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Abstract. Algebraic multigrid (AMG) methods are based on algebraically defined multigrid
components of which, in particular, a proper definition of interpolation is important for obtaining
fast and robust convergence. This is because AMG convergence crucially depends on how well
the range of interpolation approximates the range of the smoothing operator used. On the basis
of various experiments, we will demonstrate the dependency of convergence on the interpolation
operator. A simple improvement by means of a Jacobi relaxation step, applied to the interpolation,
is shown to considerably enhance convergence and robustness. Relaxation of interpolation can
also be used to improve the performance of algebraic multigrid approaches which are based on
accelerated coarsening strategies. Finally, in a parallel environment, the use of local relaxation of
interpolation (only along processor boundaries) may be used to stabilize convergence.



1 Introduction

In any multigrid approach, smoothing (by some kind of relaxation) and coarse-grid correc-
tion are used in conjunction to eliminate the error. This requires that error components
which cannot be corrected by appealing to a coarser-grid problem, must be effectively re-
duced by smoothing. In standard geometric multigrid methods, a fixed grid hierarchy and
linear interpolation are used, so that relaxation must be chosen which smooths the error in
the usual geometric sense. More robust approaches employ sophisticated multigrid com-
ponents such as complex smoothers, operator-dependent interpolation, Galerkin operators
and /or multiple semi-coarsened grids. The most radical attempt to obtain robustness is
the algebraic multigrid (AMG) approach. Here, the complete coarsening process itself,
performed automatically and in a purely algebraic setting, is a substantial part of the
algorithm.

The first attempt to develop a fairly general algebraic multigrid program, AMGI1RS5,
took place over 10 years ago, initiated by an idea of A. Brandt [5], and investigated in
detail in [18], [20], [19]. This program has been developed to solve sparse matrix equations

n

Au=f or ZaijUj =fi (i=1,2,..,n) (1)

i=1

with primarily positive definite, off-diagonally non-positive matrices A in mind (M-
matrices). The central idea was to employ plain Gauss-Seidel “point” relaxation for
smoothing and automatically construct all coarser levels and interpolation operators so
that the range of interpolation is forced to (approximately) contain those “functions” which
are unaffected by relaxation. This automatism gives AMG a very high flexibility in adapt-
ing itself to specific requirements of the problem to be solved and makes it applicable to
various problems which are out of the reach of usual geometric multigrid.

If applied to scalar second order elliptic PDEs, AMG’s flexibility in adapting the coars-
ening locally to, for instance, varying anisotropies, is the reason why AMG can employ
simple pointwise relaxation for smoothing without the need for multiple semi-coarsened
grids. Moreover, since AMG operates merely on the given algebraic equations (1), it can di-
rectly be applied to 3D problems as well as to problems on unstructured grids. AMG1R5
has also been tested for certain discretized PDE problems not satisfying the above as-
sumptions (e.g., involving non-symmetric matrices and matrices containing some “small”
positive off-diagonal entries) where it still worked but convergence sometimes slowed down.
A potential reason for this slow-down is that the interpolation used in AMG1RS5 is not nec-
essarily appropriate in such situations: although no geometric information has explicitly
been exploited, the definition of interpolation was still motivated by geometric arguments.

The purpose of this paper is to improve interpolation and to investigate its influence
on the overall convergence. FEssentially, a simple Jacobi relaxation step, applied to the
interpolation operator, is used to force the ranges of relaxation and interpolation to be
closer together. Although there is much room for generalizations, in this basic study, our
focus is on scalar PDE problems. We will show that the AMG performance for some
problems which can be regarded as being difficult even for robust geometric multigrid,
will increase substantially. For other cases such as discrete Poisson-like equations, no
substantial benefit is obtained, at least not if numerical work is taken into account. Besides



increasing robustness in general, there are other particular situations where relaxation of
interpolation may lead to substantial enhancements. We will present preliminary results
refering to aspects like accelerated coarsening and parallel coarsening (see Section 4.5).

During the last years, there was a noticeable increase of research on algebraically ori-
ented multigrid methods, for example, see [1], [2], [3], [6], [7], [9], [10], [11], [12], [14], [15],
[17], [21], [22] and others. Some of these papers also dealt with improvements of inter-
polation. For instance, Jacobi relaxation has recently been used for obtaining reasonable
interpolation in the context of a different algebraic multigrid approach (based on “aggre-
gation of elements” [21], [6]). In [7], a modification of the original AMGI1RS5 interpolation
has been proposed which takes positive off-diagonal entries of A into account (which have
simply been ignored in AMGI1R5). While this modification is still based on geometric
assumptions (in particular, the size of matrix entries is assumed to reflect the distance
between grid points), relaxation of interpolation leads to improvements in a simple and
purely algebraic way.

We want to point out that the current solver is at an experimental stage and far from
being optimized. This refers mainly to the startup phase but, to some extent, also to the
solution phase. Thus, it does not yet allow to draw final conclusions regarding the overall
efficiency achievable at the end.

