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a b s t r a c t

We develop a sixth order finite difference discretization strategy to solve the two dimen-
sional Poisson equation, which is based on the fourth order compact discretization, multi-
grid method, Richardson extrapolation technique, and an operator based interpolation
scheme. We use multigrid V-Cycle procedure to build our multiscale multigrid algorithm,
which is similar to the full multigrid method (FMG). The multigrid computation yields
fourth order accurate solution on both the fine grid and the coarse grid. A sixth order accu-
rate coarse grid solution is computed by using the Richardson extrapolation technique.
Then we apply our operator based interpolation scheme to compute sixth order accurate
solution on the fine grid. Numerical experiments are conducted to show the solution accu-
racy and the computational efficiency of our new method, compared to Sun–Zhang’s sixth
order Richardson extrapolation compact (REC) discretization strategy using Alternating
Direction Implicit (ADI) method and the standard fourth order compact difference (FOC)
scheme using a multigrid method.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Poisson equation is a partial differential equation (PDE) with broad applications in mechanical engineering, theoretical
physics and other fields. The two dimensional (2D) Poisson equation can be written in the form of
uxxðx; yÞ þ uyyðx; yÞ ¼ f ðx; yÞ; ðx; yÞ 2 X; ð1Þ
where X is a rectangular domain, or a union of rectangular domains, with suitable boundary conditions defined on oX. The
solution uðx; yÞ and the forcing function f ðx; yÞ are assumed to be sufficiently smooth and have the necessary continuous par-
tial derivatives up to certain orders.

A second order accurate solution can be computed by applying the standard second order central difference operators to
uxxðx; yÞ and uyyðx; yÞ in Eq. (1). Higher order (more than two) accurate discretization methods need more complex procedure
than the second order accurate discretization method to compute the coefficient matrix, but they usually generate linear
. All rights reserved.
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systems of much smaller size, compared with that from the lower order accurate discretization methods [1,7,10]. There has
been growing interest in developing higher order accurate discretization methods, especially the high order compact differ-
ence schemes, to solve partial differential equations (PDEs) [11,15,18,23,25,26]. We call them ‘‘compact” because these
schemes only use the minimum three grid points in one dimension in the discretization formulas.

Previously, Chu and Fan [5,6] proposed a three point combined compact difference (CCD) scheme for solving two dimen-
sional Stommel Ocean model, which is a special two dimensional convection–diffusion equation. They used Hermitian poly-
nomial approximation to achieve sixth order accuracy for the inner grid points and fifth order accuracy for the boundary grid
points. The advantage of the CCD scheme is that it can be used to solve many types of PDEs without major modifications. And
the Alternating Direction Implicit (ADI) [14] method can be used to reduce the higher dimensional problems to a series of
lower dimensional problems. So, their scheme is referred to as the implicit high order compact scheme because they do not
compute the solution of the dependent variables of the PDEs directly. Instead, the first derivative and the second derivative
of the dependent variables are computed at the same time.

In contrary, the explicit fourth order compact schemes [9,10,12,13,18] compute the solution of the variables directly, no
redundant computation is needed. Some accelerating iterative methods like multigrid method and preconditioned iterative
method have been used to efficiently solve the resulting sparse linear systems arising from the high order compact finite
difference discretizations [22,24,25]. But the higher order explicit compact schemes are more complicated to develop in
higher dimensions [8,27], compared with the implicit compact schemes. As far as we know, there is no existing explicit com-
pact scheme on a single scale grid that is higher than the fourth order accuracy.

Since a sixth order explicit compact scheme may be impossible to develop on a single scale grid, the multiscale grid meth-
od has been considered to achieve the sixth order accuracy for the explicit compact formulations. Sun and Zhang [20] first
proposed a sixth order explicit finite difference discretization strategy for solving the 2D convection–diffusion equation.
They used ADI method to compute the fourth order accurate solution on the fine and the coarse grids first, then apply
the Richardson extrapolation technique and an operator based interpolation scheme in each ADI iteration to achieve the
sixth order accurate solution on the fine grid. The major disadvantage of Sun–Zhang’s method is that the ADI iteration is
not scalable with respect to the meshsize. When the mesh becomes finer, the number of ADI iterations needed for conver-
gence increases quickly.

