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COMPLETED RICHARDSON EXTRAPOLATION
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SUMMARY
The Richardson extrapolation method, which produces a 4th-order-accurate solution on a subgrid by

combining solutions on the fine grid and the subgrid, is comglcla‘_ - in the sense that a
higher-order-accurate sclution is. { on all the fine 3r1d pomls - o
e S0l

INTRODUCTION

In his classic paper in 1910, Richardson' presented a method for obtaining 4th-order-accurate
solutions. The method, known variously as Richardson extrapolation, extrapolation to the
limit, deferred approach to the limit, or iterated extrapolation takes separate 2nd-order
solutions on a fine grid and on the subgrid formed of alternate points, and combines them to
obtain a 4th-order solution on the subgrid. It is also the basis of Romberg integration.?
The usual assumptions of smoothness apply, as well as the assumption (or perhaps
presumption) common to finite-difference methods that the local error is indicative of global
error. The method must be used with considerable caution, since it involves additional
assumptions of monotone truncation error convergence in the mesh spacing A (which may not
be valid for coarse grids) and since it magnifies machine round-off errors and mcomplete
iteration errors.** In spite of these caveats, the method is extremely convenient to use
compared to formmg and solving direct 4th-order discretizations, which involve more
complicated stencils, wider-bandwidth matrices, special considerations for near-boundary
points and non-Dirichlet boundary conditions, additional stability analyses, etc., especially in
non-orthogonal co-ordinates which generate cross-derivative terms and generally complicated
equations. Such an application was given in Reference 5 by the first author. The method is in
fact oblivious to the equations being discretized and to the dimensionality of the problem, and
can easily be applied as a postprocessor® to solutions on two grids with no reference to the
codes, algorithms or governing equations which produced the solutions, as long as the original
solutions are indeed 2nd-order-accurate. The difference between the 2nd-order solution and the
~extrapolated 4th-order solution is itself a useful diagnostic tool, obviously being a 2nd-order-
accurate error estimator (although it does not provide a true bound on the error except possibly
for certain trivial problems). It was used very carefully, with an experimental determination
rather than an assumption of the local order of convergence, by de Vahl Davis® in his classic
benchmark study of a model free convection problem. Also, it can be applied not only to
point-by-point solution values, but to solution functionals such as drag coefficient, global heat
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transfer, etc.; for example, see References 6 and 7. Blottner® has used the same procedure to
estimate effects of 4th-order damping.
A disadvantage of Richardson extrapolation is that it is incomplete, in the sense that it only

_provides the 4th-order solution on a subgrid. For example, in Reference 5 the first author
a sequence of 2nd-order two-dimensional solutions in grids of cell size 10 x 10,
20x 20, 40 x40 and 80 x 80, but could obtain the 4th-order solution by Richardson )

obtaine

extrapolation only on the 407 40 grid. (It is also theoretically possible to continue the process,

obtaining a 6th-order solution on the 20 x 20 grid and an 8th-order solution on the 10 x 10 7
subgrid, as done_in Romberg integration,’ bu{ we are sceptical of its pracllcallly in |

multidimensional problems.) /
This paper describes a method by which Richardson extrapolation is ‘completed’, g:vmg a
h1gher order solution on the entire fine grid rather than just a subgrid. The extension is very

simple, and it would not surprise the authors if it had been used by other workers, but we have
not seen it published or heard it discussed, in spite of a long-standing interest in the subject.

THE METHOD

If the 4th-order solution on the coarse subgrid were interpolated by simple two-point averaging

on to the skipped fine-grid points, the interpolated solution would be only 2nd-order-accurate.

Higher-order interpolation can be used, but this causes inconvenience near boundaries (as

noted above In relation to the use of direct 4th-order stencils) and real problems in
multidimensions. (Also, note that one can always interpolate a coarse-grid solution to
consistent order on to a fine grid, but this is not what one means when one claims to have a
fine-grid solution; a 10 x 10 grid second-order solution, when interpolated by second-order
interpolation formulas on to a 100 x 100 grid, is in some sense a second-order solution, but
it is second-order in A= 1/10, not A = 1/100. This is not comparable to obtaining a second-
order solution of the discretized partial differential equation on a 100 x 100 grid! Otherwise,
why would one ever do fine-grid solutions?)

