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SUMMARY

Black Box Multigrid (BoxMG) is a robust variational multigrid solver for diffusion equations on logically
structured grids. BoxMG standardly uses coarsening by a factor of two. It handles cell-centered discretiza-
tions on logically rectangular grids by treating the cell-centers as the unknowns to be coarsened. Such a
strategy does not preserve the cell structure. That is, coarse-grid cells are not the union of fine-grid cells.
In some applications, such as local grid refinement, it is desirable that the cell structure be preserved. In
this paper, we develop a method that employs coarsening by a factor of three. It is a natural generalization
of standard BoxMG, using operator-induced interpolation (which approximately preserves the continuity
of the normal flux), restriction as the transpose of interpolation, and Galerkin coarsening. In addition, we
introduce a new colored block Gauss–Seidel scheme that is motivated by the form of the interpolation
operator, dubbed ‘pattern’ relaxation. We present numerical results that demonstrate robustness of this
method with respect to discontinuous diffusion coefficients, boundary conditions, and grid dimension.
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1. INTRODUCTION

The efficient and robust solution of the diffusion equation is important in a number of applications,
including flow in porous media, conductivity and heat transfer in composite materials, and neutron
transport. This equation may be written in the form

−∇ ·(D∇U )+�U = Q in �, (1a)

D∇U ·n+�U = 0 on ��, (1b)
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where � is a bounded region in R2 with boundary ��, D is a symmetric positive-definite tensor,
� and � are nonnegative. The diffusion coefficient, D, may represent diffusivity of neutrons, the
absolute permeability of a porous medium, or the conductivity in a composite material. Thus,
the diffusion coefficient may vary discontinuously by orders of magnitude, and may exhibit very
fine-scale structure (i.e. media with layers, or inclusions). Similarly, the reaction or removal term,
�, and the source term Q, may vary discontinuously.

Early efforts to generalize classic geometric multigrid for (1) identified the treatment of highly
discontinuous coefficients as a significant challenge. The Black Box Multigrid (BoxMG) method
introduced in [1] was one of the first robust multigrid methods for these problems. This method
extended ideas introduced in [2], from five-point to nine-point stencils, and hence, from diagonal
to full tensor diffusion, and from orthogonal grids to reasonable quadrilateral meshes.

Two significant elements of this advance are critical to delivering a robust multigrid algorithm,
namely the use of variational coarsening to construct the hierarchy of coarse-grid operators, and
the development of operator-induced interpolation. Variational coarsening, employing the Galerkin
coarse-grid operator [3] can be shown to be optimal in the sense that it minimizes the error in
the range of interpolation. This has a number of important consequences. First, it implies that
as long as an interpolation can be provided by the algorithm, the user needs to only provide a
fine-grid problem, as all operators in the multigrid algorithm can be generated automatically. This
observation motivated the name Black Box. Also, variational coarsening does not make assumptions
about the form of the coarse-scale model. Specifically, in many diffusion applications the fine-
scale structure of the coefficient is such that simply rediscretizing on coarser levels with averaged
coefficients will not satisfy the approximation property. For these reasons variational coarsening
is used in virtually all variants of AMG (e.g. [4, 5]), including smoothed-aggregation (SA)-based
AMG [6].

Operator-induced interpolation is an equally important part of this robust algorithm. In particular,
it can be shown that for a bilinear FEM discretization of (1) and using bilinear interpolation, the
Galerkin coarse-grid operator is equivalent to that derived by first taking the arithmetic average
of the diffusion coefficient and then rediscretizing at the coarse-scale. Thus, such a multigrid
algorithm will have a convergence rate that is proportional to the jump in the diffusion coefficient.
This is because the gradient of the solution is not continuous across discontinuities in the diffusion
coefficient; instead, it is the normal component of the flux that is continuous. Operator-induced
interpolation uses this fact to design a more robust interpolation, one that is consistent with the
underlying problem and the homogenization of certain one-dimensional interface problems [7].
Later these ideas were extended to nonsymmetric problems, such as convection diffusion in [8] and
dubbed matrix-dependent prolongations in [9]. Recent work has investigated the energy minimizing
aspects of these interpolations [10], and the design and the adaptivity of interpolation for AMG
[11] and SA-based AMG methods [12].

Continuing the development of solution algorithms for logically structured grids is important
both for enhancing our understanding of fundamental issues, as well as for practical solvers for
real applications. Logically structured body-fitted grids may be used to handle complex shapes,
and irregular domains may be embedded in a rectangular domain. Furthermore, new hardware
architectures, for example various accelerator configurations, are significantly more efficient with
data on structured versus unstructured meshes. On these grids, standard coarsening by a factor of
two is a very common method for creating a hierarchy of grids. Although this coarsening may
seem most natural for vertex-based discretizations, the flexibility of BoxMG makes it possible to
apply this same coarsening strategy directly to the dual-grid of cell-centers, as is shown in Figure 1
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Figure 1. Standard coarsening of vertices (left) and the dual-grid of cell-centers (right).

(right). This observation was made in [1], and is applied frequently. However, in some cases, such
as cell-based adaptive mesh refinement (AMR), retaining the cell structure throughout the grid
hierarchy may be desirable.

Development of multigrid methods with cell-based coarsening initially focused on coarsening
by a factor of two. The first author considered extending the vertex-based method in [2] to use cell-
based coarsening for cell-centered difference schemes on uniform rectangular grids. In particular, a
cell-based coarsening would replace each aggregate of four fine-scale cell-centered unknowns with
a single coarse-grid cell-centered unknown. Although the coarse-grid would not be a subset of fine-
grid unknowns, a generalization of bilinear interpolation is still readily obtained. However, in this
case the Galerkin coarse-grid operator will have a 25-point stencil or an algebraic complexity of 5,
and thus, is impractical. A number of remedies for this complexity problem have been proposed
in the literature. First, a method that uses piecewise constant interpolation, with restriction the
transpose of interpolation, and the Galerkin coarse-grid operator is considered in McCormick and
Thomas (unpublished manuscript). Although this method diverges with V-cycles, it converges with
W-cycles. They attribute this behavior to their violation of the well-known condition that the order
of interpolation plus the order of restriction should be greater than the order of the operator (see,
e.g. [3, 13, 14]). Similarly, in [15], a method is proposed that uses piecewise linear interpolation,
with restriction the transpose of piecewise constant interpolation, and the Petrov–Galerkin coarse-
grid operator. Although the Petrov–Galerkin operator is generally nonsymmetric, the coarse-grid
operator in this method is symmetric. However, in certain cases it can be shown to be equivalent to
rediscretizing on the coarse-grid with an arithmetically averaged diffusion coefficient. Thus, it is
not surprising that even for W-cycles, the convergence results reported in [15] are not spectacular.