By using the idea of two scale grid computation from Sun–Zhang’s method, we intend to develop a new explicit sixth or-
der compact computing strategy for the 2D Poisson equation, which can efficiently solve the resulting linear system and is
scalable with respect to the problem size. We do not use the ADI method, instead, we develop a multigrid method that is
similar to the full multigrid method as our convergence acceleration method. With point Gauss–Seidel relaxation method
and line Gauss–Seidel relaxation method, we iteratively solve the resulting sparse linear system to get the fourth order accu-
rate solutions on both the fine and the coarse grids. Then we apply the Richardson extrapolation technique combined with
our new operator based interpolation scheme to compute the sixth order accurate solution on the fine grid.

In this paper, we present the sixth order compact difference discretization strategy for the 2D Poisson equation in Section
2. In Section 3, we develop our modified multigrid method to solve the fourth order accurate solution on the fine and the
coarse grids. Section 4 contains the numerical experiments to demonstrate the high accuracy of the sixth order compact dif-
ference scheme, as well as the computational efficiency of our modified multigrid method. Concluding remarks are given in
Section 5.

2. Sixth order compact approximations

Our explicit sixth order compact difference scheme is based on the fourth order compact discretization on the two scale
grids. In this section, we first introduce the fourth order compact difference scheme for the 2D Poisson equation. The basic
idea is from Zhang’s previous papers [20,25,28]. More detailed discussions about the fourth order compact difference
schemes can be found in [9,17].

In order to discretize Eq. (1), let us consider a rectangular domain X ¼ ½0; Lx� � ½0; Ly�. We discretize X with uniform mesh-
sizes Dx ¼ Lx=Nx and Dy ¼ Ly=Ny in the x and y coordinate directions, respectively. Here Nx and Ny are the number of uniform
intervals in the x and y coordinate directions. The mesh points are ðxi; yjÞ with xi ¼ iDx and yj ¼ jDy, 0 6 i 6 Nx, 0 6 j 6 Ny.

We write the standard second order central difference operators as
d2
x ui;j ¼

uiþ1;j � 2ui;j þ ui�1;j

Dx2 ; d2
y ui;j ¼

ui;jþ1 � 2ui;j þ ui;j�1

Dy2 :
Using Taylor series expansions, at the grid point ðxi; yjÞ, we have
d2
x ui;j ¼ uxx þ

Dx2

12
u4

x þ
Dx4

360
u6

x þ OðDx6Þ; ð2Þ
and
d2
y ui;j ¼ uyy þ

Dy2

12
u4

y þ
Dy4

360
u6

y þ OðDy6Þ: ð3Þ
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From previous studies [20,25,28], we know that with Eqs. (2) and (3), we can apply the symbolic fourth order compact
approximation operator to the second derivatives uxx and uyy in Eq. (1), respectively. The discrete 2D Poisson equation will
be formulated symbolically as [19]
1þ Dx2

12
d2

x

� ��1

d2
x uþ 1þ Dy2

12
d2

y

� ��1

d2
y u ¼ f þ s1Dx4 þ s2Dy4 þ OðD6Þ; ð4Þ
where s1 and s2 are used to denote some complex representations that will be canceled in the Richardson extrapolation pro-
cedure, D6 denotes the truncated terms in the order of OðDx6 þ Dy6Þ. By applying the symbolic operators, setting s1 and s2

both equal to zero and dropping the D6 terms, Eq. (4) can be rewritten as
1þ Dy2

12
d2

y

� �
d2

x uþ 1þ Dx2

12
d2

x

� �
d2

y u ¼ 1þ Dx2

12
d2

x

� �
1þ Dy2

12
d2

y

� �
f þ OðD4Þ

¼ 1þ 1
12
ðDx2d2

x þ Dy2d2
yÞ

� �
f þ OðD4Þ: ð5Þ
If we set the mesh aspect ratio c ¼ Dx=Dy, we can rewrite Eq. (5) into the following form [25]
aui;j þ bðuiþ1;j þ ui�1;jÞ þ cðui;jþ1 þ ui;j�1Þ þ dðuiþ1;jþ1 þ uiþ1;j�1 þ ui�1;jþ1 þ ui�1;j�1Þ