The process advocated here is to interpolate by simple two-point averaging, not the 4th-
order solution, but rather the correction between the Ind-order solution and the 4th-order

O e e e
solution. We easily demonstrate that the result is higher-order-accurate for the entire solution
on the fine grid. Also, it requires no special treatment for near-boundary points, and involves

no additional loss of accuracy nor significant computation time in multidimensions.

Consider the fine grid i = 1, 2, 3 ... on which we have obtained a 2nd-order solution. We also
have a separate 2nd-order solution on the subgrid of odd points i=1,3,5,..., etc. (By
‘separate’ solution, we mean a solution obtained by discretization over 2k, not simply the fine-
grid solution injected into the subgrid.) By applying Richardson extrapolation, we also have
a 4th-order solution on the subgrid of odd points i =1, 3, 5, ..., etc. We want to obtain a 4th-
order solution on the fine-grid points which were skipped in the Richardson extrapolation
process, i.e. the subgrid of even points i=2,4,6, ..., etc.

Let U; = the exact (continuum) solution at node i, let Fy; = the fine-grid 2nd-order solution
obtained by centred differences, and let Sy; = the subgrid 2nd-order solution. The extrapolated
4th-order solution Fj; is obtained on the subgrid i=1, 3,5, ... by Richardson extrapolation as

Fai=4[3F3—1/38; fori=1,3,5... (1)

(The Richardson extrapolation procedure can be more general than this situation of the
subgrid mesh spacing being twice the fine-grid mesh spacing, '? but this is the most convenient,
accurate, and commonly used arrangement.) We conveniently express this extrapolation in

—
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terms of Ci, the correction from the 2nd- to the 4th-order solution, as
Fu = Fai+ G for i odd )
where
Ci=1/3(Fi - Sy) for i odd 3)

(This C; is a 2nd-order-accurate error estimator.)
By definition of (global) solution accuracy:

Ui= Fai+ Aih*+ O(R**™) )
Uis1 = Faisi + Ais th? + O(h**™) (5)
Uici= Faici + Aicth? + O(R**™) (6)

where the As are the coefficients of the leading error terms, which vary spatially but become
independent of h as h — 0. The term m = 1 if centred differences have been used throughout
(due to cancellation of alternate terms in the Taylor series expansion), but m = 0 if any one-
sided 2nd-order expression has been used. For smooth solutions (already assumed when using
Richardson extrapolation), we have

Aic1=1/2(A; + Ais2) + O(h?), i+ 1 even N

by simple two-point interpolation. (Increasing the order of this interpolation will not improve
the order of the overall method, which will be limited by the 2nd error terms of O(h**™)
above.)

Evaluating A; for i odd from (4) gives

Ai=1[h*[U; - F2i + O(h**™)], i odd (8)
Using the 4th-order-accurate solution,
Ui= Fui + O(h*), i odd 9)
Substituting (9) into (8), we obtain
Ai=1/h?[Fai— Fyi + O(h**™)], i odd (10)
Similarly,
Aisz=1[h*[Fais2— F2is2+ O(h**™)], i odd (11)
Using (10) and (11) in (7) gives
Aiv1 =1/ R*)[Fii = Fai+ Faiv2 = Faisa + O(**™) (12)

Substituting (12) into (5) gives
Uisi1 = Fais1 + I;Z{Fu— Fai+ Faiva— F2|'+2] + O(h!”") (]3)

This defines the method, but for clarity we can write the correction C; of (2) and (3) from
the 2nd to (3 + m)th-order solutions,

Ci= Fii— Fai, i 0odd (14)

This part, (14), is the original Richardson extrapolation. Then at the even fine-grid points
2,4,6,..., not covered by the original Richardson extrapolation, we complete the
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extrapolation from 2nd to (3 + m)th-order solutions by
Faiv1= Faisa + Ciyr,i+ 1 even (15)

where
Civ1=1{2(Ci + Cis2), i+ 1 even (16)

The 2nd error term of the 2nd-order solution, O(h**™) in (4), will limit the accuracy of the
completed Richardson extrapolation; for centred differences with constant grid spacing, m =1,
and the completed Richardson extrapolation is 4th-order-accurate. However, since another
interpolation is involved, i.e. equation (16), it is expected that the size of the error on the even
fine-grid points will be larger, though still 4th order.

