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SUMMARY

The technique of Richardson extrapolation, which has previously been used on time-independent problems,
is extended so that it can also be used on time-dependent problems. The technique presented is completed
in the sense that the extrapolated solution is calculated at all spatial grid nodes which coincide with
nodes of the ®nest grid considered. Numerical examples are presented when the technique is applied to
the Lax±Wendro� and Crank±Nicholson ®nite di�erence schemes which are used to approximate solutions
to the convection±di�usion equation. The examples show that extrapolation can be an easy and e�cient
way in which to produce accurate numerical solutions to time-dependent problems.# 1997 by JohnWiley &
Sons, Ltd.
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INTRODUCTION

Richardson extrapolation is a well-known simple technique which can be used to increase the
rate of convergence of a number of numerical schemes. In particular, it can be applied to the
class of numerical schemes which produce approximate solutions to either time-independent
ordinary or partial di�erential equations on a grid. This class includes the method of ®nite
di�erences, ®nite elements and ®nite volumes. Richardson extrapolation can be brie¯y described
as follows. A numerical scheme is used to calculate the unknown true solution on two grids
(typically uniform) of di�ering mesh size. A grid is referred to as the arrangement of points,
called grid nodes, where the solution domain is spatially discretized and the true solution
approximated. The ®ner grid is constructed by bisecting the coarser grid and hence all coarse
grid nodes correspond in space with a ®ne grid node. Provided the coarser grid is initially `®ne'
enough the solution calculated on the ®ner of the two grids will be a more accurate
representation of the true solution. Where nodes of both grids coincide a solution which is more
accurate than the ®ne grid solution is calculated. This is achieved by knowing the rate at which
the numerical scheme used on both grids converges to the true solution and extrapolating a new
solution from the coarse and ®ne grid solutions. Richardson extrapolation requires that the true
solution be a smooth continuous function.
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The extrapolated solution is only calculated at the coarse grid nodes. Roache and Knupp1

extended the technique so that the extrapolated solution could also be calculated at the inter-
mediate ®ne grid nodes. This was then referred to as completed Richardson extrapolation. In this
paper the technique is extended one step further where it can also be applied to time-dependent
partial di�erential equations. The technique is also made more general by allowing the ®ne
grid to be ®ner than just a bisection of the coarse grid. The extensions presented here are as
simple as those presented in Roache and Knupp1 and the result is a technique which is easy to
implement.

METHOD

Here we consider problems involving one spatial dimension and denote the exact solution by
f�x; t�. It is assumed that the problem is described by well-posed initial and boundary conditions.
The exact solution is also assumed to be smooth and continuous and the solution domain de®ned
by 04 x4 1 and t5 0. A uniform ®ne grid is constructed such that there are I � 1 nodes in the
x-direction separated by Dx � 1=I. Nodes are separated in the t-direction by Dt. The �i; n� node is
then set to correspond to the point �iDx; nDt�. A uniform coarse grid is constructed such that it
overlaps the ®ne in the following way. Nodes are separated in x bymDx and in t bymgDt, wherem
and g are positive integers. The integer I is made a multiple of m so that the coarse grid exactly
covers the spatial domain. The nodes of the coarse grid then coincide in space and time with the
�mi;mgn� nodes of the ®ne grid. The numerical approximation on the ®ne grid at node �i; n� is
denoted fn

f ;i. The coarse grid approximations are denoted fn
c;i, where the subscript i is a multiple

of m and the superscript n a multiple of mg. An example of a coarse and ®ne grid de®ned by the
parameters I � 10, m � 2 and g � 2 is given in Figure 1.
Consider a numerical scheme with truncation error denoted ET �f;Dx;Dt�. The truncation

error is de®ned as the di�erence between the desired governing partial di�erential equation to
which a solution is sought and the actual partial di�erential equation to which the numerical

Figure 1. Example of a ®ne and coarse grid de®ned by I � 10, m � 2 and g � 2
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scheme provides a solution.2 The truncation error is dependent on the unknown f, prescribed
coe�cients of the governing partial di�erential equation (i.e. terms involving advection,
di�usion, decay, sources and sinks) and the spatial and temporal spacings of the grid nodes.2

The truncation error is assumed to have the following form:

ET �f;Dx;Dt� � O��Dx�ax ; �Dt�at � � �Dx�axGx � �Dt�atGt � O��Dx�bx ; �Dt�bt � �1�

where ax, at, bx and bt are positive integers such that bx > ax and bt > at. The terms Gx and Gt

are generally complicated functions involving f and its partial derivatives. One way to remove
these two terms from the truncation error and hence produce a scheme with a higher rate of
convergence is to calculate their form, often by intense algebraic manipulation, and then
discretize them. This is tedious and will result in a cumbersome scheme with a stability condition
which may be di�cult to determine. An alternative and much simpler way to remove these two
terms is to use an approach similar to Richardson extrapolation, which is now described in detail.
It can be shown that the error produced by a numerical scheme over a time step of length Dt is of
the form DtET . Assume the exact solution is known at the nth time level; then the error in the
calculation of f at the �i; n � 1� ®ne grid node is

f�iDx; �n � 1�Dt� ÿ fn�1
f ;i � DtET � Dt�Dx�axGn

x;i � �Dt�at�1Gn
t;i � O�Dt�Dx�bx ; �Dt�bt�1� �2�

where the subscript i and superscript n indicate that the function is evaluated at the �i; n� ®ne grid
node. If i is chosen to be a multiple ofm then the error produced after one time step on the coarse
grid is

f�iDx; �n � mg�Dt� ÿ fn�mg

c;i � mgDt�mDx�axGn
x;i � �mgDt�at�1Gn

t;i � O�Dt�Dx�bx ; �Dt�bt�1�
� max�gDt�Dx�axGn

x;i � mg�at�1��Dt�at�1Gn
t;i � O�Dt�Dx�bx ; �Dt�bt�1� �3�

Assume that for a few subsequent time steps on the ®ne grid the errors produced are of the
same magnitude as the one produced from the nth to the �n � 1�th time level. By this assumption
the subsequent errors are approximated to O�Dt�. The error contribution at each time step
can be assumed to be approximately cumulative. The error on the ®ne grid at the n � mg time
level is

f�iDx; �n � mg�Dt� ÿ fn�mg

f ;i � mgDt�Dx�axGn
x;i � mg�Dt�at�1Gn

t;i

� O��Dt�2�Dx�ax ;Dt�Dx�bx ; �Dt�at�2; �Dt�bt�1� �4�

With two approximations to f coinciding with the �i; n � mg� node, Gn
x;i and Gn

t;i may be
eliminated from (4) by considering

fn�mg

R;i � afn�mg

f ;i ÿ bfn�mg

c;i

a ÿ b
� f�iDx; �n � mg�Dt� � mg

a ÿ b
�bmax ÿ a�Dt�Dx�axGn

x;i

� mg

a ÿ b
�bmgat ÿ a��Dt�at�1Gn

t;i � O��Dt�2�Dx�ax ;Dt�Dx�bx ; �Dt�at�2; �Dt�bt�1� �5�
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where a and b are constants. If both leading error terms are to be removed, then the following
must hold: ax � gat. Thus, extrapolation can be applied if the coarse and the ®ne grid are related
by g � ax=at. The extrapolated solution is then calculated by

fn�mg

R;i � maxfn�mg

f ;i ÿ fn�mg

c;i

max ÿ 1

� f�iDx; �n � mg�Dt� � O��Dt�2�Dx�ax ;Dt�Dx�bx ; �Dt�at�2; �Dt�bt�1� �6�

The improved solution at the coarse grid nodes has a rate of convergence comparable to a scheme
with a truncation error of at worst O�Dt�Dx�ax ; �Dx�bx ; �Dt�at�1 ; �Dt�bt �.

Thus far the technique of extrapolation has been used to produce a more accurate solution at
coarse grid nodes only. The technique is now extended so that a solution with a high rate of
convergence is calculated at the remaining ®ne grid nodes which lie on a coarse grid time level.
Let

Cn
i � mgDt�Dx�axGn

x;i � mg�Dt�at�1Gn
t;i �7�

The ®ne grid error at a coarse time level given by (4) can be written

f�iDx; �n � mg�Dt� ÿ fn�mg

f ;i � Cn
i � O��Dt�2�Dx�ax ;Dt�Dx�bx ; �Dt�at�2; �Dt�bt�1� �8�

The extrapolated solution at coarse grid nodes has been achieved by eliminating Cn
i from (8),

where i is a multiple of m. To derive an extrapolated solution at the interior ®ne grid nodes the
unknown Cn

i (i.e. i not a multiple of m) are approximated from the extrapolated approximations
to Cn

i at coarse grid nodes (i.e. i a multiple of m). Linear interpolation of C in x gives