¼ Dx2

2
ð8f i;j þ fiþ1;j þ fi�1;j þ fi;jþ1 þ fi;j�1Þ; ð6Þ
which has a nine point computational stencil. Here the coefficients in Eq. (6) are
a ¼ �10ð1þ c2Þ; b ¼ 5� c2; c ¼ 5c2 � 1; d ¼ ð1þ c2Þ=2:
Extrapolation and operator interpolation. With Eq. (6) we can first use the multigrid method to compute the fourth
order accurate solutions u2h

i;j and uh
i;j on the X2h grid and the Xh grid, respectively. Then we apply the Richardson extrapolation

technique, to compute a sixth order accurate solution ~u2h
i;j on X2h.

The general Richardson extrapolation can be written as [4]
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Fig. 1. Illustration of the operator based interpolation scheme for a 5� 5 fine grid.
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~u2h
i;j ¼

ð2puh
2i;2j � u2h

i;j Þ
2p�1 ; ð7Þ
where p is the order of accuracy before the extrapolation, and the order of accuracy will be increased to pþ 2 after the
extrapolation. In this paper, the order p is equal to four, so the Richardson extrapolation formula that we use is
~u2h
i;j ¼

ð16uh
2i;2j � u2h

i;j Þ
15

: ð8Þ
By using Eq. (8) we can compute the sixth order accurate solution ~u2h on the coarse grid X2h. Then we need some interpo-
lation technique, as shown in Fig. 1, to interpolate the sixth order accurate solution from the coarse grid X2h to the fine grid
Xh. The ðeven; evenÞ indexed grid points on Xh can be directly interpolated as ~uh

2i;2j ¼ ~u2h
i;j and it keeps the sixth order accuracy.

For other grid points, we need an operator based interpolation scheme to achieve the sixth order accuracy.
In Sun–Zhang’s sixth order method [20] for the 2D convection–diffusion equation, they also apply an operator based

interpolation scheme together with the Richardson extrapolation in each ADI iteration. Since the number of ADI iterations
will increase quickly when the meshsize becomes finer, their extrapolation and interpolation parts will take a large amount
of CPU cost. In order to avoid this, our new operator based interpolation procedure and the Richardson extrapolation are car-
ried out only after we get the converged fine and coarse grid fourth order accurate solutions.

We assume that Nx and Ny are both even numbers, our operator based interpolation scheme is an iterative procedure. In
each iteration, it will run the Richardson extrapolation first to get the sixth order solution on the coarse grid, then it will use a
different interpolation strategy to interpolate the sixth order solution for different grid points on the fine grid. One interpo-
lation iteration (from step k to step kþ 1) is outlined in Algorithm 1.

In Algorithm 1, X4
h and X4

2h denote the fourth order accurate solution space, X6
h and X6

2h mean the sixth order accurate
solution space. ~uh;k is the approximate solution for the fine grid after k iterations. The operator based interpolation iteration
will continue until the 2-norm R of the correction vector is reduced to below a certain tolerance.
ithm 1. Operator based interpolation iteration combined with the sixth order Richardson extrapolation technique

Let uh
old ¼ ~uh;k.

Update every ðeven; evenÞ grid point on Xh.
From ~u2h;k

i;j 2 X4
2h and ~uh;k

2i;2j 2 X4
h , we first compute ~u2h;kþ1

i;j 2 X6
2h by Eq. (8), then use direct interpolation to get ~uh;kþ1

2i;2j 2 X6
h .

