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Multigrid waveform relaxation provides fast iterative methods for the solution of time-
dependent partial differential equations. In this paper we consider anisotropic problems and
extend multigrid methods developed for the stationary elliptic case to waveform relaxation
methods for the time-dependent parabolic case. We study line-relaxation, semicoarsening and
multiple semicoarsening multilevel methods. A two-grid Fourier–Laplace analysis is used
to estimate the convergence of these methods for the rotated anisotropic diffusion equation.
We treat both continuous time and discrete time algorithms. The results of the analysis are
confirmed by numerical experiments.
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1. Introduction

Waveform relaxation is an iterative method for solving systems of ODEs. It was
first studied as a practical solution method in the context of integrated circuit simula-
tion by Lelarasmee et al. [6]. For an overview of waveform relaxation developments we
refer to [1]. The convergence of waveform relaxation for linear systems of ODEs was
studied by Miekkala and Nevanlinna in [9]. From their analysis one may conclude that
the standard waveform relaxation methods show poor convergence when applied to
the discretised parabolic diffusion equation. The classical model problem, that is, the
isotropic, constant coefficient one- or two-dimensional heat equation, can be solved ef-
ficiently by multigrid acceleration of the waveform relaxation method, as studied in
[2,7,13,15,16].

The use of the multigrid waveform relaxation method has not yet been studied
for solving anisotropic, variable coefficient parabolic problems. In the stationary case
standard multigrid methods brake down when applied to anisotropic problems. Several
methods have been proposed to handle stationary anisotropic problems (see [14]). In
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this paper we study the extension of these methods to time-dependent parabolic
problems. We use the time-dependent rotated anisotropic diffusion equation as a test
equation.

The paper is organised as follows. Section 2 introduces the model problem and the
single-grid and multigrid waveform relaxation methods. Line relaxation, semicoarsen-
ing and multiple semicoarsening are proposed as methods for anisotropic problems. In
section 3 it is shown how the two-grid local mode Fourier analysis used for stationary
multigrid, is extended to multigrid waveform relaxation. The results of the analysis are
compared to numerical results in section 4. We end in section 5 with some concluding
remarks.

2. Waveform relaxation methods

2.1. The model problem and its discretisation

The waveform relaxation method can be used as a method to approximate solutions
of time-dependent parabolic PDEs of the form

∂u

∂t
= Lu+ f, (1)

with L an elliptic operator and with u(t, q), f(t, q) ∈ R functions of time t ∈ �t and a
spatial coordinate q ∈ �. The time interval can be bounded, �t = [0, T ] or unbounded,
�t = [0,∞). This equation is supplemented with boundary conditions and either an
initial condition specifying the solution at t = 0 or a time-periodicity condition of the
form u(t, q) = u(t + T , q).

We will use the rotated anisotropic diffusion equation as a test equation for the
numerical methods considered in this paper. This equation is a standard test case for the
study of iterative methods [19]. It has two parameters ε and β, and is of the form (1)
with

L = (
εc2 + s2

) ∂2

∂x2
+ (
c2 + εs2

) ∂2

∂y2
+ 2(ε − 1)cs

∂2

∂x∂y
, (2)

where c = cos β and s = sin β. The angle β indicates the direction of the anisotropy
and ε its strength. We consider the initial value problem, defined on the unit square
� = [0, 1]2 with Dirichlet boundary conditions.

The solution is approximated on a rectangular equidistant grid with (Nx + 1) ×
(Ny + 1) grid points,

qi,j = (ihx, jhy) ∈ �, 0 � i � Nx, 0 � j � Ny,

h= (hx, hy) =
(
N−1
x , N−1

y

)
.

(3)

Let u and f denote grids of functions defined by

ui,j (t) = u(t, qi,j ) and fi,j (t) = f(t, qi,j ). (4)
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We can now replace the spatial derivatives in the operator L by their finite difference
approximations. This results in a linear system of ODEs

u̇ = Lu+ f. (5)

In particular, for the rotated anisotropic diffusion equation, the discretised differential
operator becomes

L =




−(ε − 1)cs

2hxhy

c2 + εs2

h2
y

(ε − 1)cs

2hxhy
εc2 + s2

h2
x

−2
εc2 + s2

h2
x

− 2
c2 + εs2

h2
y

εc2 + s2

h2
x

(ε − 1)cs

2hxhy

c2 + εs2

h2
y

−(ε − 1)cs

2hxhy



. (6)

2.2. Single-grid waveform relaxation methods

2.2.1. Continuous time iteration methods
The classical waveform relaxation methods are iterative methods based on a split-

ting L = L+ + L−, and defined as

u̇(ν+1) = L+u(ν+1) + L−u(ν) + f. (7)

The splitting is selected in such a way that (7) is easier to solve than the original system,
and the successive approximations u(ν) converge to the solution of (5). The waveform
relaxation variants of some well known iterative schemes are illustrated below for a
general nine-point stencil discretisation. Nonzero values in the stencils (taken from the
original stencil) are indicated by “·”. For each method a set of (Nx − 1)(Ny − 1) scalar
ODEs of the form ẏ = py + q has to be solved repeatedly.

Jacobi.

• for all (i, j), solve

u̇
(ν+1)
i,j = [·]u(ν+1)

i,j +

· · ·

· ·
· · ·


 u(ν)i,j + fi,j

Lexicographic Gauss–Seidel.