Cn
i� j �

1

m
��m ÿ j�Cn

i � jCn
i�m� � O�Dt�Dx�ax�1; �Dt�at�1Dx� �9�

for i a multiple of m and j � 0; 1; . . . ;m. Substituting (6) into (8) gives the coarse grid
approximations for C, namely

Cn
i � fn�mg

R;i ÿ fn�mg

f ;i � O��Dt�2�Dx�ax ;Dt�Dx�bx ; �Dt�at�2; �Dt�bt�1� �10�

where i is a multiple of m. By combining (8)±(10) an extrapolated solution at the ®ne grid nodes
can be made,

fn�mg

R;i� j � fn�mg

f ;i� j �
1

m
��m ÿ j��fn�mg

R;i ÿ fn�mg

f ;i � � j�fn�mg

R;i�m ÿ fn�mg

f ;i�m�� �11�

The error in the above approximation has the form

f��i � j�Dx; �n�mg�Dt� � fn�mg

R;i�j
�O��Dt�2�Dx�ax ;Dt�Dx�bx ; �Dt�at�2; �Dt�bt�1;Dt�Dx�ax�1; �Dt�at�1Dx� �12�

Thus the new extrapolated solution, given by (11), has a rate of convergence comparable to a
single grid scheme with a truncation error of at worst O�Dt�Dx�ax ; �Dx�bx ; �Dt�at�1; �Dt�bt ;
�Dx�ax�1; �Dt�atDx�.
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One way to use the technique of extrapolation is to update both the coarse and ®ne grid
solutions with the extrapolated solution after each coarse time step. Suppose a solution is required
at t � T (say) which for the numerical scheme being used can be calculated with N time steps on
the coarse grid. An algorithm which implements the technique of extrapolation is given in
Figure 2. It is not necessary to compare the coarse and ®ne grid solutions after each coarse grid
time step to produce a higher-order convergent solution as the above reasoning is equally
applicable when comparing solutions after any number of coarse time steps. For example, the
extrapolated calculations may be performed just once after theN coarse time steps. The algorithm
in Figure 2 would then be modi®ed by moving the extrapolation calculations outside the coarse
grid loop. One would expect, though, that the technique of extrapolation would be most e�ective
at improving the accuracy of the numerical solution at time t � T when it is applied after each
coarse time step.

initialize the ®ne and coarse grid
for nc � 1 to N do begin

iterate one time step on the coarse grid
for nf � 1 to mg do

iterate one time step on the ®ne grid
for each coarse grid node do

calculate the extrapolated solution using (6)
for each ®ne grid node do

calculate the extrapolated solution using (11)
transfer the extrapolated solution to the coarse grid
transfer the extrapolated solution to the ®ne grid

end

Figure 2. Algorithm describing the technique of completed Richardson extrapolation in space and time with extrapolation
performed after each coarse grid time step

TEST EXAMPLES

The technique of extrapolation is now illustrated by considering the well-known convection±
di�usion equation with time-dependent coe�cients, namely

@f
@t
� u�t� @f

@x
� D�t� @

2f
@x2

�13�

A solution which satis®es the condition

lim
x!�1

f�x; t� � 0 �14�

for all t5 0 is

f�x; t� � f0���p 4pT�t; t0��
exp ÿ �x ÿ U�t� ÿ x0�2

4T�t; t0�
� �

�15�

T�t; t0� �
Z t

t0

D�t� dt �16�

U�t� �
Z t

0

u�t� dt �17�
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where f0, x0 and t0 < 0 are constants. For the examples presented here the solution domain is
de®ned by 04 x4 1 and 04 t4 1, with f0 � 1, x0 � 1=4, t0 � ÿ1=10 and

u�t� � 1

4
exp t �18�

D�t� � 1

100
exp t �19�

The initial condition and Dirichlet boundary conditions are provided by the exact solution. The
solution to (13) is a Gaussian peak which moves at an exponentially increasing rate in the positive
x-direction and di�uses at an exponentially increasing rate.

