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COMPLETED RICHARDSON EXTRAPOLA TION
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INTROOUCTlON

In his classic paper in 1910, Richardson J presented a method for obtaining 4th-order-accurate
solutions. The method, known variously as Richardson extrapolation, extrapolation to the
limit, deferred approach to the limit, or iterated extrapolation takes separate 2nd-order
solutions on a fine grid and on the subgrid formed of alternate points, and combines them 10

obtain a 4th-order solution on the subgrid. It is also the basis of Romberg integration.3
The usual assumptions of smoothness apply, as well as the assumption (or perhaps

presumption)Cõmmon to finite-difference methods that the local error is indicative of global
error. The method must be used with consTcicrable caution, since it involves additional
assum tions of monctone !r~ncation erro r convergence in the mesh s acing h (which may not
be valid for coarse grids) an since it magnifies machine round-off errors and incomplete
iteration errors. 2,~ In spite of these caveats, the method is extremely convenient to use
compared to forming a••d solving direct 4th-order discretizations, which involve more
complicated stencils, wider-bandwidth matrices, special considerations for near-boundary
points and non-Oirichlet boundary conditions, additional stability analyses, etc., especially in
non-orthogonal co-ordinates which generate cross-derivative terms and generally complicated
equations. Such an applicalion was given in Reference 5 by the first author. The method is in
fact oblivious to the equations being discretized and to the dimensionality of the problem, and
can easily be applied as a postprocessor5 to solutions on two grids with no reference to the
codes, algorithms or governing equalions which produced the solutions, as long as the original
solutions are indeed 2nd-order-accurate. The difference between the 2nd-order solution and the

extrapolated 4th-order solution is itself a useful diagnostic tool, obviously"being a 2nd-order-
- acCüiãte error estimator (altho,:;gh it does not provide a true bound on the error except possibly

for ce.rtªin t[ivi.éll-problems). It was used verY<;ãrefully, with an experimental determination
rather than an assumption of the local order of convergence, by de Vahl Oavis6 in his classic
benchmark study of a model free convection problem. AIso, it can be applied not onl~
point-by-point solution values, but to solution functionals such as drag coefTIcient, global heat
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transfer, etc.; for example, see References 6 and 7. Blottner8 has used the same procedure to
estimate eITects of 4th-order damping.

A disadvantage of Richardson extrapolation is that it is incomplete, in the sense that it only_
provides the 4th-order 50[IItlOn on a subgrid. For example, in Reference 5 the flrst author
obtalned a sequence of 2nd-order two-dimensional solutions in grids of cell size 10 x 10,
20 x 20. 40 x 40 and 80 x 80, but could obtain the 4th-order solution by Richardson

extrapoJatlOn only on the4uX4ó grid. (It is also theoretically possible to continue the rocess,
obtaining a 6th-order solution on the 20 x 20 grid an an 8th-order solution on the 10 x 10

ido as done in Romberg integration. j but we are sceotical of its oracticalit
multidimensional problems.)

Thi$ a er describes a method by which Richardson extra olation is 'com leted' IVIng a

higher-order solution on the entlre me gnd rather than just a subgrid. The extension is very
simple, and it ;o~ld not surpnse the authors If It had been used by other workers, but we have

not seen it published or heard it discussed, in spite of a long-standing interest in the subject.

THE METHOD

If the 4th-arder solution on the coarse subgrid were interpolated by sim pIe two-point averaging
on to the skipped fine-grid points, the interpolated solution would be only 2nd-order-accurate.
Higher-order interpolation can be used, but this causes Inconvenience near boundaries (as
noted above In relation to the use of direct 4th-order stenclls) and real problems in
multidimensions. (Also, note that one can always interpolate a coarse-grid solution to
consistent order on to a fine grid, but this is not what one means when one c1aims to have a

fine-grid solution; a 10 x 10 grid second-order solution, when interpolated by second-order
interpolation formulas on to a )00 x 100 grid, is in some sense a second-order solution, but

it is second-order in h = 1/10, not h = )flOO. This is not comparable to obtaining a second
order solution of the discretized partial diITerential equation on a )00 x )00 grid! Otherwise,
why would one ever do fine-grid solutions?)

The process advocated here is to inter olate by simple two-point avera ing, not the 4th-
order so ullOn, ut rat er t e correction between the 2n -or er solution and the 4t -order

solution. We easily demonstrate that the result is higher-order-accurate for the entire solution
õiitii"é" fine grid. Also, it requires no special treatment for near-boundary points, and involves
no additional loss of accuracy nor significant computation time in multidimensions.