This research suggests that the design requirements of a robust multigrid method with low
operator complexity and without a nested hierarchy of grids are too demanding. However, the
nested hierarchy may be restored if we consider cell-based coarsening by a factor of three, as is
shown in Figure 3 (right). In terms of the BoxMG algorithm, the operator-induced interpolation
may be extended to this case in such a way that the complexity of Galerkin coarse-grid operators
is bounded by 9

5 , as in the coarsening-by-two case. In the case of cell-based AMR refinement
by a factor of three, the results presented here are readily applicable. This is particularly relevant
for the challenging problem of defining the discrete operator near the coarse–fine interfaces in
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the presence of highly discontinuous coefficients. Adopting a coarsening-by-three strategy has the
potential advantage of coarsening more quickly, ultimately reducing the number of levels, and thus,
communication steps in a parallel implementation. It also brings the method closer to SA-AMG
[6], suggesting the potential for a comparative analysis in the future. In addition, coarsening by
even larger factors introduces connections to approximation methods such as the Multiscale Finite
Element (MsFEM) method [16]. MsFEM creates coarse-scale discrete models of single-phase flow
in porous media through a single coarsening step, typically by a factor of 10. A detailed comparison
of BoxMG and MsFEM, however, is beyond the scope of this research. Here we focus on the
development of the coarsening-by-three BoxMG algorithm, and leave a rigorous analysis of its
convergence for future work.

In this paper, we develop an extension of the BoxMG algorithm using a coarsening factor of
three. We introduce notation in Section 2, and then discuss the important features of the coarsening-
by-two case, paying particular attention to the interpolation. We develop the extensions to this
algorithm in Section 3, and discuss the additional features of the interpolation and smoothing
that we use to achieve a robust algorithm. Numerical results are presented in Section 4 that
demonstrate the mesh-independent convergence rates and robustness with respect to discontinuous
coefficients.

2. BACKGROUND

2.1. Discretizations

We consider logically structured grids in two dimensions, and are interested in discretizations that
generate, at most, a 9-point nearest neighbor stencil. The diffusion tensor and removal coefficient,
D and �, respectively, are assumed to be piecewise constant on the domain, and constant on each
fine-grid cell. However, even in this restricted setting there are a variety of possible discretizations,
and each impacts the properties of the resulting matrix. For example, Galerkin Finite Element
methods (GFEM) can be applied either using bilinear basis functions on quadrilaterals, or linear
basis functions on a triangulation of the quadrilateral grid. However, with strongly anisotropic
diffusion, even if the anisotropy is aligned with the coordinate axes, the GFEM discretization does
not lead to an M-matrix. Also, GFEM does not provide local mass conservation without post
processing.

Thus, many discretizations are based on the first-order form of the diffusion equation, and
explicitly enforce the continuity of the normal flux and local mass conservation. For example,
using the Finite Volume Method (FVM) on an orthogonal grid with a diagonal diffusion tensor,
it is possible to derive the standard 5-point difference formula for the diffusion equation. If the
control volume is centered on a grid cell, then the resulting discretization has weights that are
given by the harmonic average of the neighboring diffusion coefficients. In contrast, if the control
volume is centered on a vertex (the dual mesh), then the weights of the discretization are given by
the arithmetic average of the neighboring diffusion coefficients. Since these averages may differ
by several orders of magnitude, the condition number of the matrix and the difficulty associated
with coarsening across discontinuities in the two cases are very different. However, the choice may
be dictated by the application. For example, the vertex-centered FVM is necessary for diffusion-
synthetic acceleration of the neutron transport equation, as the cell-centered FVM is unstable in
this case [17].
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In the numerical examples (Section 4), we present results for both of these FVM discretizations,
as well as for a GFEM discretization. Even more advanced discretizations may be required for
general tensor diffusion on distorted quadrilateral meshes, such as Mixed Finite Element methods
(e.g. [18]) and Mimetic Finite Difference methods (e.g. [19, 20]). But these do not lead to 9-point
nearest neighbor stencils for the diffusion operator, and hence are beyond the scope of this solver.

2.2. Linear system and Multigrid

Let GM , where M is to be determined, be a logically rectangular grid and let

AMuM= fM (2)

be the given linear system of equations on GM . In BoxMG, a sequence of subgrids of GM are
derived along with auxiliary operators Ak , k<M . The sequence is terminated when the cost of
direct solution of

A1u1= f1 (3)

is trivial compared with the cost of direct solution of (2). One V(I D, IU )-cycle employs I D
relaxation sweeps on (2), before forming the equation

AM−1VM−1= f M−1= I M−1M ( fM−AMvM ), (4)

where vM is the most recent iterate on grid GM . To solve (4), recursion is employed, taking I D
relaxation sweeps on grid Gk before visiting grid Gk−1, M−1�k�2, and the equation

Ak−1Vk−1= fk−1= I k−1k ( fk−Akvk).

A1V1= f1 is solved directly and v2←v2+ I 21 V1 is performed. Then IU relaxation sweeps are
performed on grid Gk−1, before performing vk←vk+ I kk−1Vk−1, 3�k�M , and IU relaxation
sweeps on (2).

2.3. BoxMG: coarsening by two

In [1] the sequence of grids, Gk−1, k=M, . . . ,1, is obtained by standard coarsening, choosing
every other x-point of every other logical y-grid-line, of Gk . A schematic of standard coarsening
in the vertex-centered case is shown in Figure 1 (left), where the coarse grid, GM−1, is illustrated
by dots. An important feature of the BoxMG algorithm is that it handles grids of any dimension,
as opposed to many geometric coarsening implementations that require grids of the form 2M+1.
This flexibility is shown schematically in Figure 1 (right) where standard coarsening is applied
to the dual-grid of cell-centers (shown as dots). Here the coarse-grid, which is shown as squares,
does not contain the right and the top boundary points; yet the performance of BoxMG is not
degraded.