• for i = 1, . . . , Nx − 1
for j = 1, . . . , Ny − 1, solve

u̇
(ν+1)
i,j = [·]u(ν+1)

i,j +

·

· · ·


u(ν+1)

i,j +

· · ·

·

u(ν)i,j + fi,j
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Red–black Gauss–Seidel (five-point stencil).

• for all (i, j) with i + j even, solve

u̇
(ν+1)
i,j = [·]u(ν+1)

i,j +

 ·

· ·
·


 u(ν)i,j + fi,j

• for all (i, j) with i + j odd, solve

u̇
(ν+1)
i,j = [·]u(ν+1)

i,j +

 ·

· ·
·


u(ν+1)

i,j + fi,j

Four-colour Gauss–Seidel.

• for all (i, j) with i odd, j odd, solve

u̇
(ν+1)
i,j = [·]u(ν+1)

i,j +

· · ·

· ·
· · ·


 u(ν)i,j + fi,j

• for all (i, j) with i even, j even, solve

u̇
(ν+1)
i,j = [·]u(ν+1)

i,j +

· ·

· ·


u(ν+1)

i,j +

 ·

· ·
·


u(ν)i,j + fi,j

• for all (i, j) with i even, j odd, solve

u̇
(ν+1)
i,j = [·]u(ν+1)

i,j +

 ·

· ·
·


u(ν+1)

i,j +

· ·

· ·


u(ν)i,j + fi,j

• for all (i, j) with i odd, j even, solve

u̇
(ν+1)
i,j = [·]u(ν+1)

i,j +

· · ·

· ·
· · ·


u(ν+1)

i,j + fi,j

Instead of considering subsystems of only one equation, one can also take the set
of ODEs on a line of the grid as the subsystems. The horizontal zebra Gauss–Seidel
method corresponds to the following series of computations:

Horizontal zebra Gauss–Seidel.

• for all j odd, solve

u̇
(ν+1)
i,j = [· · ·]u(ν+1)

i,j +

· · ·

· · ·


u(ν)i,j + fi,j , 0 < i < Nx
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• for all j even, solve

u̇
(ν+1)
i,j = [· · ·]u(ν+1)

i,j +

· · ·

· · ·


 u(ν+1)

i,j + fi,j , 0 < i < Nx

In this case the equations describe a set of Ny − 1 systems of ODEs of the form ẏ =
Py + q with P tridiagonal. Similarly, one can define the vertical zebra Gauss–Seidel
method. The so-called alternating zebra Gauss–Seidel method consists of one horizontal
zebra step, followed by one vertical zebra step. These more complicated methods will
turn out to be useful to handle anisotropic problems.

2.2.2. Discrete time iteration methods
The continuous time waveform relaxation methods operate on grids of continuous

functions. In an actual implementation, however, the solutions of the ODEs have to be
approximated numerically by means of a time-discretisation. The system resulting from
the discretisation of a parabolic PDE is stiff, necessitating the use of implicit solvers.
All the standard methods like LMF (BDF), multistage (RK) and multivalue methods can
be used, and have been considered in the waveform relaxation literature, see [1] for an
overview. We restrict ourselves here to the implicit Euler method with a constant step
length. The time points become

tk = kht , 0 � k � Nt, ht = N−1
t . (8)

The numerical solution is now represented by an (Nx + 1)(Ny + 1) grid of discrete
functions

ui,j =
{
ui,j (tk)

}
0�k�Nt . (9)

The problem solved by the discrete time iteration can be interpreted as a system of
recurrence relations defined on a 2D grid with discrete functions as unknowns, or it can
be interpreted as a system of algebraic equations with scalar unknowns defined on a 3D
space-time grid.

2.3. Multigrid waveform relaxation methods

2.3.1. The multigrid algorithm
The standard point-wise and line-wise single-grid waveform relaxation techniques

turn out to be too slowly convergent for use on fine grids. Like in the elliptic case, this
can be resolved by resorting to the use of multigrid techniques. The multigrid com-
ponents are modified to work with grids of discrete or continuous functions instead of
scalars. For a detailed description of multigrid waveform relaxation see [7,15,17]. The
multigrid waveform relaxation method is summarised below. The algorithm computes a
new approximation u(ν+1) starting from a previous approximation u(ν). Barred variables
represent quantities on a coarser grid.
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• v← u(ν)

• pre-smoothing: do ν1 times { v′ ← v, solve v̇ = L+v + L−v′ + f }

• coarse grid correction:

– calculate defect: d ← Lv + f − v̇
– solve for coarse grid correction:

do γ recursive applications of the algorithm to solve
˙̄e = Lē + Rd

– correct: v← v + P ē
• post-smoothing: do ν2 times { v′ ← v, solve v̇ = L+v + L−v′ + f }

• u(ν+1)← v

The commonly used V- and W-cycle multigrid methods correspond to γ = 1 and
γ = 2, respectively. On the coarsest grid the solution of the correction equation is solved
exactly or approximated by applying a few smoothing steps.

2.3.2. Coarsening and smoothing strategies
Two important components of the multigrid waveform relaxation method are the

single-grid waveform relaxation scheme used for smoothing, and the hierarchy of grids
used to solve the correction equation. The appropriate choice of these components de-
pends on the properties of the PDE under consideration.