TESTS

The original Richardson extrapolation is sensitive to round-off error and only works when the
canvergence rate is_in_the asympfofic range, i.c. when the grid is small enough. Not
surprisingly, these restrictions apply even more stringently to the completed Richardson
extrapolations. In original tests by the first author, 4th-order accuracy was not demonstrated
‘even with m = 1 (centred differences) but rather the method appeared to be 3rd-order. This
later proved to be due to round-off error and lack of asymptotic error behaviour. The
following results were obtained on a microVAX II computer using double precision.

The prototype elliptic test problem is the 1-D Poisson equation, ~

U'(x)= —x? sin(xx), U©)=U(1)=1 an
The exact solution is /‘..") _ 0
U = sin(rx) ' (18)

The convergence results are displayed in Table I. The value E; = maximum crror[hz, and
E4=maximum error/h*. For 2nd (4th)-order convergence, E; (Es) will become roughly
constant as the grid size asymptotically approaches zero. (Similar results are obtained for local
errors; the use of the maximum error norm is more demanding of the method.) The results
for Cq are the usual Richardson extrapolation, and show the well known 4th-order convergence
on the coarse grid. The results for F4 are the completed Richardson extrapolation. Both are
indeed 4th-order-accurate. The (new) Fy results have a much larger coefficient than the
(original) Cy results, as expected, owing to the additional interpolation involved. That is, the
completed Richardson extrapolations (on the even fine-grid points) are not as accurate as the
original Richardson extrapolations (on the odd fine-grid points). However, both are 4th-order-
accurate, and the (new) Fs results are much more accurate than the 2nd-order F; results.

The same pattern holds for the other test cases. Table Il shows the convergence results for
the 1-D Poisson equation with an exponential forcing term,

U'(x)= —x(3+x)e*, U(0)=1,U(1)=0 (19)

which has the solution
U(x) = x(1 = x)e* (20)

The method readily extends to multidimensions (see Extensions Section below). Table 111
shows the convergence results for the 2D elliptic problem on the unit square,

ViU = (1 — = 4)sin((x[2) x)e” @n
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Table I. Convergence results for 1D
Poisson equation with sine forcing
term (equation (17))

2nd-order coarse mesh (C3)

N Max error E;
4 0-23370055 3-73920
B 0-05302929 3-39387
16 0-01295075 3-31539
32 0-00321896 3-29622
64 0-00080358 3-29145
128 0-00020082 3-29026
2nd-order fine mesh (F;)

N - Max error E;
4 0-05302929 0-84847
8 0-01295075 0-82885
16 0-00321896 0-82405
32 0-00080358 0-82286
64 000020082 0-82257
128 0-00005020 0-82249
4th-order coarse mesh (Cy)

N Max error E.
4 0-00719447 1-84178
8 0-00040877 1:67431
16 0-00002496 1-63597
32 0-00000155 1-62659
64 0-00000010 1-62426
128 0- 00000001 1-62368
4th-order fine mesh (Fi)

N Max error Es
4 0-00738549 1-89069
8 0-00056187 2-30143
16 0-00003665 2-40190
32 0-00000231 2-42690
64 0-00000015 2-43315
128 0-00000001 2-43470

The constancy of E4 as the grid is refined
indicates 4th-order accuracy. Coarse-
mesh (Ci) results are for wusual
Richardson extrapolation; fine-mesh (Fi)
results are for completed Richardson
extrapolation.

with boundary conditions

Table I1. Convergence results for 1D
Poisson equation with exp. forcing
term (equation (19))

2nd-order coarse mesh (F;)

N Max error E;
4 0-05152254 0-82436
8 0-01318477 0-84383
16 0-00333075 0-85267
32 000084567 0-86597
64 0-00021150 0-86628
128 0-00005288 0-86636
2nd-order fine mesh (F3)

N Max error E;
4 0-01318477 0-21096
8 0-00333075 0-21317
16 0-00084567 0-21649
32 0-00021150 0-21657
64 0-00005288 0-21659
128 0-00001322 0-21662
4th-order coarse mesh (Ci)

N Max-error E,
4 0-00040551 0-10381
8 0-00002579 0-10562
16 0-00000162 0- 10608
32 0-00000010 0-10760
64 0- 00000001 0-10763
128 000000000 0-10764
4th-order fine mesh (Fs)

N Max error Es
4 0-00498564 1-27632
8 0-00037469 1-53472
16 0-00002550 1:67120
32 0- 00000166 1-74115
64 0-00000011 1-77653
128 0- 00000001 1-79433

The constancy of E, as the grid is refined
indicates 4th-order accuracy. Coarse-
mesh (Ci) results are for wsual
Richardson extrapolation; fine-mesh (Fi)
results are for completed Richardson
extrapolation.