Update every ðodd; oddÞ grid point on Xh.
From Eq. (6), for each ðodd; oddÞ point ði; jÞ, the updated solution is

~uh;kþ1
i;j ¼ 1

a
Fi;j � b ~uh;k

iþ1;j þ ~uh;k
i�1;j

� �
� c ~uh;k

i;jþ1 þ ~uh;k
i;j�1

� �h
�d ~uh;kþ1

iþ1;jþ1 þ ~uh;kþ1
iþ1;j�1 þ ~uh;kþ1

i�1;jþ1 þ ~uh;kþ1
i�1;j�1

� �i

Here, Fi;j represents the right-hand side part of Eq. (6).

Update every ðodd; evenÞ grid point on Xh.
From Eq. (6), the idea is similar to the ðodd; oddÞ grid point.

Update every ðeven; oddÞ grid point on Xh.
From Eq. (6), the idea is similar to the ðodd; evenÞ grid point.

Compute the 2-norm R ¼ k~uh;kþ1 � uh
oldk2. If not converged, go back to Step 1.
3. Modified multiscale multigrid method

The convergence rate of the multigrid method is independent of the grid size [2,3,21]. It is a very efficient method to solve
large sparse linear systems arising from PDEs. Various multigrid implementation strategies with the fourth order compact
schemes to solve the 2D and 3D Poisson equations or other PDEs like convection–diffusion equations are discussed in
[7,10,16]. In this paper, we use a geometric multiscale multigrid method [3,16], similar to the full multigrid method, to com-
pute the fourth order accurate solution on both the fine and the coarse grids.

We use the notations ulh, flh and Llh to represent the approximate solution, the right-hand side vector and the finite dif-
ference operator for the grid Xlh, respectively. Ilh

ðl�1Þh is the restriction operator from the grid Xðl�1Þh to the grid Xlh and Iðl�1Þh
lh is

the interpolation operator from the grid Xlh to the grid Xðl�1Þh. The procedure of our multiscale multigrid method is shown in
Fig. 2. The gray color circle indicates the unconverged solution u4h and the black color circles are the fourth order converged
solutions u2h and uh.

Below we describe a multigrid V-Cycle based algorithm to solve the 2D Poisson equation in Algorithm 2.
Algorithm 2 is similar to the full multigrid method, but we do not start from the coarsest grid. Since we use the interpo-

lated coarse grid solution as the initial guess for the fine grid V-Cycle, this algorithm will need fewer number of multigrid
cycles than we run the V-Cycle on Xh and X2h separately to get the converged fourth order accurate solutions uh and u2h

[3,16].
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Algorithm 2. Multiscale multigrid method

1: Run the multigrid V-Cycle algorithm MGðu4h; f4hÞ on the coarser grid X4h as in Fig. 2 for one or two cycles to get an
approximate solution u4h.

2: Use some high order interpolation schemes, like the bicubic interpolation or operator based interpolation, to interpo-
late u4h to the coarse grid X2h, u2h ¼ I2h

4hu4h.
3: Relax m1 times on L2hu2h ¼ f2h.
4: Use u2h from the previous step as the initial guess to run the multigrid V-Cycle algorithm MGðu2h; f2hÞ on the coarse grid

X2h until it converges. We can get the converged fourth order accurate solution u2h.
5: Use a high order interpolation to interpolate u2h to the fine grid Xh like uh ¼ Ih

2hu2h.
6: Relax m1 times on Lhuh ¼ fh.
7: Use uh from the previous step as the initial guess to run the multigrid V-Cycle algorithm MGðuh; fhÞ on the fine grid Xh

until it converges. We can get the converged fourth order accurate solution uh.

In our multiscale multigrid method, we use standard bilinear interpolation to transfer corrections from the coarse
grid to the fine grid, full weighting scheme to project residual from the fine grid to the coarse grid, and bicubic inter-
polation to interpolate the initial guess in Steps 2 and 5. For our multigrid relaxation schemes (smoothers), we use point
Gauss–Seidel relaxation and line Gauss–Seidel relaxation. The standard multigrid method with point Gauss–Seidel relax-
ation scheme is simple to implement and can solve the isotropic Poisson equation well. For the anisotropic Poisson
equation, sometimes the point Gauss–Seidel relaxation may not work well [21,25]. For the consideration of robustness,
we can use a line Gauss–Seidel relaxation scheme. The line relaxation schemes include X-Line scheme, Y-Line scheme
and X–Y-Line scheme.
4. Numerical results

In this section, we compare our new sixth order multigrid method with Richardson extrapolation (MG-Six) strategy with
Sun–Zhang’s sixth order REC method (REC-ADI) [20] and with the standard fourth order compact difference scheme using
multigrid (MG-FOC). The codes are written in Fortran 77 programming language and run on one processor of an IBM
HS21 blade cluster at the University of Kentucky. The processor has 2 GB of local memory and runs at 2.0 GHZ.

