
BIT Numerical Mathematics (2007) 47: 277–296

Published online: 7 March 2007 – c© Springer 2007
DOI: 10.1007/s10543-007-0123-2

AN ACCELERATED ALGEBRAIC MULTIGRID
ALGORITHM FOR TOTAL-VARIATION

DENOISING�

KE CHEN�� and JOSEPH SAVAGE���

1Department of Mathematical Sciences, The University of Liverpool, Peach Street, Liverpool
L69 7ZL, UK. e-mail: {k.chen, j.savage}@liverpool.ac.uk

Abstract.

The variational partial differential equation (PDE) approach for image denoising
restoration leads to PDEs with nonlinear and highly non-smooth coefficients. Such
PDEs present convergence difficulties for standard multigrid methods. Recent work on
algebraic multigrid methods (AMGs) has shown that robustness can be achieved in
general but AMGs are well known to be expensive to apply. This paper proposes an
accelerated algebraic multigrid algorithm that offers fast speed as well as robustness
for image PDEs. Experiments are shown to demonstrate the improvements obtained.

AMS subject classification (2000): 68U10, 65F10, 65K10.

Key words: image restoration, nonlinear partial differential equations, algebraic
multigrid methods, acceleration, nonlinear iterations.

1 Introduction.

Image denoising is one of the fundamental problems in image processing and
computer vision. During recording and transmission an image will become con-
taminated with random Gaussian noise; this is modelled by the equation

z(x, y) = u(x, y) + n(x, y), x, y ∈ Ω(1.1)

where Ω is a bounded and open domain of R2 (usually a rectangle). Here z is
a real function representing the observed image, which in practice will only be
known at certain discrete values of x and y, u is the true (unknown) image and n
is an additive (unknown) Gaussian noise term.
The aim of a denoising process is to remove noise while preserving the main
features of the original image, most importantly its edges (an edge is a boundary

� Received January 7, 2005. Accepted in revised form January 7, 2007. Communicated by
Per Christian Hansen.
�� This work is supported by a research fellowship from the UK Leverhulme Trust
RF/9/RFG/2005/0482 (Corresponding author).
��� Support of the UK EPSRC DTA grant is gratefully received.

278 K. CHEN AND J. SAVAGE

where a jump in intensity occurs); this can be achieved by the use of Tikhonov
regularization with the Total-Variation (TV) regularization functional, first in-
troduced in 1992 by Rudin, Osher and Fatemi [23]:

min
u
J(u), J(u) =

∫
Ω

[
α
√
|∇u|2 + β +

1

2
(u− z)2

]
dxdy,(1.2)

where α is a regularization parameter which balances the need for a solution
which is a good fit to the observed data and one that is regular, and β is
a perturbing parameter which should be small. The resulting Euler–Lagrange
equation is

u− α∇ · (D(u)∇u) = z(1.3)

where D(u) = 1/
√
|∇u|2 + β, with homogenous Neumann boundary condi-

tion ∂u
∂n
= 0 at the boundary. Discretization on an n ×m cell-centered Carte-

sian grid (each cell represents one pixel of the image) Ωh with cells of size
h × k using a finite difference scheme results in the following equation at grid
point (i, j)

Nh(u)ij = ui,j − αh
[
(D(u)i,j(ui+1,j − ui,j)−D(u)i−1,j(ui,j − ui−1,j))

+ λ2(D(u)i,j(ui,j+1 − uij)−D(u)i,j−1(ui,j − ui,j−1))
]

= zi,j(1.4)

where

D(u)i,j =
(
(ui+1,j − uij)

2 + λ2(ui,j+1 − uij)
2 + βh

)−1/2
(1.5)

and

αh = α/h, βh = h
2β and λ = h/k(1.6)

with Neumann’s boundary conditions

ui,0 = ui,1, ui,m+1 = ui,m, u0,j = u1,j , un+1,j = un,j .(1.7)

If we stack the grid functions uh and zh along rows of Ω
h into vectors u and z

we see that we can write the system of nonlinear equations in the form

A(u)u = z(1.8)

where A = I + αhL(u)u and L(u)u is the discrete representation of
−∇·
(

∇u√
|∇u|2+β

)
. Vogel and Oman [31] proposed the following fixed point method

to solve this nonlinear equation. Starting from an initial guess u0 = z at step
k + 1 the following linear system is solved to update u

A(uk)uk+1 = z.(1.9)

AN ACCELERATED ALGEBRAIC MULTIGRID ALGORITHM FOR TV DENOISING 279

This is equivalent to first evaluating the diffusion coefficients D(u)ij at each grid
point using the previous iterate and then solving the resulting linear equation.
The matrix A(uk) is symmetric positive definite and block tridiagonal with pos-
itive diagonal entries and negative off-diagonal entries and has rows which sum
to 1.

In practice exact solution of the linear Equation (1.9) is not necessary as the
nonlinear error is the dominant one and it is usually enough to reduce the residual
to a tenth of its original value [10]. In [12] the Krylov acceleration procedure
of Washio and Oosterlee [35] was used to accelerate the fixed point method.
Throughout this paper we use an inner tolerance of 0.1 in the fixed point method
and apply Krylov acceleration with 5 stored solutions to the fixed point iterates.

There exists a large literature of linear iterative methods for solving Equa-
tion (1.9); see [29, 31, 30, 32, 4, 5, 3, 21, 18, 27]. However, as pointed out in [2],
most iterative solvers are sensitive to the parameter β. More precisely, these
methods can be slow to converge for small β because of the highly varying dif-
fusion coefficients. Before we proceed, we must remark that small β is necessary
for preserving sharp edges of an image, as stressed by [17, 18, 19] and illustrated
for a simple test example below. Figure 1.1 (left) shows a denoising problem of
size N = 128 (mimicking a line segment of a 2D image) where all four solutions
using respectively β = 10−3, 10−4, 10−5, 10−8 appear acceptable in comparison
to the exact solution; however when zooming into one position (pixels 95-111 on
the right plot of Figure 1.1) one can see that these large β do not give rise to
a solution as sharp as the true TV solution with β = 0. An alternative method
to ‘avoid’ β is to solve the minimization problem (1.2) by a multigrid method
directly as done in [7, 8, 9].

