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We propose a new high-order finite difference discretization strategy, which is based on the Richardson
extrapolation technique and an operator interpolation scheme, to solve convection diffusion equations. For
a particular implementation, we solve a fine grid equation and a coarse grid equation by using a
fourth-order compact difference scheme. Then we combine the two approximate solutions and use the
Richardson extrapolation to compute a sixth-order accuracy coarse grid solution. A sixth-order accuracy
fine grid solution is obtained by interpolating the sixth-order coarse grid solution using an operator
interpolation scheme. Numerical results are presented to demonstrate the accuracy and efficacy of the
proposed finite difference discretization strategy, compared to the sixth-order combined compact differ-
ence (CCD) scheme, and the standard fourth-order compact difference (FOC) scheme. o 2003 Wiley
Periodicals, Inc. Numer Methods Partial Differential Eq 20: 18-32, 2004
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. INTRODUCTION

In many scientific and engineering modeling applications, such as in the global ocean
modeling and wide area weather forecasting, the computational domains are huge and the
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grid space is not small [1]. In the context of finite difference discretization, the standard
second-order discretization schemes may need fine mesh griddings to yield approximate
solutions of acceptable accuracy. The resulting large size linear systems have to be solved,
which may consume a lot of memory space and CPU cycles on present generation
supercomputers.

One approach to reducing computational cost in very large scale modelings and simulations
is to use higher order discretization methods, which use relatively coarser mesh griddings to
yield approximate solutions of comparable accuracy, relative to the lower-order discretization
methods using finer mesh griddings. Although most high-order discretization schemes involve
more complicated derivation procedures and higher preprocessing costs to compute the matrix
coefficients, the reported computational results have demonstrated that they are more efficacious
than the lower-order counterparts [2—4]. One important factor affecting the computational
efficacy of a discretization method is to solve the resulting linear systems. The higher-order
methods usually generate linear systems of much smaller size, compared with that from the
lower-order methods.

Because of this and other advantages of the high-order methods, there has been growing
interest in developing and using highly accurate numerical schemes for solving partial differ-
ential equations, which has sparked renewed interest in high-order compact difference schemes
[5-11]. Recently, Chu and Fan [1] propose a new three-point combined compact difference
(CCD) scheme for solving one-dimensional convection diffusion equations and two-dimen-
sional Stommel Ocean model, which is a special two-dimensional convection diffusion equa-
tion. By using Hermitian polynomial approximation, they achieve sixth-order accuracy for the
inner grid points and fifth-order accuracy for the boundary grid points. The global accuracy of
the CCD scheme has been shown numerically to reach the sixth order. For the two-dimensional
case with zero boundary conditions, they apply Alternating Direction Implicit (ADI) [12]
method and reduce and solve it as a series of one-dimensional problems. However, no
sixth-order CCD scheme for solving the two-dimensional problems with nonzero boundary
conditions is given in their article. The sparse linear system arising from their one-dimensional
CCD discretization scheme is block tridiagonal, which is more complicated and more expensive
to solve than a tridiagonal linear system.

We propose a new finite difference discretization strategy, which is based on the Richardson
extrapolation technique and an operator interpolation scheme, to solve the convection diffusion
equations. The resulting sparse linear systems consist of two independent tridiagonal linear
systems that can be solved easily. The proposed finite difference discretization strategy is
general in nature and can be used to improve the accuracy of a computed solution of a certain
order to a higher order. In this article, we restrict our attention to the case in which we improve
the solutions computed from the fourth-order compact difference schemes (FOC) and raise the
accuracy order of the computed solution from four to six. Our computational strategy can be
applied to solve general two-dimensional convection diffusion equations without the zero
boundary condition assumption. The numerical results show that our new computational
strategy with the FOC scheme is more efficacious than the CCD scheme or the classical FOC
scheme.

This article is arranged as follows. In Section 2 we outline a new sixth-order compact
difference discretization strategy for the one-dimensional case. In Section 3 we extend the
methodology to the two-dimensional case, by making use of an ADI-type technique. We present
some numerical results and comparisons in Section 4. Concluding remarks are included in
Section 5.
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Il. ONE-DIMENSIONAL CASE

We first make a brief introduction to the fourth-order compact difference scheme for solving a
one-dimensional convection diffusion equation of the form

d’u du
W—I—b(x)a-l-c(x)u:f(x), 0=x=1I, (1)

where the known functions b(x), c(x), and f(x) are assumed to be sufficiently smooth. For more
detailed discussions on the methodologies of the fourth-order compact difference schemes, a
reader is urged to consult [7, 13, 14]. We will derive a sixth-order compact computational
strategy based on the fourth-order compact difference scheme.

