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Abstract� Algebraic multigrid �AMG� methods are based on algebraically de�ned multigrid

components of which� in particular� a proper de�nition of interpolation is important for obtaining

fast and robust convergence� This is because AMG convergence crucially depends on how well

the range of interpolation approximates the range of the smoothing operator used� On the basis

of various experiments� we will demonstrate the dependency of convergence on the interpolation

operator� A simple improvement by means of a Jacobi relaxation step� applied to the interpolation�

is shown to considerably enhance convergence and robustness� Relaxation of interpolation can

also be used to improve the performance of algebraic multigrid approaches which are based on

accelerated coarsening strategies� Finally� in a parallel environment� the use of local relaxation of

interpolation �only along processor boundaries� may be used to stabilize convergence�
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� Introduction

In any multigrid approach� smoothing �by some kind of relaxation� and coarse�grid correc�
tion are used in conjunction to eliminate the error� This requires that error components
which cannot be corrected by appealing to a coarser�grid problem� must be e�ectively re�
duced by smoothing� In standard geometric multigrid methods� a 	xed grid hierarchy and
linear interpolation are used� so that relaxation must be chosen which smooths the error in
the usual geometric sense� More robust approaches employ sophisticated multigrid com�
ponents such as complex smoothers� operator�dependent interpolation� Galerkin operators
and
or multiple semi�coarsened grids� The most radical attempt to obtain robustness is
the algebraic multigrid �AMG� approach� Here� the complete coarsening process itself�
performed automatically and in a purely algebraic setting� is a substantial part of the
algorithm�

The 	rst attempt to develop a fairly general algebraic multigrid program� AMG�R��
took place over �� years ago� initiated by an idea of A� Brandt 
��� and investigated in
detail in 
���� 
���� 
���� This program has been developed to solve sparse matrix equations

Au � f or
nX

j��

aijuj � fi �i � �� �� ���� n� ���

with primarily positive de�nite� o��diagonally non�positive matrices A in mind �M �
matrices�� The central idea was to employ plain Gauss�Seidel �point� relaxation for
smoothing and automatically construct all coarser levels and interpolation operators so
that the range of interpolation is forced to �approximately� contain those �functions� which
are una�ected by relaxation� This automatism gives AMG a very high �exibility in adapt�
ing itself to speci	c requirements of the problem to be solved and makes it applicable to
various problems which are out of the reach of usual geometric multigrid�

If applied to scalar second order elliptic PDEs� AMG�s �exibility in adapting the coars�
ening locally to� for instance� varying anisotropies� is the reason why AMG can employ
simple pointwise relaxation for smoothing without the need for multiple semi�coarsened
grids� Moreover� since AMG operates merely on the given algebraic equations ���� it can di�
rectly be applied to �D problems as well as to problems on unstructured grids� AMG�R�
has also been tested for certain discretized PDE problems not satisfying the above as�
sumptions �e�g�� involving non�symmetric matrices and matrices containing some �small�
positive o��diagonal entries� where it still worked but convergence sometimes slowed down�
A potential reason for this slow�down is that the interpolation used in AMG�R� is not nec�
essarily appropriate in such situations� although no geometric information has explicitly
been exploited� the de	nition of interpolation was still motivated by geometric arguments�

The purpose of this paper is to improve interpolation and to investigate its in�uence
on the overall convergence� Essentially� a simple Jacobi relaxation step� applied to the
interpolation operator� is used to force the ranges of relaxation and interpolation to be
closer together� Although there is much room for generalizations� in this basic study� our
focus is on scalar PDE problems� We will show that the AMG performance for some
problems which can be regarded as being di�cult even for robust geometric multigrid�
will increase substantially� For other cases such as discrete Poisson�like equations� no
substantial bene	t is obtained� at least not if numerical work is taken into account� Besides
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increasing robustness in general� there are other particular situations where relaxation of
interpolation may lead to substantial enhancements� We will present preliminary results
refering to aspects like accelerated coarsening and parallel coarsening �see Section �����

During the last years� there was a noticeable increase of research on algebraically ori�
ented multigrid methods� for example� see 
��� 
��� 
��� 
��� 
��� 
��� 
���� 
���� 
���� 
���� 
����

���� 
���� 
��� and others� Some of these papers also dealt with improvements of inter�
polation� For instance� Jacobi relaxation has recently been used for obtaining reasonable
interpolation in the context of a di�erent algebraic multigrid approach �based on �aggre�
gation of elements� 
���� 
���� In 
��� a modi	cation of the original AMG�R� interpolation
has been proposed which takes positive o��diagonal entries of A into account �which have
simply been ignored in AMG�R��� While this modi	cation is still based on geometric
assumptions �in particular� the size of matrix entries is assumed to re�ect the distance
between grid points�� relaxation of interpolation leads to improvements in a simple and
purely algebraic way�

We want to point out that the current solver is at an experimental stage and far from
being optimized� This refers mainly to the startup phase but� to some extent� also to the
solution phase� Thus� it does not yet allow to draw 	nal conclusions regarding the overall
e�ciency achievable at the end�

� Motivation of AMG

Formally� an AMG cycle can be described in the same way as a geometric multigrid
cycle� except that terms like grid� subgrids� grid points� etc� have to be replaced by set
of variables� subsets of variables� single variables� etc� Since the formal extension of a
two�level method to a real multi�level method is straightforward� we here consider only
the two�level method with indices h and H distinguishing the levels� In particular� we
re�write ��� as

Ahu
h � fh or

X
j��h

ahiju
h
j � fhi �i � �h� ���

with �h denoting the index set f�� �� ���� ng� From this 	ne�level system� AMG automati�
cally constructs a coarse�level system

