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Abstract

Multigrid methods are highly efficient solution techniques for large sparse structured linear systems which are positive definite
and ill-conditioned. In a recent paper [R. Fischer, T. Huckle, Multigrid methods for anisotropic BTTB systems, Linear Algebra
Appl. (2005), submitted for publication], multigrid methods have been developed which are especially designed for anisotropic
matrices belonging to the two-level Toeplitz class. These methods are primarily based on the use of a suitable combination of
semicoarsening and full coarsening steps. In this paper the main focus is on the design of efficient smoothing techniques. Moreover,
we are not only interested in two-level Toeplitz matrices, but also in matrices of two-level trigonometric matrix algebras. First, we
describe methods for systems with anisotropy along coordinate axes. Although some of the ideas are known from the solution of
partial differential equations, we present them here in a more formal way using generating functions and their level curves. This
allows us not only to obtain theoretical results on convergence and reduction of anisotropy, but also to carry over the results to
systems with anisotropy in other directions. We introduce new coordinates in order to describe these more complicated systems
in terms of generating functions. This enables us to develop smoothers which are especially suitable for these more complicated
systems.
© 2007 Published by Elsevier B.V. on behalf of IMACS.
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1. Introduction

Multigrid methods belong to the fastest iterative methods for the solution of large sparse structured linear systems
of equations. Many applications such as discretization of partial differential equations lead to two-level Toeplitz, tau,
or circulant systems. If these are positive definite, i.e. corresponding to strictly positive generating functions, they are
easily solved with the conjugate gradient algorithm preconditioned by circulant or tau matrices [4]. If the generating
function has up to a finite number of zeros, the use of multigrid methods is significantly more efficient, see e.g. [5,3].
If systems are anisotropic, the classical convergence theory for (multilevel) Toeplitz, tau, or circulant matrices [3,11,
12,2] still holds, but standard multigrid methods converge so slowly that they become totally impractical. Therefore,
we have devised a multilevel method which is especially designed for application to anisotropic two-level Toeplitz
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problems [6]. This method is entirely based on the use of semicoarsening combined with standard smoothers. The main
results are theoretical, concerning the reduction of anisotropy and convergence properties of the two-grid method. In
this paper, multilevel methods are developed not only for two-level Toeplitz systems, but also for matrices belonging
to an class such as circulant and tau matrices with special attention to the anisotropic case (for the isotropic case see [3,
11,12,2]). Especially if these systems are sparse, multigrid methods are the fastest iterative solvers [5]. Furthermore,
we focus on the use of more sophisticated smoothing techniques which can be combined with standard coarsening
as well as semicoarsening. Generating functions will be a very helpful tool for the development of our methods.
Numerical results will be given to illustrate and compare the different multilevel methods.

The article is organized as follows. In Section 2 we explain fundamental properties of multigrid methods for struc-
tured linear systems and describe the problems arising from anisotropic systems. In Section 3 we consider matrices
corresponding to generating functions where anisotropy occurs along coordinate axes. After reviewing some results
from [6] we focus on the use of suitable smoothers and on the numerical comparison of the different methods. The
problems considered in Section 4 are more difficult to solve, because anisotropy occurs in arbitrary directions. We
develop multigrid methods which are suitable for this case by carrying over the results from Section 3, again laying
special emphasis on the use of smoothers and on numerical tests.

2. Multigrid methods for structured linear systems

Both two-level Toeplitz (BTTB) matrices and matrices forming an algebra such as two-level tau (BττB) or circu-
lant (BCCB) matrices are closely related to generating functions. These functions will be essential in this paper for the
derivation of multigrid methods with certain properties. For the Toeplitz case the correspondence between matrices
and generating functions is for example described in [10,7]. Suppose f (x, y) is a real-valued Lebesgue integrable
function which is defined on [−π,π]2, and periodically extended on the whole plane. Then the Fourier coefficients of
f are given by

ak,l = 1

4π2

π∫
−π

π∫
−π

f (x, y) e−ikx−ily dx dy (k, l ∈ Z).

Amn[f ] is the corresponding mn-by-mn BTTB matrix with entries (Amn[f ])(j,k)(p,q) = aj−k,p−q (0 � j, k < m,

0 � p,q < n), where (j, k) indicates the block in Amn[f ] and (p, q) the position within the block. If fmin and fmax
denote the infimum and supremum values of f , and if fmin < fmax, then for all m,n � 1, the eigenvalues of Amn[f ]
lie in the interval (fmin, fmax). For n,m → ∞, the extreme eigenvalues tend to fmin and fmax.

Matrices belonging to a two-level trigonometric algebra are diagonalized by a unitary transform Qmn, i.e. they are
of the form

Amn[f ] = QH
mnΛmn[f ]Qmn, (1)

where Λmn[f ] is the diagonal matrix containing the eigenvalues λk,l of Amn[f ]. For two-level circulant matrices
these are given by λk,l = f ( 2πl

m
, 2πk

n
) with 0 � k � n − 1,0 � l � m − 1, and for two-level tau matrices by λk,l =

f ( πl
m+1 , πk

n+1 ) with 1 � k � n,1 � l � m. This implies that unlike Toeplitz matrices, matrices from trigonometric
algebras can become singular if f is zero at one of the grid points. If this happens, Amn[f ] is usually replaced by the
so called Strang correction [15], which was originally defined for circulant matrices, but which can be used for other
matrix algebras as well [2].

In recent years, multigrid methods turned out to be the most efficient solution techniques for ill-conditioned linear
systems of Toeplitz, tau, or circulant type whose generating function has isolated zeros [5,11,2,12,13,8]. Alle these
methods are based on the algebraic multigrid method (AMG) developed by Ruge and Stüben [9], which as a purely
algebraic method does not use real grids. To develop an AMG method we have to define a smoother and a coarse
grid correction operator on each level. Usually, a simple smoother such as the damped Richardson or Jacobi method
is applied, which is denoted by S : Rmn → R

mn. To compute the coarse grid correction operator we need to define
a restriction matrix P : Rmn → R

mCnC with nCmC being the dimension of the coarse grid system matrix AC . The
transpose P T is chosen to be the prolongation matrix. The matrix P = BE formally consists of two parts. B is defined
to deal with the zero of f , whereas E is the two-dimensional elementary projection matrix, picking every second
column and every second block column of a matrix. It is obtained from the one-dimensional projection matrices Em



R. Fischer, T. Huckle / Applied Numerical Mathematics 58 (2008) 407–421 409
and En by E = Em ⊗ En. In the circulant case, we use En(:,1 : 2 : n) with even n, whereas in the Toeplitz and tau
case En(:,2 : 2 : n) with odd n. If the Toeplitz structure should be retained on coarser levels, which is for example
necessary for some convergence proofs, we have to apply a cutting matrix, which eliminates the first few rows and
columns of the coarse grid matrix. Different cutting matrices were suggested in [2]. The matrix AC is then computed
with the Galerkin approach, i.e. as the product

AC = PAmn[f ]P T = ET(
BTAmn[f ]B)

E. (2)

The product Â = BTAmn[f ]B translated into generating functions gives

f̂ (x, y) = f (x, y)b(x, y)2, (3)

whereas the elementary projection AC = ETÂE becomes

f2(x, y) = 1

4

[
f̂

(
x

2
,
y

2

)
+ f̂

(
x

2
+ π,

y

2

)
+ f̂

(
x

2
,
y

2
+ π

)
+ f̂

(
x

2
+ π,

y

2
+ π

)]
. (4)

In the Toeplitz and tau case x/2 + π and y/2 + π are replaced by π − x/2 and π − y/2. This means f2 is obtained
from the Fourier series of f̂ by picking every second coefficient in x and every second coefficient in y. So far, we
have not yet chosen a function b(x, y) for prolongation. Fiorentino and Serra [5] suggest to use a nonnegative function
which is strictly positive at (x0, y0) and zero at the so called mirror points

M
(
(x0, y0)

) := (x0 + π,y0), (x0, y0 + π), and (x0 + π,y0 + π). (5)

In the Toeplitz and tau case, terms such as x0 + π are replaced by π − x0. For this choice they showed that AC is also
positive definite, and its generating function has the single zero (2x0,2y0). The choice

b(x, y) = (
1 + cos(x − x0)

)(
1 + cos(y − y0)

)
, (6)

satisfies these properties and corresponds to a matrix which is extremely sparse. The coarse grid correction operator
can be written as X = Imn − P TA−1

C PAmn[f ], leading to a global iteration matrix of the two-level method G =
Sν2XSν1, where ν1 denotes the number of presmoothing steps and ν2 the number of postsmoothing steps. If the zero
at (x0, y0) is of order higher than 2, b(x, y) from (6) is not enough. In [2] the authors point out that b(x, y) must be
chosen as a power of (1 + cos(x − x0))(1 + cos(y − y0)) in this case. A multilevel method is defined by using the
two-level method recursively to approximate the inverse of AC .

All convergence proofs developed so far for our structured matrix classes are based on general convergence results
by Ruge and Stüben [9]. In order to state their theorem for the two-level method we must define the following inner
products in addition to the Euclidean inner product 〈u,v〉 for the system matrix A:

〈u,v〉0 = 〈
diag(A)u, v

〉
, 〈u,v〉1 = 〈Au,v〉,

〈u,v〉2 = 〈
diag(A)−1Au,Av

〉
. (7)

The respective norms, which are derived from these inner products, are denoted ‖ · ‖i , i = 0,1,2.

Theorem 1. (Ruge and Stüben [9]) Let A be a positive definite mn-by-mn matrix, and let S be a smoother satisfying
the presmoothing and the postsmoothing condition, i.e. there exist αpre, αpost > 0 such that∥∥Seh

∥∥2
1 �

∥∥eh
∥∥2

1 − αpre
∥∥Seh

∥∥2
2, ∀eh ∈ R

mn. (8)∥∥Seh
∥∥2

1 �
∥∥eh

∥∥2
1 − αpost

∥∥eh
∥∥2

2, ∀eh ∈ R
mn. (9)

Furthermore, suppose that the restriction operator P has full rank and that the correcting condition is satisfied, i.e.
there exists a β > 0 such that

min
eH ∈R

mCnC

∥∥eh − P TeH
∥∥2

0 � β
∥∥eh

∥∥2
1, ∀eh ∈ R

mn. (10)

Then β > αpost, and the convergence factor of the two-level method ‖T G‖1 is bounded by

‖T G‖1 �
√

1 − αpost/β

1 + αpre/β
.
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Remark 2. Theorem 1 still holds if diag(A) in (7) is replaced by any Hermitian positive definite matrix Y (see
Remark 2.2 in [2] for the mathematical motivation). We will make use of this degree of freedom in the proof of
Theorem 7.

Sun, Jin and Chang [13] use Theorem 1 to prove the optimal convergence rate of the two-grid method and level-
independency for BTTB systems where f has a zero of order at most two in the origin, i.e. where f satisfies

min
(x,y)∈[−π,π]2

f (x, y)

2 − cosx − cosy
= C > 0. (11)

This is sufficient to obtain W-cycle convergence, but not necessarily V-cycle convergence, see the counterexamples in
[2] and, for a more general discussion of V-cycle and W-cycle convergence, the book of Trottenberg et al. [14]. For
multilevel tau and circulant matrices optimal V-cycle convergence, also for functions with zeros of higher order, has
been proved in [2]. The conditions

lim sup
(x,y)→(x0,y0)

∣∣∣∣bj ((xi, yi))

fj ((x, y))

∣∣∣∣ < ∞ for (xi, yi) ∈ M
(
(x0, y0)

)
, (12)

0 <
∑

(xi ,yi )∈M((x0,y0))∪{(x0,y0)}
b2
j

(
(xi, yi)

)
(13)

must hold on each grid j of the multigrid method.

Remark 3. Let f (x, y) be a nonnegative generating function which has a zero at (0,0). If f has another zero at one of
the mirror points from (5), the multigrid method from above fails completely in all numerical experiments. If f is zero
at the origin and at one of the mirror points, conditions (12) and (13) cannot be satisfied for both points. Therefore,
the convergence theory developed in [11,2,1,12] does not hold anymore: this observation is motivated theoretically in
Remark 5.1 of [2] and, even in more detail, at pages 60 and 70 of [12] even if its origin can be tracked in Section 5.1
of [5]. Furthermore, at p. 60 of [12] there is a short discussion on possible constructive proposals, by R. Chan et. al.
and by Huckle, in order to overcome this problem (see Refs. [6] and [12] in the paper [12]). Even if f is close to zero
at one of the three points (0,π), (π,0), (π,π), convergence of the multigrid method is extremely slow.

This remark will be crucial for anisotropic systems, which arise for example from discretization of partial differ-
ential equations. One important model problem for our experiments is obtained from the following equation, which is
closely related to the Poisson equation −εuxx − uyy = f . Finite difference discretization of this equation with a five
point stencil on a uniform mesh leads to the following linear system.

Example 4. Let Amn[f ] be the matrix corresponding to the generating function

f (x, y) = α
(
1 − cos(x)

) + (
1 − cos(y)

)
. (14)

If α = 1, we get one of the isotropic standard model problems, the discrete Poisson equation. For α � 1, the problem
becomes strongly anisotropic.

The function

f (x, y) = αx2 + y2 (α � 1) (15)

corresponds to linear systems which have a similar type of anisotropy, but which are not sparse.
With these functions we can illustrate why the standard multigrid methods from Section 2 should not be used

for the solution of anisotropic systems. Again, generating functions turn out to be a helpful tool for the analysis of
multigrid methods.

• If the anisotropy is strong, i.e. if α � 1, the function f becomes close to zero on the whole x-axis, and especially
at (π,0). From Remark 3 we know that convergence is extremely slow in this case.
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Fig. 1. Curves f (x, y) = 0.01 for the function from Example 4 with α = 1,0.1,0.01.

• Even for moderately anisotropic systems we obtain a weak connection in one direction due to small coefficients
in front of the x-terms in f . This can be described very well if we look at level curves of the generating function
f from Example 4. Fig. 1 depicts the curve f (x, y) = 0.01 for three different values of α, i.e. for three different
degrees of anisotropy. The solid curve for α = 1 is totally isotropic, i.e. almost like a circle. The dashed curve
with α = 0.1 is only moderately anisotropic, and the dotted curve for α = 0.01 is significantly more anisotropic,
which means that the curve is very flat. If anisotropy is even stronger, the value of the function hardly depends
on x, making coarsening in x-direction rather useless.

In the following we wish to develop multigrid methods for anisotropic systems with special emphasis on the devel-
opment of suitable smoothers. Therefore, we divide these systems into two classes. The first class contains matrices
where anisotropy occurs along coordinate axes such as the matrices from Example 4. The methods will be described
in a formal way using the notation of generating functions, giving us a different view on this type of anisotropic prob-
lems which are known from the solution of partial differential equations. This enables us to carry over the results to
the second class of anisotropic problems, where anisotropy occurs in other directions.

3. Anisotropy along coordinate axes

Two-level structured matrices where anisotropy occurs along coordinate axes were introduced in Example 4. Multi-
grid methods which do not suffer from the problems described in the previous section can be constructed in two
different ways, either using semicoarsening or more sophisticated smoothers. First, we review some results from [6],
where all multigrid methods are constructed with semicoarsening. Then, we develop methods using line smoothers
and standard coarsening, and finally, both methods are tested and compared numerically.

3.1. Theoretical results on semicoarsening

One possible way to get rid of the two problems described in the previous section is to use semicoarsening in the
direction perpendicular to the anisotropy. The smoother is then chosen to be a pointwise one such as the damped
Jacobi method. For example, if coarsening is done in y-direction only, the function corresponding to the matrix B in
P = BE is

b(x, y) = 1 + cos(y − y0), (16)

instead of (6). If the zero is of higher order, we chose (1 + cos(y − y0))
k . The product Â = BAmn[f ]B , i.e. f̂ (x, y) =

f (x, y)b(x, y)2 is computed as in the isotropic case. The elementary projection matrix E is chosen to be Emn =
Im ⊗ En with the one-dimensional projection matrix En from Section 2. Translated to generating functions this be-
comes

f2(x, y) = 1

2

(
f̂

(
x,

y

2

)
+ f̂

(
x,

y

2
+ π

))
. (17)

We obtain a coarse grid matrix AC with half as many blocks as Amn[f ], but with the same block size. In the following,
let us assume without loss of generality that the zero (x0, y0) of f (x, y) is located at the origin.

In [6] we obtained two important theoretical results. The first of them concerns the reduction of anisotropy, which
is measured with the ratio rF = xF /yF of the points (xF ,0) and (0, yF ) where curves f (x, y) = c intersect x- and
y-axis for very small c > 0. Since it is stated purely in terms of generating functions, it holds for circulant and tau
matrices as well.

Theorem 5. Let f be a nonnegative generating function with a zero of order 2 at the origin which is of the form

f (x, y) = [
λ1

(
1 − cos(x)

) + λ2
(
1 − cos(y)

)]
h(x, y) (18)
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with h(x, y) > 0 and λ1, λ2 > 0. Let f2 be the function obtained by one semicoarsening step with b from (16). Then the
degree of anisotropy, measured with rF , is reduced by a factor 2. Since f2 is also of the form (18), each semicoarsening
step reduces the anisotropy by a factor 2.

This theorem yields a straightforward heuristic for the development of a multigrid method: Apply semicoarsening
until the system is not anisotropic anymore, i.e. until rF is reduced to almost 1, then switch to full coarsening.

The other theoretical result from [6] concerns two-grid convergence and level independency. The proofs of [3] and
[13] are carried over to anisotropic two-level Toeplitz systems. If anisotropy occurs along the x-axis, i.e. if f (x, y) is
small for y = 0 and all x ∈ [0,2π], coarsening is done only in y. In this case, f is allowed to be zero on the whole
line y = 0. Thus, (11) is replaced by

min
(x,y)∈[−π,π]2

f (x, y)

1 − cosy
= C > 0. (19)

The following theorem proves convergence of the two-level method.

Theorem 6. ([6]) Let Amn[f ] be a positive definite BTTB matrix whose generating function f is real-valued even and
satisfies (19). Moreover, let the prolongation matrix be given by (16), and let the smoother be the damped Richardson
or Jacobi method.

Then, the convergence factor of the two-level method is uniformly bounded below 1 independent of m and n. The
following estimate for the convergence factor holds:

‖T G‖1 �
√

1 − C/
(
2ρ

(
Amn[f ])).

It is also shown that if (19) holds on some level, it also holds on the next coarser level after one semicoarsening
step. If q levels of semicoarsening are used, the following estimate for the convergence factor holds:

∥∥T Gq
∥∥

1 �
√

1 − αq

βq
=

√
1 − αh

4q−1βh
. (20)

A similar estimate holds if we mix semicoarsening and full coarsening steps.

3.2. The use of line smoothers

Anisotropic systems can be solved with a different multigrid strategy where standard coarsening from Section 2
can still be used. However, this requires application of an adequate smoother on each level. Line smoothers such as
the damped block Jacobi method smooth along a whole line of grid points, which corresponds to a block of unknowns
in the solution vector. These unknowns, and therefore also the rows and columns of the matrix, must be permuted
and then grouped into blocks. Fig. 2 shows how the blocks of the matrix are built, i.e. how the rows and columns of

Fig. 2. Partitioning of the original matrix into blocks.
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Amn[f ] must be permuted for smoothing. Each point in the pictures corresponds to one unknown in the solution and
to one line or column of the matrix, similar to the discretization of PDEs. If anisotropy occurs along the y-axis, the
blocks must be constructed as it is shown in the left picture. No permutation is necessary, and all blocks have size n. If
anisotropy occurs along the x-axis, the right picture applies. The rows and the columns are permuted with the vector(

1, n + 1,2n + 1, . . . , (m − 1)n + 1,2, n + 2,2n + 2, . . . , (m − 1)n + 2, . . . ,

n − 1, n + n − 1,2n + n − 1, . . . , (m − 1)n + n − 1
)
,

which can also be interpreted as a change of the variables, i.e. as a new coordinate system, where x and y are inter-
changed. This idea will become more important in Section 4. The blocks in this case are of size m. The following
theorem shows that the block Jacobi method indeed satisfies the smoothing conditions (8) and (9) of the Ruge–Stüben-
theorem if anisotropy occurs along the y-axis. The condition for anisotropy in x-direction follows immediately.

Theorem 7. Let f be a nonnegative generating function with a zero of order 2 at the origin which is of the form

f (x, y) = [(
1 − cos(x)

) + α
(
1 − cos(y)

)]
h(x, y) (21)

with 0 < α � 1 and the trigonometric polynomial h satisfying 0 < hmin � h(x, y) � hmax < ∞. Let A = Amn[f ] be
the corresponding two-level tau or circulant matrix, and D the block diagonal matrix with the same diagonal blocks
as A, corresponding to the generating function

g(x, y) = (
1 + α − cos(x)

)
h̃(x). (22)

h̃ is obtained by eliminating all terms in h containing y. Let Mf ,Mg,Mf/g denote the maximum values of f,g,f/g.
If h̃(x) > 0, then the block Jacobi method x(k+1) = x(k) + ωD−1(b − Ax(k)), i.e. S = I − ωD−1A, satisfies the

smoothing conditions (8) and (9). More precisely, for 0 � ω � 2/Mf/g there exist nonnegative αpre, αpost with

αpre � min

{
2ω,

ω(2 − ωMf/g)

(1 − ωMf/g)2

}
,

αpost � ω(2 − ωMf/g). (23)

Proof. First of all, we show that the functions f , g, and f/g are bounded by Mf ,Mg, and Mf/g .

Mf = max
(x,y)∈[−π,π]2

f (x, y) = (2 + 2α)hmax,

Mg = max
(x,y)∈[−π,π]2

g(x, y) = (2 + α)h̃max,

f (x, y)

g(x, y)
� 1 − cos(x) + α(1 − cos(y))

1 − cos (x) + α

hmax

h̃min
�

(
1 + −α cos(y)

1 − cos(x) + α

)
hmax

h̃min

�
(

1 + −α · (−1)

α

)
hmax

h̃min
� 2

hmax

h̃min
.

This implies that Mf/g = max(x,y)∈[−π,π]2 f (x, y)/g(x, y) = 2hmax/h̃min. Moreover, f/g has the minimum value
mf/g = 0.

In the following we prove the smoothing conditions with Y = D−1 (see Remark 2). It should be noted that the
proof technique of translating the conditions of Theorem 1 into function inequalities was introduced in [11]. In [1]
the authors use a similar proof technique with Y = I for the damped Richardson method. With our choice of Y the
presmoothing condition (8) can be written SAS � A − αpreSA2D−1S, which is equivalent to(

I − ωD−1A
)
A

(
I − ωD−1A

)
� A − αpre

(
I − ωD−1A

)
D−1A2(I − ωD−1A

)
. (24)

This is implied by the function inequality(
1 − ω

f
)

f

(
1 − ω

f
)

� f − αpre

(
1 − ω

f
)

f 2 (
1 − ω

f
)

, (25)

g g g g g



414 R. Fischer, T. Huckle / Applied Numerical Mathematics 58 (2008) 407–421
and because of f/g � 0 by

1 + αpre
f

g
� 1

(1 − ωf/g)2
. (26)

There exists a nonnegative αpre in (26) only for 0 � ω � 2
Mf/g

. Since f/g can take values between 0 and Mf/g , (26)
holds if

1 + αpret � 1

(1 − ωt)2
(27)

is true for all 0 < t � Mf/g . As in [1] we can deduce that this holds if αpre � 2ω for 0 � ω � 2
Mf/g

, and in addition

1 + αpreMf/g � 1
(1−ωMf/g)2 for 1

Mf/g
< ω � 2

Mf/g
.

The postsmoothing condition is equivalent to(
I − ωD−1A

)
A

(
I − ωD−1A

)
� A − αpostD

−1A2. (28)

This is translated to generating functions and because of f/g � 0 simplified to(
1 − ω

f

g

)2

� 1 − αpost
f

g
, (29)

which leads to nonnegative αpost only for 0 � ω � 2
Mf/g

. (29) is satisfied if

(1 − ωt)2 � 1 − αpostt (30)

holds for 0 < t � Mf/g . Similar to [1] this is shown to be true if 1 − αpostMf/g � (1 − ωMf/g)
2. �

In the following corollary we deduce optimal values for αpre, αpost,ω from (23).

Corollary 8. Under the same assumptions as in Theorem 7 we obtain the following optimal values for the parameters
αpre, αpost,ω:

(1) If one presmoothing step and no postsmoothing is performed, then

ωbest = 3

2Mf/g

, αpre,best = 3

Mf/g

.

(2) If one postsmoothing step and no presmoothing is performed, then

ωbest = 1

Mf/g

, αpost,best = 1

Mf/g

.

(3) If only one step of smoothing shall be performed, then the optimal rate of convergence is obtained with
• one presmoothing step with ω = 3/(2Mf/g) if αpost/β ∈ [0, 2

3 ],
• one postsmoothing step with ω = 1/Mf/g if αpost/β ∈ [ 2

3 ,1].

Proof. The proof uses the same technique as the one in [12]. The first two parts are proved using the estimates for
αpre and αpost from Theorem 7. The first inequality in (23) implies that

αpre,best = max
ω∈(0,2/Mf/g)

{
2ω if ω � 3/(2Mf/g)

(ω(2 − ωMf/g))/(1 − ωMf/g)
2 if ω > 3/(2Mf/g)

}
,

which is obtained for ω = 3/(2Mf/g). The second inequality in (23) leads to

αpre,best = max
ω∈(0,2/Mf/g)

ω(2 − ωMf/g).

The third part is proved by comparing the convergence factors from Theorem 1. One presmoothing step without
postsmoothing leads to

√
1/(1 + αpre,best/β) = √

1/(1 + 3αpost,best/β), whereas one postsmoothing step without pres-
moothing leads to

√
1 − αpost,best/β . �
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Table 1
Iteration numbers for Tnn[f ] with f from Example 4 with α = 0.001

Coarsening n = 26 − 1 n = 27 − 1 n = 28 − 1

y,xy,xy,xy,xy 170 > 200 >200
y,y,y,xy,xy 12 19 23
y,y,y,y,y 7 7 7

Table 2
Iteration numbers for Tnn[f ] with f from (15) with α = 0.001

Coarsening n = 25 − 1 n = 26 − 1 n = 27 − 1

y,xy,xy,xy,xy 76 182 >200
y,y,y,xy,xy 9 11 15
y,y,y,y,y 9 9 9

Remark 9. An extension of Theorem 7 and Corollary 8 to the BTTB case seems rather difficult. For example, the
implication from (24) to (25) does not hold in the Toeplitz case. We have information on the localization of the
spectrum of A,A2,D−1A (see [10]), but not on their linear combinations. The nontrivial structure of D poses a
serious problem. Nonetheless, block Jacobi smoothing leads to fast multigrid convergence for BTTB systems.

3.3. Numerical results

In the previous two sections we have theoretically analyzed two different multigrid methods for anisotropic prob-
lems. Now these methods shall be tested and compared numerically. The first type of multilevel method consists
of a certain number of semicoarsening steps followed by full coarsening steps. The damped Jacobi method or the
Gauss–Seidel method is used as a smoother. Theorem 5 states that the ratio rF is reduced by a factor 2 with each
semicoarsening step. Therefore, we apply semicoarsening until this ratio is close to one, i.e. until the system is not
anisotropic anymore, and then proceed with standard coarsening. For the function f (x, y) from Example 4 with
α = 0.001 the ratio rF is 31.62, which means that on the five finest levels semicoarsening should be performed. In
our numerical experiments we test different coarsening strategies on the matrix Tnn[f ], which belongs both to the
two-level Toeplitz and the two-level tau class. The first strategy (denoted y,xy,xy,xy,xy) consists of one semicoarsen-
ing step, followed by four full coarsening steps, the second (y,y,y,xy,xy) of three semicoarsening steps and two full
coarsening steps, and the third (y,y,y,y,y) of five semicoarsening steps. Table 1 shows the number of V-cycle iterations
our method requires until the residual is smaller than 10−6. These results are obtained with one presmoothing step
and one postsmoothing step on each level with the symmetric Gauss–Seidel method. If the damped Jacobi method
is used, the difference between the coarsening strategies is even more striking. Since we are also interested in mul-
tilevel Toeplitz matrices which are not necessarily connected with PDEs, we take a look at the BTTB matrices with
f from (15), which are not sparse. Again, we choose α = 0.001 and use one iteration of the Gauss–Seidel method
as pre- and postsmoother. Table 2 shows a similar behavior of the multigrid method as we have observed in Exam-
ple 4. Again, the damped Jacobi smoother leads to similar results. It is cheaper concerning computational cost, but
the V-cycle requires a few more iterations. Multigrid methods for circulant matrices are usually only efficient if the
matrix is sparse, because for dense matrices the inverse can be directly computed in O(n log(n)) with the FFT. The
circulant matrix Cmn[f ] with f from Example 4, however, is singular. Therefore, we add 1

(mn)2 Imn to Cmn[f ], which

corresponds to a shift of the grid points and results in the ill-conditioned matrix C̃mn[f ]. In our numerical experiments
we use a V-cycle with six levels and the damped Jacobi method as a smoother. For α = 0.02, the value rF suggest
that we use three steps of semicoarsening followed by full coarsening. For the stronger anisotropy and α = 0.001
five semicoarsening steps are supposed to yield optimal results. The results of the numerical calculations in Table 3
confirm that these suggestions lead to the fastest convergence in both cases.

A completely different strategy consists of using standard coarsening in combination with a line smoother such
as the damped block Jacobi method. If the anisotropy is very strong, this method converges extremely fast, because
the block diagonal matrix of the smoother is a very good approximation of Amn[f ]. If the problem is only mildly
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Table 3
Iteration numbers for C̃mn[f ] with f from Example 4 with α = 0.02 and α = 0.001

α Coarsening n = 26 n = 27 n = 28

0.02 y,xy,xy,xy,xy 24 23 23
0.02 y,y,y,xy,xy 5 5 5
0.02 y,y,y,y,y 8 8 8
0.001 y,xy,xy,xy,xy >200 >200 >200
0.001 y,y,y,xy,xy 27 27 26
0.001 y,y,y,y,y 5 5 5

Table 4
Iteration numbers for Tnn[f ] with f from Example 4 with different α

α n = 26 − 1 n = 27 − 1 n = 28 − 1

0.1 8 8 8
0.001 3 4 6
0.00001 2 2 3

Table 5
Iteration numbers for C̃nn[f ] with f from Example 4 with different α

α n = 26 − 1 n = 27 − 1 n = 28 − 1

0.1 5 5 5
0.001 5 5 5
0.00001 5 5 5

anisotropic, we observe the typical multigrid convergence behavior which is fairly fast and independent of the matrix
size. In this case, standard coarsening still works, because the anisotropy is not so strong, and the block Jacobi methods
has good smoothing properties. The most difficult case for our method are problems which are quite anisotropic, e.g.
when α is between 0.01 and 0.001 in our examples. However, even in this case we obtain fast convergence if we apply
two block Jacobi iterations as pre- and postsmoother, although the number of V-cycle iterations increases slightly with
the matrix size. Table 4 summarizes the results for Example 4 and different degrees of anisotropy. In each case, we
use a V-cycle with five levels and standard coarsening. Since the diagonal blocks have to be inverted, the block Jacobi
method is too expensive for dense structured matrices. For sparse matrices, however, their results are comparable
with those obtained by semicoarsening. Furthermore, it is possible to start with some semicoarsening steps, and then
on the coarser levels use the block Jacobi method. Such a mixture of both types of algorithms is less expensive and
further improves convergence, especially for those α where standard coarsening combined with a line smoother has
difficulties.

The circulant matrix corresponding to the function f (x, y) from Example 4 is also solved quite efficiently with
standard coarsening and the block Jacobi smoother. Table 5 shows the number of V-cycle iterations. For BCCB
matrices, the block Jacobi method can be applied even if the diagonal blocks are not sparse, because inversion of a
circulant block has a generic case and worst case complexity of O(n log(n)).

4. Anisotropy in other directions

The more general case of anisotropic linear systems, where anisotropy occurs in other directions, is more difficult
to handle. However, we will carry over some results on generating functions from the previous section in order to
solve these systems with similar techniques. The following two functions illustrate what problems arise from such
matrices.

Example 10. Let Amn[f ] and Amn[g] be the two-level Toeplitz, tau, or circulant matrices corresponding to one of the
functions

f (x, y) = α
(
1 − cos(x + y)

) + (
1 − cos(x − y)

)
,
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Fig. 3. Level curves f (x, y) = 0.01 and g(x, y) = 0.01 for the functions from Example 10 with α = 0.01 (left) and introduction of new coordinates
for f (x, y) (right).

g(x, y) = (
1 − cos(2x + y)

) + α
(
1 − cos(x − 2y)

)
. (31)

The left picture in Fig. 3 shows how the two functions behave in the neighborhood of their zero at the origin, i.e. with
what kind of anisotropy we have to deal with. f is anisotropic along the line y = x, which means it is rotated by an
angle of 45 degrees from the x-axis. The anisotropy of g occurs along y = −2x, which corresponds to an angle of 30
degrees from the y-axis.

If the anisotropy is strong, neither standard multigrid nor the methods from Section 3 work properly, and for
α → 0 they fail completely. Semicoarsening along an axis does not help to treat anisotropy in other directions well.
Furthermore, f (x, y) has another zero at (π,π), which is a another obstacle to a convergent multigrid method, see
Remark 3.

We will modify the ideas from Section 3 to make them suitable for these problems. In the first part, we focus on the
coarsening strategy and use a simple smoother. First, we review results from [6] on BTTB systems. Then we define a
similar semicoarsening method for BCCB matrices. The second part of this section defines a multilevel method which
uses a line smoother and a block version of standard coarsening. Numerical tests will conclude this section. We will
mainly use the 45◦ case to explain the basic features of the algorithms and only briefly mention generalizations to
more general angles k

k+l
90◦.

4.1. Theoretical results on semicoarsening

Again, we wish to describe a multigrid method which uses a combination of semicoarsening and full coarsening
steps and a standard smoother. The following strategy was suggested in [6].

• Before we start with the computation of prolongation and coarse grid functions, we define a new coordinate
system (s, t) with

s := x − y and t := x + y (32)

such that anisotropy occurs along one of the axes. Then, the function f from Example 10 becomes

f̃ (s, t) = α · (1 − cos(s)
) + (

1 − cos(t)
)
. (33)

The right picture of Fig. 3 illustrates the consequences of this transformation. For (s, t) ∈ [−π,π[2, the function
f̃ has only one zero, and anisotropy occurs along the s-axis. This translates into matrices as a permutation of
rows and columns and a partitioning of the resulting matrix into blocks. This is done as shown in the left picture
of Fig. 4. Each block of the matrix corresponds to one diagonal in the picture. This means permutation must be
done by the permutation vector(

1,2, n + 1,3, n + 2,2n + 3, . . . , n, n + n − 1,2n + n − 2, . . . ,

(m − 1)n + 1, . . . , (m − 1)n,mn − 1,2n + n − 1,mn
)
, (34)
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Fig. 4. Partitioning of the original matrix into blocks for semicoarsening (left) and full coarsening (right).

and the blocks are of size 1,2,3, . . . , n − 1, n,n − 1, . . . ,2,1. The resulting matrix is denoted T̃mn.
• Semicoarsening must be performed in s- or t-direction. A semicoarsening step in t is defined by replacing x and

y by s and t in (16) and (17). b(s, t) corresponds to the block diagonal matrix

BS = diag(B1,B2, . . . ,Bn, . . . ,B2,B1), (35)

where B1 = 1 and all other blocks are Bk = Ak[1 + cos (x)] of size k.
• In the Toeplitz and tau case, the blocks of T̃ and BS are no longer of equal size, but we can nevertheless compute

the coarse grid matrix AC by applying elementary projection to the matrix T̂ = BST̃nnBS . This means we leave
the number of blocks unchanged, and within each block we pick every second row and every second column.

The following two theoretical results are proved in [6], carrying over the results from Section 3.1:

(1) Each semicoarsening step reduces the degree of anisotropy by a factor 2;
(2) Convergence of the two-grid method for BTTB matrices is proved in a similar way as in Theorem 6.

These results not only hold for anisotropy occurring in an angle of 45◦, but also for arbitrary rational angles k
k+l

90◦.
In this more general case, new coordinates are defined with

s := kx + ly and t := lx − ky. (36)

A multilevel method which combines semicoarsening and full coarsening similar to the one from Section 3 is de-
fined by carrying out all coarsening steps, including the full coarsening steps, in the rotated coordinates. In each full
coarsening step, the matrix BF corresponds to the prolongation function b(s, t). The construction of the elementary
projection matrix is illustrated in the right part of Fig. 4. Within each block we pick every second row and every
second column. On the block level, we pick two rows, eliminate the next two, pick another two rows and so on. The
solid lines mark the blocks which are retained on the coarser levels, whereas the other blocks are eliminated. The
dashed line explains why precisely these blocks have to chosen. Elimination on the block level must be done such
that within the dashed line every second element is retained and the other elements are eliminated. This is described
in more detail in [6].

For two-level circulant matrices Cmn[f ], a similar coarsening strategy can be applied which preserves the BCCB
structure. Furthermore, if m = n, the blocks are all of size n. Again, the left part of Fig. 4 illustrates the construction
of the permutation vector(

1,2n,3n − 1, . . . , n2 − (n − 2),2, n + 1,3n,4n − 1, . . . , n2 − (n − 3),

. . . , n,2n − 1, . . . , n2 − (n − 1)
)
. (37)

The first block is obtained from the first and the (n+1)th diagonal, the second block from the second and the (n+2)th
diagonal, and so on. The last block is equal to the nth diagonal. Since the permuted matrix has BCCB structure with
blocks of equal size, we can almost directly apply the semicoarsening method from Section 3. Whereas for BTTB
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matrices the exact structure is lost on coarser levels and the methods may lose efficiency, for BCCB matrices the
methods are as efficient as in Section 3.

4.2. The use of line smoothers

For problems with anisotropy along coordinate axes we have used standard coarsening in combination with a line
smoother to define a different multigrid algorithm. The same can be done with the systems from Example 10 if we take
into account that the functions f (x, y) and g(x, y) have multiple zeros in [0,2π[2. Again, we have to carry out the
permutation of rows and columns only for the smoothing process. For prolongation and restriction as well as for the
computation of the system matrices on coarser grids we use the original coordinates x and y. Since we wish to apply
a line smoother, the rows and columns of Ann[f ] are permuted with the vector from (34) if Ann[f ] is Toeplitz ot tau.
Circulant matrices are permuted with a circulant version of (34). Then we partition the permuted matrix into blocks
in the same way as it was done for the semicoarsening method. Each line in the right picture of Fig. 4 corresponds to
one block of the matrix. The following theorem is a generalization of Theorem 7 which covers anisotropies occurring
in arbitrary rational angles.

Theorem 11. Let f (x, y) be a nonnegative generating function with a zero of order 2 at the origin which in the rotated
coordinates is of the form

f̃ (s, t) = [(
1 − cos(s)

) + α
(
1 − cos(t)

)]
h(s, t) (38)

with the trigonometric polynomial h(s, t) > 0 and 0 < α � 1. Let A = Ann[f ] be the two-level tau or circulant matrix
corresponding to f (x, y), and Ã its permuted version corresponding to f̃ (s, t). Let D be the matrix corresponding to
g(x, y), which in the rotated coordinates is of the form

g̃(s, t) = (
1 + α − cos(s)

)
h̃(s), (39)

where h̃ is obtained by eliminating all terms in h containing t . D̃, the permuted version of D, is a block diagonal
matrix with the same diagonal blocks as Ã. If h̃(s) > 0, then the block Jacobi method satisfies the smoothing conditions
(8) and (9).

Proof. After replacing the functions f (x, y) and g(x, y) by f̃ (s, t) and g̃(s, t) the calculations are the same as in the
proof of Theorem 7. As in the proof of Theorem 7, the matrix Y is chosen to be D−1. �

Again, the proof does not include BTTB matrices for the technical problems mentioned in Remark 9. However,
the numerical results of the multigrid solution of anisotropic BTTB systems with the block Jacobi smoother are quite
promising (see Section 4.3).

Computation of the coarse grid matrix AC cannot be done in such a straightforward way as in Section 3.2, be-
cause f has an additional zero at (π,π). Therefore we carry over an idea of Huckle and Staudacher [8] to the
two-dimensional case and to the tau and circulant algebras. They interpret a Toeplitz matrix as a block Toeplitz matrix
with blocks of size 2, which are themselves not necessarily Toeplitz. The BTTB matrix Tnn[f ] of size n2-by-n2 is
considered to be a block BTTB matrix with blocks of size 4. Thus, the generating function becomes a 4-by-4 matrix
F(x, y), whose entries are functions in x and y. The eigenvalues of F(x, y) in Example 10 only become zero at (0,0).
Then B(x, y) is for example chosen to be the 4-by-4 diagonal matrix with b(x, y) = (1 + cos(x))(1 + cos(y)) in each
position of the diagonal, taking care of the zero in F(x, y). The coarse grid matrix is computed by picking every
second 2-by-2 block on both levels.

4.3. Numerical results

Again, we wish to test both types of multilevel methods numerically. Let us start with a multigrid method
which is constructed as a suitable combination of semicoarsening steps followed by some full coarsening steps. The
prolongation/restriction matrices and the elementary projection matrices are defined as described above, the change
of coordinates, of course, has to be done only before the first step. Again, we use the same heuristic as in Section 3.
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Table 6
Iteration numbers for Tmn[f ] with f from Example 10 with α = 0.002 and α = 0.0001

α Coarsening n = 26 − 1 n = 27 − 1 n = 28 − 1

0.002 t,t,st,st 10 12 13
0.002 t,t,t,t 6 6 6
0.0001 t,t,st,st 24 51 77
0.0001 t,t,t,t 6 6 6

Table 7
Iteration numbers for the block Jacobi smoother and Tnn[f ] with f from Example 10

α n = 2(25 − 1) n = 2(26 − 1) n = 2(27 − 1)

0.1 9 8 8
0.001 3 6 11
0.00001 2 2 2

Table 8
Iteration numbers for C̃mn[f ] with f from Example 10 with α = 0.002 and α = 0.0001

α Coarsening n = 26 − 1 n = 27 − 1 n = 28 − 1

0.02 t,st,st,st,st 23 24 24
0.02 t,t,t,st,st 5 5 5
0.02 t,t,t,t,t 8 7 7
0.001 t,st,st,st,st >200 >200 >200
0.001 t,t,t,st,st 27 26 26
0.001 t,t,t,t,t 5 5 5

Our theoretical results state that the ratio rF is reduced by a factor 2 in each semicoarsening step. Therefore, semi-
coarsening steps are applied until level curves are close to circles, i.e. until rF is almost 1. Then we continue with
full coarsening. We wish to test our multilevel method with the function f (x, y) from Example 10, where α takes the
values 0.002. The corresponding matrices Tnn[f ] belong both to the two-level Toeplitz class and to the two-level tau
algebra. We use a five-grid method, where one step of symmetric Gauss–Seidel is used as pre- and postsmoother. Our
theory suggests to use four semicoarsening steps, because rF = 22.36. Table 6 shows the number of V-cycle iterations
is significantly lower if four semicoarsening steps are used instead of only two. For a strongly anisotropic problem
such as the same function f with α = 0.0001 and rF = 100, two semicoarsening steps followed by full coarsening do
not lead to satisfactory convergence at all. If only semicoarsening is used, we observe the same rapid convergence.

The second type of multigrid method uses line smoothers for relaxation and the block strategy mentioned above
for full coarsening. Again, this is too expensive if the diagonal blocks are full. However, if the matrix is sparse, this
type of method is a good alternative to the multigrid algorithm with semicoarsening. As we have observed for the
systems in Section 3, this method obtains its best results if the anisotropy is either moderate or very strong. If α

is somewhere between 0.05 and 0.005, the method based on semicoarsening is preferable. The following iteration
numbers we obtained with a three-level method, where two steps of block Jacobi were used as pre- and postsmoother.

Let us finally consider a two-level circulant example. The matrix C̃mn[f ] with f from Example 10 is obtained
from Cmn[f ] by adding 1/(mn)2. As we have seen in Section 4.1, these BCCB examples can be treated almost like
the BCCB systems where anisotropy occurs along coordinate axes. The semicoarsening steps are exactly the same
as in Section 3. For full coarsening we have to use the block interpretation of [8], which is equally valid for BCCB
matrices. Table 8 shows the number of V-cycle iterations for different numbers of semicoarsening steps. As we expect
from our theory, best results for α = 0.02 are obtained with three semicoarsening steps and for α = 0.001 with five
semicoarsening steps.

After applying the permutation vector (37) to C̃mn[f ] we can also define a multilevel method using standard
prolongation and a line smoother. The convergence behavior is the same as for the circulant example, where the results
were shown in Table 5. However for circulant matrices, inversion of the diagonal blocks is to expensive in most cases,
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since the whole system can be solved in O(n logn) with the FFT. Therefore we suggest to use the multilevel method
which is based on semicoarsening for BCCB matrices.

5. Conclusions

This article was devoted to the analysis of anisotropic problems in the context of structured linear systems, gen-
erating functions, and their level curves. This point of view allows the development of multilevel methods also for
systems where anisotropy occurs in arbitrary directions and not only along coordinate axes. These more complicated
systems are solved with the same efficiency.

Several applications where this type of anisotropic systems needs to be solved will be subject of future research.
The most interesting of them seems to be the solution of systems corresponding to functions with a whole zero curve
such as

f (x, y) = (
ρ − cos(x) − cos(y)

)2
(ρ < 2),

which arise when Helmholtz equations are solved. The aim is to construct a multilevel preconditioner where the
building blocks are anisotropic systems, which approximate the zero curve at several of its points.

Moreover, a proof of V-cycle optimality for a multigrid method with semicoarsening is an interesting topic for
future work. At least for anisotropy along coordinate axes an extension of the results in [2,1] to the anisotropic case
should be possible.
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