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Abstract

In this paper, we present a robust and efficient algebraic multigrid preconditioned conjugate gradient solver for

systems of linear equations arising from the finite element discretization of a scalar elliptic partial differential equation

of second order on unstructured meshes. The algebraic multigrid (AMG) method is one of most promising methods for

solving large systems of linear equations arising from unstructured meshes. The conventional AMG method usually

requires an expensive setup time, particularly for three dimensional problems so that generally it is not used for small

and medium size systems or low-accuracy approximations. Our solver has a quick setup phase for the AMG method

and a fast iteration cycle. These allow us to apply this solver for not only large systems but also small to medium

systems of linear equations and also for systems requiring low-accuracy approximations.
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1. Introduction

During numerical flow simulation of polymer injection molding, systems of linear equations with

symmetric positive definite (SPD) matrices ranging in size from small to very large are solved. The finite

element discretization of the fluid dynamics pressure equation on unstructured tetrahedral meshes often

produces an ill-conditioned matrix. It is therefore difficult to obtain solutions of such systems of linear

equations efficiently using many common iterative methods. In this paper, we use small, medium, and large

size systems which are categorized by the number of unknowns being: less than 3000, 3000–20,000, and
greater than 20,000, respectively.
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For ill-conditioned matrix problems, the preconditioned conjugate gradient (PCG) method can be ef-
ficient and robust. For relatively small size problems, common (one-level) PCG solvers, such as symmetric

successive overrelaxation preconditioned conjugate gradient (SSORPCG) are reasonably efficient. How-

ever, the efficiency often deteriorates for medium to very large size problems. For these types of problems,

the multigrid (multi-level) PCG method can be a fast solution method. In this method, the multigrid cycle is

used as a preconditioner for the conjugate gradient (CG) method.

Our systems of linear equations arise from the finite element discretization of a scalar elliptic partial

differential equation (PDE) of second order on unstructured tetrahedral meshes in polymer injection

molding simulation. The geometry of our models can be very complicated and the coefficients of the dif-
ferential operator can vary strongly. For this kind of problem the geometric multigrid method is not

suitable because it usually requires a uniform coarsening pattern and differential operators with continuous

slowly varying or constant coefficients. Furthermore, to ensure that implementation into existing com-

mercial codes is easy, we are only interested in a black-box solver, which only requires the information

contained in the given system matrix. Therefore, we have not pursued those multigrid methods which rely

upon knowledge of the element formulation or nodal coordinates. For these reasons, we believe the al-

gebraic multigrid (AMG) preconditioned CG method is the most appropriate for our purpose.

The ideal matrices for the AMG method described by Ruge and St€uuben [1,2] are weakly diagonally
dominant symmetric M-matrices. A matrix is a symmetric M-matrix if it is SPD and has nonpositive off-
diagonal values. The publicly available AMG solver created by Ruge, St€uuben and Hempel (AMG1R5) can
be used as a stand alone AMG solver (AMG1R5/SA) or the AMG cycle can be used as a preconditioner for

a CG solver (AMG1R5/CG). AMG1R5 is very efficient for solving systems with a symmetric M-matrix.
However, the efficiency quickly deteriorates if the matrix deviates from being a symmetric M-matrix.
We have found that a simple modification to the AMG algorithm of AMG1R5 can produce a more

robust and efficient solver for problems when the modified AMG cycle is used as a preconditioner for CG.

The robustness is improved substantially by creating an appropriate AMG interpolation operator and
strictly performing the AMG cycle in a symmetric manner to produce a SPD AMG preconditioner. We

found that our systems of linear equations often contain as many as 20–35% of nonzero entries being off-

diagonally positive and that they deviate strongly from a weakly diagonally dominant symmetricM-matrix.
However, our approach robustly solves these systems of linear equations when this AMG preconditioner is

used for CG.

The efficiency is particularly improved by reducing the number of nonzero entries of the coarse system

matrices by using very small sets of interpolatory points. Firstly, we created very small sets of interpolatory

points only from direct neighbors. This gives a simple, quick coarsening process and simpler coarse systems
(smaller numbers of nonzero entries for the coarser system matrices). Using this approach, the small total

number of nonzero entries of the coarse system matrices are mainly achieved by substantially reducing the

number of nonzero entries of the first coarse system matrix and also some reduction in the second and third

coarse system matrices. If the AMG1R5 coarsening strategy is used, the number of nonzero entries of the

matrix of the first coarse system is often approximately the same or even larger than the number of nonzero

entries of the original (finest) matrix. This large number of nonzero entries of the first coarse system

contributes substantially to the total combined number of nonzero entries of all systems. We recognize that

with our method there will be an increase of convergence factor, however, the benefit of simpler coarse
systems greatly outweighs this disadvantage. In addition, further reduction in the total number of nonzero

entries is possible without significantly increasing the convergence factor by approximating the matrix of

the original system with a simpler symmetric M-matrix. The AMG cycle is applied to solve a so-called
a priori preconditioning system which uses this symmetric M-matrix. This symmetric M-matrix is created
from the original system matrix by simply adding any positive off-diagonal entries to the diagonal entry of

the same row and replacing the positive off-diagonal entries with zero. The way the a priori preconditioning

matrix is created implies a lower number of nonzero entries. Our coarsening approach can be applied to this
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symmetric M-matrix system to create much lower total number of nonzero entries. The coarse systems for
AMG created by these approaches are appropriate to use in preconditoning and they give three important

advantages: the reduction of setup time, reduction of AMG cycle time, and reduction of memory re-

quirement. For the sake of accuracy, it is necessary to use double (64-bits) precision variables in the CG

method for most of our problems. However, it is not necessary to use double precision variables when

estimating the solution of the a priori preconditioning system. Therefore, the expensive (in terms of both

memory and computational work) multigrid cycle can be carried out using single (32-bits) precision

variables. Hence, the efficiency is improved substantially while the memory requirement is kept small.

Tests were carried out to demonstrate that our AMG preconditioned CG method produces an efficient
solution strategy when solving any size of ill-conditioned system of linear equations. In the tests, the system

of linear equations for pressure for three dimensional (3D) flow simulation problems was solved for the

filling phase of polymer injection molding. The solvers used to solve these systems of linear equations are

• SSORPCG: symmetric successive overrelaxation preconditioned CG, a common (one-level) PCG solver,

• AMG1R5/SA: the stand alone AMG solver of Ruge, St€uuben and Hempel,
• AMG1R5/CG: the AMG solver of Ruge, St€uuben and Hempel where the AMG cycle is used as a precon-
ditioner for CG,

• SAMG: The fast commercial AMG solver (SAMG, release 20b1) which is the successor of RAMG05 [2]

where RAMG05 is the successor of AMG1R5, in these tests the AMG cycle is used as a preconditioner

for CG,

• AMGPCG0: our AMG preconditioned CG solver which uses the original matrix for the a priori precon-

ditioning system and uses the simpler coarse systems for AMG,

• AMGPCG1: our AMG preconditioned CG solver which always uses a symmetric M-matrix for the a
priori preconditioning system and uses the simpler coarse systems for AMG.

