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SUMMARY

The results produced by Richardson extrapolation, though, in general, very accurate, are inexact. Numer-
ical evaluation of this inexactness and implementation of the evaluation in practice are the objectives of
this paper. First, considering linear changes of errors in the convergence plots, asymptotic upper bounds are
proposed for the errors. Then, the achievement is extended to the results produced by Richardson extrapo-
lation, and finally, an error-controlling procedure is proposed and successfully implemented in approximate
computations originated in science and engineering. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In today’s complicated world of engineering and science, many mathematical models cannot be
analyzed analytically. In order to analyze these models and models with complicated analytical
solutions approximately, applying numerical methods is indispensable. Two important issues in
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numerical methods are accuracy and computational cost, e.g. see [1–5]. Specifically, from the
point of view of accuracy, a fundamental essentiality is convergence [6, 7], i.e.

lim
�→0

Ua =U, �>0 (1)

In Equation (1), Ua and U , respectively, stand for the approximately computed and exact values
of an arbitrary unknown, in the mathematical model, under consideration, and �, known as the
algorithmic parameter, has no specific physical (real) meaning, but a main role in the approx-
imate computation [8]. Richardson extrapolation [9, 10] is a technique that, for approximately
computed results, satisfying Equation (1) (also see [11]), accelerates the convergence, and hence,
in many cases, can increase the accuracy. Because of the simple formulation and low compu-
tational cost associated with Richardson extrapolation, the implementation of this technique, in
different practical problems, is considerable [12–16], and the study on its theoretical aspects is
in continuous progress [17–19]. By estimating the errors of the results produced by Richardson
extrapolation, we would achieve the capability to implement Richardson extrapolation in a more
reliable manner. Arriving at this capability would be beneficial, specifically, for computations with
high accuracy demand, when the computational facilities are limited or expensive. The report of
a relevant research [20], also, talks about the errors of the results produced by Richardson extrap-
olation; nevertheless, this paper presents a slightly different formulation, leading to a practical
accuracy-controlling procedure for computations, with one algorithmic parameter. In more detail,
this paper is dedicated to the estimation of reliable asymptotic upper bounds for the errors of the
results produced by Richardson extrapolation and the implementation of this estimation in real
approximate computations. To arrive at these objectives: (1) convergence is assumed maintained;
and (2) the algorithmic parameter is considered sufficiently small, not such that to cause the effects
of round off dominate the errors; see the word asymptotic in the title of this paper. Equivalently,
it is assumed that the convergence plots are as schematically displayed in Figure 1, and, being
located at the section a in these plots, we are investigating the reliable upper-bound estimations
for the errors of Richardson extrapolation, at values of the algorithmic parameter asymptotically
larger than those causing considerable round off errors. In Figure 1, E represents the deviation of
the approximately computed result Ua , from the exact result, U (see Equation (1)), i.e.

E=Ua−U (2)
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Figure 1. Schematic changes of converging errors with respect to the algorithmic parameters.
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(|E | implies the error [21]), q∈ Z+ ={1,2,3, . . .} denotes the rate of convergence (also see [5]),
and � stands for the algorithmic parameter. In view of these considerations, Section 2 presents
an asymptotic upper-bound estimation for the errors of the results produced by Richardson
extrapolation and displays the validity of the estimation via a simple example. Section 3 studies
the reliability of the proposed upper-bound estimation, in an engineering computation, namely,
time integration of semi-discretized equations of motion. Section 4 presents discussions on prac-
tical implementation of the proposed estimation, and concludes with a procedure for materializing
more reliable, more accurate, and/or computationally less expensive approximate computations.
Section 5 is dedicated to numerical validation of the proposed procedure; and, finally, in Section 6,
the paper is closed with a brief set of the conclusions.

2. THE MAIN THEORY

2.1. Formulation

Approximate computations, e.g. computing the areas or volumes of miscellaneous 2D or 3D
shapes, solving non-linear algebraic equations, and numerical integration, are associated with
some additional variables/parameters. For instance, in approximate analysis of non-linear algebraic
equations by the Newton–Raphson method [22], the number of iterations, the starting solution, and
the analysis tolerance are additional parameters, affecting the approximately computed results, but
not the exact results. More precisely, a result of an approximate computation is a function of the
actual data (actual parameters), defining the characteristics of the problem, and some additional
parameters [8], essential in the approximate computation. The actual parameters control the exact
result, and the additional parameters, broadly known as the algorithmic parameters, control the
approximation (without necessarily having real physical meanings).

Considering these, for approximate computations, with one algorithmic parameter (or when
changes of the approximate results, with respect to one algorithmic parameter, are to be studied),
the computation can be defined by

Ua =F(Pj ,�) (3)

where Ua, Pj , and �, respectively, denote the approximate result, the actual data (defining the
problem), and the algorithmic parameter, and F is a representation of the approximate computation.
Meanwhile, in view of the essentiality of convergence [5–8], the definition of the algorithmic
parameter, �, can be set in view of Equation (1) (see [6, 8]). Though, with such a definition,
the algorithmic parameter is not necessarily a continuously changing parameter, it can simply be
replaced with a generalized continuously changing parameter. As an example, when computing the
surface between the x-axis and an arbitrary function y= f (x), by the Simpson rule [21, 23, 24],
the number of integration steps, though integer, and changing discontinuously, can be considered
changing continuously by means of interpolation. With this consideration, Equation (1) implies
that, in the vicinity of �=0, the F in Equation (3) and the Ua in Equations (1) and (2) are
continuous functions [24] of �. Shortly, assuming that, in the arbitrarily close vicinity of �=0, the
derivatives of Ua and F with respect to � exist, and denoting these derivatives by sn ,

sn = �n F
��n

∣∣∣∣
�→0

, n=1,2,3, . . . (4)
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we can implement the Taylor series [23, 24] and Equation (1) to expand the approximate result
Ua about �=0, i.e.

Ua =U+
∞∑
n=1

sn
n!�

n (5)

and, with attention to Equation (2), arrive at

E = Ua−U =
N∑

n=1

sn
n!�

n

N = ∞
(6)

In view of Equations (4), the sn in Equations (6) can be considered constant, with respect to � (more
discussion in this regard is presented later in this section). Furthermore, for converging results,
it is an accepted practice to denote the speed, by which, the logarithms of errors decrease, with
respect to the logarithm of the algorithmic parameter (q in Figure 1), as the rate of convergence
[25]. In view of this definition and Equations (6), the rate of convergence, q , is a positive integer
(also see [5]), such that

sn = 0, n=1,2,3, . . . q−1

sn �= 0, n=q, q∈ Z+ (7)

Equations (6) and (7) simply result in

E =C0�
q +C1�

q+1+·· · q∈ Z+ (8a)

Ci = sq+i

(i+q)! , i=0,1,2,3, . . . (8b)

Regarding the existence of the derivatives in Equations (4), if we disregard the effects of round
off, almost all approximate computations, producing results converging to exact results (see
Equations (1) and (2)), are very well behaved near the exact solutions. This will not occur, if,
for sufficiently small �, the F in Equation (3) is not completely smooth [26], i.e. for converging
results, the derivatives, of arbitrary order, of F , with respect to �, need to be continuous [24], in
the close vicinity of �=0.