For the isotropic diffusion equation point relaxation (e.g., Jacobi, Gauss–Seidel)
can be used for smoothing. Standard coarsening can be used to construct a hierarchy of
coarser grids. This means that the grid spacing is doubled in both directions when going
to a coarser grid (h̄ = 2h). Figure 1 shows a set of grids constructed from a fine grid by
doubling the grid spacing only in x, only in y or in both directions. The grids used for
standard coarsening are on the diagonal of figure 1.

As will be shown by the analysis and numerical results, multigrid waveform relax-
ation with standard coarsening and a point relaxation method as smoother breaks down
for anisotropic problems. In this case we need either line relaxation for smoothing or
a semicoarsened grid. Experience with the elliptic case suggests the use of the multi-
grid components given below. Their effectiveness for solving parabolic problems will
be illustrated and proven in further sections of this article.

Horizontal line relaxation (e.g., horizontal zebra Gauss–Seidel) is expected to do
well when there is strong coupling along the x-direction (ε � 1, β = 0). Conversely
vertical line relaxation can be expected to work well for strong coupling along the
y-direction (ε � 1, β = 0). Alternating line relaxation should work in both cases.

Instead of using line relaxation, one can also adapt the coarsening strategy to the
anisotropic features of the problem. When there is strong coupling in the x-direction,
one can apply a semicoarsening strategy which means that the grid is coarsened only in
one direction (h̄ = (2hx, hy)). This correspond to using the grids on the first row of fig-
ure 1. Similarly, one can do semicoarsening in the y-direction (h̄ = (hx, 2hy)). Multiple
semicoarsening methods [10,12] use all the grids in figure 1. We consider here the MG-S
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Figure 1. A hierarchy of grids for multilevel methods solving a PDE, discretised on grid (2, 2). Standard
coarsening uses the grids (2, 2), (1, 1), (0, 0). Semicoarsening in the x-direction uses the grids (2, 2),

(1, 2), (0, 2).

(multigrid as smoother) method introduced in [11] and further studied in [18]. One step
of this method consists of a multigrid step with standard coarsening where the smooth-
ing has been replaced by semicoarsening in the x-direction followed by semicoarsening
in the y-direction. This method could also be called alternating semicoarsening. (For
figure 1 the sequence of grids visited would be (2,2), (1,2), (0,2), (1,2), (2,2), (2,1), (2,0),
(2,1), (2,2), (1,1), (0,1), (1,1), (1,0), (1,1), (0,0) and back, when using a V-cycle for the
standard as well as the semicoarsening steps.)

Full weighting restriction is used to transfer from a fine to a coarse grid. To transfer
from a coarse to fine grid linear interpolation is used in the semicoarsening case, and
bilinear interpolation is used in the standard coarsening case. See [14] for the details of
these operations.

3. Fourier–Laplace analysis

To study the convergence of waveform relaxation methods, we analyse the asymp-
totic convergence rate of the iteration scheme, which is given by the spectral radius of
its iteration operator. We first indicate how the analysis of the time-dependent problem
requires the analysis of a stationary problem with a parameter. The latter problem is
amenable to classical multigrid analysis.
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3.1. Laplace transform convergence analysis of waveform relaxation

The relation between the error e(ν) = u − u(ν) of successive waveform relaxation
approximations can be written as

e(ν+1) =Me(ν), (10)

where M is a linear integral operator of Volterra convolution type. In [4,5,7,9,15] it is
shown that the spectral radius of the waveform relaxation operator is given by

ρ(M) = max
z∈#

ρ
(
M(z)

)
, (11)

where M(z) is the Laplace transform of the convolution kernel of the operator M. The
set # is a subset of the complex plane. Its particular structure depends on the type of
waveform method. For the reader’s convenience, we recall some results from [4,5,15].
For continuous waveform relaxation on a finite time interval, # consists of a single point,
the point at infinity. For discrete waveform relaxation on a finite time interval, using a
LMF for the time discretisation, # consists, again, of a single point (αk/βk)h−1

t , with αk
and βk parameters of the LMF. For infinite time intervals, # is the imaginary axis in the
case of continuous time waveform relaxation and the boundary locus of the LMF scaled
by h−1

t for discrete time waveform relaxation. For time-periodic problems # consists of
a discrete set of points on the imaginary axis or on the scaled boundary locus. One can
learn a lot about the convergence of different types of waveform relaxation for a specific
equation of the form (5) by visual inspection of the so called spectral picture, a contour
plot of ρ(M(z)). Examples are given in the results section.

3.2. Local mode Fourier analysis

In [4,5,7] it is shown that the operator M(z) in (11) is equal to the multigrid iter-
ation operator of the discretised linear, stationary PDE (zI − L)u = f . This system of
scalar equations, depending on the parameter z, can be analysed using standard Fourier
analysis [13,14,19]. Two-grid analysis assumes one coarser grid on which the correction
equation is solved exactly. The iteration operator can then be written as

M(z) = S(z)ν1K(z)S(z)ν2, (12)

where S(z) is the operator of the single-grid waveform relaxation method used as
smoother, and ν1 and ν2 are the number of pre- and post-smoothing steps. K(z) is the
two-grid coarse grid correction operator. It can be written as

K(z) = I − PL(z)−1
RL(z), (13)

where L(z) represents the differential operator on the coarse grid, and R and P are the
restriction and prolongation operators.