The Lax±Wendro� ®nite di�erence scheme can be used to approximate a solution to (13), and
is described by

fn�1
i � 1

2
�2sn � �cn�2 � cn�fn

iÿ1 � �1 ÿ �cn�2 ÿ 2sn�fn
i �

1

2
�2sn � �cn�2 ÿ cn�fn

i�1 �20�

where

cn � Dt
Dx

u�nDt� �21�

sn � Dt

�Dx�2 D�nDt� �22�

This scheme is stable when

0 < sn <
1

2
�1 ÿ �cn�2� �23�

holds true for all time steps. The truncation error can also be shown to be of O�Dt; �Dx�2�;3 hence
ax � 2 and at � 1. Thus to use the technique of extrapolation with the Lax±Wendro� scheme
requires that the two grids be related by g � 2. Note that the Lax±Wendro� scheme will be stable
on the ®ne grid if it is also stable on the coarse grid.
The root mean square errors (ERMS) at the ®nal time level (T � 1) produced by the Lax±

Wendro� and the extrapolated Lax±Wendro� scheme are presented in Table I for various grid
node spacings. Also presented is the approximate number of times the nodal calculation (20) is
performed to obtain the numerical solution. By examining the rate at which the error decreases
with decreasing grid size the rate of convergence for both schemes can be estimated. The
bracketed values presented in Table I indicate the factor by which ERMS decreases when Dx is
decreased by m and Dt by m2. For example, the entry (3.76) in row 2 of Table I(i) is calculated
from the error measures in rows 1 and 2, i.e. (1�72� 10ÿ2=4�58� 10ÿ3). The entry (3.95) in row 3
is calculated from (4�58� 10ÿ3=1�16� 10ÿ3) etc. For a scheme that is converging at a rate of
O�Dt; �Dx�2� we would expect these ratios to be near m2, and for a scheme that is converging at a
rate of O��Dt�2; �Dx�4� the ratios will be closer tom4. When the Lax±Wendro� scheme is used on a
single grid the numerical solution converges to the true solution at a rate of O�Dt; �Dx�2�. This is
evident from the error ratios being close to 4 in Table I(i) and 9 in Table I(iii).

The error in the ®nal solution when four variations of extrapolation are performed (denoted
a±d) are shown in Tables I(ii) and I(iv). The variations are: (a) extrapolation is only performed
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Table I. Error measures for the Lax±Wendro� and extrapolated Lax±Wendro� calculations when the
coarse and ®ne grids are related by g � 2. See the text for a description of the type of extrapolation,
indicated by (a)±(d). Note Dx � 1=I and Dt � 1=N. The bracketed terms indicate the factor by which the

error measure has been reduced by reducing the mesh size

(i) No extrapolation performed (m � 2)

Grid spacing
I N ERMS Node evaluations

20 40 1�72� 10ÿ2 800
40 160 4�58� 10ÿ3 (3.76) 6400
80 640 1�16� 10ÿ3 (3.95) 51200
160 2560 2�92� 10ÿ4 (3.97) 409600

Suggested rate of convergence OfDt; �Dx�2g

(ii) Extrapolation is performed on the solution (m � 2). The grid spacing of the ®ner of the two grids is
indicated

Grid spacing Node
I N ERMS (a) ERMS (b) ERMS (c) ERMS (d) evaluations

40 160 4�71� 10ÿ4 6�00� 10ÿ3 5�45� 10ÿ4 5�03� 10ÿ4 7200
80 640 2�96� 10ÿ5 (15.91) 1�52� 10ÿ3 (3.95) 3�51� 10ÿ5 (15.53) 3�22� 10ÿ5 (15.62) 57600

160 2560 1�85� 10ÿ6 (16.00) 3�81� 10ÿ4 (3.99) 2�21� 10ÿ6 (15.88) 2�02� 10ÿ6 (15.94) 460800

Suggested rate of convergence
Of�Dt�2; �Dx�4g OfDt; �Dx�2g Of�Dt�2; �Dx�4g Of�Dt�2; �Dx�4g

(iii) No extrapolation performed (m � 3)