Figure 1.1: Illustration of the necessity of small β for the TV denoising model.

The optimality of multigrid methods suggests that they are the potential solver
of choice. For (1.9), in particular, [29, 3] proposed using a linear geometric multi-
grid method (GMG) to solve the linear equation on each fixed point step. This
method was accelerated in [29] by use of the conjugate gradient method. For
solving (1.8), in [25, 16], nonlinear multigrid methods were successfully imple-

280 K. CHEN AND J. SAVAGE

mented; however large β must be used to avoid large jumps in the coefficients
(or to avoid non-convergence). Therefore such methods are not yet robust with
respect to β as known from [2]; see also [26] for GMG to other models.

One way to improve the robustness of a GMG with respect to β is by use of
algebraic multigrid methods (AMGs) as was done in Chang–Chern [12] who pro-
posed using an AMG for (1.9). As the AMG method defines coarse points and
the interpolation operators based on information in the matrix along with adap-
tive coarse-fine mesh strategy, robustness and fast convergence for solving (1.9)
with various β have been achieved. In this short paper, we propose a practi-
cal algorithm that attempts to speed up the fixed point with AMG method by
recycling AMG setup data.

The rest of the paper is organized as follows. In Section 2, we briefly discuss the
AMG method for solving (1.9) with some complexity done in the Appendix. In
Section 3 we present our simple idea of accelerating the AMG setup data within
the fixed point method, including details of preliminary experiments which mo-
tivate the final algorithm given at the end of the section, while in Section 4 we
demonstrate how our proposed algorithm improves on the standard fixed point
with AMG method. It turns out that our new method significantly speeds up
the standard fixed point with AMG method without suffering in robustness.

2 Review of an algebraic multigrid method.

We now give a brief review of an AMG, which could be used as a black box
solver for a sparse linear system Au = f . An AMG should not be considered
as a competitor to a GMG, a multigrid method based on a fixed hierarchy
of grids, rather it should be used in cases where GMG fails or is too difficult
to apply such as elliptic problems with highly varying coefficients or problems
based on unstructured grids. It can also be used in problems with no geometric
interpretation at all (as implied by the reference of black box solver). Here (1.9)
falls into one of these problems with highly varying coefficients.
An AMG was proposed to improve on a GMG: a GMG will not converge
unless coarse grids can represent fine grid residuals fairly ‘accurately’. This ‘ac-
curate’ representation is impossible in two related cases. Firstly when the usual
smoothers are not effective on an entire fine grid, no standard coarse grids are
useful. Then one has to design specific and problem-dependent smoothers in
order for a GMG to be applied (which may be difficult). Secondly when the resid-
uals are not uniformly smooth in a fine grid, no coarse grids by standard coars-
ening are effective. Again one can design specific and problem-dependent coars-
ening strategies to improve a GMG. An AMG represents an ambitious idea to
overcome the above difficulties – the use of non-standard coarsening leads to the
reliance on the coefficients of the underlying matrix rather than a geometric grid
to provide coarsening and intergrid transfer information. See [12, 13, 34, 28, 15].
Unlike in GMG, the standard smoothers such as point Gauss–Seidel are adequate
for AMGs and the coarse levels and transfer operators are defined based on the
entries of A. Although convergence has only been established for problems in

AN ACCELERATED ALGEBRAIC MULTIGRID ALGORITHM FOR TV DENOISING 281

which A is symmetric positive definite (SPD), AMGs are robust and have been
successfully applied to solve many useful problems.
Given a linear system Au = f with A ∈ Rn×n and u = (ui)i=1,...,n, we can
consider the index set {1, . . . , n} as a set of points on a fine grid. Denote the
neighbours of node i by Ni and the set of points strongly connected to i by Si.
The set of points to which i is strongly connected is denoted by STi as in [12, 28].
AMGs assume that the error in the solution to the linear system can be expected
to vary smoothly in the direction of strong connections. An AMGmethod is made
up of 2 phases with the first phase to generate a coarse-fine (nonuniform) mesh
splitting and the second phase the application of multigrid cycles.
The first phase known as the setup phase is where the multigrid components
needed for the second phase are defined. Given the matrix A(1) = A and the
index set {1, . . . , n} which we will refer to as Ω(1) we first split {1, . . . , n} into
two disjoint sets C and F where C is the set of coarse points which we will call
Ω(2) and F is the set of fine points. The C/F splitting should attempt to achieve
two conditions, the first is that for each point i ∈ F every point in Si is either in
Ci = C ∩ Si or strongly connected to a point in Ci, the second is that C should
be a maximal subset of all points with the property that no two C-points are
strongly connected to each other. In practice it is not usually possible to strictly
satisfy both conditions, the basic C/F splitting algorithm presented below tries
to enforce the second condition by choosing at each step a coarse point with
maximal λi = |STi ∩ U | + 2|S

T
i ∩ F | where U is the set of points which have

yet to be defined as either coarse or fine. We review the main steps of a C/F
algorithm with a view to analyze the complexity later (see Appendix):

C/F-Splitting Algorithm. Set U = Ω(k), C = ∅, F = ∅, λi = |STi | for
all i.
While U �= ∅
Select i ∈ U with maximal λi.
C = C ∪ {i}, U = U − {i}

For j ∈ STi ∩ U
F = F ∪ {j}, U = U − {j}
For l ∈ Sj ∩ U
λl = λl + 1

end
end
For j ∈ Si ∩ U
λj = λj − 1

end
end

Having obtained this coarse/fine splitting we then define an interpolation op-

erator I
(1)
(2) for transferring between Ω

(2) and Ω(1) which will have the general

form

(
I
(1)
(2)e

(2)
)
i
= e

(1)
i =

{
e
(2)
i if i ∈ C∑
k∈Pi

wike
(2)
k if i ∈ F.