Galerkin coarse-grid operator: The coarse-grid operators Ak−1, k=M, . . . ,2, are defined by

Ak−1= I k−1k Ak I
k
k−1, (5)

where I k−1k =(I kk−1)T, and where I kk−1 is defined by operator-induced interpolation, described as
follows.
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Operator-induced interpolation: Perhaps the earliest example of operator-induced interpolation
is [21]. The examples in that paper use the Laplace operator and exploit the discrete 5-point
approximation and the discrete rotated 5-point approximation to recursively solve exactly difference
equations to obtain approximations on finer grids. It is not clear how to employ such an approach
for BoxMG. To define the operator-induced interpolation used in BoxMG when coarsening by two
and to motivate its extension to coarsening by three, we first write the standard coarse/fine (C/F)
splitting in block form,

Ahu=
[
Aff Afc

AT
fc Acc

][
u f

uc

]
=
[
f f

fc

]
= f, (6)

where we have used the symmetry of the matrix. Here the intergrid transfer operators may be
written as

I kk−1=
[
Ifc

Icc

]
, I k−1k =(I kk−1)

T=[ITfc|Icc], (7)

with Icc the identity. The perfect smoothing and intergrid transfer operators lead to a direct solver,
but are obviously impractical. Nevertheless, if we define

Ifc=−A−1ff Afc, (8)

then the Galerkin operator is the Schur complement and we can construct an impractical but direct
method (see, e.g. [5])

To derive the operator-induced interpolation used in BoxMG, we divide the fine-points into two
types: fine-points that are embedded in coarse-grid lines (�) and fine-points that are in the interior
of a coarse-grid cell (�). This division of points is shown in Figure 2. Then the original system of
equations can be written in the form

Ahu=

⎡⎢⎢⎢⎣
A�� A�� A�c

AT
�� A�� A�c

AT
�c AT

�c Acc

⎤⎥⎥⎥⎦
⎡⎢⎣
u�

u�

uc

⎤⎥⎦=
⎡⎢⎣

f�

f�

fc

⎤⎥⎦= f. (9)

Next we consider the � points, which we want to interpolate directly from the neighboring C
points along the edge of a coarse-grid cell. Specifically, using the averaging approach discussed
below we will remove the connections from � points to � points and generate new weights for the
remaining connections to C points. Thus, the approximate system that defines the interpolation
may be written as

Ahu=

⎡⎢⎢⎢⎣
A�� A�� A�c

0 Â�� Â�c

AT
�c AT

�c Acc

⎤⎥⎥⎥⎦
⎡⎢⎣
u�

u�

uc

⎤⎥⎦=
⎡⎢⎣

f f

f�

fc

⎤⎥⎦= f. (10)
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Figure 2. Schematic of interpolation design.

Now the block involving fine-grid unknowns (of both types) is block upper triangular, and moreover
the diagonal blocks are themselves diagonal. Thus, the interpolation is readily defined by exactly
inverting the homogeneous equation associated with this block,

Îfc=−
[
A�� A��

0 Â��

]−1[ A�c

Â�c

]
=− Â−1ff Âfc, (11)

and by replacing Ifc in (7) by Îfc. Thus, the operator-induced interpolation in BoxMG is multipass
interpolation [5] that takes advantage of the nearest neighbor stencil on a structured grid. Moreover,
the only approximation in the interpolation is made along logical coarse-grid lines.

To develop the interpolation weights for the points embedded in the coarse-grid lines, we average
the fine-grid stencil over the dimension transverse to each line. For example, consider writing the
fine-grid stencil at a � point on an x-line in compass-based notation,⎡⎢⎣

−NW −N −NE
−W O −E
−SW −S −SE

⎤⎥⎦
2i+1, j

,

where (2i+1, j) are fine-grid indices and where we have ignored symmetry to simplify the
discussion. Now we assume that the error is constant in the transverse direction (i.e. y) and varies
along the coarse-grid line (i.e. x). This leads to the one-dimensional stencil,

[−(W+SW+NW) (O−S−N ) −(E+SE+NE)]2i+1, j , (12)

and defines the corresponding entries in the matrices, Â�� and Â�c. If the fine-grid dimension in
x is even, then (12) provides an extrapolation formula, and the Galerkin coarse-grid operator (5)
still provides meaningful coefficients. Similarly, we may derive the approximations for the � points
embedded in y-lines.

Although, the definition of the interpolation seems complete, there are few points worth noting.
First, this approximation has preserved the symmetry of the operator. Hence, defining the integrated
stencil weights,

W =W+SW+NW, O=O−S−N and E=E+SE+NE,
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584 J. E. DENDY JR AND J. D. MOULTON

and rewriting (12) as

[−W O −E ]2i+1, j , (13)

it is apparent that this is a one-dimensional diffusion equation that implicitly contains the discontin-
uous coefficients from the original problem. With respect to this one-dimensional discrete system,
it is well known that the perfect interpolation is readily defined by [ Â��]−1 Â�c.

Second, in the case of pure diffusion (i.e. �=0), this is a zero sum operator at interior points and
on Neumann boundaries. Here we have O=W+E , and the interpolation weights clearly preserve
the constant or near null-space of the operator. In fact, we could substitute this in (13) to define
the interpolation by,

[−W (W+E) −E ]2i+1, j . (14)

Also, in the case �=0 this interpolation preserves the continuity of the normal flux [7], and
does not make assumptions about the continuity of the gradient (x derivative). Moreover, in
conjunction with Galerkin coarsening it effectively introduces the harmonic mean of the diffusion
coefficient when coarsening across discontinuities, which corresponds with well-established results
in homogenization [22].