2 Motivation of AMG

Formally, an AMG cycle can be described in the same way as a geometric multigrid
cycle, except that terms like grid, subgrids, grid points, etc. have to be replaced by set
of variables, subsets of variables, single variables, etc. Since the formal extension of a
two-level method to a real multi-level method is straightforward, we here consider only
the two-level method with indices h and H distinguishing the levels. In particular, we
re-write (1) as

Apul = fh or Z affju? = fih (1 € Q) (2)
JEQ,

with ©j denoting the index set {1,2,...,n}. From this fine-level system, AMG automati-
cally constructs a coarse-level system

Agu = 7 or Z allufl = fH (k€ Qg C Q) (3)
lEQy

which formally plays the same role as coarse-grid equations in normal multigrid methods.
In particular, f and u¥ will be residuals and corrections, respectively. (In the sequel,
we usually denote solution and correction quantities by the letters u and e, respectively.)
The assumption Qp C €, in (3) means that we regard the set of coarse-level variables
as a subset of the fine-level ones. That is, the coarse-level variable uf is used to directly
correct its corresponding fine-level analog, UZ Note that this is different from algebraic
multigrid approaches based on “aggregation of elements” (see, e.g., [21], [3], [6], [12]).



2.1 Formal AMG Components

We assume €2, to be split into two disjoint subsets
Q,=CrLUF, and Qp:=C} (4)

with C} representing those variables which are also contained in the coarse level (C-
variables) and F}, being the complementary set (F-variables). We formally assume vectors
and matrices to be ordered according to this C/F-splitting and we write " = (up, uc)?
and use Br¢ to denote an operator (matrix) which maps vectors of C-variables into vectors
of F-variables. Analogously, we write Bop, Bpr and Bee.

We generally assume the transfer operators, I}y (interpolation) and I} (restriction),

to be of the following (full rank) forms

Irc
Ifp = (Icc ) , I = (Ior, Ico) (5)
with Icc := Ice (identity operator). Coarse-level operators are defined via the Galerkin
operator

Ag =11 A1) . (6)

Finally, we need a smoothing process with a corresponding smoothing operator Gy, (linear
iteration operator). In AMG, the standard smoothing process is plain pointwise Gauss-
Seidel relaxation (in some order, normally C/F).

Once all the above components are known, an iterative two-level method can be set
up as in normal geometric multigrid with the well-known coarse-level correction operator
K, g and two-level iteration operator My, -

Mh,H = Gf I(;“H Gzl with I(;“H = (]Ih — IEA;;I;?A;L) . (7)

Summarising, what needs to be defined in order to formally set up a two-level (and
recursively a multi-level) process, are just the C/F-splitting and the operators Ir¢ and
IOF.

2.2 Direct Solver Aspects

The original equations (2), re-written in block form

(e 2 () - (%), ”

have been used as a starting point for the development of algebraically oriented two-level
methods in various papers (e.g. [1], [2], [8], [9], [15]). Such methods can be regarded as
approximations to the block Gauss-elimination procedure applied to (8) with the Galerkin
operator (6) being an approximation to the Schur complement, Ay ~ ACC—ACFAE;AFC.
The original AMG, although motivated differently in [19], can also be interpreted in this
context.

For a motivation, we first recall situations for which the algebraic two-level method
degenerates to a direct solver, i.e. for which either K}, y G, = 0 or Gy K, g = 0. For



example, we obviously have K g Gy = 0 if Agl and A;II exist and if the “smoothing

operator” (), satisfies!
_ R _ (0 Irc
Gh_(0|IH)_(OICC). (9)

This is well-known and an immediate consequence of the trivial identity Khﬂlﬁ =0.If
we define the interpolation (5) by solving the equations

Arrer + Arcec =0 (10)
for ep, that is, Ipc = —A}};AFC, then (9) means
- (3 )
This “smoothing operator”, in turn, corresponds to exactly solving the F-equations for
up, i.e.
Aprup + Apcuc = fr (12)
or, in terms of the error,
ep = —A;}?Apcec. (13)

For this particular choice of Ir¢ it follows — independently of Iog — that the Galerkin
operator (6) is just the Schur complement corresponding to (8) and, as such, is regular
if both A, and App are regular. This result and an analogous one involving “post-
smoothing” are summarized in the following Lemma.

Lemma: Let Ay, and App be reqular and let G}, be defined by (11). Then the following
s true:

1. If Ipc = —AE;AFC then A;II exists and Kj, g Gy = 0.
2. If Ier = —AOFA}}? then A;II exists and Gy, K, g = 0.

3. In either of the two cases, the Galerkin operator (6) is just the Schur complement
corresponding to (8), i.e. Ag = Acc — ACFA];};AFC.

Concerning the second statement in the lemma, we first observe that I}?Aheh = Agec
holds for all ¢ = (er, ec). From this and the trivial identity I}?Ah[(hﬂ = 0 it immediately
follows that the application of the coarse-level-correction operator K g yields error vectors
e” with e = 0 and therefore, due to (13), post-smoothing reduces the total error to 0.

It follows from the lemma that, in order to obtain a direct method, only one of the
transfer operators has to be explicitly specified. For the two-level method to be a direct
solver independently of whether pre- or post-smoothing is used, one has to specify both
transfer operators accordingly. Note that, for symmetric A*, we have Iop = I%O, ie.
the restriction is the transpose of interpolation. For non-symmetric problems, Iog is the
transpose of a different interpolation, namely, the one corresponding to A%.

! Although this operator is not a practical smoothing operator, we formally stick to the standard multi-
grid terminology.



2.3 Approximation of the Direct Solver

Except for very particular cases (such as 1D differential problems), the above direct solvers
are not practical, they serve only as a guideline for more realistic approaches. Generally,
the explicit computation of A}}; is too expensive and a recursive application in a multi-
level context would be prohibitive due to fill-in on coarser levels. The latter is also true if
the C/F-splittings are recursively selected such that the matrices App become very simple
and do allow for a fast inversion. For instance, if App is forced to be diagonal on each
level, the reduction of unknowns in the coarsening process quickly becomes extremely slow
which, again, leads to drastic fill-in on the coarser levels.