It is meanwhile worth noting, that, in view of Equation (5), the sn in Equations (6) is constant,
only when N goes to infinity. In other words, the validity of Equations (6) relies on the Taylor
series in Equation (5), and by replacing the infinite N with a finite N (N<∞), we omit some terms
from the right-hand side of Equations (6), with the sum

∑∞
n=N+1(sn/n!)�n , obviously, depending

on �. As a result, for finite values of N , either, the sn , in Equations (6), slightly depends on �, or, the
‘=’ sign should be replaced with the ‘∼=’ sign. (A similar effect is predictable on Equations (8).)

Bearing in mind the above source of approximation, we can, based on Equations (1), (2), (3),
and (8), arrive at the formulation of the Richardson extrapolation [9, 10, 12, 13, 17, 18], mainly a
technique for accelerating convergence (faster decrease of errors, i.e. larger q in Figure 1). With
two approximately computed results, Richardson extrapolation leads to [9, 12, 13]:

Ua
R1,2

= �q1U
a
2 −�q2U

a
1

�q1 −�q2
(9)
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where Ua
1 and Ua

2 stand for the approximate results, corresponding to �=�1 and �=�2 (�1 �=�2),
and, according to its typology, Equation (9) is valid, regardless of the relative sizes of �1 and �2,
i.e. �1 can be smaller or larger than �2. From Equations (8) and (9), it is apparent that, sufficient
smallness of �1 and �2 is the pre-requisite for the accuracy of the result obtained from Equation (9).
This is considered provided, in view of the word asymptotic in the title of this paper and the two
assumptions in Section 1. In more detail, neglecting round off, replacing the U in Equation (2),
with Ua

R1,2
(when considered for E1 and E2), and considering the first term in the right-hand side of

Equation (8a), we can, in view of a recent research of the authors [27], and the section a in Figure 1,
arrive at the Richardson extrapolation addressed in Equation (9). Therefore, for the closeness of
the results produced by Richardson extrapolation to the exact results, �1 and �2 should be set,
such that the contributions of the terms, after the first terms, in Equation (8a), can be considered
negligible, and still, the effects of round off do not dominate the error. In such a case, i.e. when
the assumptions, in Section 1, are satisfied, the results computed by Richardson extrapolation, i.e.
Ua

R1,2
, would be much closer to the exact results, compared with the results leading to Ua

R1,2
, i.e.

Ua
1 and Ua

2 . Consequently,

|Ei |=|Ua
i −U |∼=|Ua

i −Ua
R1,2

|, i=1,2 (10)

and by considering �2<�1, and substituting Ua
R1,2

, from Equation (9), in Equation (10), we can
arrive at

|E2|=|Ua
2 −U |∼= �q2 |Ua

1 −Ua
2 |

�q1 −�q2
(11)

(Because of the role of Equation (11), in the discussions in this paper, the adequacy of Equation
(11) is numerically studied, in the end of this section.)

Additionally, as it is implied in the literature, e.g. see [9, 10, 12], and obvious, from Equations (8a)
and (9), for a series of approximate resultsUa

1 ,Ua
2 ,Ua

3 , . . . (respectively computed by implementing
�1,�2,�3, . . . in an arbitrary computational procedure), converging to the exact result U , the results
produced by Richardson extrapolation, i.e. Ua

R1,2
,Ua

R2,3
, . . . , also, converge to U , with a rate qR

larger than q [9], i.e.
qR>q�1 (12)

Therefore, for the series of approximate results, computed by Richardson extrapolation (see Equa-
tion (9)), considering a one-to-one relation between the values of the algorithmic parameter
�2,�3,�4, . . . and the approximate results UR1,2,UR2,3,UR3,4, . . . and implementing Equation (11),
we can first arrive at

|ER2,3 |=|Ua
R2,3

−U |∼=
�qR3 |Ua

R1,2
−Ua

R2,3
|

�qR2 −�qR3
(13)

(after presenting some different explanation, a formulation equivalent to Equation (13) is addressed
in [20]) and then, in view of the definition in Equation (9), deduce

|ER2,3 |=|Ua
R2,3

−U |∼=
�qR3

∣∣∣∣∣�
q
1U

a
2 −�q2U

a
1

�q1 −�q2
− �q2U

a
3 −�q3U

a
2

�q2 −�q3

∣∣∣∣∣
�qR2 −�qR3

(14)
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Moreover, it is reasonable to consider the changes of the algorithmic parameter according to

�1
�2

= �2
�3

= �3
�4

=·· ·=r =const.>1 (15)

and, for each �1>0 (see also Equation (3)), implement

0< · · ·<�i+1<�i = �1
r i−1

<�i−1< · · ·<�1, i=2,3,4, . . . (16)

in Equation (14), to arrive at

|ER2,3 |=|Ua
R2,3

−U |∼= |−rqUa
3 +(rq +1)Ua

2 −Ua
1 |

(rqR −1)(rq −1)
(17)

and, then, from Equations (12) and (15) conclude

|ER2,3 |<
|−rqUa

3 +(rq +1)Ua
2 −Ua

1 |
(rq −1)2

(18)

In view of the formal definition of error [21], Equation (18) states an asymptotic upper-bound
estimation for the errors associated with the Richardson extrapolations, addressed in Equation (9).
This asymptotic upper bound, compared with Equation (13), suggested in [20], has two advantages:
(1) while Equation (13) can be implemented, only when qR is at hand, Equation (18) is independent
of qR , (2) with attention to the importance of reliability in error estimation, while Equation
(13) has no claim about such a reliability, in view of Equations (12) and (15), the inequality
sign in Equation (18) implies upper-estimating the errors of the results produced by Richardson
extrapolation (specifically, when the errors are corresponding to the left part (not left end) of the
section a in Figure 1). As a relation between the proposed upper-estimation and the exact error, we
can, from Equations (17) and (18), define an upper-estimation (or reliability) index, Ir , as noted
below:

Ir = rqR −1

rq −1
>
rqR

rq
�r>1 (19)

For Richardson extrapolations based on more than two approximate results (see [12, 13]), the
formulations above should be rederived. For instance, with three approximately computed results,
and C0 and C j ( j>0), as the coefficients of the first two nonzero terms in Equation (8a), Equa-
tions (9) and (18) change form to:

Ua
R1,2,3

= r2q+ jUa
3 −rq(r j +1)Ua

2 +Ua
1

r2q+ j −rq(r j +1)+1
(20a)

|ER2,3,4 | <
|−r2q+ jUa

4 +(r2q+ j +rq+ j +rq)Ua
3 −(rq+ j +rq +1)Ua

2 +Ua
1 |

(rq −1)(r2q+ j −rq(r j +1)+1)
(20b)

Nevertheless, according to the definition of C j above, the j in Equations (20) may be unknown, and
besides, the number of the analysis repetitions is in practice finite and might be less than needed
(compare Equations (20) with Equations (9) and (18)). Therefore, Richardson extrapolations based
on two approximately computed results (Equations (9) and (18)) are in general of the most practical
interest and hence under special consideration in this paper. Finally, bearing in mind that the
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proposed upper-estimation considers approximate computations, with one algorithmic parameter
(the generalization is straightforward), we can claim materializing the first objective implied in the
title of this paper and stated in Section 1, i.e. an asymptotic upper-bound estimation for the errors
of Richardson extrapolation is achieved. This claim is numerically examined in the remainder of
this section, and its practical implementation is discussed in Sections 3–5.