Grid spacing
I N ERMS Node evaluations

20 50 2�18� 10ÿ2 1000
60 450 2�52� 10ÿ3 �8�65� 27000
180 4050 2�81� 10ÿ4 (8.97) 729000
540 36450 3�12� 10ÿ5 (9.01) 19683000

Suggested rate of convergence OfDt; �Dx�2g

(iv) Extrapolation is performed on the solution (m � 3). The grid spacing of the ®ner of the two grids is
indicated

Grid spacing Node
I N ERMS (a) ERMS (b) ERMS (c) ERMS (d) evaluations

60 450 1�60� 10ÿ4 6�15� 10ÿ3 2�11� 10ÿ4 1�75� 10ÿ4 28000
180 4050 2�03� 10ÿ6 (78.82) 6�95� 10ÿ4 (8.85) 2�72� 10ÿ6 (77.57) 2�22� 10ÿ6 (78.83) 756000
540 36450 2�51� 10ÿ8 (80.88) 7�74� 10ÿ5 (8.98) 3�38� 10ÿ8 (80.47) 2�75� 10ÿ8 �80�73� 20412000

Suggested rate of convergence
Of�Dt�2; �Dx�4g OfDt; �Dx�2g Of�Dt�2; �Dx�4g Of�Dt�2; �Dx�4g
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on the coarse grid nodes using (6) at the ®nal time level; (b) as (a) but now the solution is also
calculated at ®ne grid nodes by assuming a piece-wise linear form between coarse grid
extrapolated values; (c) the completed extrapolation scheme described by (6) and (11) is applied
once at the ®nal coarse time level; (d) the completed extrapolation scheme is applied after every
coarse time step (as described by the algorithm presented in Figure 2). The error ratios indicate
that the extrapolated solutions (a), (c) and (d) converge to the exact solution at a rate of
O��Dt�2; �Dx�4�. Assuming a piece-wise linear form for the extrapolated solution when calculating
®ne grid values, i.e. scheme (b), does not preserve the overall high rate of convergence. Also, when
applying the completed extrapolation scheme after every coarse time step rather than only at the
®nal time step a more accurate solution is produced, although in both cases the solution
converges at a comparable rate.

The extrapolated solution is always more accurate than the single grid solution when a similar
sized mesh is used. The e�ciency of the completed extrapolation scheme can be seen by noting
the approximate number of node evaluations required to compute a solution. For example, to
produce a solution having a root mean square error of around 3� 10ÿ5 requires nearly 20 million
node evaluations when a single grid is used, but the same error can be achieved with less than
60,000 node evaluations when two grids are used and their solutions combined. It should be
noted that the approximate number of node evaluations required can only be used as a rough
guide to the time taken to compute a solution. The time taken to evaluate a node with the
extrapolated scheme is slightly longer as it also includes the time taken to perform the extra-
polations, i.e. the extra calculations (6) and (11). However, in practice these extra extrapolation
calculations are often quick when compared with the numerical scheme calculations, particularly
when the governing problem contains coe�cients which have complicated functional forms.

Alternatively the solution to (13) can be approximated by the implicit Crank±Nicolson ®nite
di�erence scheme, namely

ÿ �2sn�1=2 � cn�1=2�fn�1
iÿ1 � 4�1 � sn�1=2�fn�1

i ÿ �2sn�1=2 ÿ cn�1=2�fn�1
i�1

� �2sn�1=2 � cn�1=2�fn
iÿ1 � 4�1 ÿ sn�1=2�fn

i � �2sn�1=2 ÿ cn�1=2�fn
i�1 �24�

This scheme is unconditionally stable and diagonally dominant when

0 <
1

2
�cn�1=2 ÿ 2�4 sn�1=2 �25�

The truncation error can be shown to be of O��Dt�2; �Dx�2�.3 If the technique of extrapolation is to
be applied to the Crank±Nicolson scheme, then the coarse and ®ne grid must be related by g � 1.
Again, stability will be ensured on the ®ne grid if it is also stable on the coarse grid.
Numerical results are presented in Table II. In this example the bracketed values represent the