Let & = I/n be the mesh size of the uniform discretization, where 7 is the number of uniform
intervals. For convenience, we assume that n is an even number and (), is the discretized
computational domain. We denote x; = jh and u; = u(x;), a; = a(x)), b; = b(x;), ¢c; = c(x;), and
Jfi = f(x), where j = 0, 1,..., n. We write the central difference operators for the first and
second derivatives as

. Mj+l - Mj71 uj+1 + uj71 - 2”1
SIXu_i:T, Sf.XI,tJZ W , j=1,2,...,n—1,
with respect to a smooth function u(x).
Using the Taylor series expansions, we have
h? ht
hy =  Uat —— u 6
Ouy = Uy, + 1o + 360 + O(h°), 2)
and
h2 4
b Ut — s 6
ou; = u, + g U + 120 U + 0(h°), (3)

in which we denoted the mth derivative of the function u(x) as

_ dﬂlu
Ugn =
By taking derivatives with respect to x on both sides of Eq. (1), we have

MX3 :fX - CXM - (b)( + C)u)( - buxx? (4)

and

Uy :fxx T Cxlh — (bxx + zcx)ux - (2bx + C)uxx - bux‘

= (fX)C - be) - (CXX - bcx)u - (bXX + 2C)C - be - bc)u,\’ - (2bX + ¢ — bz)uxx‘ (5)
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It follows that, at the grid point j, we have

(up); = — (8c)u; — (8ib; + c;)8u; — b8k u; + msh*> + O(h?), (6)

xx4j

and

(ue); = (8%, — b8h)f; — (8lc; — b;dic)u; — (8hb; + 28ic; — b;8ib; — bjc;)Stu;
— (28!b; + ¢; — b)) &hu; + T,h* + 0(h4). (7)

In Egs. (6) and (7), the notations 75 and 7, are used to denote some complicated representations,
which will be truncated in obtaining the fourth-order scheme and will play no role in the final
computational algorithm.

By utilizing Egs. (2), (3), (6), and (7), the fourth-order compact difference approximation for
the Eq. (1) can be written as

8" u. +b8”u + cju, f,——f—

xxj

B bk (1 b\
Ugp + —— 6 360 X6+120 us | h* + O(h°)
2

— bjc;))8lu; — (281b; + ¢; — b})8u

(Si'cj)uj - (Sﬁbj

XX]

T bT 1 b;
+ ¢;) 8 b}‘o‘ﬁxu]+<4+”+u 120us>h4+0(h°)

127 6 360
" " n
= i+ 1y Bh+ B0 — 5 (Bley + bdlc)u; — 15 (8hb; + 28l

2

ok
+ bydib, + bie) 8l — 15 (281, + ¢ + b8k,

T, bt 1 b; B 1 g
12+ 76t 360t iag e H 00, ®

After collecting terms, we have
(A;8), + B;8! + Cu; = F; + th* + O(h®), 9)

where

2

h
A, —1+—(28”b +¢;+ b)),

2

h
B; = b; +—(6hb + 28lc; + b;8ib; + byc)),
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hZ
Ci=c+ D (8ﬁxcj + bj5ﬁcj),

J

2

h
F=f;+ 15 (8ufi + b8if),

Ty bj'T:; l o i "
X6 1 20 x5

12776 T360

By solving a tridiagonal system in Eq. (9), we have

ul = u; = (A8, + B;8! + C)"'(F; + th*) + O(h). (10)
This is a fourth-order approximate solution on the (), grid. A corresponding fourth-order
approximate solution ujz” on the (),, grid can be computed analogously. Because the approxi-
mate solution u; is of fourth-order accuracy, we can use the Richardson extrapolation technique
[15], from both u" and u*", to compute a sixth-order solution @;" on ), as

(16ut. — u?"
g = W20, (11)

By direct interpolation, ﬁgj = ﬁfh is a sixth-order approximate solution at the even indexed grid
points on (),