The initial guess for the V-Cycle on X4h is the zero vector. For Problem 1, the multigrid V-Cycle for the X2h and Xh grids
will stop when the 2-norm of the residual vector is reduced by 10�13, the iterative interpolation procedure will stop when the
2-norm of the correction vector of the approximate solution is less than 10�13. For Problem 2, both of the stopping criteria
will be changed to 10�10. The errors reported are the maximum absolute errors over the discrete grid of the finest level.

We would like to comment on the fact that we use different stopping criteria for these two test problems. Generally, 10�10

is our standard stopping criteria to check the 2-norm of the residual or the correction vector, but sometimes it may be chan-
ged depends on the test case itself. For Problem 1, if we look at the experimental results from Table 1, we will find that when
n ¼ 256 the maximum error of our FOC scheme has dropped around the 10�10. If we still use 10�10 as our stopping tolerance,
we may not get the enough accuracy when the iteration stops. In order to get sufficient accuracy we need, we choose 10�13 as
the criteria for Problem 1.
V–Cycle for fine gridV–Cycle for 4h grid                             V–Cycle for 2h grid       

Fig. 2. Representation of our multiscale multigrid method.



Table 1
Numerical comparison results for Problem 1

n Strategy # Iteration CPU Error Order

16 REC-ADI 237 0.020 1.32e�6 5.7
MG-Six(point) (11,11), 40 0.001 1.32e�6 5.7
MG-FOC(point) 14 0.002 1.63e�5 3.9
MG-Six(line) (5,6), 40 0.001 1.32e�6 5.7
MG-FOC(line) 7 0.001 1.63e�5 3.9

32 REC-ADI 901 0.302 2.27e�8 5.9
MG-Six(point) (11,12), 39 0.007 2.27e�8 5.9
MG-FOC(point) 14 0.004 1.02e�6 4.0
MG-Six(line) (6,7), 39 0.008 2.27e�8 5.9
MG-FOC(line) 8 0.006 1.02e�6 4.0

64 REC-ADI 3447 4.662 3.68e�10 5.9
MG-Six(point) (12,13), 37 0.029 3.67e�10 6.0
MG-FOC(point) 15 0.022 6.39e�8 4.0
MG-Six(line) (7,7), 36 0.033 3.67e�10 6.0
MG-FOC(line) 9 0.024 6.40e�8 4.0

128 REC-ADI Not converged – – –
MG-Six(point) (13,13), 33 0.129 5.26e�12 6.1
MG-FOC(point) 15 0.093 3.99e�9 4.0
MG-Six(line) (7,8), 34 0.161 5.87e�12 6.0
MG-FOC(line) 9 0.140 4.00e�9 4.0

256 REC-ADI Not converged – – –
MG-Six(point) (14,14), 30 0.880 1.27e�13 5.4
MG-FOC(point) 16 0.465 2.47e�10 4.0
MG-Six(line) (8,8), 30 1.202 1.11e�13 5.7
MG-FOC(line) 8 0.737 2.50e�10 4.0
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For the line Gauss–Seidel relaxation schemes for these two test cases, we choose X–Y-Line relaxation scheme for Problem
1. For Problem 2, since x is its dominant direction, we only perform line relaxation along the x-direction, which is the X-Line
relaxation scheme.