Instead, one may try to approximate A;}? by a simpler matrix. Various ways have
been investigated in the literature (see, for instance, [9], [15]). However, for obtaining
a reasonable multilevel method, additional crucial requirements are a fast reduction of
unknowns (high dimension of App) as well as reasonable sparsity of Ay. Clearly, the
availability of efficient approximations to A;}? strongly depends on the selected C/F-
splitting. Our goal is to automatically construct (matrix-dependent) splittings, which
allow for an efficient approximation of A}};

More specifically, we will construct splittings which tend to make App strongly diago-
nally dominant. This makes sense for large classes of problems, in particular those which
are in the focus of this paper, namely, elliptic partial differential equations. We then can
most efficiently approximate ug in (12) by plain Gauss-Seidel relaxation, applied only to
F-equations (F-relazation). Likewise, we can approximate e in (10) by relaxation. (How-
ever, since Irpc has to be kept as “local” as possible, only schemes like Jacobi relaxation
are appropriate.) Formally, the original AMG algorithm [19] fits into this concept ex-
cept that the approximation of (10) was not done by relaxation but was partly motivated
by geometric reasoning (though no geometric information was explicitely exploited; see
also Section 3.1). This paper investigates an improved interpolation obtained by applying
(usually) one Jacobi relaxation step to (10) using the original AMG interpolation as first
approximation.

Although the above algebraic principle is formally very general, there is one important
aspect to be addressed, namely, the aspect of smoothing: approximations of (12) merely
involve F-equations (in our case just F-relaxations are required) and, as such, do not
take smoothing into account (updating only a subset of variables has no real smoothing
properties). Consequently, approaches which merely rely on algebraically approximating
A;}?, may be very robust but they may also be very inefficient.

AMG, as we understand it, also attempts to exploit the advantages of smoothing by a
proper selection of the C/F-splitting. In fact, the real motivation of the splitting used in
AMG is not just to formally obtain diagonal dominance (as mentioned above) but rather to
coarsen such that, in particular, (full) Gauss-Seidel relaxation has reasonable smoothing
properties relative to the coarser levels: roughly speaking, coarsening is essentially “in
the direction of strong couplings” (e.g., see Figure 3b). Incidentally, this then leads to
diagonally dominant matrices App. Therefore, we usually use complete C/F-relaxation
steps rather than mere F-relaxations. The importance of this is not motivated by the above
algebraic arguments. However, ignoring the C-relaxation part normally leads to drastically
reduced efficiencies (see Section 4). On the other hand, the fact that we can enforce
convergence even without using C-relaxations, is another reason of AMG’s robustness



which makes it applicable also in cases where smoothing is a serious problem (see Section
4.3).

3 The AMG Algorithm

The application of AMG to a given problem is a two part process. The first part, a fully
automatic setup phase, consists of choosing the coarser levels and defining the transfer and
coarse-grid operators. The second part, the solution phase, is straightforward and just uses
the resulting components in order to perform normal multigrid cycling until a desired level
of tolerance is reached (involving point relaxation for smoothing). This section outlines
the algorithm used in the setup phase.

According to Section 2.1, only the coarsening process itself (C/F-splitting) and the
interpolation, Irc, have to be explicitely defined. (Restriction is always taken as the
transpose of interpolation, although this is not necessarily the best for non-symmetric
problems, see Section 2.2.) The approach used in this paper is an extension of the one
described in [19] the essential aspects of which, for convenience, are briefly re-called in the
next section. Here and in the following, we omit indices h and H which distinguish fine
and coarse levels. All of the following has to be repeated recursively for each level.

3.1 Original AMG Interpolation

The original AMG interpolation is based on the concept of strength of connectivity between
variables. We define

Ni={j€Q:j#t a; #0}, S;={jeNi: —a;; >n max |ayl|}
k#i,a,5<0

and call S; the set of strong connections® of the variable i, the default value of 5 being
0.25.

Although the construction of interpolation is strongly related to the coarsening process,
for ease of description, let us assume a C/F-splitting of Q to be given. The original AMG
interpolation,

eF = Iggec or, explicitely, e; = Z wz(g)ek (tel), (14)
keC

is obtained by approximating the equations (cf. (10))
a6, = — Z aje; = — Z a;je; — Z a;je; — Z aije; (teF). (15)
JEN; ieC, jen® jeDe
We here subdivided the set N; of all connections into three disjoint subsets defined by

C=CnS;, D, =N,-GC;, DY =D, -S;,, D) =D, NnS;.

k3 k3

ZNote that, if A contains positive off-diagonal entries, the corresponding connections are not defined to
be strong. Correspondingly, an F-variable : does not interpolate from any variable j with a;; > 0. Unless
such entries become substantial, AMG performance will not deteriorate essentially.



We now approximate (15) by first replacing e; (j € DY) with e;, i.e. the corresponding
off-diagonal entires are collapsed to the diagonal (weak couplings). For j € D? (strong
couplings) this is generally not sufficient. Instead, we replace corresponding e;’s by the
weighted average

e — (> auen)/( Y ap) (GEDE). (16)
leC;nS; leCGnS;

(0)

Performing these replacements, we obtain the weights wig of interpolation in (14). Note

that interpolation is only from strong connections, i.e. wl(.g) # 0 only if k € C;. Note also
that this interpolation has rowsum 1 for the ¢-th variable, if the corresponding rowsum in
Ais 0.