U©,»)=0, U(l,y)=¢" (22a)
U(x,0) = sin((x/2)x), U(x, 1) =e sin((x/2)x) (22b)

which has the solution
U(x, y) = sin((x/2)x)e” (23)
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Table 111. Convergence results for 2D
Poisson equation with exp x sine
forcing term (equations (21)—(22))

2nd-order coarse mesh (C3)

N Max error E;
4 0-01058443 0-16935
8 000295224 0-18894
16 0-00080010 0-20483
32 0-00020317 0-20805
64 0-00005107 0-20920
2nd-order fine mesh (F3)

N Max error E;
4 0-00295224 0-04724
8 0-00080010 0-05121
16 0-00020317 0-05201
32 000005108 0-05231
64 0-00001275 0-05223
4th-order coarse mesh (Cs)

N Max error E,
4 0-00108699 0-27827
8 0- 00009642 0-39493
16 000000690 0-45188
32 0-00000045 0-47316
64 0- 00000003 0-49328
4th-order fine mesh (Fy)

N Max error E,
4 0-00185288 0-47434
8 0-00016135 0-66089
16 0-00001265 0-82908
32 0- 00000087 0-90943
64 000000006 0-92867

The constancy of E. as the grid is refined
indicates 4th-order accuracy. Coarse-mesh
(Cs) results are for usual Richardson
extrapolation; fine-mesh (F4) results are for
completed Richardson extrapolation.

Table IVa. Convergence results for 1D
advection—diffusion equation (24) with
R=1

2nd-order coarse mesh (C;)

N Max error E;
4 0-00254066880 0-040651
8 0-00061759188 0-039526
16 0-00015638354 0-040034
32 0-00003928711 0-040230
64 0- 00000982752 0-040254
128 000000245794 0-040271
256 0-00000061447 0-040270
512 000000015363 0040272
1024 0-00000003841 0040272

2nd-order fine mesh (F3)

N Max error E;
4 0-00061759188 0-009881
8 0-00015638354 0-010009
16 0-00003928711 0-010058
32 0- 00000982752 0-010063
64 000000245794 0010068
128 0-00000061447 0-010067
256 000000015363 0-010068
512 000000003841 0-010068
1024 0+ 00000000960 0-010068

4th-order coarse mesh (Cy)

N Max error Es
4 000002343377 0-005999
8 0-00000140457 0-005753
16 000000009079 0005950
32 0- 00000000566 0-005934
64 0- 00000000035 0005940
128 0- 00000000002 0-005939
256 0+ 00000000000 0005806
512 0+ 00000000000 0-002441
1024 0+ 00000000000 0-487701

4th-order fine mesh (Fy)

N Max error Es
4 0-00022824765 0-058431
8 0-00001781814 0-072983
16 0-00000125631 0-082333
32 0- 00000008359 0-087655
64 0- 00000000539 0-090497
128 0- 00000000034 0091967
256 0- 00000000002 0-092717
512 0+ 00000000000 0-093193
1024 0- 00000000000 0-537369

The constancy of Es as the grid is refined
indicates 4th-order accuracy. Coarse-mesh (Cy)
results are for usual Richardson extrapolation;
fine-mesh (Fi) results are for completed
Richardson extrapolation.
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Table IVb. Convergence results for 1D
advection—diffusion equation (24) with R = 16

2nd-order coarse mesh (C;)

N Max error E;
4 1-50033535013 24-005366
8 0-36831552841 23-572194
16 0-13533518593 34645808
32 0-03454605219 35-375157
64 0-00787942097 32:274108
128 0-00192912318 31606754
256 0-00047982091 31-445543
512 0-00011980277 31-405578
1024 0-00002994118 31-395607