(2.1)

282 K. CHEN AND J. SAVAGE

Here the interpolatory set Pi ⊂ C is so chosen that it should be reasonably small
in order to produce an efficient AMG method; see [24, 13, 28]. We take Pi to be
Ci. Once the interpolation operator has been defined, the restriction operator
for transferring between Ω(1) and Ω(2) is defined to be the transpose of the
interpolation operator:

I
(2)
(1) =

(
I
(1)
(2)

)T
.(2.2)

We then use the Galerkin principle to define the coarse grid matrix A(2):

A(2) = I
(2)
(1) (A

(1))I
(1)
(2) .(2.3)

In exactly the same way an even smaller matrix A(3) along with interpolation and
restriction operators is defined from the entries of A(2). This process is repeated
until we have a sequence of matrices A(1), . . . , A(L) with corresponding transfer
operators, whereA(L) is small enough to be solved efficiently using a direct solver.
In the second phase, once the above matrices and transfer operators have been
defined and stored it is clearly straightforward to apply a multigrid cycle with
point Gauss–Seidel smoother to the original linear problem. Given an initial
guess v(1) and the setup data, one µ-cycle is

v(1) ← AMGµ(1)
(
v(1), f (1), ν1, ν2

)
(2.4)

where AMGµ(k) is defined recursively as follows:

v(k) ← AMGµ(k)
(
v(k), f (k), ν1, ν2

)
.

Algorithm 2.1 (The AMG algorithm for (1.9)). For each step of a fixed point
iteration, seek the fast solution of (1.9) by the following steps.

(1) If A(k) is the smallest matrix (on the coarsest level), set v(k) = (A(k))−1f (k)

and return
else do ν1 steps of smoothing on level k:
v(k) ← S(k)v(k) + (I − S(k))(A(k))−1f (k).

(2) Restrict the residual to the coarser level: f (k+1) = I
(k+1)
(k) (f (k) −A(k)v(k))

and set the correction v(k+1) = 0.
(3) Repeat v(k+1) ← AMGµ(k+1)(v(k+1), f (k+1), ν1, ν2), µ times.

(4) Add the coarse level correction: v(k) ← v(k) + I(k)(k+1)v
(k+1)

(5) Do ν2 steps of smoothing on level k: v
(k) ← S(k)v(k)+(I−S(k))(A(k))−1f (k).

Here S(k) is the Gauss–Seidel smoothing operator for A(k) i.e.

S(k) = I − (Q(k))−1A(k)(2.5)

where Q(k) is the lower triangular part of A(k) including the diagonal.
This type of algorithms has been used recently by [12, 14] within the fixed point
method for image denoising problems and was found to perform satisfactorily.
However, in this short paper, we shall propose a modification to the method in
order to accelerate it much further.

AN ACCELERATED ALGEBRAIC MULTIGRID ALGORITHM FOR TV DENOISING 283

3 An accelerated algebraic multigrid algorithm.

The improved convergence properties of the AMG over GMG comes at the
cost of an AMG setup phase. In this section we outline an algorithm to try and
reduce the number of setups required over the fixed point (FP) method.

3.1 Motivation.

If AMG is used as the linear solver in the fixed point method as in [12], on
each step, a setup phase is required, however only a relatively small reduction in
the linear residual is required, which once the setup phase has been performed
will require typically 1 or 2 V-cycles. That is to say, the expensive setup phase 1
is not fully explored by phase 2. Since accurate solution of the linear equation
at each fixed point step is not necessary we propose that it may be possible to
recycle the AMG setup data from an earlier fixed point step for use at later fixed
point steps thus reducing the computational cost of the method.
By recycling of setup data we mean the following: given a system Aw = z, to

solve and store interpolation operators Î
(1)
(2) , . . . , Î

(L−1)
(L) generated from the entries

of a matrix Â which is similar to A (in our case A = A(uk) and Â = A(ul),
l < k, is the matrix from a previous fixed point step) instead of generating
a new C/F-splitting and interpolation operators based on the entries of A, we
use the stored interpolation operators and generate the coarse grid matrices
A(2), . . . , A(L) using the Galerkin principle i.e. for p = 2, . . . , L we evaluate:

A(p) =
(
Î
(p)
(p−1)

)T
A(p−1)Î

(p)
(p−1).(3.1)

The coarse grid matrices with the stored transfer operators are then used in the
V-cycle.

3.2 Preliminary experiments and analysis.

We first present some preliminary experiments to build our final algorithm.
Since we propose to carry out the AMG setup (i.e. generation of a coarse-fine
splitting and interpolation and restriction operators from matrix entries) every q
fixed point steps, we may call q the frequency of data recycles on the FP steps.
If q �= 1 then the most recent setup data is used for the linear multigrid solver
at a fixed point step; otherwise we recover the standard AMG algorithm. Our
tests will be on the parameter q. In test 1, we show the effect of varying q on the
overall cpu. We also address the issue of optimizing q from view points of both
analysis and experiments. In test 2 for a fixed q, we examine the effect of data
recycling on the speed of the inner AMG solver.

Test 1. We use the fixed point method with AMG applied to the linear sys-
tem (1.9) at each step, with standard algebraic coarsening with direct inter-
polation and point Gauss–Seidel as smoother with 2 pre and 2 post correction
smoothing steps within a multigrid V-cycle. The inner tolerance for residuals is
set to be 0.1. Table 3.1 shows the number of fixed point steps required to reduce
the outer (nonlinear residual) by a factor of 10−4 and the total cpu, for various

284 K. CHEN AND J. SAVAGE

Table 3.1: Fixed point with AMG data for various frequencies q of setup regeneration.

q FP Steps cpu Setups V-cycles Recycles

Number Total Cpu Number Total cpu Number Total cpu

1 62 13716 62 13561 72 88 * *

2 56 6122 28 5976 64 77 28 10

3 56 4215 19 4064 66 79 37 13

4 57 3410 15 3244 75 91 42 15

5 64 3023 13 2824 93 113 51 18

10 55 1552 6 1301 138 175 49 17

15 61 1513 5 1140 225 289 55 20

25 69 1237 3 655 364 476 66 24

50 71 1439 2 453 673 884 69 27

values of q. Also shown are the total number of setups, V-cycles and recycles
with corresponding cpu in seconds. The experiments are run on a 256×256 noisy
image with SNR = 3.6. We take αh = 35 and βh = 10