Clearly, this definition makes sense only under certain requirements on the splitting.
In fact, as already mentioned above, the selection of the splitting and the definition of
the weights are closely related processes. Roughly, we have to require that C is selected
such that, for each 7 € F', C; contains sufficiently many connections. Moreover, for (16)
to be meaningful, we have to ensure that each variable ;7 € D? has a sufficiently strong
connection to the set C;. The more strongly connected j is to C;, the more accurate we
can expect (16) to be. Our algorithm requires at least one such strong connection.

The concrete coarsening algorithm, described in detail in [19], is fairly involved and
shall not be repeated here. The main objectives, however, can simply be summarized as
follows (see also Figure 1):

Objective 1: For each ¢ € I we request that each j € S; should either be in C (and
therefore used for interpolation), or should be strongly connected to at least one

point in C; (i.e. S;NC; #0).

Objective 2: C should be a maximal subset of indices with the property that no two
C-variables strongly depend on each other.

A
k | A
n
]
m
F= 0
c=A

Figure 1: Illustration of the coarsening objectives (Objective 1). Black and grey arrows
indicate strong and weak connections, respectively.

The first objective is the important one in order to obtain reasonable operator-
dependent interpolation which, in turn, is necessary for fast and reliable AMG conver-
gence. However, another major concern in the coarsening process is also to keep the final
work per AMG cycle as low as possible. As a general rule, the larger C is, the better AMG
convergence can be. On the other hand, the amount of work needed per cycle is directly
related to the size of the coarse levels (and the resulting size of the Galerkin operators).
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Therefore, the second objective has been introduced. Normally, it cannot strictly be sat-
isfied. It rather serves as an additional guideline with the goal to limit the size of C while
still enforcing the first objective.

Without going into detail, we want to note that the coarsening according to these
objectives is realised by means of two successive algorithmic steps (this has turned out
to be most efficient in practice). In the first step, AMG scans the set of unknowns and
constructs a tentative splitting with the aim to merely satisfy Objective 2. In a second
step, for each tentative F-variable, AMG checks whether or not the requests of Objective
1 are satisfied. In order to strictly satisfy Objective 1, some tentative F-variables may
change their status and become C-variables in the final C/F-splitting. During this second
step, also the interpolation weights are computed.

3.2 Improved Operator Dependent Interpolation

Since the tendency of the above coarsening strategy is to put a substantial part of strong
connections into C, we can largely expect App to be strongly diagonally dominant®. There-
fore, a very simple way to improve interpolation is by applying Jacobi’s relaxation to
(10) using (14) as the first guess. More specifically, assuming any interpolation formula

e = I](;gec to be given, we derive an improved one, e = I}?l)ec, by defining
I}(,fg—l) = (]IFF — D;‘}J‘AFF) I}(TMC)’ — D;‘}J‘AFC with Dpp = diag(AFF) . (17)

The explicit computation of this “relaxed interpolation” is fairly simple. However,
each iteration introduces, roughly, a “new layer” of additional C-variables to be used for
interpolation. Consequently, even if only one Jacobi step is applied on each AMG level, the
resulting Galerkin operators will get less and less local towards coarser levels. However,
most of the entries in the Galerkin operators are irrelevant for obtaining good convergence.
Reasonable “truncation processes” are being developed, applied either directly to (10)
or the resulting interpolation operator itself before the Galerkin operators are actually
assembled. This work is not yet finished. Currently, the number of irrelevant Galerkin
entries is reduced by just collapsing all entries to the diagonal which are smaller than
107¢ (relative to the diagonal). This has been done for ease of programming but it is a
relatively costly process, too many irrelevant entries are still kept in the coarsening process
and the average bandwidth of the Galerkin operators usually still grows towards coarser
levels (which will become visible in the results presented in Section 4).

4 Results

In this section we present various experimental results demonstrating the effect of relax-
ation of interpolation on the convergence of AMG. For demonstration, we apply AMG
to 2D model PDEs some of which can be regarded as “difficult” for standard multigrid

FNote that strong diagonal dominance can always be enforced in a controled way by just modifying
the coarsening strategy slightly. As a potential consequence, more variables might be put into C thus
increasing the overall complexity to a certain extent. This has not been done for the tests performed in
this paper.
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procedures. All problems are defined on the unit square with Dirichlet boundary condi-
tions and AMG results are given for n = N2 unknowns with N being the number of inner
grid points in each direction. We want to recall, however, that AMG operates only on
the given matrix problem (1), nothing else about the specific problems is known to AMG.
(Note that we usually select even values for N which is quite inconvenient for geometric
multigrid approaches since it corresponds to an odd number of subdivisions.)

Our main focus is on V-cycle convergence factors (more costly F-cycles are used only
exceptionally) computed by a v. Mises iteration employing (at least) 70 multigrid cycles.
Coarsening is always down to the coarsest possible level (containing a minimum of 9
variables) where the corresponding equations are solved directly. In order to give some
indication on how computational work increases due to the more complex interpolation,
the number of floating point operations per cycle is given.