Finally, we consider which of these definitions is the best when � �=0, as this is effectively the
case for boundary points where there is a Dirichlet or mixed boundary condition as well. We have
found examples when one definition performs much better than the other, and the heuristics of
which to choose have evolved over time. Letting �=W+E , the current implementation defines
the diagonal weight as

[diag( Â��)]2i+1, j=
{
O O>(1+�)�,

� O�(1+�)�,
(15)

where �=min(|W |/O, |E |/O). Note that if the points at the right boundary are extrapolated (i.e. if
the fine-grid dimension x is even), then this definition uses O , even if �≡0. Analogous behavior
is defined for � points on a y-line, and the interior points, �. Here the switch for interior points is
necessary to ensure that a consistent approximation is made in A��. Furthermore, with extrapolation
cases it was noted in [1] that convergence is helped by replacing uk←uk+ I kk−1uk−1 with

uk←uk+ I kk−1uk−1+( f k−Akuk)/O (16)

at F points on the boundary. In effect, (16) adds on the result of a Jacobi relaxation (cf. [5]), for
little cost, since the residual on Gk has already been computed and stored. Hence, BoxMG uses
this Jacobi step at all F points.

Smoothing: With standard coarsening selected a priori the complementarity of coarse-grid
corrections and smoothing hinges on the selection of appropriate smoothers. For problems with
isotropic diffusion (i.e. D is a scalar) and uniform grids, red–black Gauss–Seidel has proved to be
a robust and efficient smoother. For problems with anisotropic diffusion, we need a more powerful
block smoother and use alternating red–black (zebra) line relaxation.
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3. BoxMG: COARSENING BY THREE

Not long after the publication of [1], discussions with Blair Swartz (private communication)
led the first author to consider another possibility, but only with this paper has this idea been
implemented. That possibility is to employ coarsening by a factor of three, which in the case of
cell-centered unknowns is also nested coarsening by cells. This cell-based coarsening by three is
shown schematically in Figure 3 (right), where the coarse-grid cells are shown by the dark lines
and coarse-grid cell-center unknowns are shown as the dark dots. Naturally, coarsening by three
can be applied to a vertex-centered discretization, as is shown schematically in Figure 3 (left). In
addition, the proposed BoxMG algorithm does not place any restrictions on the dimension of the
finest grid.

Galerkin coarse-grid operator: The coarse-grid operators Ak−1, k=M, . . . ,2, are defined by
(5), where I k−1k =(I kk−1)T and where I kk−1 is the operator-induced coarsening derived below. In
the coarsening by two case, the computation of this triple matrix product (5) was coded explicitly,
avoiding all unnecessary multiplication by zeros. However, this is not practical in this case, and
instead we use a local blocking technique [23]. The entries in the coarse-grid operator are calculated
at a grid point (i, j), by applying I k−1k Ak I kk−1 to an identity vector ek−1, which is defined as being
1 at (i, j) and 0 at all other grid points. Since the grid is structured, the extent of the nonzeroes
is known a priori, and all calculations can be performed in small local arrays. This approach is
reasonably efficient and readily parallelized.

Operator-induced interpolation: To develop the operator-induced interpolation for coarsening
by three, we generalize the approach developed in the preceding section for coarsening by two.
We consider the same splitting of points, first into coarse and fine-points, as shown in Figure 4
(left). This splitting does not change the form of the interpolation given in (7), and we still take
Icc to be the identity. Similarly, the use of the perfect Ifc is impractical and we seek a suitable
approximation.

As before, we divide the fine-points into two types: fine-points that are embedded in coarse-grid
lines (�, shown as small boxes in Figure 4) and fine-points that are in the interior of a coarse-grid
cell (�, shown as small hexagons in Figure 4). We then consider the averaging approach presented

Figure 3. Standard coarsening of vertices (left) and the dual-grid of cell-centers (right).
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Figure 4. Schematic of interpolation for coarsening by three.

in the previous section to remove the connections from � points to � points, and generate new
weights for the remaining connections to C points. The block form of the approximate system
remains the same as before (10), although we rewrite it here as

Ahu=

⎡⎢⎢⎢⎣
A�� A�� A�c

0 Â�� Â�c

AT
�c AT

�c Acc

⎤⎥⎥⎥⎦
⎡⎢⎣
u�

u�

uc

⎤⎥⎦=
⎡⎢⎣

f�

f�

fc

⎤⎥⎦= f , (17)

because the dimensionality of the blocks has changed. In particular, in the coarsening-by-two case
Â�� is a diagonal matrix, but here it is block diagonal, with each block a 2×2 matrix. This is shown
schematically in Figure 4 (middle) by the dashed lines that surround the two � points on each line.
Similarly, in the coarsening-by-two case, A�� is a diagonal matrix, but here it is block diagonal,
with each block a 4×4 matrix. This is shown schematically in Figure 4 (right) where the dashed
line surrounds the four � points. Thus, it is still possible to define the multipass interpolation by
exactly inverting the homogeneous equation associated with these blocks

Îfc=−
[
A�� A��

0 Â��

]−1[ A�c

Â�c

]
=− Â−1ff Âfc (18)

and replacing Ifc with Îfc in (7).
Once again to develop the interpolation weights for the points embedded in the coarse-grid

lines, we average the fine-grid stencils over the dimension transverse to each coarse-grid line. For
example, consider a � point on an x-line, and assume that the error is constant in the transverse
direction (i.e. y), and varies along the coarse-grid line (i.e. x). This leads to the approximate
one-dimensional stencils[−W 3i+1, j O3i+1, j −E3i+1, j 0

0 −W 3i+2, j O3i+2, j −E3i+2, j

]
(19)

and defines the corresponding blocks in the matrices, Â��, and Â�c. Similarly, we may derive
the approximations for the � points embedded in y-lines. Although the cases for extrapolation
are significantly more frequent here than in the coarsening-by-two case, the Galerkin coarse-grid
operator still performs well. However, we did find it necessary to modify the smoothing operator,
as discussed below.
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At this point the definition of the interpolation is essentially complete, but a few observations and
modifications motivated by the coarsening-by-two case (Section 2.3) are worth noting. First, the
averaging preserves the symmetry of the operator, and hence leads to a one-dimensional diffusion
operator that implicitly contains the discontinuous coefficients of the original problem. Moreover,
for this one-dimensional case the perfect interpolation is readily defined by [ Â��]−1 Â�c.