Throughout this paper AMGPCG is used to denote the group of AMGPCG0 and AMGPCG1, which

share a common coarsening algorithm.

2. AMG preconditioner

Consider a system of linear equations

Au ¼ f; ð1Þ
where A 2 Rn�n is a SPD matrix and f 2 Rn is a given column vector. The linear stationary iterative

methods of first degree for solving Eq. (1) may be expressed in the form [3]

uðkþ1Þ ¼ ðI�Q�1AÞuðkÞ þQ�1f ¼ GuðkÞ þQ�1f; k ¼ 0; 1; 2; 3; . . . ; ð2Þ
where I is the identity matrix, G 2 Rn�n is called the iteration matrix for the method and Q 2 Rn�n is a

splitting matrix for the method. Q can be used as a preconditioner for CG if Q is SPD.

The PCG method obtains the solution of Eq. (1) indirectly by solving the preconditioned system [3]

ÂAûu ¼ f̂f; ð3Þ
where ÂA ¼ W�1AðW�1Þt is SPD, ûu ¼ Wtu, f̂f ¼ W�1f, and W is such that Q ¼ WWt. Since the condition

number of ÂAðjðÂAÞÞ is usually very small compared to the condition number of A (i.e., jðÂAÞ ¼
jðQ�1AÞ � jðAÞ), the number of necessary iterations is much smaller than solving the original problem.
Note that Q here is not the splitting matrix for an iterative method of the original system (1), but rather the

splitting matrix for an iterative method of the a priori preconditioning system

Bx ¼ r; ð4Þ
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where B 2 Rn�n is called the a priori preconditioning matrix and r 2 Rn is the current residual of PCG.

Often the PCG method uses B ¼ A. However this is not a necessary condition. The essential aspect is thatQ

for an iterative method of a priori preconditioning system should be close to A in the sense of spectral

equivalence so that the condition number jðÂAÞ can be small.
Our AMGPCG solvers estimate the solution of Eq. (4) using one iteration of the multigrid V-cycle [4,5]

operator M with zero initial estimates, where M corresponds to the iteration matrix of the multigrid

method for Eq. (4) (i.e., equivalent to G in Eq. (2)). This implies that the estimated solution of Eq. (4) is the

solution of the equation

Qz ¼ r; ð5Þ

where Q is the preconditioner of our AMGPCG solvers and can be expressed as

Q ¼ BðI�MÞ�1: ð6Þ

B ¼ A for AMGPCG0 and B is a simple SPD approximation to A for AMGPCG1.

The multigrid method requires coarse levels, therefore we also use the expression

Ql ¼ BlðIl �MlÞ�1; ð7Þ

where subscript l indicates level. l ¼ 1 corresponds to the finest level and l ¼ 2 to the first coarse level and
so on (throughout this paper, we usually omit l for the finest level or if there is no need to distinguish the
levels). Here Bl 2 Rnl�nl is the matrix of the system at level l. Coarser level matrices Blþ1 2 Rnlþ1�nlþ1 , where

nlþ1 < nl, are created by the Galerkin formulation [2,6],

Blþ1 ¼ Ilþ1l BlI
l
lþ1; ð8Þ

where Illþ1 : Rnlþ1 ! Rnl denotes the coarse-to-fine interpolation operator and Ilþ1l : Rnl ! Rnlþ1 denotes the

fine-to-coarse restriction operator. Il is the identity matrix at level l.Ml is one iteration of the multigrid V-

cycle operator for level l which is denoted by

Ml ¼ S
ðpostÞ
l Tl;lþ1S

ðpreÞ
l ; ð9Þ

where S
ðpreÞ
l , S

ðpostÞ
l are pre- and post-smoothing operators, respectively, and Tl;lþ1 is a coarse grid correction

operator. In AMGPCG, we use one iteration of forward Gauss–Seidel for pre-smoothing and backward

Gauss–Seidel for post-smoothing. These pre- and post-smoothing operators can be defined as

S
ðpreÞ
l ¼ Il � L�1

l Bl;

S
ðpostÞ
l ¼ Il � ðL�1

l ÞtBl;
ð10Þ

where Ll is the lower triangular part of matrix Bl including the diagonal entries. The coarse grid correction

operator Tl;lþ1 can be expressed as

Tl;lþ1 ¼
Il � Illþ1ðBlþ1Þ�1Ilþ1l Bl if l ¼ lmax � 1;
Il � Illþ1ðIlþ1 �Mlþ1ÞðBlþ1Þ�1Ilþ1l Bl if 16 l < lmax � 1;

(
ð11Þ

where lmax indicates the coarsest level.
This Q needs to be SPD to use it as a preconditioner for CG and it is strongly desirable that Q is close to

A and easy to invert for the efficiency of CG. We consider the following four assumptions:
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ii(i) The a priori preconditioning matrix B is SPD and satisfies the spectral equivalence inequality to matrix

A, i.e.,

aBðBu; uÞ6 ðAu; uÞ6 bBðBu; uÞ 8u 2 Rn ð12Þ
with positive spectral constants aB and bB being as close as possible to each other. Here ð:; :Þ denotes
the usual Euclidean inner product.

i(ii) The restriction operator Ilþ1l is the transposed matrix to the interpolation operator Illþ1 (i.e., I
lþ1
l ¼

ðIllþ1Þ
t
for all l ¼ 1; . . . ; lmax � 1).

(iii) The corresponding coarse matrices of B are SPD (i.e., Bl is SPD for all l ¼ 2; . . . ; lmax).
(iv) The post-smoothing operator S

ðpostÞ
l is adjoint to the pre-smoothing operator S

ðpreÞ
l in the Bl energy

inner product, i.e.,

ðSðpreÞ
l ul; vlÞBl

¼ ðul;SðpostÞ
l vlÞBl

8ul; vl 2 Rnl ð13Þ

for all l ¼ 1; . . . ; lmax � 1, where ðul; vlÞBl
¼ ðBlul; vlÞ for ul; vl 2 Rnl .

If the above assumptions (i)–(iv) are fulfilled, and furthermore, if the matrix norm of the multigrid

operator kMk� which corresponds to some vector norm k 
 k� is less than one, i.e.,
kMk� ¼ sup

v2Rn ;
v 6¼0

ðkMvk�=kvk�Þ6 g ¼ constant < 1; ð14Þ

then Jung et al. [6] have proved that this preconditioner Q is SPD and that Q satisfies the spectral equiv-

alence inequality to matrix A, i.e.,

aQðQu; uÞ6 ðAu; uÞ6 bQðQu; uÞ 8u 2 Rn; ð15Þ
where aQ ¼ aBð1� gÞ and bQ ¼ bBð1þ gÞ. Hence the use of this Q as a preconditioner for CG would be

legitimate and Q will be an efficient preconditioner.