We will consider various types of V-cycles denoted by “V (u—relax)”, where u charac-
terizes the interpolation and “relax” describes the smoothing steps (always applied before
and after coarse-grid correction steps). For instance, V(0-CF) means that the original
AMG interpolation (14) is used and smoothing is in C-F order (first the C-variables are
relaxed by plain Gauss-Seidel and then the F-variables). Analogously, V(1-CFF) means
that the original interpolation has been modified by one Jacobi step and smoothing is
CFF (Gauss-Seidel applied once to the C-variables and then twice to the F-variables).

According to the algebraic motivation given in Section 2.3, mere F-relaxation steps
should suffice to obtain convergence if interpolation is a sufficiently good approximation to
(10). Therefore, below, we will specifically consider cycles employing merely F-relaxations
such as V(0-FF) or V(1-FF). However, it turns out that such cycles, normally, converge
poorly compared to those involving complete CF-relaxation steps (for a discussion, see
Section 2.3). On the average, the V(1-CFF) cycle turned out to be the best choice in
terms of robustness and convergence (not necessarily in terms of computational work,
though). Here, the CF-part of relaxation makes a contribution to the smoothing, while
the additional F-relaxation algebraically forces the range of relaxation to be closer to the
range of interpolation. It turned out that, in all cases tested, further C- or F-steps do not
pay. In particular, V(1-CFCF)-cycles are no better than V(1-CFF)-cycles.

4.1 Poisson-like Problems

For (isotropic) Poisson-like problems, the original AMG is known to work very efficiently
[19] and there is no reason to expect relaxation of interpolation to have a substantial ad-
vantage over the original AMG interpolation (see, however, Section 4.5.1). This is demon-
strated below for the 5-point Poisson discretization with Dirichlet boundary conditions on
the unit square.

Figure 2a demonstrates the fast convergence of the V(0-CF)-cycle for grid sizes N =
32,...,512. It also clearly shows that the convergence of the V(0-FF)-cycle is far from
being satisfactory: its asymptotic convergence factor for fine grids exceeds 0.7. Relative
to this, the V(1-FF)-cycle converges considerably faster since the relaxed interpolation
provides a better approximation to (10), see Figure 2b. This is due to the strong diagonal
dominance of the submatrices App on all coarser levels. However, within the range of N
considered here, the V(1-FF)-cycle convergence is h-dependent and still much slower (and,
for N = 512, approximately 1.6 times more expensive) than the V(0-CF)-cycle.

12



Convergence factor Convergence factor

0,7 q 0,25
06 —+—V(1-CF)
L 0.2 {|-=-Va-FP)
0.5+ —x-V(1-CFF)
04 ——V(0-CF) 0,15
\ —o-V/(0-FF) /
0,3 A 01
0,2 Y
0,05
0,1 1 R —
0 T T T 1 0 T T 1
32 64 128 256 512 32 64 128 256 512
Grid size Grid size

Figure 2: 5-point Poisson operator: convergence factors for cycles a) without and b) with
relaxation of interpolation

On the other hand, the V(1-CF)-cycle is more expensive than the V(0-CF)-cycle by
a factor of approximately 1.5 but it is not faster, see Figure 2b. Thus, relaxation of
interpolation does not pay here. Note, however, that V(1-CFF) converges somewhat faster
than V(1-CF): the additional F-relaxation, which enforces the ranges of interpolation and
the smoothing operator to be closer together, has a visible effect. We point out that
additional C- or F-relaxations do not improve convergence further. In particular, V(1-
CFCF) is no faster than V(1-CFF).

Summarising, cycles employing merely F-relaxations cannot compete here with those
involving complete CF-relaxation steps the reason being that, in contrast to CF-
relaxations, mere F-relaxations have no smoothing properties. Getting satisfactory con-
vergence with mere F-relaxations requires considerably more work in the sense of approx-
imating (10). This has to be expected also for any other Poisson-like problem.

4.2 Interface Problems

Interface problems

—(Diug)e = (D2uy)y = fl,y) (18)

with discontinuous coefficients Dy > 0 and Dy > 0 will, generally, not provide particular
difficulties for AMG, although the convergence may depend somewhat on the concrete
situation. In fact, this type of problem belonged to the target of AMG when it was
originally developed.

We here consider a case which, according to [13], can be regarded as difficult even for
robust geometric multigrid methods: the domain is the unit square and f(z,y) is defined
to be 0 except for the points (0.25,0.25), (0.5,0.5) and (0.75,0.75) where it is defined to
be 10. Dirichlet boundary conditions are given as

wu=1 for <05, y=0andz =0,y <0.5; otherwise: u=20.

The distribution of the discontinuous coefficients is indicated in Figure 3a. In contrast
to [13], we discretize (18) in the usual way rather than using the harmonic average to
compute diffusion coefficients between vertices (which tends to smear the discontinuities).

Figure 3b depicts how AMG adapts its coarsening (first 5 levels) to the particular
requirements of the problem at hand. The figure shows all grid points of the finest level,
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Figure 3: Interface problem: a) distribution of coefficients b) AMG coarsening

highlighting those which stay also on the coarser levels (the fatter a point, the longer it
stays in the coarsening process). One realises that AMG locally performs correct semi-
coarsening where necessary (subdomains Il and IIl) and fairly regular coarsening other-
wise. Moreover, close to the discontinuities, coarsening is somewhat slower than elsewhere.