AHu
H � fH or

X
l��H

aHklu
H
l � fHk �k � �H � �h� ���

which formally plays the same role as coarse�grid equations in normal multigrid methods�
In particular� fH and uH will be residuals and corrections� respectively� �In the sequel�
we usually denote solution and correction quantities by the letters u and e� respectively��
The assumption �H � �h in ��� means that we regard the set of coarse�level variables
as a subset of the 	ne�level ones� That is� the coarse�level variable uHk is used to directly
correct its corresponding 	ne�level analog� uhk � Note that this is di�erent from algebraic
multigrid approaches based on �aggregation of elements� �see� e�g�� 
���� 
��� 
��� 
�����
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��� Formal AMG Components

We assume �h to be split into two disjoint subsets

�h � Ch � Fh and �H �� Ch ���

with Ch representing those variables which are also contained in the coarse level �C�
variables� and Fh being the complementary set �F�variables�� We formally assume vectors
and matrices to be ordered according to this C
F�splitting and we write uh � �uF � uC�

T

and use BFC to denote an operator �matrix� which maps vectors of C�variables into vectors
of F�variables� Analogously� we write BCF � BFF and BCC �

We generally assume the transfer operators� IhH �interpolation� and IHh �restriction��
to be of the following �full rank� forms

IhH �

�
IFC
ICC

�
� IHh � �ICF � ICC� ���

with ICC �� ICC �identity operator�� Coarse�level operators are de	ned via the Galerkin
operator

AH �� IHh Ah I
h
H � ���

Finally� we need a smoothing process with a corresponding smoothing operator Gh �linear
iteration operator�� In AMG� the standard smoothing process is plain pointwise Gauss�
Seidel relaxation �in some order� normally C
F��

Once all the above components are known� an iterative two�level method can be set
up as in normal geometric multigrid with the well�known coarse�level correction operator
Kh�H and two�level iteration operator Mh�H �

Mh�H � G��
h
Kh�H G��

h
with Kh�H �� �Ih � IhHA

��
H IHh Ah� � ���

Summarising� what needs to be de	ned in order to formally set up a two�level �and
recursively a multi�level� process� are just the C
F�splitting and the operators IFC and
ICF �

��� Direct Solver Aspects

The original equations ���� re�written in block form

�
AFF AFC

ACF ACC

� �
uF
uC

�
�

�
fF
fC

�
� ���

have been used as a starting point for the development of algebraically oriented two�level
methods in various papers �e�g� 
��� 
��� 
��� 
��� 
����� Such methods can be regarded as
approximations to the block Gauss�elimination procedure applied to ��� with the Galerkin
operator ��� being an approximation to the Schur complement� AH � ACC�ACFA

��
FFAFC �

The original AMG� although motivated di�erently in 
���� can also be interpreted in this
context�

For a motivation� we 	rst recall situations for which the algebraic two�level method
degenerates to a direct solver� i�e� for which either Kh�H Gh � � or GhKh�H � �� For
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example� we obviously have Kh�H Gh � � if A��
h

and A��H exist and if the �smoothing
operator� Gh satis	es�

Gh �
�
� j IhH

�
�

�
� IFC
� ICC

�
� ���

This is well�known and an immediate consequence of the trivial identity Kh�HI
h
H � �� If

we de	ne the interpolation ��� by solving the equations

AFF eF � AFCeC � � ����

for eF � that is� IFC � �A��FFAFC � then ��� means

Gh �

�
� �A��

FF
AFC

� ICC

�
� ����

This �smoothing operator�� in turn� corresponds to exactly solving the F�equations for
uF � i�e�

AFF uF � AFCuC � fF ����

or� in terms of the error�

eF � �A��
FF

AFCeC � ����

For this particular choice of IFC it follows � independently of ICF � that the Galerkin
operator ��� is just the Schur complement corresponding to ��� and� as such� is regular
if both Ah and AFF are regular� This result and an analogous one involving �post�
smoothing� are summarized in the following Lemma�

Lemma� Let Ah and AFF be regular and let Gh be de�ned by ����� Then the following
is true�

�� If IFC � �A��FFAFC then A��H exists and Kh�H Gh � ��

	� If ICF � �ACFA
��
FF

then A��
H

exists and GhKh�H � ��


� In either of the two cases� the Galerkin operator ��� is just the Schur complement
corresponding to ���� i�e� AH � ACC �ACFA

��
FFAFC �

Concerning the second statement in the lemma� we 	rst observe that IHh Ahe
h � AHeC

holds for all eh � �eF � eC�� From this and the trivial identity IHh AhKh�H � � it immediately
follows that the application of the coarse�level�correction operatorKh�H yields error vectors
eh with eC � � and therefore� due to ����� post�smoothing reduces the total error to ��

It follows from the lemma that� in order to obtain a direct method� only one of the
transfer operators has to be explicitly speci	ed� For the two�level method to be a direct
solver independently of whether pre� or post�smoothing is used� one has to specify both
transfer operators accordingly� Note that� for symmetric Ah� we have ICF � ITFC � i�e�
the restriction is the transpose of interpolation� For non�symmetric problems� ICF is the
transpose of a di�erent interpolation� namely� the one corresponding to AT

h �

�Although this operator is not a practical smoothing operator� we formally stick to the standard multi�

grid terminology�
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��� Approximation of the Direct Solver

Except for very particular cases �such as �D di�erential problems�� the above direct solvers
are not practical� they serve only as a guideline for more realistic approaches� Generally�
the explicit computation of A��FF is too expensive and a recursive application in a multi�
level context would be prohibitive due to 	ll�in on coarser levels� The latter is also true if
the C
F�splittings are recursively selected such that the matrices AFF become very simple
and do allow for a fast inversion� For instance� if AFF is forced to be diagonal on each
level� the reduction of unknowns in the coarsening process quickly becomes extremely slow
which� again� leads to drastic 	ll�in on the coarser levels�

Instead� one may try to approximate A��
FF

by a simpler matrix� Various ways have
been investigated in the literature �see� for instance� 
��� 
����� However� for obtaining
a reasonable multilevel method� additional crucial requirements are a fast reduction of
unknowns �high dimension of AFF � as well as reasonable sparsity of AH � Clearly� the
availability of e�cient approximations to A��

FF
strongly depends on the selected C
F�

splitting� Our goal is to automatically construct �matrix�dependent� splittings� which
allow for an e�cient approximation of A��FF �

More speci	cally� we will construct splittings which tend to make AFF strongly diago�
nally dominant� This makes sense for large classes of problems� in particular those which
are in the focus of this paper� namely� elliptic partial di�erential equations� We then can
most e�ciently approximate uF in ���� by plain Gauss�Seidel relaxation� applied only to
F�equations �F�relaxation�� Likewise� we can approximate eF in ���� by relaxation� �How�
ever� since IFC has to be kept as �local� as possible� only schemes like Jacobi relaxation
are appropriate�� Formally� the original AMG algorithm 
��� 	ts into this concept ex�
cept that the approximation of ���� was not done by relaxation but was partly motivated
by geometric reasoning �though no geometric information was explicitely exploited� see
also Section ����� This paper investigates an improved interpolation obtained by applying
�usually� one Jacobi relaxation step to ���� using the original AMG interpolation as 	rst
approximation�

Although the above algebraic principle is formally very general� there is one important
aspect to be addressed� namely� the aspect of smoothing� approximations of ���� merely
involve F�equations �in our case just F�relaxations are required� and� as such� do not
take smoothing into account �updating only a subset of variables has no real smoothing
properties�� Consequently� approaches which merely rely on algebraically approximating
A��
FF

� may be very robust but they may also be very ine�cient�
AMG� as we understand it� also attempts to exploit the advantages of smoothing by a

proper selection of the C
F�splitting� In fact� the real motivation of the splitting used in
AMG is not just to formally obtain diagonal dominance �as mentioned above� but rather to
coarsen such that� in particular� �full� Gauss�Seidel relaxation has reasonable smoothing
properties relative to the coarser levels� roughly speaking� coarsening is essentially �in
the direction of strong couplings� �e�g�� see Figure �b�� Incidentally� this then leads to
diagonally dominant matrices AFF � Therefore� we usually use complete C
F�relaxation
steps rather than mere F�relaxations� The importance of this is not motivated by the above
algebraic arguments� However� ignoring the C�relaxation part normally leads to drastically
reduced e�ciencies �see Section ��� On the other hand� the fact that we can enforce
convergence even without using C�relaxations� is another reason of AMG�s robustness
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which makes it applicable also in cases where smoothing is a serious problem �see Section
�����

� The AMG Algorithm

The application of AMG to a given problem is a two part process� The 	rst part� a fully
automatic setup phase� consists of choosing the coarser levels and de	ning the transfer and
coarse�grid operators� The second part� the solution phase� is straightforward and just uses
the resulting components in order to perform normal multigrid cycling until a desired level
of tolerance is reached �involving point relaxation for smoothing�� This section outlines
the algorithm used in the setup phase�

According to Section ���� only the coarsening process itself �C
F�splitting� and the
interpolation� IFC � have to be explicitely de	ned� �Restriction is always taken as the
transpose of interpolation� although this is not necessarily the best for non�symmetric
problems� see Section ����� The approach used in this paper is an extension of the one
described in 
��� the essential aspects of which� for convenience� are brie�y re�called in the
next section� Here and in the following� we omit indices h and H which distinguish 	ne
and coarse levels� All of the following has to be repeated recursively for each level�

��� Original AMG Interpolation

The original AMG interpolation is based on the concept of strength of connectivity between
variables� We de	ne

Ni � fj � � � j �� i� aij �� �g � Si � fj � Ni � �aij � � max
k ��i�aik��

j aik jg

and call Si the set of strong connections� of the variable i� the default value of � being
�����

Although the construction of interpolation is strongly related to the coarsening process�
for ease of description� let us assume a C
F�splitting of � to be given� The original AMG
interpolation�

eF � I
���
FC

eC or� explicitely� ei �
X
k�C

w
���
ik
ek �i � F � � ����

is obtained by approximating the equations �cf� �����

aiiei � �
X
j�Ni

aijej � �
X
j�Ci

aijej �
X
j�Dwi

aijej �
X
j�Dsi

aijej �i � F � � ����

We here subdivided the set Ni of all connections into three disjoint subsets de	ned by

C i � C �Si� D i � Ni � C i � D
w
i � D i �Si� D

s
i � D i �Si �

�Note that� if A contains positive o��diagonal entries� the corresponding connections are not de�ned to

be strong� Correspondingly� an F�variable i does not interpolate from any variable j with aij � �� Unless

such entries become substantial� AMG performance will not deteriorate essentially�
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We now approximate ���� by 	rst replacing ej �j � D
w
i � with ei� i�e� the corresponding

o��diagonal entires are collapsed to the diagonal �weak couplings�� For j � D si �strong
couplings� this is generally not su�cient� Instead� we replace corresponding ej �s by the
weighted average

ej �� �
X

l�Ci�Sj

ajlel���
X

l�Ci�Sj

ajl� �j � D si � � ����

Performing these replacements� we obtain the weights w
���
ik

of interpolation in ����� Note

that interpolation is only from strong connections� i�e� w
���
ik
�� � only if k � C i � Note also

that this interpolation has rowsum � for the i�th variable� if the corresponding rowsum in
A is ��

Clearly� this de	nition makes sense only under certain requirements on the splitting�
In fact� as already mentioned above� the selection of the splitting and the de	nition of
the weights are closely related processes� Roughly� we have to require that C is selected
such that� for each i � F � C i contains su�ciently many connections� Moreover� for ����
to be meaningful� we have to ensure that each variable j � D si has a su�ciently strong
connection to the set C i � The more strongly connected j is to C i � the more accurate we
can expect ���� to be� Our algorithm requires at least one such strong connection�

The concrete coarsening algorithm� described in detail in 
���� is fairly involved and
shall not be repeated here� The main objectives� however� can simply be summarized as
follows �see also Figure ���

Objective �� For each i � F we request that each j � Si should either be in C �and
therefore used for interpolation�� or should be strongly connected to at least one
point in C i �i�e� Sj � C i �� 	��

Objective 
� C should be a maximal subset of indices with the property that no two
C�variables strongly depend on each other�

i

m

n

k

l F=
C=

Figure �� Illustration of the coarsening objectives �Objective ��� Black and grey arrows
indicate strong and weak connections� respectively�

The 	rst objective is the important one in order to obtain reasonable operator�
dependent interpolation which� in turn� is necessary for fast and reliable AMG conver�
gence� However� another major concern in the coarsening process is also to keep the 	nal
work per AMG cycle as low as possible� As a general rule� the larger C is� the better AMG
convergence can be� On the other hand� the amount of work needed per cycle is directly
related to the size of the coarse levels �and the resulting size of the Galerkin operators��
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Therefore� the second objective has been introduced� Normally� it cannot strictly be sat�
is	ed� It rather serves as an additional guideline with the goal to limit the size of C while
still enforcing the 	rst objective�

Without going into detail� we want to note that the coarsening according to these
objectives is realised by means of two successive algorithmic steps �this has turned out
to be most e�cient in practice�� In the 	rst step� AMG scans the set of unknowns and
constructs a tentative splitting with the aim to merely satisfy Objective �� In a second
step� for each tentative F�variable� AMG checks whether or not the requests of Objective
� are satis	ed� In order to strictly satisfy Objective �� some tentative F�variables may
change their status and become C�variables in the 	nal C
F�splitting� During this second
step� also the interpolation weights are computed�

��� Improved Operator Dependent Interpolation

Since the tendency of the above coarsening strategy is to put a substantial part of strong
connections into C� we can largely expect AFF to be strongly diagonally dominant�� There�
fore� a very simple way to improve interpolation is by applying Jacobi�s relaxation to
���� using ���� as the 	rst guess� More speci	cally� assuming any interpolation formula

eF � I
���
FCeC to be given� we derive an improved one� eF � I

�����
FC eC � by de	ning

I
�����
FC � �IFF �D��

FFAFF � I
���
FC � D��

FFAFC with DFF � diag�AFF � � ����

The explicit computation of this �relaxed interpolation� is fairly simple� However�
each iteration introduces� roughly� a �new layer� of additional C�variables to be used for
interpolation� Consequently� even if only one Jacobi step is applied on each AMG level� the
resulting Galerkin operators will get less and less local towards coarser levels� However�
most of the entries in the Galerkin operators are irrelevant for obtaining good convergence�
Reasonable �truncation processes� are being developed� applied either directly to ����
or the resulting interpolation operator itself before the Galerkin operators are actually
assembled� This work is not yet 	nished� Currently� the number of irrelevant Galerkin
entries is reduced by just collapsing all entries to the diagonal which are smaller than
���	 �relative to the diagonal�� This has been done for ease of programming but it is a
relatively costly process� too many irrelevant entries are still kept in the coarsening process
and the average bandwidth of the Galerkin operators usually still grows towards coarser
levels �which will become visible in the results presented in Section ���

� Results

In this section we present various experimental results demonstrating the e�ect of relax�
ation of interpolation on the convergence of AMG� For demonstration� we apply AMG
to �D model PDEs some of which can be regarded as �di�cult� for standard multigrid

�Note that strong diagonal dominance can always be enforced in a controled way by just modifying

the coarsening strategy slightly� As a potential consequence� more variables might be put into C thus

increasing the overall complexity to a certain extent� This has not been done for the tests performed in

this paper�
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procedures� All problems are de	ned on the unit square with Dirichlet boundary condi�
tions and AMG results are given for n � N� unknowns with N being the number of inner
grid points in each direction� We want to recall� however� that AMG operates only on
the given matrix problem ���� nothing else about the speci	c problems is known to AMG�
�Note that we usually select even values for N which is quite inconvenient for geometric
multigrid approaches since it corresponds to an odd number of subdivisions��

Our main focus is on V�cycle convergence factors �more costly F�cycles are used only
exceptionally� computed by a v� Mises iteration employing �at least� �� multigrid cycles�
Coarsening is always down to the coarsest possible level �containing a minimum of �
variables� where the corresponding equations are solved directly� In order to give some
indication on how computational work increases due to the more complex interpolation�
the number of �oating point operations per cycle is given�

We will consider various types of V�cycles denoted by �V ���relax��� where � charac�
terizes the interpolation and �relax� describes the smoothing steps �always applied before
and after coarse�grid correction steps�� For instance� V���CF� means that the original
AMG interpolation ���� is used and smoothing is in C�F order �	rst the C�variables are
relaxed by plain Gauss�Seidel and then the F�variables�� Analogously� V���CFF� means
that the original interpolation has been modi	ed by one Jacobi step and smoothing is
CFF �Gauss�Seidel applied once to the C�variables and then twice to the F�variables��

According to the algebraic motivation given in Section ���� mere F�relaxation steps
should su�ce to obtain convergence if interpolation is a su�ciently good approximation to
����� Therefore� below� we will speci	cally consider cycles employing merely F�relaxations
such as V���FF� or V���FF�� However� it turns out that such cycles� normally� converge
poorly compared to those involving complete CF�relaxation steps �for a discussion� see
Section ����� On the average� the V���CFF� cycle turned out to be the best choice in
terms of robustness and convergence �not necessarily in terms of computational work�
though�� Here� the CF�part of relaxation makes a contribution to the smoothing� while
the additional F�relaxation algebraically forces the range of relaxation to be closer to the
range of interpolation� It turned out that� in all cases tested� further C� or F�steps do not
pay� In particular� V���CFCF��cycles are no better than V���CFF��cycles�

��� Poisson�like Problems

For �isotropic� Poisson�like problems� the original AMG is known to work very e�ciently