In AMGPCG, we construct the coarse matrices using Eq. (8), where Ilþ1l ¼ ðIllþ1Þ
t
and Illþ1 has full rank.

We use the pre-smoothing and post-smoothing defined in Eq. (10), and use the coarse grid correction

operator defined in Eq. (11). With these components, the multigrid operator defined in Eq. (9) becomes self-

adjoint in the Bl energy inner product and satisfies kMlkBl
< 1 for all l ¼ 1; . . . ; lmax � 1. The proof of

kMlkBl
< 1 is shown in the next section. Therefore Q becomes SPD. Q is symmetric because Ml is self-

adjoint in the Bl energy inner product. Q is well defined and positive definite because kMlkBl
< 1 (see [6]).

For AMGPCG1, we will show in Section 4 the existence of two positive values aB and bB which satisfy

inequality (12). Hence the preconditioners of AMGPCG are legitimate preconditioners to use for CG.

3. Robustness for multigrid V-cycle operator

In this section we do not say anything about the efficiency for the multigrid V-cycle operator, however

we show that kMkB < 1 so that robustness is assured and the multigrid preconditioner is legitimate.
Gauss–Seidel smoothing operators S (both SðpreÞ and SðpostÞ) will have the following relation for any SPD

matrix under reasonable assumptions (see [2, p. 30]):

kSlelk2Bl
6 kelk2Bl

� rkelk2BlD
�1
l Bl

; ð16Þ

where k � kBl
is the energy norm with respect to SPD matrix Bl, k � kBlD

�1
l Bl

is a norm with respect to SPD

matrix BlD
�1
l Bl (i.e., kelk2BlD

�1
l Bl

¼ ðBlD
�1
l Blel; elÞ), here D�1

l is the inverse of the diagonal matrix of Bl, el is

the error vector at level l, and r > 0. We have

kelk2BlD
�1
l Bl

P nkelk2Bl
; ð17Þ
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where n ¼ kminðD�1
l ÞkminðBlÞ > 0. kminðD�1

l Þ and kminðBlÞ are the smallest eigenvalues of D�1
l and Bl, re-

spectively. We obtain the following relation by substituting inequality (17) into inequality (16)

kSlelk2Bl
6 ckelk2Bl

; ð18Þ

where c ¼ 1� rn and 0 < c < 1. Therefore we obtain

kSlelkBl
6 c0:5kelkBl

; ð19Þ

for all l ð16 l6 lmax � 1Þ.
For the case of the coarse grid correction operator Tl;lþ1, we first consider the case l ¼ lmax � 1. el can be

expressed using Tl;lþ1 and Illþ1

el ¼ Tl;lþ1el þ ðIl � Tl;lþ1Þel ¼ Tl;lþ1el þ Illþ1elþ1; ð20Þ

where elþ1 ¼ ðBlþ1Þ�1Ilþ1l Blel. Since ðTl;lþ1vl; I
l
lþ1vlþ1ÞBl

¼ 0 for all vl, vlþ1,

kelk2Bl
¼ kTl;lþ1elk2Bl

þ kIllþ1elþ1k
2
Bl
: ð21Þ

Then from Eq. (21)

kTl;lþ1elkBl
< kelkBl

: ð22Þ

Using inequalities (19) and (22), we get

kMlelkBl
¼ kSðpostÞ

l Tl;lþ1S
ðpreÞ
l elkBl

< ckelkBl
: ð23Þ

Therefore

kMlkBl
¼ sup

el 6¼0

kMlelkBl

kelkBl

6 c < 1: ð24Þ

When l ¼ lmax � 2, we have

Tl;lþ1el ¼ el � Illþ1ðIlþ1 �Mlþ1ÞðBlþ1Þ�1Ilþ1l Blel: ð25Þ

We rewrite Eq. (25) using Tl;lþ1.

Tl;lþ1el ¼ fTl;lþ1el þ ðIl � Tl;lþ1Þelg � Illþ1ðelþ1 �Mlþ1elþ1Þ ¼ Tl;lþ1el þ Illþ1Mlþ1elþ1; ð26Þ

where Tl;lþ1 ¼ Il � Illþ1ðBlþ1Þ�1Ilþ1l Bl. Since we have ðTl;lþ1vl; I
l
lþ1vlþ1ÞBl

¼ 0 for all vl, vlþ1 and

kMlþ1elþ1kBlþ1
< kelþ1kBlþ1

from (23),

kTl;lþ1elk2Bl
¼ kTl;lþ1elk2Bl

þ kIllþ1Mlþ1elþ1k2Bl
< kTl;lþ1elk2Bl

þ kIllþ1elþ1k
2

Bl
¼ kelk2Bl

: ð27Þ

Therefore from (27), we again obtain the inequality (22) for l ¼ lmax � 2. Because our smoothing operators
and coarse grid correction operator satisfy inequalities (19) and (22) respectively, our multigrid operatorMl

satisfies kMlelkBl
< ckelkBl

and hence kMlkBl
< 1 for l ¼ lmax � 2. Similar discussion can prove kMlkBl

< 1
for 16 l < lmax � 2. Therefore our multigrid operator satisfies kMlkBl

< 1 for all l ð16 l6 lmax � 1Þ.

4. A priori preconditioning matrix of AMGPCG1

The clear advantage of replacing the original matrix A with a simpler approximation B is the reduction

of memory requirement and computational work necessary for both the setup and the AMG cycle.
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However, the disadvantage is that the ratio of the two constants aB and bB of inequality (12) bB=aB becomes
larger so that the ratio of aQ and bQ of inequality (15) bQ=aQ may become larger. This disadvantage is

minimized by approximating the original matrix A with a symmetricM-matrix which is close to the original
matrix A. This is because our interpolation operator Illþ1 can be more accurately defined if the matrix is a

symmetric M-matrix. This implies a more accurate coarse grid correction operator Tl;lþ1 so that we can

have a much smaller value of kMk� for this kind of matrix. The details of defining Illþ1 are discussed in

Section 5.2 and estimations of kMk� are shown in Section 6 for problems arising in polymer injection
molding flow simulation.