It is this flexibility in adapting the coarsening, together with proper operator depen-
dent interpolation, which makes AMG highly suitable for this kind of problem. In fact,
Figure 4a shows that the V(0-CF)-cycle converges fast and, for fine meshes, convergence
becomes essentially mesh independent. The observed convergence factor of 0.2 is typi-
cal for problems of this kind. In contrast to Poisson-like problems, however, relaxation
of interpolation here leads to a substantial convergence improvement: in particular, the
V(1-CFF)-cycle is more than twice as fast as the V(0-CF)-cycle for fine grids and con-
vergence factors are virtually constant as a function of N. However, it is also twice as
expensive (see Figure 4b) and, therefore, the extra effort does finally not pay. On the
other hand, as before, cycles employing merely F-relaxations are much less efficient. In
particular, for fine meshes, the V(1-FF)-cycle approaches the convergence of the V(0-CF)-
cycle but it is approximately more expensive by a factor of 1.8. Moreover, the difference
in convergence between the V(1-FF) and the V(1-CFF)-cycle clearly indicates that the
additional C-relaxation step is very effective and the exclusive use of F-relaxations is not
recommendable.
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Figure 4: Interface problem: a) convergence factors b) computational work

We point out that the work (in terms of FLOPs per unknown and cycle) is slowly
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increasing with N for all cycles involving relaxed interpolation. Concerning the reasons,
we refer to the corresponding remark at the end of Section 3.2.

4.3 Rotated Anisotropic Diffusion Equation

An example which still today is frequently used for checking the robustness of multigrid
methods, is the rotated anisotropic diffusion equation [23]

— (A esP) gy — 2(1 — £)$CULy — (s + 502)uyy = f(z,y) (19)

with s = sina and ¢ = cosawv. We consider this differential operator on the unit square
with Dirichlet boundary conditions, ¢ = 1072 and various values of a. ug, is discretized
either by the left-oriented 7-point stencil (assuming —90° < o < 0°) or by the central
4-point stencil, i.e.,

-1 1 -1 1
! 2 1 ! 0 (20)
D) — or —2 .
oh . w| "

The main difficulty with (19) is that it corresponds to the anisotropic operator —ug, —
£uy in a coordinate system obtained by rotating the (z, y)-system by an angle of o. Usual
multigrid methods have serious difficulties because of the strong anisotropy which is not
aligned with the grid. Consequently, neither point- nor line-relaxation schemes have good
smoothing properties with respect to standard grid coarsening. Moreover, the extent to
which the anisotropy is captured by grid points is different on different grid levels which
also reduces the effectiveness of the coarse-grid correction process. Robust geometric
multigrid approaches — involving usual operator dependent interpolation and Galerkin
coarsening — still converge, but even if F-cycles are used as preconditioner for a conjugate
gradient method, convergence may still be very slow (depending on «). This is particularly
true if uy, is discretized via the 4-point stencil (see, e.g., [13]).
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Figure 5: Rotated problem (7-point, & = —22.5°): a) convergence b) work

This difficulty is also reflected in AMG but, due to the high flexibility in adapting
the coarser levels, in a less severe manner. Even the original AMG, used with its default
parameters, converges for any angle. Depending on the size of «, however, convergence
becomes fairly slow. (Note that, except for very particular values of «, the resulting
discretization matrices are not M-matrices.)
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Figure 5a shows detailed results for the 7-point stencil and o« = —22.5°. Compared to
the previously discussed problems, there are three major differences here. First, all cycles
depicted in Figure 5a exhibit h-dependent convergence within the range of grids consid-
ered. Second, C-relaxation is not effective here. Obviously, smoothing is insufficient and
convergence is mainly due to algebraic reasons as motivated in Section 2.3: the V(0-FF)-
cycle behaves similar to the V(0-CF)-cycle and the V(1-FF)-cycle converges considerably
faster than the V(1-CF)-cycle (it is even slightly faster than the V(1-CFF)-cycle). Finally,
relaxation of interpolation gives a substantial improvement in cycle performance: while,
for N =512, both the V(0-CF) and the V(0-FF)-cycle converge at the fairly slow rate of
0.81, the V(1-FF)-cycle converges at a rate of 0.23. That is, the V(1-FF)-cycle is about 7
times faster than the V(0-CF)-cycle but only approximately twice as expensive (cf. Figure
5b).
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0 F=———= . : s
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Figure 6: Rotated problem (7-point, a = —22.5°): V-cycle vs. F-cycle

For the same case, Figure 6 presents a comparison between V- and F-cycle convergence.
The figure shows that F-cycles converge substantially faster than their V-cycle analogs.
In particular, the F(1-FF)-cycle converges at the very fast rate of 0.052.

Convergence factor (N=128)
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Figure 7: V(1-CFF)-convergence: 7-point versus 9-point discretization

For N = 128, Figure 7 gives an impression on the V(1-CFF)-cycle convergence as a
function of « for both the 7- and 9-point discretizations. The figure shows that, for the
7-point case, AMG performs exceptionally well not only for o close to 0° and —90° (in
which case the anisotropy is just aligned with the axes) but also for —45°. In this case,
AMG can still perfectly cope with the anisotropy since it is aligned with the diagonal of the
grid, the corresponding stencil has only non-positive off-diagonal entries and essentially
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degenerates to a 3-point stencil along the diagonal (left stencil):

. _156 —e . _156 _(1_|_€) 156
— | - 143 —¢ — | —(1+¢) 4(1+e) —-(14¢) | . (21)
h2 1—¢ 2h2 1—e l—e
- T3 2 —(I4+e) -5
For the 9-point discretization, o = —45° does not play such a particular role (see right

stencil in (21)) and AMG convergence is comparable to the worst 7-point cases. Apart
from this particular difference, AMG performs very similarly for both discretizations.
Concerning the convergence behavior of geometric multigrid processes, see [13].