2nd-order fine mesh (F;)

N Max error E;
4 0-36831552841 5-893048
8 0-13533518593 B-661452
16 0-03454605219 8:-843789
32 0-00787942097 8-068527
64 0-00192912318 7-901689
128 0-00047982091 7-861386
256 0-00011980277 7-851394
512 0-00002994118 7-848902
1024 0-00000748470 7-848279

4th-order coarse mesh (Cq)

N Max error E,
4 0-63299798320 162-047484
8 0-09835113825 402- 846262
16 0-01281293468 839-708487
32 0-00100945610 1058-491441
64 0-00005430942 911-160837
128 0- 00000346486 930-091560
256 0-00000021462 921-783898
512 0-00000001338 919-728825
1024 0+ 00000000084 919-202469

4th-order fine mesh (Fi)

N Max Error Es
4 0-63299798320 162-047484
8 0-09835113825 402-846262
16 0-01602753711 1050- 380672
32 0-00208620873 2187- 548407
64 0-00019995963 3354-765899
128 0-00001580555 4242-769819
256 0-00000111805 4802000014
512 0-00000007447 5117806417
1024 0- 00000000481 5285915802

The constancy of E, as the grid is refined indicates
4th-order accuracy. Coarse mesh (C,) results are for
usual Richardson extrapolation; fine mesh (Fi)
results are for completed Richardson extrapolation.

Table IV. Convergence results for 1D
advection-diffusion equation (24) with

R =100
2nd-order coarse mesh (Cy)

N Max error E;
4 12 - 00000000000 192-00
B 2-91156597776 186-34
16 0-86516351087 221-48
32 0-51711924504 529-53
64 0-26344912875 1079-09
128 0-08680436961 1422-20
256 0-01963111458 1286-54
512 0-00468893880 122918
1024 0-00117403293 1231:06

2nd-order fine mesh (F;)

N Max error E;
4 2-91156597776 46-59
8 0-86516351087 55-37
16 0-51711924504 132-38
32 0-26344912875 269-77
64 0-08680436961 355-55
128 0-01963111458 321-64
256 0-00468893880 307-29
512 0-00117403293 307-77
1024 0-00029258786 306-80

4th-order coarse mesh (Cs)

N Max error E,
4 4-56067832538 1167-53
8 1-61781954320 6626-59
16 0-64220021538 42087-23
32 0-23404661458 245415-66
64 0-04934254949 827830-61
128 0-00548121959 1471353-68
256 0-00036823584 1581560-89
512 0-00002098026 1441752-64
1024 0-00000128280 1410449-00

4th-order fine mesh (Fy)

N Max error E,
4 4-56067832538 1167-53
8 1-61781954320 6626-59
16 0-64220021538 42087-23
32 0-23404661458 245415-66
64 0:04934254949 827830-61
128 0-00809541593 2173096-67
256 0-00093131298 3999958-79
512 0-00008238890 5661722-35
1024 0-00000621227 683046085

The constancy of E, as the grid is refined indicates
4th-order accuracy. Coarse-mesh (Cy) results are for
usual Richardson extrapolation; fine-mesh (Fy)
results are for completed Richardson extrapolation.
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The addition of first-order advection terms affects the convergence for coarse grids. Table
IV shows the results for the 1D steady linear advection diffusion equation,

U"-RU =0, UO)=1, U1)=0 (24)
The exact solution is

Ux)=(e ™ -e®)1-eF) (25)

Error behaviour due to advection terms

The linear advection—diffusion equation appears to display only 3rd-order convergence until
the grid is sufficiently refined. This behaviour is explained by the following analysis.
The kth derivative of U(x) is

UPx)=(-1D*R* e (1 - F) (26)
In particular,
U‘“J’Uu’=(_|)*R*-I @

The Taylor Series for U reads:

k
Ux+h)= ), L3 U®(x)
k-0 k!

h: W Y .o

CTRET] R+-‘-1—!R +] (28)
The significance of this expression is that the higher-order error terms contain not only the grid
spacing A, but also the continuum parameter R. Now, F(x)= U(x)+ hU'(x) acts like a
2nd-order approximation to U(x+ h) only if h’[2>h’R[6, etc. This translates into the
requirement that N » R[3." Therefore, if R is large, a large N (or small h) is needed to make
F behave in a 2nd-order-accurate manner. If N is not sufficiently large, C; will not behave as
2nd-order, so Fs cannot behave as 4th-order.