Second, in the case of pure diffusion (i.e. �=0), this is a zero sum operator at interior points
and on Neumann boundaries. Here, as with the coarsening-by-two case, we have O=W+E , and
the interpolation weights clearly preserve the constant or near null-space of the operator. Thus, we
could substitute this into (19) to define interpolation by[−W 3i+1, j (W+E)3i+1, j −E3i+1, j 0

0 −W 3i+2, j (W+E)3i+2, j −E3i+2, j

]
. (20)

Hence, in this case it can be shown that this interpolation preserves the continuity of the normal
flux for this one-dimensional diffusion problem. In addition, through the Galerkin coarsening it
introduces the harmonic mean of the diffusion coefficient when coarsening across discontinuities.

Finally, we consider which of these definitions is the best when � �=0. As noted in Section 2.3,
an effectively non-zero removal term appears at boundary points where there is a Dirichlet or
mixed boundary condition as well as at points where � �=0. Here, we propose to use the switch
introduced in (15), for each point in the interpolation formula. Specifically, letting �=(W+E),
we define

[diag( Â��)]3i+1, j=
{
O3i+1, j , O>[(1+�)�]3i+1, j ,
�3i+1, j , O�[(1+�)�]3i+1, j ,

(21)

where �=min(|W |/O, |E |/O). Shifting this definition to the point (3i+2, j), we complete the
definition of the 2×2 blocks of Â�� for � points on an x-line. Analogous formulae are defined
for � points on a y-line, as well as the interior points, �. Here the switch for interior points is
necessary to ensure that a consistent approximation is made in A��. Furthermore, in coarsening by
three, as in coarsening by two, we embed the essentially free Jacobi step in the interpolation (16)
as it improves convergence.

It is interesting to note that in the coarsening-by-three case the interpolation without the switch,
based solely on (19) and its analogous formulae for the remaining fine-grid points, is considerably
more robust than the corresponding formulae for the coarsening-by-two case. This robustness
may be related to the robustness encountered in semicoarsening, [24, 25]. However, an example is
presented in Section 4.4 that demonstrates the necessity of (21).

In addition, coarsening by a factor of n, n>3, could be considered; the diagonal blocks of A��

would be (n−1)×(n−1) matrices, and the diagonal blocks of A�� would be (n−1)2×(n−1)2
matrices. Although this is a costly endeavor, a two-level version of this coarsening procedure lies
at the heart of the popular MsFEM [16]. But as the coarsening factor grows, it is not just the
cost of defining the interpolation that raises concern, but the growing size of the one-dimensional
problems and their impact on the approximation subspace. Thus, it is not surprising that the greatest
efficiency is achieved with smaller coarsening factors. In fact, Brandt’s earliest work [13] notes
experimental evidence that coarsening by a factor of two is nearly optimal and should be used.

Smoothing: As with the coarsening-by-two case, standard coarsening places the burden of
complementarity on the smoother. Once again we use red–black Gauss–Seidel for isotropic
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diffusion, and alternating red–black lines for anisotropic diffusion. However, cell-based coarsening
creates a new problem at the boundary, leaving two lines of points extrapolated at the right and the
top boundaries, if the dimension of the fine-grid in that direction, x or y, respectively, is 3m+1.
Although this does not cause any problem in the formation of the Galerkin coarse-grid operator,
clearly the aggregate loss of accuracy in the correction can be significant. On these particular
grids, we perform a relaxation sweep of these two extrapolated lines, before proceeding with the
relaxation sweep of the entire grid.

We also consider an alternative smoothing for isotropic problems, which we call pattern relax-
ation. The idea is to perform relaxation sweeps compatible with the coarsening procedure, and
hence, compatible with the structure of the interpolation operator. Specifically, since we consider
at most a 9-point nearest neighbor stencil, the connectivity of the blocks used in the interpolation
suggests a corresponding four-color block Gauss–Seidel relaxation scheme. In sweep one a point
Gauss–Seidel sweep is performed on all the coarse-grid points (C points). In sweep two a block
Gauss-Seidel sweep is performed on the four fine-grid points in the interior of each coarse-grid
rectangle (� points). In the third (and fourth) sweep a block horizontal (vertical) Gauss–Seidel
sweep is performed on the pairs of fine-points that lie on coarse-grid lines (� points). If the 2×2
and 4×4 LU decompositions are pre-computed and stored, then the computational cost of pattern
relaxation is very similar to point Gauss–Seidel relaxation. Experimentally (see Section 4.1), the
convergence factor of V (1,1) cycles with pattern relaxation falls in between the convergence
factors of V (1,1) and V (2,2) cycles with colored point Gauss–Seidel relaxation. Note that pattern
relaxation is potentially attractive for coarsening by a factor of large n on certain architectures.

4. NUMERICAL EXAMPLES

The objective of the numerical examples is to demonstrate the robustness of the proposed BoxMG
method with respect to discontinuous diffusion and removal coefficients, D and �, respectively,
different types of boundary conditions, and grid dimensions that are not optimal multiples of three.
In all examples, V(1,1) or V(2,2) cycles are used, and a random initial guess for uM is employed.
Unless otherwise stated, the iteration is terminated when the relative �2 residual on GM is less
than 10−6. In the tables we report the average convergence factor, �A, and the convergence factor
of the last iteration, �L. These convergence factors are defined as

�A=
(
‖r Lk ‖
‖r0k ‖

)1/L

, �L=
(
‖r Lk ‖
‖r L−1k ‖

)
,

where L denotes the index of the last iteration.

4.1. Poisson

In this first example, we consider Poisson’s equation

�U = 0 in �=(0,1)×(0,1), (22a)

�U
��
= 0 on ��, (22b)
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because this simple elliptic problem provides an ideal setting to explore the robustness of the
proposed algorithm with respect to grid dimensions that are not an optimal multiple of three.
In addition, we consider standard 5-point discretizations that are either cell-centered or vertex-
centered.

First, we consider red–black point Gauss–Seidel relaxation for both coarsening-by-two and
coarsening-by-three BoxMG algorithms. In Table I, we highlight the performance of the existing
coarsening-by-two BoxMG algorithm applied directly to the dual-grid of cell-centers. Although
the grid is not optimal for coarsening by two excellent performance is still achieved, with �L=0.10
for the largest grid considered. Next, in Table II, we summarize the performance of the proposed
algorithm for cell-centered coarsening by a factor of three. In the first grouping, the grid dimension
is of the form 3m, and in the last it is 3m+2. Performance in these two cases is very similar, with
V(1,1) cycles giving �L≈0.3, and with V(2,2) cycles giving �L≈0.09. As noted in the previous
discussion of smoothing for coarsening by three, the 3m+1 case is the most challenging because
it leads to extrapolation of two lines of points on the right and the top boundaries. The second
grouping in Table II is marked with an asterisk as this shows the degradation in performance that
results if extra relaxation is not performed on these extrapolated points. In the third grouping, the
extra relaxation on these extrapolated points is performed and the convergence is restored.