4.4 Convection-diffusion Equation

Convection-dominated convection-diffusion problems also give rise to particular difficulties
for standard multigrid methods. As an example, we here consider

—eAu + a(v,y)ue + blx,y)uy = f(z,y) (22)
with coefficients
a(z,y) = —sin(rz) cos(ry) and b(z,y) = sin(wy) cos(rz) (23)

and f(z,y) =1 and u = sin(wz) +sin(1372) +sin(7y) +sin(137y) on the boundary of the
unit square. We assume ¢ = 107> and the first derivatives to be discretized by standard
first order upwind differences. Note that the resulting discretization matrix is an M-matrix
but not symmetric.

According to the results shown in [13], geometric multigrid approaches have serious
difficulties with this example: covergence may be very slow and mesh dependent. One
difficulty with this particular example is that ¢ and b are chosen to yield closed charac-
teristics and a stagnation point in the center of the domain. Consequently, (22) becomes
more and more singular for ¢ — 0. For ¢ = 0, the continuous problem is no longer
well defined: any function which is constant along the characteristic curves, solves the
homogeneous equation.
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Figure 8: Convection diffusion equation: a) convergence b) computational work

Figure 8a shows the behavior of AMG. Using original AMG interpolation, the conver-
gence is still fairly reasonable (see the V(0-CF)-cycle in the figure), at least within the
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range of grids considered here. However, we can also observe a significant dependence
of the convergence on the grid size. More smoothing does not help. On the other hand,
relaxation of interpolation improves things substantially: the maximum asymptotic con-
vergence factors of the V(1-CF) and V(1-CFF)-cycles are 0.086 and 0.020, respectively,
and are largely mesh independent within the range considered here. In contrast to the
rotated anisotropic case of the previous section, C-relaxation steps are very effective. In
particular, the V(1-FF)-cycle convergence is strongly h-dependent and much slower than

the V(1-CF) and V(1-CFF)-cycles.

Figure 9: AMG coarsening for the convection diffusion problem

Figure 9 depicts the coarsening strategy performed by AMG. As mentioned earlier, the
tendency of AMG is to coarsen “in the direction of strong couplings” based on the matrix
entries. This is why AMG tries its best to not coarsen in the radial direction (within the
limits imposed by the grid and the matrix entries).

4.5 Other Aspects
4.5.1 Accelerated Coarsening Strategies

Generally, the overall complexity of AMG directly depends on various aspects, one of which
is the speed of coarsening. In order to allow for an “accelerated” coarsening, Objective 1
of Section 3.1 has to be weakened. Although such strategies are not a major topic of this
paper, we want to give preliminary results for the 9-point Poisson discretization,

-1 -1 -1

1

-1 8 -1 (24)
-1 -1 -1

A simple algorithm for “accelerated coarsening”, which is still based on direct strong
connections, can be constructed based on the following two objectives:

Objective 1: For each ¢ € F' we request that there is a strong connection to (at least)
one C-variable.

Objective 2: C should be as small a set as possible subject to the previous objective.
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Clearly, these objectives are much weaker than those given in Section 3.1. For 9-point
stencils with only strong connections, for instance, they allow for an h — 3h coarsening
(approximate reduction of the number of grid points by a factor of 9). Interpolation as
described in Section 3.1 makes no sense anymore and is, just for the purpose of this section,
replaced by the following one:

ei=Y we, ((eF) with w)) = —au/Y ay, (25)
keC JEF

which, in terms of approximating (10), means that all off-diagonal entries in App are
simply collapsed to the diagonal. Geometrically speaking, this interpolation is rather
crude. In particular, it allows for one-sided interpolation which may lead to insufficient,
h-dependent AMG convergence (see the discussion in [19]). Applying AMG directly with
this interpolation, cannot lead to an efficient method, not even for Poisson-like problems.
For the 9-point stencil (24) this is confirmed by the results in Figure 10a which shows
h-dependent V(0-CF)-convergence factors of over 0.95 for N = 512.

Note that this situation is very similar to the one arising for algebraic multigrid meth-
ods based on “aggregation of elements” (see, e.g., [3], [21], [6]). For this approach, one
major problem is to find a good interpolation to begin with. The most natural one, “piece-
wise constant” interpolation has similar deficiencies as described above. To improve the
resulting convergence, two approaches are followed: in [3], AMG is used as pre-conditioner
in a conjugate gradient environment and in [21], [6], Jacobi relaxation is used to improve
interpolation. In contrast to our “nested” approach, the aggregation approach requires
the application of Jacobi relaxation to all equations.

FLOPs per unknown & cycle
1 Convergence factor 180,00 p y
0,9 4> V(0-CH e ————
0,8 |=V(t-CcF) 150,00
0,7 | V(2-CF) — . .
0.6 4| —#V(2-FF) 120,00 -
(

05 1 % YY) P S
04

05 ‘éf:q,/’?: 00,00

0.2 30,00

014— .

0 T T T J 0,00 +

32 64 128 256 512 32 64 128 256 512
Grid size Grid size

Figure 10: Accelerated coarsening: a) convergence factors b) computational work

Figure 10a shows that relaxation of interpolation drastically improves convergence. In
particular, the asymptotic convergence of the V(2-CFF)-cycle is around 0.08. Note that,
due to the rapid coarsening, there is only a relatively slow increase of numerical work with
increasing u (see Figure 10b).