The approximation of matrix A is created by

bii ¼ aii þ
X
j2Nþ

i

aij; Nþ
i ¼ fj : j 6¼ i; aij > 0g;

bij ¼ 0 if aij P 0; i 6¼ j;

bij ¼ aij if aij < 0; i 6¼ j;

ð28Þ

where aij and bij are entries of matrices A and B respectively. With this approximation, matrix B becomes a
symmetric M-matrix [7] which is approximately weakly diagonally dominant because most of the rows of
matrix A have row summation approximately zero for our problems. This satisfies the first part of as-

sumption (i) that the a priori preconditioning matrix is SPD. Furthermore, all eigenvalues of B�1A are in
the range ð0; 1� [7]. Hence jðB�1AÞ is bounded by

jðB�1AÞ6 1=kminðB�1AÞ; ð29Þ

where kminðB�1AÞ is smallest eigenvalue of B�1A. Inequality (29) guaranties the existence of two positive
values aB and bB which satisfies inequality (12). Our experiments also confirmed that the eigenvalues of

B�1A are in the range ð0; 1� and kminðB�1AÞ for our problems are usually between 0.1 to 0.5 and the
maximum eigenvalue of B�1A is 1.0. Therefore, the second part of assumption (i) is also satisfied with this

approach.

5. Details of the coarsening process for AMGPCG

In the AMG method, algebraically smooth errors which cannot be eliminated quickly by a smoother

(standard iterative method such as Gauss–Seidel) are eliminated efficiently by using appropriately adjusted

coarse systems. However, the AMG method solver has some disadvantages. These include the expensive

cost of setting up these coarse systems and the large memory requirement compared to a common (one-

level) iterative solver such as SSORPCG. To overcome these disadvantages we use appropriate coarse

systems which have lower numbers of nonzero entries in their matrices. In AMGPCG, these appropriate

coarse systems are achieved by substantially reducing the number of nonzero entries of the first coarse

system matrix and also reducing somewhat the second and third coarse system matrices as outlined in the
following sections.

To describe the coarsening process of AMGPCG, from fine level l to coarse level lþ 1, we rewrite Eq.
(4) as

Blxl ¼ rl or
X
j2Xl

bij;lxj;l ¼ ri;l; i 2 Xl; ð30Þ

where Xl is the index set f1; 2; 3; . . . ; nlg. In order to derive the coarser level system we need to split Xl into

disjoint subsets

Xl ¼ Cl [ Fl; ð31Þ
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where Cl contains the points also represented in the coarser level (C-points, i.e., Xlþ1 ¼ Cl) and Fl is the
complementary set (F -points). After splitting Xl into Cl and Fl, the coarse level AMG system

Blþ1xlþ1 ¼ rlþ1 or
X
j2Xlþ1

bij;lþ1xj;lþ1 ¼ ri;lþ1; i 2 Xlþ1; ð32Þ

is constructed using a Galerkin formulation. The Galerkin operator, Blþ1, is defined in Eq. (8). rlþ1 and xlþ1
actually correspond to residual and correction (error) of Eq. (30), respectively. Hence, Eq. (32) can be

expressed as

Ilþ1l BlI
l
lþ1elþ1 ¼ Ilþ1l ðrl � BlvlÞ; ð33Þ

where vl is the estimated solution of Eq. (30) after applying the pre-smoothing operator. Since we have

Ilþ1l ¼ ðIllþ1Þ
t
, defining the interpolation operator Illþ1 is the one of the main tasks of the coarsening process.

5.1. Sets of connections between grid points

Before defining the interpolation operator, we need to introduce sets which characterize the connections
between grid points. The first set is the direct neighborhood of a point i defined as

Ni ¼ fj 2 X : j 6¼ i; bij 6¼ 0g; ð34Þ

where X is the index set. Next we say that i is strongly negatively connected to another point j if �bij P
estr max jb�ikj with 0 < estr < 1, where b�ik ¼ bik if bik < 0 and b�ik ¼ 0 if bik P 0, and estr is a constant
which defines strong negative connections. Then we denote a set of all strong negative connections of point

i by Si

Si ¼ fj 2 Ni : �bij P estr max jb�ikj with fixed 0 < estr < 1g: ð35Þ

Also, we denote the set of points strongly negatively connected to i by Sti

Sti ¼ fj 2 X : i 2 Sjg: ð36Þ

In AMG1R5, estr is set to 0.25 as a default value. In our AMGPCG method for the systems arising from
3D unstructured meshes, we set estr to a very high value (i.e., estr ¼ 0:98) for the finest and first coarse level,
0.75 for the second coarse level, and 0.25 for the remaining coarser levels (l ¼ 4; . . . ; lmax � 1). The reason
will be discussed below. Finally, for any set P , jP j denotes the number of elements in the set P .

5.2. Defining of interpolation weight

We assume that X is separated into disjoint subsets C and F . Then we define the interpolation weight so
that the interpolation and the restriction operators can be defined.

The ith component of error e at fine level l is given by

ei;l ¼ ðIllþ1elþ1Þi ¼
ei;lþ1 if i 2 Cl;P

k2Ci;l
wikek;lþ1 if i 2 Fl;

�
ð37Þ

where Ci is called a set of interpolatory points and is defined below. Our objective is to define the inter-

polation weight wik of Eq. (37).

The error e is considered to be algebraically smooth if kSekB � kekB, where S is a smoothing operator
and kekB ¼ ðBe; eÞ1=2. When the error is algebraically smooth the following relation [1,2,4] holds:
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biiei þ
X
j2Ni

bijej � 0: ð38Þ

The algebraically smooth error changes slowly in the direction of strong negative connections [1,2,4].

Therefore for each i 2 F , points in Ni are usually split into three categories for all levels, except the coarsest:

• the set of C-points with which point i has strong negative connections defined as Ci ¼ Si \ C,
• the set of F -points with which point i has strong negative connections defined as DSi ¼ Si � Ci, and

• the set of points with which point i has weak connections including positive connections, which may con-
tain both C- and F -points, defined as DWi ¼ Ni � Si.

The set DWi contains both negative and positive connections. The algebraically smooth error usually does
not change slowly in the direction of positive connections [2]. Hence we split DWi into the following two
disjoint sets

DW�
i ¼ fj 2 DWi : bij < 0g; DWþ

i ¼ fj 2 DWi : bij P 0g; ð39Þ

in order to treat positive connections differently. Therefore, we rewrite (38) as

biiei þ
X
j2Ci

bijej þ
X
j2DW�

i

bijej þ
X
j2DWþ

i

bijej þ
X
j2DSi

bijej � 0: ð40Þ

To establish the interpolation weight wik of Eq. (37), it is necessary to estimate ej ðj 62 CiÞ of (40) by using
either ei or ek ðk 2 CiÞ. Our aim is to construct this wik as efficiently as possible while maintaining the

accuracy of wik since the efficient construction of wik allows shorter setup time and an accurate wik produces

a smaller convergence factor.

Firstly, we approximate ej ðj 2 DW�
i Þ with ei. Because any estimation error caused by this assignment is

relatively insignificant if jbijj is small, and ej and ei are close to each other if jbijj is large. This estimation of
ej ðj 2 DW�

i Þ is very quick and reasonably accurate.
For a positive connection, it is also usually sufficient to estimate ej ðj 2 DWþ

i Þ by ei since the positive
connections are generally small. However, the accuracy of estimation for this ej can be improved by using
ek ðk 2 CiÞ if there are strong negative paths from point i to j and from j to i, where strong negative paths
mean that a path between points i and j through points k 2 Ci with relatively large negative connections

exists. When there are strong negative paths from points i to j, the algebraically smooth error may still
change slowly between these points. Further, if there are strong negative paths in both directions between

points i and j, we can have more confidence in the assumption that the algebraically smooth error changes
slowly between these points. Therefore we approximate ej by

ej �
X
k2Ci

bS�jk ek
X
k2Ci

bS�jk

,
; ð41Þ

where bS�jk ¼ bjk if k 2 Cjþ
i � Ci else bS�jk ¼ 0. Set Cjþ

i is defined as

Cjþ
i ¼ fk 2 Ci : �bik > e0bii;�bkj > e0bkk;�bjk > e1bjj;�bki > e1bkk; bij < e2jb�ikj;

and bij < e2jb�kjj for bij > 0 with 0 < e0; e1; e2 < 1g: ð42Þ

The first and second inequalities of (42) establish strong negative paths from point i to j, and the third
and fourth inequalities of (42) establish strong negative paths from point j to i. In addition, we require a
relatively small bij compare to jb�ikj, jb�kjj. This condition also implies a relatively small bij compared to bii
and bjj, since the diagonal entry is usually largest in the row for our matrices. A small bij is necessary
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because the algebraically smooth error tends to oscillate along large positive connections [2]. Our experi-
ence has shown that e0, e1 and e2 can be constants for each matrix, however the appropriate values of e0, e1
and e2 depend on matrices. For example, if the matrix contains relatively large positive off-diagonal entries
the values e0 and e1 need to be large to ensure very strong two way paths between points i and j. On the
other hand, e2 is insensitive to the condition of the matrices. The algorithm to estimate ej using (41) is
complicated compared to simply estimating it by ei and the improvement obtained can be negated by in-
crease of computational work necessary. Therefore, we usually apply this estimation to matrices of coarse

systems which have relatively small positive off-diagonal entries, so that the only small increase of com-

putational work is necessary and some improvement is gained.
In the case of ej ðj 2 DSi Þ, approximation of ej with ei can be accurate, because the algebraically smooth

error changes slowly in the direction of strong negative connections, however our experience has shown

that it is better to estimate ej by averaging negative connections rather than estimate it from a single point,
i. Hence we estimate error ej ðj 2 DSi Þ by

ej �
X
k2Ci

b�jkek
X
k2Ci

b�jk

,
: ð43Þ

Therefore (40) becomes

bii

0
@ þ

X
j2DW�

i

bij

1
Aei � �

X
j2Ci

bijej �
X
j2DWþ

i

bij
X
k2Ci

bS�jk ek
X
l2Ci

bS�jl

, !

�
X
j2DSi

bij
X
k2Ci

b�jkek
X
l2Ci

b�jl

, !
: ð44Þ

From Eq. (37) and (44) the interpolation weight becomes

wik ¼ � bik

8<
: þ

X
j2DWþ

i

bijbS�jk
X
l2Ci

bS�jl

, !
þ
X
j2DSi

bijb�jk
X
l2Ci

b�jl

, !9=
; bii

0
@,

þ
X
j2DW�

i

bij

1
A: ð45Þ

When there are no two way strong negative paths between points i and j 2 DWþ
i (i.e., Cjþ

i ¼ ;), we
modify the interpolation weight. We can approximate ej with ei because matrices arising from the scalar
elliptic PDE in polymer injection molding flow simulation have generally small positive off-diagonal entries
compared to bii. If we have relatively large positive off-diagonal entries, the accuracy of wik may deteriorate

with this approximation. However, this approximation will avoid wik becoming negative which can cause

poor estimation of ei. In the case of j 2 DSi , if the negative connection to Ci is considered to be weak, j or i is
put into set C (see next section for details). This is done because an accurate estimate of ej is required, since
it has a strong influence on ei.
In theory, this wik can be negative. However, our experience has shown that wik does not become negative

at all and so does not influence the accuracy of interpolation significantly. If we had estimated ej ðj 2 DW�
i Þ

using (43), wik could almost certainly have been kept positive, because bij ðj 2 DW�
i Þ is distributed to Ci for

calculating the interpolation, and the row summation of most rows of our matrices is approximately zero.

However, compared to simply adding bij ðj 2 DW�
i Þ to bii, this slows down the setup phase (approximately

20–30% extra setup time for our problems) while the improvement in accuracy with this wik is marginal.

Therefore in practice, wik of Eq. (45) is often more efficient for our problems. This interpolation has the set

of interpolatory points created only from direct neighbors and this interpolation will have full rank.
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5.3. Algorithm for coarsening and defining interpolation weights

For the point j 2 DSi , we need criteria to decide whether the point j has a sufficient negative connection to
Ci so that it is distributed to Ci for calculating the interpolation. The accuracy of estimating error

ej ðj 2 DSi Þ by (43) is improved as the negative connection to (or dependence on) the set Ci increases for

point j. Therefore it is desirable to have a larger value of
P

l2Ci
jb�jlj. We denote the set of points strongly

dependent on the set Ci by SDi

SDi ¼ j 2 DSi :
X
l2Ci

jb�jlj
(

> esdpðjbijj=max jb�ikjÞmax jb�jlj with fixed esdp > 0

)
; ð46Þ

where esdp is a constant which defines strong dependence on the set Ci. A large value of esdp implies that for
ej ðj 2 DSi Þ to be estimated accurately, the points in DSi need to have a strong dependence on Ci to be in-
cluded in SDi . Otherwise, the points in D

S
i or point i are put into C to avoid poor estimation of ej ðj 2 DSi Þ. A

large value of esdp increases jCj and this usually increases the computation work. In practice, it is often
sufficient if the point j has at least one strong negative connection. esdp is set to 0.35 for level l6 3 and 0.45
for l > 3 in AMGPCG. With these values of esdp, point j usually has at least one strong negative connection
for l6 3 and often at least a few strong negative connections for l > 3 in Ci for AMGPCG. esdp is set
slightly higher for l > 3 because it allows an increase in accuracy of the interpolation for l > 3. jCj does not
increase greatly because jCj for those levels is already small compare to levels in l6 3.
Because one strong negative connection for the point j to Ci is often sufficient to estimate ej and it is

desirable to distribute C- and F -points reasonably uniformly, Ruge and St€uuben [1] suggest the following
criteria for choosing the set C and F :

(C1) For each i 2 F , each point j 2 Si should either be in C, or should be strongly negatively connected to
at least one point in Ci ð¼ C \ SiÞ,

(C2) C should be a maximal subset of all points with the property that no two C-points are strongly neg-
atively connected to each other.

To satisfy the above criteria (C1) and (C2) reasonably, we first use ‘‘Preliminary C-point choice’’ algo-
rithm described by Ruge and St€uuben [1] then the following algorithm is used to select final C-points and
define interpolation weights.

Final C-point choice and definition of interpolation weights:

Step 1. Set T ¼ ;.
Step 2. If T � F , stop. Otherwise, pick i 2 F � T and T ¼ T [ fig.
Step 3. Set Ci, DSi , D

W�
i , DWþ

i , SDi (see Sections 5.2 and 5.3) and set Ci ¼ ;.
Step 4. Set di ¼ bii and for k 2 Ci, dk ¼ bik.
Step 5. For each j 2 DW�

i , di ¼ di þ bij.
Step 6. For each j 2 DWþ

i , set Cjþ
i (see Section 5.2)

if Cjþ
i ¼ ; then

di ¼ di þ bij
else

dk ¼ dk þ bijbS�jk =
P

l2Ci
bS�jl for k 2 Ci.

Step 7. For each j 2 DSi ,
if j 2 SDi then
dk ¼ dk þ bijb�jk=

P
l2Ci

b�jl for k 2 Ci

else
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if Ci 6¼ ; then
set C ¼ C [ fig, F ¼ F � fig and go to Step 2.
else

set Ci ¼ fjg, Ci ¼ Ci [ fjg, DSi ¼ DSi � fjg,
update SDi and go to Step 4.

Step 8. Set C ¼ C [ Ci, F ¼ F � Ci and wik ¼ �dk=di for each k 2 Ci and go to Step 2.

The effects of assigning the large value for estr at the finest, first and second coarse levels are described in
next section.

5.4. Effects of changing estr

The value of estr is adjusted so that the setup time, AMG cycle time and memory requirement can be
reduced without greatly sacrificing convergence behavior. These purposes may be achieved if we can create

simpler coarse systems while still using a reasonably accurate interpolation operator.

Whether using a large value of estr in the algorithm for ‘‘Preliminary C-point choice’’ and ‘‘Final C-point
choice and definition of interpolation weights’’ will increase or decrease jCj is not clear. However our ex-
perience shows a tendency for jCj to be decreased for the matrices arising from unstructured 3D meshes and
the matrices of the corresponding first few coarser systems. In addition, increasing estr generally implies a
smaller number of elements in the set of interpolatory points Ci. Since jCij is small and Ci is created only

from direct neighbors, the determination of the interpolation weight becomes very simple and therefore, the

algorithm of ‘‘Final C-point choice and definition of interpolation weights’’ can be carried out quickly.

Furthermore, a smaller jCij implies that the number of nonzero entries of coarser level matrix is smaller.
This is because the coarser matrix is constructed using Eq. (8) with the interpolation operator Illþ1 which has
a smaller jCij. Another important benefit of using a large estr is that there is a tendency to have fewer
positive off-diagonal entries or smaller values of positive off-diagonal entries in the coarser matrix. This

allows the interpolation operator Ilþ1lþ2 to be defined more accurately using our algorithm. Entries of coarser

matrix can be expressed as

bkm;lþ1 ¼
X
i;j

�wwikbij;l�wwjm ¼ bkm;l þ
X
i2Fl

wik bim;l

 
þ 1
2

X
j2Fl

wjmbij;l

!
þ
X
i2Fl

wim bik;l

 
þ 1
2

X
j2Fl

wjkbij;l

!
; ð47Þ

where k;m 2 Cl, �wwik ¼ dik if i 2 Cl and �wwik ¼ wik if i 2 Fl. Here dik denotes the Kronecker symbol. Usually wik

and wim are positive and a large estr implies generally larger�bim;l and�bik;l. Therefore, bkm;lþ1 tend to become
negative or smaller positive for off-diagonal entries. Consequently, applying a very large value of estr for the
finest and first few coarse levels can produce substantially simpler and suitable coarse systems and hence
reduce the setup time and AMG cycling time while not significantly increasing the convergence factor.

The setup time and AMG cycling time are almost directly related to the total combined number of

nonzero entries of matrices of all levels. The memory requirement is closely related to the total number of

nonzero entries, although there is also some additional memory required. Unfortunately, a smaller jCij
often leads to an increase of the convergence factor. However, when Ci is created with a very large value of

estr, the AMG algorithm coarsens in the direction of very slowly changing algebraically smooth error and
tends to produce a coarser matrix with fewer positive off-diagonal entries or smaller values of positive off-

diagonal entries. This means interpolation can be reasonably accurate even if we have a small jCij. The
increase of the convergence factor is not substantial so that it is easily overcome by the reduction of

necessary computational work and hence the over all benefit is greater. The use of this interpolation is

sufficiently accurate when the AMG method is used as a preconditioner for CG. We will see this aspect in

the next section.
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6. Comparison of test results

Tests for solving various systems of linear equations for pressure were carried out to compare the ef-

ficiency of SSORPCG, AMG1R5/SA, AMG1R5/CG, SAMG, AMGPCG0, and AMGPCG1 for 3D

problems. In these tests, all AMG solvers are set to use one Gauss–Seidel iteration as a smoother and the V-

cycle for the multigrid cycle. Other parameters are optimized to reach convergence within the shortest

possible time. The smoother of AMG1R5/CG was modified to perform smoothing with the order of points

reversed. This is because the post-smoothing operator S
ðpostÞ
l should be adjoint to the pre-smoothing op-

erator S
ðpreÞ
l in the Al energy inner product when AMG is used as a preconditioner for CG. Three different

finite element models were simulated during the filling phase of polymer injection molding flow simulation

and solved at approximately 90% fill by volume. Also for one of the models, we solved the systems of linear

equations from the very early stage of filling simulation to demonstrate the efficiency of solving small to

medium size problems with our solvers. The convergence tolerances were set to 1.0� 10�5, which is the
default value used in industry, so that each solver stopped iterating and the elapsed CPU time was mea-

sured when the relative residual was reduced to less than this tolerance. The relative residual is defined as

the Euclidean norm of the residual vector divided by Euclidean norm of the right hand side vector of Eq. (1)
(i.e. kf � Avk=kfk, where v is the estimated solution vector).
Two of the test models are plates and their only difference is in the mesh used. The Plate-A problem

mostly has elements with relatively small aspect ratios (longest side/shortest side) and the Plate-B problem

has many elements with a high aspect ratios (see Figs. 1–3). The main source of ill-conditioning for our

Fig. 1. Plate model.

Fig. 2. Mesh Plate-A (small aspect ratio).

C. Iwamura et al. / Comput. Methods Appl. Mech. Engrg. 192 (2003) 2299–2318 2311



problem is due to elements with high aspect ratio. Therefore the Plate-B problem is a good test for the

robustness of solvers. The number of nodes of Plate-A and Plate-B are 29,587 and 170,028 respectively. A

third test model is an electrical connector problem which has complex geometry (see Fig. 4). This has
200,060 nodes.

Table 1 gives the results for complexities CK and CG, the elapsed time and the number of iterations. CK

and CG are operator and grid complexities, respectively, defined as

CK ¼
Xlmax
l¼1

jKlj=jA1j; CG ¼
Xlmax
l¼1

Nl=N1; ð48Þ

where jKlj is the number of nonzero entries for matrix Kl, and Nl is the number of rows of matrix Kl. For
AMGPCG0, AMG1R5 and SAMG, K1 is the original matrix A (i.e., A1). For AMGPCG1 K1 is the ap-

proximation of A (see Eq. (28)). CK is almost proportional to computational work necessary and ap-

proximately proportional to memory required. The setup time and the AMG cycle time are also almost

directly related to the value of CK.

In Fig. 5, kMk of AMG scheme of AMGPCG is estimated using error vectors of system of linear

equations Bx ¼ 0, where B is a priori preconditioning matrix. Since the right hand side is zero, the error is

equal to the estimated solution. kMk can be expressed as

kMk ¼ sup
eðmÞ 6¼0

ðkMeðmÞk=keðmÞkÞ ¼ sup
eðmÞ 6¼0

ðkeðmþ1Þk=keðmÞkÞ; ð49Þ

where keðmÞk and keðmþ1Þk are the Euclidean norm of mth and mþ 1th step errors, respectively.

Fig. 3. Mesh Plate-B (large aspect ratios).

Fig. 4. Electrical connector.
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Table 1

Complexities and computation time

Method Complexities Elapsed time (s)/Pentium II 233 MHz Number of

iterationsCK CG Setup time Per cycle Total

Plate-A

SSORPCG 1.00 1.00 0.0 0.17 61.0 352

AMG1R5/SA 3.32 2.05 4.4 0.54 12.0 14

AMG1R5/CG 3.32 2.05 4.4 0.66 9.0 7

SAMG 1.23 1.19 1.4 0.36 5.0 10

AMGPCG0 1.74 1.78 1.1 0.30 3.5 8

AMGPCG1 1.41 1.78 1.0 0.26 3.6 10

Plate-B

SSORPCG 1.00 1.00 0.0 1.1 667.0 604

AMG1R5/SA 4.17 2.24 41.0 Did not converge

AMG1R5/CG 4.17 2.24 41.0 5.1 143.0 20

SAMG 1.36 1.25 11.0 2.4 42.0 13

AMGPCG0 1.89 1.82 8.0 2.1 29.0 10

AMGPCG1 1.42 1.81 7.0 1.7 33.0 15

Electrical connector

SSORPCG 1.00 1.00 0.0 1.3 160.0 119

AMG1R5/SA 5.33 2.27 77.0 6.1 426.0 57

AMG1R5/CG 5.33 2.27 77.0 7.3 187.0 15

SAMG 1.38 1.22 15.0 3.0 36.0 7

AMGPCG0 2.03 1.84 11.0 2.8 28.0 6

AMGPCG1 1.61 1.84 10.0 2.3 31.0 9
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Fig. 5. (a) Estimation of kMk for Plate-A, (b) estimation of kMk for Plate-B and (c) estimation of kMk for the electrical connector.
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In Fig. 6 the histories of the relative residuals are shown. In Fig. 7, the cumulative elapsed CPU times are

shown for the setup phase and the solution phase to show the efficiency of AMGPCG solvers. Fig. 8 shows

the improvement of the elapsed CPU time per solution obtained with AMGPCG for the early stages of
filling simulation of the Plate-A (i.e., solving small to medium size systems).

7. Discussion

AMGPCG0 satisfies the assumptions (i)–(iv) rigorously and we have shown kMkB < 1 theoretically in
Section 3. Furthermore, we have observed keðmþ1Þk=keðmÞk < 1 using our AMG scheme for problems arising
in polymer injection molding (see also Fig. 5). AMGPCG1 also satisfies the assumptions (i)–(iv) rigorously.
We have shown the existence of two positive constants which satisfy the spectral equivalence inequality

relation for matrix B to A. The estimated kMk of the AMG scheme are much smaller when the original
matrix is replaced by a symmetric M-matrix (see Fig. 5). This is because the interpolation operator is

Fig. 6. (a) Histories of relative residual for Plate-A, (b) histories of relative residual for Plate-B and (c) histories of relative residual for

the electrical connector.
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defined more accurately and c of inequality (19) tends to become smaller using our approach. c tends to
become smaller because the diagonal entry becomes larger when there are positive off-diagonal entries in

the same row. Therefore, our AMG method is legitimate to use as a preconditioner for CG.

We have tested three problems with nonregular 3D tetrahedral meshes. The Plate-A mostly has elements

with small aspect ratios, however some elements are still quite distorted with a large aspect ratio (see Fig. 2).

The Plate-B is the most ill-conditioned of the problems tested here with many elements having a large

aspect ratio (see Fig. 3). The electrical connector has a complicated geometry and some elements have high

aspect ratios (see Fig. 4).

Both AMG1R5/SA and AMG1R5/CG are faster than SSORPCG for the Plate-A problem. However for
the Plate-B problem the efficiency of the AMG1R5/SA solver deteriorates significantly and cannot reach

the convergence tolerance within 200 iterations. As can be seen from Fig. 6(b), after approximately 15

iterations the residual of AMG1R5/SA does not decrease any further. Even though AMG1R5/CG can

reach convergence reasonably fast, we see a fluctuation of the residual from AMG1R5/CG for this

problem. This is because the Plate-B problem is ill-conditioned with many positive off-diagonal entries and

hence the interpolation weight created by AMG1R5 may not be appropriate. In the case of the electrical
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Fig. 7. Elapsed CPU time for (a) Plate-A, (b) Plate-B and (c) electrical connector.
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connector problem, AMG1R5/SA can reach the convergence tolerance with 57 iterations, however the
residual of AMG1R5/SA has a very gradual decrease. This model has some elements with high aspect ratios

(see Fig. 4). Therefore it is also not a well-conditioned problem. AMG1R5/CG reaches convergence in 15

iterations, however, the total time required is greater than SSORPCG. This is particularly due to costly

setup time for the AMG algorithm of AMG1R5.