−4.
From Table 3.1, we make the following observations. Firstly as q increases the
setup cost goes down but in general we require an increasing number of V-cycles
because the recycled interpolation operators become less accurate, however it
appears we can achieve some reduction in the number of setups for free. Indeed,
even in the case of q = 2 and q = 3, we have used fewer V-cycles than in the q = 1
case (standard AMG). This is due to the fact that the number of outer fixed
point steps has reduced slightly but the ratio of V-cycles to fixed point steps
has not increased much. In the q = 4 case there is only a 4% rise in the number
of V-cycles. For q ≥ 5 there is approximately a linear relationship between the
increase in the number of V-cycles per fixed point step (as compared to the q = 1
case) and q. It is of interest to investigate the optimal frequency qopt. To do this,
we model the approximate increase in V-cycles by 0.15q + 0.7 and assume that
on average 1.2 V-cycles are performed on each fixed point step in the original
(no-recycling) method. Denoting the cost of a setup phase by CS , the cost of
a V-cycle by CV and the cost of a recycle by CR we have that the average cost
of a fixed point step when a setup is performed every q steps is

CS

q
+

(
1−
1

q

)
CR + 1.2CV (0.15q + 0.7).(3.2)

Minimimizing this quantity we get that the optimal q is

qopt =
10

3
√
2

√
CS − CR
CV

.(3.3)

Complexity-based prediction for qopt. Our idea is to balance the complex-
ity of phase 1 with that of phase 2, using the above model for the increase in
V-cycles due to q. Following the Appendix, it only remains to specify the con-
stants in the complexity analysis. From observations we take γA = 20, γR = 15
and γP = 10. We then have an approximate cost for the V-cycle of 300n and an
approximate cost for the setup phase of 17/64n2+730n. If we take n = 2562 the
cost of a V-cycle is approximately 2×107 and the cost of a setup is approximately
1.19×109, around 90 times the cost of the V-cycle. A recycle simply involves the

AN ACCELERATED ALGEBRAIC MULTIGRID ALGORITHM FOR TV DENOISING 285

evaluation of matrix RAP using stored interpolation and restriction operators.
The cost of the recycling will be (4/3γ2A+1/3γ

2
R)n which is approximately 610n,

making the cost of a V-cycle + recycling around 910n which for n = 2562 is
6.0× 107. Taking CS = 1.19× 109, CV = 2 × 107 and CR = 6.0 × 107, we get
qopt ≈ 18.
In reality the dominant cost is the cost on the finest level, on this level we
know γA = 5 and we can assume γR = 5 and γP = 4. With these parameters
we get that a V-cycle costs approximately 75n and a setup costs approximately
17/64n2 + 80n, while a recycle costs around 40n, for n = 2562 this is 5.0× 106

flops for a V-cycle, 2.8× 106 for a recycle and 1.15× 109 for a setup. In this case
we have qopt ≈ 36.
When we actually measure the flops associated with a V-cycle and a recycle
we get that a V-cycle costs around 1.2× 107 flops and a recycle costs 6.1× 106,
which is somewhere in between the two estimates made above.

Experiments-based prediction for qopt. Since we think that our imple-
mentation of the AMG setup phase can potentially be improved further we aim
throughout the paper to give a guide as to the sort of reduction in the cost of the
fixed point method that can be achieved based on the relative costs of a setup,
a recycle and a V-cycle. If we take CS = ρ1CV and CR = ρ2CV where ρ1 is the
ratio of setup cost to V-cycle cost and ρ2 is the ratio of recycle cost to V-cycle
cost then (3.3) becomes

qopt =
10

3
√
2

√
ρ1 − ρ2.(3.4)

The factor by which the average cost of a fixed point step is decreased by is

CS
qopt
+
(
1− 1

qopt

)
CR+1.2CV (0.15qopt+0.7)

CS+1.2CV
=
3
√
2
5

√
ρ1−ρ2+ρ2+0.84

ρ1+1.2
.(3.5)

We can then make a prediction of the best choice of q and the speed up in the
fixed point method based on ρ1 and ρ2. The user can measure ρ1 and ρ2 in cpu
time by running one AMG, or base them on complexity analysis. In our case
the ρ1 as measured in cpu is approximately 180 and ρ2 is approximately 0.3,
giving qopt ≈ 31 with a reduction in cost of around 93%.

Test 2. To get a better idea of how effective the recycling of setups is, in
Table 3.2, some information on the efficiency of the linear multigrid solver for
the case where q = 10 is given. Data are given for the first and last fixed point
steps at which a particular setup is used. Shown is the number of multigrid cycles
required to reduce the inner (linear) residual by a factor of 10−4 (rather than 0.1
as we are interested in the efficiency of the inner solver rather than the speed of
the overall fixed point method) and the amount by which the residual is reduced
on the first step (if no recycling is used, one V-cycle is enough to reduce the
residual by a tenth, which is what we ordinarily require).
From Table 3.2 we observe that on early fixed point steps the multigrid method
with recycled setup data slows down, but at later fixed point steps the perfor-

286 K. CHEN AND J. SAVAGE

Table 3.2: Efficiency of AMG recycling for q = 10.

FP step number of inner multigrid steps convergence factor on first step

1 2 5.3× 10−3

10 116 1.9× 10−1

11 15 4.1× 10−2

20 38 1.2× 10−1

21 16 7.4× 10−2

30 27 9.1× 10−2

31 13 6.5× 10−2

40 12 6.4× 10−2

mance on the first and last fixed point steps at which a particular setup data is
used is more steady, the results shown are for the case q = 10, but similar results
have been observed for other values of q. Figure 3.1 shows the matrix entries (the
matrix at the finest level) corresponding to strong connections at various fixed
point steps along with the entries which corresponded to strong connections 10
fixed point steps ago, for ease of presentation the image is only 8×8 but we have

Figure 3.1: Strong connections (circles) and strong connections 10 steps ago (crosses)
at steps 11, 21, 31 and 41 of the fixed point method.

AN ACCELERATED ALGEBRAIC MULTIGRID ALGORITHM FOR TV DENOISING 287

observed similar results for larger images. On step 11 there are a large number
of points which initially corresponded to strong connections but are now weak
connections. At steps 21 and 31 there is less change in the connectivity pattern
(compared to 10 steps ago) than there was at step 11 and the majority of points
that have changed have gone from being weak to being strong. By step 41 there
is almost no change in the pattern of strong connections compared to step 31.
The above test results suggest that more setup phases are required at early
fixed point steps and less later on i.e. we should vary q in such a way that the
increased work in phase 2 is gradual as the FP steps proceed.

3.3 A new method.

Indeed our new method will build on the above observations. Instead of arbi-
trarily carrying out a new setup phase every q FP steps, we base the decision on
whether new setup data is required on the convergence history at the previous
FP step. If the multigrid method takes more than ss V-cycles to reduce the
linear residual by a factor of 0.1 on a particular FP step we generate new setup
data at the next step. This adaptive idea allows for more setup phases on early
fixed point steps when they are needed and less at later fixed point steps.
This new method should strike a balance between using as few AMG setups as
possible and not causing a dramatic increase in the overall number of V-cycles
required. The algorithm for the new method, which from now on we shall refer
to as fixed point with AMG-R, is given below.

Algorithm 3.1 (Fixed Point with AMG-R).
Set u0 = z, ms0 = ss+ 1, k = 0
While ‖z−A(uk)uk‖2 > 10−4‖z−A(u0)u0‖2
Evaluate A(1) = A(uk).

Set z(1) = z, v(1) = uk, r
(1)
0 = z

(1) −A(1)v(1).
If msk > ss
Perform AMG setup and generate A(2), . . . , A(L).
Store the Interpolation operators from the AMG setup.

else
Generate A(2), . . . , A(L) using stored
interpolation operators from most recent setup.

end
Set msk+1 = 0
While ‖r(1)‖2 > 0.1/‖r

(1)
0 ‖2

v(1) ← AMG1(1)(v(1), z(1), 2, 2)
msk+1 ← msk+1 + 1

end
Set uk+1 = v(1)

k ← k + 1
end

end

Here the notation AMG1 is as defined in (2.4).

288 K. CHEN AND J. SAVAGE

4 Numerical results.

In the following we compare the fixed point method with AMG-R, with the
standard fixed point with AMG method. We give results for two 256×256 images
(Lena and X-ray Fingers) each with SNR ≈ 3.5, seen in Figure 4.1. In each case
4 different values of βh are tested, in the case of Lena αh = 30 and in the case of
the Fingers αh = 35. AMG-R in each case is run with two different (maximum)
values of ss, ss = 3 and ss = 10. Shown in Tables 4.1–4.2 are the number of
fixed point steps required for convergence, the total cpu time in seconds and also
the total number of setups, recycles and V-cycles required, with corresponding
cpu times. Clearly the new method is much faster than the standard AMG.

Figure 4.1: Noisy (left) and recovered (right) images using FP with the new AMG-R
for 2 test examples. .

The presented results in Tables 4.1–4.2 are for the cases ss = 3 and ss = 10.
We give results for the case ss = 10 because we have found that generally this
gives the best results in terms of cpu time. Given that we believe it is possible
to improve upon our implementation of the AMG setup phase we also include
the case ss = 3 as a method which should limit the increase in the number of
V-cycles to be as small as possible. A value ss = 3 is chosen because we have
observed that this is the maximum number of V-cycles required per fixed point

AN ACCELERATED ALGEBRAIC MULTIGRID ALGORITHM FOR TV DENOISING 289

Table 4.1: Comparison of Fixed Point with AMG-R against Fixed Point with AMG for
Lena image.

βh Linear Solver AMG AMG-R(3) AMG-R(10)

10−2 FP Setps 31 31 31
Total cpu 7499 570 398

Setups: No/cpu 31/7421 2/475 1/246
V-cycles: No/cpu 31/42 40/51 80/106
Recycles: No/cpu * 29/11 30/13

10−4 FP Setps 66 56 89
Total cpu 14912 899 1005

Setups: No/cpu 66/14737 3/690 2/464
V-cycles: No/cpu 83/104 106/130 339/414
Recycles: No/cpu * 53/19 87/31

10−8 FP Setps 172 146 148
Total cpu 37744 2123 1937

Setups: No/cpu 172/37165 7/1533 5/1104
V-cycles: No/cpu 322/393 316/383 514/623
Recycles: No/cpu * 139/49 143/50

10−12 FP Setps 310 291 272
Total cpu 67878 3602 3340

Setups: No/cpu 310/66747 11/2381 8/1739
V-cycles: No/cpu 652/795 666/809 1001/1214
Recycles: No/cpu * 280/97 264/92

Table 4.2: Comparison of Fixed Point with AMG-R against Fixed Point with AMG for
Fingers image.

βh Linear Solver AMG AMG-R(3) AMG-R(10)

10−2 FP Setps 33 31 31
Total cpu 7979 549 396

Setups: No/cpu 33/7895 2/454 1/239
V-cycles: No/cpu 33/45 42/52 86/112
Recycles: No/cpu * 29/11 30/12

10−4 FP Setps 62 56 76
Total cpu 14094 867 846

Setups: No/cpu 62/13923 3/662 2/449
V-cycles: No/cpu 72/99 108/128 246/293
Recycles: No/cpu * 53/18 74/26

10−8 FP Setps 154 173 174
Total cpu 34520 2351 1994

Setups: No/cpu 154/33967 8/1677 5/1061
V-cycles: No/cpu 279/372 372/437 589/692
Recycles: No/cpu * 165/56 169/57

10−12 FP Setps 301 310 297
Total cpu 67427 3646 3095

Setups: No/cpu 301/66195 11/2342 7/1485
V-cycles: No/cpu 655/875 719/868 990/1191
Recycles: No/cpu * 299/103 290/100

290 K. CHEN AND J. SAVAGE

step in the standard fixed point with AMG method. We see that in both cases,
there is a significant decrease in the number of setup phases required. In the case
of ss = 3 there is on average a 95% reduction in the number of setups compared
to the fixed point with AMG method with on average only a 22% increase in the
number of V-cycles. In the case of ss = 10 there is on average a 97% decrease in
the number of setups, with an average 142% increase in the number of V-cycles.
Note that in the preliminary tests where we performed a setup every q steps
regardless, a 96% reduction in the number of setups (q = 25) led to a 406%
increase in the number of V-cycles. In both cases the largest reduction in setups
occurs for the smallest value of βh, 10

−12, the increase in the number of V-cycles
is in general also smaller for smaller βh.
Based on these timings, the cost of the fixed point with AMG method in cpu
time is reduced by around 95%. Taking the average reduction in setups and
increase in V-cycles from the ss = 3 case and assuming that 2 V-cycles are used
per fixed point step with no-recycling the expected reduction in cost for any ρ1
and ρ2 (as defined earlier) would be

0.05ρ1 + 0.95ρ2 + 2.44

ρ1 + 2
.(4.1)

If we take ρ2 = 0.3, then we can expect some speed up in the fixed point method
provided the cost of a setup is a least ρ1 = 0.7 times the cost of a V-cycle.
Finally we present two more experiments to test the robustness of the method.
In the first test we compare fixed point with AMG against fixed point with
AMG-R for a noisier version of the Lena image seen earlier (with results shown
in Table 4.3); in this case the SNR=0.8 and the value of αh is increased to 45.
In the second test we run comparisons for a larger version of the Fingers Image
(with results shown in Table 4.4). The size of the image is 512×512 and a similar
amount of noise is present as in the 256× 256 case, αh is again chosen to be 35.
In both cases we compare the methods for βh = 10

−4 and βh = 10
−8. In the

case of the noisier Lena image we see that again both versions of the AMG-R
method achieve a significant decrease in the number of setup phases, however
the performance of the AMG-R(3) method is worse than in the less noisy case

Table 4.3: Comparison of AMG-R with AMG for noisier Lena image.

βh Linear Solver AMG AMG-R(3) AMG-R(10)

10−4 FP Setps 69 74 98
Total cpu 15091 1148 1097

Setups: No/cpu 69/14894 4/885 2/442
V-cycles: No/cpu 97/121 134/160 401/470
Recycles: No/cpu * 70/25 96/34

10−8 FP Setps 199 187 167
Total cpu 42813 4210 2003

Setups: No/cpu 199/42098 16/3395 5/1072
V-cycles: No/cpu 399/495 439/544 567/693
Recycles: No/cpu * 181/65 162/56

AN ACCELERATED ALGEBRAIC MULTIGRID ALGORITHM FOR TV DENOISING 291

Table 4.4: Comparison of AMG-R with AMG for the larger 512 × 512 Fingers image.

βh Linear Solver AMG AMG-R(3) AMG-R(10)

10−4 FP Setps 62 60 60
Total cpu 146754 7926 6043

Setups: No/cpu 62/146035 3/6856 2/4564
V-cycles: No/cpu 72/407 128/698 199/1104
Recycles: No/cpu * 57/81 58/84

10−8 FP Setps 163 175 209
Total cpu 37997 20820 16512

Setups: No/cpu 163/377239 8/17516 5/11429
V-cycles: No/cpu 301/1732 406/2219 672/3757
Recycles: No/cpu * 167/233 204/290

particularly for the βh = 10
−8 case, while the performance of the AMG-R(10)

method is actually slightly better than in the less noisy case. In the case of
the 512×512 fingers image, the performance (in terms of decrease in setups and
increases in V-cycles) of the AMG-R methods is almost identical to the 256×256
case. The 10 fold increase in cpu time of the AMG method as compared to the
256× 256 case can be potentially improved with a better implementation.

We remark that, although ss = 10 is a recommended (nearly optimal) par-
ameter, its optimisation remains to be done. Equally the accuracy of the inner
solver may be optimized [20] along with ss in order to improve on AMG further.
In other experiments, we have found that the new AMG-R may be competi-
tive to preconditioned conjugate gradients (PCG) methods with the incomplete
Cholesky preconditioner and even the primal-dual method [10] in some cases
(especially with small β). This suggests that there exist optimal hybrid methods
using a mix of these methods with our AMG-R idea to help achieve robustness.

5 Conclusions.

The fixed point method with a linear GMG solver for solving the total variation
denoising PDE is not robust with respect to the smoothing parameter β. The
usually robust AMG solver comes with a high computational cost. We have
proposed a method for accelerating the fixed point method, when AMG is used
as the inner linear solver, by recycling the AMG setup data adaptively: an AMG
setup phase was performed only when the number of V-cycles required on the
previous fixed point step exceeded some user-defined parameter ss. Experiments
have shown that a significant decrease in the total number of setups can be
achieved, for only a modest increase in the number of V-cycles performed, for
a wide range of values of the parameter βh. With our current implementation
we have reduced the overall cost of the method by up to 20 times. Much further
refinement is possible but even with a very efficient implementation of the AMG
setup e.g. ρ1 = 4 we would expect a further halving of the costs with our AMG-R
approach.

292 K. CHEN AND J. SAVAGE

Appendix – Complexity estimation for the AMG Algorithm 2.1.

In this Appendix we present an analysis of the costs associated with imple-
menting the Algorithm 2.1 with the standard C/F splitting algorithm and direct
interpolation. As an exact analysis is not possible due to the nature of AMG,
we shall make some reasonable assumptions. We will use the following notation
in the cost analysis that follows

n(k) = number of points on level k

nF
k

= number of fine points on level k

nC
k

= n(k+1) = number of coarse points on level k

γAk = max number of entries in a row of A
k

γRk = max number of entries in a row of R
k = Ik+1k (restriction k → k + 1)

γPk = max number of entries in a row of P
k = Ikk+1 (prolongation k + 1→ k).

Also finding all the nonzero entries in a set or finding the maximum value in set
is modeled by flops equal to twice the size of the set.

A.1 The AMG phase 1.

A.1.1 Cost of finding neighbours and strong connections.

To find Ni we must search row i of the matrix for non-zero, non-diagonal
entries. In reality the position of all non-zero entries in a sparse matrix can
be found very cheaply in MATLAB so we ignore this cost here. Once we have
the set of neighbours we have to find the maximum value of −aij over j ∈ Ni
and then find Si. We have to search through the set {−aij |j ∈ Ni} to find the
maximum, and then search the set again to find the entries greater than θ times
the maximum, since an upper bound on the size of Ni is γAk−1 an upper bound
for this cost is 4(γAk − 1). An upper bound on the cost of finding all Ni and Si
on level k is therefore

n(k) [4(γAk − 1)] .(5.1)

A.1.2 The C/F splitting algorithm.