We also compute the estimated order of accuracy for every computing strategy in different grid size. Let us consider two
meshsizes DH and Dh on XH and Xh, respectively. The maximum absolute errors of these two grids are denoted as ErrorH and
Errorh. If we set the order of accuracy to be m, then we have the following form:
ðDHÞm

ðDhÞm
¼ ErrorH

Errorh
:

So, the order of accuracy m can be computed as
m ¼
log ErrorH

Errorh

log DH

Dh

:

The order of accuracy is formally defined when the meshsize approaches zero. Therefore, when the meshsize is relatively
large, the discretization scheme may not achieve its formal order of accuracy.

Problem 1. In order to compare with Sun–Zhang’s sixth order method, we consider one of the test cases in Sun–Zhang’s
paper [20]. Sun and Zhang used a 2D convection–diffusion equation, we set the convection coefficients to be zero, then the
equation becomes a 2D Poisson equation. The test Problem 1 can be written as
o2u
ox2 þ

o2u
oy2 ¼ �a sin

p
b

y
� �

; ðx; yÞ 2 X ¼ ½0; k� � ½0; b�; ð9Þ
where the boundary conditions are
uð0; yÞ ¼ uðk; yÞ ¼ uðx;0Þ ¼ uðx; bÞ ¼ 0:
In this equation, the parameter a is chosen as
a ¼ Fp
Rb

:

The analytic solution of Eq. (9) is
u ¼ �a
b
p

� �2

sin
py
b

� �
e

px
b � 1

� 	
:
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The other parameters are chosen as
Fig. 4.
16, 32,
k ¼ 107 m; b ¼ 2p� 106 m; F ¼ 0:3� 10�7 m2 s�2; R ¼ 0:6� 10�3 m s�1:
In the following, we define Nx ¼ Ny ¼ n. The meshsizes Dx and Dy are equal to k=n and b=n, respectively. Table 1, Figs. 3
and 4 show the comparison results for Problem 1.

Table 1 shows the number of iterations and other information for different solution strategies that we compared. We can
find that when the mesh becomes finer, the number of ADI iterations increases very quickly. When n > 64, the ADI iteration
cannot converge within the maximum number of iterations we set, which is 5000. For the MG-Six method, the number of
iterations contains three parts. They are the number of V-Cycles for X2h, the number of V-Cycles for Xh, and the number of
iterations for the iterative interpolation combined with the Richardson extrapolation. These three numbers are listed in the
iteration columns for the MG-Six(point) and MG-Six(line) strategies in Table 1. We can see that, by using our new sixth order
compact scheme, the number of V-Cycles for Xh and X2h are reduced, compared to the traditional multigrid V-Cycle with the
FOC scheme. We can also see that the REC-ADI method takes much more iterations and CPU cost than the MG-FOC strategies
and the MG-Six strategies from Figs. 3 and 4.
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Comparison of the maximum error and the CPU cost for the Problem 1. Each symbol with increasing CPU cost corresponds to an increasing fine grid:
64, 128, and 256 intervals.
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The data in Table 1 and Fig. 4 also indicate that the accuracy of the approximate solutions computed by our new sixth
order method and the Sun–Zhang’s REC-ADI method is comparable. When n > 64, our multigrid method can still compute
the highly accurate solution. The CPU time for MG-Six method is much less than that needed by the ADI iteration, and is
better than running the MG-FOC separately twice to get uh and u2h.

Since the grid is almost isotropic for Problem 1, we can see that the point Gauss–Seidel relaxation scheme remains com-
petitive compared with the line Gauss–Seidel relaxation. The point Gauss–Seidel relaxation scheme actually needs less CPU
time than the line Gauss–Seidel relaxation scheme to compute numerical solution of comparable accuracy.

Problem 2. In order to better compare the line Gauss–Seidel relaxation scheme and the point Gauss–Seidel relaxation
scheme. We consider an anisotropic Poisson equation to show the efficiency and scalability of the line relaxation scheme in
solving 2D Poisson equation.

We choose the following equation:
Table 2
Numeri

n

16

32

64

128

256
o2u
ox2 þ

o2u
oy2 ¼ �2p2 sinðpxÞ cosðpyÞ; ðx; yÞ 2 X ¼ ½0;4� � ½0;1�; ð10Þ
which has the Dirichlet boundary condition.
The analytic solution of Eq. (10) is
uðx; yÞ ¼ sinðpxÞ cosðpyÞ:
Since we use the same number of intervals in both the x and y directions, the solution changes more rapidly in the x-direc-
tion than in the y-direction. So, x is the dominant direction. We choose X-Line Gauss–Seidel relaxation scheme.