When SAMG is optimized for speed, it reaches convergence very quickly by using ‘‘aggressive coarsen-

ing’’ [2] strategy for these problems. This coarsening strategy produces very small operator complexities CK

and grid complexities CG (see Table 1). The operator complexities CK of SAMG for these problems are 4–

15% smaller than CK of AMGPCG1. The grid complexities CG of SAMG are more than 30% smaller than
AMGPCG for these problems. SAMG is significantly faster than SSORPCG and AMG1R5 for these

problems. SAMG is much faster than AMG1R5, because the operator complexities are significantly smaller

than AMG1R5 while the required number of iterations is low. Smaller operator complexity results in less

work for the setup phase and multigrid cycle so that both the setup and multigrid cycle become faster.

Operator complexities of both AMGPCG solvers are also much smaller than the operator complexities

of AMG1R5 solvers. Grid complexities of AMGPCG solvers are only slightly smaller than grid com-

plexities of AMG1R5 solvers. This means that a smaller operator complexity is obtained by creating a

coarser matrix with fewer nonzero off-diagonal entries rather than reducing jCj substantially. AMG
methods with aggressive coarsening, such as SAMG, can produce much smaller operator complexity than

our method by reducing jCj substantially (i.e., small CG). Even though our operator complexity is larger
than the complexity of SAMG, there are important advantages to our approach. Our approach produces

much smaller sets of interpolatory points which are created only from the direct neighbors at the finest and

first few coarse levels. Our solvers also have relatively large grid complexity compared to SAMG. Firstly,

this means that defining the weight of interpolation is simple using our algorithm so that setup is much

faster in spite of larger complexity. Secondly, during the solution phase, a larger operator complexity means

that the work necessary for smoothing is larger. However, the much smaller sets of interpolatory points at
those levels and relatively large grid complexity reduces the required computational work for interpolation

(bringing the solution of a coarse system to a fine system) and restriction (bringing the residual of a fine

system to a coarse system). Hence using our approach, the over all computational work for the multigrid

cycle can be less in spite of larger operator complexity. Furthermore, we use single precision variables to

estimate the solution of the a priori preconditioning system (4). This reduces the memory requirement for

our AMG scheme. It also reduces setup time and AMG cycle time approximately 10–20% compared to

using double precision variables when it is tested on our 32-bit hardware. Therefore the setup and multigrid

cycle of AMGPCG are fast (see Table 1).
Both the AMGPCG solvers have a rapid setup and can reach a convergence tolerance within a small

number of iterations (mostly less than 20 iterations) and have a steady residual decrease for any problems

we have tested. AMGPCG1 slightly increases the number of necessary iterations compared to AMGPCG0.

However as seen from Table 1, setup time and cycle time are fast so that the total time required is ap-

proximately the same or only slightly increases compared to AMGPCG0 for these problems. This is be-

cause AMGPCG1 has a smaller operator complexity. It is approximately 75–82% of AMGPCG0 for these

problems. In some cases, particularly when the model mostly has elements with small aspect ratios, AM-

GPCG1 converged faster than AMGPCG0. This is because the positive off-diagonal entries of the original
system matrix tend to become smaller and hence the ratio of two constants aB and bB of inequality (12)

bB=aB becomes smaller. This means AMGPCG1 hardly increases the number of necessary iterations

compared to AMGPCG0 while its operator complexity is smaller than the operator complexity of AM-

GPCG0.

The AMGPCG solvers are always the fastest among the solvers we have tested here. For the ill-con-

ditioned problem of Plate-B, both the AMGPCG solvers are more than 20 times faster than SSORPCG,

more than four times faster than AMG1R5/CG and slightly faster than SAMG. Our AMGPCG is much

2316 C. Iwamura et al. / Comput. Methods Appl. Mech. Engrg. 192 (2003) 2299–2318



faster than AMG1R5/CG because the setup and each cycle times are very fast and the interpolation weight
is set appropriately (i.e., there are no large fluctuations of residual as observed in AMG1R5/CG). For the

Plate-B problem, many interpolation weights become negative for AMG1R5 while no negative interpo-

lation weights occurred for AMGPCG. Also AMGPCG is faster than SAMG for these problems because

setup and cycle time are faster while the required number of iterations are similar to SAMG. Even though

SAMG is slightly slower than AMGPCG for these problems, its memory requirement is smaller than

AMGPCG. Furthermore SAMG is very general. It can efficiently solve many different types of matrices.

All solvers use the previous time step�s solution as an initial estimate for the current step. The residual is
only required to reduce by two orders of magnitude for the electrical connector problem, and approxi-
mately four orders of magnitude for the Plate-A and Plate-B problems in order to satisfy the convergence

tolerance. Therefore fast setup is very important for these problems. Both AMGPCG solvers complete the

calculation to estimate the solution even before the setup phase of AMG1R5 has been completed for these

three problems (see Table 1 and Fig. 7).

Fig. 8 shows the total time required to solve a system of linear equations for pressure at the early stages

of polymer injection flow simulation. As can be seen from Fig. 8, both SAMG and the AMGPCG solvers

are very fast compared to other solvers. When the system has 2000 nodes, both SAMG and AMGPCG are

already faster than SSORPCG and at 6000 nodes, these solvers are approximately five times faster than
SSORPCG and three to four times faster than both AMG1R5 solvers. Therefore both SAMG and the

AMGPCG solvers can be consistently used for any matrix problem size.

Often in industrial problems, including polymer injection molding flow simulation, a very high-accuracy

approximation is not required. Therefore the value of tolerance is not set to a very small value. Further-

more, a reasonably accurate estimate is often available from the previous time step. Therefore an AMG

solver with fast setup phase is ideally suited to this kind of simulation.

8. Conclusions

Systems of linear equations arising from the finite element discretization of the pressure equation on

unstructured meshes in polymer injection molding have been solved by SSORPCG, AMG1R5/SA,

AMG1R5/CG, SAMG, AMGPCG0, and AMGPCG1 to demonstrate that the our approach of using

AMG as a preconditioner for CG can produce a very efficient and robust solver.

Firstly, robustness is improved substantially by creating an appropriate interpolation operator for the

AMG method and using this AMG method as a preconditioner for CG.
Secondly, simpler coarse systems (smaller operator complexity) are obtained by reducing the first few

coarse systems substantially by using a very small jCij where Ci is only created from the very strongly

negatively connected direct neighbors. In the case of AMGPCG1, further reduction in operator complexity

is obtained by a simple approximation of the original system matrix for the a priori preconditioning matrix.

In addition, our coarsening strategy is simple. Hence we can accomplish the setup phase very quickly and

the use of our simple coarse systems provides fast iteration cycles while not greatly increasing the con-

vergence factor.

Consequently, our solvers are very robust and efficient for solving any size of systems of linear equations
arising from discretization of a scalar elliptic PDE on unstructured 3D meshes. Also, our solvers can ef-

ficiently solve problems requiring only low-accuracy approximations.
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