Next, we investigate the performance of the pattern relaxation that we introduced in the
smoothing discussion of Section 3. The convergence rates of the coarsening-by-three BoxMG
algorithm with pattern relaxation for a 5-point cell-centered discretization of Poisson are
summarized in Table III. These results are much better than the red–black point Gauss–Seidel
(Table II), with V(1,1) cycles giving �L≈0.1 on the favorably dimensioned grids, and �L≈0.2
on the unfavorable 3m+1 grids. This improvement in convergence rate is sufficient to justify the
additional work and storage of the pattern relaxation. A similar improvement in convergence rates
was observed for the isotropic examples that follow. Hence, in subsequent isotropic examples we
present only the pattern relaxation results.

Coarsening by three can also be applied to vertex-centered discretizations. Since the results
for (22) are about the same as in Table III, they are not presented here. In both the cell-centered
and vertex-centered cases, convergence factors for V(1,1) cycles are better for coarsening by two
than by three. In [13] Brandt made the observation that coarsening by two is the most efficient
coarsening factor in terms of convergence per work unit. However, the relaxation work on coarser
grids for V(2,2) cycles is less than the work on coarser grids for standard BoxMG with V(1,1)
cycles, 1

4 versus 1
3 . In the V(2,2) case for coarsening by three, if a total of two relaxation sweeps,

instead of four, were performed on the finest grid, then the work would be comparable to the work
performed for a V(1,1) cycle in the coarsening-by-two case; unfortunately, �L for this variation is

Table I. Convergence of BoxMG for Poisson (22), using standard coarsening by two,
red–black point Gauss–Seidel, and V(1,1) cycles on the dual-grid of cell-centers.

Grid size �A �L

8×8 0.070 0.112
16×16 0.058 0.111
32×32 0.062 0.120
64×64 0.057 0.114
128×128 0.054 0.106
256×256 0.051 0.100
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Table II. Convergence of BoxMG for Poisson (22), coarsening cell-centers by a factor of three, and using
red–black point Gauss–Seidel relaxation.

CF=3,V (1,1) CF=3,V (2,2)

Grid size �A �L �A �L

9×9 0.199 0.259 0.045 0.063
27×27 0.208 0.288 0.051 0.090
81×81 0.226 0.296 0.055 0.094
243×243 0.225 0.299 0.055 0.094

10×10∗ 0.383 0.426 0.131 0.216
28×28∗ 0.305 0.425 0.100 0.208
82×82∗ 0.307 0.432 0.115 0.219
244×244∗ 0.296 0.437 0.096 0.219

10×10 0.177 0.284 0.051 0.110
28×28 0.227 0.298 0.056 0.101
82×82 0.229 0.306 0.058 0.105
244×244 0.227 0.302 0.057 0.099

11×11 0.160 0.224 0.031 0.056
29×29 0.198 0.289 0.045 0.088
83×83 0.211 0.296 0.050 0.090
245×245 0.213 0.298 0.050 0.091

Note the ‘*’ marks the case of a (3m+1)×(3m+1) grid without extra relaxation on extrapolated points at
the right and the top boundaries.

Table III. Convergence of BoxMG for Poisson (22), coarsening cell-centers by a factor of
three, and using pattern relaxation.

CF=3,V (1,1) CF=3,V (2,2)

Grid size �A �L �A �L

9×9 0.083 0.110 0.007 0.014
27×27 0.063 0.102 0.014 0.042
81×81 0.070 0.103 0.009 0.029
243×243 0.068 0.102 0.009 0.029

10×10 0.151 0.244 0.031 0.085
28×28 0.135 0.238 0.008 0.075
82×82 0.121 0.231 0.021 0.069
244×244 0.119 0.239 0.022 0.091

11×11 0.070 0.101 0.009 0.025
29×29 0.062 0.099 0.009 0.025
83×83 0.063 0.101 0.009 0.025
245×245 0.063 0.100 0.009 0.024

about the same as �L for V(1,1), leading to the conclusion that the extra relaxation sweeps on the
finest grid are necessary for convergence factors comparable to the V (1,1), CF=2 case. For this
example, the extra work pays off. A simple counting argument shows that V(2,2) with CF=3 and
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pattern relaxation costs about 1.7 times as much V(1,1) with CF=2 and color point-Gauss–Seidel.
Thus, if the ratio of the convergence factors of the former to the convergence factors of the latter
is less than 1.7, the former is competitive with the latter. But for the non-constant coefficient
examples below, the results are not as good, and the former is not quite competitive with the latter.

4.2. A thin layer

In the next example a thin layer is considered, to explore robustness with respect to a discontinuous
diffusion coefficient. This example is the most challenging of the family of layer problems studied
by Khalil and Wesseling in [15]. In fact, it was originally suggested by Brandt as it is a simple
example that forces coarsening across discontinuities. Wesseling’s approach required W-cycles to
achieve a convergence rate that depended weakly on h. The problem is

∇ ·(D∇U )= 0 in �=(0,1)×(0,1), (23a)

�U
��
= 0 on ��, (23b)

where D has the values shown in Figure 5. The results for standard BoxMG and the results for
BoxMG with coarsening by a factor of three are summarized in Table IV.

D=2D=2

0.5+h

0.5
(0,0) (1,0)

(0,1)

D=10

Figure 5. The thin layer suggested by Brandt forces coarsening across the discontinuities.

Table IV. Convergence of BoxMG for the thin layer (23), coarsening factors of two and three.