The effect of the operator M(z) on the error can be analysed using Fourier analysis.
The error is decomposed into a sum of exponential Fourier modes of the form

ψ(θ)i,j = exp
(√−1(iθx + jθy)

)
, (14)
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with

θ ∈ ,h =
{
(θx, θy) | θα = 2πkαN

−1
α , −π � θα < π, kα ∈ Z, α = x, y}. (15)

The Fourier modes (14) are eigenfunctions of the differential operator L and of the
smoothing operator for the Jacobi method SJac, provided the problem has periodic bound-
ary conditions. It turns out that the convergence factor one obtains using the latter as-
sumption is a good approximation for the case of other boundary conditions as well
(Dirichlet, Neumann). Other multigrid operators map an exponential Fourier mode onto
a linear combination of related Fourier modes. For each θ ∈ ,′h = ,h ∩ [−π/2, π/2)2,
we define a vector that groups four related Fourier modes (harmonics):

.(θ) = [
ψ

(
θ1

)
ψ

(
θ2

)
ψ

(
θ3

)
ψ

(
θ4

)]T
, (16)

with θ1 = θ and

θ2 = θ −
(

sign(θx)
sign(θy)

)
π, θ3 = θ −

(
0

sign(θy)

)
π, θ4 = θ −

(
sign(θx)

0

)
π.

(17)
The space of grid functions spanned by .(θ) is invariant under all the operators consid-
ered here. The action of an operator on such a space can be described by a 4× 4 matrix.
This matrix is called the symbol of the operator corresponding to the frequency θ . When
the exponential Fourier modes are chosen as a basis for representing the errors, the op-
erator M(z) becomes block diagonal with 4 × 4 blocks on the diagonal (the symbols).
Therefore, the spectral radius of the operator M(z) corresponds to the maximum of the
spectral radii of the symbols M(z, θ), and thus

ρ(M) = max
z∈#

max
θ∈,′h

ρ
(
M(z, θ)

)
. (18)

The formula for the symbol M(z, θ) has the same structure as (12), where the
operators of the multigrid components are replaced by their symbols.

M(z, θ) = S(z, θ)ν1K(z, θ)S(z, θ)ν2, (19)

The derivation of the different symbols can be found in textbooks such as [14] or [19].
For the MG-S (or alternating semicoarsening) method 3 coarser grids are used for

the analysis: one corresponding to each of the semicoarsening steps and one for the
standard coarsening step. The multigrid operator (and the corresponding symbol) can be
written as follows

M = (MxMy)
ν1K(MxMy)

ν2,

Mx = Sµ1KxS
µ2 , My = Sµ1KyS

µ2 ,
(20)

where Mx and My are the semicoarsening multigrid operators (symbols) and Kx and Ky
are the corresponding semicoarsening coarse grid correction operators (symbols).
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4. Analysis, results and discussion

For elliptic anisotropic PDEs robust methods have been developed. We try to estab-
lish here whether the conclusions for these methods carry over to the parabolic case. We
study three classical model problems: the isotropic diffusion equation (ε = 1, β = 0),
the anisotropic diffusion equation (ε ∈ R, β = 0) and the rotated anisotropic diffusion
equation (ε ∈ R, β ∈ [0, 2π)). The equations are discretised on a grid with spacings
hx = hy = 2−5. The implicit Euler method (BDF1) with a constant time step ht = 10−3

(Nt = 1000, T = 1) is used as ODE solver. The boundary and initial conditions and the
source term f for (1) are set to 0. This corresponds to a solution u = 0. For the initial
approximation u(0), a value chosen from a uniform distribution on [−1, 1] is assigned to
each grid point. The multigrid hierarchy has 5 levels so that the coarsest grid contains
one internal point and can be solved by performing 1 smoothing step. In the numerical
experiments the convergence factor is estimated by taking the quotient of the norms of
the defects after the 20th and 19th iteration.

4.1. Diffusion equation

We first consider the isotropic diffusion equation, an important case both from
theoretical and practical point of view. The diffusion equation is given by

∂u

∂t
= ∂2u

∂x2
+ ∂

2u

∂y2
+ f. (21)

This corresponds to setting ε = 1 and β = 0 in (2).
Figure 2 illustrates the benefits of multigrid acceleration for this problem. The up-

per curve shows the norm of the defect for single-grid red–black Gauss–Seidel waveform
relaxation. The lower curve shows the norm of the defect on the fine grid for multigrid
waveform relaxation. We used a red–black Gauss–Seidel smoother and standard coars-
ening with a V-cycle using one pre- and one post-smoothing step.

Figure 3 illustrates the Fourier–Laplace analysis graphically. The dashed lines are
the scaled boundary loci over which one has to maximise ρ(M(z)) to find ρ(M) for dis-
crete waveform relaxation on infinite time-intervals (see section 3.1). The contour lines
of log10 ρ(M(z)) are represented by solid lines. The convergence factor can be deter-
mined visually by finding the maximum of ρ(M(z)) over the appropriate set #. We can
see for example that the convergence factor decreases as we move away from the origin.
This illustrates the fact that ρ = 0 at infinity, corresponding to the continuous finite
interval case. The convergence factor for the discrete finite interval case can be found at
a point on the positive real axis. For a more detailed discussion of the interpretation of
spectral pictures we refer to [5,15,16].

For the analysis, the infinite interval case is chosen because in practice this gives
an accurate approximation of the observed convergence factor [4,15]. This is motivated
by an argument based on pseudospectra in [3,8]. The numerical results of the analysis
will be given in the tables discussed in the next two sections.
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Figure 2. Norm of defect for single-grid waveform relaxation (upper curve, red–black Gauss–Seidel) and
multigrid waveform relaxation (lower curve, red–black Gauss–Seidel smoother, full-weighting restriction,

bilinear interpolation, V(1,1)-cycle) (ε = 1, β = 0, h = 2−5, ht = 10−3, T = 1).

Figure 3. Spectral picture for two-grid waveform relaxation with red–black Gauss–Seidel as smoother and
standard coarsening, applied to the discretised isotropic diffusion equation (ε = 1, β = 0, h = 2−5). The
solid lines represent contour lines of log10(ρ(M(z))), the dashed lines represent the scaled boundary loci

of the BDF1-5 methods (ht = 10−3).
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4.2. Anisotropic diffusion equation

One expects from experience with elliptic problems that point relaxation methods
are inadequate for solving anisotropic problems. This is confirmed by figure 4 which
shows a spectral picture for an anisotropic problem. The line for ρ = 1 (almost) touches
the origin. Therefore (18) will result in convergence factors very close to 1 for # sets
corresponding to an infinite time interval. Figure 5 shows that when we use vertical zebra
Gauss–Seidel as smoother we get a small convergence factor for ε � 1. The numerical
values of the theoretical and observed asymptotic convergence factors can be found in a
set of tables given below.

Table 2 illustrates the effect of ε. It shows the two-grid theoretical values, the
two-grid observed values and the V- and W-cycle results. Large convergence factors
are found for ε �= 1 (red–black Gauss–Seidel smoothing and standard coarsening). In
tables 3–6 convergence factors for other combinations of smoothing and coarsening are
given. The first column of each table indicates the smoothing and coarsening strate-
gies used (abbreviations are explained in table 1). Table 3 gives the theoretical conver-
gence factor calculated by the two-grid Fourier–Laplace analysis. Table 4 gives conver-
gence factors observed for two-grid waveform relaxation (the correction equation on the
coarse grid is approximated by 100 smoothing steps). The observed convergence factors
for multigrid waveform relaxation with V- and W-cycles are given in tables 5 and 6.
Table 2 compares these four cases for red–black Gauss–Seidel smoothing and standard
coarsening. The observed two-grid convergence factors are very close to the theoretical
two-grid convergence factor. The W-cycle is, in this case, completely equivalent to the
two-grid cycle. In most cases the results for the V-cycle are comparable.

Figure 4. Spectral picture for two-grid waveform relaxation with red–black Gauss–Seidel as smoother and
standard coarsening, applied to the discretised anisotropic diffusion equation (ε = 10−3, β = 0, h = 2−5).
The solid lines represent contour lines of log10(ρ(M(z))), the dashed lines represent the scaled boundary

loci of BDF1 to BDF5 (ht = 10−3).
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Figure 5. Spectral picture for two-grid waveform relaxation with vertical zebra Gauss–Seidel as smoother
and standard coarsening, applied to the discretised anisotropic diffusion equation (ε = 10−3, β = 0,
h = 2−5). The solid lines represent contour lines of log10(ρ(M(z))), the dashed lines represent the scaled

boundary loci of BDF1 to BDF5 (ht = 10−3).

Table 1
Abbreviations used to indicate the smoothing (first column) and coarsening
(second column) strategies used. E.g., HY: horizontal zebra Gauss–Seidel with

y-semicoarsening.

F: red–black (β = k(π/2)) or four-colour S: standard coarsening
H: horizontal zebra X: x-semicoarsening
V: vertical zebra Y: y-semicoarsening
A: alternating zebra A: alternating semicoarsening

Table 2
Convergence factors for waveform relaxation with red–black Gauss–Seidel and standard coarsening,

applied to the anisotropic diffusion equation (β = 0, h = 2−5, ht = 10−3, BDF1).

ε 10−4 10−3 10−2 10−1 2−1 1 2 101 102 103 104

two-grid, theoretical 0.994 0.990 0.956 0.680 0.197 0.075 0.197 0.683 0.961 0.996 1.000
V-cycle, numerical 0.936 0.931 0.890 0.648 0.210 0.108 0.209 0.649 0.898 0.937 0.937
W-cycle, numerical 0.936 0.931 0.890 0.646 0.188 0.072 0.188 0.647 0.898 0.937 0.937
two-grid, numerical 0.936 0.931 0.890 0.646 0.188 0.072 0.188 0.647 0.898 0.938 0.937

For strong coupling in the x-direction (ε � 1) horizontal zebra Gauss–Seidel with
standard coarsening (HS) shows good convergence. The convergence is very bad, how-
ever for strong coupling in the y-direction (ε � 1). The converse is true when we use
vertical zebra Gauss–Seidel as smoother (VS). Combining these two methods into alter-
nating zebra Gauss–Seidel (AS) results in good convergence for all values of ε. These
results confirm the findings for the stationary multigrid case.
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Table 3
Theoretical convergence factors for two-grid waveform relaxation with different combinations of smoothing
and coarsening strategies, applied to the anisotropic diffusion equation (β = 0, h = 2−5, ht = 10−3,

BDF1, infinite time interval).

ε 10−4 10−3 10−2 10−1 2−1 1 2 101 102 103 104

FS 0.994 0.990 0.956 0.680 0.197 0.075 0.197 0.683 0.961 0.996 1.000
HS 0.994 0.990 0.956 0.680 0.197 0.093 0.093 0.093 0.093 0.093 0.093
VS ∼10−7 ∼10−4 0.014 0.145 0.114 0.093 0.197 0.683 0.961 0.996 1.000
AS ∼10−7 ∼10−4 0.013 0.110 0.043 0.029 0.034 0.070 0.090 0.093 0.093
FX 0.994 0.990 0.956 0.680 0.197 0.072 0.061 0.053 0.013 0.001 ∼10−3

FY 0.093 0.093 0.093 0.090 0.080 0.072 0.197 0.683 0.961 0.996 1.000
FA 0.004 0.004 0.004 0.001 ∼10−4 ∼10−5 ∼10−4 ∼10−3 ∼10−3 ∼10−5 ∼10−7

HY 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093
VX ∼10−7 ∼10−4 0.014 0.145 0.114 0.093 0.072 0.053 0.013 0.001 ∼10−3

Table 4
Numerically observed convergence factors for two-grid waveform relaxation with different combinations
of smoothing and coarsening strategies, applied to the anisotropic diffusion equation (β = 0, h = 2−5,

ht = 10−3, BDF1).

ε 10−4 10−3 10−2 10−1 2−1 1 2 101 102 103 104

FS 0.936 0.931 0.890 0.646 0.188 0.072 0.188 0.647 0.898 0.938 0.937
HS 0.936 0.931 0.889 0.646 0.188 0.087 0.086 0.079 0.048 0.002 ∼10−5

VS ∼10−7 ∼10−4 0.040 0.120 0.106 0.086 0.188 0.647 0.898 0.938 0.937
AS ∼10−7 ∼10−4 0.021 0.091 0.046 0.042 0.031 0.058 0.046 0.002 ∼10−5

FX 0.936 0.932 0.891 0.646 0.188 0.077 0.023 0.050 0.022 0.020 0.020
FY 0.089 0.089 0.088 0.085 0.076 0.023 0.250 0.647 0.900 0.938 0.937
FA 0.004 0.004 0.003 0.001 ∼10−4 ∼10−5 ∼10−4 ∼10−3 ∼10−4 ∼10−4 ∼10−3

HY 0.089 0.089 0.088 0.088 0.087 0.038 0.216 0.276 0.049 ∼10−3 ∼10−5

VX ∼10−7 ∼10−4 0.037 0.117 0.065 0.027 0.026 0.050 0.023 0.020 0.020

Table 5
Numerically observed convergence factors for multigrid waveform relaxation with different combinations
of smoothing and coarsening strategies, applied to the anisotropic diffusion equation (β = 0, h = 2−5,

ht = 10−3, BDF1, V-cycle).

ε 10−4 10−3 10−2 10−1 2−1 1 2 101 102 103 104

FS 0.936 0.931 0.890 0.648 0.210 0.108 0.209 0.649 0.898 0.937 0.937
HS 0.936 0.931 0.889 0.648 0.197 0.110 0.106 0.086 0.053 0.002 ∼10−5

VS ∼10−7 ∼10−4 0.036 0.108 0.113 0.110 0.196 0.649 0.898 0.937 0.937
AS ∼10−7 ∼10−4 0.020 0.085 0.053 0.052 0.040 0.057 0.050 0.002 ∼10−5

FX 0.935 0.930 0.895 0.868 0.863 0.852 0.821 0.659 0.237 0.036 0.004
FY 0.116 0.115 0.129 0.654 0.822 0.852 0.860 0.867 0.902 0.938 0.937
FA 0.011 0.011 0.009 0.004 0.035 0.034 0.030 0.011 0.003 ∼10−3 ∼10−4

HY 0.116 0.115 0.114 0.114 0.113 0.111 0.108 0.090 0.054 0.002 ∼10−5

VX ∼10−7 ∼10−4 0.036 0.108 0.115 0.112 0.101 0.168 0.123 0.018 ∼10−3
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Table 6
Numerically observed convergence factors for multigrid waveform relaxation with different combinations
of smoothing and coarsening strategies, applied to the anisotropic diffusion equation (β = 0, h = 2−5,

ht = 10−3, BDF1, W-cycle).

ε 10−4 10−3 10−2 10−1 2−1 1 2 101 102 103 104

FS 0.936 0.931 0.890 0.646 0.188 0.072 0.188 0.647 0.898 0.937 0.937
HS 0.936 0.931 0.889 0.646 0.188 0.088 0.087 0.080 0.048 0.002 ∼10−5

VS ∼10−7 ∼10−4 0.040 0.120 0.106 0.088 0.188 0.647 0.898 0.938 0.937
AS ∼10−7 ∼10−4 0.021 0.091 0.046 0.042 0.030 0.058 0.045 0.002 ∼10−5

FX 0.936 0.931 0.890 0.704 0.571 0.480 0.369 0.050 0.010 ∼10−3 ∼10−4

FY 0.091 0.090 0.089 0.088 0.038 0.485 0.569 0.707 0.900 0.938 0.937
FA 0.005 0.004 0.004 0.001 ∼10−4 ∼10−5 ∼10−4 ∼10−3 ∼10−4 ∼10−6 ∼10−8

HY 0.091 0.090 0.089 0.089 0.089 0.089 0.088 0.081 0.048 0.002 ∼10−5

VX ∼10−7 ∼10−4 0.040 0.121 0.106 0.088 0.069 0.049 0.010 ∼10−3 ∼10−5

Table 7
Performance of multigrid waveform relaxation applied to the

anisotropic diffusion equation.

FS HS VS AS FX FY FA HY VX

ε � 1 − − + + − ± + + +
ε � 1 − + − + ± − + + +

The results of the Fourier–Laplace analysis in table 3 indicate that we could ex-
pect similar results for red–black Gauss–Seidel smoothing with x- and y-semicoarsening
(FX, FY). The numerical results in table 5, however, show poor convergence for mod-
erate values of ε. The two-grid Fourier–Laplace analysis assumes that the correction
equation on the coarse grid is solved exactly or nearly so. In the V- and W-cycle case,
this assumption is not satisfied, because through grid stretching semicoarsening intro-
duces an anisotropy that is strongly increasing with growing number of grid levels (see
remark 5.1.3 on p. 134 of [14]). We can therefore expect the multigrid method to fail
on the coarser grids, which renders the two-grid approximation invalid. From the nu-
merical results for V- and W-cycles it becomes clear that the semicoarsening methods
only work for very specific values of ε. The alternating semicoarsening method with
red–black Gauss–Seidel as smoother (FA), however, shows very good convergence for
all values of ε. Combination of a smoother that works well for coupling in one direction
with semicoarsening for the other direction results in robust solvers as well (rows HY
and VX). These results confirm the results obtained for the stationary multigrid case.
Table 7 summarises our findings.

4.3. Rotated anisotropic diffusion equation

The previous results show that good convergence can be obtained for problems
with strong coupling in the direction of the coordinate axes. Tables 8–10 show conver-
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Table 8
Theoretical convergence factors for two-grid waveform relaxation with differ-
ent combinations of smoothing and coarsening strategies applied to the rotated
anisotropic diffusion equation (ε = 10−3, h = 2−5, ht = 10−3, BDF1, infinite

time interval).

β 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

FS 0.990 0.788 0.682 0.664 0.683 0.788 0.990
HS 0.990 0.788 0.667 0.611 0.541 0.335 ∼10−4

VS ∼10−4 0.335 0.541 0.611 0.667 0.788 0.990
AS ∼10−4 0.312 0.486 0.532 0.486 0.312 ∼10−4

FX 0.990 0.788 0.634 0.528 0.366 0.144 0.093
FY 0.093 0.144 0.364 0.530 0.637 0.788 0.990
FA 0.004 0.009 0.045 0.061 0.040 0.007 0.004
HY 0.093 0.162 0.354 0.479 0.493 0.330 ∼10−4

VX ∼10−4 0.330 0.493 0.479 0.354 0.162 0.093

Table 9
Numerically observed convergence factors for multigrid waveform relaxation with
different combinations of smoothing and coarsening strategies applied to the ro-
tated anisotropic diffusion equation (ε = 10−3, h = 2−5, ht = 10−3, BDF1,

V-cycle).

β 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

FS 0.931 0.804 0.776 0.765 0.775 0.801 0.928
HS 0.931 0.804 0.769 0.745 0.656 0.428 ∼10−4

VS ∼10−4 0.448 0.625 0.725 0.761 0.800 0.929
AS ∼10−4 0.440 0.648 0.680 0.616 0.410 ∼10−4

FX 0.930 0.897 0.883 0.877 0.815 0.578 0.115
FY 0.115 0.625 0.816 0.874 0.889 0.892 0.928
FA 0.011 0.111 0.294 0.370 0.328 0.102 0.011
HY 0.115 0.472 0.658 0.685 0.625 0.415 ∼10−4

VX ∼10−4 0.441 0.604 0.667 0.633 0.492 0.115

Table 10
Numerically observed convergence factors for multigrid waveform relaxation with
different combinations of smoothing and coarsening strategies applied to the ro-
tated anisotropic diffusion equation (ε = 10−3, h = 2−5, ht = 10−3, BDF1,

W-cycle).

β 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

FS 0.931 0.766 0.697 0.688 0.696 0.767 0.929
HS 0.931 0.767 0.689 0.659 0.583 0.409 ∼10−4

VS ∼10−4 0.410 0.571 0.648 0.686 0.766 0.929
AS ∼10−4 0.422 0.582 0.606 0.555 0.398 ∼10−4

FX 0.931 0.853 0.799 0.732 0.585 0.232 0.090
FY 0.090 0.218 0.585 0.745 0.813 0.850 0.929
FA 0.004 0.020 0.119 0.162 0.100 0.017 0.004
HY 0.090 0.227 0.458 0.553 0.539 0.396 ∼10−4

VX ∼10−4 0.399 0.533 0.542 0.466 0.226 0.090



J. van Lent, S. Vandewalle / Multigrid waveform relaxation for PDEs 377

Figure 6. Polar plot (ρ, β) of numerically observed convergence factors for multigrid waveform relaxation
with different smoothers and standard coarsening, applied to the rotated anisotropic diffusion equation