As for Problem 1, we also compare different solution strategies indexed by the number of multigrid cycles or iterations,
CPU time, the maximum absolute errors and the estimated order of accuracy. The results are shown in Table 2, Figs. 5 and 6.
We can see obviously that, even with the anisotropy, the convergence rates of our MG-Six(line) and MG-FOC(line) are barely
affected. These two schemes can keep both the scalability and the efficiency when the number of intervals increases. For MG-
Six(point) and MG-FOC(point), they need much more iterations and CPU cost than the line relaxation schemes. When n < 64,
even the REC-ADI method can converge with less CPU time than the MG-Six(point) method. So, multigrid method with the
line relaxation scheme is the most efficient way to solve the anisotropic 2D Poisson equation compared with the other meth-
ods we tested.

Again in this test case, our new sixth order accurate method can solve the problem with high order accuracy which is
comparable with Sun and Zhang’s method and keep the lower CPU costs. It is clear that the MG-Six method outperforms
other methods.
cal comparison results for Problem 2

Strategy # Iteration CPU Error Order

REC-ADI 14 0.002 1.12e�4 5.4
MG-Six(point) (14,43), 55 0.005 1.12e�4 5.4
MG-FOC(point) 39 0.003 2.45e�4 4.2
MG-Six(line) (1,7), 55 0.001 1.12e�4 5.4
MG-FOC(line) 6 0.001 2.45e�4 4.2

REC-ADI 42 0.014 2.50e�6 5.5
MG-Six(point) (43,60), 85 0.025 2.50e�6 5.5
MG-FOC(point) 58 0.016 1.43e�5 4.1
MG-Six(line) (7,9), 85 0.011 2.50e�6 5.5
MG-FOC(line) 10 0.005 1.43e�5 4.1

REC-ADI 155 0.271 4.58e�8 5.8
MG-Six(point) (60,73), 93 0.122 4.58e�8 5.8
MG-FOC(point) 72 0.095 8.70e�7 4.0
MG-Six(line) (9,9), 93 0.044 4.58e�8 5.8
MG-FOC(line) 11 0.021 8.70e�7 4.0

REC-ADI 607 6.849 7.66e�10 5.9
MG-Six(point) (73,79), 89 0.571 7.66e�10 5.9
MG-FOC(point) 78 0.423 5.37e�8 4.0
MG-Six(line) (9,9), 89 0.188 7.66e�10 5.9
MG-FOC(line) 12 0.091 5.37e�8 4.0

REC-ADI 2411 130.393 1.22e�11 6.0
MG-Six(point) (79,83), 80 3.774 1.24e�11 6.0
MG-FOC(point) 82 3.201 3.33e�9 4.0
MG-Six(line) (9,9), 80 1.982 1.24e�11 6.0
MG-FOC(line) 13 1.649 3.33e�9 4.0
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5. Concluding remarks

We designed a new sixth order compact computation scheme with a multigrid method and Richardson extrapolation to
solve the 2D Poisson equation. This new idea is based on designing a geometric multiscale multigrid method, similar to the
full multigrid method, to compute the approximate solution using the fourth order compact scheme in both the fine and the
coarse grids. We also present a new iterative interpolation scheme, which is combined with the Richardson extrapolation to
achieve the sixth order accuracy on the fine grid.

Numerical results show that the new numerical solution method can solve the 2D Poisson equation with highly accurate
solution compared with other sixth order compact schemes, and also keep the low CPU cost. This two scale grid idea can also
be extended to solve other PDEs such as the 3D Poisson equation, 2D and 3D convection–diffusion equations. For the con-
vection-dominated problems, multigrid methods with the line relaxation schemes will be expected to work well. For various
multigrid algorithms with the high order compact schemes to solve convection–diffusion equations, we refer readers to [22].
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