��� and there is no reason to expect relaxation of interpolation to have a substantial ad�
vantage over the original AMG interpolation �see� however� Section ������� This is demon�
strated below for the ��point Poisson discretization with Dirichlet boundary conditions on
the unit square�

Figure �a demonstrates the fast convergence of the V���CF��cycle for grid sizes N �
��� ���� ���� It also clearly shows that the convergence of the V���FF��cycle is far from
being satisfactory� its asymptotic convergence factor for 	ne grids exceeds ���� Relative
to this� the V���FF��cycle converges considerably faster since the relaxed interpolation
provides a better approximation to ����� see Figure �b� This is due to the strong diagonal
dominance of the submatrices AFF on all coarser levels� However� within the range of N
considered here� the V���FF��cycle convergence is h�dependent and still much slower �and�
for N � ���� approximately ��� times more expensive� than the V���CF��cycle�
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Figure �� ��point Poisson operator� convergence factors for cycles a� without and b� with
relaxation of interpolation

On the other hand� the V���CF��cycle is more expensive than the V���CF��cycle by
a factor of approximately ��� but it is not faster� see Figure �b� Thus� relaxation of
interpolation does not pay here� Note� however� that V���CFF� converges somewhat faster
than V���CF�� the additional F�relaxation� which enforces the ranges of interpolation and
the smoothing operator to be closer together� has a visible e�ect� We point out that
additional C� or F�relaxations do not improve convergence further� In particular� V���
CFCF� is no faster than V���CFF��

Summarising� cycles employing merely F�relaxations cannot compete here with those
involving complete CF�relaxation steps the reason being that� in contrast to CF�
relaxations� mere F�relaxations have no smoothing properties� Getting satisfactory con�
vergence with mere F�relaxations requires considerably more work in the sense of approx�
imating ����� This has to be expected also for any other Poisson�like problem�

��� Interface Problems

Interface problems

� �D� ux�x � �D� uy�y � f�x� y� ����

with discontinuous coe�cients D� � � and D� � � will� generally� not provide particular
di�culties for AMG� although the convergence may depend somewhat on the concrete
situation� In fact� this type of problem belonged to the target of AMG when it was
originally developed�

We here consider a case which� according to 
���� can be regarded as di�cult even for
robust geometric multigrid methods� the domain is the unit square and f�x� y� is de	ned
to be � except for the points ������ ������ ����� ���� and ������ ����� where it is de	ned to
be ��� Dirichlet boundary conditions are given as

u � � for x 
 ���� y � � and x � �� y 
 ��� � otherwise � u � � �

The distribution of the discontinuous coe�cients is indicated in Figure �a� In contrast
to 
���� we discretize ���� in the usual way rather than using the harmonic average to
compute di�usion coe�cients between vertices �which tends to smear the discontinuities��

Figure �b depicts how AMG adapts its coarsening �	rst � levels� to the particular
requirements of the problem at hand� The 	gure shows all grid points of the 	nest level�
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Figure �� Interface problem� a� distribution of coe�cients b� AMG coarsening

highlighting those which stay also on the coarser levels �the fatter a point� the longer it
stays in the coarsening process�� One realises that AMG locally performs correct semi�
coarsening where necessary �subdomains II and III� and fairly regular coarsening other�
wise� Moreover� close to the discontinuities� coarsening is somewhat slower than elsewhere�

It is this �exibility in adapting the coarsening� together with proper operator depen�
dent interpolation� which makes AMG highly suitable for this kind of problem� In fact�
Figure �a shows that the V���CF��cycle converges fast and� for 	ne meshes� convergence
becomes essentially mesh independent� The observed convergence factor of ��� is typi�
cal for problems of this kind� In contrast to Poisson�like problems� however� relaxation
of interpolation here leads to a substantial convergence improvement� in particular� the
V���CFF��cycle is more than twice as fast as the V���CF��cycle for 	ne grids and con�
vergence factors are virtually constant as a function of N � However� it is also twice as
expensive �see Figure �b� and� therefore� the extra e�ort does 	nally not pay� On the
other hand� as before� cycles employing merely F�relaxations are much less e�cient� In
particular� for 	ne meshes� the V���FF��cycle approaches the convergence of the V���CF��
cycle but it is approximately more expensive by a factor of ���� Moreover� the di�erence
in convergence between the V���FF� and the V���CFF��cycle clearly indicates that the
additional C�relaxation step is very e�ective and the exclusive use of F�relaxations is not
recommendable�
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Figure �� Interface problem� a� convergence factors b� computational work

We point out that the work �in terms of FLOPs per unknown and cycle� is slowly
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increasing with N for all cycles involving relaxed interpolation� Concerning the reasons�
we refer to the corresponding remark at the end of Section ����

��� Rotated Anisotropic Di�usion Equation

An example which still today is frequently used for checking the robustness of multigrid
methods� is the rotated anisotropic di�usion equation 
���

��c� � �s��uxx � ���� ��scuxy � �s� � �c��uyy � f�x� y� ����

with s � sin� and c � cos�� We consider this di�erential operator on the unit square
with Dirichlet boundary conditions� � � ���� and various values of �� uxy is discretized
either by the left�oriented ��point stencil �assuming ���� 
 � 
 ��� or by the central
��point stencil� i�e��

�

�h�

�
� �� �

� �� �
� ��

�
� or

�

�h�

�
� �� �

�
� ��

�
� � ����

The main di�culty with ���� is that it corresponds to the anisotropic operator �uss�
�utt in a coordinate system obtained by rotating the �x� y��system by an angle of �� Usual
multigrid methods have serious di�culties because of the strong anisotropy which is not
aligned with the grid� Consequently� neither point� nor line�relaxation schemes have good
smoothing properties with respect to standard grid coarsening� Moreover� the extent to
which the anisotropy is captured by grid points is di�erent on di�erent grid levels which
also reduces the e�ectiveness of the coarse�grid correction process� Robust geometric
multigrid approaches � involving usual operator dependent interpolation and Galerkin
coarsening � still converge� but even if F�cycles are used as preconditioner for a conjugate
gradient method� convergence may still be very slow �depending on ��� This is particularly
true if uxy is discretized via the ��point stencil �see� e�g�� 
�����
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Figure �� Rotated problem ���point� � � �������� a� convergence b� work

