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Abstract

We present an efficient iterative method for solving the variable coefficient diffusion equation on a unit disk. The

equation is written in polar coordinates and is discretized by the standard centered difference approximation under

the grid arrangement by shifting half radial mesh away from the origin so that the coordinate singularity can be handled

naturally without pole conditions. The resultant matrix is symmetric positive definite so the preconditioned conjugate

gradient (PCG) method can be applied. Different preconditioners have been tested for comparison, in particular, a fast

direct solver derived from the equation and the semi-coarsening multigrid are shown to be almost scalable with the

problem size and outperform other preconditioners significantly. The present elliptic solver has been applied to study

the vortex dynamics of the Ginzburg–Landau equation with a variable diffusion coefficient.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The variable coefficient elliptic equation arises in many physical applications. The heat transfer in het-

erogeneous material where the thermal conductivity depends on the position is one of the classical exam-

ples. Another example comes from the Ginzburg–Landau of superconductivity. When a superconductor
contains impurities, it is quite natural to consider the inhomogeneous coherence length in the Ginzburg–

Landau equation. Thus, a nonlinear variable elliptic-type equation must be solved where the variable coef-

ficient represents the coherence length for superconducting electrons in a material [5]. Motivated by the
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above problems, in this paper, we consider the following variable coefficient diffusion equation written in

polar coordinates on a 2D unit disk X = {(r,h)j0 < r < 1, 0 6 h < 2p} as
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� �� �
¼ f ðr; hÞ in X; ð1Þ

uð1; hÞ ¼ gðhÞ on oX; ð2Þ
where the diffusion coefficient b(r,h) > 0 is inhomogeneous in the disk.

When we solve Eq. (1) numerically, the first issue called the coordinate singularity arises. This is because

the equation is not valid at r = 0 when it is written in polar coordinates. In [12], the first author discretized

the Poisson equation (a special case of b(r,h) = 1 in Eq. (1)) by using the standard centered difference

scheme under a polar grid by shifting a half radial mesh away from the origin. It was found that the method

handles the coordinate singularity without special treatment and the resultant matrix equation is simpler

than the traditional method described in [18]. Furthermore, the desired accuracy has been preserved. Moh-

seni and Colonius [14] have used similar grid arrangements to handle the coordinate singularities in finite
difference and pseudo-spectral methods and have applied them to Bessel�s equation and compressible Na-

vier–Stokes equations.

Another standard technique to solve the Poisson equation on a disk is as follows. We first write the solu-

tion as a truncated Fourier series in the h direction and obtain a set of Fourier mode equations. Then those

ordinary differential equations of Fourier coefficients are solved by either finite difference or spectral meth-

ods. Once again, in order to have the desired regularity and accuracy, most of the numerical methods

including the finite difference method [10], or spectral method [7,9,17] need to impose appropriate condi-

tions on the solution at the coordinate singularity. The accuracy of the numerical methods depends greatly
on the choice of pole conditions. Until recently, different numerical methods without pole conditions have

been proposed as well [6,8,13].

The numerical solution of the variable coefficient diffusion equation (1) is another different story. Since

now the elliptic equation has a variable diffusion coefficient, we are unable to write the solution as Fourier

series expansion. Thus, the fast Fourier transform (FFT) cannot be called directly. Furthermore, Eq. (1) is

not a separable type, the resultant linear system after the discretization cannot be solved directly by the fast

direct solvers such as those provided in public software package – FISHPACK [3]. The goal of this paper is

to develop an efficient iterative method for solving the variable coefficient diffusion equation (1).
The rest of this paper is as follows. In Section 2, we introduce the finite difference discretization to Eq. (1)

and discuss two efficient preconditioners for the resultant linear system. The numerical results include the

accuracy check and the detailed performance comparison for different preconditioners are also shown in

Section 2. We then apply the present elliptic solver to study the vortex dynamics of the Ginzburg–Landau

equation with a variable diffusion coefficient in Section 3. Some conclusion are given in Section 4.
2. Finite difference discretization

We use the same grid points in the radial direction as in [14,12] by defining
ri ¼ ði� 1=2ÞDr; ri�1=2 ¼ ri � Dr=2; riþ1=2 ¼ ri þ Dr=2 ð3Þ
and in the azimuthal direction
hj ¼ jDh; hj�1=2 ¼ hj � Dh=2; hjþ1=2 ¼ hj þ Dh=2; ð4Þ
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where Dr = 2/(2M + 1) and Dh = 2p/N. By the choice of the radial mesh width, the boundary values are de-

fined on the grid points. Let the discrete values be denoted by uij � u(ri,hj), fij � f(ri,hj), and gj = g(hj). Using

the centered difference method to discretize equation (1), we have
� 1

ri
riþ1=2biþ1=2;j

uiþ1;j � ui;j
Dr

� ri�1=2bi�1=2;j
ui;j � ui�1;j

Dr

� �h .
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Dh

� ��
Dh

�
¼ fi;j: ð5Þ
Among the above representations, the numerical boundary values are given by uM + 1,j = gj, and ui0 = ui,N,

ui1 = ui,N + 1 since u is 2p periodic in h. At i = 1, we immediately observe from (3) that r1/2 = 0, so the coef-

ficient of u0j is zero. This implies that the scheme does not need any extrapolation for the inner numerical

boundary value u0j so that there is no pole condition needed. It is also easy to check that the matrix of linear

equations (5) is symmetric and positive definite so the preconditioned conjugate gradient methods can be

applied.

For the Neumann problem, we still use the same grid described in (3) but with different choice of Dr =
1/M. With the choice of this mesh width, the discrete values of u are defined midway between boundary so
that the first derivative can be centered on the grid points.

2.1. Fast direct solver as a preconditioner

In this subsection, we derive a preconditioner which can be applied to the conjugate gradient method to

solve the linear system (5). Our intention is to construct a preconditioner P such that the inversion of the

matrix P can be done by available fast direct solvers such as FFT. One natural choice is to average the var-

iable coefficient in Eq. (1) so that a separable PDE is formed. More precisely, the preconditioner can be
constructed from the equation
� 1
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¼ f ðr; hÞ; ð6Þ
where the coefficient
bðrÞ ¼ 1

2p

Z 2p

0

bðr; hÞdh: ð7Þ
Since the new diffusion coefficient b is a function of r, the above PDE is separable. Thus, the inversion of the
preconditioner can be efficiently done by fast direct solvers such as FFT or block cyclic reduction algorithm

[1].
2.2. Semi-coarsening multigrid as a preconditioner

Multigrid method is known to be an efficient solver for the linear system arising from discretized elliptic

equations. Its main idea consists of applying simple relaxation on the fine grid (which damps the high-

frequency errors quickly) and correcting the solution on the coarser grid (which the low-frequency errors
can be represented accurately). Recently, Schaffer [16] developed an efficient semi-coarsening multigrid

method for symmetric and nonsymmetric elliptic PDEs with highly discontinuous and anisotropic coeffi-

cients in two- and three-dimensional Cartesian domains. Based on Schaffer�s work, Baldwin et al. [2] applied

the semi-coarsening multigrid algorithm to the linear systems arising from radiation-hydrodynamics prob-

lems and made a detailed comparison with other iterative solvers. For the problems (the diffusion equation
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with variable coefficients) considered there, the authors showed that the multigrid algorithms scale almost

perfectly. In other words, the iteration count of V-cycle is almost independent of problem size. In their

work, the multigrid algorithm is not only used alone as an efficient solver but also used as a preconditioner

in the PCG method.

In this paper, we apply a similar multigrid V-cycle as in [2] to our resultant linear system (5) on the polar
grid. The present method uses a combination of semi-coarsening in the h direction with red/black line relax-

ation in the r direction. That is, we only do multigrid and coarsen the grid in the h direction and keep the

resolution in the r direction fixed. This is a quite natural choice since if we coarsen the radial grid instead,

then the coarser grid would not coincide with the fine grid based on our radial grid arrangement (3). One

should also note that the red/black line relaxation updates the solution by solving tridiagonal linear systems

at all red lines (even index j lines) first and then follows a similar update for the black lines (odd index j

lines). Since there is no dependence between lines of the same color, those tridiagonal solvers can be per-

formed in parallel. The restriction (fine to coarse) and prolongation (coarse to fine) operators are the con-
ventional full weighting and linear interpolation, respectively. In this work, we use the above multigrid as a

preconditioner in the PCG method. That is, in the preconditioning step, we apply a single V(1,1)-cycle (one

red/black line pre-relaxation and one black/red line post-relaxation) to solve the residual equation.