We assume that the size of Ck = n(k+1) = 1/4n(k) i.e. assume standard coarse-
ning or n(k) = n/4k−1 for 1 ≤ k ≤ L. We therefore go around the C/F splitting
loop 1/4n times and on average each coarse point defines 3 fine points i.e. the
size of STi ∩ U is 3. Although in our experience based on cpu analysis similar
to above a reasonable assumption is that the cost of finding S ∩ U where S is
a small set, is around 3 times the size of U we can in our current implementation
find STi ∩ U simply by finding the nonzero entries of a set the size of S

T
i , which

we assume below has size 4. Based on these assumptions we have the following

AN ACCELERATED ALGEBRAIC MULTIGRID ALGORITHM FOR TV DENOISING 293

estimate for the cost of performing the C/F split on level k:

1/4n(k)−1∑
m=0

[2(n(k) − 4m) + 8] + 3 (8 + 4) + 8 + 4.(5.2)

The first term comes from finding i ∈ U with maximal λi and then finding
j ∈ STi ∩ U , the second term comes from finding l ∈ Sj ∩ U setting λl = λl + 1
for each j ∈ STi ∩ U (assume that the size of Sj and Sj ∩ U is 4) the third
term comes from finding j ∈ Si ∩ U and the last term setting λj = λj − 1
(again assume Si and Si ∩U have 4 members). An approximate cost estimate is
therefore

(1/4n)(2n+ 56)− 8

1/4n(k)−1∑
m=0

m ≈ 1/2n2 + 14n− 8(1/8n)(1/4n) = 1/4n2 + 14n.

(5.3)

A.1.3 The direct interpolation.

On level k direct interpolation involves finding for each i ∈ F k, αi =
∑
j∈Ni

a−ij
∑
k∈Pi

a−ik

and βi =
∑
j∈Ni

a+ij
∑
k∈Pi

a+ik
or if P+i is empty finding αi and setting aii = aii+

∑
j∈Ni

a+ij .

Then defining the interpolation weights as

wik =

{
−αiaik/aii k ∈ P

−
i

−βiaik/aii k ∈ P
+
i

(5.4)

and denoting by nP
k

the max size of Pi over all i ∈ F k and by nN
k

the max size
of Ni over all i ∈ F k, an upper bound for the cost of the direct interpolation on
level k is

nF
k

[nN
k

+ 3nP
k

].(5.5)

A.1.4 Cost of the Galerkin matrix RAP.

Given that we expect that A and P will be very sparse most rowA, columnP
multiplications will produce zeros. A cost of γ2

Ak
n(k) is a reasonable assumption

for the cost of evaluating AkP k similarly γ2
Rk
nC

k

is a reasonable assumption for
the cost of multiplying AkP k by Rk.

A.1.5 Overall complexity of phase 1.

Putting all of this together, noting SNk = γAk − 1 and assuming SPk = 4, we
have as an estimate for the cost of an AMG setup phase the following:

294 K. CHEN AND J. SAVAGE

∑
k

4(γAk − 1)n
(k) + 1/4(n(k))2 + 14n(k) + nF

k

(γA + 11) + γ
2
An
(k) + γ2Rn

Ck

(5.6)

≈
∞∑
l=0

1/4(1/16)ln2 + 3/4(1/4)l
(
17/3γA + 4/3γ

2
A + 1/3γ

2
R + 8

)
n

= 17/64n2 +
(
17γA + 4γ

2
A + γ

2
R + 24

)
n/3,

where we take γA, γR, γP respectively as the maximum value over all levels of
γAk , γRk , γPk .

A.2 The AMG phase 2.

Once the setup phase has been performed the costs associated with the V-cycle
on level k are: (1) the cost of 4 Gauss–Seidel steps each of which involves solving
Mvnew = (Nvold + f) where M is the lower triangular part of Ak including the
diagonal and N is the upper triangular part of A. Assuming that γkA is small
and that the entries of A are split evenly about the diagonal and using the
fact that the cost of inverting or multiplying by a n× n triangular matrix with
a small number, say σ, of entries on each row is approximately (2σ−1)n we have
4
[
2(γkA − 1)n+ n

]
as an estimate for the cost of the Gauss–Seidel steps; (2) the

cost of the residual calculation an upper bound for which is n(k) + 2γAkn
(k);

(3) the cost of restricting the residual, an upper bound for which is 2γRkn
Ck ;

(4) the cost of interpolating the error back from the coarse grid and correcting,

an upper bound for which is 2γPkn
Fk +nC

k

+n(k). Finally we have as an upper
bound for the cost of a V-cycle:

∞∑
�=0

(1/4)�[10γA + 1/2γR + 3/2γP − 7/4]n = (40γA + 2γR + 6γP − 7)n/3.(5.7)

Acknowledgements.

The authors thank all three anonymous referees for making helpful remarks
and suggestions.

REFERENCES

1. W. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, USA, 1987.

2. P. Blomgren, T. F. Chan, P. Mulet, L. Vese, and W. L. Wan, Variational PDE models
and methods for image processing, in Res. Notes Math., vol. 420, pp. 43–67, Chapman &
Hall/CRC, (2000).

3. R. H. Chan, T. F. Chan, and W. L. Wan, Multigrid for differential convolution problems
arising from image processing, in Proc. Sci. Comput. Workshop, eds. R. Chan, T. F. Chan
and G. H. Golub, Springer, (1997). See also CAM report 97-20, UCLA, USA.

4. R. H. Chan, T. F. Chan, and C. K. Wong, Cosine transform based preconditioners for
total variation minimization problems in image processing, IEEE Trans. Image Proc., 8
(1999), pp. 1472–1478. See also CAM report 97–44, UCLA.

AN ACCELERATED ALGEBRAIC MULTIGRID ALGORITHM FOR TV DENOISING 295

5. R. H. Chan, Q. S. Chang, and H. W. Sun, Multigrid method for ill-conditioned symmetric
Toeplitz systems, SIAM J. Sci. Comput., 19 (1998), pp. 516–529.