This di�culty is also re�ected in AMG but� due to the high �exibility in adapting
the coarser levels� in a less severe manner� Even the original AMG� used with its default
parameters� converges for any angle� Depending on the size of �� however� convergence
becomes fairly slow� �Note that� except for very particular values of �� the resulting
discretization matrices are not M�matrices��
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Figure �a shows detailed results for the ��point stencil and � � ������� Compared to
the previously discussed problems� there are three major di�erences here� First� all cycles
depicted in Figure �a exhibit h�dependent convergence within the range of grids consid�
ered� Second� C�relaxation is not e�ective here� Obviously� smoothing is insu�cient and
convergence is mainly due to algebraic reasons as motivated in Section ���� the V���FF��
cycle behaves similar to the V���CF��cycle and the V���FF��cycle converges considerably
faster than the V���CF��cycle �it is even slightly faster than the V���CFF��cycle�� Finally�
relaxation of interpolation gives a substantial improvement in cycle performance� while�
for N � ���� both the V���CF� and the V���FF��cycle converge at the fairly slow rate of
����� the V���FF��cycle converges at a rate of ����� That is� the V���FF��cycle is about �
times faster than the V���CF��cycle but only approximately twice as expensive �cf� Figure
�b��

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

32 64 128 256 512

V(0-FF)
V(1-FF)
F(0-FF)
F(1-FF)

Convergence factor

Grid size
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For the same case� Figure � presents a comparison between V� and F�cycle convergence�
The 	gure shows that F�cycles converge substantially faster than their V�cycle analogs�
In particular� the F���FF��cycle converges at the very fast rate of ������
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Figure �� V���CFF��convergence� ��point versus ��point discretization

For N � ���� Figure � gives an impression on the V���CFF��cycle convergence as a
function of � for both the �� and ��point discretizations� The 	gure shows that� for the
��point case� AMG performs exceptionally well not only for � close to �� and ���� �in
which case the anisotropy is just aligned with the axes� but also for ����� In this case�
AMG can still perfectly cope with the anisotropy since it is aligned with the diagonal of the
grid� the corresponding stencil has only non�positive o��diagonal entries and essentially
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degenerates to a ��point stencil along the diagonal �left stencil��

�

h�

�
� ����

� ��
�� � � �� ��

�� ����
�

�
� �

�h�

�
� ����

� ��� � �� ���
�

��� � �� ��� � �� ��� � ��
���
� ��� � �� ����

�

�
� � ����

For the ��point discretization� � � ���� does not play such a particular role �see right
stencil in ����� and AMG convergence is comparable to the worst ��point cases� Apart
from this particular di�erence� AMG performs very similarly for both discretizations�
Concerning the convergence behavior of geometric multigrid processes� see 
����

��� Convection�di�usion Equation

Convection�dominated convection�di�usion problems also give rise to particular di�culties
for standard multigrid methods� As an example� we here consider

���u � a�x� y� ux � b�x� y� uy � f�x� y� ����

with coe�cients

a�x� y� � � sin��x� cos��y� and b�x� y� � sin��y� cos��x� ����

and f�x� y� � � and u � sin��x�� sin����x�� sin��y�� sin����y� on the boundary of the
unit square� We assume � � ���
 and the 	rst derivatives to be discretized by standard
	rst order upwind di�erences� Note that the resulting discretization matrix is an M�matrix
but not symmetric�

According to the results shown in 
���� geometric multigrid approaches have serious
di�culties with this example� covergence may be very slow and mesh dependent� One
di�culty with this particular example is that a and b are chosen to yield closed charac�
teristics and a stagnation point in the center of the domain� Consequently� ���� becomes
more and more singular for � �� �� For � � �� the continuous problem is no longer
well de	ned� any function which is constant along the characteristic curves� solves the
homogeneous equation�
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Figure �� Convection di�usion equation� a� convergence b� computational work

Figure �a shows the behavior of AMG� Using original AMG interpolation� the conver�
gence is still fairly reasonable �see the V���CF��cycle in the 	gure�� at least within the
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range of grids considered here� However� we can also observe a signi	cant dependence
of the convergence on the grid size� More smoothing does not help� On the other hand�
relaxation of interpolation improves things substantially� the maximum asymptotic con�
vergence factors of the V���CF� and V���CFF��cycles are ����� and ������ respectively�
and are largely mesh independent within the range considered here� In contrast to the
rotated anisotropic case of the previous section� C�relaxation steps are very e�ective� In
particular� the V���FF��cycle convergence is strongly h�dependent and much slower than
the V���CF� and V���CFF��cycles�

Figure �� AMG coarsening for the convection di�usion problem

Figure � depicts the coarsening strategy performed by AMG� As mentioned earlier� the
tendency of AMG is to coarsen �in the direction of strong couplings� based on the matrix
entries� This is why AMG tries its best to not coarsen in the radial direction �within the
limits imposed by the grid and the matrix entries��

��� Other Aspects

����� Accelerated Coarsening Strategies

Generally� the overall complexity of AMG directly depends on various aspects� one of which
is the speed of coarsening� In order to allow for an �accelerated� coarsening� Objective �
of Section ��� has to be weakened� Although such strategies are not a major topic of this
paper� we want to give preliminary results for the ��point Poisson discretization�

�

h�

�
� �� �� ��
�� � ��
�� �� ��

�
� � ����

A simple algorithm for �accelerated coarsening�� which is still based on direct strong
connections� can be constructed based on the following two objectives�

Objective �� For each i � F we request that there is a strong connection to �at least�
one C�variable�

Objective 
� C should be as small a set as possible subject to the previous objective�
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Clearly� these objectives are much weaker than those given in Section ���� For ��point
stencils with only strong connections� for instance� they allow for an h � �h coarsening
�approximate reduction of the number of grid points by a factor of ��� Interpolation as
described in Section ��� makes no sense anymore and is� just for the purpose of this section�
replaced by the following one�

ei �
X
k�C

w
���
ik
ek �i � F � with w

���
ik

�� �aik�
X
j�F

aij � ����

which� in terms of approximating ����� means that all o��diagonal entries in AFF are
simply collapsed to the diagonal� Geometrically speaking� this interpolation is rather
crude� In particular� it allows for one�sided interpolation which may lead to insu�cient�
h�dependent AMG convergence �see the discussion in 
����� Applying AMG directly with
this interpolation� cannot lead to an e�cient method� not even for Poisson�like problems�
For the ��point stencil ���� this is con	rmed by the results in Figure ��a which shows
h�dependent V���CF��convergence factors of over ���� for N � ����

Note that this situation is very similar to the one arising for algebraic multigrid meth�
ods based on �aggregation of elements� �see� e�g�� 
��� 
���� 
���� For this approach� one
major problem is to 	nd a good interpolation to begin with� The most natural one� �piece�
wise constant� interpolation has similar de	ciencies as described above� To improve the
resulting convergence� two approaches are followed� in 
��� AMG is used as pre�conditioner
in a conjugate gradient environment and in 
���� 
��� Jacobi relaxation is used to improve
interpolation� In contrast to our �nested� approach� the aggregation approach requires
the application of Jacobi relaxation to all equations�
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Figure ��� Accelerated coarsening� a� convergence factors b� computational work

Figure ��a shows that relaxation of interpolation drastically improves convergence� In
particular� the asymptotic convergence of the V���CFF��cycle is around ����� Note that�
due to the rapid coarsening� there is only a relatively slow increase of numerical work with
increasing � �see Figure ��b��

Although accelerated AMG coarsening will naturally result in slower convergence and
the overall computational time to solve a problem up to a 	xed accuracy may 	nally not
be reduced� it is still very important for practical applications� it is not just computational
time but also storage which has to be kept low� The original AMG coarsening typically
leads to complexities �� ratio of total storage and storage required for the given problem�
of around � or even more� A substantial reduction of storage would often be very relevant�
even if the overall computational work would not change essentially�
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����
 Aspects on Parallelisation

By partitioning the set of unknowns on the 	nest level� the solution phase of AMG can be
parallelized in much the same way as any other multigrid method� Theoretically this is
straightforward since only pointwise relaxation is performed for smoothing� However� due
to the general and complex structure of AMG and due to non�regular sparsity patterns�
in practice� parallelisation is technically rather complicated and involves very complex
communications�

While some parts of the preparation phase can also be performed in parallel �like the
evaluation of the Galerkin operators�� the coarsening process itself is inherently sequen�
tial� As brie�y sketched at the end of Section ���� coarsening is performed in two steps�
Assuming a reasonable partitioning of the variables to be given for parallel processing�
the 	rst of these steps can formally be performed in parallel without any communication�
The disadvantage of this is a potentially non�optimal distribution of variables along the
inner interfaces �e�g� C�variables which are strongly connected across interfaces or too
many neighboring F�variables along the two sides of an interface� which� in particular�
may increase the 	nal AMG complexity� The second step of the coarsening algorithm� the
goal of which is to enforce Objective � �see Section ����� would normally require a lot of
communication� processors would �in an unpredictable manner� need to change the status
of variables �from F to C� which are located in di�erent processors�

i

m

proc 1 proc 2
F=
C=

Figure ��� Modi	cation of interpolation near processor boundaries �Method ��� Boldface
and grey arrows denote strong and weak connections� respectively�

In order to avoid this� we try to satisfy Objective � as good as possible under the
restriction that we do not allow a processor to change the status of any variable which
is located in another processor� Near interfaces� at F�variables i for which the algorithm
normally cannot satisfy Objective � in the best way without modifying the status of some
neighboring F�variable� m� located in another processor �see Figure ���� we propose the
following two di�erent approaches�

Method �� Ignore variable m in interpolation� That is� in de	ning interpolation for
variable i� collapse the matrix entry aim to the diagonal aii �cf� Figure ���� Due to
the violation of Objective � for certain interface variables� the reduced accuracy of
interpolation may have a more or less serious in�uence on the 	nal convergence in
the AMG solution phase� Here� a posteriori relaxation of interpolation �either global
or just local to the boundary� can be used to largely eliminate possibly negative
e�ects�

Method 
� Make i itself a C�variable� That is� Objective � is enforced in a very con�
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servative way� There should be no substantial negative e�ects on convergence but�
depending on the concrete situation� quite many additional C�variables might be in�
troduced near interfaces which� in turn� may increase the total complexity of AMG
substantially�

Figure ��� AMG parallel coarsening strategy� a� Method �� b� Method �

Our AMG program is not yet available in parallel� Instead� we have introduced the
algorithmic modi	cations proposed above in our serial program in order to investigate the
in�uence of a �parallel coarsening strategy� on the AMG convergence� Exemplary coarser
levels resulting from applying Method � and Method �� respectively� are depicted in Figure
��a�b for the case of Poisson�s equation �assuming � processors�� Figure ��a shows AMG
convergence results for the convection�di�usion case �see Section �����N � ��� and various
processor con	gurations� The following methods are compared�

M�� Modi	ed coarsening according to Method �� V�cycles with CF�relaxation in the
solution phase�

M�x� Modi	ed coarsening according to Method �� improvement of interpolation by apply�
ing one step of Jacobi�s relaxation local to the interfaces� V�cycles with CF�relaxation
in the solution phase�

M�xx� Modi	ed coarsening according to Method �� improvement of interpolation by ap�
plying one global Jacobi relaxation step� V�cycles with CFF�relaxation in the solution
phase�

M
� Modi	ed coarsening according to Method �� V�cycles with CF�relaxation in the
solution phase�

For M�� convergence strongly depends on the processor con	guration� Improving in�
terpolation by relaxation� either locally �M�x� or globally �M�xx�� is very e�ective in
eliminating this drawback� in particular� in achieving convergence which is largely inde�
pendent of the processor con	guration� In this example� local relaxation of interpolation is
su�cient in order to maintain the convergence of the sequential V���CF��cycle� Although
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Figure ��� Parallel coarsening strategies� a� convergence b� computational work

for N � ���� as used here� the M�xx convergence is still considerably faster� its perfor�
mance is comparable to M�x if numerical work is taken into account �cf� Figure ��b��
�According to earlier results� depicted in Figure �� this may change for 	ner grids�� The
performance of M� is comparable to that of M�x but M� is much easier to realise since
it does not require extra communication� In general� however� the additional C�variables
near the interfaces may seriously disturb the coarsening pattern and� as a consequence�
the overall complexity�

Although these results are very preliminary� they indicate that �local� relaxation of in�
terpolation is one possibility to largely remove the disadvantages introduced by performing
the AMG coarsening in parallel�

References


�� Axelsson� O�� Vassilevski� P�S�� Algebraic multilevel preconditioning methods I�
Num� Math� ��� �������� �����


�� Axelsson� O�� Vassilevski� P�S�� Algebraic multilevel preconditioning methods II�
SIAM Numer� Anal� ��� ���������� �����


�� Braess� D�� Towards Algebraic Multigrid for Elliptic Problems of Second Order�
Computing ��� �������� �����


�� Brandt� A�� Multigrid Techniques� ���� Guide with Applications to Fluid Dynam�
ics� Arbeitspapiere der GMD ��� �����


�� Brandt� A�� Algebraic multigrid theory� the symmetric case� Procs� of the Interna�
tional Multigrid Conference� Copper Mountain� Colorado� �����


�� Chan� T�� Zikatanov� L�� Xu� J�� Agglomeration strategy for unstructured grids�
AMLI���� Proceedings of the Conference on �Algebraic Multilevel Iteration Meth�
ods with Applications� �Axelsson� O�� Polman� B� eds��� Nijmegen� June ������
�����


�� Chang� Q�� Wong� Y�S�� Fu� H�� On the algebraic multigrid method� J� Comp� Phys�
���� �������� �����

��




�� Dahmen� W�� Elsner� L�� Algebraic multigrid methods and the Schur complement�
Notes on Numerical Fluid Mechanics ��� Vieweg Verlag� �����


�� Fuhrmann� J�� Outlines of a modular algebraic multilevel method� ISSN ����������
Weierstra s�Institut f ur Angewandte Analysis und Stochastik� Berlin� �����


��� Grauschopf� T�� Griebel� M�� Regler� H�� Additive multilevel�preconditioners based
on bilinear interpolation� matrix dependent geometric coarsening and algebraic
multigrid coarsening for second order elliptic PDEs� TUM������� SFB�Bericht Nr�
���
��
�� A� Institut f ur Informatik� Technische Universit at M unchen� �����


��� Griebel� M�� Neunhoe�er� T�� Regler� H�� Algebraic multigrid methods for the so�
lution of the Navier�Stokes equations in complicated geometries� SFB�Bericht Nr�
���
��
�� A� Institut f ur Informatik� Technische Universit at M unchen� �����


��� Lonsdale� R�D�� An algebraic multigrid solver for the Navier�Stokes equations on
unstructured meshes� Int� J� Num� Meth� Heat Fluid Flow �� ����� �����


��� Oosterlee� C�W�� Washio� T�� An evaluation of parallel multigrid as a solver and
a preconditioner for singularly perturbed problems� to appear� SIAM SISC� Also
available as� Arbeitspapiere der GMD� No� ���� �����


��� Raw� M�� A coupled algebraic multigrid method for the 
D Navier�Stokes equations�
Advanced Scienti	c Computing Ltd�� ��� Parkside Drive� Waterloo� Ontario N�L
�Z�� Canada�


��� Reusken� A�A�� A multigrid method based on incomplete Gaussian elimination�
Eindhoven University of Technology� Report RANA ������ ISSN ���������� �����


��� Ritzdorf� H�� St uben� K�� Adaptive multigrid on distributed memory computers�
Multigrid Methods IV �Hemker� P�W�� Wesseling� P�� eds��� Birkh auser Verlag� p�
��� �����


��� Robinson� G�� Parallel computational �uid dynamics on unstructured meshes using
algebraic multigrid� Parallel Computational Fluid Dynamics �� �Pelz� R�B�� Ecer�
A�� H auser� J� eds��� Elsevier Science Publishers B�V�� �����


��� Ruge� J�W�� St uben� K�� E�cient solution of �nite di�erence and �nite element
equations by algebraic multigrid �AMG�� Multigrid Methods for Integral and Di�er�
ential Equations �Paddon� D�J�� Holstein H�� eds��� The Institute of Mathematics
and its Applications Conference Series� New Series Number �� pp� �������� Claren�
den Press� Oxford� �����


��� Ruge� J�W�� St uben� K�� Algebraic Multigrid �AMG�� In �Multigrid Methods� �Mc�
Cormick� S�F�� ed��� SIAM� Frontiers in Applied Mathematics� Vol �� Philadelphia�
�����


��� St uben� K�� Algebraic multigrid �AMG�� Experiences and comparisons� Appl�
Math� Comp� ��� pp� �������� �����

��




��� Vanek� P�� Mandel� J�� Brezina� M�� Algebraic multigrid on unstructured meshes�
University of Colorado at Denver� UCD
CCM Report No ��� �����


��� Webster� R�� An algebraic multigrid solver for Navier�Stokes problems in the dis�
crete second order approximation� Int� J� Num� Meth� in Fluids ��� ����������
�����


��� Wesseling� P�� An Introduction to Multigrid Methods� John Wiley� Chichester� ����

��


