ 1
h2

y

δ2
yui,j ≡ 1

h2
y

(ui,j−1 − 2ui,j + ui,j+1), (1.3)

give only second-order approximations to uxx and uyy , respectively, where ij represents the x−y
indices for spatial grid points, hx and hy represent the grid spacing in the x and y dimensions,
respectively. One way to obtain higher-order approximations is to use [1]

(uxx)ij ≈ 1
h2

x

(
I − 1

12
δ2
x

)
δ2
xuij ,

(uyy)ij ≈ 1
h2

y

(
I − 1

12
δ2
y

)
δ2
yuij , (1.4)

which are fourth-order accurate. However, the approximations given in (1.4) require a 9-point
stencil, which is much more complex than the 5-point stencil required by the approximations in
(1.3). This will not only significantly increase the computational complexity in solving the final
system of algebraic equations, but also cause difficulty in handling boundary conditions since on
each side of the computational domain two extra points are needed, whereas only one boundary
condition is given in (1.1).

To maintain a small finite difference stencil for efficient solution process, we can use com-
pact finite difference algorithm [2–5] to construct higher-order approximations for the spatial
derivatives. For example, the formulas in (1.4) can be represented by the Padé approximation

(uxx)ij =
δ2
x

h2
x

(
1 + 1

12δ2
x

)uij , (uyy)ij =
δ2
y

h2
y

(
1 + 1

12δ2
y

)uij . (1.5)

Note that if we expand 1/(1 + 1
12δ2

x) and 1/(1 + 1
12δ2

y) into a power series in terms of δ2
x and δ2

y ,
respectively, the first two terms of (uxx)ij and (uyy)ij in (1.5) match the expressions in (1.4). If
we set

(uxx)ij = vij , (uyy)ij = wij ,

and apply 1 + 1
12δ2

x and 1 + 1
12δ2

y to both sides of the two equations in (1.5), respectively, then
the following expressions

1
12

vi+1,j +
10
12

vi,j +
1
12

vi−1,j =
1
h2

x

(ui+1,j − 2ui,j + ui−1,j), (1.6)



342 LIAO, ZHU, AND KHALIQ

1
12

wi,j+1 +
10
12

wi,j +
1
12

wi,j−1 =
1
h2

y

(ui,j+1 − 2ui,j + ui,j−1). (1.7)

provide fourth-order approximations to uxx and uyy , respectively. Both Eq. (1.6) and (1.7) result
in systems of tridiagonal equations along j-lines and i-lines for solving the second derivatives
uxx and uyy , respectively. Combined with the standard finite difference approximation in the
temporal dimension, such as the Crank-Nicolson scheme, of the original PDE

un+1
ij − un

ij

∆t
=

a

2
(vn+1

ij + vn
ij) +

b

2
(wn+1

ij + wn
ij) +

1
2

(fn+1
ij + fn

ij) (1.8)

or

un+1
ij − un

ij

∆t
=

a

2
(vn+1

ij + vn
ij) +

b

2
(wn+1

ij + wn
ij) + f

n+ 1
2

ij , (1.9)

we have the complete system of Eqs. (1.6)–(1.8) for calculating solutions with fourth-order ac-
curacy in space using a five-point stencil.

This approach, while maintaining a five-point stencil in space, requires the solution of coupled
system of Eqs. (1.6)–(1.8) at each grid point. With p equations in the original system (1.1), a total
of 3p coupled equations need to be solved at each grid point. If an operator-splitting type method is
used to turn Eq. (1.8) into two separate equations, one along each of the x and y dimensions, then
a system of 2p coupled equations need to be solved at each grid point in each step of the splitting
method [6]. Furthermore, the formulation of Eqs. (1.6) and (1.7) requires boundary conditions for
uxx and uyy , which are usually not known. Therefore, additional one-sided approximations have
to be used to approximate the boundary conditions for uxx and uyy using lower-order derivatives
or function values. This could affect the accuracy and stability of the algorithm as well as the
structure of the final coefficient matrix in the equation system.

To simplify the computation, two methods for eliminating the second derivatives in (1.8) were
discussed in [2]. One is the explicit elimination in which the second derivatives are represented
in terms of the first derivatives and the function values. This approach works for the equations
that involve both first and second derivative, such as the convection-diffusion equations. For
reaction-diffusion equations that do not have the first-order derivatives, this approach will not
improve computational efficiency because it eliminates the second derivatives by introducing the
first derivatives into the equation.

The other method is the implicit elimination of the second derivative using the relations (1.6)
and (1.7). It works well in one-dimensional cases. For example, for the equation

ut = uxx,

we have

un+1
i − un

i

∆t
= (uxx)n+1

i = vn+1
i , (1.10)

where n and i represent the time step and spatial grid points, respectively. By combining (1.10)
at points i − 1, i, and i + 1, and using relation (1.6), we can eliminate the second derivative and
obtain

1
12

(
un+1

i+1 − un
i+1

∆t

)
+

10
12

(
un+1

i − un
i

∆t

)
+

1
12

(
un+1

i−1 − un
i−1

∆t

)

=
1
12

vn+1
i+1 +

10
12

vn+1
i +

1
12

vn+1
i−1 =

1
h2

x

(un+1
i+1 − 2un+1

i + un+1
i−1 ),



ALGORITHM FOR REACTION-DIFFUSION EQUATIONS 343

which is fourth-order accurate in space using a three-point stencil.
This approach does not apply directly to the general form of the two-dimensional Eq. (1.2) since

the elimination of both uxx and uyy will create a nine-point stencil. If the ADI [7, 8] algorithm is
used, then the solution procedure is

u
n+ 1

2
i,j − un

i,j

∆t
2

= a(uxx)n+ 1
2

i,j + b(uyy)n
i,j + f

n+ 1
2

i,j (1.11)

un+1
i,j − u

n+ 1
2

i,j

∆t
2

= a(uxx)n+ 1
2

i,j + b(uyy)n+1
i,j + f

n+ 1
2

i,j , (1.12)

where the term (uxx)n+ 1
2

i,j in (1.11) can be eliminated by combining three equations at points

(i − 1, j), (i, j), and (i + 1, j), and the term (uyy)n+ 1
2

i,j in (1.12) can be eliminated by combining
three equations at points (i, j − 1), (i, j), and (i, j + 1). The new systems of equations are

1
12


u

n+ 1
2

i+1,j − un
i+1,j

∆t
2


+

10
12


u

n+ 1
2

i,j − un
i,j

∆t
2


+

1
12


u

n+ 1
2

i−1,j − un
i−1,j

∆t
2




=
a

h2
x

(un+ 1
2

i+1,j − 2u
n+ 1

2
i,j + u

n+ 1
2

i−1,j) +
1
12

b(uyy)n
i+1,j +

10
12

b(uyy)n
i,j +

1
12

b(uyy)n
i−1,j

+
1
12

f
n+ 1

2
i+1,j +

10
12

f
n+ 1

2
i,j +

1
12

f
n+ 1

2
i−1,j , (1.13)

1
12


un+1

i,j+1 − u
n+ 1

2
i,j+1

∆t
2


+

10
12


un+1

i,j − u
n+ 1

2
i,j

∆t
2


+

1
12


un+1

i,j−1 − u
n+ 1

2
i,j−1

∆t
2




=
1
12

a(uxx)n+ 1
2

i,j+1 +
10
12

a(uxx)n+ 1
2

i,j +
1
12

a(uxx)n+ 1
2

i,j−1 +
b

h2
y

(un+1
i,j+1 − 2un+1

i,j + un+1
i,j−1)

+
1
12

f
n+ 1

2
i,j+1 +

10
12

f
n+ 1

2
i,j +

1
12

f
n+ 1

2
i,j−1. (1.14)

However, the terms (uyy)n
i−1,j , (uyy)n

i,j , and (uyy)n
i+1,j in (1.13) and (uxx)n+ 1

2
i,j−1, (uxx)n+ 1

2
i,j , and

(uxx)n+ 1
2

i,j+1 in (1.14) still need to be calculated (though no longer coupled with the calculation of un
ij

and u
n+ 1

2
ij ), which requires solving systems of tri-diagonal equations given by (1.6) and (1.7) using

the calculated solutions un
i,j and u

n+ 1
2

i,j , respectively. Furthermore, one can not avoid dealing with

the approximations of boundary conditions for (uyy)n
i,j and (uxx)n+ 1

2
i,j . Finally, the generalization

of this approach to three-dimensional problems is not obvious, since the straightforward fraction-
time step (using 1

3∆t) formulation

u
n+ 1

3
i,j,k − un

i,j,k

∆t
3

= (uxx)n+ 1
3

i,j,k + (uyy)n
i,j,k + (uzz)n

i,j,k,

u
n+ 2

3
i,j,k − u

n+ 1
3

i,j,k

∆t
3

= (uxx)n+ 1
3

i,j,k + (uyy)n+ 2
3

i,j,k + (uzz)
n+ 1

3
i,j,k ,



344 LIAO, ZHU, AND KHALIQ

un+1
i,j,k − u

n+ 2
3

i,j,k

∆t
3

= (uxx)n+ 2
3

i,j,k + (uyy)n+ 2
3

i,j,k + (uzz)n+1
i,j,k

for three-dimensional problems is only conditionally stable and first-order accurate in time.
In this article, we will use a different approach to eliminate the second-order derivatives while

maintaining a compact five-point stencil. It is based on the approximate factorization of the
finite difference operators, which only requires solutions of systems of tri-diagonal equations.
Furthermore, there is no need to introduce approximations for the boundary conditions of the
second derivatives. The approach can be generalized to system of reaction-diffusion equations
with nonlinear reaction terms. It also allows discontinuity in the initial and boundary condition
as discussed in [9]. The new approach based on the approximate factorization will be discussed
in the next section. The application to system of nonlinear equations will be discussed in Section
3. Improvement of accuracy in the temporal dimension based on the Richardson extrapolation
will be presented in Section 4, followed by numerical examples in Section 5 and conclusions in
Section 6.

II. EFFICIENT FOURTH-ORDER ALGORITHM BASED ON APPROXIMATE
FACTORIZATION

We start from the Crank-Nicolson algorithm for Eq. (1.2) on a rectangular grid (xi, yj), i =
0, . . . , M, j = 0, . . . , N,:

un+1
i,j − un

i,j

∆t
=

a

2
((uxx)n+1

i,j + (uxx)n
i,j) +

b

2
((uyy)n+1

i,j + (uyy)n
i,j) +

1
2

(fn+1
i,j + fn

i,j),

i = 0, . . . , M, j = 0, . . . , N. (2.1)

The standard discretization is

un+1
i,j − un

i,j

∆t
=

a

2h2
x

δ2
x(un+1

i,j + un
i,j) +

b

2h2
y

δ2
y(un+1

i,j + un
i,j) +

1
2

(fn+1
i,j + fn

i,j), (2.2)

which is known to be second-order accurate in both time and space. If the fourth-order Padé
approximation (1.5) is used to replace uxx and uyy , then the following algorithm

un+1
i,j − un

i,j =
rx

2
δ2
x

1 + δ2
x

12

(un+1
i,j + un

i,j)

+
ry

2
δ2
y

1 + δ2
y

12

(un+1
i,j + un

i,j) +
∆t

2
(fn+1

i,j + fn
i,j), (2.3)

where rx = a∆t/h2
x and ry = b∆t/h2

y , is second-order accurate in time and fourth-order accurate
in space. This algorithm can be written as(

I − rx

2
δ2
x

1 + δ2
x

12

− ry

2
δ2
y

1 + δ2
y

12

)
un+1

i,j

=

(
I +

rx

2
δ2
x

1 + δ2
x

12

+
ry

2
δ2
y

1 + δ2
y

12

)
un

i,j +
∆t

2
(fn+1

i,j + fn
i,j), (2.4)



ALGORITHM FOR REACTION-DIFFUSION EQUATIONS 345

which can be approximately factorized as(
I − rx

2
δ2
x

1 + δ2
x

12

)(
I − ry

2
δ2
y

1 + δ2
y

12

)
un+1

i,j

=

(
I +

rx

2
δ2
x

1 + δ2
x

12

)(
I +

ry

2
δ2
y

1 + δ2
y

12

)
un

i,j +
∆t

2
(fn+1

i,j + fn
i,j). (2.5)

The difference between (2.4) and (2.5) is

rxry

4
δ2
x(

1 + δ2
x

12

) δ2
y(

1 + δ2
y

12

) (un+1
i,j − un

i,j) ≈ rxry

4
δ2
x(

1 + δ2
x

12

) δ2
y(

1 + δ2
y

12

) (ut)
n+ 1

2
i,j ∆t

=
ab∆t3

4
δ2
x

h2
x

(
1 + δ2

x

12

) δ2
y

h2
y

(
1 + δ2

y

12

) (ut)
n+ 1

2
i,j =

ab∆t3

4
(utxxyy+O(h4

x)+O(h4
y)) = O(∆t3),

provided utxxyy is bounded. This additional error is of the same order as the truncation error in
the original algorithm (2.4). Since the operators in (2.5) commute, we can simplify the algorithm

by applying (1 + δ2
x

12 )(1 + δ2
y

12 ) to both sides of (2.5), which leads to(
1 +

δ2
x

12
− rx

2
δ2
x

)(
1 +

δ2
y

12
− ry

2
δ2
y

)
un+1

i,j

=
(

1 +
δ2
x

12
+

rx

2
δ2
x

)(
1 +

δ2
y

12
+

ry

2
δ2
y

)
un

i,j+
∆t

2

(
1 +

δ2
x

12

)(
1 +

δ2
y

12

)
(fn+1

i,j +fn
i,j). (2.6)

Equation (2.6) can be solved in two steps as(
1 +

δ2
x

12
− rx

2
δ2
x

)
u∗

i,j =
(

1 +
δ2
x

12
+

rx

2
δ2
x

)(
1 +

δ2
y

12
+

ry

2
δ2
y

)
un

i,j

+
∆t

2

(
1 +

δ2
x

12

)(
1 +

δ2
y

12

)
(fn+1

i,j + fn
i,j), (2.7)

(
1 +

δ2
y

12
− ry

2
δ2
y

)
un+1

i,j = u∗
i,j . (2.8)

The solutions to Eqs. (2.7) and (2.8) can be computed by solving only tridiagonal equations since
the left hand sides of (2.7) and (2.8) involve only the three-point central difference operators δ2

x

and δ2
y as defined in (1.3). Although the right-hand side of (2.7) involves the product of operators

δ2
xδ2

y , it does not complicate the solution process since it is applied to the known solution values
from the previous time step.

While solving Eq. (2.7), we need boundary conditions for u∗
0,j and u∗

M+1,j , j = 1, . . . , N .
These conditions can be obtained from Eq. (2.8) by setting i = 0 and i = M + 1, respectively:

u∗
0,j =

(
1 +

δ2
y

12
− ry

2
δ2
y

)
un+1

0,j ,

u∗
M+1,j =

(
1 +

δ2
y

12
− ry

2
δ2
y

)
un+1

M+1,j . (2.9)



346 LIAO, ZHU, AND KHALIQ

Since the spatial discretization used in obtaining (2.8) is fourth-order accurate in space, the
boundary conditions given by (2.9) have the same spatial accuracy as (2.8). This approach avoids
using one-sided difference approximations to the second spatial derivatives at the boundary, as is
required by the standard compact difference algorithms [2–5].

III. EQUATIONS WITH NONLINEAR REACTION TERMS

For a system of equations with linear diffusion and nonlinear reaction as given in (1.1), algorithm
(2.7) and (2.8) will result in the following system of equations:

(
I +

δ2
x

12
− rx

2
δ2
x

)
w∗

i,j =
(

I +
δ2
x

12
+

rx

2
δ2
x

)(
I +

δ2
y

12
+

ry

2
δ2
y

)
wn

i,j

+
∆t

2

(
I +

δ2
x

12

)(
I +

δ2
y

12

)
(fn+1

i,j + fn
i,j), (3.1)

(
I +

δ2
y

12
− ry

2
δ2
y

)
wn+1

i,j = w∗
i,j , (3.2)

where

rx =
∆t

h2
x

D1, ry =
∆t

h2
y

D2.

Note that Eq. (3.1) contains solutions wn
i,j ,w

∗
i,j , and wn+1

i,j (implicitly in fn+1
i,j ). Since both w∗

i,j

and wn+1
i,j are unknown, Eq. (3.1) can not be linearized by simply using Newton’s method or

its variations to expand fn+1
i,j at wn

i,j . In [6], a predictor-corrector type algorithm was used to
overcome this difficulty. The algorithm begins by using the expansion

fn+1
i,j = fn

i,j + Jn
i,j(w

n+1
i,j − wn

i,j) + ∆t(ft)n
i,j , (3.3)

where Jn
i,j = (∂f/∂w)n

i,j is the local Jacobian matrix. The algorithm in (3.1) and (3.2) can then
be written as

(
I +

δ2
x

12
− rx

2
δ2
x

)
w∗

i,j =
(

I +
δ2
x

12
+

rx

2
δ2
x

)(
I +

δ2
y

12
+

ry

2
δ2
y

)
wn

i,j

+
∆t

2

(
I +

δ2
x

12

)(
I +

δ2
y

12

)
(2fn

i,j + ∆t(ft)n
ij + en+1

ij ), (3.4)

(
I +

δ2
y

12
− ry

2
δ2
y

)
wn+1

i,j = w∗
i,j , (3.5)



ALGORITHM FOR REACTION-DIFFUSION EQUATIONS 347

where en+1
ij = Jn

i,j(w
n+1
i,j −wn

i,j). An intermediate solution w(n+1)P

ij is calculated by first using
the predictor(

I +
δ2
x

12
− rx

2
δ2
x

)
w∗P

i,j =
(

I +
δ2
x

12
+

rx

2
δ2
x

)(
I +

δ2
y

12
+

ry

2
δ2
y

)
wn

i,j

+
∆t

2

(
I +

δ2
x

12

)(
I +

δ2
y

12

)
(2fn

i,j + ∆t(ft)n
ij), (3.6)

(
I +

δ2
y

12
− ry

2
δ2
y

)
w(n+1)P

i,j = w∗P
i,j . (3.7)

The solution wn+1
ij is then calculated as the converged results of the following iterative correction

step:(
I +

δ2
x

12
− rx

2
δ2
x

)
w∗k

i,j =
(

I +
δ2
x

12
+

rx

2
δ2
x

)(
I +

δ2
y

12
+

ry

2
δ2
y

)
wn

i,j

+
∆t

2

(
I +

δ2
x

12

)(
I +

δ2
y

12

)
(2fn

i,j + ∆t(ft)n
ij) + e(n+1)(k−1)

ij , (3.8)

(
I +

δ2
y

12
− ry

2
δ2
y

)
w(n+1)k

i,j = w∗k
i,j , k = 1, 2, . . . , (3.9)

where k represents the number of iterations in the correction step. For k = 1, the solution values
from the predictor step are used in the computation.

Here we introduce a more efficient way to eliminatewn+1
ij from Eq. (3.1) by rewriting algorithm

(3.1) and (3.2) as(
I +

δ2
x

12
− rx

2
δ2
x

)
w∗

i,j =
(

I +
δ2
x

12
+

rx

2
δ2
x

)(
I +

δ2
y

12
+

ry

2
δ2
y

)
wn

i,j

+
∆t

2

(
I +

δ2
x

12
+

rx

2
δ2
x

)(
I +

δ2
y

12

)
fn
i,j , (3.10)

(
I +

δ2
y

12
− ry

2
δ2
y

)
wn+1

i,j = w∗
i,j +

∆t

2

(
I +

δ2
y

12

)
fn+1
i,j . (3.11)

The difference between the algorithms in (3.1) and (3.2) and that in (3.10) and (3.11) is

∆t

4
rxδ2

x

(
I +

δ2
y

12

)
(fn+1

i,j − fn
i,j),

for which we have the estimate∥∥∥∥∥∆t

4
rxδ2

x

(
I +

δ2
y

12

)
(fn+1

i,j − fn
i,j)

∥∥∥∥∥ ≈ O(∆t3) + O(∆t5).



348 LIAO, ZHU, AND KHALIQ

This is in the same order as that of the original truncation error in algorithm (2.4). With this new
formulation, Eq. (3.10) is linear and can be solved in a straightforward manner. Equation (3.11)
can be linearized by Newton’s method, or its variations, such as that given by (3.3). The new
algorithm can then be written as(

I +
δ2
x

12
− rx

2
δ2
x

)
w∗

i,j =
(

I +
δ2
x

12
+

rx

2
δ2
x

)(
I +

δ2
y

12
+

ry

2
δ2
y

)
wn

i,j

+
∆t

2

(
I +

δ2
x

12
+

rx

2
δ2
x

)(
I +

δ2
y

12

)
fn
i,j , (3.12)

(
I +

δ2
y

12
− ry

2
δ2
y − ∆t

2

(
I +

δ2
y

12

)
Jn

i,j

)
wn+1

i,j

= w∗
i,j +

∆t

2

(
I +

δ2
y

12

)
(fn

i,j − Jn
i,jw

n
i,j + ∆t(ft)n

i,j). (3.13)

To achieve high accuracy for strongly nonlinear problems, Newton’s iterations can be used to
solve (3.13), which leads to(

I +
δ2
x

12
− rx

2
δ2
x

)
w∗

i,j =
(

I +
δ2
x

12
+

rx

2
δ2
x

)(
I +

δ2
y

12
+

ry

2
δ2
y

)
wn

i,j

+
∆t

2

(
I +

δ2
x

12
+

rx

2
δ2
x

)(
I +

δ2
y

12

)
fn
i,j , (3.14)

(
I +

δ2
y

12
− ry

2
δ2
y − ∆t

2

(
I +

δ2
y

12

)
J(n+1)k−1

i,j

)
w(n+1)k

i,j = w∗
i,j +

∆t

2

(
I +

δ2
y

12

)
(f (n+1)k−1

i,j

− J(n+1)k−1

i,j w(n+1)k−1

i,j + ∆t(ft)n
i,j), k = 1, 2, . . . , (3.15)

where w(n+1)0

i,j = wn
ij . The boundary conditions for w∗

0,j and w∗
M+1,j can be handled in the

same way as in the original algorithm using Eq. (3.11):

w∗
0,j =

(
1 +

δ2
y

12
− ry

2
δ2
y

)
wn+1

0,j − ∆t

2

(
I +

δ2
y

12

)
fn+1
0,j ,

w∗
M+1,j =

(
1 +

δ2
y

12
− ry

2
δ2
y

)
wn+1

M+1,j − ∆t

2

(
I +

δ2
y

12

)
fn+1
M+1,j . (3.16)

Note that the system of equations in (3.12) are decoupled, which makes parallel implementation of
this part of the algorithm easy. The equations in (3.13), however, are coupled due to the Jacobian
matrix Jn

i,j . Several methods have been proposed to further improve the computational efficiency.
One way to decouple the solution process for (3.13) is to use only part of the local Jacobian matrix
Jn

i,j [10, 11]. Let

Jn
i,j = En

i,j + Ln
i,j + Un

i,j ,



ALGORITHM FOR REACTION-DIFFUSION EQUATIONS 349

where En
i,j , L

n
i,j , and Un

i,j represent the diagonal, the lower triangular, and the upper triangular

part of the Jacobian matrix, respectively. The approximate local Jacobian matrix J̃n
i,j is obtained

by using one of the following:

• J̃n
i,j = En

i,j ,

• J̃n
i,j = En

i,j + Ln
i,j ,

• J̃n
i,j = En

i,j + Un
i,j .

This approach, while decoupling the equations in system (3.13), will make it only first-order
accurate in time. The original algorithm (3.13) is second-order accurate in time. Another approach
was discussed in [12] that can maintain the original order of accuracy. It uses the upper triangular
part of the Jacobian for one of the two steps and the lower triangular part for the other step.
This makes the algorithm less amenable to parallel computations since the equations will have
to be solved following a particular order, either backward or forward. A different strategy was
discussed in [13] to completely decouple the equations in (3.13) while still maintaining the order
of accuracy in time. The basic idea is to use proper extrapolations to represent fn+1

i,j using solution
values wn

i,j and wn−1
i,j :

2fn
i,j − fn−1

i,j = 2[fn+1
i,j + Jn+1

i,j (wn
i,j − wn+1

i,j ) − (ft)n+1
i,j ∆t + O(∆t2)]

−[fn+1
i,j + Jn+1

i,j (wn−1
i,j − wn+1

i,j ) − 2(ft)n+1
i,j ∆t + O(∆t2)] = fn+1

i,j + O(∆t2), (3.17)

where we have used the relations

wn
i,j − wn+1

i,j = −(wt)n+1
i,j ∆t + O(∆t2),

wn−1
i,j − wn+1

i,j = −2(wt)n+1
i,j ∆t + O(∆t2).

This leads to

wn+1
i,j − wn

i,j

∆t
=

1
2
D1((wxx)n+1

i,j + (wxx)n
i,j) +

1
2
D2((wyy)n+1

i,j

+ (wyy)n
i,j) + 2fn

i,j − fn−1
i,j . (3.18)

The p equations in (3.18) are now decoupled since D1 and D2 are diagonal matrices and the
nonlinear term f is evaluated at the previous time levels. It is shown in [13] that the use of this
extrapolation maintains the order of accuracy of the original algorithm (3.2). It also avoids the
need of linearization for the nonlinear reaction term. The disadvantage is the stability concern
caused by the explicit treatment of the reaction term. Following similar approach that led to (2.7)
and (2.8) from (2.2), we obtain the following algorithm that is second-order accurate in time and
fourth-order accurate in space:(

I +
δ2
x

12
− rx

2
D1δ

2
x

)
w∗

i,j =
(

I +
δ2
x

12
+

rx

2
D1δ

2
x

)(
1 +

δ2
y

12
+

ry

2
D2δ

2
y

)
wn

i,j

+∆t

(
I +

δ2
x

12

)(
I +

δ2
y

12

)
(2fn

i,j − fn−1
i,j ), (3.19)

(
I +

δ2
y

12
− ry

2
D2δ

2
y

)
wn+1

i,j = w∗
i,j . (3.20)



350 LIAO, ZHU, AND KHALIQ

Because both D1 and D2 are diagonal, the equations in (3.19) and (3.20) are decoupled and can
be written as(

I +
δ2
x

12
− rxd′

l

2
δ2
x

)
(wl)∗

i,j =
(

I +
δ2
x

12
+

rxd′
l

2
δ2
x

)(
1 +

δ2
y

12
+

ryd′′
l

2
δ2
y

)
(wl)n

i,j

+ ∆t

(
I +

δ2
x

12

)(
I +

δ2
y

12

)
1
2

(3(fl)n
i,j − (fl)n−1

i,j ),

(
I +

δ2
y

12
− ryd′′

l

2
δ2
y

)
(wl)n+1

i,j = (wl)∗
i,j , l = 1, . . . , d,

where wl and fl are the lth components of the vectors w and f , respectively, and d′
l and d′′

l are
the diagonal elements of matrices D1 and D2, respectively.

IV. HIGHER-ORDER ACCURACY IN THE TEMPORAL DIMENSION

The algorithm given in (3.12) and (3.13) is fourth-order accurate in space, but only second-order
accurate in time. Because of the special formulation that led to the fourth-order accuracy in
space on a five-point stencil, it is difficult to combine this algorithm with available high-order
ODE solution algorithms to achieve better accuracy in the temporal dimension. Following the
derivation from (2.2) to (2.7) and (2.8), we can see that the temporal discretization is involved in
the very beginning of this algorithm development. As a result, it is difficult to use some of the
well-established methods, such as method of lines (MOL), to first discretize the space derivatives,
and then use high-order ODE time integration methods to achieve high temporal accuracy.

We used Richardson extrapolation on the computed solution to eliminate the lower-order term
in the truncation error. Because the Crank-Nicolson algorithm has a temporal truncation error in
the form of O(∆t2) + O(∆t4), we use

w =
4w

h
2 − wh

3
(4.1)

to eliminate the term O(∆t2), where w
h
2 and wh are the solutions at the final time level calculated

using ∆t = h and ∆t = h/2, respectively. This makes the final solution fourth-order accurate
in both the temporal and spatial dimensions. Although the extrapolation requires three times as
much computation as the original algorithm, the resulting high-order accuracy allows the use of
much larger time steps in the computation.

Note that if explicit extrapolation is used to decouple the equations, the order of extrapolation
in (3.17) needs to be increased to ensure that the temporal error in the final solution is of order
O(∆t2) + O(∆t4).

V. NUMERICAL EXPERIMENT

We discuss two numerical examples here: One with an analytic solution against which we can
compare the numerical solution to demonstrate the order of accuracy in both the spatial and
temporal dimensions, and the other with unknown exact solution for which we plot the numerical
results to demonstrate the time evolution of the solutions.



ALGORITHM FOR REACTION-DIFFUSION EQUATIONS 351

TABLE I. Maximum error between the calculated solution and the exact solution at T = 1.0.
h 0.1 0.05 0.025 0.0125 0.00625

e1 3.634e−05 8.869e−06 1.998e−06 4.628e−07 1.141e−07
e1/h2 3.634e−03 3.548e−03 3.197e−03 2.962e−03 2.921e−03

e2 4.283e−08 2.624e−09 1.624e−10 1.011e−11 6.292e−13
e2/h4 4.283e−04 4.198e−04 4.157e−04 4.141e−04 4.124e−04
e1 is the maximum error from the algorithm that is second-order accurate in time and fourth order accurate in space.
e2 is the maximum error from the algorithm that is fourth-order accurate in both time and space. ∆t = ∆x = ∆y = h.

Example 1. The equations to be solved are

ut = uxx + uyy + u2(1 − v2) + f(x, y, t),

vt = vxx + vyy + v2(1 − u2) + g(x, y, t), 0 < x, y < 1, t > 0,

where f(x, y, t), g(x, y, t), and the boundary and initial conditions have been selected to accom-
modate the exact solutions of u = e−t sin(x) sin(y) and v = e−2t sin(2x) sin(2y). The data in
Table I show the maximum error between the calculated solution and the exact solution at T = 1.
The discretization grid is ∆x = ∆y = ∆t = h, and the algorithm given by (3.14) and (3.15)
was used with a full analytic Jacobian matrix and Newton’s iterations. Because the effect of using
various approximate Jacobian matrices has been extensively studied, for example in [6, 10, 11],
we will not repeat those results here. The notation e1 represents the error from the algorithm that
is second-order accurate in time and fourth-order accurate in space, and e2 represents the error
from the algorithm that is fourth-order accurate in both time and space.

It is clear from Table I that the error represented by e1 shows a second-order decrease, whereas
that represented by e2 shows a fourth-order decrease. This is demonstrated by the fact that the
ratios of e1/h2 and e2/h4 remain roughly a constant as the computational grid is being refined.
Each time when the computation grid is refined by halving ∆t, ∆x, and ∆y, e1 is reduced only
by a factor of 4, whereas e2 is reduced by a factor of 16.

Table II shows similar results as those represented by e1 in Table I, except ∆t is refined by
a factor of 4 each time, whereas ∆x and ∆y is refined by a factor of 2 each time. It is clear
that the error e3 is now being reduced by a factor of 16 with each grid refinement, and the ratio
e3/h4 remains roughly a constant as the computational grid is refined, indicating fourth-order
convergence. However, the accuracy is still not as good as those represented by e2 in Table I.
For example, if the error represented by e3 is to be reduced to the same level as that of e2 at
∆x = ∆y = 0.00625, we must use ∆t = 0.000015, more than 400 times smaller than that
used for achieving e2. This demonstrates the effectiveness of the new algorithm with fourth-order
accuracy in both space and time.

TABLE II. Maximum error between the calculated solution and the exact solution at T = 1.0.
h 0.1 0.05 0.025 0.0125 0.00625

∆t 0.1 0.025 0.00625 0.0015625 0.000390625
e3 3.634e−05 1.995e−06 1.140e−07 7.082e−09 4.403e−10

e3/h4 3.634e−01 3.192e−01 2.918e−01 2.901e−01 2.886e−01
e3 is the maximum error from the algorithm that is second order accurate in time and fourth order accurate in space. The
initial grid is ∆t = ∆x = ∆y = 0.1. In each refinement step, ∆t is reduced by a factor of 4 and ∆t = ∆y = h is
reduced by a factor of 2.



352 LIAO, ZHU, AND KHALIQ

FIG. 1. Initial conditions for Eq. (5.1). (a) u at t = 0; (b) v at t = 0.

Example 2. The equations to be solved are

ut = uxx + uyy − u4v,

vt = vxx + vyy + u4v − 0.5v, 0 < x, y < 1, t > 0, (5.1)

with the following boundary conditions:

u(0, y, t) = u(1, y, t) = u(x, 0, t) = u(x, 1, t) = 1.0

u(0, y, t) = u(1, y, t) = u(x, 0, t) = u(x, 1, t) = 0.0.

The initial conditions for u and v are

u(x, y, 0) = 1.0, v(x, y, 0) = e−1600(x2+y2),

FIG. 2. Solutions to Eq. (5.1). (a) u at t = 4; (b) v at t = 4.



ALGORITHM FOR REACTION-DIFFUSION EQUATIONS 353

FIG. 3. Solutions to Eq. (5.1). (a) u at t = 8; (b) v at t = 8.

which are plotted in Fig. 1(a) and 1(b), respectively.
Figures 2, 3, and 4 show the numerical solutions of Eq. (5.1) at time T = 4, 8, and 12,

respectively. The computations were carried using the algorithm given in (3.14) and (3.15) on an
81 × 81 grid with a time step size of ∆t = 0.001. The time evolution of the solution is clearly
demonstrated in these figures. Because of the diffusion and chemical reaction (negative source
term), u gradually decreases. The rate of decrease is much higher in the middle of the domain
due to the large initial value of v there (hence large value of u4v), thus forming a deep valley that
expands radially. Similarly, the peak of v in the middle of the domain also decreases in amplitude
and spreads radially because of diffusion and reaction. Note, however, Fig. 4b shows a crater-like

FIG. 4. Solutions to Eq. (5.1). (a) u at t = 12; (b) v at t = 12.



354 LIAO, ZHU, AND KHALIQ

peak for solution v at T = 12. This can be explained by the fact that the rapid decrease of u at
the center of the domain makes the reaction term u4v − 0.5v in the second equation much more
negative there than in other part of the domain, hence causing v to decrease much more rapidly
at the center of the domain.

VI. CONCLUSION

An efficient high-order algorithm for solving systems of reaction-diffusion equations with linear
diffusion and nonlinear reaction is discussed in this article. It is fourth-order accurate in time
and space and uses a compact five-point finite difference stencil for two-dimensional problems.
Numerical results have demonstrated the high-order accuracy in both temporal and spatial dimen-
sions. The authors plan to generalize the new method to three-dimensional problems.

We thank the anonymous referees for their constructive comments on the revision of the manuscript.

References

1. B. Gustafson, H. Kreiss, and J. Oliger, Time Dependent Problems and Difference Methods, John Wiley
& Sons, New York, 1995.

2. Yves Adam, Highly accurate compact implicit methods and boundary conditions, Journal of Compu-
tational Physics 24, 10–22 (1977).

3. Richard S. Hirsch, Higher order accurate difference solutions of fluid mechanics problems by a compact
differencing technique, Journal Of Computational Physics 19, 90–109 (1975).

4. S. K. Lele, Compact finite difference schemes with spectral-like resolution, J. Computational Physics
103, 16–42 (1992).

5. R. V. Wilson, A. O. Demuren, and M. Carpenter, Higher-order compact schemes for numerical simu-
lation of incompressible flows, ICASE report, No. 98-13, (1998).

6. J. I. Ramos, Implicit, compact, linearized θ-methods with factorization for multidimensional reaction-
diffusion equations, Applied Mathematics and Computation 94, 17–43 (1998).

7. J. Douglas Jr., On the numerical integration of ∂2u/∂x2 + ∂2u/∂y2 = ∂u/∂t by implicit methods, J.
of Society for Industrial and Applied Mathematics 3, 42–65 (1955).

8. D. W. Peaceman and H. H. Rachford Jr., The numerical solution of parabolic and elliptic differential
equations, J. Society of Industrial and Applied Mathematics 3, 28–41 (1955).

9. J. D. Lawson and J. L. Morris, The extrapolation of first-order methods for parabolic partial differential
equations I, SIAM J. Numerical Analysis 15, 1212–1124 (1978).

10. J. I. Ramos, Linearization methods for reaction-diffusion equations: 1-D problems, Applied Mathemat-
ics and Computation 88, 199–224 (1997).

11. J. I. Ramos, Linearization methods for reaction-diffusion equations: multi-dimensional problems, Ap-
plied Mathematics and Computation 88, 225–254 (1997).

12. E. Hairer and G. Wanner, Solving ordinary differential equations, II, stiff and algebraic problems, 2nd
Ed., Springer-Verlag, Berlin, 1996.

13. L. Cao and J. Zhu, Efficient and accurate local time stepping algorithms for multi-rate problems, Pro-
ceedings of the Eighth International Colloquium on Differential Equations, VSP International Science
Publishes, 97–104 (1998).