Consider the fine grid i = 1,2,3 ... on which we have obtained a 2nd-order solution. We also

have a separate 2nd-order solution on the subgrid of odd points i = 1,3,5, ...• etc. (By

'separate' solution, we mean a solution obtained by discretization over 2h, not simply the fine
grid solulion injected into the subgrid.) By applying Richardson extrapolation, we also have
a 4th-order solution on the subgrid of odd points i = 1,3,5, ... , ete. We want to obtain a 4th
order solution on the fine-grid points which were skipped in the Richardson extrapolation

process, i.e. the subgrid of even points i = 2,4,6, ... , etc.
Let Vi = the exact (continuum) solution at node i, let F2i = the fme-grid 2nd-order solution

obtained by centred diITerences, and let S2i = the subgrid 2nd-order solution. The extrapolated
4th-order solution F4i is obtained on the subgrid i = 1,3,5, ... by Richardson extrapolation as

F4i=4/3F2;-1/3S2i for i= 1,3,5 ... (I)

(The Richardson extrapolation procedure can be more general than this situation of the
subgrid mesh spacing being twice the fine-grid mesh spacing, 1.2 but this is the most convenient,
accurate, and commonly used arrangement.) We conveniently express this extrapolation in
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terms of Ci, the correclion from the 2nd- to lhe 4th-order solution, as

F.i = Fli + C; for i odd

where

C; = 1/3(F2i - S2;) for i odd

(This Ci is a 2nd-order-accurate error estimator.)

By definition of (global) solution accuracy:

Vi = F2i + Aih2 + O(h3+m)

Vi+1 = Fli+' + Ai+lh2 + O(h3+m)

Vi_I = F2i-1 + Ai_1h2 + O(h3+m)

367

(2)

(3)

(4)

(5)

(6)

where the As are the coefficients of the leading erro r terms, which vary spatially but become

independent of h as h ~ O. The term m = I if centred dilTerences have been used throughout
(due to cancellation of alternate terms in the Taylor series expansion), but m = O if any one

sided 2nd-order expression has been used. For smooth solutions (already assumed when using
Richardson extrapolation), we have

(7)

by simple two-point interpolation. (Increasing the order of this interpolation will not improve
the order of the overall method, which will be limited by the 2nd error terms of O(h3+m)
above.)

Evaluating Ai for i odd from (4) gives

Ai = I/h2[Vi - h + O(h3+m»), i odd (8)

Using the 4th-order-accurate solution,

Vi = F.i + O(h·), i odd

Substituting (9) into (8), we obtain

Ai = I/h2[F.i - Fli + O(h3+m)]. i odd

Similarly,

Ai+2 = I/h2[F.i+2 - Fli+2 + O(h3+m)], i odd

Using (10) and (11) in (7) gives

Ai+' = 11(2h2)[F.i - F2i + F.i+2 - Fli+2 + O(h Hm)]

Substituting (12) into (5) gives

Vi+1 = Fli+' + 1/2[F.i - F2; + F.i+2 - Fli+2] + O(h3+m)

(9)

(10)

(11 )

(12)

(13)

This defines the method, but for clarity we can write the correction Ci of (2) and (3) from
the 2nd to (3 + m )th-order solutions,

C; = F.i - Fli, i odd (14)

This part, (14), is the original Richardson extrapolation. Then at the even fine-grid points
2,4,6, ... , not covered by the original Richardson extrapolation, we complete the
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extrapolation from 2nd to (3 + m )th-order solutions by

F4i + I = F2i + I + C; ••• i+ 1 even

where

( 15)

C;+ 1= 1/2(C; + Ci+Z), i+ 1 even (16)

The 2nd error term of the 2nd-order solution, O(h3+,") in (4), willlimit the accuracy of the
completed Richardson extrapolation; for centred differences with constant grid spacing, m = I,
and the completed Richardson extrapolation is 4th-order-accurate. However, since another
interpolation is involved, Le. equation (16), it is expected that the si1.e of the erro r on the even
fine-grid points will be larger, though still 4th order.