This type of behaviour is seen in Table IV for R =1, 16, 100. 4th-order accuracy is not
apparent for N small because the solution is not yet in the asymptotic range, but, as N
becomes sufficiently large, 4th-order accuracy is approached. The effect is most noticeable for
larger values of R. For R = 16, the asymptotically constant Fy changes by only 2-9 per cent
from N = 256 to 512, indicating that the problem is now indeed in the asymptotic range. (Note
also that, for R =1, the 4th-order results are so accurate at N = 1024 that the E4 calculation
becomes polluted by even double-precision round-off errors and is therefore meaningless.)

= [U(x) + hU'(x)] + Um(x)[

EXTENSIONS

With the notation of (14)—(16), the extension to arbitrary dimensions is also clear. At the two-_
dimensional fine-grid points (i+ 1, ) for i+1=2,4,6... and j=1,3,5..., the analogue of

* The requirement for 2nd-order accuracy of the usual centred difference approximations to derivatives gives the same
ordered estimate, and increases only slightly with higher derivatives. For the kth derivative, the requirement is
N» Rl Ik + 6}2’(& + 3)). This requirement is clearly reminiscent of the well known fact that centred differences do
not behave O(h*) for large cell Reynolds (or Peclet) numbers R, = R x h, and R, < 2 is required for non-oscillatory
solutions. However, the present analysis shows the requirement N » Rf3 or R. < 3 for 2nd-order accuracy.
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(15) and (16) applies directly:
Faisr.5= Faiv1,5+ Ciar,j (29)

Cj+:|_j= |;‘2(C.‘_J'+C;'+2,j); (30)
i+1=2,4,6... and j=1,3,5..

At fine-grid points (i, j+ 1) for i=1,2,3... and j+ 1=2,4,6..., we have

Cijs1=12Ci;+ Cij+2), (31)
i=1,2,3...and j+1=2,4,6...

At the centre points,

Cisrja1= l,"d (Cij+ Civ2, i+ C.‘_;;z + Cisa,j+2), (32)
i+1=2,4,6...and j+1=2,4,6...

In 3D, consider the cube defined by the 27 points from (i, j, k) to (i + 2, j + 2, k + 2), where
i, ], k are all odd. The eight corner points, e.g. (i, j, k), (i + 2, j, k + 2), etc. are common to
both the fine and coarse grids, so the original Richardson extrapolation formulas (2) and (3)
apply. Then the 1D formulas (15) and (16) apply at the 12 mid-points of edges, e.g. (i + 1, j, k),
G(i+2,j+1,k), (i,j,k+1), etc. The 2D formulas (29)-(32) apply at the six mid-points of
faces, e.g. (i+1,j+1,k), (i+2,j+1,k+1), etc. The remaining (27th) point is evaluated
from

Fap=Fop+Cp,p=(+1,j+1,k+1) (33)
where

Cisijs1,k+1=1/8(Ci jk + Cir2.ik + Cije2e + Cisa jrak + Cijik+2
+ Cisz,jk+2+ Cijrak+2+ Civziv2k+2) (34)

Note that, although the present notation is suggestive of finite-difference solutions, the
rocess is equally applicable to finite-element or other discretizations, provided that the global
mﬁmﬂﬁr@r powers of A, and that the ‘subgrid’ solution is defined.

For non-orthogonal boundary fitted co-ordinates as in Reference 5, cross-derivative terms
are also evaluated by centred differences, so no new problems arise. If the transformation
metrics are evaluated numerically (as they should be) they can be evaluated separately for the
fine and coarse grids if convenient. However, it makes more sense, and is more accurate, to
evaluate metrics numerically only on the fine grid, and to inject these values into the coarse-
grid calculation.

If the grid is produced by elliptic (or other) grid-generation equations, there is no value in
producing two grids with the fine and coarse spacings. Only the fine grid need be generated,
and the coarse grid formed by using every other point. Also, if solution-adaptive grid
generation is used, this clearly should be done only for the fine grid.
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