To establish the relationship between the values of the approximate solution at the odd and
even indexed grid points, we have, from (9)

h
Ay + oy = 2u) + 2 Bi(ujy — u;-y) + Ch'u; = Fih* + O(h°),
or

h h

Thus, we can compute the approximate solution at the odd indexed grid points (2j — 1) withj =
1,2,...,n/2, as

1
Uy = m [(2 By — Az,-1>ziz,~z

h
- (2 By, + Azjl)zzzj + szlhz] + 0(h°), (12)

where ii,, is a sixth-order solution on (), computed by (11). It follows that a sixth-order solution
i; on (), results.
We summarize the computational algorithm as follows.
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Algorithm 2.1. Compute a sixth-order solution using the Richardson extrapolation technique.

e Solve u" on Q,, with the fourth-order compact scheme (9), which needs to solve an (n —
1)-by-(n — 1) tridiagonal matrix.

o Solve u”" on O, with the fourth-order compact scheme (9), which needs to solve an (n/2 —
1)-by-(n/2 — 1) tridiagonal matrix

o Compute a sixth-order solution u on O, which is also uzj on Qh, by the Richardson
extrapolation technique (11) from the two fourth-order solutions uzj and u

o Compute a sixth-order solution ugj . on Q,, from the sixth-order lnterpolatlon formula
(12).

lll. TWO-DIMENSIONAL CASE
We study a two-dimensional convection diffusion equation in the form of

’u  du
Fa 5y + plx, y)* q(x, y)*—f(x y), (x,y) €10, ] X [0, ,]. (13)

Let Q, hy be the discretized grid space, where h, = [,/N, and h, = [ /N, are the uniform mesh
sizes in the x and y coordinate directions, respectively. Here N, and N are the number of
uniform intervals in the x and y coordinate directions. Based on the 1dea used to compute a
sixth-order solution in the one-dimensional case, we can use the ADI method, which is similar
to a line relaxation method, to compute a sixth-order approximate solution for the two-
dimensional convection diffusion equation (13). Although both use the ADI iteration method,
our computational procedure is different from that used by Chu and Fan [1] for solving some
two-dimensional convection diffusion equations.

The ADI method can be viewed as an iterative method to solve a higher-dimensional problem
by repeatedly solving a series of lower-dimensional problems. As in [1], the iteration from k to
(k + 1) can be separated into two parts, the x-axis sweeping and the y-axis sweeping. Similar
to the one-dimensional case, our sixth-order scheme in the two-dimensional case is also based
on the FOC scheme. To demonstrate the algorithm more clearly, we first introduce the
fourth-order compact difference scheme for the Eq. (13). This particular fourth-order compact
difference scheme with different 4, and &, is designed in [14]. If equal mesh sizes are used, i.e.,
if h, = h, = h, this scheme is equivalent to the fourth-order compact difference scheme of Gupta
et al. [13]. For simplicity in notations, we use the symbols / and 2k in most of the following
coefficient and solution representations to indicate the grid spaces to which they belong.
However, it should be understood that the mesh sizes in the two coordinate directions do not
have to be equal.

As in [14], we assume that the fourth-order compact difference scheme has the following
form:

A?.j(o)u + A,d(])uz+1, + Ah (2)M11+1 + A (3)’41 1j + Ah (4>14i,j—1 + At}'l,j(s)qujJrl
+ Af",j(6)”i—1,j+1 + Ai,_/(7)”i—1,j—1 + Aﬁj(g)ui-#l,j 1 = F

ij?

(14)

which has a nine-point computational stencil. Here the notation Aff 0) is a simplified version of
Af-f}hy(O), as we remarked in the previous paragraph. The exact representation of the coefficients
can be found in [14].
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FIG. 1. An illustration of the fine and the coarse grids with the red-black line coloring.

The computational space contains three components, ()} shy, O3, 2h,, and QF ,h,, where
Qh ,h, means the fourth-order solution space with accuracy order O(h‘f + h4) th ,2h denotes
the fourth order solution space with accuracy order 0((2h o+ (2h, )*), and Qh shy is the
sixth-order solution space with accuracy order O((2h, ) + (2h, )0).

The ADI-type iterations are carried out on alternate lines of the fine grid in different
coordinate directions. First, the fine grid lines are colored in red and black alternately, as in Fig.
1. The ADI iterations are carried out on the red lines only, by solving an (N, — 1)-by-(N, — 1)
tridiagonal linear system for each red line. The coarse grid is formed by removing all black lines
of the fine grid in both coordinate directions. The corresponding equations defined on each line
of the coarse grid are also solved line by line using the tridiagonal linear system solver. The
approximate solution on the red lines of the fine grid and that of the corresponding coarse grid
are used to obtain a sixth-order solution on the coarse grid, which is directly interpolated on to
the red lines of the fine grid. The values of the approximate solution on the black lines of the
fine grid are computed using an operator interpolation scheme with the fourth-order compact
difference scheme (14).

Assuming that N, and N, are both even numbers, one ADI iteration (from the kth to the (k +
1)st) of the sixth-order algorithm based on the Richardson extrapolation technique is outlined as
follows.

Algorithm 3.1. One ADI iteration with the sixth order Richardson extrapolation technique.
1. The x-axis sweeping

e Solve a tridiagonal linear system of the order (N, — 1)-by-(N, — 1) for each x-direction
red line on the fine grid O hy, i.e.,

(O hy + Ah (1)”,+1, + Ah (3)’41 1j = Ff'l,j - (Afl,(z)ufl,ﬁl + Ah (4)”?/‘ 1

+ Ah (5)u,+, gt A?,_/(6)u?'—klx;+1 + A?,_/U)“?—kl‘;—l + Ah (8)M1+1; D,

for the fine grid x-direction red lines j = 2,4, ..., (N, — 2).
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e Solve a tridiagonal linear system of the order (N,/2 — 1)-by-(N,/2 — 1) for each
x-direction line on the coarse grid Q‘zlhx,2hy, 1e

AZh(o) Zh* AZh(l)ulzﬁl*\, 1421'1(3)14211>< _F2h (A2h(2)u2hk +A (4)u2hk

i—1, ij+1 ij—1

Azh(s)”zzillk]ﬂ Azh(6)”z2h 1k/+1 A2h(7)u: 1j-1 AijT(S)”?i’ll(,j—l)a

for the coarse grid x-direction lines j = 1, 2, , (N2 = 1),

From u21 % € Qh ,h and uzé“* € 03, .2h,, we compute ﬁgl*zj S QE Jhy by (1D).

From u21 2i and u1 21 1 € Oy hy with (14) we obtain 5" 12 € Qh ,h

From i h € Qh shy, with (14) by solving a tr1d1agona1 linear system of the order (N, —
1)-by-(N, — 1) for each black line, we obtain i hie1 € Q8 hy. ul b1 € Qh ;hy can be
obtained in the same way.

2. The y-axis sweeping

e Solve a tridiagonal linear system of the order (N, — 1)-by-(N, — 1) for each y-direction
red line on the fine grid Qh shy,

AL(OW + ALY + ALl = Fl = (AL(Dul,, + AL 3)ul”

ij—1

+ Ah (S)M,H,H i,j(6)uf‘1fl,j+l + A (7)”1 -1 T Aﬁj(g)u?fl,/—l),

i—1j

for the fine grid y-direction red lines i = 2, 4, , (N, — 2).
e Solve a tridiagonal linear system of the order Ny /2 — 1-by-(Ny/2 — 1) for each
y-direction line on the coarse grid th ,2hy,

A2h(0)uzhk+l +A2h(2)ul27f;—l +A2h(4)M2hk+l F[th (AZh(l)MZh* A2h(3)u2h*

ij—1 i+1,j i—1,
AZh(S)uzzJ’:l*J+l + A?,}’(6)u?f’f‘,_,-+1 + Ai,j”)”f‘“—*l,j—l + A (8)”12&1%] 1)

for the coarse grid y-direction lines i = 1, 2, , (N2 — 1).

e From uglk;l e QO ,hy, and ikt e Q‘z‘h ,2hy, we compute u';,kg‘ € QE shy by (11).
From ﬁg,kzj "and ~§l* 1j € Q‘J’ hy with (14) we obtain ﬁ'z‘lkzj | € Qh hy.

e From u21k+1 € QG shy, with (14) by solving a tridiagonal linear system of the order (N, —
-by-(N, — 1) for each black line, we obtain uglkﬁlj € Q6 hy. u‘;,kﬁ‘J € Q4 ,hy, can be
obtained in the same way.

The ADI iterations continue until a certain norm of the correction vector of the approximate
solution is reduced to below a certain tolerance.

IV. NUMERICAL RESULTS

Four convection diffusion equations are solved using the sixth-order Richardson extrapolation
discretization (computational) strategy discussed in the previous sections. Two of them are
one-dimensional problems and the other two are two-dimensional problems. We compare the
sixth-order Richardson extrapolation compact (REC) discretization (computational) strategy



26 SUN AND ZHANG

TABLE 1. Comparison of the maximum absolute errors and the CPU seconds of the solutions computed
from the CCD, the REC, and the FOC schemes for solving the Problem 1.

CCD REC FOC
h Error CPU  Order Error CPU  Order Error CPU  Order
T4 4.16e — 4 0.00 7.80e — 4 0.00 1.03¢ — 3 0.00

/8 4.34e — 6 0.00 6.5 1.88¢ — 5 0.00 5.4 6.0le — 5 0.00 4.1
/16 3.52¢ — 8 0.00 6.9 338¢ —7 0.00 5.8 3.8le — 6 0.00 4.0
/32 2.76e — 10  0.01 7.0 549¢ — 9 0.00 59 2.30e — 7 0.00 4.0
/64 2.16e — 12 0.08 7.0 8.68¢ — 11  0.01 6.0 1.49¢ — 8 0.00 39
w128  1.82¢ — 14  0.27 6.9 1.3le — 12 0.03 6.1 9.29¢ — 10  0.01 4.0

with the CCD scheme of Chu and Fan [1], and in the two-dimensional case, also with the
standard FOC scheme [16].

In the following tables with computational results, we report the maximum absolute errors of
the computed solution with respect to the exact solution on a series of grids with different mesh
sizes. We also report the CPU time in seconds needed to compute the approximate solution and
the estimated accuracy order of a given discretization scheme. In the one-dimensional case, the
CPU times are small and may not be very accurate for large mesh size A. All recorded CPU
timings smaller than 0.01 seconds are reported as 0.00 second conveniently. Because the
computational techniques are very accurate, we are unable to use very small mesh sizes in our
double precision arithmetic. The codes are written in Fortran 77 programming language and run
on a SUN Ultra 5 workstation.

In the two-dimensional case, we use the ADI iterations to solve all linear systems resulted
from different discretization schemes. The iteration stopping criterion is such that the L, norm
of the correction vector corr*™! of the approximate solution is less than 107'°, where the
correction in the (k + 1)st iteration is defined as

corr™ =2 |ulit — ub)|.

i

Problem 1. Consider the one-dimensional convection diffusion equation:
U, — U, — U= —COSX— 2sinx, 0=x=m,

with the Dirichlet boundary conditions specified as u(0) = u(7) = 0. The analytic solution of
this problem is u(x) = sin x. This is one of the problems studied by Chu and Fan in [1]. The
computational results are listed in Table I, which show that, although the CCD scheme is more
accurate for the given mesh size h, the REC scheme is cheaper to compute with. Thus the REC
scheme can use a finer mesh size to compute a solution of comparable accuracy in fewer CPU
seconds. For instance, the solution computed by the REC scheme using 4 = 1/128 is more
accurate than that computed by the CCD scheme using 4 = 1/64. The REC scheme is faster than
the CCD scheme in this comparison. The solution computed from the FOC scheme is less
accurate than those from the CCD and REC schemes with the same mesh size.

Problem 2. We solve the convection diffusion equation:
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TABLE II. Comparison of the maximum absolute errors and the CPU seconds of the solutions computed
from the CCD, the REC, and the FOC schemes for solving the Problem 2.

CCD REC FOC
h Error CPU Order Error CPU Order Error CPU Order
1/4 7.37e — 17 0.00 2.04e — 7 0.00 2.07¢ — 3 0.00
1/8 1.47¢ — 8 0.00 5.6 3.6d¢e — 9 0.00 5.8 1.26e —4  0.00 4.0

1/16 2.60e — 10  0.00 5.8 6.10e — 11 0.00 5.9 7.83¢ —6  0.00 4.0
1/32 434e — 12  0.01 59 9.88¢ — 13 0.00 59 4.90e —7 0.00 4.0
1/64 7.18¢ — 14 0.08 5.9 3.66e — 14  0.01 4.8 3.06e —8  0.00 4.0
1/128 2.79¢ — 14  0.27 1.4 1.19¢ — 14 0.03 1.6 191e—9 0.01 4.0

with the Dirichlet boundary conditions specified as u(0) = 0 and u(1) = 1. The analytic solution
of this problem is u(x) = [exp(x) — 1)/(exp(1) — 1]. This is a classical test problem. The test
results are reported in Table II. We find that, with the same mesh size s, the REC scheme is
slightly more accurate than the CCD scheme, unlike the results obtained with the Problem 1.
Moreover, the REC scheme is several times faster than the CCD scheme with the same mesh
size for solving the Problem 2. We believe that the solutions computed from the CCD and the
REC schemes with 4 = 1/128 are not as accurate as they should be, because of the limited
computer arithmetic precision.

Problem 3. Consider the Stommel ocean model as in [1],

u 9 u m
W-l—afyz-f—aa:—*ysm ) (x,y) € Q =10, A] X0, b], (15)

where the boundary conditions are
u(0, y) = u(A, y) = u(x, 0) = u(x, b) = 0.
In this application, the two parameters « and vy are chosen as

D Fm
oa=—,

R YT Rb

The analytic solution of Eq. (15) is given by

b 2
u= _7(7,-> sin<ﬂl;y>(pe"" + g™ — 1),

where

o 2 (ar\? o 2 (ar\?
A:_2+\/4+(b>’ B:_z_\ﬁ4+(b>’
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TABLE IIl. Comparison of the maximum absolute errors and the CPU seconds of the CCD, the REC,
and the FOC schemes for solving the Problem 3 with 8 = 0.

CCD REC FOC
n Error CPU Order Error CPU Order Error CPU Order
4 1.80e — 3 0.03 242¢ — 3 0.00 3.92¢ — 3 0.00
8 5.00e — 5 0.41 5.2 6.69¢ — 5 0.03 5.2 2.57¢ — 4 0.03 3.9
16 1.07¢e -6 6.44 5.5 1.32¢ — 6 0.56 5.7 1.63¢ — 5 0.44 4.0

32 199 —8 103.18 5.7 227e — 8 10.18 59 1.02¢ — 6 7.45 4.0
64 339 — 10 1645.72 5.9 3.68¢ — 10 162.87 5.9 6.40e —8 124.85 4.0

and
p=>0—eM(e" =, g=1-p.
The physical parameters are chosen as [1]:

A=10"m, B=0, orl0"m's”", b=27X10°m, D =200m,
F=03X10"m%% R=06X10"ms""

In the following, we define N, = N, = n. The mesh sizes h, and h, are equal to A/n and b/n,
respectively. In the first test with the Problem 3, we choose 8 = 0 as in [1], which is actually
a Poisson equation. The comparison results are given in Table III.

From Table III we can see that the accuracy of the solutions computed by the CCD scheme
and the REC scheme is comparable. Both solutions are about two orders of magnitude more
accurate than that computed by the FOC scheme. In terms of computational cost (the CPU
seconds) with the same mesh size 4, the FOC scheme is the fastest. The REC scheme is several
times faster than the CCD scheme.

For this test problem, if we use a coarser mesh size for the REC scheme, it is faster than the
FOC scheme for computing a solution with comparable accuracy. This can be seen by
comparing the solution computed by the REC scheme with n = 32 to that by the FOC scheme
with n = 64.

When we choose 8 = 10~ "! (as in [1]), the accuracy of the solutions computed from the three
difference schemes are comparable for small n (see Table IV). For large n, the REC scheme is
seen to be the most accurate one with the same n. The CCD scheme is the most expensive one,
and the FOC scheme is the least.

TABLE IV. Comparison of the maximum absolute errors and the CPU seconds of the CCD, the REC,
and the FOC schemes for solving the Problem 3 with g8 = 10~'".

CCD REC FOC
n Error CPU Order Error CPU Order Error CPU Order
4 7.36e — 1 0.24 1.86e — 1 0.00 2.00e — 1 0.00
8 2.53¢ — 1 0.64 1.5 1.86e¢ — 2 0.02 33 2.03¢ — 2 0.01 33

16 6.84e — 4 2.67 8.5 1.04e — 3 0.11 4.2 1.53¢ — 3 0.08 3.7
32 373e-—5 12.75 4.2 2.56e — 5 1.46 53 1.0le — 4 1.14 39
64 1.43¢ — 6 187.96 4.7 5.19¢ —7 2353 5.6 6.43¢ — 6 18.14 4.0
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TABLE V. Comparison of the maximum absolute errors and the CPU seconds of the REC and the FOC
schemes for solving the Problem 4.

REC FOC
h Error CPU Order Error CPU Order
1/4 1.35¢ — 2 0.00 1.36e — 2 0.00
1/8 7.53¢ — 4 0.03 4.2 1.00e — 3 0.02 3.7
1/16 1.93¢ — 5 0.56 5.3 6.78¢ — 5 0.43 3.9
1/32 4.09¢ — 7 9.80 5.6 4.30e — 6 7.39 4.0
1/64 7.42¢ — 9 163.42 5.8 2.70e — 7 122.33 4.0

Problem 4. We consider a general two dimensional convection diffusion equation

62u+62u+ 8u+ ou Q 0, 1] X0, 1 16
ax2 8)}2 pax qay_f’ (-x9y)e _[ s ] [ s ] ( )

The exact solution is given as u(x, y) = cos(4x + 6y), and the convection coefficients are
p=10x(x — 1)(1 — 2y), g = —10y(y — (1 — 2x).

The Dirichlet boundary condition and the right-hand side function are given accordingly.
Because the boundary value is nonzero, the CCD scheme, as it is published in [1], is not
applicable. We compare the performance of the REC and the FOC schemes in Table V. For
solving this problem, the REC scheme is more accurate than the FOC scheme with the same
mesh size &, but the FOC scheme is faster. However, to compute a solution with comparable
accuracy, the REC scheme is seen to be faster by using a coarser mesh size.

In the following, we compare the number of the ADI iterations with the CCD, the REC, and
the FOC schemes. The logarithm of the number of iterations corresponding to the logarithm of
the number of the grid points n are plotted in Figs. 2—4. We can see that the CCD scheme takes
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FIG. 2. Comparison of the number of the ADI iterations with the CCD, the REC, and the FOC schemes
for solving the Problem 3 with 8 = 0.
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FIG. 3. Comparison of the number of the ADI iterations with the CCD, the REC, and the FOC schemes
for solving the Problem 3 with g = 10~ ',

more iterations than the REC and the FOC schemes to converge. The convergence rates of the
ADI method with the REC and FOC schemes are comparable.

V. CONCLUDING REMARKS

We presented a new sixth-order compact finite difference discretization strategy for solving the
(one- and two-dimensional) convection diffusion equations. The new sixth-order compact
discretization strategy results in solving tridiagonal linear systems, whereas the implicit CCD
scheme needs to solve block tridiagonal linear systems of three times larger. Our numerical
experiments with some one- and two-dimensional convection diffusion equations show that the
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FIG. 4. Comparison of the number of the ADI iterations with the REC and the FOC schemes for solving
the Problem 4.
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new sixth-order discretization strategy may be advantageous, compared with the sixth-order
CCD scheme and the fourth-order compact difference scheme.

We point out a major difference between the REC scheme and the CCD scheme. The REC
scheme is explicit in the sense that only the approximate values of the solution function are
computed. The CCD scheme is implicit in the sense that the approximate values of the first and
second derivatives are computed as well as the approximate values of the solution function. For
each grid point, there are three variables to be computed. This is the major reason why the CCD
scheme is more expensive to compute with than the REC scheme.

We remark that the REC scheme that we implemented is based on the FOC scheme. There
have been a few fast solvers (which are much faster than the ADI method) developed for solving
the linear systems arising from the FOC scheme [3, 17]. These include the multigrid methods
of various kinds and the preconditioned Krylov subspace methods. It is possible that some of
these fast solvers may be used with the REC scheme to speedup the convergence rate of the
linear system solvers in higher (two and three) dimensions. However, the computational
algorithms associated with these fast solvers will be more complicated to implement than the
tridiagonal linear system solver.

The two-grid implementation of the REC scheme is reminiscent of the multigrid methods
used to solve discretized partial differential equations, in which the coarse grid correction is used
to accelerate the convergence rate of the fine grid iterations [18, 19]. In the REC scheme, the
coarse grid solution is used to improve the accuracy of the fine grid approximate solution. It may
be possible to use the two-grid idea to achieve both goals, i.e., to improve the accuracy of the
fine grid approximate solution and to speedup the convergence rate of some iterative methods
used to solve the fine grid linear system. We are exploring this and other interesting ideas in the
framework of the two-grid computations.
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