2.3. Numerical results

In this subsection, we perform several numerical tests for the presented method. Table 1 shows the max-

imum errors of the method for three different test examples as

1. u ¼ erðcos hþsin hÞ; b ¼ r2sin2hþ r cos hþ 1:1:
2. u ¼ sinðr cos hÞ sinðr sin hÞ; b ¼ erðcos hþsin hÞ:
3. u ¼ r5cos3hsin2h=3þ r3cos2h sin hþ r cos hþ 1; b ¼ 0:1ðr2 cos h sin hþ 1Þ:

The right-hand side functions are obtained by substituting the solutions into Eq. (1).

In all our tests, we use M grid points in the radial direction and N = 2M points in the azimuthal direc-

tion. The rate of convergence is computed by the formula log2
EM=2

EM

� �
, where EM is the relative maximum

error with radial resolution M. All the results are obtained by solving the linear system (5) using PCG with

the fast direct solver (6) as the preconditioner. The initial guess of the iteration is set to be uij = 1 every-

where, and the tolerance of residual is 10�8. One can see from Table 1 that indeed our scheme preserves
clean second-order accuracy.
Table 1

The maximum errors of three different solutions u with different diffusion coefficients b for Eq. (1)

M 16 32 64 128

Ex. 1

Error 1.160E � 03 2.828E � 04 6.961E � 05 1.726E � 05

Rate – 2.04 2.02 2.01

Ex. 2

Error 2.941E � 03 7.043E � 04 1.720E � 04 4.247E � 05

Rate – 2.07 2.03 2.02

Ex. 3

Error 1.089E � 03 2.742E � 04 6.818E � 05 1.697E � 05

Rate – 1.99 2.01 2.01



Table 2

The performance comparison for using different preconditioners

M BJ SSOR IC FDS SMG

16 70 (0.23) 39 (0.22) 28 (0.09) 28 (0.11) 5 (0.15)

32 133 (0.58) 60 (0.48) 53 (0.24) 33 (0.28) 5 (0.23)

64 240 (4.61) 93 (3.19) 103 (2.12) 36 (0.85) 5 (0.41)

128 478 (43.39) 147 (25.35) 195 (20.21) 36 (3.40) 5 (1.54)

The first number represents the number of iterations while the number in parentheses represents the CPU time in seconds.
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Table 2 shows the number of iterations and the CPU time in seconds needed for solving the solution of

Example 1 by PCG method with different preconditioners. Those preconditioners include block Jacobi

(BJ), symmetric successive over relaxation (SSOR), incomplete Cholesky factorization (IC), the fast direct
solver (FDS), and the semi-coarsening multigrid (SMG). One can see that the fast direct solver and the

semi-coarsening multigrid are almost scalable with the mesh size and outperform other preconditioners sig-

nificantly. The performance for other examples show the same conclusion so we omit here. The SMG pre-

conditioner performs even better than FDS in terms of the iteration count and CPU time.
3. Simulation of Ginzburg–Landau equation with a variable diffusion coefficient

In this section, we apply the present iterative elliptic solver to study the stable solutions of the following

Ginzburg–Landau equation (GLE) with a variable diffusion coefficient in a unit disk X = {r2 = x2 + y2 < 1}
ou
ot

¼ 1

aðxÞr � ðaðxÞruÞ þ 1

e2
ð1� j uj2Þu in X; ð8Þ

uðx; 0Þ ¼ u0ðxÞ in X; ð9Þ

ou
or

¼ 0 on oX: ð10Þ
This 2D model approximates the three-dimensional Ginzburg–Landau equation with constant coher-

ence length in a very thin variable superconducting film where the positive coefficient a(x) characterizes

the variable thickness [5]. The solution u is a complex-valued function representing the order parameter

and the parameter e is a small positive number. Note that, we use the Cartesian shorthand $ Æ (a(x)$u)
to represent the variable diffusion operator described as (1) in polar coordinates.

In this simulation, we want to study the steady equilibrium solutions of GLE (8). In particular, we will

focus on seeking the stable solutions with vortices. The vortices are the topological defects which are zeros

of the complex scalar field u with nonzero integer winding numbers. Readers who are interested in the the-

ory of Ginzberg–Landau vortices can refer to the book [4].

Throughout this section, we use the backward difference in time to discretize the Ginzburg–Landau

equation (8)
unþ1 � un

Dt
¼ 1

aðxÞr � ðaðxÞrunþ1Þ þ 1

e2
ð1� j unj2Þunþ1 in X; ð11Þ

ounþ1

or
¼ 0 on oX: ð12Þ
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Thus, at each time step, a variable diffusion coefficient elliptic equation with Neumann boundary on a disk

arises and can be solved by the efficient iterative solver described in the previous section. In the following

tests, we choose the initial condition as
u0ðr; hÞ ¼ tanh
r
e

� �
eimh; ð13Þ
which is an approximate vortex solution with winding number m. As mentioned before, we like to inves-
tigate the dynamics of this vortex solution and its final equilibrium.