(ε = 10−3, h = 2−5, ht = 10−3, BDF1, V-cycle).

gence factors for different methods as a function of the angle β, with fixed ε = 10−3.
Because of symmetry it is sufficient to consider β ∈ [0, π/2). We can conclude that all
of the methods considered here have problems when the coupling is not aligned with the
grid. Similar results are obtained for ε � 1. Again the result observed for the V-cycle
is worse than expected from the two-grid Fourier–Laplace analysis. The W-cycle re-
sults are closer to the theoretical two-grid ones. The results for different smoothers and
standard coarsening with a V-cycle are graphically illustrated in figure 6. In this polar
plot the convergence factor ρ is plotted in function of the direction β of the anisotropy.
A circular curve with a small radius would indicate a robust method.

If the direction of coupling is unknown, it is best to use a method with good con-
vergence for all values of ε in the non-rotated anisotropic case. It may be necessary,
however, to consider other methods like incomplete LU factorisation smoothing when
strong non-alignment can occur.

4.4. Example problem with variable coefficients

We illustrate the results with the more general linear equation

∂u

∂t
= ∂

∂x

(
a
∂u

∂x

)
+ ∂

∂y

(
b
∂u

∂y

)
+ f (22)

with variable coefficients a(x, y) = e10(x−y) and b(x, y) = e−10(x−y). This problem has
strong coupling in both directions. The initial conditions, Dirichlet boundary conditions
and source term f are chosen such that the exact solution is u(t, x, y) = t + x + y.
In table 11 the convergence factors are given for multigrid waveform relaxation methods
with different combination of smoothing and coarsening strategies. As expected only
the robust methods (AS, FA, HY, VX) show good convergence. The same discretisation
as before is used (hx = hy = 2−5, 5 levels, ht = 10−3, BDF1), together with V-cycles
with one pre- and one post-smoothing step. The number between brackets indicates the
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Table 11
Numerically observed convergence factors for multigrid waveform relaxation applied
to (22). Number of iteration needed for reduction of norm of defect by 10−8 between

brackets (h = 2−5, ht = 10−3, BDF1).

FS HS VS FX FY

0.9207(>177) 0.9209(>178) 0.8926(>121) 0.8876(>121) 0.8867(>115)

AS HY VX FA

0.0175(3) 0.1009(8) 0.1166(8) 0.0073(4)

Table 12
Correction factors for different smoothing and coarsening strategies (V-cycle).

Point relaxation ν1 + ν2 Standard coarsening 4/3
Line relaxation 2(ν1 + ν2) Semicoarsening 2

Alternating semicoarsening 16/3

number of iterations needed to get a reduction of the norm of the defect by a factor 10−8.
At this point precision up to discretisation error was reached for all the converging meth-
ods. The convergence factor is estimated by the quotient of the norms of the defect in the
last and second to last iteration. If more than 20 iterations were needed the convergence
factor was estimated using the norm of the defect in the 19th and 20th iteration. This
value is then used to estimate the expected number of iterations.

4.5. Correction for computational complexity

Obviously a multigrid iteration is more expensive than a single-grid iteration. Sim-
ilarly line relaxation and semicoarsening are more expensive than point relaxation. To
fairly compare the different methods we should introduce a convergence factor relative
to the amount of work needed for one iteration. As a “work unit” one usually takes the
amount of work needed to do one single-grid point relaxation on the finest grid.

The tridiagonal systems that have to be solved for line relaxation involve approx-
imately twice the amount of work of point relaxation. The amount of work is also
proportional to the number of smoothing steps (ν1 + ν2). For the different coarsening
strategies we can estimate the amount of work by counting the number of points vis-
ited. For V-cycles this results in the factors given in table 12. We can now estimate,
for example, that one multigrid waveform iteration with point relaxation and alternating
semicoarsening with V(1,1)-cycles takes approximately 10 2

3 work units. For a method
that has a convergence factor ρ, and takes α work units per iteration, the convergence
factor per work unit is equal to ρ̃ = α

√
ρ. Figure 7 compares the corrected convergence

factor for the standard coarsening multigrid waveform relaxation methods, applied to the
anisotropic model problem (β = 0). The FS, VS and HS methods all have a parame-
ter region where they work best and another region where they perform (very) poorly.
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Figure 7. Numerically observed convergence factors “per work unit” for multigrid waveform relaxation
with different smoothers and standard coarsening, applied to the anisotropic diffusion equation (β = 0,

h = 2−5, ht = 10−3, BDF1, V-cycle).

The computationally expensive AS method works well over the entire parameter region.
This behaviour is typical also for the rotated problem and for other multigrid operator
combinations.

5. Conclusions

We have shown that it is possible to extend the multigrid methods developed for
stationary anisotropic problems to multigrid waveform relaxation methods for the corre-
sponding time-dependent problems. The convergence rates are qualitatively similar for
the stationary and the time-dependent methods. For problems where the anisotropy is
aligned to the grid, alternating line relaxation with standard coarsening and point relax-
ation with alternating semicoarsening are appropriate methods. These methods are still
useful for problems where the anisotropy is not aligned with the grid, but the perfor-
mance is not optimal anymore. The performance of any method may strongly depend
on the particular parameter values, and needs to be corrected for its computational com-
plexity.
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