Although accelerated AMG coarsening will naturally result in slower convergence and
the overall computational time to solve a problem up to a fixed accuracy may finally not
be reduced, it is still very important for practical applications: it is not just computational
time but also storage which has to be kept low. The original AMG coarsening typically
leads to complexities (= ratio of total storage and storage required for the given problem)
of around 3 or even more. A substantial reduction of storage would often be very relevant,
even if the overall computational work would not change essentially.
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4.5.2 Aspects on Parallelisation

By partitioning the set of unknowns on the finest level, the solution phase of AMG can be
parallelized in much the same way as any other multigrid method. Theoretically this is
straightforward since only pointwise relaxation is performed for smoothing. However, due
to the general and complex structure of AMG and due to non-regular sparsity patterns,
in practice, parallelisation is technically rather complicated and involves very complex
communications.

While some parts of the preparation phase can also be performed in parallel (like the
evaluation of the Galerkin operators), the coarsening process itself is inherently sequen-
tial. As briefly sketched at the end of Section 3.1, coarsening is performed in two steps.
Assuming a reasonable partitioning of the variables to be given for parallel processing,
the first of these steps can formally be performed in parallel without any communication.
The disadvantage of this is a potentially non-optimal distribution of variables along the
inner interfaces (e.g. C-variables which are strongly connected across interfaces or too
many neighboring F-variables along the two sides of an interface) which, in particular,
may increase the final AMG complexity. The second step of the coarsening algorithm, the
goal of which is to enforce Objective 1 (see Section 3.1), would normally require a lot of
communication: processors would (in an unpredictable manner) need to change the status
of variables (from F to C) which are located in different processors.

! F=
procl ; proc 2 c=A

'
|

'

'

'

'

P
.
-

'

'

'

Figure 11: Modification of interpolation near processor boundaries (Method 1): Boldface
and grey arrows denote strong and weak connections, respectively.

In order to avoid this, we try to satisfy Objective 1 as good as possible under the
restriction that we do not allow a processor to change the status of any variable which
is located in another processor. Near interfaces, at F-variables ¢ for which the algorithm
normally cannot satisfy Objective 1 in the best way without modifying the status of some
neighboring F-variable, m, located in another processor (see Figure 11), we propose the
following two different approaches.

Method 1: Ignore variable m in interpolation. That is, in defining interpolation for
variable ¢, collapse the matrix entry a;,, to the diagonal a;; (cf. Figure 11). Due to
the violation of Objective 1 for certain interface variables, the reduced accuracy of
interpolation may have a more or less serious influence on the final convergence in
the AMG solution phase. Here, a posteriori relaxation of interpolation (either global
or just local to the boundary) can be used to largely eliminate possibly negative
effects.

Method 2: Make i itself a C-variable. That is, Objective 1 is enforced in a very con-
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servative way. There should be no substantial negative effects on convergence but,
depending on the concrete situation, quite many additional C-variables might be in-
troduced near interfaces which, in turn, may increase the total complexity of AMG
substantially.

Figure 12: AMG parallel coarsening strategy: a) Method 1, b) Method 2

Our AMG program is not yet available in parallel. Instead, we have introduced the
algorithmic modifications proposed above in our serial program in order to investigate the
influence of a “parallel coarsening strategy” on the AMG convergence. Exemplary coarser
levels resulting from applying Method 1 and Method 2, respectively, are depicted in Figure
12a-b for the case of Poisson’s equation (assuming 5 processors). Figure 13a shows AMG
convergence results for the convection-diffusion case (see Section 4.4), N = 128 and various
processor configurations. The following methods are compared:

M1: Modified coarsening according to Method 1; V-cycles with CF-relaxation in the
solution phase.

M1x: Modified coarsening according to Method 1; improvement of interpolation by apply-
ing one step of Jacobi’s relaxation local to the interfaces; V-cycles with CF-relaxation
in the solution phase.

M1xx: Modified coarsening according to Method 1; improvement of interpolation by ap-
plying one global Jacobi relaxation step; V-cycles with CFF-relaxation in the solution
phase.

M2: Modified coarsening according to Method 2; V-cycles with CF-relaxation in the
solution phase.

For M1, convergence strongly depends on the processor configuration. Improving in-
terpolation by relaxation, either locally (M1x) or globally (Mlxx), is very effective in
eliminating this drawback, in particular, in achieving convergence which is largely inde-
pendent of the processor configuration. In this example, local relaxation of interpolation is
sufficient in order to maintain the convergence of the sequential V(0-CF)-cycle. Although
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Figure 13: Parallel coarsening strategies: a) convergence b) computational work

for N = 128, as used here, the M1xx convergence is still considerably faster, its perfor-
mance is comparable to M1x if numerical work is taken into account (cf. Figure 13b).
(According to earlier results, depicted in Figure 8, this may change for finer grids.) The
performance of M2 is comparable to that of M1x but M2 is much easier to realise since
it does not require extra communication. In general, however, the additional C-variables
near the interfaces may seriously disturb the coarsening pattern and, as a consequence,
the overall complexity.

Although these results are very preliminary, they indicate that (local) relaxation of in-
terpolation is one possibility to largely remove the disadvantages introduced by performing
the AMG coarsening in parallel.
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