TESTS

The original Richardson extrapolation is sensitive to round-off error and only works when the

convergence rate is m the asymptotlc ran~ i.e. when the grid is small enough. Not
surprisingly, these restrictions a J even more strin entl to the completed Richardson
extrapolations. In origina tests by the first author, 4th-order accuracy was nol demonstrated

-even wlth m = 1 (centred differences) but rather lhe method appeared to be 3rd-order. This

later proved to be due 10 round-off error and lack of asymptotic error behaviour. The
following results were obtained on a micro VAX 11 computer using double precision.

The prototype elliplic test problem is the I-D Poisson equation,

U"(x) = _1I'z sin(n), U(O) = U(I) = 1 (17)

The exact solution is

U=sin(1I'x) (18)

The convergence results are displayed in Table I. The value Ez = maximum error/hz, and
E4 = maximum error/h4• For 2nd (4th)-order convergence, Ez (E4) will become roughly
constant as the grid size asymptotically approaches zero. (Similar results are obtained for local
errors; the use of the maximum error norm is more demanding of the method.) The results

for C. are the usual Richardson extrapolation, and show the well known 4th-order convergence
on the coarse grid. The results for F. are the completed Richardson extrapolation. Both are
indeed 4th-order-accurate. The (new) F4 results have a much larger coetlicient than the
(original) C4 results, as expected, owing to the additional interpolation involved. That is, lhe
compJeted Richardson extrapolations (on the even fme-grid points) are not as accurate as the

original Richardson extrapolations (on the odd fine-grid points). However, both are 4th-order
accurate, and the (new) F. results are much more accurate than the 2nd-order Fz results.

Thc same pattern holds for lhe other test cases. Table 11 shows the convergence results for

the I-D Poisson equation wilh an exponentiaJ forcing term,

which has the solution

U"(x) = - x(3 + x)eX, U(O) = I, U(I) = O

U(x) = x( I- x)eX

(19)

(20)

The method readily extends to multidimensions (see Exlensions Section below). Table III
shows the convergence results for the 2D elliptic problem on the unit square,

(21)
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Table I. Convergence resu\ts for 1D
Poisson equation with sine forcing

term (equation (17»

Table 11. Convergence resu\ts for 1D
Poisson equation with exp. forcing

lerm (equation (19»

N
4

8
16

32
64

128

N .'

4

8
16
32
64

128

2nd-order coar se mesh (C2)

Max error E2

0·23370055 3'73920
0·05302929 3,39387
0·01295075 3·31539
0·00321896 3·29622
0,00080358 3·29145
0·00020082 3·29026

2nd-order fine mesh (F2)

Max error E2

0·05302929 0,84847
0·01295075 0'82885
0'00321896 0·82405
0,00080358 0·82286
0·00020082 0·82257
0·00005020 0·82249

N
4

8
16

32
64

128

N
4

8
16

32

64
128

2nd-order coarse mesh (F2)

Max error E2

0-05152254 0·82436
0'01318477 0,84383
0'00333075 0·85267
0'00084567 0,86597
0·00021150 0·86628
0-00005288 0,86636

2nd-order fine mesh (F2)

Max error E2

0-01318477 0'21096
0,00333075 0·21317
0,00084567 0·21649
0·00021150 0·21657
0·00005288 0·21659
0·00001322 0'21662

4th-order coarse mesh (C.)
Max error E.

0·00719447 1·84178
0,00040877 1·67431
0·00002496 1·63597
0·00000155 1'62659
0·00000010 1-62426
0·00000oo1 1·62368

4th-order fine mesh (F.)
Max error E.

4th-order fine mesh (F.)
Max erro r E.

4th-order coarse mesh (C.)
Max-error E.N

4
8

16

32
64

128

N
4

8
16

32
64

128

0,00738549
0·00056187
0'00003665
0-00000231
0·00000015
0·00000oo1

1- 89069
2-30143
2-40190
2-42690
2·43315
2'43470

N
4

8
16

32
64

128

N
4

8
16

32
64

128

0·00040551
0-00002579
0·00000162
0-00000010
O-00000oo 1
O • OOOOOOOO

0,00498564
0-00037469
0·00002550
0·00000166
0·00000011
O-00000oo 1

0·10381
O· 10562
0·10608
O· 10760
0,10763
0·10764

1 ·27632
1- 53472
1'67120
1'74115
1 . 77653
1·79433

The constancy of E. as the grid is refined
indicates 4th-order accuracy. Coarse
mesh (C.) results are for usual
Richardson extrapolation; fine-mesh (F.)
results are for completed Richardson
eXlrapolation.

with boundary conditions

The constancy of E. as the grid is refined
indicates 4th-order accuracy. Coarse
mesh (C.) results are for usual
Richardson extrapolation; fine-mesh (F.)
results are for completed Richardson
extrapolalion.

which has the solution

V(O, y) = O. V(I, y) = eY

V(x. O) = sin«JI"f2)x). V(x. 1) = e sin«1ff2)x)

V(x. y) = sin«1rf2)x)eY

(22a)

(22b)

(23)
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Table 111. Convergence results for 2D

Poisson equation wilh exp x sine

forcing term (equations (2\)-(22»

2nd-order coarse rnesh (C2)

N

Max error E2

4

0·010584430·16935

8

0·002952240·18894

16

0-000800100-20483

32

0-000203170-20805

64

0-00005]07O- 20920

2nd-order fine mesh (F2)N
Max errorE2

4

0-002952240-04724

8

0·000800100-05]21

16

0·000203170·0520\

32

0-00005]080-05231

64

0-0000\2750-05223

4th-order coarse mesh (C.)N

Max errorE.

4

O-00 1086990-27827

8

0-000096420-39493

16

0-000006900-45188

32

O- 0000004 50-473]6

64

0-00000oo30-49328

4th-order fine rnesh (F.)N

Max errorE.
4

0-001852880-47434

8

0-000161350,66089

]6

0-000012650·82908

32

0-000000870-90943

64

0-00000OO60-92867

The constancy of E. as lhe grid is refmed
indicares 4th-order accuracy. Coarse-mesh
(C.) resuhs are for usual Richardson

extrapolation; fine-mesh (F.) resuhs are for

completed Richardson extrapolation.

Table IVa. Convergence results for ]D

advection-difTusion equation (24) with
R= I

2nd-order coarse mesh (C2)

N

Max errorE2
4

0-00254066880 0-040651

8

0-00061759188 0·039526

16

0·000156383540,040034

32

0·000039287110-040230

64

0-000009827520-040254

128

0-000002457940-040271

256

0-000000614470-040270

5\2

0·000000153630-040272

]024

0·00000oo384]0-040272

2nd-order fine mesh (F2)N

Max errorE2

4

0-00061759188 0-009881

8

0-00015638354 0-010009

16

0-000039287]10-010058

32

0-000009827520·010063

64

0-000002457940-010068

128

O .000000614470-010067

256

0-000000153630-010068

5]2

0-00000oo38410-010068

1024

0-OOOOOOOO9600-010068

4th-order coarse mesh (C.)N

Max errorE.

4

0-00002343377 0-005999

8

0-00000140457 0-005753

16

0-00000oo90790-005950

32

0-OOOOOOOO5660-005934

64

O- OOOOOOOOO350-005940

128

o· OOOOOOOOOO20-005939

256

0-OOOOOOOOOOO0-005806

512

0-OOOOOOOOOOO0-002441

1024

0-OOOOOOOOOOO0-487701

4th-order fine mesh (F.)N

Max errorE.

4

0-00022824765 0-058431

8

0-00001781814 0-072983

16

0-000001256310-082333

32

0-00000oo83590-087655

64

0-OOOOOOOO5390-090497

128

0-OOOOOOOOO340-091967

256

0-OOOOOOOOOO20-092717

512

0-OOOOOOOOOOO0-093193

1024

0-OOOOOOOOOOO0,537369

The constancy of E. as lhe grid is refined
indicates 4th-order accuracy. Coarse-mesh (C.)
results are for usual Richardson extrapolation;
fine-mesh (F.) results are for completed
Richardson extrapolation.
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Table IVb. Convergence results for 10
advection-difTusion equation (24) with R = 16

The consrancy of E. as the gridisrefmed indicares

4th-orderaccuracy.Coarse mesh (C.) resuhsarefor

usual Richardson extrapolation;fine mesh (F.)
resuhsare forcompleted Richardson eXlrapolation.

4th-order coarse mesh (C.)

Max error E.
0'63299798320 162'047484

0-09835113825 402·846262

0'01281293468 839'708487

0·00100945610 1058'491441

0'00005430942 911·160837

0,00000346486 930'091560

0'00000021462 921'783898

0'00000oo1338 919'728825

0'OOOOOOOOO84 919·202469

4th-order finemesh (F.)
Max Error E.

2nd-order coar se mesh (C2)

Max error E2

1·50033535013 24·005366

0'36831552841 23·572194

0·13533518593 34,645808

0'03454605219 35·375157

0'00787942097 32·274108

0·00192912318 31·606754

0·00047982091 31'445543

0'00011980277 31·405578

0'00002994118 31·395607

2nd-order fme mesh (F2)

Max error E2

0'36831552841 5'893048

0'13533518593 8·661452

0·03454605219 8,843789

0'00787942097 8'068527

0·00192912318 7·901689

0·00047982091 7·861386

0·00011980277 7'851394

0·00002994118 7'848902

0,00000748470 7·848279

ID
with

for

(24)

1167' 53

6626·59

42087·23

245415'66

827830'61

2173096·67

3999958,79

5661722·35

6830460, 85

4·56067832538

)'61781954320

0'64220021538

0·23404661458

0'04934254949

0'00809541593

0·00093131298

0'00008238890

0·00000621227

4th-order finemesh (F.)
Max error E.

4th-order coarse mesh (C.)
Max error E.

4'56067832538 1167-53

1'61781954320 6626·59

0'64220021538 42087·23

0·23404661458 245415·66

0·04934254949 827830'61

0'00548121959 1471353'68

0'00036823584 1581560·89

0'00002098026 1441752-64

0·00000128280 1410449'00

2nd-order fine mesh (F2)

Max error E2

2'91156597776 46,59

0·86516351087 55,37

0'51711924504 132'38

0·26344912875 269'77

0'08680436961 355'55

0·01963111458 321·64

0,00468893880 307·29

0'00117403293 307'77

0'00029258786 306,80

2nd-order coarse mesh (C2)

Max error E2

12·OOOOOOOOOOO 192·00

2·91156597776 186·34

0·86516351087 221·48

0·51711924504 529·53

0·26344912875 1079·09

0·08680436961 1422'20

0·01963111458 1286·54

0'00468893880 1229'18

0·00117403293 1231'06

N

4

8
16

32
64
128

256

512
1024

N
4
8

16

32

64
128

256

512

1024

The constancy of E. as rhe gridisrefinedindicares

4th-orderaccuracy.Coarse-mesh (C.) resuhsare for
usual Richardson extrapolation;fine-mesh (F.)
resuhsare forcompleted Richardson extrapolation.

N

4

8
16

32
64
128

256

512
1024

4
8

16

32
64

128

256

512

1024

N

Table IV. Convergence results

advection-difTusion equalion
R = 100

162'047484

402·846262

1050'380672

2187·548407

3354'765899

4242'769819

4802·000014

5117·806417

5285·915802

0'63299798320

0·09835113825

0·01602753711

0·00208620873

0'00019995963

0'00001580555

0·00000111805

0,00000oo7447

O .OOOOOOOO481

N
4

8
16

32
64

128

256

512

1024

N
4
8

16

32
64
128

256

512

1024

N
4

8
16

32
64
128

256

512

1024

4
8

16

32
64
128

256

512

1024

N
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The addition of flrst-order advection terms afTects the convergence for coarse grids. Table
IV shows the results for the I D steady linear advection difTusion equation,

The exact solution is

U"-RU'=O, U(O) = I, U(I)=O (24)

(25)

Error behaviour due 10 advection lerms

The linear advection-difTusion equation appears to display only 3rd-order convergence until

the grid is sufficiently refined. This behaviour is explained by the following analysis.
The kth derivative of U(x) is

lfAJ(X) = (_I)k Rk e-RXf(1 - e-R) (26)

In particular,

lfkJfU(2) = (_ I)k Rk-2

The Taylor Series for'U reads:

'" hk
U(x + h) = :6 - U1kJ(X)

k~O k!

(27)

(28)
[h 2 h 3 h4 ]

= [U(x) + hU'(x)] + U(2)(x) - - - R + - R2 + ...2! 3! 4!

The significance of this expression is that the higher-order error terms contain not only the grid

spacing h, but also the continuum parameter R. Now, F(x) = U(x) + hU'(x) acts like a

2nd-arder approximation to U(x + h) only if h2f2» h3 Rf6, etc. This translates into the
requirement that N» Rf3.· Therefore, if R is large, a large N (or small h) is needed to make
F behave in a 2nd-order-accurate manner. If N is not sufficiently large, C2 will not behave as
2nd-order, so F4 cannot behave as 4th-arder.