CF=2,V (1,1) CF=3,V (1,1) CF=3,V (2,2)

Grid size �A �L �A �L �A �L

8×8 0.113 0.173 0.169 0.250 0.028 0.062
16×16 0.072 0.126 0.153 0.241 0.030 0.082
32×32 0.073 0.125 0.161 0.246 0.040 0.089
64×64 0.061 0.117 0.131 0.234 0.025 0.072
128×128 0.056 0.110 0.123 0.236 0.023 0.075
256×256 0.053 0.106 0.124 0.267 0.023 0.090
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4.3. The Checkerboard problem

The next example is for a checkerboard problem:

∇ ·(D∇U )= 0 in �=(0,1)×(0,1), (24a)

�U
��
= 0 on ��, (24b)

where D has the values shown in Figure 6. The checkerboard problem is one of the standard test
cases for the neutron transport and the neutron diffusion equations, and as such, was considered for
vertex-centered differencing in [2]. The parameter a shifts the location of the cross (singularity),
and hence, controls at what resolution it will be coarsened away. For the case a=0, Table V shows
the results for BoxMG with standard coarsening by a factor of two on the dual mesh, and for
cell-centered coarsening by a factor of three. Results are similar for the case that a=h, and are
shown in Table VI.

4.4. Mixed boundary conditions

In this section, we consider two simple examples with vacuum boundary conditions that illustrate
the necessity of the weighting switch developed in Section 3. In fact, we have three possible
definitions of the interpolation to consider. The first defines the weights by the direct averaging of

(0,1)

)0,1()0,0(

D = 1000

D = 1000

D = 1

D = 1

(1,1)

Figure 6. The classic checkerboard pattern.

Table V. BoxMG for (24), coarsening factors of two and three, cell-centered, a=0.
CF=2,V (1,1) CF=3,V (1,1) CF=3,V (2,2)

Grid size �A �L �A �L �A �L

8×8 0.057 0.093 0.131 0.181 0.019 0.026
16×16 0.073 0.121 0.168 0.239 0.043 0.100
32×32 0.075 0.127 0.136 0.231 0.027 0.081
64×64 0.058 0.114 0.139 0.237 0.045 0.167
128×128 0.056 0.110 0.124 0.231 0.023 0.076
256×256 0.055 0.114 0.123 0.245 0.021 0.075
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Table VI. BoxMG for (24), coarsening factors of two and three, cell-centers, a=h.
CF=2,V (1,1) CF=3,V (1,1) CF=3,V (2,2)

Grid size �A �L �A �L �A �L

8×8 0.038 0.075 0.083 0.095 0.014 0.024
16×16 0.045 0.072 0.162 0.231 0.043 0.082
32×32 0.059 0.101 0.081 0.140 0.016 0.056
64×64 0.062 0.105 0.153 0.267 0.056 0.229
128×128 0.069 0.109 0.072 0.114 0.015 0.046
256×256 0.070 0.112 0.125 0.247 0.023 0.092

the operator, without considering whether the interpolation preserves a constant. We will refer to
this as the averaging interpolation and it is given by (13), for CF=2, and by (19) for CF=3. The
second uses a similar averaging of the operator, but explicitly assumes a zero-row-sum operator
to enforce interpolation of a constant. This is dubbed the constant-preserving interpolation and is
given by (14) for CF=2, and by (20) for CF=3. Finally, we can use a switch based on the operator
to determine which of these interpolations, the averaging or the constant-preserving, should be
used. This is simply referred to as the switching interpolation, and is defined by (15) for CF=2,
and by (21) for CF=3.

To develop our examples, we consider standard 5-point cell-centered discretizations of

−∇ ·(D∇U )= 0 in �=(0, XR)×(0,YT ), (25a)

D∇U ·n= 0 on {0}×(0,YT )∪(0, XR)×{0}∪{XR}×(0,YT ), (25b)

D∇U ·n+ 1
2U = 0 on (0, XR)×{YT }, (25c)

with D a diagonal tensor and the associated matrix an M-matrix. In this case the discretization
of the vacuum boundary condition leads to a diagonally dominant stencil along the top boundary,
akin to a non-zero removal term. The strength of the diagonal dominance depends on the mesh
spacing, h, and the y-component of the diffusion tensor, Dyy. Now, to demonstrate the need for
the switched interpolation we consider two cases that explore this dependence. First we consider
isotropic diffusion on a large domain,

D=
[
1 0

0 1

]
, XR=YT =128. (26)

Here, h�Dyy=1, making the stencil at the top boundary strongly diagonally dominant and making
the use of constant-preserving interpolation suspect. In fact, the results in Table VII show that for
both coarsening by two and coarsening by three, use of constant-preserving interpolation leads to
slow convergence. In contrast, Table VIII shows that using the averaging interpolation leads to
good results for this case. In this case, there is no difference between the convergence rates of the
averaging and switching interpolation; hence we do not explicitly show the latter.

Published in 2010 by John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2010; 17:577–598
DOI: 10.1002/nla



594 J. E. DENDY JR AND J. D. MOULTON

Table VII. Convergence of BoxMG for the large-domain problem (26), with
constant-preserving interpolation.

CF=2,V (1,1) CF=3,V (1,1)

Grid size �A �L �A �L

8×8 0.305 0.374 0.072 0.101
16×16 0.417 0.532 0.444 0.555
32×32 0.483 0.620 0.063 0.099
64×64 0.500 0.721 0.433 0.575
128×128 0.495 0.698 0.307 0.588
256×256 0.460 0.714 0.506 0.745

Table VIII. Convergence of BoxMG for the large-domain problem (26), with averaging interpolation.

CF=2,V (1,1) CF=3,V (1,1)

Grid size �A �L �A �L

8×8 0.037 0.055 0.116 0.148
16×16 0.072 0.124 0.153 0.239
32×32 0.062 0.129 0.133 0.203
64×64 0.060 0.117 0.128 0.237
128×128 0.058 0.114 0.096 0.206
256×256 0.056 0.111 0.118 0.245

Second, we show an example for which averaging interpolation does not always give good
results, and hence, the switching interpolation is necessary. Specifically, we consider a constant-
coefficient anisotropic problem

D=
[
1 0

0 100

]
, XR=YT =1. (27)

and employ y-line relaxation. Here, the problematic grid dimensions are somewhat different for
coarsening by two and coarsening by three. Specifically, for coarsening by two the inadequacy
of averaging interpolation is most apparent on grids that are of dimension 2M+1, and is shown
in Table IX. On these grids the line of cell-centers next to the top boundary, which has the
diagonally dominant stencils, appears on all coarser levels. However, as the dimension of the fine
mesh increases sufficiently, h�Dyy, the boundary stencils become essentially zero row sum. At
this critical resolution, 129×129 in Table IX, the averaging interpolation is essentially constant
preserving, and good convergence rates are restored. In contrast, the good convergence results for
the switching interpolation (see Table IX) are largely independent of the grid dimension.

Coarsening by three honors the cell structure and is most intuitively viewed as an aggregation
strategy. On each successive level, the aggregates grow, and hence the cell-center migrates away
from the boundary and the strength of the diagonal dominance is weakened. For this reason,
averaging interpolation with CF=3 is generally more robust for this problem. However, we have
found that grids of dimension 3m+2 may be problematic, as is shown in Table X. In particular,
the averaging interpolation performs poorly for the 8×8 and 32×32 grids. Once again, as the
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Table IX. Convergence of BoxMG for the anisotropic problem (27), with CF=2 and y-line relaxation.

V (1,1) and averaging V (1,1) and switching

Grid size �A �L �A �L

9×9 0.564 0.913 0.0001 0.0005
17×17 0.553 0.954 0.003 0.014
33×33 0.531 0.981 0.004 0.034
65×65 0.502 0.994 0.005 0.045
129×129 0.007 0.198 0.004 0.042
257×257 0.006 0.084 0.005 0.045

Table X. Convergence of BoxMG for the anisotropic problem (27), with CF=3 and y-line relaxation.

V (1,1) and averaging V (1,1) and switching

Grid size �A �L �A �L

8×8 0.062 0.357 0.010 0.143
17×17 0.009 0.176 0.005 0.054
32×32 0.504 0.986 0.005 0.048
65×65 0.006 0.069 0.005 0.060
128×128 0.005 0.051 0.005 0.050
257×257 0.005 0.074 0.005 0.046

dimension of the fine-mesh increases, the averaging interpolation approaches constant-preserving
interpolation, and good convergence rates are restored. The convergence rates for the switching
interpolation are also presented in Table X, and clearly show the robustness of this algorithm.

Thus, switching interpolation appears to be the most robust choice. There are more compli-
cated examples for non-zero removal and vacuum boundary conditions, and with discontin-
uous D, but it is interesting that the above difficulties can be illustrated with such simple
examples.

4.5. Non-zero removal

The final example is Experiment No. 4 from [26], which develops an SA method. This anisotropic
problem with a non-zero removal term may be written as

−∇ ·(D∇u)+qu = f (x, y) in �=(0,1)×(0,1), (28a)

u = 0 ∀(x, y)∈��, (28b)

where the diffusion tensor is defined in quadrants of the domain by

D=
[
a 0

0 1/a

]
, a(x, y)=

⎧⎪⎪⎨⎪⎪⎩
10−2, (x, y)∈(0,0.5)×(0,0.5),

1, (x, y)∈(0,0.5)×(0.5,1),

102, (x, y)∈(0,0.5)×(0,1).

(29)
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Table XI. BoxMG for the Vanek problem.

CF=2,V (1,1) CF=3,V (1,1) CF=3,V (2,2)

q �A �L �A �L �A �L

0.1 0.020 0.365 0.145 0.595 0.055 0.452
1.0 0.020 0.365 0.145 0.595 0.055 0.452
10 0.020 0.365 0.145 0.595 0.055 0.452

The discretization in [26] uses P1 elements on a ‘regular grid’, with 160 000 nodes. Similarly,
in this study we use P1 elements on a triangular grid obtained by subdividing a rectangular grid
with southwest–northeast diagonals, where the rectangular grid has mesh size �x=�y= 1

400 . The
values we consider for the removal term, q=0.1, q=1, and q=100, are those used in [26]. For
regions with anisotropic coefficients, their method employs aggregation of elements that results in
semi-coarsening of shape functions. Thus, the number of unknowns on the first coarse-grid for (28)
should be at least (2)( 34 )+( 14 )= 7

4 times the number of unknowns on the finest grid. Since there
is bound to be some overlap between the semi-coarsened anisotropic subregions and the standard-
coarsened isotropic subregion, we will assume the number to be closer to 2 than to 7

4 . Because
of the semi-coarsening aggregation strategy, Vanek et al. [26] is able to employ a pointwise pre-
smoothing strategy of a sweep of forward point Gauss–Seidel followed by a backward sweep of
point SOR with �=1.85. Similarly, the post-smoothing strategy consists of a backward sweep of
point SOR with �=1.85 followed by a forward sweep of point Gauss–Seidel. Thus for comparison
purposes, we employ V(2,2) cycles with alternating red–black line relaxations. Neither the initial
guess nor f is specified in [26]; hence, we take f ≡0 and a random initial guess for UM . We
terminate the iteration when the relative �2 residual on GM is less than 10−5, as in [26]. We also
show results for a V(1,1) cycle. The results are shown in Table XI.

For V(2,2), the average convergence factor is better than the �A=0.1 reported in [26].
Since the method in that reference is an SA method, it is obviously able to handle more
general problems than the method reported in this paper. For this particular example, a more
careful comparison would require evaluating convergence factors versus actual work. More
generality for the method in this paper could be attained by extending it to locally refined
grids.

5. CONCLUSIONS

We have generalized BoxMG to allow for coarsening by a factor of three and have presented
some numerical examples to compare it with the classic BoxMG. In the development of this
generalization, we have included a new discussion on the motivation for the switching mechanism
used in the interpolation operators, and we have introduced ‘pattern’ relaxation. This new colored
block Gauss–Seidel scheme is motivated by the form of the interpolation operator and was demon-
strated to be more effective than colored point Gauss–Seidel relaxation. The numerical examples
demonstrate the robustness of the new algorithm with respect to discontinuous coefficients, and
flexibility with respect to grid dimensions. However, when coarsening by a factor of three, V(2,2)
cycles are required to obtain a convergence rate that is better than V(1,1) cycles when coarsening
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by a factor of two, and for all except constant-coefficient problems, the extra work is not justified.
Thus, if one does not require coarsening by cells, then there is no real justification for coarsening
by a factor of three. But if coarsening by cells is desired, then BoxMG with coarsening by a factor
of three has been shown to be an effective algorithm.
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