2.2. Illustrative example

The series in Equations (21),

�2

6
=

k∑
n=1

1

n2
(21a)

�2−8

16
=

k∑
n=1

1

(2n+1)2(2n−1)2
(21b)

introduce two methods for approximating �; and, for both methods, we can consider 1/k as the
algorithmic parameter (see Equation (1)). Deviations of the approximate results from the exact
result are expressed as,

Ek =
(
6

k∑
n=1

1

n2

)1/2

−� (22a)

Ek =
(
8+16

k∑
n=1

1

(2n+1)2(2n−1)2

)1/2

−� (22b)

To study whether the requirements essential for the validity of Equation (18) are provided, the
convergence plots corresponding to Equations (21) and (22) are depicted in Figure 2 (as apparent
in Figure 2(b), the effect of round off dominates the error, at �<2×10−4). According to these
plots, the convergence rates, for the two series, q , are one and three, and the convergence rates for
the corresponding results produced by Richardson extrapolation, qR , are two and four, respectively.
Considering k=1,4,16,64, . . . in Equations (21) (and causing Equation (15) to be satisfied with
r =4), the validity of Equation (18) is studied in Tables I and II. Apparently, Equation (18)
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(a) (b)

For the responses obtained from the series in Equations (21) 
For the responses computed by applying the Richardson extrapolation to the series
in Equations (21) 

Figure 2. Convergence plots corresponding to the series in Equations (21) (for computing �): (a) corre-
sponding to the series in Equation (21a) and (b) corresponding to the series in Equation (21b).
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Table I. The validity of Equations (18) and (11) for the series in Equations (21a) (q=1).

Adequacy of Equation (18)

Left-hand side of Errors in
Equation (18) Right-hand side satisfying

�( 1k ) Ua Ua
R (|ER2,3 |=|Ua

R−�|) of Equation (18) Equation (11) (%)

1 2.4494949 — — — —
1
4 2.9226130 3.0803207 — — —
1
16 3.0831930 3.1367197 0.004872955 0.018799655 8.34
1
64 3.1267528 3.1412727 0.000319941 0.001517672 2.16
1

256 3.1378675 3.1415724 0.000020214 0.000999089 0.54
1

1024 3.1406604 3.1415914 0.000001267 0.000006316 0.136
1

4096 3.1413595 3.1415926 0.000000079 0.000000396 0.034
1

16384 3.1415344 3.1415926 0.000000005 0.000000025 0.008

Table II. The validity of Equations (18) and (11) for the series in Equations (21b) (q=3).

Adequacy of Equation (18)

Left-hand side of
Equation (18) Right-hand side Error in satisfying

�( 1k ) Ua Ua
R (|ER2,3 |=|Ua

R−�|) of Equation (18) Equation (11) (%)

1 3.1269438 — — — —
1
4 3.1410160 3.1412393 — — —
1
16 3.1415809 3.1415898 2.8E−6 5.6E−6 24.0
1
64 3.1415925 3.1415926 1.4E−8 4.5E−8 6.83
1
256 3.1415927 3.1415927 5.6E−11 2.1E−10 1.77
1

1024 3.1415927 3.1415927 2.2E−13 8.8E−13 0.44

� 1
4096 Round off dominates the error (see Figure 2(b))

upper-estimates the errors of the results produced by Richardson extrapolation, with the reliability
addressed in Equation (19). (In addition, the validity of Equation (11) in the linear sections of the
convergence plots is studied in the last columns of Tables I and II.)

3. ENGINEERING APPLICATION (TIME INTEGRATION ANALYSIS)

3.1. Brief introduction and adaptation

Considering the simplicity of the numerical study presented in the previous section, prior to the
implementation of the proposed estimation in a practical error (accuracy)-controlling procedure, we
would rather apply the estimation to more complicated computations. In this regard, attention is paid
to time integration analysis. Time integration is one of the most versatile tools for structural dynamic
analysis [28, 29], specifically, when the forcing functions are complicated and available as digitized
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 Time step :             1                 2    ….……..…………….…………..      i    ……..

Time station :   0                     1           2    …………………….      i-1                        i ……..

t

Figure 3. Typical arrangement of time steps and time stations in time integration analyses.

records [30], some of the natural frequencies are very close, the damping is nonclassical, and/or
the existing nonlinearities are not negligible, e.g. analysis of building structural systems subjected
to ground strong motions [5, 29, 31, 32]. Therefore, the study of time integration analyses, from
different theoretical and practical points of view, e.g. convergence, accuracy, and computational
cost, started years ago [33, 34], continued in the last decades [35–42], and is still being dealt with
[5, 43–46]. To briefly review the general process of time integration analysis, in view of Figure 3,
sizes of time steps or a criterion for adaptive time stepping, e.g. see [47], should be set, first. Then,
the main analysis starts from the initial conditions (if needed, after applying a starting procedure
[46]); and with marching along the time axis, approximate responses are being determined at
discrete time stations, consecutively, based on the formulation of the integration method, and, if
needed, some nonlinearity considerations.