In all runs, we use 64 · 128 grid points in the radial and azimuthal directions, and the time step Dt =
1/320. The parameter e = 0.1 and the winding number of initial vortex is m = 3. Fig. 1 shows the contour

plots of the magnitude |u| for the constant diffusion case a(x) = 1 at different times. One can observe that

the initial vortex with winding number m = 3 at the center splits into three vortices with winding number

one and then migrate to the boundary gradually. At a later time, the three vortices are completely ab-

sorbed by the boundary and the solution becomes a constant state |u| = 1 eventually. This vortex dynam-

ics is not new and has been confirmed, for instance, theoretically [11] and numerically [15]. One should
also note that this final equilibrium state is nothing but the global minimizer of the Ginzburg–Landau

free energy
EðuÞ ¼
Z
X

1

2
j ruj2 þ 1

4e2
ð1� j uj2Þ2

� 	
aðxÞdx; ð14Þ
Fig. 1. The contour plots of |u| at different times for the constant diffusion a(x) = 1 case.
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where the term j$uj2 in polar coordinates has the form
jruj2 ¼ ou
or
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: ð15Þ
Fig. 2 shows that the Ginzburg–Landau energy is decreasing in time and becomes zero finally.

For the variable diffusion coefficient case, the vortex dynamics and stability are completely different from

the constant diffusion case. Fig. 3 shows the different time contour plots of the magnitude |u| for the case of

variable diffusion aðr; hÞ ¼ ðr2 cos h sin hþ 1Þer. The initial condition is still as in (13) with winding number

m = 3. Unlike the constant diffusion case, the central vortex now splits into five vortices in which one vortex

stays at the center and four of them migrate to the boundary. Later, those surrounding four vortices are

completely absorbed by the boundary while the vortex at the center remains. Fig. 4 shows that the free en-
ergy is decreasing in time and becomes a nonzero constant eventually. Therefore, by choosing the variable

coefficient appropriately, we are able to stabilize the Ginzburg–Landau vortex which is exactly the same

phenomena predicted by the theory [5]. In physics, this is called the pinning effect when a vortex is trapped

by some defect of the conductor.

It is very interesting to mention that during the transition the winding number of the central vortex

becomes m = �1 while the winding number of the surrounding four vortices are all m = 1. To see this,

we plot the vector fields of real and imaginary parts for u/|u| at T = 0.5 in Fig. 5(a). The final plots for

the real and imaginary parts of u/|u| near the vortex center (along the circle r = 5Dr/2) are shown in Fig.
5(b). The graphs of real and imaginary parts are exactly the functions � cos h and sin h, respectively.
Since we have
u
juj ¼ � cos hþ i sin h ¼ ei½ð�1Þhþp� ð16Þ
one can immediately conclude that the winding number of the stable vortex is indeed m = �1.
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Fig. 2. The time evolution of Ginzburg–Landau energy for the constant diffusion case.
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Fig. 4. The time evolution of Ginzburg–Landau energy for the variable diffusion case.

Fig. 3. The contour plots of |u| at different times for the variable diffusion aðr; hÞ ¼ ðr2 cos h sin hþ 1Þer.
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Fig. 5. (a) The vector fields of real and imaginary parts of u/|u| at T = 0.5 for the variable diffusion case. (b) The graphs of the real and

imaginary parts for u/|u| along the circle near the vortex center at T = 1. The real part is denoted by the solid line and the imaginary part

is denoted by the dash line.
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4. Conclusions

In this paper, we present a fast iterative method for solving the variable coefficient diffusion equation on

a unit disk. The equation is written in polar coordinates and is discretized by the standard centered differ-
ence approximation under the grid arrangement by shifting half mesh away from the origin so that the

coordinate singularity can be easily handled without pole conditions. The resultant matrix is symmetric

positive definite so the preconditioned conjugate gradient (PCG) method can be applied. Different precon-

ditioners have been tested for comparison, in particular, a fast direct solver derived by the equation and

semi-coarsening multigrid are shown to be scalable preconditioners with the problem size. The present ellip-

tic solver has been applied to study the vortex dynamics of the Ginzburg–Landau equation with a variable

diffusion coefficient. Meanwhile, the present numerical scheme can be extended straightforwardly to the

similar equation in spherical coordinates and three-dimensional problems.
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