factor by which ERMS decreases when both Dx and Dt are decreased by a factor of m. For a
scheme which converges at a rate of O��Dt�2; �Dx�2� these ratios will be near m2 and for a rate of
convergence of O��Dt�4; �Dx�4� near m4. The error ratios indicate that the Crank±Nicolson
scheme when used on a single grid converges at a rate of O��Dt�2; �Dx�2� as expected, and the
extrapolated solutions (a), (c) and (d) converge at a rate of O��Dt�4; �Dx�4�. These results are
similar in form to those of the Lax±Wendro� example and again indicate that the technique of
extrapolation can produce a higher-order convergent solution than the single grid scheme at
relatively little extra computational cost.
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Table II. Error measures for the Crank±Nicolson and extrapolated Crank±Nicolson calculations when the
coarse and ®ne grids are related by g � 1. See the text for a description of the type of extrapolation,
indicated by (a)±(d). Note Dx � 1=I and Dt � 1=N. The bracketed terms indicate the factor by which the

error measure has been reduced by reducing the mesh size

(i) No extrapolation performed (m � 2)

Grid spacing
I N ERMS Node evaluations

20 20 4�79� 10ÿ2 400
40 40 1�19� 10ÿ2 (4.03) 1600
80 80 2�96� 10ÿ3 (4.02) 6400
160 160 7�39� 10ÿ4 (4.01) 25600

Suggested rate of convergence Of�Dt�2; �Dx�2g

(ii) Extrapolation is performed on the solution (m � 2). The grid spacing of the ®ner of the two grids
is indicated

Grid spacing Node
I N ERMS (a) ERMS (b) ERMS (c) ERMS (d) evaluations

40 40 1�63� 10ÿ3 5�64� 10ÿ3 1�63� 10ÿ3 5�46� 10ÿ4 2000
80 80 9�80� 10ÿ5 (16.63) 1�49� 10ÿ3 (3.79) 1�00� 10ÿ4 (16.30) 3�57� 10ÿ5 (15.29) 8000

160 160 6�04� 10ÿ6 (16.23) 3�79� 10ÿ4 (3.93) 6�21� 10ÿ6 (16.10) 2�27� 10ÿ6 (15.73) 32000

Suggested rate of convergence
Of�Dt�4; �Dx�4g Of�Dt�2; �Dx�2g Of�Dt�4; �Dx�4g Of�Dt�4; �Dx�4g

(iii) No extrapolation performed (m � 3)

Grid spacing
I N ERMS Node evaluations

20 20 4�79� 10ÿ2 400
60 60 5�26� 10ÿ3 (9.11) 3600

180 180 5�84� 10ÿ4 (9.01) 32400
540 540 6�48� 10ÿ5 (9.01) 291600

Suggested rate of convergence Of�Dt�2; �Dx�2g

(iv) Extrapolation is performed on the solution (m � 3). The grid spacing of the ®ner of the two grids
is indicated

Grid spacing Node
I N ERMS (a) ERMS (b) ERMS (c) ERMS (d) evaluations

60 60 7�18� 10ÿ4 5�95� 10ÿ3 7�20� 10ÿ4 2�45� 10ÿ4 4000
180 180 8�51� 10ÿ6 (84.37) 6�92� 10ÿ4 (8.60) 8�75� 10ÿ6 (82.29) 3�19� 10ÿ6 (76.80) 36000
540 540 1�04� 10ÿ7 (81.83) 7�73� 10ÿ5 (8.95) 1�08� 10ÿ7 (81.02) 3�98� 10ÿ8 (80.15) 324000

Suggested rate of convergence
Of�Dt�4; �Dx�4g Of�Dt�2; �Dx�2g Of�Dt�4; �Dx�4g Of�Dt�4; �Dx�4g
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CONCLUSION

The two test examples presented here illustrate that completed extrapolation can be an easy and
e�cient way in which to produce high-order convergent numerical solutions to time-dependent
problems. This technique can be applied to schemes which produce a discretized solution.
Knowledge of the rate of convergence of the leading error terms in the truncation error is
required in order to set up an appropriate ratio of nodal spacings in space and time. If the rate of
convergence is unknown, then it can often be deduced by observing the rate at which errors are
reduced when the grid size is reduced for problems where an exact solution is known. Stability of
the numerical scheme considered may not be guaranteed on the ®ner of the two grids even if it is
stable on the coarse grid. In both examples presented here there was no problem with loss of
stability, but this may not always be the case and so must be checked. The technique of
extrapolation can be extended to spatially two-dimensional problems in a similar manner as
presented here.
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