The results, i.e. responses, generated by time integration are in general inexact [29, 32], and
hence, should converge to the exact results [6, 7]. Therefore, the achievements in the previous
section should hold. Considering a specific time integration analysis, and, the integration step size,
as the algorithmic parameter (see Equation (1) and [5, 8]), in order to make an idea about the errors,
it is broadly accepted to repeat the analyses with half steps, and, study the accuracies by comparing
the results [31, 48, 49]. (The validity of this approach can be explained by Equation (11), and the
column criteria in the literature; see [20].) In view of these repetitions (recommended for practical
analyses [31]) and Equations (15) and (16), it is reasonable to apply the Richardson extrapolation
to the already computed consecutive responses, each corresponding to a different value of the
algorithmic parameter. This is carried out for time integration analyses; see [13, 48]; and hence,
we can consider time integration analysis as an appropriate real engineering computational case,
for checking the validity of the upper-bound estimation proposed in Section 2. Consequently, the
objective, in this section, is to demonstrate that the proposed upper-estimation can successfully be
applied to time integration analyses. In order to achieve this objective, if we interpret the U in
the previous section, as an arbitrary unknown (or an arbitrary combination of unknowns), in the
equation of motion below [50, 51]:

Mü(t)+fint(t) = f(t), 0�t<tend

Initial Conditions:

∣∣∣∣∣∣∣
u(t=0)=u0

u̇(t=0)= u̇0

fint(t=0)= fint0

Additional Constraints: Q

(23)

Richardson extrapolation, and the upper-bound estimation proposed in Section 2, can directly be
applied to the results of time integration analyses, and we would be able to study the validity of
the proposed upper-estimation. In Equations (23), t and tend imply the time and the duration of
the transient behavior, M is the mass matrix, fint and f(t) stand for the vectors of internal force
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and excitation, u(t), u̇(t), and ü(t) denote the unknown vectors of displacement, velocity, and
acceleration, u0, u̇0, and fint0 define the initial status of the mathematical model (regarding the
essentiality of considering fint0 in Equations (23), also see [52]), and finally, Q represents some
restricting conditions, e.g. additional constraints in problems involved in impact or elastic–plastic
behavior [53, 54], all in view of the degrees of freedom set for the mathematical model [50, 51].

3.2. Numerical study

3.2.1. Preliminary notes. First, we should point out that the two examples, in this section, are set
such that, the closed-form solutions exist, and, we can depict the convergence plots (see Figure 1),
to be implemented in the study of the upper-bound estimations proposed. (This restriction is omitted
in the remainder of this paper.) The first example considers a simple single degree of freedom
(SDOF) system, by studying which, the main concept is examined; and, in the second example,
the adequacy of the proposed upper-bound estimation is studied, via a complicated multi degree
of freedom (MDOF) system.

3.2.2. Simple SDOF system. Almost the simplest motion can be defined by the equations below:

ü(t)+u(t) = 0

Initial Conditions:
∣∣∣∣∣
u(t=0)=1

u̇(t=0)=0

(24)

The exact solution is as stated in Equation (25),

u(t)=cos(t) (25)

In view of Equation (25), studying Equations (24) in the time interval 0�t<20, with the average
acceleration time integration method [34], several times, each time, with steps half in its previous
analysis (r =2, in Equations (15) and (16)), leads to the error changes, reported, as the solid graphs,
in Figure 4. With attention to these figures, for the carried out analyses, the rate of convergence
is 2, i.e. q=2. Repeating the errors study, for the responses obtained by applying the Richardson
extrapolation to the responses of time integration analyses results in the solid graphs in Figure 5.
In order to check the adequacy of the proposed formulations, i.e. Equations (11) and (18), the
consequences of implementing these formulations (the right-hand side for Equation (18)) are
reported, as the dashed graphs, respectively, in Figures 4 and 5. In addition, the results of applying
the existing estimation for the errors of Richardson extrapolation [20] (see Equation (13)) are
depicted, as the dotted graphs, in Figure 5. As expected, in the linear section of the solid graphs
in Figure 4, the dashed and solid graphs (see Equation (11)) pictorially coincide, and, in the linear
section of the solid graphs in Figure 5 (see Equation (18)), the dashed graphs upper-estimate the
solid graphs, while the dotted graphs (see Equation (13)), though estimate the solid graph more
accurately, are less reliable upper-estimations. (Furthermore, in view of Figures 4 and 5, q=2 and
qR =4, and as expected (see Equation (19)), the reliability of the upper-estimation in Figure 5,
is about (rqR −1)/(rq −1)∼=5.) Consequently, in the analysis of Equations (24) by the average
acceleration method [34], the upper-bound error estimation proposed for the results produced by
Richardson extrapolation is completely reliable in the vicinity of zero steps, asymptotically, not
affected by round off. The adequacy of the upper-bound error estimation based on three approximate
results (Equation (20b)) is also successfully examined in Figure 6.
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Errors computed according to the exact definition of error [21] 

Errors estimated according to Equation (11)

Figure 4. Convergence plots for the results of Equations (24) computed by the average
acceleration method [34]: (a) displacement at t=5s; (b) displacement at t=10s; (c)
displacement at t=15s; (d) displacement at t=20s; (e) velocity at t=5s; (f) velocity at

t=10s; (g) velocity at t=15s; and (h) velocity at t=20s.

3.2.3. Complicated MDOF system. As a more complicated example, consider the system, defined
in Equations (26) and Figure 7:

Mü+Ku= f, 0�t<6.0

t = 0 :
∣∣∣∣u={1 1 1 1 1}T
u̇= Ō

M= 10

⎡
⎢⎢⎣
20 0 0 0 0
0 17 0 0 0
0 0 15 0 0
0 0 0 12 0
0 0 0 0 10

⎤
⎥⎥⎦ , K=1000

⎡
⎢⎢⎣

9 −4 0 0 0
−4 7 −3 0 0
0 −3 5 −2 0
0 0 −2 3 −1
0 0 0 −1 1

⎤
⎥⎥⎦ (26)
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Figure 5. Convergence plots for the results of Equations (24) computed by the average acceleration
method [34] and enhanced by the Richardson extrapolation (Equation (9)): (a) displacement at t=5s; (b)
displacement at t=10s; (c) displacement at t=15s; (d) displacement at t=20s; (e) velocity at t=5s;

(f) velocity at t=10s; (g) velocity at t=15s; and (h) velocity at t=20s.

f=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1

f2

f3

f4

f5

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

f1=8999.21875cos

(
t

16

)
−4000cos

(
t

4

)

f2=−4000cos

(
t

16

)
+6989.375cos

(
t

4

)
−3000cos(t)

f3=−3000cos

(
t

4

)
+4850cos(t)−2000cos(4t)

f4=−2000cos(t)+1080cos(4t)−1000cos(16t)

f5=−1000cos(4t)−24600cos(16t)
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Figure 6. Convergence plots for the results of Equations (24) computed by the average acceleration
method [34] and enhanced by the Richardson extrapolation (Equation (20a)): (a) displacement at t=5s;
(b) displacement at t=10s; (c) displacement at t=15s; (d) displacement at t=20s; (e) velocity at t=5s;

(f) velocity at t=10s; (g) velocity at t=15s; and (h) velocity at t=20s.

(where, the right-hand side superscript ‘T’ implies matrix transposition). In view of the analytical
closed-form solution, i.e.

u= {u1 u2 u3 u4 u5}T

=
{
cos

(
t

16

)
cos

(
t

4

)
cos(t) cos(4t) cos(16t)

}T

(27)

Equations (26) define a moderately stiff mathematical model [2, 55, 56]. Time integrating the
problem, with the Houbolt [33, 46, 57], central difference [58], and HHT (�=−0.1,�=0.3025,
�=0.6) [37, 59] methods, results in approximate responses, which, after implementing the
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Figure 7. The spring-mass-dashpot model of the system defined in Equations (26).