This type of behaviour is seen in Table IV for R = I, 16, 100. 4th-order accuracy is not
apparent for N small because the solution is not yet in the asymptotic range, but, as N
becomes sulT1ciently large, 4th-order accuracy is approached. The efTect is most noticeable for
larger values of R. For R = 16, the asymptotically constant F4 changes by only 2·9 per cent
from N = 256 to 512, indicating that the problem is now indeed in the asymptotic range. (Note
also that, for R = I, the 4th-order results are so accurate at N = 1024 that the E4 calculation

becomes polluted by even double-precision round-ofT errors and is therefore meaningless.)

EXTENSIONS

With the notation of (14)-(16), the extension to arbitrary dimensions is also clear. At the two
dimensional fine-grid points (i + I, j) for i + I = 2,4,6 ... and j = 1,3,5 ... , the analogue of

• Th~ r~quir~m~nt for 2nd-ord~r accuracy of th~ usual c~ntr~d dilf~r~nc~ approximations to d~rivativ~s giv~s th~ sam~
ord~r~d ~stimal~, and incr~as~s only slighlly with high~r d~rivativ~s. For th~ k1h d~rivativ~, th~ r~Quir~m~nt is

N ~ RIJ(k + 4V(k + 3)J. This r~Quir~m~nl is cI~arly r~minisc~nI of th~ w~1Iknown fact that C~nlr~d difT~r~nc~s do
no! b~hav~ O(h ) for larg~ c~1IR~ynolds (or P~cI~t) numb~rs R, = R x h, and R, ~ 2 is r~quir~d for non-oscillatory
solutions. How~v~r. (h~ pr~s~nt analysis shows th~ r~Quir~m~nt N ~ RI3 or R, ~ 3 for 2nd-ord~r accuracy.



COMPLETED RICHARDSON EXTRAPOLATION

(15) and (16) applies directly:

F4i+ Lj = F2i+ I,j + Ci+ I,j

C/+ I.j = 1/2(Ci,j + Ci+ 2,j).

i+ 1 =2,4,6 and j= 1,3.5 ...

At finc-grid points (i, j + I) for i = 1,2,3 and j + 1 = 2,4,6 ...• we have

Ci.j+1 = 1/2(CI,j+ Ci.j+2),

i= 1,2,3 ... and j+ 1 =2,4.6 ...

At the centre points,
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(29)

(30)

(31 )

(32)Ct+ I,j+ I = 1/4 (C/,j + Ci+2,j + Ct,j+ 2 + Ct+ 2,j+ 2).

i + 1 = 2,4,6 ... and j + 1 = 2.4.6 ...

In 3D, consider the cube defmed by the 27 points from (i, J, k) to (i + 2, J + 2, k + 2), where

i,J,k are ali odd. The eight comer points, e.g. (i.J,k), (i+ 2,J,k+ 2), etc. are common to
both the fme and coarse grids. so the original Richardson extrapolation formulas (2) and (3)

apply. Then the 10 formulas (15) and (16) apply at the 12 mid-points of edges, e.g. (i + I. J, k),
(i + 2, J + I, k), (i. J, k + I), etc. The 20 formulas (29)-(32) apply at the six mid-points of

faces, e.g. (i + I, J + I, k). (i + 2, J + I. k + I), etc. The remaining (27th) point is evaluated
from

where

F4p = F2p + Cp• P = (i + I, J + I, k + I) (33)

CI+I.j+J,k+1 = 1/8(Ci,j,k + Ci+2.j,k + Ci,j+2,k + Ci+2.j+2,k + Ct,j,k+2

+ CI+2,j,k+2 + Ci,j+2,k+2 + CI+2,i+2,k+2) (34)

Note that, although the present notation is suggestive of finite-difTerence solutions. the

r cess is e ually apphcable to finite-element or other discretizations, provided that the global
errors are expressl e m mteger powers of h, and that the 'subgrid' solution is defined.

For non-orthogonal boundary fitted co-ordinates as in Reference 5, cross-derivative terms
are also evaluated by centred difTerences, so no new problems arise. If the transformation
metrics are evaluated numerically (as they should be) they can be evaluated separately for the
fine and coarse grids if convenient. However, it makes more sense. and is more accurate, to
evaluate metrics numerically only on the fine grid, and to inject these values into the coarse

grid calculation.
If the grid is produced by elliptic (or other) grid-gencration equations, there is no value in

producing two grids with the fine and coarse spacings. Only the fme grid need be generated.
and the coarse grid formed by using every other point. AIso, if solution-adaptive grid

generation is used, this clearly should be done only for the fme grid.
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