6. R. H. Chan, T. F. Chan, and W. L. Wan, Multigrid for differential-convolution problems
arising from image processing, Proceedings of the Workshop on Scientific Computing,
vol. 97, Springer, (1997).

7. T. F. Chan and K. Chen, On a nonlinear multigrid algorithm with primal relaxation for
the image total variation minimisation, Numer. Algorithms., 41 (2006), pp. 387–411.

8. T. F. Chan and K. Chen, An optimization based total variation image denoising, SIAM
J. Multiscale Modeling & Simulation, 5(2) (2006), pp. 615–645.

9. T. F. Chan, K. Chen, and X.-C. Tai, Nonlinear multilevel schemes for solving the total
variation image minimization problem, in Image Processing Based On Partial Differential
Equations, eds. X.-C. Tai, K.-A. Lie, T.F. Chan, S. Osher, pp.265–288, Springer, (2006).

10. T. F. Chan, G. H. Golub, and P. Mulet, A nonlinear primal-dual method for total
variation-based image restoration, SIAM J. Sci. Comput., 20 (1999), pp. 1964–1977.

11. T. F. Chan, H. M. Zhou, and R. H. Chan, Continuation method for total variation de-
noising problems, UCLA CAM Report, USA, (1995).

12. Q. S. Chang and I. Chern, Acceleration methods for total variation based image denoising,
SIAM J. Sci. Comput., 25 (2003), pp. 982–994.

13. Q. S. Chang, Y. S. Wong, and H. Fu, On the algebraic multigrid method, J. Comput.
Phys., 125 (1996), pp. 279–292.

14. Q. S. Chang, W. C. Wang, and J. Wu, A method for total variation-based reconstruction
of noisy and blurred images, in: Image Processing Based On Partial Differential Equations,
eds. X.-C. Tai, K.-A. Lie, T.F. Chan, and S. Osher, pp. 95–108, Springer, (2006).

15. K. Chen, Matrix Preconditioning Techniques and Applications, Cambridge Monographs
on Applied and Computational Mathematics (No. 19). Cambridge University Press, UK,
(2005).

16. C. Frohn-Schauf, S. Henn, and K. Witsch, Nonlinear multigrid methods for total variation
image denoising, Comput. Visual Sci., 7 (2004), pp. 199–206.

17. M. Hintermüller and K. Kunisch, Total bounded variation regularization as a bilaterally
constrained optimization problem, SIAM J. Appl. Math., 64 (2004), pp. 1311–1333.

18. W. Hinterberger, M. Hintermüller, K. Kunisch, M. von Oehsen, and O. Scherzer, Tube
methods for BV regularization, J. Math. Imaging Vis., 19 (2003), pp. 219–235.

19. T. Kärkkäinen, K. Majava, and M. M. Mäkelä, Comparison of formulations and solution
methods for image restoration problems, Series B Report No. B 14/2000, Department of
Mathematical Information Technology, University of Jyväskylä, Finland, (2000).

20. I. E. Karpin and O. Axelsson, On a class of nonlinear equation solvers based on residual
norm reduction over a sequence of affine subspaces, SIAM J. Numer. Anal., 16 (1995),
pp. 228–249.

21. Y. Y. Li and F. Santosa, A computational algorithm for minimizing total variation in
image restoration, IEEE Trans. Image Proc., 5 (1996), pp. 987–995.

22. A. Marquina and S. Osher, Explicit algorithms for a new time dependant model based
onlevel set motion for nonlinear deblurring and noise removal, SIAM J. Sci. Comput., 22
(2000), pp. 387–405.

23. L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algo-
rithms, Physica D, 60 (1992), pp. 259–268.

24. J. W. Ruge and K. Stuben, Algebraic Multigrid, in S. F. McCormick (ed.), Multigrid
Methods, SIAM, Philadelphia, USA (1987).

25. J. Savage and K. Chen, An improved and accelerated nonlinear multigrid method for total-
variation denoising, Int. J. Comput. Math., 82 (2005), pp. 1001–1015.

26. J. Savage and K. Chen, On multigrids for solving a class of improved total variation based
PDE models, in Image Processing Based On Partial Differential Equations, X.-C. Tai,
K.-A. Lie, T.F. Chan, and S. Osher, eds., pp. 69–94, Springer (2006).

296 K. CHEN AND J. SAVAGE

27. G. Steidl, J. Weickert, T. Brox, P. Mrázek, and M. Welk, On the equivalence of soft wavelet
shrinkage, total variation diffusion, total variation regularization, and SIDEs, SIAM J.
Numer. Anal., 42(2) (2004), pp. 686–713.

28. U. Trottenberg, C. Oosterlee, and A. Schuller, Multigrid, Academic Press, London (2001).
(See its Appendix on AMG by K. Stuben).

29. C. R. Vogel, A multigrid method for total variation-based image denoising, In K. Bowers
and J. Lund, eds., Computation and Control IV, vol. 20, Progress in Systems and Control
Theory, Birkhäuser (1995).

30. C. R. Vogel, Negative results for multilevel preconditioners in image deblurring, in M.
Nielson et al., eds., Scale-space theories in computer vision, pp. 292–304, Springer (1999).

31. C. R. Vogel and M. E. Oman, Iterative methods for total variation denoising, SIAM J.
Sci. Stat. Comput., 17 (1996), pp. 227–238.

32. C. R. Vogel and M. E. Oman, Fast, robust total variation-based reconstruction of noisy,
blurred images, IEEE Trans. Image Proc., 7 (1998), pp. 813–824.

33. C. R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, USA,
2002.

34. C. Wagner, Introduction to Algebraic Multigrid, Course Notes of an Algebraic Multigrid,
Course at the University of Heidelberg in the Winter semester, 1998/1999.

35. T. Washio and C. Oosterlee, Krylov subspace acceleration for nonlinear multigrid schemes,
Electronic Trans. Numer. Anal., 6 (1997), pp. 271–290.

36. P. Wesseling, An Introduction to Multigrid Methods, Wiley, Chichester, UK, 1992.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