Richardson extrapolation, and taking into account different error norms [60], brings about the
error reports in Figures 8–10. Apparently, all the plots evidence the validity of Equation (18).
It is also worth noting that, because of the definition of f in Equations (26) and the second-
order of accuracy [61], of the above-mentioned integration methods, for all analyses, q=1;
see [5, 38, 52].

4. PRACTICAL IMPLEMENTATION

4.1. Preliminary notes

Section 2 presented an upper-bound estimation for the errors, associated with Richardson extrap-
olation, and studied the validity of the estimation, via simple examples. Section 3 studied the
adequacy of the proposed estimation, when applied to time integration analysis. This section
intends to implement the achievements, in reliably estimating the errors and proposing a practical
accuracy-controlling procedure.

A starting question is, while the proposed upper-estimation is reliable, only at the linear sections
of the convergence plots, how we can implement it, in approximate analyses, in general, without
exact solutions (and hence without convergence plots and any information about the linear sections
of the convergence plots). In other words, as also implied in the examples in Section 3, without
the exact solutions and checking whether we are at the section a in Figure 1, implementing the
proposed estimation, loses its reliability. Considering these, it is reasonable to implement a recent
achievement [52] (also see [27]), according to which, when: (1) round off is negligible, (2) time
integration, with sufficiently small steps, can model the mathematical model in Equations (23),
with desired accuracy, and (3) in absence of nonlinearity, errors properly converge to zero, the
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Errors computed according to the exact definition of error [21]
Upper-bound error estimations according to Equation (18)
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Figure 8. Convergence plots for the responses of Equations (26) computed by the Houbolt method
[33, 46, 57] and enhanced by the Richardson extrapolation (Equation (9)): (a) u1 (with the L∞ norm);
(b) u3 (with the L∞ norm); (c) u5 (with the L∞ norm); (d) displacement at t=3.0s (with the L2 norm);
(e) displacement at t=4.5s (with the L2 norm); and (f) displacement at t=6.0s (with the L2 norm).

equivalence stated in Figure 11 is valid, for time integration analyses. In Figure 11, Dj represents
the difference between two consecutively computed (see Equation (15)) results, i.e.

Dj =Ua
j −Ua

j−1 (28)

In view of the fact that the equivalence in Figure 11 is explained based on the concept of convergence
[52] (and in many approximate computations, the three assumptions above can be guaranteed by
considering the associated algorithmic parameter and satisfying the assumptions in Section 1), it
seems meaningful to extend the idea, addressed above, to general approximate computations, all
to satisfy the requirements of convergence [6, 7]. In more detail, regardless of the approximate
computation, under consideration, if we can provide the requirements of convergence, the linearity
of the changes of D (or −D), with respect to the algorithmic parameter, in a log–log diagram,
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Errors computed according to the exact definition of error [21] 
Upper-bound error estimations according to Equation (18)
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Figure 9. Convergence plots for the responses of Equations (26) computed by the central difference
method [58] and enhanced by the Richardson extrapolation (Equation (9)): (a) u1 (with the L∞ norm);
(b) u3 (with the L∞ norm); (c) u5 (with the L∞ norm); (d) displacement at t=3.0s (with the L2 norm);
(e) displacement at t=4.5s (with the L2 norm); and (f) displacement at t=6.0s (with the L2 norm).

would imply the same trend, for the changes of |E |, and vice versa, i.e.

{
Changes of D or−D are acceptable (linear)⇔Changes of |E | are acceptable (linear)

(both with respect to �, in a log–log diagram, when not affected by round off)
(29)

Consequently, for an arbitrary approximate computation, when round off is negligible, in order to
determine the range of values of the algorithmic parameter, for which, the upper-estimation is valid,
instead of |E |, we can consider the changes of |D| (also see [27]). Apparently, in talking about the
errors of Richardson extrapolation, the changes, addressed in Equation (29), are associated with
the results obtained by applying the Richardson extrapolation to consecutive analyses, and hence,
in view of Equations (9) and (20a), Dj can be computed, only after at least three approximate
analyses. Though the validity of Equation (29) is also demonstrated in the literature [52], for
further reliability, the special case of the last example, studied in Figures 8–10, is restudied in
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Errors computed according to the exact definition of error [21]
Upper-bound error estimations according to Equation (18)
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Figure 10. Convergence plots for the responses of Equations (26) computed by the HHT
(�=−0.1,�=0.3025,�=0.6) method [37, 59] and enhanced by the Richardson extrapolation
(Equation (9)): (a) u1 (with the L∞ norm); (b) u3 (with the L∞ norm); (c) u5 (with the L∞
norm); (d) displacement at t=3.0s (with the L2 norm); (e) displacement at t=4.5s (with the

L2 norm); and (f) displacement at t=6.0s (with the L2 norm).

 

Figure 11. A relation between the deviations D, obtained from Equation (28), and the errors |E |.
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Figure 12. The study of the convergence plots, corresponding to Figures 8–10, with no attention to the
exact solutions: (a) u1 (with the L∞ norm); (b) u3 (with the L∞ norm); (c) u5 (with the L∞ norm);
(d) displacement at t=3.0s (with the L2 norm); (e) displacement at t=4.5s (with the L2 norm); and

(f) displacement at t=6.0s (with the L2 norm).

Figure 12. Comparing the range of the linear trends of the plots in Figure 12 with the trends
of the solid graphs in Figures 8–10 clearly reveals the adequacy of Equation (29). With this
introduction, in the remainder of this section, the existing error-controlling practice is reviewed, and,
enhanced to a new procedure, applicable to general approximate computations with one algorithmic
parameter.

4.2. Accuracy-controlling computation

4.2.1. The existing practice. Considering an arbitrary specific approximate computation, the
approach, broadly accepted in practice, for arriving at a desired accuracy, is to carry out the
approximate computation, with two different values of the algorithmic parameter, and compare
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the results. The procedure is as noted below:

1. Considering convergence, accuracy, and computational cost, as the main concerns in approx-
imate computations, select a value for the algorithmic parameter (generally with some
assumptions on the unknown result).

2. Carry out the approximate computation.
3. Appropriately change the value set for the algorithmic parameter and repeat the computation.
4. Compare the results obtained from the last two computations, paying attention to the rate of

convergence, the change of the algorithmic parameter, and the accuracy, we are interested in
(for sufficiently small values of the algorithmic parameter, not under the effect of dominating
round off, we can halve the algorithmic parameter and consider the difference of the two
results as an upper-bound estimation of the error; see [48]); if the accuracy is sufficient, stop;
otherwise, return to stage 3.

(As some simple applications of the above procedure, we can refer to: (a) repeating time integration
analyses with smaller steps [31, 48, 49], (b) practical application of numerical integration methods,
e.g. Simpson’s rule [23, 24] and repeating the integration with smaller steps after the main inte-
gration, (c) finite or boundary element analysis with finer spatial meshes, after the first analysis
[22, 62].) The above procedure is not reliable (see [48, 63]), and in addition, procedures in need
of consecutive analyses are inherently computationally expensive. Therefore, in order to arrive at
more efficient approximate computations (consider the second objective implied in the title of this
paper), a new procedure, leading to reliable further accuracies, and/or less computational costs, is
presented in Section 4.2.2.

4.2.2. The new procedure. Based on the capability, provided in upper-estimating the errors of the
results produced by Richardson extrapolation, and considering q , as the rate of the convergence,
the existing error-controlling practice can be enhanced to the procedure below:

1. Select a value for the algorithmic parameter �=�1; select a value for the r in Equations
(15) and (16), e.g. r =2 is appropriate for time integration analyses (see [31]); select the
maximum computational error acceptable, namely Tol.

2. Compute �2,�3, and �4, considering Equations (15) or (16), and the value set for r .
3. Compute Ua

1 and Ua
2 (corresponding to �1 and �2), by implementing the procedure of

the computational method; if |Ua
1 −Ua

2 | is smaller than Tol, accept Ua
2 , as the result, with

sufficient accuracy; stop.
4. Compute Ua

3 (corresponding to �3), by implementing the procedure of the computational
method; if |Ua

1 −Ua
2 | is about rq times larger than |Ua

2 −Ua
3 | and (|Ua

2 −Ua
3 |)/(rq −1) is

smaller than Tol, accept Ua
3 , as the result, with sufficient accuracy; stop.

5. Compute Ua
4 , corresponding to �4, by implementing the procedure of the computational

method.
6. In view of the expected convergence rate q (e.g. see [5, 25, 38, 64]), obtainUa

R1,2
,Ua

R2,3
,Ua

R3,4
,

from (see Equation (9))

Ua
Ri,i+1

= �qi U
a
i+1−�qi+1U

a
i

�qi −�qi+1

= rqUa
i+1−Ua

i

rq −1
, i=1,2,3,4 (30)
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Current state of the error Corresponding to the desired accuracy Tol

log

Elog

(a)
log

Elog

(c)

log

Elog

(d) log

Elog

(b) 

Figure 13. Schematic correspondence between the convergence plots and the cases studied in the proposed
procedure: (a) stage 9; (b) stage 10; (c) stage 11; and (d) stage 12.

7. Obtain the values of D3,D4, corresponding to the values computed in stage 6, from (see
Equation (28))

D3 = Ua
R2,3

−Ua
R1,2

D4 = Ua
R3,4

−Ua
R2,3

D5 = Ua
R4,5

−Ua
R3,4

(31)

8. Based on the values of Ua
2 ,Ua

3 ,Ua
4 , determine the maximum of |ER3,4 |, with attention to

(see Equation (18)),

|ER3,4 |max= |−rqUa
4 +(rq +1)Ua

3 −Ua
2 |

(rq −1)2
(32)

9. If, based on the latest values obtained from Equation (31), the log–log changes of |Di |,
with respect to �i , are pictorially linear and inclined with an integer-valued slope about and
greater than q , and, in view of the Tol, set in stage 1, |ER3,4 |max is sufficiently small, we
can rely on the sufficiency of the obtained accuracy (see Figure 13(a)); accept Ua

R3,4
, as the

approximate result, with sufficient accuracy; stop.
10. If, based on the latest values obtained from Equation (31), the log–log changes of |Di |,

with respect �i , are pictorially linear and inclined with an integer-valued slope about and
greater than q , but, in view of the Tol, set in stage 1, |ER3,4 |max is not sufficiently small,
the obtained accuracy is not sufficient (see Figure 13(b)); determine �5, considering stages
1 and 2; and obtaining Ua

5 ,Ua
R4,5

, and D5, respectively, from the computational method,
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Equation (30), and Equation (31), implement

Ua
1 = Ua

2 , Ua
2 =Ua

3 , Ua
3 =Ua

4 , Ua
4 =Ua

5

Ua
R1,2

= Ua
R2,3

, Ua
R2,3

=Ua
R3,4

, Ua
R3,4

=Ua
R4,5

D2 = D3, D3=D4, D4=D5

�1 = �2, �2=�3, �3=�4, �4=�5

(33)

and return to stage 8.
11. If, based on the latest values obtained from Equation (31), the log–log changes of |Di |,

with respect to �i , are not pictorially linear, with an integer-valued slope about and greater
than q , and in view the already computed values, for the Richardson extrapolation, we are
in the round off dominated region of the convergence plot (e.g. when we have already been
in the linear section of the plot with insufficient accuracy and now neither the accuracy is
sufficient nor the log-log changes of |Di | with respect to �i is linear), the desired accuracy
is not obtainable, with the available computational facility, and the values set, in stage 1 (see
Figure 13(c)); stop.

12. Considering the most general case, not studied in stages 9–11, i.e. when the log–log changes
of |Di |, with respect to �i , is not pictorially linear, with an integer-valued slope about and
greater than q , and we are not in the round off dominated region of the convergence plot
(see Figure 13(d)), compute �5, with attention to stages 1 and 2; obtain Ua

5 ,Ua
R4,5

, and D5,
respectively, from the computational method, Equation (30), and Equation (31); implement
Equations (33), and return to stage 8.

(Extending the procedure above to Richardson extrapolations, based on more than two results, is
straightforward.) Consequently, the second objective, addressed in Section 1 and the title of this
paper, is materialized, and by means of the procedure above, we can implement the upper-bound
estimation, proposed in Section 2, in controlling the accuracies, of many approximate computations.
Section 5 examines the efficiency of the new procedure.

5. NUMERICAL VALIDATION OF THE PROPOSED PROCEDURE

5.1. Preliminary notes

With the aim of displaying the adequacy of the proposed procedure, this section studies two
examples, from different scientific/engineering origins. The main attention in the first example
is to the basic concepts, and the second example concentrates on a more complicated problem.
Both examples are first studied for accuracies, obtainable after specific numbers of consecutive
computations, and are then interpreted from the viewpoint of computational cost. Regarding the
computational cost, as implied in the explanations in Sections 2, 3, and 4, the computational costs
needed for implementing the Richardson extrapolation and checking the corresponding convergence
trends (of D) are in general small. Besides, extending the existing accuracy-controlling practice (see
Section 4.2.1), to the procedure, proposed in Section 4.2.2, has small effect on the computational
storage (depending on the r in Equation (15), less than 15%). Therefore, for the sake of simplicity,
the total time spent, for approximate computations, on one computer, is considered as an appropriate
measure for the computational cost; see also [5, 55].
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5.2. Integration by the trapezoidal rule

The trapezoidal integration method [21, 23, 24] is implemented in numerical computation of the
I , introduced below:

I =
∫ 1

0

4

1+x2
dx (34)

Obviously, the inverse of the number of divisions throughout the integration interval (herein,
equal to the integration step size) is an appropriately set algorithmic parameter. After the first
analysis, sequentially, repeating the integration with smaller steps, where the r , in Equation (15),
is considered equal to 5, results in Table III. The changes of |D|, with respect to the algorithmic
parameter, are depicted in Figure 14 (q=2,qR =6). Based on this information, the existing and
proposed accuracy-controlling procedures are applied to the computation of I . The computational
costs, and accuracies, are reported in Tables IV and V (having � as the exact solution, the errors and
the reliabilities are evaluated; the exact values are not used in the procedures), for a range of values

Table III. Results computed for the I in Equation (34) by the Trapezoidal rule [21, 23, 24].
Total number of the � Computed Computational
previous computations (integration step size) result cost (s)

0 1 3.0000000000000 0.023744125
1 0.2 3.1349261138110 0.022736375
2 0.04 3.1413259869313 0.021989875
3 0.008 3.1415819869231 0.022551625
4 0.0016 3.1415922269231 0.025416375
5 0.00032 3.1415926365231 0.029339500
6 0.000064 3.1415926529071 0.091136125
7 0.0000128 3.1415926535625 0.404692290
8 0.00000256 3.1415926535887 1.95360
9 0.000000512 3.1415926535897 9.78267
10 0.0000001024 3.1415926535896 48.5195
11 0.00000002048 3.1415926535909 243.4245
12 0.000000004096 3.1415926535891 1225.1615
13 0.0000000008192 3.1415926535926 6116.2595
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Figure 14. Changes of |D| in the analysis of Equation (34) by the Trapezoidal rule [21, 23, 24],
corresponding to the results of: (a) the main computation and (b) the main computation

enhanced by the Richardson extrapolation.
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Table IV. Accuracies, reliabilities, and computational costs, when implementing the existing practice
to the results reported in Table III.

Results of the
Total number of Trapezoidal rule Error (%)
the previous (equal to results of Computational
computations the procedure) Estimated Exact cost (s)

0 3.0000000000000
1 3.1349261138110 4.303964716 0.212202552 0.046
2 3.1413259869313 0.203731582 0.008488263 0.068
3 3.1415819869231 0.008148760 0.000339531 0.091
4 3.1415922269231 0.000325949 1.35812E−05 0.116
5 3.1415926365231 1.30380E−05 5.43250E−07 0.146
6 3.1415926529071 5.21519E−07 2.17308E−08 0.237
7 3.1415926535625 2.08620E−08 8.68772E−10 0.642
8 3.1415926535887 8.33984E−10 3.47882E−11 2.595
9 3.1415926535897 3.18197E−11 2.96852E−12 12.378

U
nr

el
ia

bl
e 10 3.1415926535896 3.18055E−12 6.14907E−12 60.897

11 3.1415926535909 4.13755E−11 3.52264E−11 304.322
12 3.1415926535891 5.72924E−11 2.20660E−11 1529.483
13 3.1415926535926 1.11418E−10 8.93524E−11 7645.743

Table V. Accuracies, reliabilities, and computational costs, when implementing the proposed
procedure to the results reported in Table III.

Total number of Error (%)
the previous Results of the Results of the Computational
computations Trapezoidal rule procedure Estimated Exact cost (s)

0 3.0000000000000
1 3.1349261138110 3.1349261138110 4.303964716 0.212202552 0.046
2 3.1413259869313 3.14159264831131 0.13855E−02 1.68019E−07 0.068
3 3.1415819869231 3.14159265358943 7.00031E−09 1.17186E−11 0.091
4 3.1415922269231 3.14159265358977 4.52763E−13 2.66454E−14 0.116

U
nr

el
ia

bl
e 5 3.1415926365231 3.14159265358977 1.20000E−15 2.62013E−14 0.146

6 3.1415926529071 3.14159265358977 4.90826E−16 2.66454E−14 0.237
7 3.1415926535625 3.14159265358981 5.49726E−14 1.55431E−14 0.642
8 3.1415926535887 3.14159265358979 2.15964E−14 1.33227E−15 2.595
9 3.1415926535897 3.14159265358974 6.66297E−14 5.15143E−14 12.378
10 3.1415926535896 3.14159265358960 1.93312E−13 1.97176E−13 60.897
11 3.1415926535909 3.14159265359095 1.80168E−12 1.16129E−12 304.322
12 3.1415926535891 3.14159265358902 2.55846E−12 7.68718E−13 1529.483
13 3.1415926535926 3.14159265359275 4.93546E−12 2.95275E−12 7645.743
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of the algorithmic parameter, ending with the domination of round off, where the estimations are
unreliable (see also Figure 14). In view of these results, the computational costs essential to arrive
at some specific accuracies, with the existing and proposed procedures are compared in Table VI.
In order to display that the accuracies, provided by the proposed procedure, are reliable, in the
linear section of the pseudo (based on |D|)-convergence plot, the computed errors are compared
with the exact errors in Figure 15, where also the exact and pseudo-convergence plots are depicted.
Apparently, the two plots are linear in an almost common interval of the algorithmic parameter,
and in that interval, the estimated errors are more than the exact errors, i.e. the proposed procedure
is reliable, and can correctly predict this reliability. (The study carried out for this example is
repeated, with the Simpson integration rule [21], and conceptually similar results are obtained, not
reported here, for the sake of brevity.)

Table VI. Computational costs essential for arriving at specific precisions in the analysis
of Equation (34) by the Trapezoidal rule.

Precisions requested
(%) (errors acceptable) 20 5 1 1×10−1 1×10−3 1×10−5 1×10−8 1×10−12

Computational cost (s)
Existing practice 0.046481 0.046481 0.068470 0.091022 0.116438 0.236914 2.595206 >7645.7

Proposed procedure 0.046481 0.046481 0.068470 0.091022 0.091022 0.091022 0.091022 0.116438

Reduction of the
computational cost (%) 0 0 0 0 21.83 61.58 96.49 >99.99

Figure 15. The reliability of the proposed procedure in the linear section of the pseudo-convergence plot,
when applied to the Trapezoidal integration of Equation (34).
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5.3. Seismic analysis of a shear building

As implied in Section 3.1, time integration analyses are approximate computations, to which, we can
apply the procedure, proposed in Section 4. This section examines the consequence, by studying the
time integration analysis of the shear building [29, 31, 32], introduced in Figure 16 and Table VII.
Considering the top displacement and base shear, as the responses under consideration, the histories
of the exact responses are depicted in Figure 17. The system is analyzed, by the Generalized-�

(a) (b)

Figure 16. The structural system under consideration as the second example:
(a) structural system and (b) excitation.

Table VII. The structural properties for the system schematically introduced in Figure 16.

Floor 1 2 3 4 5 6 7 8

Mass ×10−3 (Kg) 2072 2068 2064 2060 2056 2052 2048 2044
Stiffness×10−6 (N/m) 86 84 82 70 68 66 64 62
Damping (N s/m) Negligible (considered zero)
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Figure 17. Two exact responses histories for the system defined in Figure 16 and Table VII:
(a) top displacement and (b) base shear.
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For the responses computed by the Generalized-  ( 8.0r ) method [65] 

For the responses computed by applying the Richardson extrapolation to the responses 

computed by the Generalized-  ( 8.0r ) method [65] 
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Figure 18. Pseudo-convergence plots for the system defined in Figure 16 and Table VII analyzed by the
Generalized-�(r∞ =0.8) method [65]: (a) top displacement with the L2 norm and (b) final base shear.

(r∞ =0.8) method [65], with steps, all equal to �t=0.1 s (for the existing comments regarding
the size of �t , see [5, 31, 66, 67]), and the analysis is repeated, several times, while implementing
r =2 (see Equation (15)). The changes of responses absolute deviations, computed for the top
displacement (with the L2 norm [60]) and final base shear, along with the corresponding changes
of the results, enhanced by the Richardson extrapolation, are reported in Figure 18. Considering
these, the existing and proposed accuracy-controlling procedures have resulted in Tables VIII
and IX (where, in view of the explanation in Section 5.1, the computational cost is studied by
considering the total number of integration steps, N ′). In view of the estimated errors, reported in
Tables VIII and IX, the computational costs, essential to arrive at specific accuracies, are compared
in Figure 19. (The coincidence of the range of integration steps, for which the proposed procedure
is reliable, with the range of steps, for which the changes of |D|, with respect to step sizes,
is linear, in the log–log diagram, is apparent, with a thorough attention to Tables VIII, IX and
Figure 18.)

6. CONCLUSION

Considering the everyday need for more accurate and less computationally expensive numerical
methods, this paper has first discussed the errors associated with the Richardson extrapolation,
resulting in an asymptotic upper-bound estimation for the errors. The upper-bound estimation is
then implemented in proposing an error-controlling computational procedure, applicable to general
approximate computations, with one algorithmic parameter (see Equation (3)). We summarize the
most important achievements as follows:

1. For sufficiently small algorithmic parameters, causing linear convergence trends and not still
under the dominating effect of round off, an asymptotic upper-bound estimation is proposed
for the errors associated with the Richardson extrapolation.
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Table VIII. Accuracies, reliabilities, and computational costs, when implementing the existing
accuracy-controlling practice to the responses computed by the Generalized-� (r∞ =0.8)

method [65] for the problem defined in Figure 16 and Table VII.

Errors (%)

Estimated for top Exact for top
Total number displacement displacement
of the previous (with the L2 norm) (with the L2 norm)

analyses/
smallest Estimated for Exact for final Computational
�t (s) final base shear base shear cost (N ′)

U
nr

el
ia

bl
e 

0/0.1E−0

1/0.5E−1 0.8596E3 0.3242E3 900
0.1384E3 0.7461E0

2/0.25E−1 0.6018E3 0.9813E2 2100
0.1932E3 0.2080E3

3/0.125E−1 0.8547E2 0.2510E2 4500
0.6561E3 0.8057E2

4/0.625E−2 0.1952E2 0.6294E1 9300
0.7548E2 0.2075E2

5/0.3125E−2 0.4763E1 0.1575E1 18 900
0.1641E2 0.5198E1

6/0.15625E−2 0.1184E1 0.3937E0 38 100
0.3950E1 0.1300E1

7/0.78125E−3 0.2955E0 0.9844E-1 76 500
0.9779E0 0.3249E0

8/0.390625E−3 0.7384E−1 0.2461E−1 153 300
0.2439E0 0.8120E−1

9/0.1953125E−3 0.1846E−1 0.6152E−2 306 900
0.6093E−1 0.2030E−1

10/0.9765625E−4 0.4614E−2 0.1538E−2 614 100
0.1523E−1 0.5080E−2

11/0.48828125E−4 0.1154E−2 0.3845E−3 1 228 500
0.3808E−2 0.1270E−2

12/0.24414063E−4 0.2884E−3 0.9609E−4 2 457 300
0.9519E−3 0.3170E−3

13/0.12207031E−4 0.7207E−4 0.2402E−4 4 914 900
0.2380E−3 0.7930E−4

14/0.61035156E−5 0.1789E−4 0.6134E−5 9 830 100
0.5951E−4 0.1983E−4
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Table IX. Accuracies, reliabilities, and computational costs, when implementing the proposed accu-
racy-controlling procedure to the responses computed by the Generalized-� (r∞ =0.8) method [65] for

the problem defined in Figure 16 and Table VII.

Errors (%)

Estimated for top Exact for top
Total number displacement displacement
of the previous (with the L2 norm) (with the L2 norm)

analyses/
smallest Estimated for Exact for final Computational
�t (s) final base shear base shear cost (N ′)

U
nr

el
ia

bl
e 

0/ 0.1E0

1/0.5E−1

2/0.25E−1 0.1145E3 0.6248E2 2100
0.4351E2 0.2776E3

3/0.125E−1 0.2035E2 0.2907E1 4500
0.1290E3 0.3808E2

4/0.625E−2 0.9204E0 0.1527E0 9300
0.1252E2 0.8137E0

5/0.3125E−2 0.4784E−1 0.9250E−2 18 900
0.2669E0 0.1300E−1

6/0.15625E−2 0.2889E−2 0.5810E−3 38 100
0.4248E−2 0.2090E−3

7/0.78125E−3 0.1813E−3 0.3730E−4 76 500
0.6799E−4 0.4760E−5

8/0.390625E−3 0.1161E−4 0.2470E−5 153 300
0.1486E−5 0.3050E−6

9/0.1953125E−3 0.7643E−6 0.1950E−6 306 900
0.9256E−7 0.2770E−7

U
nr

el
ia

bl
e 

�10/

�0.976563E−4 Round off dominates the error (see Figure 18) �614100

2. Compared with the existing error estimation (see [20]), the proposed estimation is not only
independent of the results (those obtained from Richardson extrapolation) rate of convergence
qR , but also is more reliable.

3. Based on the proposed upper-bound estimation, the existing accuracy-controlling practice
is enhanced to a new accuracy-controlling procedure. The new procedure can decrease
the computational costs essential for arriving at requested accuracies (and evaluates the
reliabilities of the obtained accuracies), and is efficient, specifically, when higher accuracies
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According to the existing practice
According to the proposed procedure 
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Figure 19. The relation between the precision provided and the computational cost spent, in time integration
of the problem in Figure 16 and Table VII, with the Generalized-� (r∞ =0.8) method [65]: (a) top

displacement with the L2 norm and (b) final base shear.

(corresponding to the lower parts of the linear sections in the pseudo-convergence plots) are
to be provided.

4. The proposed accuracy-controlling procedure is theoretically set for arbitrary approximate
computations, and, examined, by considering the Trapezoidal integration rule [21, 23, 24],
and direct time integration analysis, by the Generalized-� (r∞ =0.8) method [65].
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